
MODEL MANAGEMENT FOR HYPOTHESIS-DRIVEN SIMULATION
EXPERIMENT WORKFLOWS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SEMA ÇAM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

SEPTEMBER 2022





Approval of the thesis:

MODEL MANAGEMENT FOR HYPOTHESIS-DRIVEN SIMULATION
EXPERIMENT WORKFLOWS

submitted by SEMA ÇAM in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
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ABSTRACT

MODEL MANAGEMENT FOR HYPOTHESIS-DRIVEN SIMULATION
EXPERIMENT WORKFLOWS

Çam, Sema

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Halit Oğuztüzün

September 2022, 100 pages

With today’s breakthroughs in computational science and engineering, research ex-

perts can now simulate a lot of experiments on computers. Experiment specification is

aided by frameworks and support systems for reusability and reproducibility of scien-

tific research, as well as domain-specific languages, domain models, ontologies, data

models, statistical analysis methods, and other types of tools and assets with related

formalisms. Despite this, most frameworks or support tools for experiment specifi-

cation ignore hypotheses and lack a procedure based on properly stated hypotheses.

The main issue with a lack of hypotheses in the experimental process is that an ex-

periment’s credibility and repeatability can be harmed by an erroneous or inadequate

record. Furthermore, the diversity of models, metamodels, tools, and data for testing

bring the need for Global Model Management (GMM). In that sense, GMM lever-

ages documenting, sharing, reusability, and replicability of simulation experiments

by employing Model-Driven Engineering methodologies.

This thesis demonstrates how to use GMM to facilitate simulation experimentation

with explicit hypotheses as a scientific workflow and proposes an extension to the

Simulation Experiment Description Markup Language (SED-ML) that involves ex-
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plicit specification of the hypothesis targeted in the simulation experiment. A meg-

amodel, or registry for models and metamodels, is created particularly to serve as

a repository for managing the artifacts used in a simulation project. All steps of a

simulation experiment, including specification, input data production, experiment ex-

ecution, and output data analysis, are effectively addressed by the megamodel. Then,

using case studies, the applicability of GMM to simulation experiments is demon-

strated. GMM, in our view, provides a solid framework for managing both experiment

assets and experiment processes.

Keywords: Design of Experiments, Global Model Management, Model Driven En-

gineering, Simulation Experiment Description Markup Language, Signal Temporal

Logic
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ÖZ

HİPOTEZE DAYALI SİMÜLASYON DENEYİ İŞ AKIŞLARI İÇİN MODEL
YÖNETİMİ

Çam, Sema

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Halit Oğuztüzün

Eylül 2022 , 100 sayfa

Hesaplamalı bilim ve mühendislikteki günümüz atılımları sayesinde, araştırma uz-

manları artık bilgisayarlarda birçok deneyi simüle edebilirler. Deney tanımı, bilimsel

araştırmanın yeniden kullanılabilirliği ve yeniden üretilebilirliği için çerçeveler ve

destek sistemlerinin yanı sıra alana özgü diller, alan modelleri, ontolojiler, veri mo-

delleri, istatistiksel analiz yöntemleri ve ilgili formalizmlere sahip diğer araç ve varlık

türleri tarafından desteklenir. Buna rağmen, deney belirtimi için çoğu çerçeve veya

destek aracı, hipotezleri görmezden gelir ve uygun şekilde ifade edilen hipotezlere

dayalı bir prosedürden yoksundur. Deneysel süreçte hipotez eksikliği ile ilgili temel

sorun, bir deneyin inanılırlığının ve tekrarlanabilirliğinin hatalı veya yetersiz kayıttan

ötürü zarar görmesidir. Ayrıca, test için model, metamodel, araç ve verilerin çeşitliliği,

Küresel Model Yönetimi (KMY) ihtiyacını beraberinde getirir. Bu bağlamda KMY,

model tabanlı mühendislik metodolojilerini kullanarak simülasyon deneylerinin bel-

gelenmesi, paylaşılması, yeniden kullanılabilirliği ve tekrarlanabilirliğini arttırır.

Bu tez, bilimsel bir iş akışı olarak açık hipotezlerle simülasyon deneylerini kolaylaş-

tırmak için KMY’nin nasıl kullanılacağını gösterir ve simülasyon deneyinde hedef-

vii



lenen hipotezin açık bir şekilde belirtilmesini içeren Simülasyon Deneyi Açıklama

İşaretleme Dili’ne (SED-ML) bir uzantı önerir. Megamodel, ve ya modeller ve meta-

modeller için bir kayıt defteri, özellikle bir simülasyon projesinde kullanılan yapıtları

yönetmek için bir depo olarak hizmet etmek üzere oluşturulur. Tanımlama, girdi veri

üretimi, deney yürütme ve çıktı veri analizi dahil olmak üzere bir simülasyon deneyi-

nin tüm adımları megamodel tarafından etkin bir şekilde ele alınır. Daha sonra vaka

çalışmaları kullanılarak KMY’nin simülasyon deneylerine uygulanabilirliği gösteril-

miştir. Bize göre KMY, hem deney varlıklarını hem de deney süreçlerini yönetmek

için sağlam bir çerçeve sağlar.

Anahtar Kelimeler: Deney Tasarımı, Küresel Model Yönetimi, Model Tabanlı Mü-

hendislik, Simulasyon Deneyi Tanımlama İşaretleme Dili, Sinyal Zamansal Mantık
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Theories and hypotheses regarding what makes a system operate or explain particular

phenomena in terms of cause and effect relations are put forth in many scientific disci-

plines and engineering problems. With a set of goals and questions in mind, research

experts undertake experiments to test hypotheses. The system’s input variables are

purposefully changed, and the consequent output values are assessed and measured.

Experiments provide evidence as to whether or not offered ideas are correct [4]. In

this respect, a scientific process entails the stages listed below:

1. Develop well-structured research questions about a problem and its origin.

2. Gather statistical hypotheses from the questions to answer them.

3. Generate some logical hypotheses whose consequences are in the form of ex-

pected behavior.

4. Design experiments to put the fundamental hypotheses about the phenomenon

to the test.

5. Validate the experiment for relevance and dependability.

6. If needed, create computer simulations (computational methods for producing

behavior from a model), run them, and analyze the results.

7. Examine the hypotheses along with the underlying assumptions for the correct-

ness and, if required, modify the model, experiments, or predicted behavior.
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With recent advances in computational science and engineering, particularly model-

ing and simulation technologies, experiments are increasingly being done on com-

puters to avoid the dangers, if not the practical impossibility, of performing exper-

iments in the actual world. Furthermore, simulation trials often involve less time,

money, and effort. Nevertheless, the main practical issue we face is that gaining a

better knowledge of real-world processes becomes time-consuming and error-prone

due to limitations of human perception. Because both simulation experiment designs

and simulations themselves as software are frequently created by hand. As a re-

sult, assessing the quality of experiments becomes required, and the accuracy of the

simulators that run the simulation models becomes a critical component of this as-

sessment. In this sense, creating simulation models at a relevant degree of abstraction

and accuracy, as well as planning trials with adequate information, would improve

experimentation quality. A thorough record of the experimental settings enhances the

credibility and repeatability of scientific experiments [5, 6]. Likewise, comprehensive

experimentation practices necessitate establishing a clear and well-documented link

between experiments, objectives, and hypotheses.

Nowadays, domain-specific languages (DSLs) and markup languages have had a sig-

nificant impact on the academic debate on keeping accurate and adequate records of

simulation trials. DSLs are frequently used to effectively generate experiment spec-

ifications and designs with a focus on a specific domain for development, as well as

to enable recording and reusing of experiments for reproducibility reasons [7].

Markup languages are also emerging as a standard for simulation studies. Simulation

Experiment Description Markup Language (SED-ML) [8] is an XML-based language

for encoding, sharing, and documenting simulation experiments [9] to facilitate sci-

entific collaboration. It makes it easier to share experiment descriptions, validate, and

reuse simulation experiments. SED-ML standardizes the whole process, increasing

the repeatability and trustworthiness of simulations. Despite the fact that SED-ML

has many advantages for simulation experiments, hypothesis specification is not cov-

ered by the language, and we believe that adding the missing piece will significantly

enrich the experimentation process.
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When it comes to scalability, the concept of retaining a thorough record of simulation

tests becomes even more intricate. Because there is an increasing number of simula-

tion experiment projects, and these models require a supporting environment that is

simple enough for non-programmers to utilize in order for the connected models to

be sustainable and manageable.

The environment’s experiment models, which are specifications for experiments spec-

ified by a DSL or markup language (e.g., a SED-ML specification), should be accessi-

ble and consistent with the other models, such as represented system or data. The en-

vironment must, in particular, facilitate loading, saving, editing, removing, archiving,

searching, and executing models. Furthermore, models evolve in tandem with scien-

tific pursuits. Their sophistication and diversity tend to grow with time. When many

models are involved, users confront difficult system management concerns, such as

the requirement to maintain consistency.

Model evolution necessitates new types of relation configurations (e.g., model to it’s

metamodel and from source to target model of a model transformation) among the

other models. Furthermore, the system should be flexible, allowing it to be easily

adapted to other areas. We acknowledge that simulation experimentation raises the

following concerns:

• logical complexity at multiple levels, such as domain modeling (conceptual

modeling) issues,

• model complexity,

• simulation complexity,

• heterogeneity of the operational environments for simulation execution,

• challenges in experiment design,

• difficulties in managing simulation input and output data, and other scenario-

related data,

• challenges about the presentation of results (including visualization).
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1.2 Contributions and Novelties

The concept of Global Model Management (GMM) [10] is offered to tackle the model

management concerns in our study by facilitating megamodeling [2], i.e., fundamen-

tally managing models and their relationships, for simulation experiments. GMM’s

objective is to manage an immense and diverse set of artifacts generated in modeling-

in-the-large projects that use Model-driven Engineering (MDE) approach. Modeling-

in-the-large refers to working with models, metamodels, and their attributes and re-

lationships on a global scale. A megamodel also supervises and guides the simula-

tion experimentation process in an MDE environment and guides scientists through

simulation-driven tasks.

The goal of this study is to maintain a complete record of the experimentation process

by introducing formally described hypotheses into the experimentation process by

employing MDE techniques. The advantages of having formally described hypothe-

ses are adding additional parametrization to the simulation experiments, enhancing

the assessment of the experiments and testing of the hypotheses. Simultaneously,

we strive to preserve consistency among the hypothesis and experiment models for

sharing and recording the models across research scientists.

It is of interest to study if a generally recognized representation format for simulation

experiments can be enhanced with a formal hypothesis definition. As a consequence,

we offer a simulation experimentation approach based on an extended SED-ML with

the hypothesis, which comprises accepting user-defined hypotheses with models as

input, generating experiments to validate these hypotheses, and then executing and

evaluating them. We essentially make explicit connections between hypotheses and

experiments. We used an adaptive case study on the predictive analysis of hospital

bed availability and congestion analysis on a traffic network as examples. These case

studies also provide an opportunity to demonstrate the adaptability and effectiveness

of SED-ML extended with a formally specified hypothesis in fields other than compu-

tational biology research. A successful model translation from SED-ML to a general

purpose experiment model helps us to demonstrate the language’s adaptability. In the

later chapters, we will demonstrate the case study in details with a proposed hypoth-

esis for the specified health institutions that is valid for predicting capacity fullness
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based on an increase in the number of COVID-19 patients. In the beginning, we cre-

ate experiments by adding hypothesis definitions into an experiment model. Later,

the Kepler Workflow Management System interprets the models and checks them

with a trace checker. Finally, an analytical tool aids users in doing different statistical

analyses.

1.3 The Outline of the Thesis

The remainder of the thesis is structured as follows. In Chapter 2, we present an

overview of the existing works on the specification of simulation experiments, GMM,

and megamodeling as well as a foundational background for the study. Chapter 3

Background starts with presenting Model-driven Engineering methodology with the

Global Model Management concept, Signal Temporal Logic for hypothesis specifi-

cation, Xperimenter and Regression Analysis, respectively. In the following Chap-

ter 4, a hypothesis extension to SED-ML is introduced with the explanation of Hy-

potheses and Statistical Hypothesis Testing and Simulation Experiment Description

Markup Language. Further, in Chapter 5, we explain our megamodel specification

for Hypothesis-driven Experiment Design and explain Hypothesis-driven Experiment

Design Workflow in Chapter 6 with user perspective in Chapter 7. Then, two case

studies are performed for predictive analysis of hospital bed availability in Chapter 8

and congestion analysis on a traffic network in Chapter 9. Finally, Chapter 10 delivers

conclusions and future work directions.
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CHAPTER 2

STATE OF THE ART

Automating and recording experiments are significant for the reusability and repro-

ducibility of scientific research [11]. Combining experimental design, model, and

hypotheses in one process [12] with an appropriate relation improves experimenta-

tion practices. In this sense, there is a growing demand to standardize and autom-

atize simulation experiments and provide accurate and sufficient records of simula-

tion experiments [13]. This progress brought on the experimentation workflows as

a response. Recently, Ruscheinski et al. [14] proposed an artifact-based workflow

to examine the specified requirements and develop methods to accommodate goal-

directed guidance to the user. Another experiment generation procedure is proposed

to guide users through the specification process to hide away from the difficulties

of the execution environment by Wilsdorf et al. [15], where they deploy schemas

for abstraction. Similarly, Lorig et al. [16] and Chakladar et al. [17] have made

seminal contributions to accomplish assistance systems embedding hypotheses into

experiments and providing a process based on formally specified hypotheses. Lorig

et al. [16] also presented a systematized process for simulation studies based on a

formally specified hypothesis. Even though the reproducibility issue is well-covered

by the current assistance systems for the entire life-cycle of an experimentation pro-

cess, still, no experiment generation procedure or framework, to our knowledge, has

considered integrating a broadly embraced standard computer-readable exchange for-

mat such as SED-ML to improve the usability of simulation experiments among ex-

perimenters and software tools in a globally managed megamodel environment. As

well as promoting a standard with SED-ML, our method of megamodeling also con-

tributes to the reusability concept by keeping the integrity of the simulation artifacts,

i.e., any kinds of by-products produced during the development of simulation, in a
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fast-growing environment.

The use of formalisms for experiment design is salient to address the experiment

specification and design, and reproducibility of the experiments [18]. In this sense,

simulation experiment description languages such as Simulation Experiment Specifi-

cation via a Scala Layer (SESSL) [19], have been designed. SESSL is an internal DSL

embedded in Scala, helping to define and generating experiments. An experiment

designed in SESSL consists of model specification, the description of replications,

the stop state for the simulation run, the objective, and the range and optimization

method. An alternative approach to the replicability intricacy is the ns3 Experiment

Description Language (ENDL) [20] that captures experiment scenarios. It defines the

design of an experiment in terms of factors, levels, and constraints that intend to ex-

clude design points that are not required. However, it requires special-purpose tools

for parsing and document validation. Perrone et al. [21] proposed SAFE Language for

Experiment Description (SLED) to overcome NEDL’s shortcomings. SLED utilizes

a JavaScript Object Notation (JSON) format, which makes it much more straightfor-

ward to parse. Furthermore, dedicated markup languages, e.g., SED-ML [8] based on

XML, pure functional programming languages [22], and ontologies have proven to

be competent in specifying and managing simulation experiments. For this study, it is

of interest to achieve the replicability of the experiments developed in diverse DSLs,

ontologies [23], or other formal standards and yet continue being compatible with the

scientific community.

The literature review has proven that numerous studies subsist as frameworks or as-

sistance systems, and languages or formal standards to formulate and execute a sim-

ulation experiment. However, scarce authors have recognized the fact that current

formalisms do not derive experiments incorporating hypotheses to enhance the relia-

bility of the research [16]. This thesis initially fills this gap in research, so far lacking

in the scientific literature. Specifically, we will provide a hypothesis-based experi-

ment design process that takes system specifications, data sets, and the hypothesis

concerning the system as inputs, and automatically generates an executable and vali-

datable experiment as an output. With this experiment design process, we aim to solve

the aforementioned simulation experimentation issues in the Introduction section by

easing the burden of experimentation complexities at multiple levels. Additionally,
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the hypothesis specification is always carried along with the process so that no infor-

mation is lost or wasted.

A problem rarely analysed in the previous workflow and process techniques are the

reproducibility of the current simulation experiments among experimenters and a va-

riety of software tools to provide backward compatibility. The question then becomes

how completely to build a workflow that contains a variety of languages and tools,

and therewithal receive an endorsement in the experimentation community. A possi-

ble solution to the issue at hand is integrating a standard experiment representation

format such as SED-ML to our megamodel solution as a base artifact along with the

other experimentation artifacts to increase the recognition. In this wise, the proposed

process associate every user hypothesis to a generated experiment specification, then

to an automatically produced SED-ML specification with the help of Model-Driven

Development paradigm [24], and following the Model-Driven Architecture of the

Object Management Group [25].

Then, a still-unsolved problem in the literature that becomes apparent is the scalabil-

ity of the system proposed considering the dramatically growing interest in simula-

tion experimentation. Previous studies have emphasized that GMM and megamodels

are efficient to orchestrate a large number of software artifacts belongs to a particu-

lar domain [26]. Therefore, we see potential in GMM and megamodels concepts to

undertake the scalability problem that may arise for the simulation experimentation

process.

A megamodel represents the Model-driven Engineering artifacts, including transfor-

mation composition and an execution specification within a model. A diverse ap-

plication field takes advantage from megamodeling for practical purposes such as a

network functions virtualization (NFV) [27], a way for the agile deployment of net-

work services for telecoms; the safety and security of software systems in critical

domains [28]; an e-government project [29] and a software build system [30]. In

particular, [27] defines a process for the design, deployment, and management of net-

work services, and automating it to achieve benefits in cost reduction, reliability, and

resilience for NFV systems. Nevertheless, to our knowledge, no prior studies have

examined the simulation experiments domain with the guidance of a megamodel, and
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we propose to investigate whether a megamodel can steward numerous hypotheses

and simulation experimentation artifacts in a workflow or not.

Briefly, unlike others, our study collects the standalone experimentation and hypothesis-

based efforts into a megamodel and integrates these systems by model transforma-

tions to achieve a fully supported experimentation process based on SED-ML.
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CHAPTER 3

BACKGROUND

Global Model Management and megamodel principles are utilized to create a cus-

tomized hypothesis-based process design for simulation experiments while building

and implementing our megamodel for the Hypothesis-driven experiment design pro-

cess with a SED-ML extension. We employed and integrated many tools to realize

the concept, including a formalism for hypothesis specification (STL), SED-ML, and

a DSL for experiment design (Xperimenter). In this chapter, we will first describe

the Global Model Management concept, as well as megamodel definition. Later in

Chapters 5 and 6, we will demonstrate how they assist the implementation of our

megamodel and how they aid in the integration of the phases of the experiment de-

sign process as a workflow. Then, we will explain Xperimenter and Signal Temporal

Logic, and their specifications and usages will be shown in Chapters 8 and 9 with two

distinct use cases. Afterward, in this chapter, we will introduce Regression Analysis,

and how we employ a regression model will be given in Chapter 8 as part of our effort

toward simulation data generation based on a regression model. Finally, Kepler Sci-

entific Workflow System is presented as the last topic in this chapter, and its assistance

for specifying our workflow will be given in Chapter 6.

It is worth mentioning that SED-ML and hypotheses and statistical hypotheses test-

ing, as well as their purpose and significance in our work, will be addressed in Chapter

4.

For clarity and better understanding, in the following sections, we will distinguish and

refer to models specifying an experiment as experiment model (e.g., SED-ML and

Xperimenter models), specifications of system under study as system model, linear

or polynomial regression model from which the simulation data sets are generated
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as regression model, and it will be referred to as model to define any type of Model-

driven architecture model.

3.1 Global Model Management

Global Model Management (GMM) intends to assist modeling in the large. In a

model engineering environment, the goal is to manage models, metamodels, and their

attributes and relations. GMM is a sophisticated approach for creating, storing, view-

ing, accessing, modifying, and retaining the information connected with all of these

modeling aspects. GMM [10] was introduced prior to the megamodel idea to give a

model repository for changing numerous models. Other authors have since provided

other modeling repositories, including REMODD [31] and MDEForge [32]. The pri-

mary goal of the research is to develop platforms for storing and acquiring artifacts

with dependencies among the artifacts. However, due to the diversity of the artifacts,

scalability remains one of the issues in model-driven engineering [26, 33, 34].

A model repository is a storage structure that stores model metadata and offers busi-

ness logic that works on existing models. It allows for collaborative model modifica-

tion and versioning. It acts as a bridge between the models and the user’s activities

such as searching, creating, editing/updating, and deleting. It allows you to query the

models and keep track of the changes you’ve made to them.

GMM, as a Model-Driven Engineering environment, provides the following features:

• Large number of heterogeneous artifacts such as models, metamodels, model

transformations, and source code.

• Modeling artifact relationships such as predefined (e.g., conformsTo) and ad

hoc (e.g., weaving models).

• Tools for different purposes such as Model to Model (M2M) transformation

engines, compilers, and workflow engines for simulation experiments.

Basic elements of GMM and their relations are shown in the Figure 3.1 [35]. In

the figure, a megamodel is defined as collection of elements. An Element can be
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Figure 3.1: GMM conceptual framework from

an Entity or a Relation. An Entity can be a Model or a Textual Entity. MDE ap-

proaches delineate three kinds of models: Terminal Models (M1), Metamodels (M2)

and Metametamodels (M3). Terminal models (M1) conform to metamodels and they

are the representations of actual systems. Furthermore, a Terminal Model captures

the characteristics of a system and gives information about it. There exists a confor-

mance relationship between a terminal model and its metamodel. Metamodels (M2)

conform to metametamodels, and define domain-specific concepts. As for Metameta-

models (M3), they are at the top of the conformance hierarchy and provide generic

concepts for metamodel specification. Finally, Textual Entity is a free-format entity

that does not necessarily conform to any metamodel definition.

There are three kinds of Terminal Models: weaving models, transformation mod-

els and megamodels. A megamodel, being a terminal model, conforms to a specific

metamodel: the metamodel of megamodels. Additionally, the model transformation

relationship allows specifying the source and target reference models of a given trans-

formation model.

3.2 Megamodel

A megamodel is still another model that incorporates models and many sorts of rela-

tionships between them. A megamodel is a collection of Model-driven Engineering

artifacts such as model, metamodel, transformation, and any combination of these
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terms, such as transformation model, model transformation, and metamodel for trans-

formation itself. According to [36], a megamodel is a model that contains other mod-

els as components. Stevens et al. further stated their point of view as the collection of

models relevant to a system, and the interactions between them, may itself be consid-

ered as a model, which may demand and repay specific attention as a planned artifact

[30]. They referred to this created item as a megamodel. In a nutshell, a megamodel

is a metadata repository that holds exact representations of models and their relation-

ships.

Users of the Megamodel repository can do a variety of operations, including search-

ing for a model, registering newly produced artifacts, batch processing, and merging

model pieces to extract data. When complicated criteria are involved, finding a model

is a more difficult process than other tasks. After retrieving the models by search-

ing, users may choose to analyze them by extracting and merging certain of their

parts. The number of metamodels used by a transformation, or the number of models

engaged in model weaving, are examples of metrics that may be acquired from the

model repository.

3.3 Xperimenter for Simulation Experiments

Xperimenter is a DSL for simulation experiment design [37]. The DSL has three

main objectives:

1. to serve as a platform for describing simulation experiments.

2. by linking parts of an experiment specification to higher-level abstractions, to

manage simulation experiment variability (features).

3. to perform a simulation on a target platform, such as a scientific workflow man-

agement system.

Figure 3.2 shows a simplified metamodel definition of Xperimenter to provide a con-

ceptual understanding of the components of a simulation experiment as well as the

relationships between them.
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• Experiment: The attributes of this class include information related to an ex-

periment, such as the experiment name, date, and description. It may also

include other information about the experiment, such as the cost of the exper-

iment and the name of the investigator. The fundamental components of an

experiment are the simulation model, the objective, the experiment runs, the

design, the design matrix, statistical analysis, and visualization tools.

• SimulationModel: It’s a crucial component of the simulation experiment. Iden-

tifying the experimental unit that delivers sample data is the first phase of the

entire procedure in traditional experiments. In simulation experiments, on the

other hand, the simulation model is the major source of data.

• Objective: The experiment’s goal is defined by the class. The sort of experi-

ment and the number of runs necessary to meet the experiment’s aims are in-

fluenced by the objective.

• Run: Each run has a beginning and an end time. The number of experiment

runs is determined by the progress of the experiment.

• Design and DesignMatrix: The experiment’s structural component is main-

tained by the design class. The experimental structure is defined by the answers,

factors, factor levels, and values, which are the mappings of the variables given

by the user. The design determines a design matrix, which specifies the actual

experimental runs, or the combination of factor values being investigated. Each

row of the matrix corresponds to a factor level combination, and the execution

fills the cells for the replies while the experiment is running.

• StatAnalysis: The response values and even the list of important factors are

valuable in and of themselves, but without additional analysis, they are only of

limited utility to an experimental. As a result, a statistical examination of this

data can yield a plethora of helpful information and knowledge about the im-

pact of various factors on response patterns. Hypothesis testing and confidence

intervals are included in Xperimenter.

• Visualization: This fragment of the model denotes the method of visual repre-

sentation of the analyses. Variable (Response and Factor): Variables are distin-

guished by their names and types. The metamodel currently supports four types
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Figure 3.2: Simulation Experiment Domain Model

of variables (Integer, Float, Boolean, and String). Responses and factors are

two separate types of variables, with responses representing the experiment’s

output values and factors representing the independent variables. Diversifying

these factor values and documenting the results is an experiment. Each fac-

tor can have numerous levels (treatments), each having a one-to-one mapping

between the factor level and the factor value. Each experimental run creates

response values with a set of input parameters, and the simulation model con-

sumes factor values. The factor values for that run are formed by the input

parameters, and the inclusion of these values creates a factor-level combina-

tion. Each of the factor-level combination values matches a row of the design

matrix, and the design matrix records the response values.

• SamplingInstance: An aggregate of a variable and its actual value is a sample

instance. It is either a model input (factor variable) or a model output (output

variable) (response variable). The sample instances can also be used in a design

matrix.
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3.4 Signal Temporal Logic

Signal temporal logic (STL) is a formalism that extends the linear temporal logic [38],

and it is a system of rules and symbolism for representing real-valued signals [39].

An STL formula is composed of the Boolean and temporal operators and predicates

in the form of linear inequalities. There are several practical usages such as runtime

verification [40], and analysis of time series data [41]. In this study, we focus on the

past time fragment of STL called ptSTL, where only the past time temporal operators

are allowed, to specify our hypotheses with a formal method as user input. Hence,

the user is fully responsible from the syntax of the hypothesis specification.

3.4.1 Past Time Signal Temporal Logic

In our opinion, ptSTL has the potential to represent the dynamic simulation models

[42], where the state variable changes with respect to time (e.g., a car moving through

a road). Thus, we made use of ptSTL formulas to correspond to the time course sim-

ulation experiments, defined in SED-ML for the continuous time systems. A ptSTL

formula is defined with the following grammar in Equation 3.1 [3]:

φ = T|xi ∼ c|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1S[a,b]φ2|P[a,b]φ|A[a,b]φ (3.1)

According to Ergürtuna and Göl, in the grammar, a signal variable is represented

by xi, where ∼ ∈ {<,>} and c is a constant. The letter T represents the Boolean

constant true. The standard Boolean operators are represented by ¬, ∧ and ∨. Also,

the temporal operators with time interval [a, b] are represented with S[a,b] (since),

P[a,b] (previously), and A[a,b] (always). Finally, the semantics of a ptSTL formula is

defined over a signal for a given time interval.

For example, consider the ptSTL formula in Equation 3.2:

P[0,2](x0) > 10, S[0,10](x1) < 30 (3.2)

The specification states that within the last 10 seconds, x1 goes under 30, and since

then, within every two seconds, x0 goes above 10.
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3.5 Regression Analysis

Regression analysis is a predictive modelling technique which investigates the rela-

tionship between dependent and independent variables. This technique is commonly

used for finding cause- effect relationship between the variables. Although the ear-

liest form of regression was published by Legendre in 1805 and by Gauss in 1809,

regression methods still continue to be an area of active research. Therefore, many

techniques for carrying out regression analysis have been developed. However, we

will only examine Linear and Polynomial Regressions. Before explaining the Regres-

sion methods, it is important to explain surrogate modeling and how it is related to

Regression Analysis. Surrogate models are constructed by using a data-driven ap-

proach where only input-output behavior of the simulation is assumed to be known.

Limited number of carefully chosen data points are used for modeling the response

of the simulation. In this context, Regression Analysis is one of the example of sur-

rogate modeling where available data is utilized to model the relationship among the

variables. We utilize Linear and Polynomial Regression, later to be explained, as our

model to generate data for our system under study.

3.5.1 Linear Regression

Linear regression attempts to model the relationship between two variables by fitting

a linear equation to observed data. One variable is considered to be an explanatory

variable, and the other is considered to be a dependent variable. A linear regression

line has an equation of the form

Y = a+ bX

where X is the explanatory variable and Y is the dependent variable.

3.5.2 Polynomial Regression

Polynomial Regression is a form of linear regression in which the relationship be-

tween the independent variable x and the dependent variable y is modelled as an nth
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degree polynomial. The equation of the form

Y = a0 + a1X + a2X2 + ...+ anXn

represents polynomial regression.

3.6 Kepler Scientific Workflow System

A scientific workflow involves a series of structured computations or data manipula-

tion steps that arise in scientific problem-solving. Similarly, simulation experiments

are designed step by step in a computer environment to show that proposed theories

are supported or not. The workflow systems mostly support graphical user interfaces

to combine different technologies with efficient methods to increase the efficiency of

the scientists. There are many examples of scientific workflow management systems.

Kepler [43] is one of the software platforms for designing and implementing scientific

workflows which we opted to use to design and realize our workflow. The tool pro-

vides processing and monitoring data, provenance information, and high-speed data

movement. The system defines workflows as directed graphs where the nodes rep-

resent discrete computational components, and data and results can flow through the

edges. Kepler defines nodes as Actors and edges as Channels. The scientific work-

flows model the flow of data from one Actor to another to achieve a goal. The tool

provides a graphical user interface, a runtime engine, and a distributed computing

option.
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CHAPTER 4

A HYPOTHESIS EXTENSION TO SED-ML

One of the visions of this thesis is to address the issue of experiments having a lack

of hypothesis specification and how the addition of such information can increase the

credibility of scientific research. Having this purpose in mind, we believe that adding

a hypothesis specification to a widely used and acknowledged simulation specifica-

tion language, i.e., SED-ML, will significantly improve the experimentation process.

Therefore, we explore the idea in this chapter by explaining SED-ML, hypotheses,

and statistical hypothesis testing concepts first then, the chapter continues on how

these concepts are incorporated into SED-ML as a hypothesis extension.

4.1 Simulation Experiment Description Markup Language

The Simulation Experiment Description Markup Language (SED-ML) [8] is an XML-

based standard for expressing simulation descriptions on computer models of biolog-

ical systems. Its goal is to save data from a simulation experiment performed on one

or more models with a specific set of inputs. As the number of computational mod-

els, their size, and complexity continue to grow at an alarming rate, the necessity to

improve on prior research by reusing models becomes increasingly apparent. Sur-

prisingly, multiple initiatives to standardize the representation of computer models in

different areas of biology raise the demand for model interchange and reuse. SED-

ML intends to solve this need by providing reusable and inter-changeable models.
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Figure 4.1: The SED-ML Class UML Class Diagram [1]
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The SED-ML format in Figure 4.1 consists of six primary blocks:

1. DataDescription entity specifies the datasets for a simulation experiment.

2. Model entity is a reference for the models used in a simulation experiment, and

the entity defines the procedures that are executed before the simulation (e.g.,

changing the value of an observable). Each instance of the Model class has a

unique and mandatory id.

3. Simulation entity assists in the execution of the defined algorithm(s).

4. Task entity serves for a single simulation at a time. An experiment description

can have as many tasks as required. The tasks do not require a specification for

ordering.

5. DataGenerator entity produces post-processing procedures and applies those

procedures to the simulation result before achieving the output. The post-

processing steps can include mathematical manipulations such as normalization

of data or mean-value calculation.

6. Output entity specifies the simulation output.

A typical SED-ML workflow is shown in Figure 4.2. Firstly, a SED-ML simula-

tion experiment is initialized by creating a new SED-ML file. Then, models of the

simulation are specified and saved into the created SED-ML file. Afterwards, sim-

ulation experiment setups are specified and saved into the same file. For assigning

a setup to a number of models in the experiments, tasks are defined and recorded.

After simulation is executed, outputs are obtained according to specified tasks and

performed simulation experiment. The output is also added to the SED-ML file and

whole simulation experiment is preserved in the file.
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Figure 4.2: The process of defining a simulation experiment in SED-ML [1]

4.2 Hypotheses and Statistical Hypothesis Testing

A hypothesis is a formal assertion about the status of a natural population that presup-

poses relationships between variables related to a topic of study [44, 45]. In statistics,

hypotheses are tested supposing that the probabilities are distributed over the values

of the variables from the observed data models, [46], and the hypothesis testing in-

volves two statistical hypotheses: null (H0) and alternative (H1) hypotheses, [47]. In

general, a null hypothesis is a hypothesis to be tested, whereas an alternative hypoth-

esis is an alternative to the null hypothesis that is supported if the null hypothesis is

not plausible. Following the definition of the hypotheses, a formal hypothesis testing

technique is used to evaluate whether to reject a null hypothesis. Hypothesis testing

can result in two sorts of errors: Type I Error and Type II Error.

• Type I Error occurs if a true null hypothesis is rejected. The probability of

making this error is defined with a significance level [48].

• Type II Error occurs if the researchers fail to reject a false null hypothesis.

There are several sorts of statistical tests, and many aspects influence their selection,

such as the quantity and level of data, or the statistics used in the study [49]. How-

ever, in the limitations of this study, we merely extended the SED-ML with null and

alternative hypothesis specifications. We recognize that additional effort is required

to expand our hypothesis definition with more statistical testing characteristics, such

as significance level.

24



4.3 Metamodel for the Extended SED-ML

For the purpose of extending the SED-ML with a hypothesis, a new block for speci-

fying hypotheses called Hypothesis, is appended to the SED-ML specification. With

the added hypothesis specification, the number of SED-ML primary blocks given in

Section 4.1 increased to seven. Beside representing features of a hypothesis, our

hypothesis specification also includes additional properties to conduct a statistical

hypothesis test.

SED-ML with hypotheses extension serves as the intermediate experiment model in

this work for our model transformations, notably the SED-ML to Xperimenter model

transformation. The benefit of having an intermediate experiment model is that the

approach improves the dependability of the generated models by allowing replication

and validation of the intermediate model itself. In addition, the intermediate model is

essential for capturing the characteristics of the experiments such as model, design,

and, now hypothesis of an experiment.

Figure 4.3: Hypothesis Extension for SED-ML Metamodel

Figure 4.3 displays a simplified metamodel description of the statistical hypothesis

extension for the SED-ML. The complete metamodel specification including all the

primary blocks of SED-ML can be found in Appendix A. The entity Hypothesis

which is the main class in the diagram consists of either a single hypothesis or com-

posite hypotheses with a relationship between them. The composite hypotheses en-

ables the statistical hypothesis testing by including the both null and alternative hy-

potheses.
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The Hypothesis block in SED-ML consists of one or more conditions with nume-

rious expressions representing the STL equations and the expression relations are

indicated with logical operators, e.g., and, or. Notably, each listOfExpressions block

can include several expressions with multiple operators and a temporalOperator. In

addition, each condition can have a single temporalOperator. A temporalOperator

states T, P, S, and A abbreviations within a time interval, e.g., P[1, 1]. The details of

the temporal operators can be found in the Section 3.4.1. Also, the listOfRelations

indicates the relations among the hypotheses. The relations between the hypothe-

ses are shown with a relation. For example, if there is a single null hypothesis with

multiple conditions that lead to the hypothesis expression, then, EXPLAIN relation is

used . Or, if a null hypothesis is going to be tested with an alternate hypothesis, then

CONTRADICT realtion is used. Finally, a modelReference associates the expressions

of the hypothesis to the model block of SED-ML.

Our metamodel specification for SED-ML extended with hypothesis specification is

open to extension with more features from the hypothesis specification and additional

statistical hypothesis testing techniques. However, we concluded that the given spec-

ification is sufficient to perform our case studies. To conclude, Chapters 8 and 9

for case studies include the realization of SED-ML models, including the hypothesis

entity Hypothesis.
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CHAPTER 5

A MEGAMODEL FOR HYPOTHESIS-DRIVEN EXPERIMENT DESIGN

Experiments are being done on computers to avoid the danger, or perhaps the prac-

tical impossibility, of performing experiments in the actual world, thanks to recent

advances in computational science and engineering, modeling, and simulation tech-

nologies. In silico experiments are a type of such experiment. To explain briefly,

simulation experiments often take less time, money, and effort. Therefore, experi-

mental scientists and engineers frequently employ simulation experiments and there

are an increasing number of simulation experiment initiatives, such as myExperiment

[50] and Experiment [51], which are basically social websites enabling academics to

share scientific procedures. The development of numerous types of simulation ex-

periment models is a part of these programs. However, in order to be sustainable

and maintainable, these models require a supportive environment that is simple to

use by non-programmers. As models evolve in tandem with scientific research, over

time, their intelligence and diversity tend to grow. Users are confronted with seri-

ous system management challenges when a large number of models are involved,

including the necessity to maintain consistency. During model evolution, new types

of model relationships can be configured. The system should also be easily adaptable

to new areas and abstract away the simulation experimentation complexities intro-

duced in Chapter 1. The environment’s experiment models should be available and

manipulable (e.g., loading, saving, editing, deleting, searching, and running models).

Global Model Management (GMM) is an appropriate idea which we study for this

challenge in this regard. GMM seeks to handle a wide and diverse set of artifacts cre-

ated in modeling-in-the-large (globally dealing with models, metamodels, and their

attributes and relations [52] efforts in Model Driven Engineering projects (MDE).
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Figure 5.1: Overview of Megamodel for Simulation Experiments

One of the goals of this thesis is to give a design approach for experimental scien-

tists to follow when constructing an MDE-based ecosystem. The GMM idea guides

us to the administration of such a complicated system in this direction. As a result,

we created a megamodel that encapsulates the modeling artifacts of scientific exper-

imentation methodologies, with the necessary groundwork necessitating the creation

of a metamodel for simulation experiment megamodels. The advantage of adopting a

megamodel is that conforming megamodels can be developed and expanded in time

by experimental scientists for their specific studies. The megamodel is known as

GMM4SE [2], which stands for Global Model Management for Simulation Experi-

ments. Metamodels, transformations, and relations between metamodels and model

transformations are all supported forms of modeling artifacts in GMM4SE. The ar-

tifacts represent data, transformation, or model relationship (e.g., the dependency

between the source and target models of model transformation) for a certain meg-

amodel, and the user interacts with them as a coherent unit. The megamodel adhering

to the GMM4SE metamodel is depicted simply in Figure 5.1. The workspace in

Figure 5.1 refers to the model workspace, which structurally contains the modeling

artifacts (e.g., a metamodel on top of multiple models).

Since our goal is to achieve a Hypothesis-driven Experiment Design process which

will be explained in Chapter 6 in detail, we incorporated frameworks, DSLs, and a

workflow engine that are serving for the experimentation domain into the megamodel.
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Our megamodel, as proof of concept, includes a model-based approach that includes

three types of modeling artifacts:

1. A metamodel for the megamodel that captures the specifics and dependencies

of the modeling product.

2. Metamodels and models of the languages for experiment specification (e.g.,

STL, Xperimenter for Simulation Experiments, SED-ML),

3. Metamodels and models of the workflow management engines for experiment

design, capturing the steps for creating, executing, and analyzing the experi-

ments (e.g., Kepler Workflow Management System).

5.0.1 Construction of GMM4SE Megamodel for Simulation Experiments

The GMM4SE megamodel requires three main components in order to provide the

aforementioned utilities:

1. A workspace for storing the modeling artifacts,

2. A metamodel specification for GMM4SE,

3. Model interfaces for user operations such as model loading and model query-

ing.

Figure 5.2 depicts the components of the GMM4SE megamodel and the available user

operations. The first component of the GMM4SE megamodel is merely a directory

on a hard drive. The metamodels, models, and model transformations artifacts are

all separately located on the hard drive. The second component of the GMM4SE

megamodel is already explained in the previous section of this chapter. Therefore,

we find it more useful to focus on the last component: model interfaces of GMM4SE

megamodel. The model interfaces component seeks to provide a separate layer to

load, edit and delete models, query the available models, create links among them

and apply model transformation from/to available models. Also, the model interfaces

layer aims to separate the megamodel from user interfaces. This separation leads to a

flexible and reusable model management environment.
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Figure 5.2: Megamodel Structure including user operations

5.0.2 Case Study: Quadcopter

A quadcopter experiment [2] is modelled with Xperimenter to clearly demonstrate

how the megamodel interfaces functions. We consider that a multi-rotor helicopter

managed by a flight control system serves well for this purpose. In that sense, a multi-

rotor helicopter is a quadcopter with four rotors that lifts and propels the helicopter.

The quadcopter usually has a quadcopter flight control system, and the system is a

worthy illustration of how a Proportional-Integral-Derivative (PID) controller modi-

fies operational variables to maintain an output variable at a given set-points. How-

ever, it might be risky and costly to verify the quadcopter controller through genuine

test flights. Thus, we must create a practical method for validating a controller. PID

control, as its name implies, uses three coefficients: proportional, integral, and deriva-

tive (Kp, Ki, Kd0). These coefficients are altered to get an ideal result.

The quality of a controller relies on the gain values and adjusting these parameters

requires an expert’s instinct and time. We think that Xperimenter DSL promotes this

tuning well. Initially, we need to define a research question: "Which gain parameter

is most important to decide the quality of the controller?" with an assumption that

we have a differential equation model for quadcopter flight and configurable gain

parameters. The Xperimenter model in Figure 5.3 describes a full factorial design for

this particular experiment.
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Figure 5.3: Quadcopter Experiment model [2]

As an example of what the Xperimenter model resembles in our workspace, the Quad-

copter Xperimenter model in Figure 5.3 describing the design, simulation, and anal-

ysis of the experiment is given. There are four variables, called Ki, Kp, Kd and AV,

in order. The experiment design is named as CompMachineIntExpDesign and the

selected design style is FullFactorial that allows for estimation of the main effects

and interactions of the aforementioned four variables. The model has a simulation

element called QuadcopterSim that is operated on the variables Ki, Kp, Kd and AV.

The model file and model type are also specified in the simulation element. Besides,

the variables are distinguished as either inports or outports in the simulation. In this

regard, an inport is a link to pull data from the outside of the simulation, and an out-

port is a link to push data to the outside. In the end, an Anova Analysis takes place

and the Anova service is accessible from the given URL.

We designed a case study where only two Xperimenter models are used for the sake

of simplicity. The models have similar specifications where the variables Ki, Kp, Kd

and AV vary. The variables for the Xperimenter models are depicted in Table 5.1.
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Table 5.1: Quadcopter Models Input Variables [2]

name lowValue highValue

Quadcopter 1

Variables

Ki 3 6

Kd 5 9

Kp 6 8

Quadcopter 2

Variables

Ki 2 7

Kd 3 5

Kp 1 8

Figure 5.4: Xperimenter model validation result [2]

The case study is based on a query where the lowest and highest values of the model

input variables remain between a limit. To realize such a query, we made a deliberate

chose for using Xtend language [53]. We found the Xtend language convenient as our

metamodel specifications are created with Eclipse Modeling Framework [54]. In that

sense, Xtend language provides an interface to register the Xperimenter metamodel,

and the Xperimenter models are loaded as resource sets. From these resource sets, the

content of the models becomes reachable as Xperimenter components (e.g., experi-

ment, simulation, and design). In our particular query example, we perform a query

where the input variables of the models have the lowest value that is bigger than 2

and the highest value that is smaller than 8 (i.e., lowValue > 2 and highValue < 8).

Finally, the query result is achieved in Figure 5.4 and the query implementation by

using Xtend language can be found in B.
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CHAPTER 6

A HYPOTHESIS-DRIVEN EXPERIMENT DESIGN WORKFLOW

The proposed workflow for the hypothesis-based simulation experiments consists of

three phases: pre-execution (i.e., input preparation), execution and post-execution.

The main components considered as part of the workflow are the execution and the

post-execution steps, and they are only triggered after taking the appropriate user

inputs. During the pre-execution phase, the user prepares the input to translate the

system under study, data sets that comply to a regression model, and a hypothesis to

understand the system behavior. User inputs are limited to the megamodel registered

members (e.g., STL, SED-ML and Xperimenter); however not limited in the sense of

extendability. For example, even though only STL exists as the registered hypothesis

specification formalism, the options can be extended with other formalisms and their

transformations as an artifact, later. Likewise, we have not a single, but two different

experiment specification languages exist in our megamodel (i.e., SED-ML and Xper-

imenter) and can be extended with more languages. Hence a user is also capable of

extending the megamodel with desired hypothesis formalisms and experiment models

as long as providing their metamodel and model transformations.

After completing the pre-execution phase, hypothesis-driven experiment design work-

flow takes place and initiates the execution phase including the model transforma-

tions. The GMM4SE megamodel with artifacts is employed as the main actor of the

workflow in order to find the relations and the model transformations between the hy-

pothesis and experiment models. In this sense, the first goal of the execution phase is

generating an executable experiment model from the hypothesis and then, transform-

ing the experiment model into different formalisms. The second and main goal of the

phase is to execute the experiment and achieve an output. Note that the orchestration

33



Figure 6.1: The workflow for Hypothesis-driven Experiment Design process

of the tasks is fulfilled by a scientific workflow management system (i.e., Kepler).

The final phase of the workflow (i.e., post-execution) begins after executing the ex-

periment and achieving a throughput. The throughput of the experiment indicates if

the hypothesis is valid or not. The tasks are not limited to revealing the result, though.

A trace analysis technique is used to verify the hypothesis specification and to find if

any violations exist. Then, an optional statistical analysis tool is provided to achieve

a full flow of the scientific experimentation process. The post-execution phase is also

governed by the scientific workflow management system (i.e., Kepler).

Figure 6.1 depicts the user operations and the workflow as two separate blocks yet

connected and sequential blocks, respectively. In this sense, pre-execution is rep-

resented as the user operations whereas the execution and post-execution steps are

represented as the workflow.

The steps of the user operations in the workflow are explained as follows:

1. For the system under study, the user constructs a system model and collects/-

generates data sets for the described system. This system model includes input

and output variables including their limits and intervals, as well as a tracing

formula for marking the model’s time traces for the specified hypothesis. The

input variables’ values should be included in the data sets. Chapter 8 contains

more information on the system specification and the aptitudes of each module.

2. The user specifies a hypothesis for a system under study (e.g., hospital bed

availability prediction), in a formally defined hypothesis language (e.g., STL
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specification in Section 3.4.1).

Our process for Hypothesis-driven Experiment Design starts after the user completes

the system and hypothesis specification. The workflow coordinates the model trans-

formation to generate an experiment from the supplied hypothesis, as well as the

execution, validation, and analysis of the generated experiment step by step.

Our workflow for Hypothesis-driven Experiment Design, defined as a Kepler work-

flow, is given in Figure 6.2. The figure shows the same experiment execution process

in Figure 6.1 as represented in Kepler scientific workflow system. The primary com-

ponents in the figure that carry out the process are described as follows:

1. Hypothesis 2 Experiment Transformator: is in charge of converting a formal

language into a specification for an experiment (specifically, from ptSTL to

Xperimenter model transformation, and SED-ML). See Appendix C and D for

the code specification.

2. Experiment Executor: converts the experiment specification into an executable,

runs the executable experiment, and returns the throughputs (specifically, from

Xperimenter to Kepler Workflow Management System). See Appendix E for

the code specification.

3. STL Trace Checker: validates if the experiment’s result corresponds to the

user-defined hypothesis, and locates non-fitting time traces. Further details re-

garding the STL Trace Checker can be found in [3].

4. Analysis Tool Executor: provides statistical analysis techniques to the user,

optionally. See Appendix F for the code specification.

6.0.3 Construction of Hypothesis-driven Simulation Experiment Workflow

Hypothesis-driven Simulation Experiment Workflow is a composition of consecu-

tively connected several distinct modules via the Kepler Workflow Management Sys-

tem. The modules are independently implemented by using Python language. How-

ever, the modules are sequentially executed via Kepler executor actors in a workflow.
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Figure 6.2: The Kepler workflow for hypothesis-based experiment design

As for the execution of the workflow, it is controlled by a director. In our workflow,

the actors are instructed via Synchronous Dataflow (SDF) Director that executes a

single actor at a time with one thread of execution [43]. The reason for employing

the SDF Director rather than the other directors is that the SDF Director can become

very efficient and does not cause overhead when system resources are in use. This

efficiency is provided by precalculating the schedule for actor execution.

In our workflow, each executor actor acquires a constant command (e.g., Experiment

Transformator Command and Experiment Starter Command in Figure 6.2) to locate

and trigger the module with the Java and Python executables. After each sequential

execution, the module displays its output visually and then triggers the next module

to execute. The following shows an example of a command:

python.exe "ExperimentRunnerForHospital.py" "φ4 = P[1,1](h1next < 3048)"

The command starts with a parameter that is the related executable of the preferred

language, i.e., Python in our case. Then, the command continues with parameter

that refers to a file directory where the code implementation resides. Finally, the last

parameter of the command is an optionally passed argument to the code. Another

way of passing an argument to the code is to use the input interface of the executor

actor. An input can be passed to the workflow by the workflow user to increase

user interaction. In our workflow, the hypothesis specification is received as an input
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argument to generate the SED-ML model.
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CHAPTER 7

HYPOTHESIS-DRIVEN EXPERIMENT DESIGN WORKFLOW FROM

USER PERSPECTIVE

This chapter aims to clarify the proposed hypothesis-based simulation experiments

workflow from the user perspective. Each step that the user is responsible for and the

meaning of the outputs from each module in the workflow will be scrutinized.

7.1 Pre-execution: User Operations

During the pre-execution phase, the user prepares three different inputs for the work-

flow:

1. Dataset generation from an authentic data

2. Hypothesis specification

3. System specification

7.1.0.1 Dataset generation from an authentic data

The user is expected to find authentic data and generate a dataset from it (e.g., daily

COVID-19 patients in Turkey [56]). The dataset generation should be based on a

regression model. The used regression model is referenced in the simulation models

in our workflow (i.e., SED-ML and Xperimenter). Later, during the execution of the

simulation, the datasets are validated for their compliance with the regression model.
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In order to provide an example, following regression model from our case study re-

garding the hospital bed availability is given:

Y = b1X1 + 0.5X0 + c

where X1 is the number of patients for the time step that represents the share of

COVID-19 of the city of Ankara, b1 is the ratio of the hospital capacity to total ca-

pacity of the all hospitals in Ankara and X0 is the capacity of the hospital. Finally,

c represents the random number which is limited to the daily patients from neighbor

cities.

The defined regression model is realized by Python language in the Listing 7.1.0.1 for

a hospital (i.e., h1). In the code, first, the authentic data for daily COVID-19 patients

in Turkey and hospital capacities are read into the data frames. Then, based on the

regression formula, the dependent value y is calculated. Finally, the defined variables

fit into the regression model.

1 import numpy

2 import random

3 import pandas as pd

4

5 df_patients = pd.read_excel(r'cases_turkey.xlsx')

6 df_patients.columns = ["p"]

7

8 df_capacity = pd.read_excel(r'capacity.xlsx')

9 df_capacity.columns = ["h0", "h1", "h2", "h3", "h4", "h5"]

10 sum_of_capacity = df_capacity.sum()

11

12 for i in range(0, len(df_patients["p"])):

13 x1 = int(int(df_patients["p"][i])) #COVID-19 patient count

14 b1 = df_capacity["h1"] / sum_of_capacity #ratio of hospital capacity

15 c = random.randint(0, 80) #transferred patients

16

17 # y = b1 * x_1 + 0.5 * x_0 + c

18 y = b1 * x1 + 0.5 * df_capacity["h1"] + c

19 mymodel = numpy.poly1d(numpy.polyfit(x1, y, 3))

Please, refer to Section 8.1 to understand further how the dataset is utilized in our

case study for hospital bed availability.
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Figure 7.1: Analysis Tool user interface

Figure 7.2: An example formula to execute for analysis

7.1.0.2 Hypothesis specification

The user specifies a hypothesis for a system under study (e.g., hospital bed availabil-

ity prediction), in a formally defined hypothesis language (e.g., STL specification in

Section 3.4.1). In order to define and test the STL formula, the user can get bene-

fit from our Analysis Tool provided via our Kepler workflow. The tool accepts STL

formula and is able to execute the formula on the generated dataset.

The interface for the Analysis Tool is given in Figure 7.1. The user should select the

query option to start writing their formula.

As an example, we will try to analyze the formula in Figure 7.2 with the generated

dataset. According to the formula, time traces that their previous time traces have

variable 1 bigger than 1500, variable 6 bigger than 3000 and variable 7 bigger than

50 are found.

P [1, 1](v1 > 1500&v6 > 3000&v7 > 50)

When the formula is executed, a graphic is depicted as an output. The output of the
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Figure 7.3: The output of the formula

example formula is given in Figure 7.3. According to the graph, the values of the

variables v1, v6, and v7 are depicted on the time trace that they reside.

7.1.0.3 System specification

The user should provide a system specification where factors of the experiment, sig-

nals in the ptSTL formula, limit of the factors and the null hypothesis are defined.

The null hypothesis is not mandatory. However, if it is given by the user, then the

hypothesis that the user specified is considered as null hypothesis.

The user specification is formatted as followings:

1. An integer array for the number of factors of the experiments (e.g.,[0, 1, 2, 3,

4, 5, 6, 7]),

2. An integer array for the signals (e.g., [6, 7]),

3. A map for the limits of the factors (e.g., ’0’: [60, 117]),

4. A formula for an alternative hypothesis (e.g., h1 < 3048)
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Figure 7.4: The output of experiment execution showing partial SED-ML content

Please, refer to Section 8.1 to understand how the dataset is utilized in our case study

for hospital bed availability.

7.2 Execution & Post-execution of the Workflow

When the user completes the input preparation, then the workflow takes place. Firstly,

experiment models are generated as files (e.g., XML for SED-ML and XPR for Xper-

imenter) and also shown as an output to the user by Kepler workflow in Figure 7.4.

Similarly, the output of the experiment is also shown as an output where the count of

hypothesis supporting and non-supporting time traces are listed including those time

traces. An example output of an experiment result can be found in Figure 8.2. After-

wards, the Analysis Tool aids to further analyze the result, re-evaluate the hypothesis

or the STL conditions.

Please, refer to Sections 8.1.2 and 8.3 to understand how the workflow behaves in our

case study for hospital bed availability.
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CHAPTER 8

CASE STUDY 1: A PREDICTIVE ANALYSIS OF HOSPITAL BED

AVAILABILITY DURING COVID-19 PANDEMIC

In order to gain a deeper understanding of a megamodel and the process for the

hypothesis-driven experiment design [2], we opted for starting with a current study

domain to degrade the complexity of the proposed system. We consider that a hos-

pital bed availability prediction system serves excellent for this purpose based on its

importance, especially during COVID-19 pandemic. A rise in the number of COVID-

19 patients burdens hospitals and it is also a valid indicator of the necessity of taking

further measures against the pandemic.

8.1 Hospital Bed Availability

The Hospital Bed Availability study is modeled based on the hospitals in the capital

city of Turkey, Ankara dedicated to serving the COVID-19 patients in Figure 8.1.

There exist 6 hospitals and these hospitals are intentionally selected as they serve

the most of the patients in Ankara. Authorities state that depending on the daily

situation and their capacity, the hospitals transfer patients to the closest hospitals. For

example, if the Bilkent Sehir Hastanesi gets filled up, the closest hospitals Ankara

Gazi Universitesi Hastanesi and Sehit Sait Erturk Devlet Hastanesi will start to admit

more patients than average, depending on the increase of daily COVID-19 patients.

Thus, keeping the accurate number of occupancy and predicting the possible increase

in the number of patients becomes quite important for the healthcare professionals.

As we propose to study predictive analysis on hospital bed availability, we stipu-

lated two main required data: first is the bed capacity of each hospital, second is the
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Figure 8.1: Selected hospitals with Covid-19 services in Ankara

daily number of hospitalized COVID-19 patients in Turkey. However, as of being the

capital city of Turkey and its location, hospitals in Ankara also admit patients from

other cities due to its hospital capacity. Therefore, a third parameter for the number

of COVID-19 patients from neighbor cities are added to the study. Additionally, a

state vector retains the number of daily bed occupancy of each hospital i, the number

of daily COVID-19 patients j, and the daily number of admitted COVID-19 patients

from the neighbor cities k at a certain state. We denote the daily number of bed

occupancy hi on each hospital i.

The capacity of the hospitals is given in Table 8.1 [55]. The capacity of the hospitals

is 117, 3810, 300, 1150, 115, and 480, respectively. Considering the capacity of the

Bilkent Sehir Hastanesi, the hospital becomes the major center where it should raise

an alert in case of fullness. Finally, a hospital is considered to be over capacity by

having many patients over 80% of the capacity.

8.1.1 Pre-execution: System Specification and Data Collection

The identified hospital bed capacity system owns several specific features and con-

straints (e.g., the number of daily bed occupancy of each hospital and the overall

capacity of the hospitals) defining the self and creating the recognized problem. Ac-
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Table 8.1: Selected hospitals with COVID-19 services in Ankara and their capacities

Number Hospital Name Bed Capacity

h0 Ankara Gazi Universitesi Hastanesi 117

h1 Bilkent Sehir Hastanesi 3810

h2 Diskapi Yildirim Beyazit Egitim ve Arastirma Hastanesi 300

h3 Gulhane education and research hospital 1150

h4 Sehit Sait Erturk Devlet Hastanesi 115

h5 Yeni Sincan Devlet Hastanesi 480

cordingly, those sets of specifications can be beneficial to introduce the system under

investigation to the hypothesis-based experiment design workflow. The followings

describe the fundamental specifications for the system under study. The capacity of

the variables j and k were determined based on the total number of selected hospital

capacities in Ankara multiplied by 10. The multiplication coefficient 10 represents

the percentage of the daily number of hospitalized COVID-19 patients in Turkey, i.e.,

a maximum of 10% [56].

1. An integer array for the number of daily bed occupancy of each hospital, num-

ber of hospitalized COVID-19 patients in Turkey and number of admitted COVID-

19 patients from neighbor cities counts: [0, 1, 2, 3, 4, 5, 6, 7],

2. An integer array for the non-capacity factors that are numbers representing the

number of hospitalized COVID-19 patients in Turkey and number of admitted

COVID-19 patients from neighbor cities counts: [6, 7],

3. A map for all the hospitals with their capacity: ’h0’: [60, 117], ’h1’: [1905,

3810], ’h2’: [150, 300], ’h3’: [575, 1150], ’h4’: [57, 115], ’h5’: [240, 480],

’j’: [’0’, ’59720’], ’k’: [’0’, ’59720’],

4. A formula to trace the non-supporting time traces of the hospitals calculated

with the multiplication of its capacity and the capacity fullness ratio, i.e., 80%

(e.g., h1 < 3048)
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Unfortunately, we found the acquisition of authentic test data difficult as they are

not shared per city by the Turkish authorities. This impediment motivated us toward

data generation alternatives for the prevalent problem domain, i.e., hospital bed avail-

ability during COVID-19. Therefore, for the purpose of this study, a data generation

algorithm using linear regression was employed to create data sets for the hospital bed

availability in Ankara during COVID-19. The algorithm generates data for the daily

number of the occupied beds of each hospital and the transferred number of patients

from the neighboring cities by using the COVID-19 numbers of Turkey shared by the

Republic of Turkey Ministry of Health [57], i.e., number of patients for today. We

assumed that the hospitals had half of their capacity was already occupied by non-

COVID-19 patients, when the pandemic has started. The regression model used for

data generation is

Y = b1X1 + 0.5X0 + c

where X1 is the number of patients for today multiplied by 1/3 that represents the

share of COVID-19 of the city of Ankara, b1 is the ratio of the hospital capacity to

total capacity of the all hospitals in Ankara and X0 is the capacity of the hospital.

Finally, c represents the random number which is limited to the daily patients from

neighbor cities.

The algorithm essentially generates data sets linearly from an initial random number

where the daily number of COVID-19 numbers of Turkey is an coefficient for a pro-

vided number of time traces. The data contains the temporal operator P (previously)

and the time interval [0, 101]. Although valuable for generating lots of data, this

algorithm has the disadvantage of generating relatively small non-supporting data.

The decisions about data generation made upon a requirement that the overall time

traces for a single hospital avoiding the fullness should be as approximate as possible

to the hospital’s fullness measure, i.e., 80%. As a result, we obtained 4 different data

sets, and each data set contains 101 sequential time traces for every hospital and non-

capacity variables that are number of hospitalized COVID-19 patients in Turkey and

number of admitted COVID-19 patients from neighbor cities. We eventually achieved

404 time traces representing the last 14 months of COVID-19, where 62 of the time

traces have hospital h1 with over 80% capacity, i.e., h1 > 3048.
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8.1.2 Pre-execution: Hypotheses about Hospital Bed Availability in Ankara

during COVID-19

Hospital bed availability became one of the major concerns in many countries during

the COVID-19 pandemic. Discovering the conditions causing this fatal problem, at

least in Ankara, before it aggravates is the concern of this case study. Thus, we formu-

lated our concern based on the previously established steps of the scientific process

in the Introduction section, with an appropriate question addressing the problem and

hypotheses targeting to solve the problem. Specifically, the formalized questions as

ptSTL formulas describe the hypotheses.

1. Question: What are the conditions that originate fulness on hospital h1 on the

next day?

2. Conditions: The following conditions, defined according to the formal speci-

fication in Section 3.4.1 originate fullness on hospital h1 on the next day:

φ = φ1 ∨ φ2 ∨ φ3

φ1 = P[1,1]((h1 > 1500) ∧ (j > 3000) ∧ (k > 50))

φ2 = P[1,1]((h1 > 2500) ∧ (j > 3000))

φ3 = P[1,1]((h3 > 900) ∧ (j > 3000) ∧ (k > 50))

Each sub-formula φ1, φ2 and φ3 states a condition that leads to fullness on

hospital h1 on the next day.

• φ1 : on the occasion of more than 1500 patients at hospital h1, the number

of hospitalized COVID-19 patients is more than 3000, and more than 50

patients get transfered to Ankara,

• φ2 : on the occasion of more than 2500 patients at hospital h1 and the

number of hospitalized COVID-19 patients is more than 3000,

• φ3 : on the occasion of more than 900 patients at hospital h3, the number

of hospitalized COVID-19 patients is more than 3000, and more than 50

patients get transfered to Ankara.
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3. Null hypothesis (H0): If one of the condition occurs, then the hospital h1

observes fullness by growing 80% over its capacity where the condition is

h1 > 3048.

4. Alternative hypothesis (H1): If one of the condition occurs, then the hospi-

tal h1 does not observe fullness by growing 80% over its capacity where the

condition is

h1 <= 3048.

We assign our individual hypothesis-based experiment design workflow in Figure 6.2

for the remainder of the steps (4, 5, 6, and 7) of the scientific process. In the following

sections, we explain how the workflow supervises the complete list of experiment

procedures sequentially; specifically, design, execution, validation, and analysis.

8.2 Execution: Hypothesis to Experiment Model Transformations

Following the fulfillment of the user operations for the system under study, Hypothe-

sis 2 Experiment Transformator module, i.e., the primary step in Figure 6.2, initiates

the simulation experiment workflow. Having the system specifications and the hy-

potheses is the compulsory provision to employ the tasks for SED-ML model genera-

tion from system specification and from SED-ML to Xperimenter model transforma-

tion. It is pertinent to remark that generated datasets are only necessary for the later

phases of the workflow, e.g., experiment execution.

The module, an individualized Python script, is solely liable for the experiment model

obtaining in two ways: model generation and model transformation. For this study,

we underline how we interpret these two similar tasks: while we describe the model

transformations as a practice over two or more conventional models serving the same

domain, e.g., DSLs, we contemplate the data generation as another practice between

any custom specification. In light of this, Hypothesis 2 Experiment Transformator

practices the following functions:

1. From user-defined system specification to SED-ML model generation,
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2. From SED-ML to Xperimenter model transformation.

The following sections explain the proposed hypothesis extension to SED-ML along-

side the model generation, and SED-ML to Xperimenter model transformations, se-

quentially.

8.2.1 Hypothesis Extension to SED-ML

We propose a hypothesis extension to SED-ML to attain a solution for the lacking

association issue between an experiment and its hypothesis. The proposed SED-ML

model gracefully interprets the STL semantics into a markup language, i.e., XML.

The followings clarifies how the user-defined system specification and the hypotheses

describe the SED-ML model accordingly with Table 8.2. We set the default initial

values for the SED-ML model generation with the fact that one experiment associated

with a single task and an experiment model can sufficiently prove or refute a list of

hypotheses enclosed to a question.

1. An integer array for the number of daily bed occupancy of each hospital, the

number of hospitalized COVID-19 patients, and admitted COVID-19 patients

from the neighbor cities: transformed into variables in the data generator of a

task,

2. A map for hospital capacities: transformed into variable limits,

3. Hypotheses: transformed into list of hypotheses.

Table 8.2: User-defined specifications to SED-ML Mapping

No System specifications SED-ML

1 hypotheses listOfHypotheses

2 default initial values for a single simulation listOfSimulations

3 default initial values for a single model listOfModels

4 default initial values for a single task listOfTasks

5 system specification listOfDataGenerators
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We presented the extended listOfHypotheses for a single variable part of the gener-

ated SED-ML model in the Listing 8.2.1. A hypothesis in SED-ML consists of an

expression that defines the hypothesis, itself, and three conditions with multiple ex-

pressions, and the expression relations are defined with and for this specific example.

The temporalOperators are P[1, 1] for each condition and expression. And, the rela-

tion entity is used to explain the hypothesis H0 with its conditions for supporting or

non-supporting, as there is a single hypothesis. It is important to note that H1 uses the

same conditions with H0, as the relation between the hypotheses is CONTRADICT.

Finally, H0 has a referenceModel that relates the expressions to an actual model.

1 <listOfHypotheses>

2 <hypothesis metaid="H0">

3 <listOfExpressions>

4 <expression expr="h1 > 3048">

5 <temporalOperator opr="P[1, 1]" />

6 </expression>

7 </listOfExpressions>

8 <listOfConditions>

9 <condition metaid="C1">

10 <temporalOperator opr="P[1, 1]" />

11 <expression expr="h1 > 1500"/>

12 <operator opr="and"/>

13 <expression expr="j > 3000"/>

14 <operator opr="and"/>

15 <expression expr="k > 50"/>

16 </condition>

17 <condition metaid="C2">

18 <temporalOperator opr="P[1, 1]" />

19 <expression expr="h1 > 2500"/>

20 <operator opr="and"/>

21 <expression expr="j > 3000"/>

22 </condition>

23 <condition metaid="C3">

24 <temporalOperator opr="P[1, 1]" />

25 <expression expr="h3 < 900"/>

26 <operator opr="and"/>

27 <expression expr="j > 3000"/>

28 <operator opr="and"/>

29 <expression expr="k > 50"/>

30 </condition>

31 </listOfConditions>

32 <referenceModel model="model"/>

33 </hypothesis>
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34 <hypothesis metaid="H1">

35 <listOfExpressions>

36 <expression expr="h1 <= 3048">

37 <temporalOperator opr="P[1, 1]" />

38 </expression>

39 </listOfExpressions>

40 </hypothesis>

41 <listOfRelations>

42 <relation relation="CONTRADICT">

43 <hypothesis hyp="H0"/>

44 <hypothesis hyp="H1"/>

45 </relation>

46 </listOfRelations>

47 </listOfHypotheses>

48 <listOfModels>

49 <model metaid="model" source="/sourceModel" />

50 </listOfModels>

51

8.2.2 Execution: SED-ML to Xperimenter Model Transformation

The generation of another experiment model alongside the SED-ML is an essential

effort to enrich the megamodel for the experimenters. The intention supporting this

effort is to encourage the experimenters to develop their DSLs serving their particular

needs, introduce them to the megamodel, and find common ground to bestow the

knowledge. With this in mind, we undertook the Xperimenter model transformation

from SED-ML, and achieved the Xperimenter model in the Listing 8.2.2.

We opted to apply model transformation from SED-ML to Xperimenter rather than

the STL to Xperimenter. Because the SED-ML specification represents a formal

model for capturing the essentials of simulation experiments including hypotheses

and this method improves the ability to create traceability to the lower models, i.e.,

Xperimenter.

It is crucial to note that the STL formula defining the hypotheses was given as user

input. In order to keep the originality of the Xperimenter model and as it was not a

primary goal in this research, those inputs were not translated into Xperimenter and

processed by the Python script in Appendix D.
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1 e x p e r i m e n t h o s p i t a l C a p a c i t y

2 desc " p r e d i c t i v e a n a l y s i s on h o s p i t a l bed a v a i l a b i l i t y " ;

3 o b j e c t i v e COMPARATIVE;

4 d e s i g n h o s p i t a l C a p a c i t y D e s i g n ;

5 s i m u l a t i o n h o s p i t a l C a p a c i t y S i m u l a t i o n ;

6 v i s u a l DEFAULT;

7 t a r g e t KEPLER ;

8

9 v a r i a b l e h0 : INTEGER group FACTOR [ 0 , 1 1 7 ] ;

10 v a r i a b l e h1 : INTEGER group FACTOR [ 0 , 3 8 1 0 ] ;

11 v a r i a b l e h2 : INTEGER group FACTOR [ 0 , 3 0 0 ] ;

12 v a r i a b l e h3 : INTEGER group FACTOR [ 0 , 1 1 5 0 ] ;

13 v a r i a b l e h4 : INTEGER group FACTOR [ 0 , 1 1 5 ] ;

14 v a r i a b l e h5 : INTEGER group FACTOR [ 0 , 4 8 0 ] ;

15 v a r i a b l e j : INTEGER group FACTOR [ 0 , 5 9 7 2 0 ] ;

16 v a r i a b l e k : INTEGER group FACTOR [ 0 , 5 9 7 2 0 ] ;

17 d e s i g n h o s p i t a l C a p a c i t y D e s i g n

18 method FULLFACTORIAL ;

19 v a r l i s t h0 h1 h2 h3 h4 h5 j k ;

20

21 s i m u l a t i o n h o s p i t a l C a p a c i t y S i m u l a t i o n

22 m o d e l F i l e / h o s p i t a l D a t a / ;

23 modelType DISCRETEEVENT ;

24 i n p o r t h0 : h0 ;

25 i n p o r t h1 : h1 ;

26 i n p o r t h2 : h2 ;

27 i n p o r t h3 : h3 ;

28 i n p o r t h4 : h4 ;

29 i n p o r t h5 : h5 ;

30 i n p o r t j : j ;

31 i n p o r t k : k ;

32

Listing 8.1: Xperimenter model for the hospital experiment

The model transformation from SED-ML to Xperimenter is a relatively straightfor-

ward duty as both of the SED-ML and Xperimenter models possess many mutual

variables. Table 8.3 summarizes the variable mapping effort from SED-ML to Xper-

imenter. An Xperimenter model starts with an experiment specification containing

a description, an objective, a design, a simulation, an analysis, a visual and a tar-
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get information. The model and simulation variables from SED-ML is equivalent

to the same variables in Xperimenter. Having said that, while the task is represent-

ing the experiment, the dataGenerator and output collectively represents variable in

Xperimenter. And, variable of the task are transformed into varList of design for

Xperimenter.

Table 8.3: SED-ML to Xperimenter Variable Mapping

No SED-ML Xperimenter

1 model model

2 simulation simulation

3 task experiment

4 dataGenerator variable

5 output variable

6 task.variable design.varList

8.3 Experiment Execution

Once achieving the experiment models, the execution phase of the experimentation

process inaugurates the workflow for the execution. The experiment execution mod-

ule, i.e., the second step in Figure 6.2, exclusively consists of a Python script that

takes the generated data sets, the user-defined system specification, and the previ-

ously generated SED-ML model as inputs and determines the time traces that support

and non-support the hypotheses. The script is fundamentally responsible for the fol-

lowing tasks:

1. Interpreting experiment model, i.e., SED-ML specification, to collect the hy-

potheses,

2. Interpreting the data set on the basis of the system specifications,

3. Executing the conditions against the data set to find the hypothesis supporting

and non-supporting time traces.
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The experiment run accumulates throughputs for the number of successful and failing

conditions, the overall number of time traces, the number of skipped data, and finally

prints out the results in Figure 8.2. The screenshot precisely contains the following

information:

1. The number of time traces that successfully support the conditions,

2. The number of the filled h1 traces where previous traces non-supporting the

conditions,

3. The number of time traces that are non-supporting the conditions where the

next trace is not over the capacity (h1 < 3048),

4. The overall number of skipped time traces due to the non-supporting conditions

for the hypotheses,

5. The overall number of traces that the experiment used, excluding the first ten

time traces in each dataset to enhance the quality of the input by eliminating

the initial randomized time traces.

As a result, the number of time traces that successfully support the conditions (62 out

of 66) is sufficient to claim that the hypothesis is proven with a margin less than %10.

8.4 Post-Execution: Experiment Validation

Trace analysis is a useful technique for verifying formal proofs. A trace checker anal-

yses the traces and outlines any violations of the proffered formula. Due to its frugal-

ity and practicality of the method, employing a trace checker for STL specifications

appears to be reasonable in terms of experiment result validation in this study, even

though formal proofing is not in the scope of this dissertation. Taking that into con-

sideration, we employed the STL Trace Checker [3] to validate the experiment output

that we formerly conducted. The trace checker takes the previously stated conditions

for the hospital bed availability analysis for the hospital h1 alongside the generated

datasets and returns the supporting and non-supporting data traces. The output of the

STL Trace Checker appears to tally with our expectations for the number of the traces
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Figure 8.2: Hospital bed availability experiment result including the time traces with

the hospital capacities that supporting the hypothesis

supporting the conditions, i.e., 62, and the number of the traces the non-supporting

the conditions, i.e., 4.

Based on the quantitative comparison of the throughputs from the STL Trace Checker

and the experiment run we conducted, we also observed that the throughputs are

consistent with the analysis reported by us. The compatibility of the analysis results

demonstrates the adequacy of using a trace checker for the validation of formally

specified hypotheses.

8.5 Post-Execution: Experiment Analysis

The final phase of the scientific experimentation process is to evaluate the acquired

throughputs with the help of prevalent analytical methods. These analytical tech-

niques assist in collecting and modeling data in the process of decision making. We,

hence, offer an STL based experiment statistical analysis software, embedded in the

workflow as the final step in the Figure 8.1, that helps the experiment designers in

their endeavour of data analysis. The proposed statistical analysis tool utilizes the

statistical capabilities of the Python programming language.

The tool is capable of applying the following statistical methods on a given dataset:
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1. Supporting or non-supporting an STL formula on a dataset,

2. Applying the following statistical analysis:

(a) Histogram of data sets

(b) Linear regression

(c) Statistical summary

We opted for a humble statistical search to scrutinize the utilized datasets in terms of

the quality aspect, and for the illustration purposes of the offered analytical tool. To

attain this objective, we revisit and expand the formerly exploited hypotheses specifi-

cation with a condition where the hospital h1 has a number of patients less than 80%

of its capacity in the next trace.

φ = (φ1 ∨ φ2 ∨ φ3) ∧ φ4

φ4 = P[1,1](h1next < 3048)

The execution of the analysis produces graphical throughput in Figure 8.3. The

throughput highlights that in every five trace intervals for the aggregated dataset,

there exist two or more traces that non-supporting the hypothesis. Bear in mind that

the graphic depicts the aggregation of the 4 different datasets where each dataset

contains 101 traces. Explained differently, approximately 1 traces in 101 traces non-

supporting the hypothesis, and the analysis outcome is considerably close to our ex-

periment result for the non-supporting cases. The significance of this analysis for the

data quality can be assumed marginal regarding the aim of the study, i.e., having a

complete workflow for the simulation experiment.
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Figure 8.3: Time traces of the hospital capacities that non-supporting the hypothesis
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CHAPTER 9

CASE STUDY 2: CONGESTION ANALYSIS ON A TRAFFIC NETWORK

We selected a simpler second case study to reduce the complexity of the proposed

system. In that sense, we believe that a traffic system is very appropriate for a variety

of analysis and adjustability to other problem fields.

9.0.1 A Traffic Network

The traffic network under study that is modeled as a piecewise affine system [58] is il-

lustrated in Figure 9.1. It consists of 6 links and 2 traffic signals. This network design

is intentionally employed as it contains enough signals (at least two) to investigate

congestion on a single link.

Figure 9.1: Traffic network containing 2 signals and 6 links [3]

As we propose to investigate congestion analysis on a traffic network, we stipulated

two required data: first is the capacity of vehicles on each link, second is a set of

traffic signal values. Additionally, a state vector retains the number of vehicles on
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each link i and the configuration of each signal j at a certain state. We denote the

number of vehicles vi on each link i, and the configuration sj of each signal j.

The signals can be 0 or 1, where si = 0 and si = 1 stating that traffic is allowed

in horizontal direction and vertical direction, respectively. The restraint ensures that

the traffic only flows in either vertical or horizontal direction. The direction of a link

determines the capacity of that link. With this in mind, the capacity of the links on

the horizontal direction is set to 20, whereas the capacity of the links on the vertical

direction is set to 40. In particular, the capacity of links 0, 1 and 2 are set to 40; and

the capacity of links 3, 4 and 5 are set to 20, i.e., vi ∈ [0, 40] for i ∈ 0, 1, 2; and

vi ∈ [0, 20] for i ∈ 3, 4, 5. Finally, the congestion on a link is measured by having

many vehicles over 75% of the capacity.

9.0.1.1 Pre-execution: System Specification and Data Collection

The identified traffic network system owns several specific features and constraints

(e.g., the number of links and signals belong to the traffic network, and the capacity

of the links) defining the self and creating the recognized congestion problem. Ac-

cordingly, those set of specifications can be beneficial to introduce the system under

investigation to the hypothesis-based experiment design workflow. The followings

describe the fundamental specifications for a traffic network.

1. An integer array for all the link and signal counts: [0, 1, 2, 3, 4, 5, 6, 7],

2. An integer array for the numbers representing the signals: [6, 7],

3. A map for all the links with their capacity: ’v2’: [0, 40.0], ’v3’: [0, 20.0], ’v0’:

[0, 40.0], ’v1’: [0, 40.0], ’v6’: [’a’, ’b’], ’v7’: [’a’, ’b’], ’v4’: [0, 20.0], ’v5’:

[0, 20.0],

4. A formula to trace the non-supporting time traces of each link calculated with

the multiplication of its capacity and the congestion ratio, i.e., 75% (e.g., v1 <

30)

A data generation algorithm [3] that simulates a system under study from random

initial states was employed to create data sets for the traffic network for the pur-
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pose of this study. The algorithm essentially builds data sets from random initial

conditions for a provided number of time traces. Although valuable for generating

lots of data, this algorithm has the disadvantage of generating relatively small non-

supporting data. Nevertheless, dismissing up to 10% of the first random data samples

solved the inconvenience straightforwardly.

The decisions about data generation made upon a requirement that the overall time

traces for a single link avoiding the congestion should be as approximate as possible

to the link’s congestion measure, i.e., 75%. As a result, we obtained 20 different data

sets, and each data set contains 100 sequential time traces for every link and signal on

the traffic network. We eventually achieved 2000 time traces, where 456 of the time

traces have link v1 with over 75% capacity, i.e., v1 > 30.

9.0.1.2 Pre-execution: Hypotheses about Traffic Congestion

Traffic congestion typically occurs due to many vehicles, when a volume of traffic

generates demand for space longer than the available link capacity. Discovering the

conditions causing this real-life problem before it aggravates is the concern of this

case study. Thus, we formulated our concern based on the previously established

steps of the scientific process in the Introduction section, with an appropriate question

addressing the problem and hypotheses targeting to solve the problem. Specifically,

the formalized questions as ptSTL formulas describe the hypotheses.

1. Question: What are the conditions that originate congestion on link v1 in the

next time state?

2. Conditions: The following conditions, defined as formal specification [3] orig-

inate congestion on link v1 in the next time state:

φ = φ1 ∨ φ2 ∨ φ3

φ1 = P[1,1]((v
1 > 15) ∧ (s1 > 1) ∧ (s0 > 0))

φ2 = P[1,1]((v
1 > 25) ∧ (s1 > 1))

φ3 = P[1,1]((v
4 < 10) ∧ (s1 > 1) ∧ (s0 > 0))
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Each sub-formula φ1, φ2 and φ3 states a condition that leads to congestion on

link v1 in the next time trace.

• φ1 : on the occasion of more than 15 vehicles on link v1, if s1 blocks link

v1 and s0 allows flow of vehicles from link v0 to link v1,

• φ2 : on the occasion of more than 25 vehicles on link v1, if s1 blocks link

v1,

• φ3 : on the occasion of less than 10 vehicles on link s4, if s1 blocks link

v1 and s0 allows flow of vehicles from link v0 to link v1.

3. Null Hypothesis (H0): If one of the condition occurs, then the link v1 observes

congestion by growing 75% over its capacity where the condition is

v1 > 30.

4. Alternative Hypothesis (H1): If one of the condition occurs, then the link

v1 does not observe congestion by growing 75% over its capacity where the

condition is

v1 <= 30.

We assign our individual hypothesis-based experiment design workflow in Figure 6.2

for the remainder of the steps (4, 5, 6, and 7) of the scientific process. In the following

sections, we explain how the workflow supervises the complete list of experiment

procedures sequentially; specifically, design, execution, validation, and analysis.

9.0.2 Execution: Hypothesis to Experiment Model Transformations

After the user operations, Hypothesis 2 Experiment Transformator module, i.e., the

primary step in Figure 6.2, initiates the simulation experiment workflow. Similar

to previous case study, first the extended SED-ML model from hypothesis, then the

Xperimenter model is generated.
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9.0.2.1 Hypothesis Extension to SED-ML

Based on the Table 8.2, hypothesis to SED-ML model generation is applied. We,

again, set the default values for the SED-ML model generation with the fact that one

experiment associated with a single task and an experiment model can sufficiently

prove or refute a list of hypotheses enclosed to a question.

The transformation mapping is given below:

1. An integer array for all the link and signal counts: transformed into variables

in the data generator of a task,

2. A map for link and signals with their capacities: transformed into variable

limits,

3. Hypotheses: transformed into list of hypotheses.

The generated SED-ML model is given in the Listing 9.0.2.1.

1 <listOfHypotheses>

2 <hypothesis metaid="H0">

3 <expressions>

4 <expression expr="v1 < 30"/>

5 </expressions>

6 <conditions>

7 <condition metaid="C1">

8 <expression expr="v1 > 15"/>

9 <operator opr="and"/>

10 <expression expr="s1 > 1"/>

11 <operator opr="and"/>

12 <expression expr="s0 > 0"/>

13 </condition>

14 <condition metaid="C2">

15 <expression expr="v1 > 25"/>

16 <operator opr="and"/>

17 <expression expr="s1 > 1"/>

18 </condition>

19 <condition metaid="C2">

20 <expression expr="v4 < 10"/>

21 <operator opr="and"/>

22 <expression expr="s1 > 1"/>

23 <operator opr="and"/>
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24 <expression expr="s0 > 0"/>

25 </condition>

26 </conditions>

27 </hypothesis>

28 <hypothesis metaid="H1">

29 <expressions>

30 <expression expr="v1 >= 30"/>

31 </expressions>

32 </hypothesis>

33 <coherenceLinks>

34 <coherenceLink coherence="EXPLAIN">

35 <hypothesis hyp="H0">

36 <relation rel="against"/>

37 <hypothesis hyp="H1">

38 </coherenceLink>

39 </coherenceLinks>

40 </listOfHypotheses>

41

42 <listOfSimulations>

43 <uniformTimeCourse id="simulation">

44 </uniformTimeCourse>

45 </listOfSimulations>

46

47 <listOfModels>

48 <model id="model"/>

49 </listOfModels>

50

51 <listOfTasks>

52 <task simulationReference="simulation" modelReference="model"

id="task"/>↪→

53 </listOfTasks>

54

55 <listOfDataGenerators>

56 <dataGenerator id="v0" name="v0">

57 <listOfVariables>

58 <variable id="v0" name="v0" taskReference="task" />

59 </listOfVariables>

60 </dataGenerator>

61 </listOfDataGenerators>

9.0.2.2 SED-ML to Xperimenter Model Transformation

After achieving the SED-ML model, then Xperimenter model transformation from

SED-ML is executed, and the Xperimenter model in the Listing 9.0.2.2 is generated.
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The model transformation from SED-ML to Xperimenter can be revisited via the

Table 8.3.

1 e x p e r i m e n t ne twork

2 desc " c o n g e s t i o n a n a l y s i s on a t r a f f i c ne twork " ;

3 o b j e c t i v e COMPARATIVE;

4 d e s i g n ne tworkDes ign ;

5 s i m u l a t i o n n e t w o r k S i m u l a t i o n ;

6 a n a l y s i s AnovaAnalys i s ;

7 v i s u a l DEFAULT;

8 t a r g e t KEPLER ;

9

10 v a r i a b l e v0 : INTEGER group FACTOR [ 0 , 4 0 . 0 ] ;

11 v a r i a b l e v1 : INTEGER group FACTOR [ 0 , 4 0 . 0 ] ;

12 v a r i a b l e v2 : INTEGER group FACTOR [ 0 , 4 0 . 0 ] ;

13 v a r i a b l e v3 : INTEGER group FACTOR [ 0 , 2 0 . 0 ] ;

14 v a r i a b l e v4 : INTEGER group FACTOR [ 0 , 2 0 . 0 ] ;

15 v a r i a b l e v5 : INTEGER group FACTOR [ 0 , 2 0 . 0 ] ;

16 v a r i a b l e s0 : BOOLEAN group RESPONSE ;

17 v a r i a b l e s1 : BOOLEAN group RESPONSE ;

18 d e s i g n ne tworkDes ign

19 method FULLFACTORIAL ;

20 v a r l i s t v0 v1 v2 v3 v4 v5 s0 s1 ;

21

22 s i m u l a t i o n n e t w o r k S i m u l a t i o n

23 m o d e l F i l e / t r a f f i c d a t a l 6 / ;

24 modelType DISCRETEEVENT ;

25 i n p o r t v0 : v0 ;

26 i n p o r t v1 : v1 ;

27 i n p o r t v2 : v2 ;

28 i n p o r t v3 : v3 ;

29 i n p o r t v4 : v4 ;

30 i n p o r t v5 : v5 ;

31 i n p o r t s0 : s0 ;

32 i n p o r t s1 : s1 ;

33

Listing 9.1: Xperimenter model for the traffic network experiment
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Figure 9.2: Traffic network experiment result

9.0.3 Experiment Execution

Once achieving the experiment models, the execution phase of the experimentation

process in Figure 6.2 triggers the workflow for the execution. The output of the

experiment run can be seen in Figure 9.2.

The screenshot precisely contains the following information:

1. The number of time traces that successfully support the conditions,

2. The number of the congested line v1 traces where previous traces non-supporting

the conditions,

3. The number of time traces that are non-supporting the conditions where the

next trace is not over the capacity (v1 < 30),

4. The overall number of skipped time traces due to the non-supporting conditions

for the hypotheses,

5. The overall number of traces that the experiment used, excluding the first ten

time traces in each dataset to enhance the quality of the input by eliminating

the initial randomized time traces.
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9.0.4 Post-execution: Experiment Validation

We employed the same STL Trace Checker [3] to validate the the second experiment

output that we conducted. The trace checker takes the previously stated conditions

for the congestion analysis on link v1 alongside the generated datasets and returns

the supporting and non-supporting data traces. The output of the STL Trace Checker

appears to comply with our expectations for the number of the traces supporting the

conditions, i.e., 454, and the number of the traces the non-supporting the conditions,

i.e., 22.

Based on the quantitative comparison of the throughputs from the STL Trace Checker

and the experiment run we conducted, we observed that the throughputs are consistent

with the analysis reported by [3].

9.0.5 Post-execution: Experiment Analysis

To complete the process and to have an analytical prespective of the current case

study, we revisit and expand the hypotheses specification with a condition where the

link v1 has a number of vehicles less than 75% of its capacity in the next trace.

φ = (φ1 ∨ φ2 ∨ φ3) ∧ φ4

φ4 = P[1,1](v
1
next < 30)

The execution of the analysis produces graphical throughput in Figure 9.3. The

throughput shows that in every five trace intervals for the aggregated dataset, there

exist two or more traces that non-supporting the hypothesis. Bear in mind that the

graphic depicts the aggregation of the 20 different datasets where each dataset con-

tains 100 traces. In other words, approximately 20 traces in 2000 traces are non-

supporting the hypothesis, and the analysis outcome is very much close to our exper-

iment result for the non-supporting cases.
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Figure 9.3: Throughput of the analysis
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CHAPTER 10

CONCLUSION

Our research demonstrates that we took the first step in creating a reference imple-

mentation of a Global Model Management environment for Hypothesis-driven Ex-

periment Design. We really profited from megamodeling approaches, which speed

up the administration of models with a range of procedures, throughout this endeav-

our. In addition, we conducted a case study that bridges the gap between a theory and

the relevant experiment by doing an experiment based on the hypothesis. Overall, our

case study for hypothesis-based experiment design uses a well recognized simulation

experiment description language, SED-ML, to combine experimental design, model,

and hypotheses in a single process. With a scalable experimental medium, it improves

the replicability of scientific experiments and the reproducibility of scientific discov-

eries. We believe that our research will serve as a base for future studies on the exper-

iment design, such as expanding our experiment design with Type I and II Errors for

complete statistical hypothesis testing. Furthermore, we realize that expanding our

hypothesis definition with more statistical characteristics, such as significance level,

is a worthy effort.

We realize that future investigations are needed to improve the precision and relia-

bility of the specification mechanisms and introduce new model transformation al-

gorithms that map hypotheses to experiment designs as we expand the megamodel

with new DSLs and formalisms for experiment design and management systems. As

a result of this foresight, we have decided to combine agent technology with our meg-

amodel. The concept of combining cognitive computing with simulation experiments

in a Model-driven Engineering (MDE) environment [7, 59] is to handle diverse tasks

in scientific discovery such as describing challenges, constructing methods to model
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a system, and answering questions.
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Appendix A

COMPLETE METAMODEL SPECIFICATION FOR SED-ML

Given SED-ML metamodel is composed of the primary blocks of SED-ML with Hy-

pothesis specification extension in Chapter 4. Note that the metamodel is our inter-

pretation and limited to our requirements for the case studies.

Figure A.1: SED-ML Metamodel
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Appendix B

QUADCOPTER QUERYING EXAMPLE

1

2 class XperimenterQuery {

3 def static void main(String[] args) {

4 # Get the intervals from the arguments

5 double startInterval = args[0]

6 double endInterval = args[1]

7

8 # Query the models sequentially

9 InputOutput.<String>println("\nXperimenter 1", startInterval,

endInterval)↪→

10 new XperimenterQuery().queryModel("Quadcopter1.xml")

11 InputOutput.<String>println("\nXperimenter 2")

12 new XperimenterQuery().queryModel("Quadcopter2.xml")

13 }

14 # Query the model

15 def queryModel(String file, double startInterval, double endInterval) {

16 # Register the EMF model

17 doEMFSetup

18 val resourceSet = new ResourceSetImpl

19 # Load the model and get the resources

20 val resource = resourceSet.getResource(URI.createFileURI(file),

true)↪→

21 for (content : resource.contents)

22 validateModel(content, double startInterval, double

endInterval)↪→

23 }

24 # Validate the model

25 def validateModel(EObject o, double startInterval, double endInterval) {

26 val expImpl = o as ExperimentImpl

27 # find the variable which is between startInterval and endInterval

28 for(v: expImpl.design.variables){

29 if (v.lowValue > startInterval && v.highValue< endInterval)

30 InputOutput.<String>println(v.name

31 +"["+v.lowValue+", "+v.highValue+"] is

between startInterval and endInterval")↪→
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32 }

33 }

34 # Register Xperimenter packages to EMF

35 def doEMFSetup() {

36 EPackage.Registry.INSTANCE.put(XperimenterPackage.eINSTANCE.nsURI,

XperimenterPackage.eINSTANCE);↪→

37 Resource.Factory.Registry.INSTANCE.extensionToFactoryMap.put("xml",

new XMIResourceFactoryImpl);↪→

38 }

39 }
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Appendix C

HYPOTHESIS TO SED-ML MODEL GENERATION IN PYTHON

1 import xml.etree.ElementTree as ET

2 from XmlOperations import indent

3

4 def generateSimulation(listOfSimulations):

5 uniformTimeCourseAttr = {"initialTime": "0", "outputStartTime": "0",

"outputEndTime": "100", "numberOfPoints": "1000", "id": "simulation"}↪→

6 uniformTimeCourses = ET.SubElement(listOfSimulations, "uniformTimeCourse",

attrib=uniformTimeCourseAttr)↪→

7 algorithmAttr = {"kisaoID": "KISAO:0000088", }

8 ET.SubElement(uniformTimeCourses, "algorithm", attrib=algorithmAttr)

9

10 def generateHypothesis(listOfHypothesis, optimized_formula1, optimized_formula2,

optimized_formula3):↪→

11 hypothesis1 = ET.SubElement(listOfHypothesis, "hypothesis")

12 hypothesis2 = ET.SubElement(listOfHypothesis, "hypothesis")

13 temporalOp1 = optimized_formula1.split(0, 5)

14 exprOp1 = optimized_formula1.split(5, 20)

15 conditionAttr1 = {"metaid": "C1", "expr": exprOp1, "temporal operator":

temporalOp1}↪→

16 temporalOp2 = optimized_formula2.split(0, 5)

17 exprOp2 = optimized_formula2.split(5, 20)

18 conditionAttr2 = {"metaid": "C2", "expr": exprOp2, "temporal operator":

temporalOp2}↪→

19 temporalOp3 = optimized_formula3.split(0, 5)

20 exprOp3 = optimized_formula3.split(5, 20)

21 conditionAttr3 = {"metaid": "C3", "expr": exprOp3, "temporal operator":

temporalOp3}↪→

22

23 listOfConditions = ET.SubElement(hypothesis1, "listOfConditions")

24 ET.SubElement(listOfConditions, "condition", attrib=conditionAttr1)

25 ET.SubElement(listOfConditions, "condition", attrib=conditionAttr2)

26 ET.SubElement(listOfConditions, "condition", attrib=conditionAttr3)

27

28 listOfExpressions = ET.SubElement(hypothesis1, "listOfExpressions")

29 expressionAttr1 = {"expr": exprOp1, "temporal operator": temporalOp1}
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30 ET.SubElement(listOfExpressions, "expression", attrib=expressionAttr1)

31

32 listOfRelations = ET.SubElement(listOfHypothesis, "listOfRelations")

33 relationAttr1 = {"relation": "CONTRADICT", "hyp": hypothesis1, "hyp":

hypothesis2}↪→

34 ET.SubElement(listOfRelations, "relation", attrib=relationAttr1)

35

36 def generateModel(listOfModels):

37 modelAttribute = {"id": "model", "language": "urn:sedml:language:sbml",

"source": "urn:miriam:biomodels.db:BIOMD0000000021"}↪→

38 model = ET.SubElement(listOfModels, "model", attrib=modelAttribute)

39

40

41 def generateTask(listOfTasks):

42 taskAttr = {"simulationReference": "simulation", "modelReference": "model",

"id": "task"}↪→

43 task = ET.SubElement(listOfTasks, "task", attrib=taskAttr)

44

45 def generateDataGenerators(listOfDataGenerators, systemVariables):

46 variableTime = 'time'

47 datageneratorAttr = {"id": variableTime + 'DG', "name": variableTime + 'DG'}

48 datagenerator = ET.SubElement(listOfDataGenerators, "dataGenerator",

attrib=datageneratorAttr)↪→

49

50 listOfVariables = ET.SubElement(datagenerator, "listOfVariables")

51 timevariablesAttr = {"id": variableTime, "name": variableTime, "taskReference":

"task"}↪→

52 ET.SubElement(listOfVariables, "variable", attrib=timevariablesAttr)

53

54 mathAttr = {"xmlns": "http://www.w3.org/1998/Math/MathML"}

55 math = ET.SubElement(datagenerator, "math:math", attrib=mathAttr)

56 ET.SubElement(math, "math:ci").text = variableTime

57

58 for variable in systemVariables:

59 variable = 'x' + str(variable)

60 datageneratorAttr = {"id": variable + "DG", "name": variable + "DG"}

61 datagenerator = ET.SubElement(listOfDataGenerators, "dataGenerator",

attrib=datageneratorAttr)↪→

62

63 listOfVariables = ET.SubElement(datagenerator, "listOfVariables")

64 variablesAttr = {"id": variable, "name": variable, "taskReference": "task"}

65 # ,

"target":"/sbml:sbml/sbml:model/sbml:listOfSpecies/sbml:species[@id='PX']"↪→

66 ET.SubElement(listOfVariables, "variable", attrib=variablesAttr)

67

68 mathAttr = {"xmlns": "http://www.w3.org/1998/Math/MathML"}

69 math = ET.SubElement(datagenerator, "math:math", attrib=mathAttr)
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70 ET.SubElement(math, "math:ci").text = variable

71

72 def generateListOfOutputs(listOfOutputs, systemVariables):

73 plot2DAttr = {"id": "plot1_Basic"}

74 plot2D = ET.SubElement(listOfOutputs, "plot2D", attrib=plot2DAttr)

75 listOfCurves = ET.SubElement(plot2D, "listOfCurves")

76 for variable in systemVariables:

77 variableOut = 'x' + str(variable) + "DG"

78 curveAttr = {"id": variableOut, "logX": "false", "logY": "false",

"xDataReference": "timeDG", "yDataReference": variableOut}↪→

79 ET.SubElement(listOfCurves, "curve", attrib=curveAttr)

80

81 def generateSedML(systemVariables, optimized_formula1, optimized_formula2,

optimized_formula3):↪→

82 sedmlAttr = {"xmlns:math": "http://www.w3.org/1998/Math/MathML", "xmlns":

"http://sed-ml.org/", "level": "1", "version": "1"}↪→

83 root = ET.Element("sedML", attrib=sedmlAttr)

84

85 listOfHypothesis = ET.SubElement(root, "listOfHypothesis")

86 generateHypothesis(listOfHypothesis, optimized_formula1, optimized_formula2,

optimized_formula3)↪→

87

88 listOfSimulations = ET.SubElement(root, "listOfSimulations")

89 generateSimulation(listOfSimulations)

90

91 listOfModels = ET.SubElement(root, "listOfModels")

92 generateModel(listOfModels)

93

94 listOfTasks = ET.SubElement(root, "listOfTasks")

95 generateTask(listOfTasks)

96

97 listOfDataGenerators = ET.SubElement(root, "listOfDataGenerators")

98 generateDataGenerators(listOfDataGenerators, systemVariables)

99

100 listOfOutputs = ET.SubElement(root, "listOfOutputs")

101 generateListOfOutputs(listOfOutputs, systemVariables)

102

103 tree = ET.ElementTree(root)

104 indent(root)

105

106 # writing xml

107 tree.write("SEDML_with_hypothesis.xml", encoding="utf-8", l_declaration=True)

108 with open("SEDML_with_hypothesis.xml", 'r') as fin:

109 print(fin.read())

110

111
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Appendix D

SED-ML TO XPERIMENTER MODEL TRANSFORMATION IN PYTHON

1 def generateXperimenter(variables, constraints, description=""description""):

2 xperimenter = open("xperimenter.xpr", "w")

3 xperimenter.write("experiment experiment{")

4 xperimenter.write("desc {0};".format(description))

5 xperimenter.write("objective COMPARATIVE;")

6 xperimenter.write("design design;")

7 xperimenter.write("simulation simulation;")

8 xperimenter.write("analysis AnovaAnalysis;")

9 xperimenter.write("visual DEFAULT;")

10 xperimenter.write("target KEPLER;")

11 xperimenter.write("\n}")

12 varList = ""

13

14 for variable in variables:

15 variable = "v"+ str(variable)

16 elem = constraints.get(variable)

17 if elem is not None and "a"in elem and "b"in elem:

18 xperimenter.write("\nvariable {0}: BOOLEAN group

RESPONSE;".format(variable))↪→

19 else:

20 xperimenter.write(

21 "\nvariable {0}: INTEGER group FACTOR {1};".format(variable,

str(constraints.get(variable))))↪→

22 varList = varList + variable + ""

23

24 xperimenter.write("\ndesign design{")

25 xperimenter.write("method FULLFACTORIAL;")

26 xperimenter.write("varlist %s;"% varList)

27 xperimenter.write("\n}")

28

29 xperimenter.write("\nsimulation simulation{")

30 xperimenter.write("modelFile data/;")

31 xperimenter.write("modelType DISCRETEEVENT;")

32 for variable in variables:

33 variable = "x"+ str(variable)
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34 xperimenter.write("inport {0}: {0};".format(variable))

35 xperimenter.write("\n}")

36

37 xperimenter.write("analysis AnovaAnalysis{")

38 xperimenter.write("file

"http://ceng.metu.edu.tr/~e1564178/xperimenter/anova-service";")↪→

39 xperimenter.write("\n}")

40 xperimenter.close()

41

42 with open("xperimenter.xpr", "r") as fin:

43 print(fin.read())

44
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Appendix E

EXPERIMENT EXECUTOR IN PYTHON

1 import os

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 from sklearn.linear_model import LinearRegression

5 import numpy as np

6

7 x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1))

8 y = np.array([5, 20, 14, 32, 22, 38])

9 model = LinearRegression()

10 model.fit(x, y)

11 r_sq = model.score(x, y)

12 print("coefficient of determination:", r_sq)

13 folder_name = "hospital_bed_data/"

14

15 if __name__ == "__main__":

16 allData = []

17 for file in os.listdir(folder_name):

18 filepath = os.path.join(folder_name, file)

19 data = []

20 with open(filepath, "r") as f:

21 if not file.endswith("label") and not file.endswith("properties"):

22 data = pd.read_csv(folder_name + "/" + file, sep=" ", header=None)

23 data.columns = ["step", "h0", "h1", "h2", "h3", "h4", "h5", "h6",

"h7"]↪→

24 allData.append(data)

25

26 filename = folder_name + "/system_properties"

27 with open(filename) as f:

28 content = f.readlines()

29 content = [x.strip() for x in content]

30

31 mismatchFormula = content.__getitem__(3).replace("x1", "next")

32 if content.__getitem__(3).__contains__(">"):

33 formula = content.__getitem__(3).replace(">", "<")

34

91



35 if content.__getitem__(3).__contains__("<"):

36 formula = content.__getitem__(3).replace("<", ">")

37

38 optimized_formula1 = optimized_formula1.replace("=", "==").replace("P 1 1", "")

39 optimized_formula2 = optimized_formula2.replace("=", "==").replace("P 1 1", "")

40 optimized_formula3 = optimized_formula3.replace("=", "==").replace("P 1 1", "")

41

42 fileIndex = 0

43 hypothesisMatchingCount = 0

44 totalCount = 0

45 mismatchCount = 0

46 nullHypothesisCount = 0

47 resultMismatchAll= pd.DataFrame(columns=["step", "h0", "h1", "h2", "h3", "h4",

"h5", "h6", "h7"])↪→

48 for data in allData:

49 fileIndex = fileIndex + 1

50

51 data.loc[0, "next"] = 0

52 for i in range(1, len(data) - 1):

53 data.loc[i, "next"] = data.loc[i + 1, "h1"]

54

55 data.loc[100, "next"] = 0

56 totalCount = totalCount + len(data)

57

58 formula = args[0]

59 nullHypothesis = data.query(formula)

60 nullHypothesisCount = nullHypothesisCount + len(nullHypothesis)

61

62 result = data.query(optimized_formula1 + " | " + optimized_formula2 + " | "

+ optimized_formula3)↪→

63

64 hypothesisResult = result.query(formula)

65 hypothesisMatchingCount = hypothesisMatchingCount + len(hypothesisResult)

66 print(hypothesisResult)

67 resultMismatch = result.query(mismatchFormula)

68 mismatchCount = mismatchCount + len(resultMismatch)

69

70 resultMismatchAll = resultMismatchAll.append(resultMismatch)

71 plt.plot(resultMismatchAll["step"], resultMismatchAll["h1"], "d",

label="h1")↪→

72 plt.plot(resultMismatchAll["step"], resultMismatchAll["h4"], "s",

label="h4")↪→

73 plt.plot(resultMismatchAll["step"], resultMismatchAll["h6"], "ro",

label="j")↪→

74 plt.plot(resultMismatchAll["step"], resultMismatchAll["h7"], "o", label="k")

75 plt.title("Hypothesis proving values for h1, h4, j and k")

76 plt.xlabel("Time")
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77 plt.ylabel("Value of h")

78 plt.xlim(2,400)

79 plt.legend()

80 plt.show()

81

82 print("HYPOTHESIS PROVING STEP COUNT:", hypothesisMatchingCount)

83 print("HYPOTHESIS REFUTING STEP COUNT: ", mismatchCount)

84 print("EXCLUDED STEP COUNT: ", totalCount - nullHypothesisCount - mismatchCount)

85 print("OVERALL STEP COUNT:", totalCount)

86

87
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Appendix F

EXPERIMENT ANALYSIS TOOL IN PYTHON

1 import os

2 import sys

3 import easygui as eg

4 import matplotlib.pyplot as plt

5 import numpy as np

6 import pandas as pd

7 import statsmodels.api as sm

8 from scipy.stats import stats

9 from sklearn import linear_model

10 from statsmodels.formula.api import ols

11

12 folder_name = "hospital_bed_data/"

13

14 def query(queryString, allData):

15 fileIndex = 0

16 hypothesisMatchingCount = 0

17 totalCount = 0

18 for data in allData:

19 result = data.query(queryString)

20 totalCount = totalCount + len(data)

21 hypothesisMatchingCount = hypothesisMatchingCount + len(result)

22 plt.plot(result["step"], result["v0"], label="v0")

23 plt.plot(result["step"], result["v1"], label="v1")

24 plt.plot(result["step"], result["v2"], label="v2")

25 plt.plot(result["step"], result["v3"], label="v3")

26 plt.plot(result["step"], result["v4"], label="v4")

27 plt.plot(result["step"], result["v5"], label="v5")

28 plt.plot(result["step"], result["v6"], label="v6")

29 plt.plot(result["step"], result["v7"], label="v7")

30 plt.title("Dataset " + str(fileIndex) + " for query: " + queryString)

31 fileIndex = fileIndex + 1

32 plt.legend()

33 plt.show()

34 print("QUERY MISMATCHING STEP COUNT: ", totalCount - hypothesisMatchingCount)

35 print("QUERY MATCHING STEP COUNT: ", hypothesisMatchingCount)
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36 print("TOTAL STEP COUNT: ", totalCount)

37

38

39 def doHistogram(allData):

40 fileIndex = 0

41 for data in allData:

42 plt.hist(data["v0"].sort_index(), color="blue", edgecolor="black",

bins=int(180 / 15), label="v0")↪→

43 plt.xlabel("Value")

44 plt.ylabel("Count")

45

46 plt.hist(data["v1"].sort_index(), color="green", edgecolor="black",

bins=int(180 / 15), label="v1")↪→

47 plt.xlabel("Value")

48 plt.ylabel("Count")

49

50 plt.hist(data["v2"].sort_index(), color="black", edgecolor="black",

bins=int(180 / 15), label="v2")↪→

51 plt.xlabel("Value")

52 plt.ylabel("Count")

53

54 plt.hist(data["v3"].sort_index(), color="yellow", edgecolor="black",

bins=int(180 / 15), label="v3")↪→

55 plt.xlabel("Value")

56 plt.ylabel("Count")

57

58 plt.hist(data["v4"].sort_index(), color="orange", edgecolor="black",

bins=int(180 / 15), label="v4")↪→

59 plt.xlabel("Value")

60 plt.ylabel("Count")

61

62 plt.hist(data["v5"].sort_index(), color="white", edgecolor="black",

bins=int(180 / 15), label="v5")↪→

63 plt.xlabel("Value")

64 plt.ylabel("Count")

65

66 plt.hist(data["v6"].sort_index(), color="brown", edgecolor="black",

bins=int(180 / 15), label="v6")↪→

67 plt.xlabel("Value")

68 plt.ylabel("Count")

69

70 plt.hist(data["v7"].sort_index(), color="purple", edgecolor="black",

bins=int(180 / 15), label="v7")↪→

71 plt.xlabel("Value")

72 plt.ylabel("Count")

73 plt.title("Histogram for dataset " + str(fileIndex))

74 plt.legend()
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75 plt.show()

76 fileIndex = fileIndex + 1

77

78

79 def doLinearRegression(allData):

80 fileIndex = 0

81 for data in allData:

82 regr = linear_model.LinearRegression()

83

84 datav0 = np.array(data["v0"].values.tolist())

85 datav1 = np.array(data["v1"].values.tolist())

86

87 regr.fit(datav0.reshape(1, -1), datav1.reshape(1, -1))

88 plt.scatter(datav0, datav1, color="black")

89 plt.plot(datav0, datav1, color="blue", linewidth=3, label="v0 vs v1")

90

91 datav2 = np.array(data["v2"].values.tolist())

92 regr.fit(datav1.reshape(1, -1), datav2.reshape(1, -1))

93 plt.scatter(datav1, datav2, color="black")

94 plt.plot(datav1, datav2, color="orange", linewidth=3, label="v1 vs v2")

95

96 datav3 = np.array(data["v3"].values.tolist())

97 regr.fit(datav2.reshape(1, -1), datav3.reshape(1, -1))

98 plt.scatter(datav2, datav3, color="black")

99 plt.plot(datav2, datav3, color="orange", linewidth=3, label="v2 vs v3")

100

101 datav4 = np.array(data["v4"].values.tolist())

102 regr.fit(datav3.reshape(1, -1), datav4.reshape(1, -1))

103 plt.scatter(datav3, datav4, color="black")

104 plt.plot(datav3, datav4, color="red", linewidth=3, label="v3 vs v4")

105

106 datav5 = np.array(data["v5"].values.tolist())

107 regr.fit(datav4.reshape(1, -1), datav5.reshape(1, -1))

108 plt.scatter(datav4, datav5, color="black")

109 plt.plot(datav4, datav5, color="yellow", linewidth=3, label="v4 vs v5")

110

111 datav6 = np.array(data["v6"].values.tolist())

112 regr.fit(datav5.reshape(1, -1), datav6.reshape(1, -1))

113 plt.scatter(datav5, datav6, color="black")

114 plt.plot(datav5, datav6, color="green", linewidth=3, label="v5 vs v6")

115

116 datav7 = np.array(data["v7"].values.tolist())

117 regr.fit(datav6.reshape(1, -1), datav7.reshape(1, -1))

118 plt.scatter(datav6, datav7, color="black")

119 plt.plot(datav6, datav7, color="brown", linewidth=3, label="v6 vs v7")

120

121 plt.title("Linear regression for dataset " + str(fileIndex))
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122 plt.legend()

123 plt.show()

124

125 fileIndex = fileIndex + 1

126

127

128 def doStudentT(allData):

129 fileIndex = 0

130 for data in allData:

131 resultv0 = stats.ttest_1samp(data["v0"], 0)

132 resultv1 = stats.ttest_1samp(data["v1"], 0)

133 resultv2 = stats.ttest_1samp(data["v2"], 0)

134 resultv3 = stats.ttest_1samp(data["v3"], 0)

135 resultv4 = stats.ttest_1samp(data["v4"], 0)

136 resultv5 = stats.ttest_1samp(data["v5"], 0)

137 resultv6 = stats.ttest_1samp(data["v6"], 0)

138 resultv7 = stats.ttest_1samp(data["v7"], 0)

139 plt.plot(resultv0, label="v0")

140 plt.plot(resultv1, label="v1")

141 plt.plot(resultv2, label="v2")

142 plt.plot(resultv3, label="v3")

143 plt.plot(resultv4, label="v4")

144 plt.plot(resultv5, label="v5")

145 plt.plot(resultv6, label="v6")

146 plt.plot(resultv7, label="v7")

147 plt.xlabel("P value")

148 plt.ylabel("T statistic")

149 plt.title("Histogram for dataset " + str(fileIndex))

150 plt.legend()

151 plt.show()

152

153 fileIndex = fileIndex + 1

154

155

156 def doStudentZ(allData):

157 fileIndex = 0

158 for data in allData:

159 fileIndex = fileIndex + 1

160

161 def doAnovaTest(allData):

162 fileIndex = 0

163 for data in allData:

164 # One - Way ANOVA

165 fvalue, pvalue = stats.f_oneway(data["v0"], data["v1"], data["v2"],

data["v3"], data["v4"], data["v5"], data["v6"], data["v7"])↪→

166 resultOneWay="One way ANOVA: fvalue: " + str(fvalue), " pvalue:

"+str(pvalue)↪→
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167 print (resultOneWay)

168

169 #Two - Way ANOVA

170 for variable in data.columns:

171 model = ols("{} ~ v0".format(variable), data=data).fit()

172 anova_table = sm.stats.anova_lm(model, typ=2)

173 print(anova_table)

174

175

176 def doStatisticsSummary(allData):

177 fileIndex = 0

178 for data in allData:

179 resultv0 = str(data["v0"].describe())

180 resultv1 = str(data["v1"].describe())

181 resultv2 = str(data["v2"].describe())

182 resultv3 = str(data["v3"].describe())

183 resultv4 = str(data["v4"].describe())

184 resultv5 = str(data["v5"].describe())

185 resultv6 = str(data["v6"].describe())

186 resultv7 = str(data["v7"].describe())

187 result = resultv0 + "/n" + resultv1 + resultv2 + "/n" + resultv3 + "/n" +

resultv4 + "/n" + resultv5 + "/n" + resultv6 + "/n" + resultv7↪→

188 eg.textbox(result, "Summary statistics of dataset " + str(fileIndex))

189

190 fileIndex = fileIndex + 1

191

192

193 if __name__ == "__main__":

194 allData = []

195 for file in os.listdir(folder_name):

196 filepath = os.path.join(folder_name, file)

197 data = []

198 with open(filepath, "r") as f:

199 if not file.endswith("label") and not file.endswith("properties"):

200 data = pd.read_csv(folder_name + "/" + file, sep=" ", header=None)

201 data.columns = ["step", "v0", "v1", "v2", "v3", "v4", "v5", "v6",

"v7"]↪→

202 allData.append(data)

203

204 while True:

205 try:

206 listOfOptions = ["query", "statistical analysis", "exit"]

207 question = "Select an analysis option"

208 title = "Analysis Tool for Experiment"

209 choice = eg.choicebox(question, title, listOfOptions)

210 if choice.__contains__("query"):

211 queryString = eg.textbox("Enter a query: ")
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212 query(queryString, allData)

213 elif choice == "statistical analysis":

214 listOfStatisticalOptions = ["Histogram of datasets", "Statistics

summary", "Linear regression", "Student T test", "Student Z

test", "Analysis of Variance (ANOVA) test"]

↪→

↪→

215 statQuestion = "Select an statistical analysis option"

216 statTitle = "Analysis Tool for Experiment"

217 statisticalChoice = eg.multchoicebox(statQuestion, statTitle,

listOfStatisticalOptions)↪→

218 if statisticalChoice.__contains__("Histogram of datasets"):

219 doHistogram(allData)

220 if statisticalChoice.__contains__("Student T test"):

221 doStudentT(allData)

222 if statisticalChoice.__contains__("Student Z test"):

223 doStudentZ(allData)

224 if statisticalChoice.__contains__("Analysis of Variance (ANOVA)

test"):↪→

225 doAnovaTest(allData)

226 if statisticalChoice.__contains__("Linear regression"):

227 doLinearRegression(allData)

228 if statisticalChoice.__contains__("Statistics summary"):

229 doStatisticsSummary(allData)

230 elif statisticalChoice == "exit":

231 sys.exit(0)

232 except Exception:

233 sys.exit(0)
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