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ABSTRACT

TOPOLOGICAL NAVIGATION ALGORITHM DESIGN AND ANALYSIS
USING SPHERICAL IMAGES

Şahin, Yasin

Master of Science, Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ahmet Buğra Koku

August 2022, 169 pages

A topological navigation algorithm that has the capability of mapping and localiza-

tion based on visual contents is proposed. Keypoint detection and feature matching

are conducted on spherical images to extract significant features among sequential

frames. Robot movement direction is estimated based on historical angle differences

of significant features to reach the final destination. The navigation process is sup-

ported with visual egocentric localization to gain simultaneous localization and map-

ping competence. The algorithm is tested in different scenarios in which accurate

results are obtained in terms of autonomous navigation objectives. Development op-

portunities are examined to criticize possible future steps.

Keywords: Topological Navigation, Qualitative Navigation, Spherical Image, Equirect-

angular Image, Keypoint Detection, Feature Matching, Landmark Detection
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ÖZ

KÜRESEL GÖRÜNTÜLER KULLANILARAK TOPOLOJİK SEYRÜSEFER
ÇÖZÜM YOLU TASARIMI VE ANALİZİ

Şahin, Yasin

Yüksek Lisans, Makina Mühendisliği

Tez Danışmanı: Doç. Dr. Ahmet Buğra Koku

Ağustos 2022, 169 sayfa

Görsel içeriklere dayalı olarak haritalama ve lokalizasyon yapabilen bir topolojik sey-

rüsefer çözüm yolu önerilmiştir. Sıralı görüntüler arasında önemli öznitelikleri çı-

karmak için küresel görüntüler üzerinde ana nokta tespiti ve öznitelik eşleştirmesi

yapılmıştır. Robot hareket yönü, nihai hedefe ulaşmak için önemli özniteliklerin ta-

rihsel açı farkına dayalı olarak kestirilmiştir. Seyrüsefer süreci, görsel benmerkezci

lokalizasyon ile desteklenerek eş zamanlı lokalizasyon ve haritalama yetkinliği ka-

zandırılmıştır. Çözüm yolu, otonom seyrüsefer hedefleri açısından başarılı sonuçların

elde edildiği farklı mekan senaryolarında test edilmiştir. Gelecekteki olası adımları

tanımlamak için geliştirme fırsatları incelenmiştir.

Anahtar Kelimeler: Topolojik Seyrüsefer, Nitel Seyrüsefer, Küresel Görüntü, Eşdik-

dörtgensel Görüntü, Ana Nokta Eşleştirme, Öznitelik Eşleştirme

vi



To Eda, my precious partner in crime

vii



ACKNOWLEDGMENTS

I would like to express my greatest gratitude to my supervisor, Assoc. Prof. Dr. Ah-
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CHAPTER 1

INTRODUCTION

This chapter describes the overall extent of the thesis. In other words, the problem is

defined explicitly to explain possible improvement suggestions. It can be classified as

a topological navigation problem in its simplest form. Moreover, spherical cameras

are used as the only sensor, therefore, a new aspect is introduced to combine with the

navigation. In the final form, the primary purpose is to develop an algorithm that is

eligible to achieve the navigation process with the help of spherical camera output.

1.1 Introduction

Mobile robots’ operational environments are separated as indoor and outdoor. They

achieve their objectives in three main parts namely navigation, mapping, and local-

ization independent of the environment they are working in. The first part, naviga-

tion, is stated as the science of finding a way from one place to another in [69]. In

literature, the most popularly applied type of navigation is metric navigation which

relies on accurate metric mapping of free space. They represent geometrical rela-

tionships among objects with the help of location representations such as cartesian

environment representation. After the start of public usage of the International GNSS

Service (IGS) [2], metric map construction became much simpler and easier. How-

ever, GNSS needs a direct line of sight to the satellites [52]. Therefore, it is not useful

in indoor or narrow outdoor spaces. In addition, metric maps have two major short-

comings: they do not scale well with the amount of experience, and actuation noise

on real robots makes it challenging to build consistent presentations [6]. In other
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words, they do not take advantage of previous experience and are highly dependent

on precise and noiseless location readings. To deal with noise and position errors,

grid-based metric mapping is introduced and applied in [19, 20, 49]. However, it

increased the complexity of map construction, hence, is increasing the computation

time significantly. On the contrary, it is revealed by physiological studies that spatial

memory, where free space object locations and their relative qualitative information

are recorded without having any metric knowledge, is the primary navigation source

of animals [23, 12]. This approach also shows how humans behave to navigate them-

selves [24, 74, 71]. Imagine that you are at a new university campus entrance, and

your task is to find the gymnasium. Once you reach the final destination, assume that

your new goal is going backward to the entrance. What would you do? The first

but not realistic option would be the metric maps where you need to know the exact

steps that you took while coming from the entrance to the gymnasium. The second

option would be following the significant surrounding places, which you recognized

before reaching the gymnasium, in reverse order. The latter one is called topological

mapping. In topological mapping, significant surrounding places are defined as nat-

ural landmarks that construct nodes of the map and are connected to each other with

crossable paths. At the end of the process, a map that has the form of a graph will

be created. Graph-like structure makes topological mapping more compact and less

computationally expensive than metric maps. There are different approaches stated

for topological mapping in [35, 36, 55] to even lower computational time and increase

efficient map building. Moreover, topological maps are robust against position errors

and can recover easily from drift and slippage [66]. Since the position is not crucial in

topological map building, recognizing a node would be satisfactory to recover from

an uncertain condition and to locate the robot on the map. However, uncertain con-

ditions in the navigation process do not just occur due to sensor-related issues. The

environment, in which the robot operates the navigation process, may be affected by

dynamic changes such as illumination and moving objects. It is even possible to face

an unmapped, i.e. unknown, environment so that the robot should also be able to gain

the skill of navigation in those situations. The first solution to the problem with the

Simultaneous mapping and navigation (SLAM) approach is explored in [37]. With

the application of SLAM in an off-road robot race called DARPA Grand challenge

[4], it started gaining widespread attention due to its significant performance. Ac-
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cording to [15], the “Holy Grail” of the autonomous vehicle research community is

declared as SLAM. It is defined as the capability of an autonomous vehicle to place

itself in an unknown environment, to map the unknown environment with respect to

relative free space information, and achieve a synchronous navigation process with

the unknown environment map. In the early stages of SLAM, various distance mea-

suring sensors such as laser scanners, sonars, or GPS are widely used. However, due

to challenges stated for metric mapping earlier in this section and in [66], the popu-

larity of cameras at the implementation of SLAM gained a lot of attention. Recently,

applications in which a camera is used as the primary and the only sensor have been

published extensively. This is due to the public availability of wide field-of-view and

high-resolution cameras, and their increased effect on mapping, and therefore, SLAM

algorithm performance. In the case of having a camera as the only sensor in a SLAM

application, the case is stated as a new branch of SLAM and is called vision-based

SLAM or in short vSLAM. Throughout the years, as camera technology developed,

different vSLAM technologies were proposed in the literature to utilize necessary en-

vironmental details. Although the most commonly used camera type is monocular

cameras, spherical cameras are still gaining demand because of their 360◦ view of the

environment. Since they provide a generous field of view, feature finding and tracking

become easier due to their long stay in the camera’s line of sight.

Vision-based navigation algorithm development is the primary objective of the the-

sis. It has been proposed that information taken from spherical images is sufficient

to describe the environment with only topological relationships. Therefore, equirect-

angular images obtained with the help of a spherical camera are the only input of the

algorithm to obtain mandatory data. To conclude, the developed algorithm is clas-

sified as vision-based in terms of sensor input, topological in terms of mapping and

navigation, and natural in terms of environment interaction. Hence, there are three

categories this thesis includes at the same time. It is a study of vision-based topolog-

ical natural navigation.
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1.2 Motivation and Problem Statement

Visual odometry which estimates the ego-motion of the agent is one of the major

topics of vision-based SLAM applications. It is divided into two parts namely direct

and indirect. In the indirect method, image features are extracted from the image and

they are tracked as applied in [53, 26, 70]. On the contrary, in the direct method,

instead of extracting features from the image, optical flow on the image is traced

explicitly as in [21]. Global map optimization is another major topic of vision-based

SLAM applications. It is mainly based on map construction of the environment and

suppression of errors, which occur during camera movement, to maintain consistency

of the entire map. One technique extensively used in global map optimization is loop

closing which tries to match the currently taken image with one of the map images.

Detection of a loop indicates revisiting of a node in the map, and it allows to diminish

camera movement errors. However, since most of the visual-based SLAM algorithms

use monocular cameras as the only sensor [50, 11, 43], it provides a small field of view

compared with spherical cameras. Therefore, they lack capturing features outside the

field of view of the camera. Uncertainties, which occur due to environment and sensor

effects, are compensated with the help of additional cameras installed to increase the

field of view or round off perfect panorama as stated in [78]. Addition to this, cameras

are fused with various distance measuring sensors such as IMU [39], GPS [60] or

lidar [32]. Even if the fusion of distance measurement would help the navigation

process, it affects the complexity, and the performance of the algorithm when there

is no accurate location estimation. With the increased popularity and availability of

spherical cameras, features close to the robot would be able to detect with a 360◦ field

of view. With spherical images taken by spherical cameras, we suggest that

• a robust localization and loop detection can be made,

• a 360◦ visual odometry can be achieved,

• the need for the additional sensor can be beaten,

• a graph-like topological map can be constructed.

Although the algorithm lack metric information, the drawback will be overcome with
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the rich visual content of a spherical camera. Moreover, building and maintaining the

topological map and egocentric location estimation according to robot movements

becomes simpler as a result of the wide field of view of a spherical camera. Be-

sides, using a single sensor will be boosting the algorithm in terms of computational

efficiency.

1.3 Proposed Methods and Models

As the first step, the algorithm is divided into three main parts; localization and path

planning, mapping and exploration, and topological navigation. Topological map-

ping, which is applied for the mapping and exploration process, is inspired by its

existence in nature. Further, it reduced the need for additional sensors and boosted

computational efficiency. As stated in [23, 12], metric information is not necessary

when animals navigate themselves concerning free space locations and their quali-

tative relative relations. Similar behavior also holds for humans [74]. Since metric

information is not required in nature, distance measuring sensors are not used in the

algorithm development process. Therefore, needed sensors are reduced significantly,

and only a spherical camera is used. Moreover, the developed algorithm is less com-

putationally demanding compared to metric maps due to its flexibility in accurate

robot location estimation [66]. In the localization part, indirect visual odometry based

on extracted equirectangular image features is used to take advantage of the 360◦ field

of view of a spherical camera. During the mapping and exploration phase, equirect-

angular images captured by the camera are defined as nodes of the map. The keypoint

properties, such as keypoint pixel coordinates and descriptors, along with relative lo-

cations of the nodes concerning surrounding nodes are saved for each node. When an

image is taken, its keypoint properties are compared with each map node to find out

the most similar map node. If the current image features do not match with any nodes

of the map, the current image is stated as a new node. After each comparison of the

current image features with a map node, a connection, i.e. an edge, is created if the

number of matched keypoint pairs is above a certain threshold.

In the navigation process, the robot is located with the help of the relative location

of the current image with map nodes. Also, it is assumed that keypoint pairs of an
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image can be re-generated along with the robot movement. Therefore, keypoint pairs

and their angular differences with the robot movement can be followed to locate the

robot among map nodes and to calculate the heading vector that allows specifying

robot movement direction. Since relative locations and connections of map nodes are

saved in the mapping and exploration phase, the robot path is generated according to

the current state of the robot on the topological map. If the robot starts matching key-

point pairs with the target node, the robot movements are ended when the predefined

matching limit is achieved.

1.4 Contribution and Novelties

Our contributions are as follows:

• An equirectangular image based topological mapping and navigation applica-

tion,

• A robust and effortless visual SLAM algorithm,

• A novel visual odometry application.

1.5 The Outline of the Thesis

The rest of the thesis is organized as follows: Chapter 2 is dedicated to literature

survey and problem formulation. Chapter 3 is focused on selection among algorithms

which are mentioned in Chapter 2. Chapter 4 is committed to the implementation of

selected algorithms. The simulation environment created for hands-on applications

is expressed in Chapter 5. Results of conducted experiments and discussions of the

results are published in Chapter 6. Ultimately, in the final chapter, Chapter 7, the

conclusion is shaped and development opportunities are revealed to the reader for the

proposed algorithm.

To conclude, SLAM framework topics are shortly explained to gain the attention of

the reader regarding the general principles. Topics are investigated in further detail

with respect to various branches to express the core idea behind each branch. In
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addition, development opportunities are undertaken with a possible solution. At last,

contributions are specified and the outline of the thesis is described to increase the

awareness of the reader of the structure of the thesis.
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CHAPTER 2

METHODOLOGY

Explaining the background and the necessary wording of the problem is a must be-

fore going into detail. In the implementation, data supplied by a spherical camera

at a given instant is used to navigate the robot instead of using any memory-related

information that depends on previous states. This type of approach helps the robot

to gain reactive behavior. Since only a spherical camera is used as the measurement

unit, there will be no metric information during any implementation. Therefore, both

mapping and navigation processes acquire topological titles. Moreover, using sen-

sor input from a given instant limits movement decisions with sensor range, hence,

the term local is used to specify the instant sensor data implementation. This term

is mostly used when two camera frames are compared with each other. To compen-

sate for the coverage of environments that are beyond camera range and to navigate

a robot in larger environments, from particular to general approach is applied, that is,

environments are divided into smaller regions with the help of topological maps, in

which sensor range limit is satisfied and reactive behavior is safely applied. The next

sections can be followed easier if mentioned concepts are kept in mind.

2.1 Literature Survey

Vision-based navigation takes attention due to its simplicity and capability of ex-

tracting a high amount of data from the current scene. The first central principle

of vision-based navigation is image processing. In the common approach, features

are directly extracted from the current scene image and they are matched concerning
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their descriptors at traditional methods applied for processing the image. The early

start of this kind of approach is mentioned as Harris corner detector [29] in which

only the feature extraction part is covered. Lowe gained popularity with SIFT [41]

and introduced a scale-invariant algorithm that includes both extractor and descriptor

parts. Different methods such as SURF [1], ORB [58], BRISK [38], and BEBLID

[64] have been published to provide different approaches to the problem. With the

advancement of deep learning methodologies in the last decade, instead of only ex-

tracting hand-crafted local features as mentioned earlier, features started to be created

with end-to-end processes. In one of the first approaches called LIFT [75], features

extraction and description are handled with the help of a convolutional neural net-

work trained with small image patches. Balntas et al. published TFeat [72] in which

shallow convolutional neural networks are used and the features extracted after the

convolutional layers of the CNN are directly adopted to descriptor generation with-

out training a specialized distance layer as applied in [61]. Tian et al. proposed a

different approach called L2Net [67] and took the whole batch into account while

creating descriptors with the help of a loss function. This approach gained a lot of at-

tention, therefore, improved with additional methodologies as in HardNet [48], where

a new loss function is adopted to L2Net architecture. With the adaptation of a graph

matching algorithm developed based on second order similarity, a new methodol-

ogy SOSNet [68] aimed to improve patch description by improving robustness due

to shape distortion. Another approach, MagicPoint [14], takes the complete image

as input and creates well-distributed and learning-based features extracted from the

image. SuperPoint [13], a robust training approach is built upon MagicPoint and pro-

posed to solve multi-view geometry problems by using complete images. However,

local feature detector and descriptor algorithms are developed for stereo cameras in

the primary scope. They may not be directly applicable to spherical images. The

main reason is the distortion occurring when the spherical grid is unfolded to rep-

resent the image in planar view. Different methodologies such as learning spherical

convolutional networks [62] which include trainable kernels to transform planar CNN

to an equirectangular projection of a spherical image started to be published to elimi-

nate the issue. Instead of converting planar CNN to spherical, Cohen et al. produced

spherical CNNs [8], a straightforward solution to contribute to the necessary rota-

tional invariance for convolutions on the sphere. Eder et al. [16, 17] introduced
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the usage of icosahedrons to diminish the distortion problem to increase robustness

in CNNs. Furthermore, they also mentioned a new spherical image representation

called tangent images [18], where distortion is decreased with the help of icosahe-

drons. Zhao et al. also implemented icosahedrons in their work to create a feature

extractor and descriptor SPHORB [77] to obtain robust binary features from spheri-

cal images. Guan et al. [27] tuned another descriptor algorithm BRISK into spherical

images by adding a geodesic grid and triangular meshing methodology. Taira et al.

[65] generated an n-rectified equirectangular image from the input equirectangular

image and generated rectified image distortions are eliminated based on covered an-

gular regions. SURF keypoints are generated and image patches are created around

those points before mapping onto the tangent plane in [7]. Micusik et al. [46] di-

vided a spherical image into several perspective images and then applied different

planar detectors and descriptors. Hadj-Abdelkader et al. [28] introduced a spherical

Harris corner detector to increase robustness on the feature detection part. The SIFT

algorithm is also adapted to the spherical domain in [9] with the help of spherical har-

monics. For the matching part, most public approaches depend on using the nearest

neighbor search to find the closest matching descriptors between two images [5, 3].

To geometrically verify matches and to eliminate outliers, algorithms like random

sample consensus (RANSAC) [22, 54], direct linear transform (DLT) [30] are widely

used. Sarlin et al. come up with a joint and novel solution for both matching and out-

lier elimination problems with the help of graph neural networks in SuperGlue [59].

Since these matching methodologies still lack separated detector and descriptor algo-

rithms, NCNet [57] is proposed to enable detector-free and end-to-end design. It is

further boosted to be more efficient on sparse convolutions with Sparse NCNet [56].

Parallel to the design, possible accuracy increment is investigated with DualRC-Net

[40]. LoFTR [63] offered another point of view to descriptor-free matching by using

Transformers [73].

The second central principle of vision-based navigation is spatial relationship han-

dling. Chaplot et al. [6] proposed a supervised neural network-based algorithm that

maps semantic features as nodes and geometrically verifies their connections among

each other. Accordingly, Meng et al. introduced NEURO-NAV system [44], where a

neural network is used to extract features, perform matching, and decide on topolog-

ical representation as a map. Neural network activations are handled by a rule-based
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controller which receives commands from a human supervisor. By improving the

rule-based controller to a fuzzy logic controller, Kak et al. published FUZZY-NAV

[51]. Hu et al. mentioned the memory problem with the increased environment ex-

ploration duration in [33], and they proposed a self-organizing neural network-based

structure to eliminate memory inefficiency for additive topological mapping and nav-

igation. Hashima [31] leveraged from correlations between landmarks recorded in

addition to robot movement. Zhao in [42] uses convolutional neural networks to find

the most similar frames from the topological map and introduces a sharpness measure

to eliminate blurry frames without processing.

Although studies that are mentioned cover topological mapping, navigation, and pro-

cess of spherical images with distinct representations such as equirectangular and

tangent images in terms of feature extraction and matching, a study of combined

topological mapping and navigation with spherical images is not worked extensively.

One study is published by Goedeme et al. [25], in which a topological map is con-

structed from images taken within equal intervals. They also introduced a new match-

ing methodology called fast wide baseline matcher to perform faster matching. How-

ever, their setup consists of a single-lens omnidirectional camera, therefore, a fisheye

lens is necessary to surround 360◦. In [76], Huang et al. investigated hand-crafted

local feature detector performance with spherical images for vision-based SLAM ap-

plication. Even though their approach shows a consistent framework for vision-based

SLAM, it can be investigated further for future detection and investigation. Hence,

vision-based 360◦ SLAM operations are not studied excessively with spherical cam-

eras, and there is still room for additional studies.

2.2 Problem Formulation

The approach that we are designing is built upon two major peripherals, namely topo-

logical navigation and topological map operations. Topological navigation is based

on tracking an estimated heading vector which is calculated by comparing local fea-

tures of two camera frames, and topological map operations are dedicated to creating

a topological map in the mapping stage, locating the robot in the constructed topo-

logical map, and defining a path for executing tracking process and finalizing the
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navigation after reaching the marked destination.

2.2.1 Topological Navigation

Navigation processes differ from each other in the purpose of applications. In applica-

tions such as robot-assisted surgeries, industrial automation, autonomous driving, and

aerial robotics, where precision is seen as the primary concern, a map is constructed

based on metric measurements, and the navigation process is implemented mainly

with the help of metric sensors. However, psychological studies [23, 74] demonstrate

that both humans and animals use their spatial memory, in other words, surrounding

salient objects and their relative locations, as the essential navigation source regard-

less of any metric knowledge. In addition to spatial relationships, our approach is

built upon reactive behavior. In detail, although a topological map is created during

the mapping stage to improve the localization phase, reactive behavior does not lever-

age any global map operation. In reactive behavior, direction estimation is limited

with the simultaneous sensor measurements, therefore, robot movement decisions are

made in accordance with the current sensor status. To be able to succeed in this

task, the most important finding is catching as similar local features as possible be-

tween two successive frames. This procedure let us expose intuitive relations such as

reminiscence and perceptual similarity between scenes. With the help of rich local

features extracted from a spherical camera at a specific instant, we expect to solve

dependencies of reactive behavior which are detection of common features between

two successive frames, and heading estimation leading through the target scene.

2.2.1.1 Local Feature Matching

In our applications, a feature can be defined as a sample that carries data about the

specific content of a camera frame. In other words, a feature shows if a dedicated

region of the frame has the desired attribute such as the event of highlighting edges

in the current frame. Moreover, we refer to local feature matching as the matching

process of local features extracted from two different camera frames. The first task of

achieving local feature matching is detection. Harris corner detector [29] and Differ-
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ence of Gaussian (DoG) [41] are two of the first methods that have been developed

to cover the feature detector part. After features are detected in the camera frame, the

next task is creating a vector for each detected feature to provide a common ground

for the comparison of features with each other. To facilitate the common ground cre-

ation process algorithms called descriptors such as SIFT [41], one of the pioneers of

descriptor algorithms, started to be developed. In time, to cover the lacking part of

existing algorithms and to provide different approaches to the description problem,

new algorithms like ORB [58] and BEBLID [64] are declared. As the popularity of

deep learning has increased among researchers in the last decade, novel feature de-

scriptor algorithms such as TFeat [72], HardNet [48], SOSNet [68] and SuperPoint

[13] have been published to develop end-to-end processes. The final task of local

feature matching is the matching of descriptors. The most popular approach to per-

form descriptor matching is Nearest Neighbor matching which couples descriptors

by calculating the L2 distance among each matching candidate. Calculated distances

are sorted out, and the candidates with the minimum distance are matched with each

other. Recently, a deep learning algorithm SuperGlue [59] is developed with the help

of graph neural networks to be able to construct matching by processing descriptors

as a whole. Since heading estimation between the current camera frame and the tar-

get camera frame is dependent on local feature matching due to reactive behavior,

robustness and accuracy of local feature matching are fundamental to completing the

topological navigation process.

The primary topological navigation sensor we use, a spherical camera, represents an

image in a spherical grid. Therefore, transforming a spherical grid into a planar grid

in order to represent spherical images as equirectangular images result in distortion

as shown in Figure 2.1. In our implementations, we first try to address how spherical

distortion behaves through the whole image frame, and then we construct a distortion

analysis to find out the best possible combination of spherical image representation,

descriptor, and matcher.
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Figure 2.1: Spherical Distortion Change with Latitude & Longitude

2.2.1.2 Spherical Distortion Behavior

One of the most common approaches while projecting spherical images into planar

images is equirectangular representation. However, due to changing metric distance

between longitudes, equirectangular projection results in spherical distortion which is

a function of pixel latitude. Since the image grid is affected by distortion, it directly

influences detector and descriptor performance, especially descriptors based on con-

volutional neural networks as mentioned in [18], at local feature matching. In order to

see how spherical distortion affects local feature performance, an image is placed at

different center latitudes and center longitudes as in Figure 2.2. In order to investigate

local feature matching performance, matching is performed between the image that is

placed at different center latitudes and longitudes, and the image placed at the center

of the spherical grid. It can be seen from Figure 2.3 that local feature matching is not

affected by pixel longitudes. Therefore, we will be keeping the center longitude as

zero at further distortion analyses.
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(a) Center Latitude:−60◦, Longitude:30◦ (b) Center Latitude:60◦, Longitude:30◦

(c) Center Latitude:0◦, Longitude:30◦ (d) Center Latitude:0◦, Longitude:−30◦

Figure 2.2: Images Placed to Different Center Latitude & Longitude

In addition to equirectangular representation, different viewpoints have started to be

developed to diminish the distortion. Eder et al. [18] proposed a methodology called

tangent images to mitigate spherical distortion regardless of spherical representation

by creating tangent planes. In their approach, they try to discover the optimal planar

grid projection from a spherical grid by dividing the spherical grid into icosahedrons.

The proposed tangent images approach is implemented directly to our use case to

see how it affects local feature matching performance. Moreover, we expect to use

equirectangular images with dimensions of 1024x2048, therefore, our hyperparam-

eters base level and subdivision level are selected as 9 and 1, respectively as sug-

gested. In the end, 80 tangent images with resolutions of 256x256 are generated from

an equirectangular image, feature detection and description processes are applied for

each tangent image, and results are merged to represent the whole equirectangular

image. As a final task, descriptor matching is performed to merge descriptors that

represent the equirectangular image as a whole. Entire process is also explained in

Figure 2.4.
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Figure 2.3: Local Feature Matching Performance Change with Latitude & Longitude

2.2.1.3 Heading Estimation

When the most similar camera frame to the current camera frame is selected from

the map with the help of local feature matching, the next step is performing heading

vector estimation that could route the robot to navigate from the current frame to the

target frame. To decide on the best one, we tried out four different methodologies. It

is recommended for the reader to keep in mind that axes and angles are implemented

by creating an egosphere around the robot in all implementations as in Figure 2.5.

Our first heading estimation method is adopted from [34]. In the first one, a unit vec-

tor is created to represent each keypoint by the help of longitudes. Then, different

keypoints are paired with each other to enable vector analysis which helps compu-

tation of angular difference in between paired keypoints. In all implementations,

we represented current frame with superscript c, and target frame with superscript t.

Therefore, unit vectors for each keypoint pair in the current frame, which calculated

in equation (2.1), represented with uci and ucj . Same procedure is applied also for
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(a) Input Spherical Image

(b) Generated 80 Tangent Images

(c) Output Spherical Image

Figure 2.4: Tangent Image Generation & Local Feature Matching Process

the target camera frame unit vectors uti and utj in equation (2.2). After unit vectors

are calculated, vector operations performed to show whether the angle between each

keypoint pair increased (Aij), and if keypoint order is changed (Bij) from current

frame to target frame. As the final step, uij , bisector vector of each keypoint pair, is

calculated in equation (2.6) and summed up to estimate the heading vector h in equa-

tion (2.7). First method is also visually explained in Figure 2.6 to be able to observe

in term of the robot egosphere.

uci = cos
(
µci

)
i+ sin

(
µci

)
j

ucj = cos
(
µcj

)
i+ sin

(
µcj

)
j

(2.1)

uti = cos
(
µti

)
i+ sin

(
µti

)
j

utj = cos
(
µtj

)
i+ sin

(
µtj

)
j

(2.2)

dcij = uci · ucj Cij = uci × ucj

dtij = uti · utj T ij = uti × utj
where i ̸= j (2.3)

Aij = sgn
(
dcij − dtij

)
(2.4)
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Figure 2.5: Axes and Angles Around the Robot Egosphere

Bij =
sgn

(
Cij · T ij

)
+ 1

2
(2.5)

uij =
(
1 +Bij

(
Aij − 1

)) uci + ucj

||uci + ucj || (2.6)

h =
∑

uij (2.7)

In the second methodology, we seek improvement opportunities for the first one.

Since all keypoints have the same priority on the heading calculation at the first

method, it would face a heading bias in case of unevenly distributed matched key-

points around the true heading. In other words, if matched keypoints are localized in

an area, method-1 tends to focus on that area, hence, deviating from the true head-

ing. Therefore, we reinforced the heading calculation of method-1 with a gain which

is a function of the change of longitude difference of keypoint pair between frames.

Firstly, longitude difference of keypoint pair for the current frame ∆µcij and the tar-

get frame ∆µtij are calculated separately as in (2.8). Also, the process of calculating
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Figure 2.6: Heading Calculation Method-1

the longitude difference of keypoint pairs is visualized in Figure 2.7, in which the

left image represents the longitude of each keypoint, the right image shows longi-

tude differences for the keypoint pair for each frame. Then, the change of longitude

difference of keypoint pair between frames is calculated in (2.9). As the last step, a

function of the ∆µij is multiplied with the bisector unit vector uij to assign priori-

ties to bisector unit vectors with respect to the change of longitude difference of each

keypoint pair between frames.

Figure 2.7: Longitude Difference of Keypoint Pairs
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∆µcij = |µci − µcj |

∆µtij =
∣∣µti − µtj

∣∣ (2.8)

∆µij = ∆µtij −∆µcij (2.9)

h =
∑

f
(
∆µij

)
uij (2.10)

In the third methodology, latitudes are taken into account on decision process of head-

ing calculation. It is assumed that if the latitude of the selected keypoint is increasing

in magnitude from current frame to target frame, then the selected keypoints is in

front of the robot for both frames as visualized in Figure 2.8. Otherwise, the selected

keypoint is classified as staying at behind of the robot for both frames. One of the

main purposes of taking latitudes into account is eliminating keypoint pairing proce-

dure introduced in the previous methods. Firstly, unit vectors are created to represent

longitude of the keypoint in the current frame uci , latitude of the keypoint in the cur-

rent frame vci , latitude of the keypoint in the target frame vti , and x-axis vx to use

on the decision making process in (2.11). Then, latitude unit vectors for both frames

vci , vti are paired with the x-axis unit vector vx to represent both relative magnitude

of latitudes between frames with Ai in (2.13) and ordering of pairs with respect to

x-axis with Bi in (2.14). After calculating, Ai and Bi are used to define the direction

of the robot for a specific keypoint whether it is towards or away from the current

frame longitude unit vector uci . As the last step, longitude unit vectors with assigned

directions ui are summed up to estimate heading in (2.16). Whole process for this

methodology is summarized in Figure 2.9.

uci = cos
(
µci

)
i+ sin

(
µci

)
j

vci = cos
(
λci

)
i+ sin

(
λci

)
j

vti = cos
(
λti

)
i+ sin

(
λti

)
j

vx = 1 i+ 0 j

(2.11)
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Figure 2.8: Change of Latitude Between Frames

dci = vci · vx Ci = vci × vx

dti = vti · vx Ti = vti × vx
(2.12)

Ai = sgn
(
dci − dti

)
(2.13)

Bi =
sgn

(
Ci · Ti

)
+ 1

2
(2.14)

ui =
(
1 +Bi

(
Ai − 1

))
uci (2.15)

h =
∑

ui (2.16)

In the fourth methodology, enhancements are undertaken to boost the effectiveness of

the third methodology. As the main assumption, the selected keypoints are in front

of the robot if the latitude of the selected keypoint is increasing in magnitude from

the current frame to the target frame, may not hold for opposite cases. In more detail,

in the case of keypoints that are crossed while moving from the current frame to the

target frame, latitude difference in magnitude may still be negative as in Figure 3.15.

Since each keypoint have the same significance in heading calculation, crossed key-

points directly affect heading estimation performance. Therefore, latitude difference
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Figure 2.9: Heading Calculation Method-3

in magnitude ∆λi is calculated by subtracting absolute latitude of the current frame

λci from absolute latitude of the target frame λti in equation (2.17). Then, a function

of ∆λi is calculated and multiplied with the latitude unit vector ui to be able to define

ranking among keypoints in heading calculation as specified in equation (2.18).

∆λi = |λti | − |λci | (2.17)

h =
∑

f
(
∆λi

)
ui (2.18)
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2.2.2 Topological Map Operations

Topological map operations can be defined as processes that are beyond current sensor

measurements. Therefore, they allow the robot to be located on the overall topologi-

cal map. The main implementation steps of topological map operations contain two

major parts, namely mapping and exploration, and localization and path planning.

While mapping and exploration is dedicated to adding new places to the topological

map, localization and path planning is devoted to location and route estimation of the

robot inside the previously constructed topological map to reach the target camera

frame. These concepts will be investigated separately in detail in the following two

sections.

2.2.2.1 Mapping and Exploration

In the mapping and exploration phase, the robot recognizes and appends new places,

i.e. nodes, to the topological map concerning their similarity with already existing

nodes on the map. In more detail, a new node is inserted into the topological map

if the comparison of the current node with existing map nodes satisfies the defined

similarity thresholds. Moreover, a connection, i.e. an edge, is added between the

current node and existing map nodes if the comparison is higher than the lowest sim-

ilarity threshold. This kind of approach enables the robot to explore new nodes while

avoiding duplication of the same node. Therefore, we ensure that two distinctive

camera frames with limited similarity are compared to establish robust topological

navigation. When the mapping and exploration phase ends, a topological map that

is essential in the topological navigation process will be ready to adopt. In addition,

an example of a topological map, whose nodes symbolize equirectangular camera

frames, can be seen in Figure 2.10.

2.2.2.2 Localization and Path Planning

We refer to localization as the location estimation of the robot with respect to the clos-

est nodes in the constructed map during the topological navigation process. Localiza-

tion is needed when a target frame is defined for the robot and a global assignment
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Figure 2.10: Sample Topological Map

wants to be computed. Since our topological navigation is based on reactive behavior

which is limited by the sensor range, operations beyond the sensor range are mapped

with global assignments. Therefore, we expect to complete defined global assign-

ments by dividing them into smaller local tasks which then can be established with

reactive behavior. Firstly, localization is performed to localize both the current frame

and the target frame. After that, a path is defined by going through the map to find

the nodes between the localized current and target frame to complete path planning.

Then, nodes that are included by the planned path are defined as via points whose

primary function is being intermediate checkpoints for topological navigation as in

[78].

In summary in this chapter, image processing, and mobile robotics literature is ex-

panded in detail to reinforce the awareness of the reader to ease following. We con-

tinued explaining the problem formulation and implementation steps of the solution

to be more familiar with the terminology.

In the next chapter, the mentioned candidate methodologies for both Local Feature

Matching and Heading Estimation will be evaluated to select methods that will be

used in the implementation.
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CHAPTER 3

METHOD COMPARISON

Selection of the correct algorithm is the central part of any development process. As

explained in the Chapter 2, there are plenty of proposed algorithms both in Local Fea-

ture Matching and Heading Estimation sides. Therefore, to ease the method selection

process with related comparisons and confirm that the applied method to the use case

is the most convenient one among candidates, we conducted individual analyses by

assigning ground-truth metrics. From the image processing point of view, 9 different

local feature matching algorithms are proposed to implement them with the spherical

images. Since the most popular spherical image representation method equirectangu-

lar representation results in spherical distortion due to the spherical grid as explained

in Section 2.2.1.2, a candidate representation method tangent images is also applied to

each local feature matching algorithm to compare the difference. Moreover, sample

random scenes are created by generating Monte Carlo simulations to see the behavior

of heading estimation methods that are introduced in Section 2.2.1.3. As the final ar-

gument, the chapter will be closed by specifying the local feature matching algorithm

and the heading estimation method that will be used in the implementations.

3.1 Local Feature Matching Algorithm Comparison

Various approaches published to solve the local feature matching problem. How-

ever, the literature lacks a comparison of state-of-the-art algorithms to find out the

most compatible methodology that works in harmony with equirectangular images.

Current comparison studies are not able cover due to spherical distortion shown in
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Figure 2.1. Therefore, before diving into implementation details and case studies,

we constructed an analysis to decide on the most suitable local feature matching al-

gorithm combination according to our preferences. In the analysis, we investigated

9 different local feature matching algorithms by placing images with a 90◦ field of

view to different center latitudes as in Figure 3.4. After that, local feature matching

is performed between the image that is placed at the center of the spherical grid as in

Figure 3.3 and each image that is placed at different center latitudes as in Figure 3.4,

Figure 3.6, Figure 3.8 and Figure 3.10. In order to examine algorithm efficiency con-

cerning the distinctive point of views such as motion blur Figure 3.1d, image rotation

Figure 3.1b, scaling difference Figure 3.1c, and image representation, related param-

eters are changed accordingly. Metrics used to measure effectiveness of algorithms in

the distortion analysis are inspired from [47] and stated in equations (3.1) and (3.2).

Moreover, since images are fed into the local feature matching algorithm as a whole,

keypoints extracted from black regions or at the border of an image are discarded and

not taken into account in the performance calculation.

recall =
# correctmatches

# correspondences
(3.1)

precision =
# correctmatches

# correctmatches+# falsematches
(3.2)

In the analysis, we followed the methodology to generate the overall score mean Av-

erage Precision (mAP) mentioned in [13]. At this point, we would like to note that,

Nearest Neighbor is used as a matcher for all algorithms except SuperPoint [13].

Since it is stated in SuperGlue implementation [59] that SuperPoint is more efficient

with SuperGlue, SuperGlue is assigned as the matcher of SuperPoint. Firstly, we

selected different matching thresholds, which will be applied in each local feature

matching process, to perform matching. In addition, in each performed matching,

the extracted keypoints are rectified with respect to the image center latitude to get

rid of the spherical distortion. A geometrical matched keypoint verification method

RANSAC [22] is executed to classify matched keypoints as correct or false matches,

and correspondences in the equation (3.1) are assigned as the number of keypoints

extracted from an image. Then, precision-recall curve is constructed with metrics

28



(a) Original Image (b) Rotated Image

(c) Scaled Down Image

(d) Blurred Image

Figure 3.1: Sample Investigation Points for Local Feature Matching Performance

specified in equations (3.1) and (3.2) for each image pair as in Figure 3.11 to compute

Area Under Curve (AUC). To make AUC computation easier, the curve is assumed

as a step so that each recall data point is connected with a constant horizontal line.

Before constructing the curve, both recall and precision values are sorted out con-

cerning increasing order of recall since it is assigned as the x-axis. Then, AUC is

computed to see descriptor performance. After the AUC computation for each curve,

the AUC is combined with respect to different parameters and averaged to calculate

mAP as can be seen from figures Figure 3.2, Figure 3.5, Figure 3.7 and Figure 3.9.

It is detected that dividing equirectangular images into tangent images to apply the

keypoint description process eliminates distortion, which increases proportional with

latitude, as seen in Figure 3.2. Although equirectangular representation results in

a drastic mAP drop when latitude is separated from the zero-latitude zone, Super-

Point still holds its efficiency. Parallel results were detected from scaling difference
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Figure 3.2: mAP Change with Latitude

Figure 3.3: Original Image Placed to Center of the Spherical Grid, 0◦ Latitude

Figure 3.9, image rotation Figure 3.7 and Gaussian blur Figure 3.5 in which equirect-

angular representation except with SuperPoint is not as effective as tangent image

representation. Therefore, at this point, we started looking at the computation time

differences for each local feature matching algorithm and the representation combina-

tion to add up a different perspective. Analyses are generated on a computer equipped

with Quadro RTX 4000 GPU and Intel Xeon Gold 5218 2.30 GHz CPU, and compu-

tation times are calculated by taking the average of specified local feature matching

method and image representation combination. All methods except SIFT, ORB, and

BEBLID are run on GPU due to their speed increment. As can be seen from Table 3.1

that tangent images representation drastically drops the computational effectiveness

of local feature matching algorithms. Since tangent images divide an equirectangular

image into 80 small tangent images to get rid of the spherical distortion behavior as

shown in Figure 2.4, performing local feature matching to all of these small pieces

increases computation time reasonably. Therefore, in the implementation part of the
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(a) Center Latitude:−75◦ (b) Center Latitude:−45◦

(c) Center Latitude:−15◦ (d) Center Latitude:15◦

(e) Center Latitude:45◦ (f) Center Latitude:75◦

Figure 3.4: Original Image Placed to Different Center Latitudes

thesis, using SuperPoint and SuperGlue with the equirectangular representation will

be the best possible combination.

3.2 Heading Estimation Algorithm Comparison

Heading estimation is another important algorithm that will strengthen the backbone

of topological navigation. Since the primary sensor that is used in the topological

navigation process is a spherical camera, understanding the heading estimation be-

havior along with the extracted keypoints from spherical images would be essential

to build up deeper insight into the overall performance. Therefore, we generated

different Monte Carlo Simulation analyses for two main purposes. As the common

point, in each scene, the robot’s current and target locations and randomly gener-

ated keypoint locations are specified. In any run, a specified number of keypoint
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Figure 3.5: mAP Change with Gaussian Blur

is selected randomly to simulate matched keypoints between the robot’s current and

target locations. Then, the run is performed and the results are compared accord-

ing to distinct purposes. In the first analysis, robot locations are kept constant, and

heading estimation is compared with the ground truth heading to investigate heading

error change among methods and with respect to the changed number of matched

keypoints. In the second analysis, an iterative process is performed to move the robot

from its current location to the target location to compare path tracking performances

of methods. While investigating the results, the distance covered by the robot with

the lead of the specified heading estimation method is compared with the minimum

distance between robot locations, which is simply a direct line. Moreover, to gather

and review results in terms of a metric, we have defined two distinct error metrics

Absolute Heading Angle Error (AHAE) and Distance Covered Percent Error (DCPE)

which will be explained in more detail in the upcoming sections. At the end of the

analyses, we intend to select both the most appropriate heading estimation method for

our use case and the optimum number of matched keypoints after which performance

increment is limited.
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(a) Center Latitude:−75◦ (b) Center Latitude:−45◦

(c) Center Latitude:−15◦ (d) Center Latitude:15◦

(e) Center Latitude:45◦ (f) Center Latitude:75◦

Figure 3.6: Blurred Image Placed to Different Center Latitudes

3.2.1 Heading Estimation Performance with Angle Comparison

While local feature matching affects navigation performance, it also influences com-

putational efficiency significantly due to keypoint pairing mentioned in Section 2.2.1.3.

To better illustrate the change of array length with the keypoint pairing for the dif-

ferent number of matched keypoints, Figure 3.12 is plotted. In the figure, it can be

easily detected that array length due to keypoint pairing increases quadratically with

the incremented number of selected keypoints. Therefore, the best solution would be

to generate an as low amount of keypoints as possible while maintaining the navi-

gation performance. To find out the optimum number of keypoints that need to be

found in frames, Monte Carlo simulation is performed by setting up sample scenes

that include various keypoints with random current and target frame locations as in

Figure 3.13. In detail, we uniformly generated 1000 keypoints to a sample scene as

labeled with green scatter in Figure 3.13. In the scene, while the target frame is placed
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Figure 3.7: mAP Change with Image Rotation

in a specific location to study different keypoint distributions around the target frame,

current frame and keypoint locations are randomly specified to make performance in-

vestigation independent of those parameters. Then, random keypoints are selected to

simulate matched keypoints between frames, and the number of matched keypoints is

kept constant for 2000 runs. After each 2000 run, the number of matched keypoints is

increased to iterate through the whole batch. When the last number of matched key-

points is investigated, a new scene is generated and the process is repeated with 100

scenes. For each run, the Absolute Heading Angle Error (AHAE) is calculated and

symbolized with ∆ϕ as expressed in the equation (3.3). In the error calculation pro-

cess, true heading vector ht is subtracted from estimated heading vector h that is out-

put of each method to calculate error heading vector ∆h, and the Absolute Heading

Angle Error (AHAE) is computed by taking absolute arc-tangent of the ∆h compo-

nents. At the end of each scene, the standard deviation and mean of gathered AHAE

are calculated for a distinct number of matched keypoints. In the figures, box plots

include the mean and standard deviation of AHAE for every scene with respect to the

number of matched keypoints. In addition to the 4 heading estimation methodolo-

gies mentioned earlier, we created two additional combined methods method-5 and

method-6 to investigate the combination of method-1 with method-4, and method-2

with method-4 respectively. Moreover, assigned keypoint priorities with an explicit

function at method-2 and method-4 in equations (2.10) and (2.18) are still open to
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(a) Center Latitude:−75◦ (b) Center Latitude:−45◦

(c) Center Latitude:−15◦ (d) Center Latitude:15◦

(e) Center Latitude:45◦ (f) Center Latitude:75◦

Figure 3.8: Rotated Image Placed to Different Center Latitudes

improvements. We have only taken the exponential function into account to define

the significance of each angle difference to see its effect on the heading calculation

performance. Therefore, while function of ∆µij calculated for method-2 in (2.10)

is replaced with (3.4), function of ∆λi calculated for method-4 in (2.18) is changed

as (3.5). During experiments, it has been realized that the change of longitude dif-

ference of keypoint pair ∆µij increases while bisector heading of paired keypoints

approaches to the true heading between frames as shown in Figure 3.14. Therefore,

heading vector priority is assigned to highlight keypoints that have a higher change

of longitude difference of keypoint pair with the help of exponential function. In

addition, the main motivation of using exponential function for the function of ∆λi

in (2.18) is sketched in Figure 3.15. In the case of having a keypoint in the middle

of two frames, the keypoint could be closer to the current frame, i.e. current frame

could have higher latitude compared to the target frame. Since latitude decrease in

magnitude is stated as moving away from the longitude unit vector of specified key-
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Figure 3.9: mAP Change with Image Scaling

point, the occurrence of a situation in Figure 3.15 would mislead the robot. Therefore,

we aim to diminish this problem by increasing the priority of longitude unit vectors

with respect to latitude increase in magnitude between frames. Further development

opportunities for those functions are left as future work of this thesis.

∆h = h− ht

∆ϕ = | arctan(∆hy,∆hx)|
(3.3)

f
(
∆µij

)
= exp

(
∆µij

)
(3.4)

f
(
∆λi

)
= exp

(
∆λi

)
(3.5)

3.2.1.1 Target Frame, Located In the Center of the Scene

In this section of the analysis, the target frame is located in the center of the scene

in order to expand not only keypoint distribution around the frame but also head-

ing between robots to the whole domain. While figures Figure 3.17, Figure 3.18,

Figure 3.19, Figure 3.20, Figure 3.21 and Figure 3.22 are showing heading error stan-

dard deviations and means for each method, Figure 3.23, and Figure 3.24 dedicated
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(a) Center Latitude:−75◦ (b) Center Latitude:−45◦

(c) Center Latitude:−15◦ (d) Center Latitude:15◦

(e) Center Latitude:45◦ (f) Center Latitude:75◦

Figure 3.10: Scaled Up Image Placed to Different Center Latitudes

to comparison of methods among each other. In box plots for each method, as the

first step, AHAE standard deviations and means are calculated for each scene. Then,

they are gathered together with respect to the number of matched keypoints to see

their statistical results. As a specific example, in the top figure of Figure 3.17, firstly,

the standard deviation of AHAE is calculated for each scene. Secondly, standard de-

viations for all scenes are merged with respect to the number of matched keypoints.

Thirdly, the mean of standard deviations is calculated to draw a dashed blue line in the

graph. Note that, orange horizontal lines inside boxes show the median of standard

deviation distribution, boxes show interquartile range where 50% standard deviations

are located, lines starting from the border of boxes called whiskers to include left 25%

of the distribution in both ranges, and circles outside whiskers are stated as outliers.

Also, details of box plot parts can also be followed with the help of Figure 3.16. When

methods are compared with each other, means or standard deviations calculated from

heading errors are used. In detail, in Figure 3.23, calculated standard deviations for
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Figure 3.11: Sample Precision-recall curve

each scene are clustered with respect to the number of matched keypoints, and their

mean and standard deviation are taken to result in one value that represents the overall

behavior in the specified number of matched keypoint. At this point, it is safe to say

that the dashed blue line showing the mean of standard deviations in the top figure of

Figure 3.17 is the same line labeled with method-1 in the top figure of Figure 3.23.

It can be seen from Figure 3.23 and Figure 3.24 that methods having no priority on

keypoints, method-1, method-3, and method-5, tend to have better performance in

terms of the standard deviations for all scenes. This pattern is also visible in box plots

Figure 3.17, Figure 3.19 and Figure 3.21 so that method-1, method-3, and method-5

have narrower box widths, i.e. interquartile ranges, than method-2, method-4, and

method-6 in Figure 3.18, Figure 3.20 and Figure 3.22. Therefore, heading estimation

varies slightly less when keypoint priority is not assigned. However, it does not mean

that heading estimation performance is better on those methods. As it is noticeable

in Figure 3.23 and Figure 3.24 that method-3 has significantly higher AHAE mean
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Table 3.1: Computation Time Comparison of Local Feature Matching Algorithms

Algorithm Representation Computation time (s)

SuperPoint Tangent images 1.12

TFeat Tangent images 5.04

HardNet Tangent images 5.09

SOSNet Tangent images 5.08

HardNet8 Tangent images 5.10

MKDDescriptor Tangent images 5.11

SIFT Tangent images 0.97

ORB Tangent images 0.85

BEBLID Tangent images 0.77

SuperPoint Equirectangular 0.16

TFeat Equirectangular 0.34

HardNet Equirectangular 0.34

SOSNet Equirectangular 0.36

HardNet8 Equirectangular 0.36

MKDDescriptor Equirectangular 0.34

SIFT Equirectangular 0.11

ORB Equirectangular 0.06

BEBLID Equirectangular 0.04

than other methods. Therefore, when keypoints are evenly distributed around the

target frame, methods except method-3 have similar performance with each other,

and assigning priority for keypoints with respect to the elevation angle difference

increases heading estimation performance.

3.2.1.2 Target Frame, Located In the North of the Scene

In this section of the analysis, the target frame is located in the north of the screen in

order to limit both keypoint distribution around the frame in [-180◦, 0◦] and heading

between robots in [0◦, 180◦].
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Figure 3.12: Change of Array Length With Number of Selected Keypoints

It can be seen from Figure 3.31 that method-4, method-5, and method-6 have better

performance on the standard deviation of AHAE standard deviations for all scenes

at lower number of matched keypoints which is an indication of less abnormality in

terms of AHAE. Furthermore, when keypoint distribution focuses on an interval and

keypoints are not evenly distributed around the true heading, methods that have no

priority on keypoints suffer from heading bias as realized from the mean of AHAE

means in Figure 3.32. In more detail, in the case of having matched keypoints that

are localized in an area, method-1, method-3 and method-5 tend to focus on that area,

hence, deviate from true heading as seen with wide boxes and whiskers in bottom

figures of Figure 3.25, Figure 3.27 and Figure 3.29. Therefore, it is directing us to

the conclusion that assigning priority to keypoints would increase heading estimation

accuracy in the application phase.
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Figure 3.13: Sample Monte Carlo Simulation Scene

3.2.1.3 Target Frame, Located In the North-East of the Scene

In this section of the analysis, the target frame is located in the north-east of the

screen in order to limit both keypoint distribution around the frame in [-180◦, -90◦]

and heading between robots in [0◦, 90◦].

It is easy to catch from both Figure 3.39 and Figure 3.40 that method-3 has the worst

performance on AHAE since it has the highest mean and standard deviation for al-

most all the number of matched keypoints. Also, it is detected from the Figure 3.39

that AHAE standard deviations result in a steeper slope in method-4 when the num-

ber of matched keypoints is decreased below 34. This means that method-4 tends to

vary more than other methods, hence; in the case of bounded keypoint distribution,

method-4 needs a high number of matched keypoints to make a comparable heading

estimation. Moreover, parallel results are yielded as specified in the analysis Tar-

get Frame, Located In the North of the Scene in terms of AHAE means. Although

keypoint distribution focuses on an interval and keypoints are not evenly distributed
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Figure 3.14: Longitude Difference and Heading Relation

around the true heading, methods with assigned keypoint priorities have lower AHAE

means as seen in Figure 3.40. However, since keypoint distribution is more bounded

to a region when the target frame is placed in the north-east of the scene, we realized

an increment compared to the target frame placed in the north of the scene in the stan-

dard deviation of AHAE means in the method-4 and method-6. Further, the dashed

blue line, which is representing the means of AHAE mean, is not passing inside the

interquartile in Figure 3.34. It demonstrates the fact that the exponential function,

which is used to assign priorities on keypoints, influences the AHAE means in most

cases but does not diminish whole drawbacks. In other words, the figure illustrates

high outliers that affect the mean considerably but does not occur frequently. Even

though outliers do not occur regularly to shift the box plot upwards in this analysis, it

is a good hint to keep in mind for the next investigations.
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Figure 3.15: Sample Failure Case of Latitude Decrease

3.2.2 Heading Estimation Performance with Path Tracking Comparison

Since decreasing the number of keypoints that are extracted from a scene is crucial

in terms of computational efficiency as also described in section 3.2.1, we aim to

enlarge the optimum number of keypoint selection operation by creating an iterative

path tracking process from current frame to target frame. In more detail, another

Monte Carlo simulation is conducted by introducing sample scenes in which ran-

domly generated keypoints, current frame, and target frame locations are specified

as shown in Figure 3.13. In the scene creation, the methodology is kept the same as

in section 3.2.1. Therefore, in a sample scene, 1000 random keypoints are created,

the target frame is placed in a specific location, and the current frame is randomly

located to test different keypoint location combinations. After the scene is created

and frame locations are specified, random keypoints are selected to simulate matched

keypoints between frames. An iterative process is started to be performed to estimate

the heading to approach the target frame location, and the current frame location is

moved towards the estimated heading with respect to selected speed and time-step.

This iterative process is followed until the robot has reached the target frame. At this

point, it is essential to say that selected keypoints that simulate matched keypoints

between frames are not changed. Instead, their relative location to the current frame

is computed at the end of each iteration. From a different point of view, a 2D simula-

tion without any dynamic behavior is created to compare path tracking performances

of heading estimation methodologies as shown in Figure 3.41. To investigate the per-

formance, the distance covered by the robot is compared with the minimum distance
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Figure 3.16: Parts of a Box Plot

between the current frame and the target frame. In more detail, the minimum distance

between current frame and target frame dm is subtracted from the distance covered

dc, and the difference ∆d is divided by the minimum distance between current frame

and target frame. Result of the division is multiplied by 100 to calculate the Distance

Covered Percent Error (DCPE) ∆dp as in (3.6). Moreover, the same 6 methods inves-

tigated in section 3.2.1 are handled also in this study. As the final argument, we have

limited the distance covered dc with the twice of the minimum distance dm to avoid

infinite iteration loop. Hence, the maximum DCPE will be calculated as 100 in the

analysis.

∆d = dc − dm

∆dp =

(
∆d

dm

)
100

(3.6)
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Figure 3.17: Method-1 AHAE Mean and Standard Deviations Box Plot

3.2.2.1 Target Frame, Located In the Center of the Scene

In this section of the analysis, target frame is located in the center of the screen in

order to expand not only keypoint distribution around the frame and heading be-

tween robots to whole domain. Figure plotting and investigation procedure for the

whole analysis is the same as the one in section 3.2.1. In more detail, while figures

Figure 3.42, Figure 3.43, Figure 3.44, Figure 3.45, Figure 3.46 and Figure 3.47 are

showing heading error standard deviations and means for each method, Figure 3.48

and Figure 3.49 dedicated to comparison of methods among each other.

It can be seen from Figure 3.48 and Figure 3.49 that standard deviations for both

standard deviation of the DCPE and mean of DCPE for all scenes stay below 5 for

all methods when the number of matched keypoints are increased. Moreover, com-

bined methodologies method-5 and method-6 have better performance on the mean

of DCPE standard deviation for all scenes when the number of matched keypoints is
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Figure 3.18: Method-2 AHAE Mean and Standard Deviations Box Plot

less than 13 as in Figure 3.48. In other words, combined methodologies heading error

vary less than other methods at the low amount of matched keypoints. However, the

gap between methodologies get closer to zero when the number of matched keypoint

increases. Therefore, when the number of matched keypoints is higher than 34, the

performances of algorithms are equivalent to each other when selected keypoints are

distributed over the whole domain.

3.2.2.2 Target Frame, Located In the North of the Scene

In this section of the analysis, the target frame is located in the north of the screen in

order to limit both keypoint distribution around the frame in [-180◦, 0◦] and heading

between robots in [0◦, 180◦].

It can be seen from Figure 3.57 that method-4, method-5, and method-6 have better

performance on the mean of the DCPE standard deviations for all scenes which is an
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Figure 3.19: Method-3 AHAE Mean and Standard Deviations Box Plot

indication of less variation in terms of the DCPE. Furthermore, when keypoint dis-

tribution focuses on an interval and keypoints are not evenly distributed around the

true heading, methods that have no priority on keypoints suffer from heading bias as

in Figure 3.32 and this bias also affects the DCPE in Figure 3.58. In other words,

if matched keypoints are bounded in an area, method-1, method-3 and method-5 are

likely to address that area, and depart from the true heading as seen with wide boxes

and whiskers in figures Figure 3.25, Figure 3.27 and Figure 3.29. However, even

though the standard deviation of method-2 heading error in Figure 3.32 is one of the

lowest methods, the DCPE which is labeled with a dashed orange line in Figure 3.58

does not reflect the same results. The main reason of this issue is explained in Fig-

ure 3.50. In the case of keypoints left in a region, the bisector heading vector might

not route the robot towards the target frame. While the routing problem is compen-

sated by assigning priority in method-2, priority assignment is not sufficient with the

currently implemented exponential function when frame locations get closer to each

other. This is because the change of longitude difference of keypoint pair is not visi-

ble as in Figure 3.14 when the current frame is in contact with the target frame. The
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Figure 3.20: Method-4 AHAE Mean and Standard Deviations Box Plot

significance of this kind of issue increases with the limitation of keypoint distribution.

In the previous analysis Section 3.2.1, where current frame iteration is not performed

to reach the target frame, heading estimation is calculated for only one current frame

location. Although an increase in the standard deviation of heading error means is

detectable for method-1 which has no priority on keypoint pair heading vectors, it is

not observable in method-2 results. Through the iterative process, all distance grids

are covered between frames starting from the first distance, and failure case has been

caught frequently when the current frame started arriving at the target frame.

3.2.2.3 Target Frame, Located In the North-East of the Scene

In this section of the analysis, the target frame is located in the north-east of the

screen in order to limit both keypoint distribution around the frame in [-180◦, -90◦]

and heading between robots in [0◦, 90◦].
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Figure 3.21: Method-5 AHAE Mean and Standard Deviations Box Plot

The most vital outcome that we detected in the results are the divergent behavior of

method-1, method-2, method-5 and method-6 in both Figure 3.65 and Figure 3.66.

When keypoint distribution is bounded in a narrow interval and keypoints are not

evenly distributed around the true heading as in this case of the analysis, methods

that have heading unit vector calculation based on paired keypoints suffer from the

problem Figure 3.50. In more detail, in the case of having matched keypoints that

are localized in an area, method-1, method-2, method-5, and method-6 tend to focus

on that area, hence, deviating from true heading and resulting in high distance cov-

ered percent error. As an example, tracked path by the robot with the supervision

of method-1 is drawn in Figure 3.67 and Figure 3.68. While overall performance is

shown on the left side of the figures, the right side is dedicated to zooming in on

the failure region. It can be easily detected that when keypoints are bounded in a

region, paired keypoint bisector heading vectors reduce system performance. After

some point, it might cause the robot to make only back-and-forth movements instead

of moving towards the target frame as in Figure 3.50. Even though there is a per-

formance downgrade in method-4 compared to other target frame location analyses,
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Figure 3.22: Method-6 AHAE Mean and Standard Deviations Box Plot

method-4 has significantly better performance when the target frame is placed at the

north-east of the scene as seen in method-wise comparison figures Figure 3.66 and

Figure 3.65. Therefore, it is sufficient to say that method-4 is the most robust heading

estimation method in terms of keypoint distribution randomness. However, the only

covered keypoint priority function for both method-2 and method-4 is the exponential

function, and the analysis results might be improved by using a more appropriate one.

In summary, method-4 will be the heading estimation methodology that will be used

in the implementation phase of the thesis, and the matched number of keypoints will

be kept above 60 after which heading estimation performance is not significantly af-

fected. Since mAP results for SuperPoint are above 0.40 in most of the cases in Local

Feature Matching Algorithm Comparison analyses results, the maximum amount of

keypoints that will be generated in the keypoint extraction process will be limited to

150.

As a summary in this chapter, the local feature matching algorithm combination and

the heading estimation method are determined for further usage. In addition, while
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Figure 3.23: Mean and Standard Deviation of AHAE Standard Deviations Compari-

son

the maximum number of keypoints that will be generated from a frame is limited to

150, the optimum number of matched keypoints, after which no increment is achieved

concerning the navigation performance, is specified as 60. In the next chapter, the

problem will be investigated from the coding perspective and will be put into practice

in more detail.
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Figure 3.24: Mean and Standard Deviation of AHAE Means Comparison

Figure 3.25: Method-1 AHAE Mean and Standard Deviations Box Plot
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Figure 3.26: Method-2 AHAE Mean and Standard Deviations Box Plot

Figure 3.27: Method-3 AHAE Mean and Standard Deviations Box Plot
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Figure 3.28: Method-4 AHAE Mean and Standard Deviations Box Plot

Figure 3.29: Method-5 AHAE Mean and Standard Deviations Box Plot
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Figure 3.30: Method-6 AHAE Mean and Standard Deviations Box Plot
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Figure 3.31: Mean and Standard Deviation of AHAE Standard Deviations Compari-

son
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Figure 3.32: Mean and Standard Deviation of AHAE Means Comparison

Figure 3.33: Method-1 AHAE Mean and Standard Deviations Box Plot
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Figure 3.34: Method-2 AHAE Mean and Standard Deviations Box Plot

Figure 3.35: Method-3 AHAE Mean and Standard Deviations Box Plot
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Figure 3.36: Method-4 AHAE Mean and Standard Deviations Box Plot

Figure 3.37: Method-5 AHAE Mean and Standard Deviations Box Plot
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Figure 3.38: Method-6 AHAE Mean and Standard Deviations Box Plot
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Figure 3.39: Mean and Standard Deviation of AHAE Standard Deviations Compari-

son
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Figure 3.40: Mean and Standard Deviation of AHAE Means Comparison

Figure 3.41: Sample Monte Carlo Simulation Path Tracking
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Figure 3.42: Method-1 DCPE Mean and Standard Deviations Box Plot

Figure 3.43: Method-2 DCPE Mean and Standard Deviations Box Plot
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Figure 3.44: Method-3 DCPE Mean and Standard Deviations Box Plot

Figure 3.45: Method-4 DCPE Mean and Standard Deviations Box Plot
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Figure 3.46: Method-5 DCPE Mean and Standard Deviations Box Plot

Figure 3.47: Method-6 DCPE Mean and Standard Deviations Box Plot
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Figure 3.48: Mean and Standard Deviation of DCPE Standard Deviations Compari-

son

66



Figure 3.49: Mean and Standard Deviation of DCPE Means Comparison

Figure 3.50: Heading Estimation Based on Pairing Sample Failure
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Figure 3.51: Method-1 DCPE Mean and Standard Deviations Box Plot

Figure 3.52: Method-2 DCPE Mean and Standard Deviations Box Plot

68



Figure 3.53: Method-3 DCPE Mean and Standard Deviations Box Plot

Figure 3.54: Method-4 DCPE Mean and Standard Deviations Box Plot

69



Figure 3.55: Method-5 DCPE Mean and Standard Deviations Box Plot

Figure 3.56: Method-6 DCPE Mean and Standard Deviations Box Plot
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Figure 3.57: Mean and Standard Deviation of DCPE Standard Deviations Compari-

son
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Figure 3.58: Mean and Standard Deviation of DCPE Means Comparison

Figure 3.59: Method-1 DCPE Mean and Standard Deviations Box Plot
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Figure 3.60: Method-2 DCPE Mean and Standard Deviations Box Plot

Figure 3.61: Method-3 DCPE Mean and Standard Deviations Box Plot

73



Figure 3.62: Method-4 DCPE Mean and Standard Deviations Box Plot

Figure 3.63: Method-5 DCPE Mean and Standard Deviations Box Plot
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Figure 3.64: Method-6 DCPE Mean and Standard Deviations Box Plot
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Figure 3.65: Mean and Standard Deviation of DCPE Standard Deviations Compari-

son
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Figure 3.66: Mean and Standard Deviation of DCPE Means Comparison

Figure 3.67: Heading Angle Change for Sample Failure Case of Method-1
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Figure 3.68: Path Change For Sample Failure Case of Method-1
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CHAPTER 4

IMPLEMENTATION

In this chapter, we will be explaining the developed algorithm in more detail to in-

crease awareness of the designed procedures and the whole application. In other

words, since catching the reader’s interest is crucial to be able to express the core

idea, explaining the application structure in its most explicit shape has the maximum

effectiveness to achieve the attention goal. As algorithm development is divided into

three steps, namely, Localization and Path Planning, Mapping and Exploration and

Topological Navigation, this chapter will individually follow these steps to touch into

details. Firstly, a part of the topological map operations, in which the location of the

robot in an already constructed map and planning of the path to reach the target frame

is determined, will be clarified. Secondly, the early part of the topological map op-

erations, unknown environment exploration, and map construction will be explained.

Lastly, the chapter will be closed with topological navigation which is based on local

feature matching and reactive behavior.

4.1 Localization and Path Planning

Localization is needed when new action will be taken according to the current state of

the robot. In other words, if the relative location of the robot is not known concerning

map nodes and corrective movement has to be taken in accordance with surrounding

map nodes, localization is performed to extract the nearest map nodes to the present

position of the robot. Since the primary input that is used in all operations is a spher-

ical camera image, localization is also visually executed with the help of spherical
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camera frames and their comparison with each other. This process is mainly per-

formed in two main circumstances:

• When a new node is added to the map, but it is not connected to other nodes,

i.e. edges are not computed.

• When a target frame is set and the path is not defined to follow starting from

the current robot position.

The first bullet is needed in Mapping and Exploration phase in which the robot is

analyzing an unknown environment to enlighten its foreign regions. At that stage,

localization of the robot is needed to find out the nearest map nodes to estimate both

the robot’s heading direction to achieve more exploration and to create edges to the

currently added node which are explained in detail in Section 4.2. The second bullet

is used in Topological Navigation where mapping is already performed, and the robot

is located in a known environment. As described specifically in Section 4.3, when a

target frame is assigned for the robot to reach by following map nodes, the current

robot location and target frame location are localized to define the path between the

start point and end point.

The localization process is primarily focused on finding the nearest map nodes to the

compared frame. As expressed in Section 2.2.2.1 Mapping and Exploration, when

a frame is added to the map, its keypoint locations and descriptor results, which are

extracted from SuperPoint [13] algorithm, are also appended as visual bag of words.

When local feature matching is performed, descriptor results are compared with each

other with the help of SuperGlue [59] as shown in Figure 4.4. The number of matches

between the two frames is named similarity, and if the similarity is higher than the

highest similarity calculated so far, the current map node is assigned as the nearest

node to the compared frame. Also, the previous nearest node is taken to the second

nearest map node. This procedure is followed until the last map node is controlled

in terms of similarity. Then, the nearest two map node properties are set to finish the

whole localization activity. In addition to these steps, if the robot is at the Mapping

and Exploration stage, calculated similarity Se between the compared frame and the

current map node is also checked with the minimum similarity threshold. Minimum
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similarity threshold Sth,min is the minimum similarity value between two frames to

assign them as similar enough to perform topological navigation. In other words, two

frames are connected and topological navigation is made available when the similarity

between them is higher than the Sth,min.

In the case of having a target frame set as a final destination, Topological Navigation

application started to be performed to achieve the goal. As explained explicitly in sec-

tion 4.3, the global operation of reaching from the current frame to the target frame

is divided into local successive operations that are based on following connected map

nodes through the target frame. To make these local successive operations available,

path planning has to be performed. In other words, path planning is the task of defin-

ing intermediate map nodes, called via points, to associate a continuous network be-

tween the current frame and target frame. The preliminary concern of path planning

is having an already constructed topological map as explained in Mapping and Explo-

ration. Then, at the start of Topological Navigation algorithm as specified also at the

flowchart in Figure 4.5, path is initiated if it is not already defined. Before the path is

established, localization of both the current frame and target frame is accomplished

to extract the nearest node information for each frame. After that, the target frame is

added to map nodes to treat it as the final node of the path. In the final step, via points

are determined with the help of the Dijkstra’s algorithm. In the Dijkstra’s algorithm,

the cost of the generated path tried to be minimized, i.e. the path includes the lowest

number of nodes. Even though we refer to the constructed path as the shortest one,

it does not mean that the path is the shortest in terms of metric information. In other

words, we indicate the map as only visually shortest due to the lack of metric data in

the whole navigation framework. Moreover, a sample path upon topological map is

visualized in Figure 4.1. In the figure, the start node is colored green, via points are

colored purple and the finish node is colored red. Other map nodes that are visual-

ized with blue are not included in the planned path. Therefore, it is expected from

the robot to follow the path starting from the green to reach the red with the help of

purples.

81



Figure 4.1: Planned Path on Topological Map

4.2 Mapping and Exploration

At the first start of the robot, the operation environment might be unknown. There-

fore, the initial algorithm that will be performed is mapping of the environment as

proposed frequently in a normal SLAM application. The main purpose of the map-

ping and exploration phase is to identify environmental features and components to

perform planned exercises without any need for further exploration. In other words,

after mapping and exploration is performed, the robot will be familiar with the en-

vironment to achieve any topological navigation task without the need for additional

information. In our case, the constructed map will be an undirected graph that has no

specific direction among its nodes. As shown in the flowchart of topological naviga-

tion and mapping in Figure 4.5, mapping and exploration is started if the mapping is

active after taking current frame properties. In the mapping and exploration phase,

the current frame is treated as one of the map nodes and added to the map without

controlling similarities. When the current frame is added to the map, it is not directly

saved as the map node. Since a raw equirectangular image dimension that is used
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as input to our methodology is 1024x2048, it would consume too much memory as

the number of map nodes increases. Therefore, instead of directly saving images, we

first perform SuperPoint [13] to extract its keypoint locations and descriptor results

which have Nx2 and Nx256 dimensions respectively, where N is the number of key-

points that are extracted from a frame. It is limited with Smax, the maximum number

of keypoints that are determined in the Section 3.2 Heading Estimation Algorithm

Comparison. Furthermore, to create a visual bag of words to free up memory and

ease the node-saving process, a keypoint is handled as a visual word, and the number

N is treated as the maximum number of visual words for a frame. A sample of output

keypoints, which are extracted from the related figure image, are represented in Fig-

ure 4.3 and labeled with yellow scatter. In addition to these visual words, a unique ID

is added to each node to identify it in further needs.

As another important point in the map node amount extension process, the similarity

between the current frame and each map node is computed. We define similarity as

an approaching metric to analyze the status of the local feature matching result of the

two input frames. Since our algorithm framework is principally based on the number

of matches reported after operating local feature matching with the help of Super-

Glue [59] as expressed with colored lines in Figure 4.4, the similarity is calculated

after each local feature matching is accomplished between the current frame and a

map node. Considering that maximum number of keypoints that will be extracted

from each frame Smax is already specified, similarity of compared frames Se, i.e. in-

dicated edge, is decided by assigning new thresholds by means of Smax. Therefore,

two similarity thresholds, which are minimum similarity threshold Sth,min and max-

imum similarity threshold Sth,max, are defined to control if the amount of matches

is in the interested region for the current frame and the map node. While minimum

similarity threshold Sth,min is defined to control if two frames are similar enough to

maintain the navigation process, maximum similarity threshold Sth,max is defined to

monitor if two frames are too close to each other. More specifically in terms of usage,

edge addition decision for the current frame and specific map node, node placement

decision for the current frame, and the heading estimation methodology for the next

algorithm step is determined after threshold investigation of similarities of map edges.

As the first step, at the localization process of the current frame among map nodes,
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the minimum similarity threshold Sth,min is compared after each similarity calcula-

tion for the specified edge. If the edge similarity Se is higher than the minimum

similarity threshold Sth,min, then the edge is added to the map to allow path creation

as expressed in (4.1). Moreover, while looping through each map node to compare

with the current frame, similarities of the two nearest map nodes to the current frame

are saved to use in further cases. Current frame and nearest map node similarity Se,n,

i.e. nearest edge similarity, will be used to determine if the current frame is too close

or too far away from the map. Hence, nearest edge similarity is compared with both

Sth,min and Sth,max to determine if Se,n is inside those limits. In other words, if Se,n

is inside Sth,min and Sth,max, then nearest edge is not similar enough to say that near-

est map node and current frame are equivalent or disconnected enough to conclude

that they are completely mismatched. Therefore, according to the threshold result of

the nearest edge, the decision is made whether to place the current frame as a map

node or not as shown in (4.2). The second nearest map node is used to determine the

heading strategy that will be operated for better exploration according to the current

status of the robot. In detail, if the nearest edge similarity satisfies thresholds for

node placement, then the second nearest edge similarity Se,sn is compared with the

same thresholds. If Se,sn is in between Sth,max and Sth,min, then we come up with

the same arguments as we specified for Se,n. As the final claim, if both similarities

Se,n and Se,sn are inside Sth,min and Sth,max thresholds, then heading estimation is

performed with exploration strategy, if only Se,n or none of them satisfies thresholds,

then heading estimation is conducted with admissible heading strategy as can be seen

from topological navigation and mapping algorithm flowchart in Figure 4.5.

ζe =

1 if Se > Sth,min

0 otherwise

where:

ζe = Edge addition decision

(4.1)
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ζn =

1 if Sth,max > Se,n > Sth,min

0 otherwise

where:

ζn = Node placement decision

(4.2)

While deciding on the heading estimation methodology, the existing map is controlled

if it has at least two nodes or not to perform heading estimation based on the current

state of mapping and exploration. In more detail, if the map does not have a previous

node, i.e. current frame is the only node of the map, the robot starts exploration by

assigning a random heading since there is no information available regarding the en-

vironment. In the case of having more than one node on the map, after localization

of the current frame inside the map with the help of similarity computation between

the current frame and nearest map nodes, heading estimation is performed to explore

unknown portions of the environment. Since two nearest map frames are extracted

through the localization of the current frame inside the map as illustrated in the frame

localization algorithm flowchart Figure 4.2, their similarities are checked to decide

on the status of the current frame. If one of them is too similar to the current frame,

meaning that the current frame already exists on the map, or both of them are com-

pletely disconnected from the current frame, meaning that the robot is in a separated

environment or traveling inside a covered region such as tunnel, heading estimation

methodology called admissible heading is performed to move the robot. In the admis-

sible heading method, there are two main parts. The first one is dedicated to situations

where only one map node satisfies similarity thresholds. Since only one map node

is available to localize the robot and decide on a heading for more exploration, the

heading is estimated to move in the reverse direction from the map node. Addition-

ally, a random angle limited with [−90◦, 90◦] is added to generate irregular motion in

the movement direction as can be seen in the left side of Figure 4.7. The second one

includes situations in which there are no map nodes found to localize the robot. These

kinds of conditions are expected when the robot is covered with surrounding objects

such as a tree or the robot is passing through a closed region such as a tunnel. In these

cases, previous heading hp will be used to keep the robot in the track and a random

angle limited with [−90◦, 90◦] is added to generate irregular motion in the movement
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direction as illustrated in right side of Figure 4.7. In addition, if similarity thresholds

are not satisfied by any of the map nodes, the current frame is deleted from the map

as it is already added at the first stage without checking similarities. However, to

prevent recurring admissible heading with no similar map nodes around and moving

the robot towards an unknown area, a counter called saturation counter is assigned to

count the number of repeated admissible heading steps with no map nodes that satisfy

similarity thresholds. If the counter reaches the threshold, a special mode called lost

mode is activated. In the lost mode, the main objective of the robot is to arrive at the

lastly added map node to continue the mapping process from a safer point. When the

lastly added map node is approached, the lost mode is deactivated and the mapping

process is continued from where it is left. In cases where similarity thresholds are

satisfied for both the nearest map node and the second nearest map node, the robot

starts the exploration strategy by moving in the opposite direction with the bisector

heading vector of the two nearest map nodes as illustrated in Figure 4.6. Moreover, to

add randomness in map generation and to avoid looping through the same headings

in each exploration step, a random exploration noise is generated and summed with

the calculated exploration heading.

4.3 Topological Navigation

We refer to topological navigation as the process of following a path that is created to

reach the goal of finding the given target. In our case, the given target is an equirectan-

gular image on a topological map that is constructed in the Mapping and Exploration.

When the target frame is set as the final destination, our algorithm starts with the lo-

calization of both the current frame and the target frame and plans the path to reach

the latter as explained in detail in section Localization and Path Planning. Since our

dominant sensor for the navigation process is a spherical camera, routing the robot

directly from the current frame to the target frame is not possible due to the camera

range. Therefore, the planned path is divided into successive subtasks with the help

of nodes and edges of the constructed topological map. Since these subtasks are al-

ready named via points in the Localization and Path Planning section, following via

points is the primary objective of the topological navigation operation. As can be
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seen from the flowchart of topological navigation and mapping in Figure 4.5, head-

ing estimation is performed until the algorithm is satisfied as the current via point is

reached. Moreover, the via point index increment decision is taken into consideration

in two steps. The first one is dedicated to accomplishing the similarity of the current

via point Se,cv. When the current via point similarity to the current frame is higher

than the maximum similarity threshold Sth,max, then we are safe to say that the robot

is close enough to the current via point to start its next local task. However, since

metric information does not exist in the setup and the similarity threshold is satisfied

before reaching the current via point in most of the cases, the next via point might

not be visible from the location where the via point index is increased. This is the

point where the second consideration step is taken into account. In detail, after the

current via point similarity is satisfied, the robot starts to control the similarity of the

next via point before increasing the via point index to switch over to the next local

task. When the next via point similarity Se,nv meets the criterion of being higher

than the minimum similarity threshold Sth,min, visibility concern of the next via point

is diminished. As illustrated in the (4.3), when both the current via point and the

target via point similarity requirements are satisfied, the via point index is increased

by one, otherwise kept the same. It would be necessary to highlight at this point

that the target frame is treated as the last via point since it will be the last subtask

of the path planning. Therefore, this iterative process is followed until the last via

point, i.e. target frame, is decided to be close enough to the robot’s location. Fur-

thermore, besides following the current via point according to the state of the robot,

the robot has to act in accordance with the environmental conditions. The primary

concern in terms of environmental conditions is obstacles. Hence, the robot always

controls surrounding obstacles in order not to hit any of them. As can be seen from

the flowchart of heading estimation Figure 4.8, the first thing that is controlled is the

obstacle existence. If the robot detects any obstacles around, the next action is taken

to avoid them regardless of the current state of the robot. When the obstacle heading

ho is specified, corrective movement will be moving in the opposite direction of the

obstacle heading direction as also shown in Figure 4.9. In addition to the obstacle

avoidance heading, the estimated heading to perform successful topological naviga-

tion is taken into account in obstacle avoidance. To be more specific, the weighted

sum of the obstacle heading and the estimated heading is calculated by generating a
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random weight w1 ∈ (0.5, 1.0). This way, the robot is able to keep the track of the

current topological navigation state while escaping from the obstacle. Even though

our decision process takes obstacles into account in the heading estimation, the cre-

ation of obstacle heading is not taken into account in this thesis. Thus, the obstacle

heading ho is assumed to be fed from an outer source.

ivp =

ivp + 1 if (Se,cv > Sth,max and Se,nv > Sth,min)

ivp otherwise

where:

ivp = via point index

(4.3)

While closing the chapter, we would like to summarize the fundamental processes

that allow the whole algorithm framework to work in harmony with each other. Af-

ter a spherical image is taken from the only input source spherical camera, the most

crucial part of the algorithm that makes the images meaningful from the topologi-

cal navigation point of view, local feature matching is performed with the help of

SuperPoint[13] and SuperGlue[59] to extract matched keypoint locations between

two frames. Since matched keypoint locations are already represented in the spherical

grid as a result of the spherical grid of the spherical camera, latitudes λ and longitudes

µ of the matched keypoint locations are directly used in the heading vector estimation

that will determine the robot’s motion until the next computation. After the extrac-

tion of matched keypoint locations, heading vector is estimated by using method-4

stated in Section 2.2.1.3 Heading Estimation. The main reason for the selection of

the method-4 are robustness of the method to keypoint location distribution around

frames, and its computational efficiency compared to other proposed methods due to

the elimination of keypoint pairing mentioned in method-1. In the heading estimation

process, latitudes are taken into account such that if the latitude of a matched keypoint

is increasing from the current frame to the target frame, then the keypoint is classified

as a front keypoint, and the robot is decided to move in that matched keypoint longi-

tude direction, otherwise, the keypoint is classified as rear keypoint, and the robot is

decided to move in the inverse direction. After each matched keypoint is evaluated

according to the criterion, all keypoint heading vectors ui are summed up to generate
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the heading vector h by assigning a priority on the front keypoints by taking expo-

nential function of latitude difference in magnitude ∆λi. Equations for the heading

estimation are explained deeply between equations (2.11) and (2.18). At this point, it

is essential to say that even though explanation of the proposed algorithm is divided

into three main parts; Localization and Path Planning, Mapping and Exploration and

Topological Navigation, fundamental flowcharts in Figure 4.2, Figure 4.5 and Fig-

ure 4.8 are drawn to simplify major processes as uncoupled as possible. However, it

is vital to keep in mind that the main parts of the algorithm frequently intersect with

each other and work in a united regime due to the nature of any SLAM application.

In the next chapter, we will explain constructed simulation environment concerning

the mobile robot and the worlds used in experiments by visualizing and detailing their

purposes.
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Figure 4.2: Frame Localization Algorithm Flowchart
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Figure 4.3: Sample Image with Extracted Keypoints

Figure 4.4: Sample Feature Matching Between Two Images
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Figure 4.6: Heading Estimation with Exploration Strategy

Figure 4.7: Heading Estimation with Admissible Heading

93



Start to Perform
Heading Estimation

NoYes Are there any
obstacles? No

Yes

Is mapping
active?

Get local feature 

matching results 


for current frame and 

current via point.

Calculate heading
angle and heading

vector to go towards
current via point.

End to Perform
Heading Estimation

Yes

No
Does map 

include at least 

two nodes?

Yes

No

Does second
nearest map node
satisfy similarity

thresholds?

Get local feature 

matching results


for current frame with
nearest and second 

nearest map node.

Calculate heading angle
and heading vector to go
in reverse direction of two

nearest map nodes

Calculate random
heading angle and

heading vector.

Calculate admissible
heading angle and

heading vector.

Get obstacle headings.

Calculate heading
angle and heading

vector to avoid
obstacles..

Set heading angle and
heading vector

Figure 4.8: Heading Estimation Algorithm Flowchart

94



Figure 4.9: Obstacle Avoidance Strategy
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CHAPTER 5

SIMULATION ENVIRONMENT

In this chapter, the developed simulation environments, which are used extensively

while examining the algorithm performance, will be explained. The developed worlds

are constructed in the open-source robotic simulator Webots [45] due to its simplicity

and availability for a wide range of usage.

In a robotic application process, trial and error are frequently needed to overcome

possible error situations. However, reporting and solving those error cases are not

evident due to the different side effects of testing in a real environment. The first

reason is that the environment may not be found as it is previously. In other words,

as a consequence of dynamic changes in habitat such as moving objects, weather,

illumination, and shadow, the recreation and pinpointing of the error case may not

be possible. Therefore, the creation and finalization of a single scenario may take

a significant amount of time. If an operation is defined with a backstory such as a

kidnapped robot in an unknown environment like a forest, the foundation and main-

tenance of the environment can take days, and keeping the environment standstill

may be impossible due to seasonal changes. However, if the environment is built in

a robotic simulator, the environment will stay the same as it is left. Hence, it will

save a considerable amount of time that is spent fixing the real-life testing environ-

ment. The second reason is that the delay length which is dependent on situations

other than algorithm development can be high with real-life testing. In detail, if an

algorithm development process is considered, a developer needs to deal with the hard-

ware alongside the software. Therefore, any complex hardware issue will delay the

testing due to the learning curve that must be encountered before mastering the root
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cause. The third reason is that the algorithm robustness can be tested considering

the uncertainties. Various uncertainties occur during any robotics application, hence;

the robustness of a developed algorithm is crucial for the robot to continue operating.

Since any parameter can be controlled in the world in a robotic simulator, controlled

testing is accomplished efficiently. Moreover, if multiple runs need to be executed to

generate a statistical analysis of the effect of a specific parameter, testing can even

be automated. Thus, due to stated reasons, we have decided to start our experimental

process in the Webots robotic simulator.

The chapter is divided into two parts. In the first part, the mobile robot, which is

designed in Webots, to use in applications will be explained. Finally, the chapter will

be concluded by clarifying operated worlds in various experiments.

5.1 Mobile Robot

The whole framework explained in this thesis is designed for a mobile robot platform.

Therefore, before going into the hands-on part, a mobile robot that can handle the

proposed topological navigation and mapping has to be defined. The mobile robot as

shown in Figure 5.1 with 4 legs is designed in Webots and placed into environments

to perform the topological navigation process efficiently.

Figure 5.1: Mobile Robot Designed in Webots

The robot is equipped with two servo motors for each of its legs to execute both

movement and rotation of the wheel. Therefore, when a heading vector is computed

98



(a) Wheel Rotated to 60◦ (b) Wheel Rotated to −30◦

Figure 5.2: Mobile Robot Wheel Rotations

in a sample topological navigation step, wheels are rotated as can be seen in Figure 5.2

along with the heading vector to move towards the goal. Moreover, a spherical camera

shown in Figure 5.3a is attached to the robot, and the camera is highlighted with a

pink cube to show its frustum. Also, 12 equivalent distance sensors are attached to

the robot at 30◦ intervals to create the external source of the obstacle heading. Line

of sights of each sensor are shown in Figure 5.3b with red.

(a) Spherical Camera (b) Distance Sensors

Figure 5.3: Mobile Robot Sensors

5.2 Simulation Worlds

Four Webots worlds were constructed to employ four distinct purposes. Since the

main purpose of topological navigation is achieving the navigation task in indoor

environments or narrow outdoor spaces, each world is dedicated to a specific purpose.

In the following sections, these four worlds and their representation purposes will be
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explained.

5.2.1 Village Realistic

In the simulator, we have selected an existing world named realistic village, and its

general view is placed in Figure 5.4. The world is dedicated to representing a small

village with details. However, since the goal of topological navigation is achieving

the navigation process in a region where it is challenging to have accurate location

estimation such as narrow streets, a specific neighborhood of the world is used in

experiments. Therefore, borders of the specified neighborhood are defined as shown

in Figure 5.5. In the figure, borders are highlighted with yellow on purpose to ease

identification. Nevertheless, borders are defined with the help of natural resources

such as a sidewalk as in Figure 5.6a, barrier as in Figure 5.6b and fence as in Fig-

ure 5.6c. This way, the obstacle avoidance of the robot is also tested to check if it

escapes colliding with borders or not. However, it is essential to keep in mind that

the obstacle heading will be supplied with the help of an external source other than

a spherical camera since it is not included in the topological navigation and mapping

framework.

Figure 5.4: General View of Webots Village Realistic World
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Figure 5.5: Village Realistic World Neighborhood Used in Applications

(a) Sidewalk (b) Barrier (c) Fence

Figure 5.6: Natural Border Resources

5.2.2 Complete Apartment

The second world that will be used in the application process is the existing Webots

world named complete apartment as shown in Figure 5.7. The main usage of the

world is simulating an indoor environment with household furniture such as a couch,

a bookshelf, and a dining table. Therefore, rooms of the apartment are kept closed

so that the living room and the corridor are used in experiments as highlighted with

yellow borderlines in Figure 5.8.
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Figure 5.7: General View of Webots Complete Apartment World

5.2.3 Break Room

The third world chosen to be used is the existing world named break room as shown

in Figure 5.9. As the name suggests, the world represents a break room in an office

environment. In detail, the world is filled with office furniture that will allow testing

the algorithm concerning an indoor office atmosphere.

5.2.4 Factory

The fourth and final world is the extended form of the existing Webots world named

hall. The world is enlarged with an additional outdoor environment to represent a

hybrid factory world that includes both indoor as in Figure 5.11 and outdoor as in

Figure 5.12. Our main intention to use the factory world is to simulate an environment

with industrial types of equipment as can be seen in Figure 5.10. Moreover, as the

world includes both indoor and outdoor spaces, drawbacks that might occur while

moving through spaces are tried to be localized.
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Figure 5.8: Complete Apartment World Rooms Used in Experiments

In summary in this chapter, the designed mobile robot and constructed worlds in

Webots robotic simulator are demonstrated in detail. In the next chapter, we will

explain generated algorithm results by diving into the hands-on part.
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Figure 5.9: General View of Webots Break Room World

Figure 5.10: General View of Webots Factory World
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Figure 5.11: Webots Factory World Indoor

Figure 5.12: Webots Factory World Outdoor
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CHAPTER 6

RESULTS AND DISCUSSION

Methods that will be used for local feature matching and heading estimation are de-

cided in Chapter 3 and the whole framework for the topological navigation and map-

ping is explained in Chapter 4. Therefore, this chapter is dedicated to the implemen-

tation of algorithms and decision processes. The final structure of the framework is

tried out interactively to criticize the algorithm results in environments that are cre-

ated in the open-source robotic simulator Webots as also explained in Chapter 5.

Even though uncertainties that occur due to environmental changes such as bright-

ness, shadow, weather, moving objects, and pedestrians are not easy to manipulate in

real-life testing, controlled experiments can be easily performed by handling a certain

environmental parameter in a simulated scene testing. Moreover, in Webots, sensor

and movement effects such as noise and motion blur can also be specified concerning

the needs. Therefore, example Webots worlds are created to examine the performance

of the proposed methods. After the worlds are introduced, both topological navigation

and mapping processes will be executed to investigate the algorithm’s performance

along with its drawbacks.

6.1 Mapping and Exploration

After the construction of the simulation worlds in Webots, the first thing that the robot

has to accomplish is the identification of the environment features. In other words,

the story starts with a robot placed in an unknown environment. To generate later

tasks successfully in the environment, the robot has to analyze the world concerning
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its local features in different locations. Therefore, we have started the mapping and

exploration phase from a random point to identify as many places in the world as

possible. In the next subsections, the mapping and exploration process for each world

will be investigated individually. In all subsections, a sketch of the Webots worlds as

in Figure 6.1, Figure 6.9, Figure 6.14 and Figure 6.16 with their gathered obstacles is

created to simplify the explanation process of the algorithm operations. In the figures,

the border of the world is highlighted with yellow, and the robot is not able to go be-

yond those limits on account of natural borders in the environment. World properties

that cover a large number of areas such as houses, fountains, couches, tables and bus

stops are shown with dark gray regions and their classifications are written nearby.

Obstacles that overlap a smaller amount of regions such as trees and street lights are

scattered with specific markers as labeled in the legend. Moreover, the robot start

location, i.e. the first node, is specified with the blue circle. As the robot learns the

environment, the number of blue circles that specify map nodes will increase and the

nodes will be connected via edges to show the existence of a path between connected

two nodes. The mapping and exploration phase is executed as stated in the Chapter 4.

Firstly, the first robot location is added to the map, and the robot generated a random

heading vector to start the mapping. With the addition of another node to the map, the

robot started executing either admissible heading or exploration strategy concerning

the current step of the mapping and exploration phase as stated in Figure 4.8. Since

the maximum number of keypoints that will be generated from a frame is specified

in section Section 3.2 Heading Estimation Algorithm Comparison as 150, the maxi-

mum similarity that can be achieved between two frames Smax is assigned as 150 as

well. As also mentioned in the same section that the number of matched keypoints to

keep topological navigation in a certain performance is classified as 60. However, to

increase robustness and to be able to execute the navigation process even under dy-

namic effects that occur due to environmental changes the mapping safety factor γm

is multiplied by the number in the mapping and exploration phase. Hence, the min-

imum similarity threshold Sth,min is assigned as 80 in the mapping and exploration

phase only. On the other hand, the main purpose of the mapping and exploration

phase is to create connected, but distinct map nodes, hence; the maximum similarity

threshold Sth,max that will be controlling if two map nodes are too close to each other

is defined as 110 based on empirical results in the Webots world. As summarized
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in equations (6.1) and (6.2), a node is placed if the current frame and nearest map

node similarity Se,n, i.e. nearest edge similarity, is inside the similarity limits, and an

edge is added between two nodes if the current edge similarity Se is higher than the

minimum similarity threshold.

ζn =

1 if Sth,max > Se,n > Sth,min

0 otherwise

where:

ζn = Node placement decision

Sth,max = 110, The maximum similarity threshold

Sth,min = 80, The minimum similarity threshold

(6.1)

ζe =

1 if Se > Sth,min

0 otherwise

where:

ζe = Edge addition decision

(6.2)

6.1.1 Village Realistic

The hyperparameters of SuperGlue are selected as suggested in [59]. Therefore, the

confidence threshold is assigned as 0.2 so that matches between two frames that have

higher confidence than 0.2 are specified as correct matches and ignored otherwise.

The mapping and exploration start location, i.e. the first map node, for the village

realistic world is shown Figure 6.1. After the first time-step, heading is generated by

following steps mentioned in Figure 4.8.

According to explained strategies so far, the mapping and exploration phase is con-

tinued to see if the robot accomplishes building a sufficient map inside the Webots

world by avoiding obstacles. At this point, it is essential to say that metric locations

for both robot and node are saved simultaneously for debugging and investigation

purposes. When the robot reaches a corner inside the map, the robot is not able to
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Figure 6.1: Mapping and Exploration Start Location for the Village Realistic

proceed with the exploration anymore since regions that are close to the border are

already identified and the exploration strategy wants the robot to go towards borders

as in Figure 6.2. At that stage, our setup lacked an additional step such as navigat-

ing to a random map node to continue exploration. Therefore, instead of leaving the

robot making back-and-forth motions around the border without any map node addi-

tion, the robot is moved to an unidentified region to continue mapping. Thus, the map

generated in the first mapping and exploration phase can be appended and enlarged

with additional mapping phases. Exhaustive mapping and exploration is kept outside

of this thesis and left as future work.

After we have satisfied with the constructed map, the mapping and exploration phase

has been ended, and the map is illustrated in Figure 6.3. It is noticeable from the

figure that there are long-distance edges between nodes that are not close enough to

each other to be connected. The main reason for the issue is the common features

that exist even if two frames are not adjacent. To better illustrate, two map nodes,

node-14 and node-82 are taken into account and their locations are shown in the map
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Figure 6.2: Sample Failure of Exploration Strategy

in Figure 6.4. If the node locations are analyzed qualitatively at the first look, their

connectivity is not feasible due to blocking houses between the two nodes. However,

if the two images are investigated together in terms of common features as in Fig-

ure 6.5, the frames look alike concerning surrounding objects even if most of them

such as houses are not the same. After the matching is performed between the stated

map node frames, the matching results are represented in Figure 6.6. We have real-

ized from the matching results that since a part of the robot is always visible at the

bottom side of a frame, it creates false positive matches as our primary purpose is

to match environmental features. To overcome this problem, a crop degree will be

assigned to crop the frame with a specific amount so that part of the robot will be

deleted from any frame. Another issue that is visible in the matching is that common

house features such as chimneys, windowpanes, and roofs are the main matched key-

point locations even if they don’t correspond to the same house. The issue will be

overcome by increasing the confidence score of SuperGlue from 0.2 to 0.4. As can be

seen from the local feature matching result after the adjusted settings in Figure 6.7,

the number of matched keypoints is decreased and the robot is not visible in frames

anymore. Thus, we will continue with the matching confidence threshold of 0.4 and

crop degree of 25◦. However, it is still sufficient to keep in mind that common envi-

ronmental features such as chimneys are matched even if they don’t correspond to the

same house. Hence, if a geometric verification method like RANSAC is adopted for

spherical images, then it would discard the common features if the geometries do not

match with each other in two images. Further, to prevent long-distance nodes from
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being connected in general, the mapping process could also be handled episodically.

In detail, a sliding window of possible node connectivity range could be defined to

add an edge from the current frame. This way, the current frame is only connected to

a limited range of map nodes.

Figure 6.3: Constructed Topological Map for the Village Realistic

The mapping and exploration phase is restarted from the first node in the Figure 6.1

and the regenerated map in the village realistic world is drawn in Figure 6.8. As can be

seen from the figure that the long-distance edges caught in the previously constructed

topological map in Figure 6.3 are not valid anymore, and all edges are created within

the visible range of the robot.

In summary, even though the mapping and exploration phase is not perfectly finalized,

an efficient topological map with distinct nodes that cover most of the parts of the

world is generated at the end of the process.
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Figure 6.4: Map Nodes 14 and 82 Locations

6.1.2 Complete Apartment

The mapping and exploration phase for the complete apartment world is started from

the node location shown in Figure 6.9. In an indoor environment, the upper side of

the frame is covered by the ceiling. Further, a house in general consists of several

repeatable features such as equivalent doors, ceiling lights, and ceiling corners. Since

a door, for example, is not unique in the house, false positive matches are likely

to be extracted from those features. Even though these features might exist in any

(a) Map Node-14 Frame (b) Map Node-82 Frame

Figure 6.5: Map Nodes 14 and 82 Frames

113



Figure 6.6: Matching Result of Map Nodes 14 and 82 Frames

Figure 6.7: Matching Result of Map Nodes 14 and 82 Frames with Adjusted Settings

frame, the successful connection of those two frames is only applicable when the

common features are salient in the frame such as a narrow corridor. From a different

perspective, two nodes created in the complete apartment map in Figure 6.10 are

selected to show the process in detail. As can be seen in Figure 6.11 that there are

identical doors in different locations to represent different rooms in the corridor. A

successful match is created when a keypoint is generated from a similar location of

different doors. If the latitude change in magnitude is high for those false positive

keypoints as in Figure 6.11, method-4 tends to create a faulty movement due to the

high priority of false positive matches. Therefore, a high chance of failure is detected

for method-4 in case of false positive matches with high latitude change in magnitude.

As revealed in the Section 3.2 that method-1 has defect on estimating accurate head-

ing when the keypoints are bounded in a region. Since found out in this section that

method-4 creates failing headings when there are false positive matches with high

latitude change in magnitude. To overcome drawbacks of both methods, our head-

ing estimation algorithm output in indoor worlds is interactively switched between

method-4 and method-1 based on matched keypoint distributions as shown in Fig-

ure 6.12. In detail, in an indoor environment heading is estimated using method-1

when the keypoint longitude distribution is not limited in a region over the circle as in

Figure 6.12. In the figure, the matched keypoint longitude distribution is represented

with a polar histograms. The red histogram bars are dedicated to show the number
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Figure 6.8: Constructed Topological Map for the Village Realistic with Adjusted

Settings

of matched keypoints for the specified piece. Grid lines are drawn concerning the

circle radius for each number of matched keypoints starting from 1 to 7. If a limi-

tation is caught concerning the keypoint longitude distribution, method-4 is applied

to create a more accurate heading. To do so, the longitude circle is divided into 18

pieces and the number of matched keypoints are computed for each piece. When zero

matched keypoints are extracted from 9 consecutive pieces, method-4 started to be

used as the heading estimation methodology, method-1 used in other situations. As

a future improvement, the keypoint priority assignment function, which is assigned

as the exponential function through the thesis, could be tuned to compensate more

generic domain.

After the mapping and exploration is started with the addition of above methodolo-

gies, the constructed topological map for the world is shown in Figure 6.13. As can be

seen from the figure that the map covers most of the world to perform the topological

navigation task.
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Figure 6.9: Mapping and Exploration Start Location for the Complete Apartment

6.1.3 Break Room

The mapping and exploration phase for the break room world is started from the node

location shown in Figure 6.14. Since the break room is an indoor world, the method-

ology introduced to extract heading in Section 6.1.2 is directly used to construct a

topological map. It is safe to say that no extra issues are detected in the mapping

and exploration phase of the break room world and the constructed topological map

is represented in Figure 6.15.

6.1.4 Factory

The mapping and exploration phase for the break room world is started from the

node location shown in Figure 6.16. Since the environment includes both indoor and

outdoor fields, it can be classified as an hybrid. However, the topological navigation

and mapping application is performed in a controlled outdoor area and the heading

estimation methodology is kept as applied in indoor worlds. Extra issues are not

116



East

No
rth

1

7

Couch

Couch

Couch

Table

Table

Bookshelf

Bookshelf

Webots World: Complete apartment
Nodes
Border
Flowers
Fire extinguisher
Floor light
Toy

Figure 6.10: Map Nodes 1 and 7 Locations

Figure 6.11: False Positive Matches due to General House Features

detected in the mapping and exploration phase of the factory world, and the transition

from outdoor to indoor is safely executed.

In overall, in the mapping and exploration phase, it is detected from all maps that

node spacing differs directly proportional with the surrounding object count and their

spacing. In terms of field change, node spacing in indoor is denser than outdoor due

to less spacing among surrounding objects. When there are more objects with less

spacing in the same field, the map node spacing decreases as well due to high amount

of feature change with the robot movement. The feature change directly affects the

keypoint repeatability, hence, the similarity between two frames are affected signifi-

cantly at each robot movement.
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6.2 Topological Navigation

After a successful mapping and exploration phase, the next main task for the robot to

perform is topological navigation. Topological navigation starts when a target frame

is set to the algorithm, and if the target frame is close enough to a map node to

perform the topological navigation. As stated in the topological navigation flowchart

Figure 4.5, the first task is the localization of both the current and the target frame

to find their nearest map nodes as shown in Figure 4.2. After they are localized, the

path is defined to move the robot towards the assigned goal, which is finding the

target frame. Since our topological navigation framework is divided into local tasks

due to the sensor range of spherical cameras, intermediate locations, i.e. via points,

between the current frame and the target frame are defined in the path planning to

ensure continuity. Then, a heading vector is computed to move towards the current via

point. In topological navigation, changing the local task is established concerning the

similarity of both the current via point and the next via point with the current frame.

In addition, different similarity thresholds are assigned compared with the ones in

the mapping and exploration phase. The minimum similarity threshold Sth,min is

taken from the Section 3.2 Heading Estimation Algorithm Comparison as 60. Since

the maximum similarity threshold Sth,max is specified as 110 in the mapping and
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Figure 6.13: Constructed Topological Map for the Complete Apartment

exploration, it is kept smaller in the topological navigation phase to increase the via

point index even if the current via point is not reached completely, but the next via

point is visible enough to continue performing the navigation. Therefore, Sth,max is

set as 90 for the navigation period of the framework. However, to finish the navigation

process as close as possible to the target, Sth,max is set as 110 when the target node is

started following. As summarized in the equation (6.3), if the similarity of the current

via point Se,cv is higher than Sth,max, i.e. current via point is close enough to the

current frame, and the similarity of the next via point Se,nv is higher than Sth,min, i.e.

next via point is similar enough to the current frame to perform navigation, then via

point index is increased so that the robot starts moving towards the next via point.

On the other hand, even if Se,cv is high enough to continue the navigation, it may

drop below the threshold in certain situations. For instance, if an unfeasible edge is

added to the map due to false positive matches in the mapping and exploration as

shown in Figure 6.6, then the navigation for that edge will be noisy and will never be

finished. Therefore, Se,cv will go below the threshold due to the misguided movement

of the robot. If the Se,cv is lower than Sth,min in any moment of the navigation, the
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Figure 6.14: Mapping and Exploration Start Location for the Break Room

current edge is deleted and the path is reset as shown in (6.4). While performing the

navigation, the velocity of the robot servo motors are assigned inversely proportional

to the Se,cv. Firstly, two velocity limits, the maximum velocity Vmax and the minimum

velocity Vmin, are assigned as 10 rad/s and 6 rad/s respectively to keep the velocity

in a certain range in outdoor. Since the indoor worlds are smaller than outdoor worlds,

the velocity limits are divided by two in indoor and are assigned as 5 rad/s and 3

rad/s respectively. Then, a velocity gain Kv is assigned as in the equation (6.5) such

that when the similarity is high between two frames, the robot is moved with a lower

velocity vice versa. This is achieved by multiplying the Vmax with the Kv as stated in

the equation (6.6).
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Figure 6.15: Constructed Topological Map for the Break Room

ivp =

ivp + 1 if (Se,cv > Sth,max and Se,nv > Sth,min)

ivp otherwise

where:

ivp = via point index

Sth,max = 90, The maximum similarity threshold

Sth,min = 60, The minimum similarity threshold

(6.3)

ζp =

1 if Se,cv < Sth,min

0 otherwise

where:

ζp = Path computation reset decision

(6.4)
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Kv =

1− 0.4(Se,cv−0.6(Smax))

0.4(Smax)
if Smax > Se,cv > (Smax)0.6

1 otherwise

where:

Kv = Velocity gain

(6.5)

V = KvVmax

where:

Vmax =

10 rad/s for outdoor

5 rad/s for indoor

= The maximum rotational velocity of the robot servo motor

(6.6)

While performing the topological navigation in the Webots world, two robots are

created as in Figure 6.18 to play a different version of hide and seek. While one

robot, i.e. the hider, is hidden in a random place on the map, the other one, i.e.
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Figure 6.17: Constructed Topological Map for the Factory

the seeker, will try to find the hider by performing topological navigation. In the

following sections, the hide and seek will be played several rounds to investigate

algorithm performance in different Webots worlds.

6.2.1 Village Realistic

The hide and seek play consists of five rounds for the village realistic world. In the

first round, the start node and the target node locations are illustrated in Figure 6.19

with a green circle and a red circle, respectively. In the figure, while the start node

specifies the closest map node location to the current frame, the target node is di-

rectly located at the target frame location. The main idea behind the representation

is to show each local task of the topological navigation by highlighting the first and

the last one with special colors. As already mentioned in the algorithm flowchart in

Figure 4.5, the next steps will be the path computation and the via-point navigation.

The followed path and the via points are also added in the Figure 6.19. While the

via points are highlighted with purple, the followed path by the seeker through the
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Figure 6.18: Two Robots Created to Use in Topological Navigation

navigation process is drawn with orange. The grid lines in the figure are generated

with equal spacing of 5 meters to ease the investigation. As also seen from the path

that the navigation is finished earlier than the target node point. Hence, topological

navigation is not so-called accurate concerning the metric properties, but it is a frame-

work that achieves moving a robot close enough to the set target. To better illustrate

the final moment of the first round of the navigation process, Figure 6.20 is attached.

In the figure, while the top left frame is showing the spherical camera output of the

seeker, the top right frame displays the spherical camera output of the hider. Even

though robots do not overlap each other, they are neighboring enough to say that the

goal is accomplished.

When the second round is started, the seeker is kept at the location where it finished

the first round, but the hider is placed in a different location as shown in Figure 6.21.

Further, the followed path and via points are also labeled in the figure Figure 6.21.

As can be seen from the followed path, the process is executed successfully and the

seeker has reached the target frame without overlapping with the hider.

The same procedure is applied while switching to the third round so that the hider

is moved to another location and the seeker is kept at the place where it finished the

second round. The start node and the target node are shown along with the followed
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Figure 6.19: Village Realistic Followed Path for the First Round

path in Figure 6.23. The seeker successfully found the target without any faulty mo-

tion as seen in the figure. However, at the point where topological navigation ends,

the seeker is relatively closer to the hider compared to the first two rounds.

In the fourth round, the hider is placed at the location labeled with the red circle

in Figure 6.25, and the seeker is held where it finished its navigation process in the

previous round. While no issues are found during the topological navigation, the

navigation operation finished as wanted as seen in Figure 6.26.

In the last and fifth round for the village realistic world, the hider is carried to the

target node in the Figure 6.27. As can be noticed also from Figure 6.27 that the

navigation is finished after the seeker is overlapped with the hider, and the final scene

is added to the Figure 6.28 for better illustration. Thus, the metric distance of the

robots when the navigation goal is satisfied might differ from each other depending

on the situation. Therefore, it is the validation point to say that topological navigation

is not the process to execute precise metric operations and create the shortest path

regarding metric properties.
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Figure 6.20: Village Realistic Final Scene for the First Round

6.2.2 Complete Apartment

The hide and seek is accomplished with three rounds in the complete apartment world.

The first round is successfully completed concerning the start and target nodes spec-

ified in Figure 6.29. The grid lines in the figure are drawn with 0.5 meters of equal

spacing for a better illustration of metric properties. The screenshot taken from the

moment, in which the navigation task is completed, is demonstrated in Figure 6.30.

As seen from the figure, the hider and the seeker overlap with each other at the final

moment.

In the second round, while the hider is moved to the location specified with the red

node in Figure 6.31, the seeker is kept at the point where it finished the first round.

After the round is finalized, the followed path is also shown in Figure 6.31 and the

final snapshot concerning robot positions and their spherical camera output is shown

in Figure 6.32.

In the third round, same as in previous rounds, the hider is taken to another location

shown with the target node in Figure 6.33. Since via point nodes 138 and 142 are

close to the bookshelf, an oscillatory robot motion is detected due to the obstacle.

Even though topological navigation is affected by the oscillatory motion due to the

obstacle, the process is successfully executed. However, the obstacle avoidance algo-
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Figure 6.21: Village Realistic Followed Path for the Second Round

rithm could be reinforced with a memory-allocated candidate instead of momentary

estimation as used in this thesis. The improvement opportunity for obstacle avoidance

is kept as future work of this thesis.

6.2.3 Break Room

The hide and seek is executed for three rounds in the break room world. The first

seeker and hider locations are highlighted with green and red nodes in Figure 6.35.

Grid lines are generated with 0.5 meters of equal spacing for better illustration of

metric properties. As can be seen from the figure in terms of the created map that

when the robot moves in more open space, i.e. there are fewer obstacles around, the

distance among map nodes gets closer, or more distant edges are created among map

nodes. The first round is performed well as in Figure 6.35 and verified with the last

snapshot in Figure 6.36.

In the second round, the exact same procedure was applied in the previous hide and

seek rounds. The hider is taken to another place as shown with the target node in

Figure 6.37, but the seeker is stood still at the point where it finished the first round.
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Figure 6.22: Village Realistic Final Scene for the Second Round

The second round is finished correctly and the robots overlapped each other at the

final moment in Figure 6.38.

In the third and final round for the break room world, the hider is carried to the

location shown with the red circle in Figure 6.39. The followed path labeled with

orange scatter in the figure shows that the seeker was able to track the via points to

reach the hider. As seen in the Figure 6.40 the hider and the seeker are over the top

of each other, hence; the topological navigation process is concluded as intended.

6.2.4 Factory

The hide and seek is implemented for three rounds in the factory world. The first

round is started from the start node to the target node as emphasized in Figure 6.41.

According to the flow chart of topological navigation Figure 4.5, the next via point is

started following when the current via point is close enough to the current frame and

the next via point satisfies the minimum similarity threshold. Therefore, the followed

via point by the robot could be changed before reaching the current via point location

if the next via point is similar enough to perform topological navigation. At the path

following process in the first round, a faulty robot motion is detected when node-

49 is started to be followed by the seeker, and the start and end points of this false
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Figure 6.23: Village Realistic Followed Path for the Third Round

movement are labeled with pluses in Figure 6.41. The reason for the issue is due to the

truck that covers most of the spherical frame and creates the only matched keypoints

as can be seen from Figure 6.42. However, when the seeker starts seeing the pallet

stacks and the gate from a similar perspective with the node-49, the heading estimate

is corrected towards the node-49 as in Figure 6.43 and the topological navigation is

concluded by finding the hider as in Figure 6.44.

In the second round, the hider is placed indoor part of the world, and the seeker is

kept at the location where it finished the first round. As seen from the Figure 6.45,

topological navigation for the factory world finished correctly and robots overlapped

each other at the point where navigation is ended in Figure 6.46.

In the third and final round for the factory world, the hider is taken to an outdoor

location close to the front of the truck as shown with a red circle in Figure 6.47. It

is valid to say that the navigation process is handled successfully and the seeker was

able to find the hider as verified in Figure 6.48.

In summary in this chapter, the proposed algorithms are put into practice to see the

overall effectiveness of the topological navigation and mapping in a Webots world.
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Figure 6.24: Village Realistic Final Scene for the Third Round

To monitor the main working structure, the algorithm performance is not investigated

concerning the dynamic changes such as weather and illumination. However, it is

detected that even though different drawbacks are identified, the proposed algorithms

successfully performed both navigation and mapping phases in an unknown environ-

ment. In the next chapter, the thesis will be concluded by explaining the big picture

and handicaps of the topological navigation and mapping framework.
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Figure 6.25: Village Realistic Followed Path for the Fourth Round

Figure 6.26: Village Realistic Final Scene for the Fourth Round
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Figure 6.30: Complete Apartment Final Scene for the First Round
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Figure 6.31: Complete Apartment Followed Path for the Second Round

Figure 6.32: Complete Apartment Final Scene for the Second Round
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Figure 6.34: Complete Apartment Final Scene for the Third Round
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Figure 6.36: Break Room Final Scene for the First Round
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Figure 6.37: Break Room Followed Path for the Second Round

Figure 6.38: Break Room Final Scene for the Second Round
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Figure 6.39: Break Room Followed Path for the Third Round

Figure 6.40: Break Room Final Scene for the Third Round

138



East

No
rth

0
1

2

3

4

5
6

78

9

101112
131415

16

17
18

19 20

21
22

23 24 25 26 27 28
29 30

31
32

33
3435

36
37

3839
40

41424344

45

46
47 48

49
50 51

52 53 54
55 56575859
60 61626364

65
66

67 68

69

7071
72

73

74
7576

77

78
79

80
81

82 83
84 85

86

87
88

89
90

91
9293 9495

96
9798

99100
101

102
103

104
105

106
107

108
109110111

112
113

114

115

116

117
118119120121122

123124125126127128129130131

132

Table Table

Table

Cabinet Cabinet

Cabinet

Cart
Cart

Truck

Tr
as

h 
co

nt
ai

ne
rs

Pallet stacks

Webots World: Factory

Edges
Nodes
Start Node
Target Node
Via Points
Followed Path
False Movement Start
False Movement End
Border
Gate
Barrels
Fire extinguisher

Figure 6.41: Factory Followed Path for the First Round

(a) Extracted Keypoints

(b) Matched Keypoints
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(a) Extracted Keypoints

(b) Matched Keypoints

Figure 6.43: False Movement End and Node-49 Local Feature Matching Results

Figure 6.44: Factory Final Scene for the First Round
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Figure 6.45: Factory Followed Path for the Second Round

Figure 6.46: Factory Final Scene for the Second Round
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Figure 6.47: Factory Followed Path for the Third Round

Figure 6.48: Factory Final Scene for the Third Round
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CHAPTER 7

CONCLUSION

In this thesis, a topological navigation algorithm design and analysis has been ex-

plained by using spherical images as its primary source. Further, additional analyses

are performed to find both the most convenient keypoint feature detector and feature

matcher, i.e. local feature matching, algorithm combination, and the most practical

heading estimation method. During the development, an object-oriented Python li-

brary is created to use in later tasks and to increase the automation of processes. The

library consists of 9 different feature detectors, 3 distinct feature matcher algorithms,

and 2 different image representation methods, and is compatible with additional im-

provements. In terms of heading estimation methods, the library includes 4 method-

ologies. In addition to the methodologies, the library is enlarged with the topological

navigation and mapping framework in which both local feature matching and heading

estimation selections are inherited. Since hands-on results are generated with the help

of the Webots robotics simulator, a Python object that handles the whole Webots sim-

ulation automatically is also added to the library. At the end of the finalized scheme,

the library is reinforced with proper getters and setters to specify public properties

such as the maximum number of keypoints, which will be generated from a frame,

and the heading vector, which is the main output of the topological navigation. The

creation of an automatic testing framework, which enables remote testing and contin-

uous improvement of developed algorithms and possible uncertainties with the help

of Webots, is left as future work of this thesis.

The local feature matching algorithm selection study showed that spherical distor-

tion affects the repeatable keypoint generation when the interested region is moved
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towards the poles of the image in equirectangular representation. The issue is dimin-

ished by using a different representation method ’tangent images’ that is based on

dividing an image into its tangent planes. However, the image division process gen-

erated multiple smaller images from the spherical image and local feature matching

is performed on all of them separately. Therefore, ’tangent images’ representation in-

creased the computational cost significantly compared to equirectangular image rep-

resentation. Further, it has been detected that the SuperPoint and SuperGlue combina-

tion, based on graph neural networks, extracted comparable results from equirectan-

gular images with the ’tangent images’ representation. However, both the SuperPoint

and SuperGlue are examined with their pretrained weights so that additional improve-

ment could be achieved by training algorithms with spherical images. The heading

estimation method selection study clarifies that the keypoint priority assignment im-

proved heading estimation performance in all methodologies. If the keypoint distri-

bution around the target frame is bounded in a region, a performance drop is realized

in heading estimation for methods based on keypoint pairing. Thus, method-4, which

estimates the heading vector based on keypoint latitude change and assigns priority

to keypoints concerning the magnitude of the keypoint latitude change, is marked as

the most robust method concerning keypoint distribution and computational effective-

ness by shrinking keypoint pairing. However, methods are still open to improvement

concerning the keypoint priorities. Since only an exponential function is covered to

assign priority to keypoints, an additional analysis could be performed to investigate

the performances of different functions.

In the hands-on part of the framework, it has been realized during the mapping and

exploration phase that the current exploration heading estimation is stuck in corners

since there is no farther region to search due to border blockade. Therefore, a new

state is needed to recover from being stranded in corners when there are consecutive

returns to the lastly added map node due to node addition failures. Further in the

mapping and exploration, because of false positive matches in local feature match-

ing, impractical edge additions are detected on the map. This results in incorrect path

planning and false robot movement. Therefore, the SuperGlue confidence score is

increased from 0.2 to 0.4 to output more confident matching results. In addition, it

has been detected that the robot is visible in each spherical camera frame. To over-

144



come the problem, a crop degree of 25◦ is generated to crop 25◦ of the frame from

both upper and lower sides. This way, the visibility of the robot inside the frame is

removed and the high spherical distortion at the poles is shrunk. In addition, local

feature matching could be reinforced with a geometric verification method such as

RANSAC to create further geometrical robustness. From a different point of view, to

prevent long-distance edge additions, edge addition is proposed to be made episod-

ically so that similarity of the last added node is only compared with nodes that are

inside a certain sliding window. The limited range of node comparison is also another

opportunity to bypass unachievable edges in path planning.

In summary, a topological navigation and mapping framework based on spherical

images is proposed for usage in an unknown environment. Even though drawbacks

are identified during the process, the proposed methodology is tested interactively in

the Webots robotics simulator and both topological navigation and mapping tasks are

performed effectively. In detail, a robot is able to map an unknown environment and

perform navigation to a random point in the environment without any need for metric

information. However, the framework is not examined concerning the uncertainties

due to dynamic changes such as illumination. To investigate the performance of algo-

rithms in terms of uncertainties, additional analysis can be taken into account while

changing the environmental properties of the already constructed Webots worlds. In

addition, since the framework is not put into practice in a real-world application, the

hands-on part can be enlarged by implementing the framework with a robot equipped

with a spherical camera in a sample area.
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APPENDIX A

SAMPLE OBJECTS OF THE TOPOLOGICAL NAVIGATION

PYTHON LIBRARY

The topological navigation python library can be found in [10].

1 class SelectKeypointDescriptor:
2 def __init__(

3 self,

4 img_info,

5 kp_descriptor="ORB",

6 draw_keypoints=False,
7 representation="Cartesian",

8 crop_degree=0,

9 max_keypoints=1024,

10 device="cpu",

11 matcher_selection="BruteForce",

12 resize=[-1],

13 kornia_apply_orinet=True,
14 kornia_apply_affnet=True,
15 ignore_border_kp=False,
16 ):

17 """

18 This function initialize parameters used on the class

19 Parameters

20 ----------

21 img_info : string

22 Path to image.

23 kp_descriptor : string

24 Keypoint descriptor name.

25 draw_keypoints : bool, optional

26 keypoints drawing flag. The default is False.

27 representation : string, optional

28 image representation. The default is Cartesian

29 crop_degree : int, optional

30 image height padding degree of spherical image

31 max_keypoints : int, optional

32 Maximum number of generated keypoints.

33 The default is 1024.

34 device : str, optional
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35 Device currently in use. The default is "cpu".

36 matcher_selection : str, optional

37 selected matcher to load image

38 with appropriate settings.

39 The default is "BruteForce".

40 resize : list, optional

41 image resizing dimensions, -1 if unwanted.

42 The default is [-1].

43 kornia_apply_orinet : bool, optional

44 OriNet application flag on kornia descriptors

45 The default is True.

46 kornia_apply_affnet : bool, optional

47 AffNet application flag on kornia descriptors.

48 The default is True.

49 ignore_border_kp : bool, optional

50 Ignore keypoints detected on image border on

51 distorted image matching.

52 The default is False.

53

54 Returns

55 -------

56 None.

57

58 """

59

60 def try_descriptor(self):

61 """

62 This function calls the related descriptor

63 from descriptor map

64 Returns

65 -------

66 keypoint details object

67 Properties of keypoint descriptor.

68 """

69

70 def update_kp_changes(self):

71 """

72 This function updates current descriptor parameter changes

73 before running detection

74

75

76 """

77

78 @property

79 def img_info(self):

80 """

81 Image information getter currently used in the object

82 Returns

83 -------

84 Previously set image information

85 can be image path, OpenCV image, Pytorch image

86 """

87

88 @img_info.setter
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89 def img_info(self, new_img_info):

90 """

91 Image information setter to use in the object

92 Returns

93 -------

94

95 """

96

97 @property

98 def kp_descriptor(self):

99 """

100 Keypoint descriptor getter currently used in the object

101 Returns

102 -------

103 Previously set Keypoint descriptor

104 can be str

105 """

106

107 @kp_descriptor.setter

108 def kp_descriptor(self, new_descriptor):

109 """

110 Keypoint descriptor setter to use in the object

111 Returns

112 -------

113

114 """

115

116 @property

117 def representation(self):

118 """

119 Image representation getter currently used in the object

120 Returns

121 -------

122 Previously set Image representation

123 can be str

124 """

125

126 @representation.setter

127 def representation(self, new_representation):

128 """

129 Image representation setter to use in the object

130 Returns

131 -------

132

133 """

134

135 def compute_cv2_keypoints(self, img):

136 """

137 This function conduct keypoint detection & descriptor

138 computation process using built-in OpenCV functions

139 as both detector & descriptor

140

141 Parameters

142 ----------
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143 img : array of uint8

144 input image.

145 Returns

146 -------

147 img_details: Tuple

148 Contains image keypoints [Mx4] and

149 SIFT descriptors [MX128] Torch tensors

150 BEBLID descriptors [Mx64] Torch tensors

151 ORB descriptors [Mx32] Torch tensors

152

153 """

154

155 def compute_kornia_keypoints(self, img):

156 """

157 This function conduct keypoint detection & descriptor

158 computation process using built-in kornia functions

159 as both detector & descriptor

160

161 Parameters

162 ----------

163 img : array of uint8

164 input image.

165 Returns

166 -------

167 img_details: Tuple

168 Contains image keypoints [Mx4] and

169 descriptors [MX128] Torch tensors

170

171 """

172

173 def compute_superpoint_keypoints(self, img):

174 """

175 This function conduct keypoint detection & descriptor

176 computation process using SuperPoint as

177 both detector & descriptor

178

179 Parameters

180 ----------

181 img : array of uint8

182 input image.

183 Returns

184 -------

185 img_details: Tuple

186 Contains image keypoints [Mx4] and

187 SuperPoint descriptors [MX256] Torch tensors

188

189 """

190

191 def detect_equirectangular(self):

192 """

193 This function extracts only the visible keypoints

194 from equirectangular spherical image.

195

196 Parameters
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197 ----------

198

199 Returns

200 -------

201 kp : torch tensor, visible keypoint coordinates

202 desc : torch tensor, visible decriptors

203

204 """

205

206 def detect_tangent_images(self):

207 """

208 This function extracts only the visible keypoints

209 from a collection of tangent images and transfers them

210 to coordinates on the equirectangular image.

211 That is, only returns the keypoints visible

212 to a spherical camera at the center of the icosahedron.

213

214 Parameters

215 ----------

216

217 Returns

218 -------

219 visible_kp : torch tensor, visible keypoint coordinates

220 visible_desc : torch tensor, visible decriptors

221

222 """

223

224

225 class TopologicalNavigation(SelectKeypointDescriptor):
226

227 def __init__(self, device, crop_degree, max_keypoints,

228 min_matches, resize, exploration_noise=50,

229 mapping_stage=False, continue_mapping=False):
230 # initializing inherited keypoint descriptor object

231 SelectKeypointDescriptor.__init__(

232 self,

233 img_info="",

234 kp_descriptor="SuperPoint",

235 representation="Equirectangular",

236 crop_degree=crop_degree,

237 max_keypoints=max_keypoints,

238 device=device,

239 matcher_selection="SuperGlue",

240 resize=resize,

241 )

242

243 @property

244 def img_info(self):

245 """

246 Image information getter currently used in the object

247 Returns

248 -------

249 Previously set image information

250 can be image path, OpenCV image, Pytorch image
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251 """

252

253 @img_info.setter

254 def img_info(self, new_img_info):

255 """

256 Image information setter to use in the object

257 Returns

258 -------

259

260 """

261

262 @property

263 def heading(self):

264 """

265 Heading angle getter currently used in the object

266 Returns

267 -------

268 Heading angle (deg)

269 float

270 """

271

272 @property

273 def heading_vector(self):

274 """

275 Heading vector getter currently used in the object

276 Returns

277 -------

278 Heading unit vector

279 numpy.ndarray

280 """

281

282 @property

283 def current_frame(self):

284 """

285 Current frame getter currently used in the object

286 Returns

287 -------

288 Previously set current frame information

289 can be image path, OpenCV image, Pytorch image

290 """

291

292 @current_frame.setter

293 def current_frame(self, new_frame):

294 """

295 Current frame setter to use in the object

296 Returns

297 -------

298

299 """

300

301 @property

302 def target_frame(self):

303 """

304 Target frame getter currently used in the object
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305 Returns

306 -------

307 Previously set target frame information

308 can be image path, OpenCV image, Pytorch image

309 """

310

311 @target_frame.setter

312 def target_frame(self, new_frame):

313 """

314 Target frame setter to use in the object

315 Returns

316 -------

317

318 """

319

320 @property

321 def topo_map(self):

322 """

323 Topological map getter currently used in the object

324 Returns

325 -------

326 Currently used topological map

327 Pickle object

328 """

329

330 @topo_map.setter

331 def topo_map(self, new_topo_map):

332 """

333 Topological map setter to use in the object

334 Returns

335 -------

336

337 """

338 def load_map(self, map_name=None):
339 """

340 This function loads constructed map from memory

341

342 Parameters

343 ----------

344 map_name: str

345 Specified map name to load from the directory

346

347 Returns

348 -------

349

350 """

351 def save_map(self, map_name=None):
352 """

353 This function save constructed map to memory

354

355 Parameters

356 ----------

357 map_name: str

358 Specified map name to save to the directory

163



359

360 Returns

361 -------

362

363 """

364 def draw_map(self, block=True):
365 """

366 This function draws the map as topo graph

367 with nodes and edges

368

369 Parameters

370 ----------

371 block: boolean

372 Parameter specifying if plot stops

373 code execution or not

374

375 Returns

376 -------

377

378 """

379 def draw_path(self):

380 """

381 This function draws the created path

382 upon the topological map

383

384 Returns

385 -------

386

387 """

388 def update_current_frame_properties(self):

389 """

390 This function is used to update

391 current frame properties when current_frame is set!

392

393 Returns

394 -------

395

396 """

397 def update_target_frame_properties(self):

398 """

399 This function is used to update

400 target frame properties when target_frame is set!

401

402 Returns

403 -------

404

405 """

406 def compare_current_frame_with_map(self):

407 """

408 This function compares current frame with map

409 and take necessary action according to robot stage

410

411 Returns

412 -------
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413

414 """

415 def follow_robot_path(self):

416 """

417 This function follows the constructed robot path

418 according to target frame

419

420 Returns

421 -------

422

423 """

424 def check_obstacles(self):

425 """

426 This function checks obstacles when

427 distance_sensor_values are set!

428

429 Returns

430 -------

431 obstacles_found: boolean

432 Parameter specifying if there is obstacle around

433

434 unit_obstacle_angle_vector: numpy.ndarray, (2,)

435 Obstacle angle vector calculated

436 with respect to distance sensor values

437

438 """

439 def perform_navigation(self, mapping_active=False,
440 matched1_sp_closest=None,
441 matched2_sp_closest=None,
442 matched1_sp_second_closest=None,
443 matched2_sp_second_closest=None,
444 similarity_first=None,
445 similarity_second=None):
446 """

447 This function performs navigation according to the

448 current stage of the robot &

449 local feature matching results

450

451 Parameters

452 ----------

453 mapping_active: boolean

454 Parameter specifying if mapping stage is active

455 matched1_sp_closest: numpy.ndarray (Nx2)

456 Local feature matching result of current frame

457 to the most similar node

458 matched2_sp_closest: numpy.ndarray (Nx2)

459 Local feature matching result

460 of the most similar map node to current frame

461 matched1_sp_second_closest: numpy.ndarray (Nx2)

462 Local feature matching result

463 of current frame to the most similar second map node

464 matched2_sp_second_closest: numpy.ndarray (Nx2)

465 Local feature matching result

466 of the most similar second map node to current frame
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467 similarity_first: float

468 Similarity score

469 of the most similar map node to current frame

470 similarity_second: float

471 Similarity score

472 of the most similar second map node to current frame

473

474 Returns

475 -------

476

477 """

478 def get_heading(self, matched1_sp, matched2_sp):

479 """

480 This function computes the heading vector

481 to follow with respect to local feature matching results.

482 Parameters

483 ----------

484 matched1_sp: numpy.ndarray (Nx2)

485 Local feature matching result of the first frame

486 matched2_sp: numpy.ndarray (Nx2)

487 Local feature matching result of the second frame

488 Returns

489 -------

490 heading_method5: float

491 Calculated heading

492 heading_xnorm_method5: float

493 x-component of heading unit vector

494 heading_ynorm_method5: float

495 y-component of heading unit vector

496 """

497 @staticmethod

498 def get_unit_heading_wrt_latitude(u_c, v_c, v_t, v_h):

499 """

500 This function computes unit heading vector

501 for each keypoint by taking elevation into account.

502

503 Parameters

504 ----------

505 u_c : numpy.ndarray (Nx2)

506 Longitude unit vector array of keypoint

507 for the current frame.

508 v_c : numpy.ndarray

509 Latitude unit vector array of keypoint

510 for the current frame.

511 v_t : numpy.ndarray (Nx2)

512 Latitude unit vector array of keypoint

513 for the target frame.

514 v_h : numpy.ndarray

515 Horizontal unit vector array.

516

517 Returns

518 -------

519 u: numpy.ndarray (Nx2)

520 Unit heading vector that is computed
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521 for each input keypoint pair.

522

523 """

524 @staticmethod

525 def get_unit_heading(u_c, u_t):

526 """

527 This function computes unit heading vector

528 for each keypoint pair.

529

530 Parameters

531 ----------

532 u_c : list [u_ci, u_cj] [(N*(N-1)/2)x2, (N*(N-1)/2)x2]

533 Unit vector list of keypoint pairs

534 for the current frame.

535 u_t : list [u_ti, u_tj] [(N*(N-1)/2)x2, (N*(N-1)/2)x2]

536 Unit vector list of keypoint pairs

537 for the target frame.

538

539 Returns

540 -------

541 unit_heading: numpy.ndarray (Nx2)

542 Unit heading vector that is computed

543 for each input keypoint pair.

544

545 """

546 @staticmethod

547 def get_keypoint_unitvector(keypoints_ang):

548 """

549 Generate unit vectors of keypoints.

550 Rectangular decomposition of the latitude

551 of the keypoint on a unit circle

552 after discarding latitude results in its unit vector.

553 Parameters

554 ----------

555 Returns

556 -------

557 numpy.ndarray

558 Unit vectors that are drawn to each of the keypoints.

559 """

560 def compute_similarity(self, node1_details, node2_details):

561 """

562 This function computes similarity between node1 and node2

563 by applying local feature matching.

564

565 Parameters

566 ----------

567 node1_details: torch.Tensor (Mx4)

568 Pytorch tensor of node1 descriptor details

569 node2_details: torch.Tensor (Mx4)

570 Pytorch tensor of node2 descriptor details

571

572 Returns

573 -------

574 similarity: float
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575 Similarity score of the two nodes

576 matched1_sp: numpy.ndarray (Nx2)

577 Local feature matching result of the first node

578 matched2_sp: numpy.ndarray (Nx2)

579 Local feature matching result of the second node

580

581 """

582 def find_nearest_map_node(self, current_frame_name,

583 current_frame_number,

584 current_frame_details):

585 """

586 This function finds the nearest map node

587 to the current frame with respect to similarity

588 by searching through the map

589

590 Parameters

591 ----------

592 current_frame_name: str

593 Name of node

594 current_frame_number: float

595 Number of node

596 current_frame_details: torch.Tensor (Mx4)

597 Pytorch tensor of node descriptor details

598

599 Returns

600 -------

601 closest_id: int

602 The closest map node id to current frame

603 similarity: float

604 Similarity score of the closest node and

605 the current frame

606 similarity_previous: float

607 Similarity score of the second-closest node and

608 the current frame

609 matched1_sp_closest: numpy.ndarray (Nx2)

610 Local feature matching result

611 of the current frame with the closest map node

612 matched2_sp_closest: numpy.ndarray (Nx2)

613 Local feature matching result

614 of the closest map node with the current frame

615 matched1_sp_second_closest: numpy.ndarray (Nx2)

616 Local feature matching result

617 of the current frame with the second-closest map node

618 matched2_sp_second_closest: numpy.ndarray (Nx2)

619 Local feature matching result

620 of the second-closest map node with the current frame

621 """
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APPENDIX B

SAMPLE APPLICATION OF THE TOPOLOGICAL

NAVIGATION PYTHON LIBRARY

1 from topological_navigation import TopologicalNavigation

2

3 # initializing TopologicalNavigation object

4 tp = TopologicalNavigation(device='cuda', crop_degree=25,

5 max_keypoints=150, min_matches=40,

6 resize=[400, 800], mapping_stage=False,
7 continue_mapping=False)
8 # loading specified map

9 tp.load_map(map_name=<name of the topological map .pickle>)

10 # drawing the map without any path

11 tp.draw_map()

12 # updating target frame

13 tp.target_frame = <path to target frame>

14 # updating current frame

15 tp.current_frame = <path to current frame>

16 # comparing current frame with map to perform navigation

17 tp.compare_current_frame_with_map()

18 # drawing path over the map for once

19 tp.draw_path()

20 # get estimated heading angle

21 heading_deg = tp.heading
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