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ABSTRACT 

 

INVESTIGATION OF RANGE MIGRATION COMPENSATION IN 

RADAR DETECTION 

 

 

Çulha, Onur 

Doctor of Philosophy, Electrical and Electronic Engineering 

Supervisor : Prof. Dr. Yalçın Tanık 

 

 

September 2022, 155 pages 

 

 

In this study, range migration compensation methods in radar detection are examined 

from two different aspects: proposing novel methods to compromise between 

computational complexity and detection performance, and investigating range 

migration compensation under clutter and target fluctuation. We proposed a low 

complexity implementation of repetitive chirp-z transform (CZT) in order to be 

employed in Keystone transform and Radon Fourier transform with no loss in 

performance. Another efficient method has been proposed to compensate range 

migration without repeating CZT. The computer simulations show that the proposed 

method can achieve almost the same detection performance with significantly lower 

computational complexity compared to the classical ones. In addition, we investigate 

performance of range migration compensation methods under clutter and target 

fluctuation, and propose new methods to compensate range migration in these 

environments. 

 

Keywords: Radar Detection, Range Migration, Clutter, Target Fluctuation  
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ÖZ 

 

RADAR TESPİTİNDE MENZİL KAYMASI TELAFİSİNİN İNCELENMESİ  

 

 

 

Çulha, Onur 

Doktora, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Yalçın Tanık 

 

 

Eylül 2022, 155 sayfa 

 

Bu çalışmada, radar tespitinde menzil kayması telafi yöntemleri iki farklı açıdan 

incelenmiştir: hesaplama karmaşıklığı ve tespit performansı arasında denge 

sağlamak için yeni yöntemler önermek ve kargaşa ve hedef dalgalanması altında 

menzil kayması telafisini araştırmak. Keystone dönüşümünde ve Radon Fourier 

dönüşümünde performans kaybı olmadan kullanılmak üzere tekrarlayan chirp-z 

dönüşümünün (CZT) düşük karmaşıklıkta bir uygulamasını öngördük. Ayrıca, 

CZT'yi tekrarlamadan menzil kaymasını telafi etmek için bir başka verimli yöntem 

önerilmiştir. Yaptığımız bilgisayar benzetimleri, önerilen yöntemin klasik 

yöntemlere kıyasla önemli ölçüde daha düşük hesaplama karmaşıklığı ile hemen 

hemen aynı tespit performansını elde edebileceğini göstermektedir. Son olarak, 

kargaşa ve hedef dalgalanması altında menzil kayması telafi yöntemlerinin 

performansı araştırılmış ve bu ortamlarda menzil kaymasını telafi etmek için yeni 

yöntemler önerilmiştir. 

 

Anahtar Kelimeler: Radar Tespiti, Menzil Kayması, Kargaşa, Hedef Dalgalanması 
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CHAPTERS 

CHAPTER 1  

1 INTRODUCTION 

Since its beginning a century ago, the ranging, imaging and positioning of radar 

targets has been extensively studied, for which numerous applications and variations 

exist. Although modern radar techniques have undergone rapid development in many 

fields, there are some serious challenges for effective radar detection. Among them, 

low SNR high speed targets should be detected effectively with high resolution. 

Regarding this, it is proposed to increase antenna aperture and transmission power 

in conventional approach. Nonetheless, this approach may bring about  some 

electronic warfare and radar survivability issues such as cost, vulnerability and 

probability of intercept. To enhance detection performance while keeping physical 

radar parameters unchanged is a challenging problem.  

 

Theoretically, it is known that detection performance can be increased via long 

integration time [1] [2]. However, increasing integration time brings benefit by the 

price of another limitation: target echoes are required to be confined in a single range 

resolution cell. Many detection algorithms have been developed in the last decades 

in order to remove the range walk, which can be divided into two categories: 

coherent and non-coherent integration. Radon Transform [3] [4] [5], Hough 

Transform [6] [7] [8] and the track-before-detect technique [9] [10] are classical non-

coherent integration techniques. Since the non-coherent integration methods do not 

consider the phase variation between the pulses, their performance under low signal-

to-noise ratio (SNR) environment is insufficient. Regarding the coherent integration 

techniques, there are mainly two types of methods: parametric and non-parametric 

search. Sequence reverse transform (SRT) [11], adjacent cross correlation function 
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(ACCF) [12] and scaled inverse Fourier transform (SCIFT) [13] are typical non-

parametric search methods. These non-parametric search methods are 

computationally more efficient than the parametric search methods; however, they 

require high SNR input. With regards to the parametric search methods utilizing 

coherent integration, Keystone Transform (KT) [14] [15] [16] [17] [18] and Radon 

Fourier Transform (RFT) [19] [20] [21] are well-known algorithms. Although KT 

can remove range walk by rescaling the slow time axis for each range frequency, it 

requires interpolation operations and an extensive computational load to search for 

the Doppler ambiguity factor. A computationally efficient implementation of KT 

[22] has been proposed by using Chirp-Z transform (CZT). However, this method is 

still not very efficient because it has to repeat  CZT operation for each Doppler 

ambiguity factor. RFT can compensate range migration by searching through the 

range and the velocity axes together, but it is computationally expensive because of 

the 2-dimensional search. Yu et al. [21] proposed to implement RFT by employing 

CZT to reduce computational load. Even though computational complexity can be 

lowered by using CZT in KT and RFT, they still need to be improved for real-time 

operations. Analysis and implementation aspects of KT and RFT are discussed in 

more detail in Chapter 2. 

 

Most of the studies proposing range migration compensation (RMC) methods in the 

literature do not take into account the two main issues in real radar detection 

problem: clutter and target fluctuation. First, unwanted echoes, known as clutter, 

reflected from land, sea and rain can cause critical performance problems in radar 

detection. In addition, there may be some cases where both the target and clutter 

echoes are range migrating. Then, special efforts should be made to mitigate the 

range migration problem. Secondly, the amplitude of the echo signal from a moving 

target tends to have some fluctuations, which reduces the probability of detection. 
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1.1 Objectives 

The main objectives pursued in this thesis are related to possible improvements on 

RMC methods and investigations on application of RMC methods in realistic 

conditions such as clutter and target fluctuation. The objectives can be detailed as:  

 Analyze well-known RMC methods and their implementation aspects 

 Propose two new methods: (i) to reduce computational load of existing KT 

and RFT algorithms without sacrificing the detection performance, and (ii) 

to achieve almost same detection performance as the RFT with lower 

computational complexity 

 Evaluate the coherent integration performance when KT is applied to detect 

targets in sea clutter background 

 Examine the effect of swapping the orders of clutter suppression and KT in 

detection of moving targets in rain clutter  

 Propose an efficient method to detect targets when both rain clutter and 

target are range-migrating 

 Investigate performance of the KT method for fluctuating targets 

 Propose hybrid integration scheme for moderately fluctuating targets in case 

of range migration 

1.2 Outline 

We present the problem definition, review well-known RMC methods such as KT 

and RFT and analyze their implementation aspects in Chapter 2. 

In Chapter 3, the KT is evaluated in realistic radar environment such as target 

fluctuation and clutter. We first introduce target fluctuation and clutter models. 

Consequently, hybrid integration technique has been analyzed to detect moderately 

fluctuating targets. Next, we examined the range migration compensation under sea 

and rain clutter. Finally, we propose a method to remove range migration jointly for 

both range migrating clutter and target. 



 

 

4 

Two novel methods are proposed to reduce computational complexity of existing 

RMC methods in Chapter 4. The first method proposes an efficient implementation 

of KT and RFT repeating execution of CZT for each Doppler ambiguity factor. The 

second one is an efficient method to search for the Doppler ambiguity number and 

residual velocity based on a new technique called Doppler ambiguity shift transform 

(DAST) developed in this thesis study. 

In Chapter 5, this thesis work is summarized and conclusions are drawn. 
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CHAPTER 2  

2 REVIEW OF COMMON RANGE MIGRATION COMPENSATION METHODS  

In this chapter, we will define the range migration problem in radar, review some 

well-known range compensation methods, and analyze their implementation aspects.  

2.1 Problem definition 

Pulse integration is an effective way of improving target detection performance in a  

Pulsed Doppler (PD) radar under a noisy environment. Coherent integration allows 

obtaining a higher detection signal-to-noise ratio (SNR) than non-coherent 

integration, thanks to the compensation of phase variations between transmitted 

pulses. 

Besides the improved detection performance, it is possible to obtain lower Doppler 

frequency and range resolution when transmitting wide-band pulse train in the PD 

radar. Nevertheless, the combination of the factors such as wide-band pulse, the high 

target velocity with respect to radar, the long coherent processing interval (CPI) 

results in considerable range migration. If the target has a high velocity, range 

between radar and target changes significantly during the long CPI. Wide bandwidth 

means low range resolution cell. Hence, the high speed target may move more than 

many range cells for wideband signal and an effective integration among multiple 

pulses cannot be realized due to the range migration effect. Therefore, how to 

compensate the envelope migration is the key problem which needs to be solved.  

 

Consider a radar emitting N pulses during the CPI, 
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 𝑠𝑇𝑥(𝑡, 𝑛) = 𝑝(𝑡 − 𝑛𝑇𝑟)𝑒𝑥𝑝(𝑗2𝜋𝑓𝑐𝑡) (2.1) 

where 𝑡 is time, 𝑛is pulse number, Tr is pulse repetition interval (PRI), fc is the carrier 

frequency and,  p(t) is an arbitrary envelope signal. We define 

 

 𝑄(𝑓) = 𝑃(𝑓)𝑃∗(𝑓) (2.2) 

 

 where P(f) is the FT of p(t), (.)* denotes complex conjugate, and 𝑞(𝑡) and 𝑄(𝑓) are 

FT pairs: 

 

 𝑞(𝑡) = 𝑝(𝑡) ∗ 𝑝∗(−𝑡) (2.3) 

 

We assume the pulses are scattered back from a point scatterer and the radial distance 

between the radar and the target is R(n) for the nth pulse. We store the received signals 

in a 2-dimensional matrix  𝑠𝑅𝑥(�̃�, n ) where �̃� = 𝑡 − 𝑛𝑇𝑟, is known as the  "fast 

time" and n is the pulse count (slow-time index) from 0 to N-1. The received signal 

at the nth pulse after downconversion can be expressed as  

 

 𝑠𝑅𝑥(�̃�, 𝑛) ≅ 𝑝[�̃� − 𝜏(𝑛)]𝑒𝑥𝑝[−𝑗2𝜋𝑓𝑐𝜏(𝑛)] + 𝑤(�̃�) (2.4) 

 

 

where 𝜏(𝑛) is the round time delay between the moving target and the radar at time 

nT, defined as 

 𝜏(𝑛) = 𝜏0 + 2𝑣𝑛𝑇𝑟/𝑐 = 2(𝑅0 + 𝑣𝑛𝑇𝑟)/𝑐 (2.5) 

 

in which c  denotes the velocity of light, v  is the radial velocity between the target 

and the radar, Ro  is the target range at the transmission time of the 1st pulse, i.e. n = 

0. 

Equation (2.4)  is an approximation, because 𝜏(𝑛) is assumed to be constant during 

pulse repetition interval 𝑇𝑟. This approximation is acceptable, unless 𝑇𝑟 is very long. 

w(t) represents bandpass complex white Gaussian noise with zero mean and variance 

𝜎2. The input SNR is then defined as 1/𝜎2. In addition, we ignore the variation of 

scatterer range during the pulse interval To. 

The Fourier transform (FT) of (2.4) over �̃�  is 

 𝑆(𝑓, 𝑛) = 𝑃(𝑓) ∙ 𝑒𝑥𝑝[−𝑗2𝜋(𝑓 + 𝑓𝑐)𝜏(𝑛)] +𝑊(𝑓) (2.6) 

 

where 𝑊(𝑓) is the FT of 𝑤(�̃�). 

Multiplying 𝑆(𝑓, 𝑛) by FT of the matched filter (MF) impulse response gives 

 

 𝑂(𝑓, 𝑛) = 𝑄(𝑓)𝑒𝑥𝑝[−𝑗2𝜋(𝑓 + 𝑓𝑐)𝜏(𝑛)] + 𝑃∗(𝑓)𝑊(𝑓) (2.7) 
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where the matched filter impulse response is ℎ(𝑡) = 𝑝∗(−𝑡), and  𝑃(𝑓)is the FT of 

𝑝(𝑡), (.)* denotes complex conjugate. Substituting 𝜏(𝑛), we have the following 

statement 

 

 
𝑂(𝑓, 𝑛) = 𝑄(𝑓)𝑒𝑥𝑝[−𝑗2𝜋(𝑓 + 𝑓𝑐)𝜏0]𝑒𝑥𝑝 [−𝑗2𝜋(𝑓 + 𝑓𝑐)

2𝑣𝑛𝑇𝑟
𝑐

]

+ 𝑃∗(𝑓)𝑊(𝑓) 

(2.8) 

 

where  𝑛 = 0,1, … ,𝑁 − 1. 

 

There is obviously a coupling between the fast time frequency f and slow time n in 

the exponential term 𝑒𝑥𝑝 [−𝑗2𝜋𝑓
2𝑣𝑛𝑇𝑟

𝑐
] in (2.8), which means that there is range 

migration.  

 

We can illustrate the range migration problem in fast time – slow time domain as a 

sketch plot shown in Figure 2.1, where amplitude of each pulse is shown in a row 

only for illustration purpose, and x-axis shows the range bins corresponding to fast 

time. It is obvious that arrival times of pulses are not confined in the same range bin. 

This is why simple addition of pulses without any correction leads to reduction in 

the amplitude of the output. Figure 2.2 depicts the case when the arrival times of the 

pulses are aligned. Note that the amplitudes of all pulses peak in the same range bin, 

so the pulses can be simply summed up and the effect of the range migration problem 

is mitigated. 
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Figure 2.1 Illustration of range migration in fast time – slow time domain 

slow time 

fast time, 

range bins 

pulse #1 

pulse #2 

pulse #N 

pulse #3 

… 

… 

… 

range bin 
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Figure 2.2 Illustration of pulses after range alignment 

 

2.2 ANALYSIS AND IMPLEMENTATION ASPECTS OF KT 

In this section we examine the KT algorithm, one of the well-known RMC 

algorithms, from analysis and implementation aspects.  

slow time 

fast time, 

range bins 

pulse #1 

pulse #2 

pulse #N 

pulse #3 

… 

… 

… 
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2.2.1 RMC AND DOPPLER AMBIGUITY RESOLUTION VIA KT 

The term 𝑒𝑥𝑝 [−𝑗
4𝜋

𝑐
𝑓𝑣𝑛𝑇𝑟]  in (2.8) generates the range migration because f and n  

couple with each other. KT is employed to get rid of this coupling. Define the 

transform as 

 𝑛 = 𝑚𝑓𝑐/(𝑓𝑐 + 𝑓) (2.9) 

 

This can be interpreted as the rescaling of axis n for each frequency f. Figure 2.3 

shows the remapping process. The process is called "Keystone Transform" due to its 

Keystone shape [14].  

 

Figure 2.3. Transform of two dimensional data: the Keystone transformation. 

Substituting (2.9) into (1.6), the rescaling operation is done and there is no more 

coupling between f and m axes: 

 
𝑂𝐾𝑇(𝑓,𝑚) = 𝑂 (𝑓,

𝑚𝑓𝑐
𝑓𝑐 + 𝑓

) 
  

 
= 𝑄(𝑓)𝑒𝑥𝑝[−𝑗2𝜋(𝑓 + 𝑓𝑐)𝜏0]𝑒𝑥𝑝 [−𝑗

4𝜋

𝑐
𝑚𝑓𝑐𝑣𝑇𝑟] + 𝑃∗(𝑓)𝑊(𝑓) 

(2.10) 

            

where  𝑚 = [0,1, … , 𝑁 − 1] (
𝑓𝑐+𝑓

𝑓𝑐
). 

m 

n 

O(f,m) 

O(f,n) 
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Notice that the fast-time frequency f  and the rescaled slow-time  m  are no more 

coupled. Hence, we eliminated the range migration by performing the KT.  

In (2.10), 𝑂𝐾𝑇(𝑓,𝑚) is defined for non-integer values of m. We need to recover 

𝑂𝐾𝑇(𝑓,𝑚′) for integer values of 𝑚′ = 0,1, … ,𝑁 − 1 by sinc interpolation based on 

truncating the Shannon interpolation formula as proposed in [16] and [17]  ; 

 

𝑂𝐾𝑇(𝑓,𝑚
′) = ∑ 𝑂𝐾𝑇(𝑓,𝑚)𝑠𝑖𝑛𝑐[𝑚 −𝑚′]

(𝑁−1)𝛼

𝑚=0

 

  

 

= ∑ 𝑂(𝑓,𝑚/𝛼)𝑠𝑖𝑛𝑐[𝑚 −𝑚′]

(𝑁−1)𝛼

𝑚=0

 

(2.11) 

where 𝛼 =
𝑓𝑐+𝑓

𝑓𝑐
. 

Substituting 𝑚 = 𝑛𝛼 

 

𝑂𝐾𝑇(𝑓,𝑚′) = ∑𝑂(𝑓, 𝑛)𝑠𝑖𝑛𝑐[𝑛𝛼 − 𝑚′]

𝑁−1

𝑛=0

 

(2.12) 

 

Effect of Doppler Ambiguity 

High speed targets causes to significant Doppler ambiguity depending on the length 

of PRI. This would influence the compensation accuracy and hence integration 

effectivity. Hence, the KT requires a particular adaptation. 

Let us inspect only the slow-time phase term 
4𝜋

𝑐
𝑚𝑓𝑐𝑣𝑇𝑟  in 𝑂𝐾𝑇(𝑓,𝑚) of equation 

(2.10). Supposing the velocity v is low such that there is no Doppler ambiguity, we 

can rewrite the slow-time phase term,  𝑒𝑥𝑝 [−𝑗
4𝜋

𝑐
𝑚𝑓𝑐𝑣𝑇𝑟] = 𝑒𝑥𝑝[−𝑗2𝜋𝑚𝑓𝑑𝑇𝑟] 

where 𝑓𝑑 =
2𝑣𝑓𝑐

𝑐
 is the Doppler shift at frequency 𝑓𝑐. We now assume the target 

velocity is high enough to have Doppler ambiguity and folded over F times.   

The slow-time phase term in 𝑂𝐾𝑇(𝑓,𝑚)  becomes  𝑒𝑥𝑝 [−𝑗2𝜋𝑚(𝑓𝑑 −
𝐹

𝑇𝑟
)𝑇𝑟] =

𝑒𝑥𝑝[−𝑗2𝜋𝑚𝑓𝑑𝑇𝑟]  again; there is no change in the desired result. 
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Let us examine the impact of Doppler ambiguity on the exponential coupling term 

of the matched filter output in equation (2.10)  

 
𝑒𝑥𝑝 [−𝑗

4𝜋

𝑐
(𝑓 + 𝑓𝑐)𝑣𝑛𝑇𝑟] = 𝑒𝑥𝑝 [−𝑗2𝜋 [

2𝑣

𝑐
(𝑓 + 𝑓𝑐) −

𝐹

𝑇𝑟
] 𝑛𝑇𝑟] 

  

 
= 𝑒𝑥𝑝 [−𝑗

4𝜋

𝑐
(𝑓 + 𝑓𝑐)𝑣𝑛𝑇𝑟] 𝑒𝑥𝑝[𝑗2𝜋𝐹𝑛] 

(2.13) 

 

Although 𝑒𝑥𝑝[𝑗2𝜋𝐹𝑛] equals to unity due to integer values of F, we have included 

this term to show the effect of rescaling the slow-time coefficient. After rescaling n 

→ m  to obtain 𝑂𝐾𝑇(𝑓, 𝑚), the first slow-time phase term will be corrected to match 

the ideal result, however there will be an extra term because of the Doppler 

ambiguity: 

 
𝑒𝑥𝑝 [−𝑗

4𝜋

𝑐
(𝑓 + 𝑓𝑐)𝑣𝑛𝑇𝑟] 𝑒𝑥𝑝[𝑗2𝜋𝐹𝑛]

= 𝑒𝑥𝑝 [−𝑗
4𝜋

𝑐
𝑚𝑓𝑐𝑣𝑇𝑟] 𝑒𝑥𝑝 [𝑗2𝜋𝐹

𝑓𝑐
(𝑓𝑐 + 𝑓)

𝑚] 

(2.14) 

 

This equation shows that the corrected term must be considered in the case of 

ambiguity factor F, which is defined as 

 
𝐶(𝐹) = exp[−𝑗2𝜋𝐹

𝑚𝑓𝑐
(𝑓𝑐 + 𝑓)

] 
(2.15) 

 

Then the KT algorithm in (2.12) is compensated by the multiplication by C(F) as 

 𝑂𝐾𝑇−𝑎𝑚𝑏(𝑓,𝑚) = 𝐶(𝐹)𝑂𝐾𝑇(𝑓,𝑚) (2.16) 

 

After taking the inverse Fourier transform (IFT) in f domain, the range is compressed 

and the profiles are realigned as 

 𝑜𝐾𝑇(�̃�, 𝑚) = IFT[𝑂𝐾𝑇−𝑎𝑚𝑏(𝑓,𝑚)] (2.17) 
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In the case of unknown Doppler ambiguity factor, the ambiguity compensation in 

(2.16) can be executed after coherent integration using all possible values of 

ambiguity factor F. In the end, we select the one giving the maximum amplitude 

peaks. As a remark, Doppler ambiguity can be searched for and found during 

detection phase. Namely, Doppler ambiguity factor is already known in the tracking 

mode of the radar, which allows us to significantly reduce the computational 

complexity of the KT algorithm during tracking. 

 

Coherent Integration after Keystone Transform 

Coherent integration can be carried out by taking discrete FT (DFT) of 𝑜𝐾𝑇(�̃�, 𝑛) in 

(2.17) with respect to slow time n, as follows: 

 

𝑜𝐾𝑇(�̃�, 𝑘) = ∑ 𝑜𝐾𝑇(�̃�, 𝑛)𝑒𝑥𝑝 (−
𝑗2𝜋𝑛𝑘

𝑁
)

𝑁−1

𝑛=0

 

(2.18) 

 

where k is Doppler frequency index. 

2.2.2 SPECIAL CASE: LFM SIGNAL 

In this section we analyze the KT when the transmitted baseband signal is LFM, 

which will be the case in the simulations performed in this work. 

The received signal at the nth pulse after downconversion, can be written as 

 𝑠(�̃�, 𝑛) = 𝑝[�̃� − 𝜏(𝑛)]𝑒𝑥𝑝[−𝑗2𝜋𝑓𝑐𝜏(𝑛)]𝑒𝑥𝑝(−𝑗2𝜋𝑓𝑑 �̃�) + 𝑤(�̃�) (2.19) 

 

Suppose that the transmitting baseband signal of PD radar is LFM signal (chirp 

pulse) that is given as 

 𝑝(𝑡) = 𝑟𝑒𝑐𝑡(𝑡/𝑇0)𝑒𝑥𝑝(𝑗𝜋µ𝑡
2) (2.20) 

 



 

 

14 

where T0 is the pulsewidth, µ =
𝐵

𝑇0
is the modulation rate, and rect(t/ T0) is the 

rectangular function with duration T0. 

The Fourier transform (FT) of (2.19) over �̃�  is 

 𝑆(𝑓, 𝑛) = 𝑃(𝑓 + 𝑓𝑑) ∙ 𝑒𝑥𝑝[−𝑗2𝜋(𝑓 + 𝑓𝑐 + 𝑓𝑑)𝜏(𝑛)] +𝑊(𝑓) (2.21) 

 

 
𝑆(𝑓, 𝑛) = 𝑃(𝑓 + 𝑓𝑑) ∙ 𝑒𝑥𝑝 [−𝑗

4𝜋

𝑐
(𝑓 + 𝑓𝑐 + 𝑓𝑑)(𝑅0 + 𝑣𝑛𝑇𝑟)]

+𝑊(𝑓) 

(2.22) 

 

The matched filter output can be represented as follows 

 𝑂(𝑓, 𝑛) = 𝑆(𝑓, 𝑛)𝑃∗(𝑓) (2.23) 

 

FT of the chirp signal can be found applying stationary phase principle  [23] as 

follows: 

 
𝑃(𝑓) ≅ 𝑟𝑒𝑐𝑡 (

𝑓

𝐵
) exp(−

𝑗𝜋𝑓2

𝑘
) 

(2.24) 

 

 

This approximation improves as the time-bandwidth product BT0 increases. If 𝑃(𝑓) 

is substituted in (2.23)  

 

𝑂(𝑓, 𝑛) =
1

√𝑘
𝑟𝑒𝑐𝑡 (

𝑓 +
𝑓𝑑
2

𝐵 − 𝑓𝑑
)𝑒𝑥𝑝 (−𝑗

𝜋

𝑘
𝑓𝑑

2) 𝑒𝑥𝑝 {−𝑗2𝜋𝑓 [𝜏(𝑛) +
𝑓𝑑
𝑘
]} 

 

 × 𝑒𝑥𝑝{−𝑗2𝜋(𝑓𝑑 + 𝑓𝑐)𝜏(𝑛)} + 𝑃∗(𝑓)𝑊(𝑓) (2.25) 

 

Substituting (2.9) into (2.25), the rescaling operation is done and there is no more 

coupling between f and m axes 

 
𝑂𝐾𝑇(𝑓,𝑚) = 𝑂(𝑓,

𝑚𝑓𝑐
𝑓𝑐 + 𝑓

) 
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=
1

√𝑘
𝑟𝑒𝑐𝑡 (

𝑓 +
𝑓𝑑
2

𝐵 − 𝑓𝑑
)𝑒𝑥𝑝 (−𝑗

𝜋

𝑘
𝑓𝑑

2) 𝑒𝑥𝑝 {−𝑗2𝜋𝑓 [𝜏0 +
𝑓𝑑
𝑘
]} 

 

 × 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝑑𝑚𝑇𝑟) 𝑒𝑥𝑝{−𝑗2𝜋(𝑓𝑑 + 𝑓𝑐)𝜏0} + 𝑃∗(𝑓)𝑊(𝑓) (2.26) 

 

After taking the IFT in f domain, range compression and realignment of profiles are 

completed as 

 
𝑜𝐾𝑇(�̃�, 𝑚) =

(𝐵 − 𝑓𝑑)

√𝑘
𝑠𝑖𝑛𝑐 {(𝐵 − 𝑓𝑑) (�̃� − 𝜏0 −

𝑓𝑑
𝑘
)} 

 

 × 𝑒𝑥𝑝(−𝑗𝜋𝑓𝑑 �̃�) 𝑒𝑥𝑝[−𝑗𝜋𝑓𝑑𝜏0]  

 × 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝑐𝜏0) 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝑑𝑚𝑇𝑟) + 𝑤′(�̃�) (2.27) 

 

Range Displacement due to Doppler Shift: 

After eliminating the range migration, the maximum amplitude of the pulses in CPI 

are aligned to be in the same range bin at �̃� = 𝜏0 +
𝑓𝑑

𝑘
. This range bin corresponds to 

the range for the pulse 𝑛 = 𝑚 = 0. Substituting k=B/ T0 and taking B=1/dt, peaks 

are found at 

 

 
�̃� =  𝜏0 +

𝑓𝑑
𝑘
=  𝜏0 +

𝑓𝑑𝑇0
𝐵

= 𝜏0 +𝑓𝑑 ⋅ 𝑇0 ⋅ 𝑑𝑡 
(2.28) 

 

where dt is the sampling period. Hence, there will be discretization loss, if  𝑓𝑑 ⋅ 𝑇0 is 

not an integer. 

In addition, the peak does not appear at  �̃� = 𝜏0 as we desire. Rather, there will be a 

shift in fast time which is is proportional to the Doppler shift. The range 

measurement will include an error since the range is found depending on this peak 

time. The error in the range measurement can be written as 
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𝑅𝐴 =

𝑐𝑓𝑑𝑇0
2𝐵

 
(2.29) 

 

Figure 2.4 shows that range displacement is proportional to Doppler shift. Range is 

measured as RA instead of initial range R0 between target and radar. 

 

 

Figure 2.4. Illustration of the effect of range-Doppler coupling 

 

Illustration of Rescaling in KT: 

We provide an illustration of the rescaling operation in KT to make it hopefully 

clearer to readers. 

The received signal at the nth  pulse after down conversion, can be rewritten as 

 𝑠(�̃�, 𝑛) = 𝑝[�̃� − 𝜏(𝑛)]𝑒−𝑗2𝜋𝑓𝑐𝜏0𝑒𝑥𝑝[−𝑗2𝜋𝑓𝑐𝑛∆𝜏] (2.30) 

The round-trip delay can be expressed as follows 
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𝜏(𝑛) = 2
𝑅0+𝑣𝑛𝑇𝑟

𝑐
= 𝜏0 + 𝑛∆𝜏  and  ∆𝜏 =

2𝑣𝑇𝑟

𝑐
 

where v>0 implies a receding target. 

 

The Fourier transform of 𝑠(�̃�, 𝑛) over �̃�  is 

 𝑆(𝑓, 𝑛) = 𝑃(𝑓)𝑒−𝑗2𝜋(𝑓+𝑓𝑐)𝜏0 ∙ exp[−𝑗2𝜋(𝑓 + 𝑓𝑐)𝑛∆𝜏] (2.31) 

 

where 𝑃(𝑓) = 𝐼𝐹𝑇{𝑝(𝑡)}. 

The matched filter output in fast time frequency domain can be expressed as 

 

 𝑂(𝑓, 𝑛) = 𝑃∗(𝑓)𝑆(𝑓, 𝑛) (2.32) 

 

 𝑂(𝑓, 𝑛) = 𝑄(𝑓)𝑒−𝑗2𝜋(𝑓+𝑓𝑐)𝜏0 ∙ 𝑒𝑥𝑝[−𝑗2𝜋(𝑓 + 𝑓𝑐)𝑛∆𝜏] (2.33) 

 

 𝑜(�̃�, 𝑛) = 𝑞[�̃� − 𝜏(𝑛)]𝑒−𝑗2𝜋𝑓𝑐𝜏0𝑒𝑥𝑝[−𝑗2𝜋𝑓𝑐𝑛∆𝜏] (2.34) 

 

where 𝑞(𝑡), 𝑄(𝑓) are defined in (2.2) and (2.3). 

We recall that Keystone transform is defined as rescaling slow time index using 𝑛 =

𝑚𝑓𝑐/(𝑓𝑐 + 𝑓). Namely, we obtain non-integers 𝑚 = 0,
𝑓𝑐+𝑓

𝑓𝑐
,
2(𝑓𝑐+𝑓)

𝑓𝑐
… ,

(𝑁−1)(𝑓𝑐+𝑓)

𝑓𝑐
 

from integers = 0,1, … ,𝑁 − 1 . After substituting 𝑛 = 𝑚𝑓𝑐/(𝑓𝑐 + 𝑓) into 𝑂(𝑓, 𝑛) in 

(2.33), the rescaling operation is done and there is no more coupling between f and 

m axes 

 
𝑂𝐾𝑇(𝑓,𝑚) = 𝑂(𝑓,

𝑚𝑓𝑐
𝑓𝑐 + 𝑓

) 
  

 𝑂𝐾𝑇(𝑓,𝑚) = 𝑄(𝑓)𝑒−𝑗2𝜋(𝑓+𝑓𝑐)𝜏0 ∙ exp[−𝑗2𝜋𝑓𝑐𝑚∆𝜏] (2.35) 
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The first exponential in this expression is a constant phase shift corresponding to 

round-trip time delay of the first pulse. The second exponential term 

exp[−𝑗2𝜋𝑓𝑐𝑚∆𝜏] = exp [−𝑗4𝜋𝑓𝑐
𝑚𝑣𝑇𝑟

𝑐
] corresponds to the Doppler shift where 𝑚𝑇𝑟 

represents slow time and 𝑣 is the Doppler velocity. We do not have the exponential 

term 𝑒𝑥𝑝[−𝑗2𝜋𝑓𝑛∆𝜏] representing coupling between f and n anymore.  

Since m values are not integer, we find 𝑂𝐾𝑇(𝑓,𝑚)    samples by interpolating 𝑂(𝑓, 𝑛) 

for each value of as shown in  Figure 2.5. In this figure, black full-dots show 𝑂(𝑓, 𝑛) 

samples in range-frequency f and slow time index n domain, whereas red circles 

show 𝑂𝐾𝑇(𝑓,𝑚) samples in range-frequency f and slow time index m axes.  

 

 

Figure 2.5 Illustration of KT in slow time - range frequency domain 

 

We have shown in (2.26) that rescaling 𝑂(𝑓, 𝑛) eliminates the range migration.  In 

order to find 𝑂𝐾𝑇(𝑓,𝑚) for integer values of m, we recover 𝑂(𝑓, 𝑛) for non-integer 

f=0 

n=1 n=2 n=3 

f=B/2 

f=-B/2 
n=0 

m=1 m=2 m=3 m=0 

f 

n 
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values of n. We can recover by sinc interpolation based on truncating the Shannon 

interpolation formula as proposed in [16]   and [17]. 

 

𝑂𝐾𝑇(𝑓,𝑚) = ∑𝑂(𝑓, 𝑛)𝑠𝑖𝑛𝑐[𝑛𝛼 − 𝑚]

𝑁−1

𝑛=0

 

(2.36) 

where 𝛼 =
𝑓𝑐+𝑓

𝑓𝑐
. 

In summary, 𝑂(𝑓, 𝑛) is given for 𝑛 ∈ {0,1, … ,𝑁 − 1}, and we want to recover values 

for 𝑛 ∈ {0,1/𝛼,… , (𝑁 − 1)/𝛼}.  

Ideally, desired interpolated signal will be as follows 

 𝑂𝐾𝑇(𝑓,𝑚) = 𝑂(𝑓,
𝑚

𝛼
) (2.37) 

 

for 𝑚 = 0,1,… , 𝑁 − 1.         

Figure 2.6 illustrates the interpolation operation in KT. Known samples of O(f,n) at 

𝑛 = 0, 1, 2, … ,𝑁 − 1 are shown by black full-circles, and,  samples to be recovered 

at 𝑛 = 0,1/𝛼,… , (𝑁 − 1)/𝛼 are shown by red circles. 

 



 

 

20 

 

 

 

2.2.3 DISCRETE TIME ANALYSIS OF KT 

We consider discrete time sampling of relevant signals in this section. Assume we 

have sampling period 𝑇𝑠 and pulse repetition interval 𝑇𝑟 is composed of L samples. 

 𝑇𝑟 = 𝐿𝑇𝑠 (2.38) 

 

Fast time sampling indices 𝑙 = 0,1, … , 𝐿 − 1  can be represented as �̃� = 𝑙𝑇𝑠. The 

slow time index is  𝑛 = 0,1, … ,𝑁 − 1. We can express received and down-converted 

signal 𝑠(�̃�, 𝑛) in discrete-fast time as given 

 𝑠𝑑[𝑙, 𝑛] = 𝑠(𝑙𝑇𝑠, 𝑛) (2.39) 

 

where  

n 
0 1 2 3 4 

m 
0 α 2α 3α 4α 1 2 3 4 

O(f,n) 

1/α 2/α 3/α 4/α 

known samples 

samples to be 

found 

Figure 2.6. Illustration of interpolation in Keystone Transform 
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 𝑠(�̃�, 𝑛) = 𝑝(�̃� − 𝜏(𝑛))𝑒−𝑗2𝜋𝑓𝑐(𝜏0+𝑛∆𝜏) (2.40) 

 

We can obtain 1-dimensional discrete signal in fast time domain by sampling 𝑝(�̃�) 

with period 𝑇𝑠  

 𝑝1𝑑[𝑙] = 𝑝(𝑙𝑇𝑠) (2.41) 

 

Using Shannon interpolation formula [24], we can write 

  

 
𝑝(�̃�) =∑𝑝1𝑑[𝑘]𝑠𝑖𝑛𝑐 (

�̃� − 𝑘𝑇𝑠

𝑇𝑠
)

𝑘

 
(2.42) 

 

 

Substituting �̃� − 𝜏(𝑛) in place of �̃� in (2.42),  

 

 
𝑝(�̃� − 𝜏(𝑛)) =∑𝑝1𝑑[𝑘]𝑠𝑖𝑛𝑐 (

�̃� − 𝜏(𝑛) − 𝑘𝑇𝑠

𝑇𝑠
)

𝑘

 
(2.43) 

 

We can define 2-dimensional continuous fast-time, discrete slow-time signal 

𝑝𝑐(�̃�, 𝑛) = 𝑝(�̃� − 𝜏(𝑛)). Then, we have following expression  

 

 
𝑝𝑐(�̃�, 𝑛) =∑𝑝1𝑑[𝑘]𝑠𝑖𝑛𝑐 (

�̃� − 𝜏(𝑛) − 𝑘𝑇𝑠

𝑇𝑠
)

𝑘

 
(2.44) 

 

We can obtain 2-dimensional discrete signal 𝑝2𝑑[𝑙, 𝑛] by sampling 𝑝𝑐(�̃�, 𝑛) with 

sampling period 𝑇𝑠.  

 𝑝2𝑑[𝑙, 𝑛] = 𝑝𝑐(𝑙𝑇𝑠, 𝑛) = 𝑝(𝑙𝑇𝑠 − 𝜏(𝑛)) (2.45) 
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Then, we obtain following expression after substituting (2.44) in (2.45) 

 
𝑝2𝑑[𝑙, 𝑛] =∑𝑝1𝑑[𝑘]𝑠𝑖𝑛𝑐 (

𝑙𝑇𝑠 − 𝜏(𝑛) − 𝑘𝑇𝑠

𝑇𝑠
)

𝑘

 
 

 

 

 

 𝑝2𝑑[𝑙, 𝑛] = 𝑝1𝑑[𝑙] ∗ ℎ𝑑[𝑙, 𝑛] (2.46) 

 

where ℎ𝑑[𝑙, 𝑛] = 𝑠𝑖𝑛𝑐 (𝑙 −
𝜏(𝑛)

𝑇𝑠
), 

By employing (2.40), (2.45) and using the definition in (2.39), we can express 

𝑠𝑑[𝑙, 𝑛] in the following form: 

 𝑠𝑑[𝑙, 𝑛] = 𝑝2𝑑[𝑙, 𝑛]𝑒
−𝑗2𝜋𝑓𝑐(𝜏0+𝑛∆𝜏) (2.47) 

 

Taking DFT along l, 

 

𝑆𝑑[𝑘, 𝑛] = (𝑠𝑑[𝑙, 𝑛])𝑙
𝐷𝐹𝑇 =∑𝑠𝑑[𝑙, 𝑛]𝑒

−𝑗2𝜋𝑘𝑙/𝐿

𝐿−1

𝑙=0

 

 

(2.48) 

 

 

where 𝑘 = 0,1, …𝐾 − 1.    

After substituting 𝑠𝑑[𝑙, 𝑛], 

 

𝑆𝑑[𝑘, 𝑛] = 𝑒−𝑗2𝜋𝑓𝑐(𝜏0+𝑛∆𝜏)∑𝑝2𝑑[𝑙, 𝑛]𝑒
−
𝑗2𝜋𝑘𝑙
𝐿

𝐿−1

𝑙=0

 

 

(2.49) 

 

Since 𝑝2𝑑[𝑙, 𝑛] can be expressed as output of ideal fractional delay filter (FDF) as  

given in (2.46), we obtain the following expression by employing the ideal frequency 

response of FDF [25]  
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∑𝑝2𝑑[𝑙, 𝑛]𝑒
−
𝑗2𝜋𝑘𝑙
𝐿

𝐿−1

𝑙=0

= 𝐷𝐹𝑇{𝑝2𝑑[𝑙, 𝑛]} 

= 𝑃1𝑑[𝑘]𝑒𝑥𝑝 [−𝑗2𝜋
𝑘

𝐿

𝜏(𝑛)

𝑇𝑠
] 

 

 

 

(2.50) 

 

where 𝑃1𝑑[𝑘] is DFT of 𝑝1𝑑[𝑙] along l. Then, 

 
𝑆𝑑[𝑘, 𝑛] = 𝑃1𝑑[𝑘]𝑒𝑥𝑝 [−𝑗2𝜋

𝑘

𝐿

𝜏(𝑛)

𝑇𝑠
] 𝑒−𝑗2𝜋𝑓𝑐(𝜏0+𝑛∆𝜏). 

 

(2.51) 

 

DFT of the discrete-time matched filter output along discrete fast-time is  

 𝑂𝑑[𝑘, 𝑛] = 𝑃1𝑑
∗[𝑘]𝑆𝑑[𝑘, 𝑛], (2.52) 

 

 
𝑂𝑑[𝑘, 𝑛] = 𝑃1𝑑

∗[𝑘]𝑃1𝑑[𝑘]𝑒
−𝑗2𝜋(𝑓𝑐+

𝑘
𝐿𝑇𝑠

)𝜏0𝑒
−𝑗2𝜋(𝑓𝑐+

𝑘
𝐿𝑇𝑠

)𝑛∆𝜏
 

 

(2.53) 

 

where 𝑄𝑑[𝑘] = 𝑃1𝑑
∗[𝑘]𝑃1𝑑[𝑘] = |. . |2 is the DFT of 𝑞𝑑[𝑘] = 𝑝1𝑑[𝑙] ∗ 𝑝1𝑑

∗[−𝑙]. It 

is obvious that there is a coupling between the range frequency index k and the slow 

time index n in the exponential term 𝑒
−𝑗2𝜋(𝑓𝑐+

𝑘

𝐿𝑇𝑠
)𝑛∆𝜏

 in (2.53), which causes the 

range migration. 

 

We can define a new frequency 𝑓𝑘 =
𝑘

𝐿𝑇𝑠
  and substitute in [ , ]dO k n  

 𝑂𝑑[𝑘, 𝑛] = 𝑄𝑑[𝑘]𝑒
−𝑗2𝜋(𝑓𝑐+𝑓𝑘)𝜏0𝑒−𝑗2𝜋(𝑓𝑐+𝑓𝑘)𝑛∆𝜏 (2.54) 

 

Now perform KT by / ( )c c kn mf f f    

 𝑂𝑑−𝐾𝑇[𝑘, 𝑚] = 𝑄𝑑[𝑘]𝑒
−𝑗2𝜋(𝑓𝑐+𝑓𝑘)𝜏0𝑒−𝑗2𝜋𝑓𝑐𝑚∆𝜏 (2.55) 

 

where 0,1,..., 1m N  . 
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Note that there is no coupling between the range frequency index k and the slow time 

index n. Hence, the range migration has been removed and the derivation is valid for 

discrete time. 

 

Sampling Theorem Perspective on KT: 

The analytical derivation of KT is composed of two steps in the literature: (i) 

rescaling slow-time = 𝑚𝑓𝑐/(𝑓𝑐 + 𝑓) , and (ii) compensating for the unwanted effect 

of rescaling in the case of the Doppler ambiguity. We find it helpful to show that the 

derivation can be done by using the sampling theorem, as it has not been found 

explicitly in the literature. 

We rewrite the matched filter output in range frequency – continuous slow time 

domain referring to (2.8), 

 
𝑂(𝑓, 𝑡𝑠) = 𝑄(𝑓)𝑒𝑥𝑝[−𝑗2𝜋(𝑓 + 𝑓𝑐)𝜏0]𝑒𝑥𝑝 [−𝑗2𝜋(𝑓 + 𝑓𝑐)

2𝑣𝑡𝑠
𝑐

] 
(2.56) 

 

 

where 𝑡𝑠 denotes slow-time. We define 𝑥𝑐(𝑡𝑠) = 𝑂(𝑓, 𝑡𝑠) as 1-dimensional 

continuous slow-time signal for particular value of range frequency 𝑓.  

To simplify the analysis, we assume that 𝑥𝑐(𝑡𝑠)  is composed of only the coupling 

term as follows: 

 𝑥𝑐(𝑡𝑠) = 𝑒𝑥𝑝{𝑗2𝜋𝑓0𝑡𝑠} (2.57) 

 

where 𝑓0 = [
2𝑣

𝑐
(𝑓 + 𝑓𝑐) +

𝐹

𝑇𝑟
]. We can include the Doppler ambiguity factor F in the 

expression in order to consider the effect of ambiguous Doppler referring to (2.13). 
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Actually, we have the MF output signal in discrete slow-time sampled by pulse 

repetition frequency (PRF) 𝑓𝑠1 = 1/𝑇𝑟. Sampling the signal 𝑥𝑐(𝑡𝑠) with a sampling 

frequency  𝑓𝑠1 = 1/𝑇𝑟, we obtain 

 

 𝑥1𝑑[𝑛] = 𝑒𝑥𝑝{𝑗2𝜋𝑓0𝑇𝑟𝑛} 
 

 

                                                = 𝑒𝑥𝑝 {𝑗2𝜋 [
2𝑣

𝑐
(𝑓 + 𝑓𝑐) +

𝐹

𝑇𝑟
] 𝑇𝑟𝑛} 

(2.58) 

 

The expression 𝑥1𝑑[𝑛] shows the MF output signal in discrete slow-time. Since we 

want to get rid of the coupling between 𝑓 and 𝑛 in (2.58), the desired output is 

𝑒𝑥𝑝 {𝑗2𝜋 [
2𝑣

𝑐
𝑓𝑐] 𝑇𝑟𝑛}. The desired output can be obtained by sampling the 

continuous time 𝑥𝑐(𝑡𝑠) with another sampling frequency. 

Thus, we sample continuous time 𝑥𝑐(𝑡𝑠) with sampling frequency 𝑓𝑠2 =
𝑓+𝑓𝑐

𝑓𝑐𝑇𝑟
  to 

obtain 

 𝑥2𝑑[𝑛] = 𝑒𝑥𝑝{𝑗2𝜋𝑓1𝑇𝑟𝑛} 
 

(2.59) 

where 𝑓1 = 𝑓𝑐
2𝑣

𝑐
. 

In summary, we have samples of 𝑥1𝑑[𝑛] for n=0,1,...,N-1 and we want to 

reconstruct 𝑥2𝑑[𝑛].  

After sampling 𝑥𝑐(𝑡𝑠) with a sampling frequency 1 1/s rf T , 

 

 

  

𝑥1(𝑡𝑠) = 𝑥𝑐(𝑡𝑠)∑𝛿(𝑡𝑠 − 𝑛𝑇𝑟)

𝑛

=∑𝑥𝑐(𝑛𝑇𝑟)𝛿(𝑡𝑠 − 𝑛𝑇𝑟)

𝑛

 

 

(2.60) 

   

 𝑥1𝑑[𝑛] = 𝑥𝑐(𝑛𝑇𝑟) (2.61) 
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where 𝛿() is the unit impulse function, or Dirac delta function. We refer to a system 

that implements the operation of (2.61) as an ideal continuous-to-discrete-time 

converter, and we show it in block diagram form as indicated in  

 

Figure 2.7 Block diagram representation of an ideal continuous-to-discrete-time 

(C/D) converter. 

 

Continuous time FT (CTFT) of 𝑥𝑐(𝑡𝑠) and 𝑥1(𝑡𝑠)  can be written as 

  𝐶𝑇𝐹𝑇{𝑥𝑐(𝑡𝑠)} = 𝑋𝑐(𝑓𝑠) = 𝛿(𝑓𝑠 − 𝑓0) (2.62) 

 

where 𝑓𝑠 denotes the frequency corresponding to slow-time. 

CTFT of 𝑥1(𝑡𝑠)  can be found by employing  𝑋1(𝑓𝑠) =
1

𝑇𝑟
∑ 𝑋𝑐(𝑓𝑠 + 𝑘𝑓𝑠1)𝑘  [26] 

   

  
𝐶𝑇𝐹𝑇{𝑥1(𝑡𝑠)} = 𝑋1(𝑓𝑠) =

1

𝑇𝑟
∑𝛿(𝑓𝑠 − 𝑓0 + 𝑘𝑓𝑠1)

𝑘

 
(2.63) 

 

CTFT of 𝑥𝑐(𝑡𝑠) and 𝑥1(𝑡𝑠) are given in Figure 2.8 and Figure 2.9. 

 

 

 

 

C/D 
𝑥𝑐(𝑡𝑠) 𝑥[𝑛] = 𝑥𝑐(𝑡𝑠) 

𝑇𝑟 



 

 

27 

 

 

 

 

 

 

We can infer from Figure 2.8 and Figure 2.9 that 𝑋𝑐(𝑓𝑠) can be obtained by 

performing two operations on 𝑋1(𝑓𝑠) 

(i) filtering 𝑋1(𝑓𝑠) with a rectangular filter of width 1/𝑇𝑟 and multiplying by 

𝑇𝑟, 

(ii) shifting the output of (i) by  
𝐹

𝑇𝑟
  in frequency domain 

We can express these operations as follows: 

   

  
𝑋𝑐(𝑓𝑠) = 𝑋1 (𝑓𝑠 −

𝐹

𝑇𝑟
) 𝑇𝑟𝑟𝑒𝑐𝑡 ((𝑓𝑠 −

𝐹

𝑇𝑟
)𝑇𝑟) 

(2.64) 

   

After taking IFT of (2.64) , we have 

   

  
𝑥𝑐(𝑡𝑠) = 𝑒𝑥𝑝 (−𝑗

2𝜋

𝑇𝑟
𝐹𝑡𝑠) (𝑥1(𝑡𝑠) ∗ 𝑠𝑖𝑛𝑐 (

𝑡𝑠
𝑇𝑟
)) 

 

(2.65) 

Substituting (2.60) in (2.65) , 

𝑓𝑠 
𝑓0 𝐹

𝑇𝑟
 

𝑋𝑐(𝑓𝑠) 

1 

Figure 2.8. CTFT of  𝑥𝑐(𝑡𝑠) 

𝑓𝑠 

𝑋1(𝑓𝑠) 

−𝑓𝑠1
2

 
𝑓𝑠1
2

 
𝑓𝑠1 2𝑓𝑠1 

... ... 

1

𝑇𝑟
 

Figure 2.9.  CTFT of   𝑥1(𝑡𝑠) 



 

 

28 

   

  

𝑥𝑐(𝑡𝑠) = 𝑒𝑥𝑝 (−𝑗
2𝜋

𝑇𝑟
𝐹𝑡𝑠)((∑𝑥𝑐(𝑡𝑠)𝛿(𝑡𝑠 −𝑚𝑇𝑟)

𝑚

) ∗ 𝑠𝑖𝑛𝑐 (
𝑡𝑠
𝑇𝑟
)) 

 

(2.66) 

   

  
𝑥𝑐(𝑡𝑠) = 𝑒𝑥𝑝 (−𝑗

2𝜋

𝑇𝑟
𝐹𝑡𝑠)∑𝑥𝑐(𝑚𝑇𝑟)𝑠𝑖𝑛𝑐 (

𝑡𝑠 −𝑚𝑇𝑟
𝑇𝑟

)

𝑚

 

 

(2.67) 

Substituting  (2.61) into (2.67), 

   

  
𝑥𝑐(𝑡𝑠) = 𝑒𝑥𝑝 (−𝑗

2𝜋

𝑇𝑟
𝐹𝑡𝑠)∑𝑥1𝑑[𝑚]𝑠𝑖𝑛𝑐 (

𝑡𝑠 −𝑚𝑇𝑟
𝑇𝑟

)

𝑚

 

 

(2.68) 

Hence, we can reconstruct 𝑥𝑐(𝑡𝑠) from 𝑥1𝑑[𝑛]. 

We finally obtain 𝑥2𝑑[𝑛] by sampling continuous time 𝑥𝑐(𝑡𝑠) with a sampling 

frequency 𝑓𝑠2 =
𝑓+𝑓𝑐

𝑓𝑐𝑇𝑟
. Substituting 𝑡𝑠 = 𝑛

𝑓𝑐𝑇𝑟

𝑓+𝑓𝑐
 

 

 

   

  
𝑥2𝑑[𝑛] = 𝑒𝑥𝑝 (−𝑗2𝜋𝐹

𝑓𝑐
𝑓 + 𝑓𝑐

𝑛)∑𝑥1𝑑[𝑚]𝑠𝑖𝑛𝑐 (𝑛
𝑓𝑐

𝑓 + 𝑓𝑐
−𝑚)

𝑚

 

 

(2.69) 

 

Note that, the expression (2.69) includes the same operations given in (2.12), (2.15) 

and (2.16). Thus, we have shown the derivation of KT using the sampling theorem 

and we obtain the same result. 

 

Doppler ambiguity correction 
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2.2.4 FAST IMPLEMENTATION WITH CZT 

The application of KT to chirp signal using sinc interpolation kernel was presented 

in [16]    and [17]. It is noted that when the accumulation time is long, the pulse 

number N will be very large. In that case, the algorithm is computationally 

burdensome. In [27] Chirp-Z interpolation algorithm was proposed and investigated 

in detail. In [22] a modified algorithm based on the fast implementation of KT using 

CZT algorithm is proposed. A fast KT using CZT is employed, whose main idea is 

to implement FFT over the slow time variable instead of interpolation and 

sequentially decreases the algorithm’s complexity. In this section, we introduce CZT 

and provide a summary of the fast KT implementation method using CZT. 

Review of CZT [28] 

CZT employs the idea of expressing z-transform on a spiral contour as a discrete 

convolution and thus FFT operations can be used to compute the z-transform 

efficiently. CZT is the K-element z-transform of sequence x(n), where W and A are 

scalars which specify the contour in the z-plane on which the z-transform is 

computed. A is the complex starting point, W is a complex scalar describing the 

complex ratio between points on the contour (point spacing). A and W are complex 

numbers are of the form 𝐴 = 𝐴0𝑒
𝑗2𝜋𝜃0, 𝑊 = 𝑊0𝑒

𝑗2𝜋𝜙0 
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(a) 

(b) 

Figure 2.10.  An illustration of independent parameters of the CZT: the 

correspondence of (a) a z-plane contour to (b) an s-plane contour through the 

relation 𝑧 = 𝑒𝑠𝑇. 

 

Figure 2.10 illustrates the correspondence of (a) a z-plane contour to (b) an s-plane 

contour through the relation 𝑧 = 𝑒𝑠𝑇. The contour in the z-plane (a spiral or "chirp" 

contour) is described by 

 

 

  

𝑧𝑘 = 𝐴𝑊−𝑘,             𝑘 = 1,2, … , 𝐾          (2.70) 

K-point CZT of the N points input signal x(n) becomes 
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 𝑋[𝑘] =∑𝑥(𝑛)(𝐴𝑊−𝑘)−𝑛

𝑛

 

𝑋[𝑘] =∑𝑥(𝑛)𝐴−𝑛𝑊𝑛𝑘

𝑛

 

 

 

(2.71) 

 

 

 

Let us substitute 𝑛𝑘 =
𝑛2+𝑘2−(𝑘−𝑛)2

2
  into  

(2.71) 

 𝑋[𝑘] =∑𝑥𝑛𝐴
−𝑛𝑊(𝑛2/2)𝑊(𝑘2/2)𝑊−(𝑘−𝑛)2/2

𝑛

 
(2.72) 

 

In fact, (2.72) can be thought as a three-step process 

1) Form a new sequence 𝑦𝑛 = 𝑥𝑛𝐴
−𝑛𝑊(𝑛2/2)  

2) Convolve yn with the sequence defined as 𝑣𝑛 = 𝑊−𝑛2/2 to give a sequence 

 𝑔𝑘 = ∑ 𝑦𝑛𝑣𝑘−𝑛𝑛   

3) Multiply 𝑔𝑘 with 𝑊𝑘2/2  to give 𝑋[𝑘]:   𝑋[𝑘] = 𝑔𝑘𝑊
𝑘2/2   

 

Figure 2.11.  Implementation of the CZT as a circular convolution 

The implementation of the CZT as a circular convolution is demonstrated in Figure 

2.11. 

Implementation of the CZT can be done by a circular convolution operation or 

equivalently as two FFT, one IFFT and four complex multiplication operations (see 

Figure 2.12). Since we will have constant values for W, we will need to take FFT of 
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𝑊−𝑛2/2  at only first time step. Hence, 1 FFT, 1 IFFT and 4 complex multiplications 

will be sufficient for CZT operation. 

 

Figure 2.12.  Implementation of the CZT using FFT's 

KT Implementation using CZT 

In KT implementation, the CZT parameters 𝐴 and 𝑊 are set as 

 𝐴 = 1 

𝑊 = 𝑒
(−𝑗

2𝜋
𝑁
(𝑓+𝑓𝑐)
𝑓𝑐

)
 

(2.73) 

 

Since we take 𝐴 = 1 , the contour in the z-plane is not a spiral any more. We take z-

transform on the unit circle as in Discrete Fourier Transform (DFT), the difference 

with respect to DFT is the spacing between points on the contour. Figure 2.13 shows 

the contour in the z-plane where the phase distance between points is 
2𝜋

𝑁

(𝑓+𝑓𝑐)

𝑓𝑐
. 

We note that when the radar is in tracking mode it is not necessary to search the 

entire velocity range as the velocity is already found during detection and we assume 

that the velocity does not change significantly from detection to tracking mode. 
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Consequently, the contour becomes only an arc on the unit circle instead of a full 

circle. Therefore, it brings less computational complexity in tracking mode. 

 

 

Figure 2.13 Illustration of the CZT parameters to be set for KT in z-plane 

In the standard KT implementation, the compensation of the Doppler ambiguity is 

usually performed after KT, as shown (2.16). However, Doppler ambiguity 

compensation is done prior to CZT in the KT implementation via CZT [22]. 

 𝑂𝑎𝑚𝑏(𝑓, 𝑛) = 𝐶(𝐹)𝑂(𝑓, 𝑛) (2.74) 

 

where 𝐶(𝐹) and 𝑂(𝑓, 𝑛) are given in (2.15) and (2.8), respectively. 

CZT of 𝑂𝑎𝑚𝑏(𝑓, 𝑛) is taken along slow-time 𝑛, 

 𝑂𝑐𝑧𝑡(𝑓, 𝑘) = 𝐶𝑍𝑇𝑛{𝑂𝑎𝑚𝑏(𝑓, 𝑛)} (2.75) 

 

where 𝑘 is the Doppler frequency index. 
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Then, we can obtain coherent integration output in fast-time, Doppler frequency 

domain by taking IFT of 𝑂𝑐𝑧𝑡(𝑓, 𝑘) in range frequency 𝑓, 

 𝑦𝑐𝑜ℎ−𝑐𝑧𝑡(�̃�, 𝑘) = 𝐼𝐹𝑇𝑓{𝑂𝑐𝑧𝑡(𝑓, 𝑘)} (2.76) 

 

Unlike KT via sinc interpolation, we do not need to take FFT over slow-time for 

coherent integration when we apply KT using CZT. Figure 2.14 shows block 

diagrams of KT algorithm utilizing sinc and CZT interpolation algorithms. 

The CZT eliminates the need for interpolation, while providing the desired point 

spacing. The FT over slow time with different granularity  can be performed by the 

CZT algorithm using FFT. The KT algorithm utilizing CZT achieves high speed in 

real-time processing due to fast FFT operations. 

According to [22], the interpolation algorithm given in [16] demands the following 

number of complex multiplications: 2

2( / 2) log ( )MN MN N  ,whereas the KT using 

CZT requires the following number of complex multiplications:

2 2( 2 (3/ 2) log (3/ 2) log ( ))M L N L L N N     , where L should satisfy the 

equation 2mL   , and 2 1L N  . 

In summary, it has been shown that fast KT based on CZT has less computational 

complexity.  
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2.3 ANALYSIS AND IMPLEMENTATION ASPECTS OF RFT 

In this section, we examine the RFT algorithm, one of the well-known coherent 

integration methods for the moving targets with range migration, from analysis and 

implementation aspects. Before analyzing the RFT in detail, it is helpful to review 

briefly the inspirational method Radon transform (RT) and a method very similar to 

RT, the Hough transform. 

2.3.1 Radon Transform [29] 

The Radon transform (RT) takes his name from J. Radon who presented the 

description of a function in terms of its (integral) projections [30]. The most famous 

RT application is in medical imaging, providing the theoretical principles for 
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Figure 2.14 Comparison of implementations of KT via sinc interpolation and CZT 
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computerized tomography devices. Nevertheless, there are also other RT 

applications in numerous fields such as radar signal processing [31] [32] [3]. 

Carretero-Moya [3] proposed to employ RT to detect small-targets in sea clutter. 

 

A typical coordinate system for setting up the Radon transform is the following. 

Figure 2.15 shows a line Lρ in R2 with distances from the origin O = (0,0) in x,y-

plane is further characterized by an angle 𝜃 where 𝐵 = (𝜌cos𝜃, 𝜌sin𝜃) is a fixed 

point on L. 

 

Figure 2.15.  Typical coordinate system for the RT 

 

 

So each line has two parameters , 𝜃 . Let 𝐴 =  (𝑥, 𝑦) denote a variable point on 

𝐿𝜌(𝜃). Then, if the distance from A to B equals t, we have  

 𝑥 = 𝜌cos𝜃 − 𝑡sin𝜃 

𝑦 = 𝜌sin𝜃 + 𝑡cos𝜃 

(2.77) 

 

To define the Radon transform we assume that 𝑓: ℝ2 → ℝ  is continuous and 

integrable, and we write 

𝑂 

𝐵 

𝐿𝜌(𝜃) 

𝜃 

𝜌 

𝑥 

𝑦 



 

 

37 

 𝑅𝑓(𝜌, 𝜃) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑡
∞

−∞
,      (𝑥, 𝑦) ∈ 𝐿𝜌(𝜃) 

 

(2.78) 

In general, the RT 𝑅𝑓(𝜌, 𝜃) of a two-dimensional function 𝑓(𝑥, 𝑦) is calculated by 

integrating along slanted lines: 

 

𝑅𝑓(𝜌, 𝜃) = ∬𝑓(𝑥, 𝑦)

∞

−∞

𝛿(𝜌 − 𝑥cos𝜃 − 𝑦sin𝜃)𝑑𝑥𝑑𝑦 

 

(2.79) 

where δ is the Dirac delta function. 

The line-like features on the input image appears as single points in ρ − θ space after 

taking Radon transform. Indeed, the RT is a well-known feature detector especially 

for finding lines in a noisy background. 

2.3.2 Hough Transform [33] 

Paul Hough  proposed the Hough transform (HT) [34] to detect complex patterns in 

binary image processing. There are also some applications of the HT in radar signal 

processing. Carlson [6] [7] [8] introduced the HT based methods for noncoherent 

integration of range migrating targets.  

The HT implementation utilizes the parametric representation of lines passing 

through a point in the image plane indexed by x-y coordinates. Figure 2.16 shows an 

illustration of HT of a straight line. A point P(x,y) in the image plane is defined by a 

set of intersecting lines at P(x,y). Each line passing through can be represented by its 

parametric representation using 

 𝜌 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 (2.80) 

 

where (x,y) is the pixel coordinate in the image plane, ρ is the length of the 

perpendicular from the origin to the line, and 𝜃 is the angle made by the 

perpendicular with the x-axis. Every line that passes through P(x,y) is represented by 

a unique 𝜌 − 𝜃 combination. These 𝜌 − 𝜃 values are used to create a two 
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dimensional parametric space called Hough space where a point in image space is 

represented by a sinusoidal curve. 

 

Figure 2.16.  Straight line Hough transform. (a) Collinear points in image plane. (b) 

Intersecting sinusoids in Hough space. (c) Implementation as a two-dimensional 

array of accumulators. 

The Hough transform can be used to detect collinear points by studying the Hough 

space as shown in Figure 2.16 (b). Points P1(x,y), P2(x,y), and P3(x,y), lying on the 

same line, share the same 𝜌 − 𝜃 combination,𝜌𝑙 − 𝜃𝑙 , which implies that the 

sinusoidal curves of the collinear points intersect in the Hough space. 

The Hough transform is generally applied on an edge map to detect straight lines. It 

is implemented using a two-dimensional 𝜌 − 𝜃 accumulator array as shown in Figure 

2.16 (c). For every edge pixel coordinate, the 𝜌 values are computed for angles from 

𝜃𝑚𝑖𝑛 to 𝜃𝑚𝑎𝑥 , and the bins corresponding to these 𝜌 − 𝜃 combinations are 

incremented. After processing the entire edge map, the array is scanned for 

accumulators that give high values or peaks. A peak in the array represents 

intersection in the parametric space and hence a straight line in the edge map. 
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2.3.3 The Relation between RT and HT 

The Radon and Hough transforms are very closely related. According to van Ginkel 

[35], both RT and HT are mappings but in two different paradigms: reading and 

writing. In RT, we consider how a data point in the destination space is obtained 

from the data in the source space: the reading paradigm. In HT, we consider how a 

data point in the source space maps onto data points in the destination space: the 

writing paradigm. Another difference is that the HT is a discretization of the 

(continuous) RT. Usually, the RT is considered in the context of computed 

tomography, and the HT is considered in that of shape detection. 

2.3.4 Radon Fourier Transform [19] 

The integration loss of the Hough transform (HT) and Radon transform (RT)-based 

methods can be large compared to a coherent integration method because the phase 

fluctuation is not compensated for [36] [33] [6] [7] [8]. Therefore, it cannot be used 

when the SNR is extremely low. RFT [19] [20] [21] has been proposed to perform 

long-time coherent integration while there is linear range migration.  RFT-based 

method is an optimal detector under the white Gaussian noise background [21]. 

However high peak blind speed side lobes (BSSL) can exist in the RFT-output [20]. 

Target's energy is concentrated to a focused peak in 2-dimensional space by jointly 

searching along velocity and range of the moving target. 

We assume that a radar transmits LFM signal and signal model is as given in (2.4) 

and (2.20). The range between the radar and the target can be expressed as given: 

 

 𝑅(𝑡𝑠) = 𝑅0 + 𝑣𝑡𝑠 (2.81) 
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where v  denotes the radial velocity between the target and the radar, 𝑡𝑠 is the slow-

time, and Ro  is the range location of the target when the first pulse was emitted, i.e., 

at time 𝑡𝑠 = 0. 

After substituting (2.20) and (2.81) in (2.4), two-dimensional echoes of received 

signal is as follows: 

 

 

𝑠(�̃�, 𝑡𝑠) = 𝐴𝑟𝑟𝑒𝑐𝑡 (
�̃� −

2𝑅(𝑡𝑠)
𝑐

𝑇0
) 

𝑒𝑥𝑝(𝑗𝜋𝑘 (�̃� −
2𝑅(𝑡𝑠)

𝑐
)

2

) 𝑒𝑥𝑝 (−
𝑗4𝜋𝑓𝑐𝑅(𝑡𝑠)

𝑐
) 

 

 

 

 

 

(2.82) 

 

where Ar is the complex amplitude of the echo. 

The matched filter impulse response is ℎ(𝑡) = 𝑝∗(−𝑡) where 𝑝(𝑡) is given as in 

(2.20). After the pulse compression, the target’s 2-dimensional echoes: 

 
𝑠(�̃�, 𝑡𝑠) = 𝐴𝑟𝑚𝑠𝑖𝑛𝑐 (𝜋𝐵 (�̃� −

2𝑅(𝑡𝑠)

𝑐
)) exp (−

𝑗4𝜋𝑓𝑐𝑅(𝑡𝑠)

𝑐
) 

 

(2.83) 

 

where 𝐴𝑟𝑚 = 𝐵𝑇0𝐴𝑟. Substituting 𝑟 = 𝑐�̃�/2 

 
𝑠(𝑟, 𝑛) = 𝐴𝑟𝑚𝑠𝑖𝑛𝑐 (

2𝜋𝐵(𝑟 − 𝑅(𝑡𝑠))

𝑐
) exp(−

𝑗4𝜋𝑓𝑐𝑅(𝑡𝑠)

𝑐
) 

 

(2.84) 

 

We define relative ranges with respect to a pre-set range center 𝑅𝑐: 

 

 𝑅(𝑡𝑠) = (𝑅0 − 𝑅𝑐) + 𝑅𝑐 + 𝑣𝑡𝑠 = 𝑅𝑠𝑇 + 𝑅𝑐 + 𝑣𝑡𝑠  

(2.85) 
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where the initial relative range 𝑅𝑠𝑇 = 𝑅0 − 𝑅𝑐. Define 𝑟𝑠 = 𝑟 − 𝑅𝑐 and substitute 

(2.85) into (2.84), we have 

 
𝑠(𝑟𝑠, 𝑡𝑠) = 𝐴𝑇𝑠𝑖𝑛𝑐 (

𝜋(𝑟𝑠 − 𝑅𝑠(𝑡𝑠))

𝜌𝑟
) exp(−2𝜋𝑓𝑑𝑡𝑠) 

 

(2.86) 

 

where  𝑅𝑠(𝑡𝑠) = 𝑅𝑠𝑇 + 𝑣𝑡𝑠  , 𝜌𝑟 =
𝑐

2𝐵
  is the range resolution, 𝐴𝑇 is a complex 

backscattering coefficient. 

From (2.86), it is seen that 𝑠(𝑟𝑠, 𝑡𝑠) has peak amplitude values when   

𝑟𝑠 = 𝑅𝑠(𝑡𝑠) = 𝑅𝑠𝑇 + 𝑣𝑡𝑠 holds. The equation 𝑟𝑠 = 𝑅𝑠𝑇 + 𝑣𝑡𝑠 corresponds to a 

straight line with a slope 𝑣 in the 𝑡𝑠 − 𝑟𝑠 plane. In other words, the range-compressed 

echoes of the moving target are approximately distributed along a straight line in the 

𝑡𝑠 − 𝑟𝑠 plane. From Figure 2.17, the target’s range migration line in the 𝑡𝑠 − 𝑟𝑠 plane 

may also be found by other two parameters (𝜌, 𝜃), where polar angle 𝜃 is defined as 

the anticlockwise angle from the range walk line to 𝑛𝑇𝑟-axis as 𝜃 = 𝑐𝑜𝑡−1(−𝑣). 

Also, polar distance 𝜌 is defined as the minimum distance between the range walk 

and the𝑡𝑠 − 𝑟𝑠 plane origin as 𝜌 = 𝑅𝑠𝑇 sin 𝜃. 
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Figure 2.17.  Representation of the moving target’s range-compressed echoes, 

which are approximately distributed along a straight line in the 𝑡𝑠 − 𝑟𝑠 plane. 

We define Doppler filter function 

 
𝐻𝜃𝑇

(𝑡𝑠) = exp (𝑗
4𝜋𝑓𝑐 cot(𝜃) 𝑡𝑠

𝑐
) 

(2.87) 

 

Reminding that 𝑣 = −cot(𝜃), this filter can be used to compensate phase differences 

due to Doppler changes along slow time. Then, we introduce a kind of special 

integration on 𝑠(𝑟𝑠, 𝑡𝑠) as 

 
𝐺𝜌𝜃(𝜌, 𝜃) = ∬𝑠(𝑟𝑠, 𝑡𝑠)δ(𝜌 − 𝑡𝑠 cos 𝜃 − 𝑟𝑠 sin 𝜃)𝐻𝜃𝑇

(𝑡𝑠)𝑑𝑡𝑠𝑑𝑟𝑠 
(2.88) 

 

Coherent integration of the pulses during integration interval is done via (2.88).  RT 

of 𝑠(𝑟𝑠, 𝑡𝑠) is given for comparison as 

 
𝑅𝜌𝜃(𝜌, 𝜃) = ∬𝑠(𝑟𝑠, 𝑡𝑠)δ(𝜌 − 𝑡𝑠 cos 𝜃 − 𝑟𝑠 sin 𝜃)𝑑𝑡𝑠𝑑𝑟𝑠 

(2.89) 

 

𝑡𝑠 

𝑟𝑠 

𝑅𝑠(𝑡𝑠) = 𝑅𝑠𝑇 + 𝑣𝑡𝑠 

𝜃 

𝜌 

𝑅𝑠𝑇 
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Obviously, we have |𝐺𝜌𝜃(𝜌, 𝜃)| ≥ |𝑅𝜌𝜃(𝜌, 𝜃)| because the phase differences 

between pulses are not compensated for (2.89). 

 

 

2.3.5 LOW COMPLEXITY RFT DETECTOR USING CZT [21] 

In this section, an efficient RFT implementation proposed by Yu et. al [21] is 

reviewed. The standard RFT implementation may require considerably high 

computational load  for high number of pulses during CPI. CZT has been employed 

for parameter searching to reduce complexity of the RFT detector. 

Suppose smn is transmitted signal with slow-time index m and fast-time index n (𝑚 =

1, … ,𝑀; 𝑛 = 1,… ,𝑁). Then these received echo samples can be represented as a 

binary decision problem as given 

H0: 𝑥𝑚𝑛 = 𝑤𝑚𝑛           

H1: 𝑥𝑚𝑛 = 𝑠𝑚𝑛 + 𝑤𝑚𝑛          

where 𝑥𝑚𝑛 are received echoes, 𝑤𝑚𝑛  is white Gaussian noise, 𝐻0 and 𝐻1 are the 

hypotheses for target and no target, respectively. 

A low complexity detector can be implemented in four steps as described below: 

Step 1: 

An FFT operation is performed along the fast time axis. 

 𝑋𝑚�̂� = 𝐹𝐹𝑇𝑛{𝑥𝑚𝑛} (2.90) 

   

where �̂� is the range frequency index. 

Step 2: 

 Matched filtering is accomplished in the discrete-frequency-domain  as 
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 𝑌𝑚�̂� = 𝐻�̂�𝑋𝑚�̂� (2.91) 

           

where 𝐻�̂� = 𝐹𝐹𝑇𝑛{𝑝
∗(−𝑛𝑇𝑠)} is the frequency response of the matched filter, 𝑇𝑠 is 

the sampling period, and 𝑝(𝑡) is the transmitted baseband signal. Then we have the 

matched filter output 𝑌𝑚�̂� obtained in frequency domain. 

Step 3: 

We can compensate the phase differences between the received pulses (due to the 

motion of the target)  and integrate for each range frequency index. 

  𝑍𝑘�̂� =∑𝐶�̂�
𝑘𝑚

𝑚

𝑌𝑚�̂� 
(2.92) 

where 𝐶�̂� = 𝑒𝑥𝑝 (𝑗4𝜋∆𝑣
𝑓𝑐+𝑓�̂�

𝑐
𝑇𝑟) ,  𝑘 = −

𝑁𝑣

2
+ 1,… ,

𝑁𝑣

2
  is velocity search index, 

∆𝑣 is the velocity search resolution, 𝑓�̂� is the range frequency, 𝑁𝑣 is the number of 

searched velocities. We remind that frequency response of matched filter output 

includes the exponential term 𝑒𝑥𝑝 (−𝑗2𝜋𝑣𝑛
𝑓𝑐+𝑓�̂�

𝑐
𝑇𝑟) as given in (2.8). 

Consequently, 𝐶�̂� is employed for compensation of this term. 

Thus, we apply a Doppler filter to compensate  phase differences for each possible 

velocity cell as we show for standard RFT in (2.87). 

Note that (2.92) is CZT of 𝑌𝑚�̂� as given in definition of CZT (2.71). Thus, RFT 

employs CZT for searching velocity by setting CZT parameters as 𝐴 = 1 and 𝑊 =

𝑒𝑥𝑝 (𝑗4𝜋∆𝑣
𝑓𝑐+𝑓�̂�

𝑐
𝑇𝑟). 

 

 
𝑍𝑘�̂� =∑𝐶

�̂�

(
1
2
)(𝑚2+𝑘2−(𝑚−𝑘)2)

𝑚

𝑌𝑚�̂� 
 

 

 
       = 𝐶

�̂�

(
1

2
)𝑘2

∑ 𝐶
�̂�

−(
1

2
)(𝑚−𝑘)2

(𝐶
�̂�

(
1

2
)𝑚2

𝑌𝑚�̂�)𝑚  
 

 
       = 𝐶

�̂�

(
1

2
)𝑘2

(𝐶
�̂�

−(
1

2
)𝑚2

∗ (𝐶
�̂�

(
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Since (2.93) is a convolution operation, we can rearrange using FFT and IFFT 

operations. 

 
𝑍𝑘�̂� = 𝐶�̂�

𝑘2/2
𝐼𝐹𝐹𝑇𝑚 {𝐹𝐹𝑇𝑚 {𝐶�̂�

−𝑚2/2
} ∙ 𝐹𝐹𝑇𝑚 {𝐶�̂�

𝑚2/2
𝑌𝑚�̂�}} 

 

(2.94) 

 

which equals to 𝑍𝑘�̂� = 𝐶𝑍𝑇{𝑌𝑚�̂�} . 𝑍𝑘�̂� yields maximum coherent integration 

magnitude when the searching velocity index 𝑘 corresponds to the true velocity. 

Step 4:  

Coherent integration output in range-Doppler frequency domain can be obtained by 

taking IFFT of CZT output along range frequency. We have test statistic 

 𝑇𝑘𝑛 = |𝐼𝐹𝐹𝑇�̂�{𝑍𝑘�̂�}| (2.95) 

 

Binary decision can be done by comparing the test statistic with a certain threshold.

  

Figure 2.18 shows implementation steps of the fast RFT detector in a block 

diagram. 

FFT 

over 

n 

Matched func. 

ℎ(𝑛) = 𝑝∗(−𝑛𝑇𝑠) 

CZT 

xm
𝑋𝑚�̂�  

𝑌𝑚�̂�  𝑍𝑘�̂�  IFFT 

over 

n 

Tkn 

FFT 

over n 𝐻�̂�  

|.| 

Figure 2.18.  Low complexity RFT detector 
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For comparison, the computational complexity of the standard RFT is 𝑂(𝑁𝑣𝑀𝑁) 

and that of the RFT employing CZT is 𝑁𝐽log 𝐽  where 𝐽 = 𝑀 + 𝑁𝑣, 𝑁 is the number 

of range bins in PRI, 𝑀 is the number of pulses to be integrated, 𝑁𝑣 is the number of 

searched velocities. Accordingly, RFT can be implemented efficiently by using CZT 

for searching for parameters. 
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CHAPTER 3  

3 EVALUATION OF KT IN REALISTIC ENVIRONMENT (TARGET 

FLUCTUATION AND CLUTTER) 

We examine the performance of the KT in realistic environments such as clutter and 

target fluctuation in this chapter. Firstly, we introduce sea and rain clutter models, 

and clutter suppression methods. Secondly, we provide background information 

about target fluctuation models. Then, we investigate the detection of fluctuating 

targets in case of range migration. Next, we examine the range migration problem in 

sea and rain clutter. Finally, we look over the detection of range migrating targets in 

range migrating clutter, and propose an efficient method to remove jointly the 

target’s and clutter’s range migration. 

3.1 Clutter Modeling and Suppression 

 In this section, we present background information about rain and sea clutter 

models, and explain methods and metrics for radar clutter suppression. 

3.1.1 Sea Clutter Model [37] 

It is unavoidable for radars working in sea to come across returned signals from the 

sea surface, generally called sea clutter. Sea clutter is undesired for many 

applications due to interference with the desired backscattering from the target. It is 

essential for the radar system designer to comprehend the characteristics of sea 

clutter in order to acquire appropriate signal processing approaches and to estimate 

performance in various cases. In order to fulfil this aim, it is an important task to 

develop statistical clutter models. These models have to be capable of combining the 
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spatial and temporal properties of the return for broad range of environmental 

conditions and various radar properties. 

The clutter backscatters can be characterized by using many features including  

 the area reflectivity, σ0 

 the amplitude distribution of the clutter amplitudes or power 

 the Doppler spectrum of the clutter returns 

 the spatial variation of the clutter return 

3.1.1.1 Sea Clutter Reflectivity 

The area reflectivity σ0 is described by mean value of radar cross-section (RCS) of 

the backscatters divided by unit area. The clutter RCS can be found by 𝜎0𝐴 if the 

illuminated surface area is 𝐴.  Due to continuously varying and composite structure 

of the sea surface, there is a large fluctuation around the average RCS 𝜎0.   

3.1.1.2 Amplitude Statistics of Sea Clutter 

The average clutter power is represented by the area reflectivity 𝜎0. The 

instantaneous power received from a particular resolution cell changes around the 

average value. Two components mainly cause the reflectivity to fluctuate:  

1. The change in local surface shape, grazing angle, ripple density, and other 

factors associated with the passage of long waves and swell, cause the return from 

local tiny surfaces to change around the average reflectivity.  

2. There are returns from lots of tiny structures in a single resolution cell, and 

there is a relative motion with respect to each other. Hence, this causes the returns to 

interfere. (usually called speckle). 
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Speckle is usually defined as a uniform field of numerous random scatterers that 

shows Gaussian scattering statistics. 

We usually model the clutter as speckle when the sea swell wavelength is much less 

than the resolution cell and grazing angle is less than ten degrees. The amplitude 

distribution is Rayleigh in this case. The clutter‘s temporal decorrelation time is 

reasonably short, about between five and ten msec. Also, the clutter decorrelates 

reasonably well between pulses for frequency agile radars.  

When the grazing angle decreases, and the radar resolution gets larger, the amplitude 

distribution of the clutter starts to have a longer ‘tail’. In such a case, the clutter 

backscatters are generally called to become spiky and the clutter pdf is characterized 

by K-distribution. 

Not only does the clutter of high resolution radar resemble no longer like a Rayleigh 

distribution, but the correlation characteristics in time and space also becomes 

dissimilar to the correlation characteristics of speckles. Especially, the decorrelation 

of clutter with frequency agility does not exist anymore. The longest correlation 

times are observed in seconds instead of milliseconds.  

The compound K-distribution [37] model represents the clutter with two 

components: (i) a relatively slowly changing underlying intensity z which is gamma 

distributed (ii) a more rapidly changing multiplicative noise component which 

modulates the underlying mean level. This component x has a Rayleigh distributed 

probability density function. 

 

3.1.1.3 Spatial Correlation in Sea Clutter 

There is a close relationship between the correlation of the clutter in space and the 

sea swell or sea wave patterns.  
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The correlation length of the sea surface in the range direction is denoted by ρ, and 

considered as a length characteristic of wind waves. It is found that [38]: 

 
𝜌 =

𝜋

2

𝑊2

𝑔
(3𝑐𝑜𝑠2𝜃 + 1)1/2 

(3.1) 

where 𝜃 is the angle between the line of sight and the wind direction, W is wind 

velocity W, and g is the gravitational acceleration. 

Mostly, the effect of the correlation of the slowly varying gamma component on the 

radar performance is more important [39]. Due to this reason, it is more important to 

pay attention while generating gamma distributed random processes with determined 

correlation statistics.   

3.1.1.4 Temporal Correlation in Sea Clutter 

The form of the correlation between pulses is described by the use of the composite 

model: over a short period the reflected signals from any clutter resolution cell are 

always Rayleigh-distributed, indicating a return from multiple scatterers, and this 

speckle component has a Chi-distributed underlying average value, which describes, 

e.g. , the average value variation of clutter spikes or the periodic amplitude change 

while looking up or down the sea swell. The speckle component from any single 

resolution cell has a short temporal decorrelation period (1-10 msec) and is fully 

decorrelated from pulse to pulse over frequency agility. In contrast, temporal 

decorrelation period of the average value is long and does not change with frequency 

agility. Consequently, the temporal autocorrelation function of the sea clutter has a 

fast drop-off, which is followed by a slower periodic decay.  

If the observation and processing intervals of sea clutter signals reflected from the 

individual resolution cell are much shorter than the average decorrelation time of the 

modulating process (usually the case for numerous operational radar systems), then 

according to the composite scattering model the return strength of these signals is 

proportional to the sea clutter radar cross-section per unit area, but is essentially 

constant during the time a single resolution cell is illuminated. Thus, the modulating 
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process exhibits negligible temporal fluctuations within the radar coherent 

processing interval or dwell. In this case, the overall correlation properties of the 

returned signals are dictated by those of the rapidly varying component of the sea 

clutter. 

 

3.1.2 Rain Clutter Model 

We introduce rain clutter model before analyzing the effects of rain clutter on the 

performance of KT in the following sections. Except for weather radars, the 

backscatter from precipitation is not desired and interferes with the radar’s operation. 

It is necessary to develop statistical rain clutter models depending on radar and 

scenario parameters before developing suppression strategies. We need to 

characterize amplitude and spectral characteristics of rain clutter returns. 

Furthermore, the attenuation of the radar signal can be considerable for frequencies 

significantly above 9 GHz [40]. 

 

Rain Clutter Attenuation  

 

Rain clutter attenuation [40] depends on altitude, radar frequency and humidity. 

Two-way rain clutter attenuation can be approximated as  

 𝛼 = 3.7 × 10−4𝑓1.85   (dB/km)/(mm/h)  (3.2) 

 

where f is carrier frequency in GHz. 

 

Amplitude Characteristics of Rain Clutter [41] 
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Backscattering from precipitation particles results from many small rain drops, no 

one of which is dominant. The amplitude is Rayleigh distributed. 

The mean volume reflectivity of rain can be expressed as  

 𝜂 =
𝜋5|𝐾|2𝑍

𝜆4
 m-1   (3.3) 

   

where λ is the carrier wavelength, K is fairly constant 0.9 for rain. The term Z - called 

the volume reflectivitiy -  includes the wavelength dependency and is expressed in 

mm6/m3. It is shown in the form 

 𝑍 = 𝑎𝑟𝑏  (3.4) 

   

where 𝑟 is rainfall rate in mm/h. The most commonly accepted relationship is 𝑍 =

200𝑟1.6. Table 3.1, derived from both theoretical and experimental data, gives 

relation of reflectivity with frequency and precipitation type [41]. 

 

Table 3.1 Rain clutter reflectivity 

 

Signal to clutter ratio (SCR) of rain clutter is given as [42]  

 𝑆𝐶𝑅 =
𝜎

𝑅2𝜂∆𝑅𝜃𝜑
  (3.5) 
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where 𝜎 is target RCS, R is the radial range between radar and scatterer, ΔR is range 

resolution, θ is half power antenna azimuth beamwidth in radians, 𝜑 is half power 

antenna elevation beamwidth in radians. 

 

Spectral Characteristics of Rain Clutter 

The returns from rain clutter is often considered to have a Gaussian power spectral 

density. It can be characterized by standard deviation 𝜎𝑣  and mean velocity 𝑣0 in 

m/s. Nathanson and Reilly [41] have shown that Doppler spectra of rain clutter is 

determined by four mechanisms: 

• Wind shear: change in wind velocity in various altitudes. 

 𝜎𝑠ℎ𝑒𝑎𝑟 = 0.42𝑘𝑅𝜑  (3.6) 

   

where 𝑘 is the velocity gradient in the vertical direction of the beam in m/s/km, 𝑅 is 

the slant range to clutter in km and 𝜑 is the two-way half power antenna elevation 

beamwidth in radians. For pencil beam radars, 𝑘 = 4 m/s/km is suggested for an 

arbitrary radar azimuth. 

• Turbulences: unpredictable sudden change in wind. 

It is not dependent on height and up to 1.5 km altitude, σturb  is approximately equal 

to 1 m/s as found in many experiments.  

• Fall velocity distribution  

𝜎𝑓𝑎𝑙𝑙 = 1.0 sin𝜓 where 𝜓 is the elevation angle. 

• Beam broadening 

𝜎𝑏𝑒𝑎𝑚 = 0.42𝑣0𝜃 sin 𝛽 where 𝑣0 is the wind speed in the beam center in m/s, 𝜃 is 

the half power antenna azimuth beam width in radians and 𝛽 is the azimuth angle 

relative to the wind direction at beam center in radians. 
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If we assume these mechanisms are independent, the variance of Doppler velocity 

spectrum as sum of variances comes from each mechanism. 

 𝜎𝑣
2 = 𝜎𝑠ℎ𝑒𝑎𝑟

2 + 𝜎𝑏𝑒𝑎𝑚
2 + 𝜎𝑡𝑢𝑟𝑏

2 + 𝜎𝑓𝑎𝑙𝑙
2  (3.7) 

   

The mean velocity of the rain clutter can be represented as follows [1]: 

 𝑣0 = 𝑣𝑝 cos(𝐴𝑝 − 𝐴𝑏) − 𝑣𝑤 cos(𝐴𝑤 − 𝐴𝑏) + 𝑣𝑧 sin𝜓  (3.8) 

   

where 𝐴𝑝 is the azimuth and 𝑣𝑝 is the magnitude of the radar platform velocity, 𝐴𝑤 

is the azimuth and 𝑣𝑤 is the magnitude of the wind velocity, 𝐴𝑏 is the azimuth of the 

beam axis, 𝑣𝑧 is the rain fall velocity. 

3.1.2.1 Rain Clutter Simulation 

We can generate rain clutter samples assuming amplitude of the rain clutter is 

Rayleigh distributed and has a Gaussian-shaped Doppler spectra. SIRP [43] is a well 

known approach for modeling non-Gaussian random variables. In order to generate 

correlated Rayleigh distributed random vector y with a desired covariance matrix C,  

i. We first generate uncorrelated zero-mean unity variance Gaussian random 

vectors x1 and x2. 

ii. Then we obtain desired real and complex components of random vector y 

using linear transformation as follows 

 Re{𝐲} = 𝐆𝐱𝟏, Im{𝐲} = 𝐆𝐱𝟐    (3.9) 

   

where 𝐆 = 𝐄𝑫𝟏/𝟐  . 

E is the matrix of normalized eigenvectors of the covariance matrix C, and D is the 

diagonal matrix of eigenvalues of C. 

A Gaussian-shaped clutter spectrum with unity power can be represented as given 

 
𝑆(𝑓) =

1

√2𝜋𝜎𝑓
𝑒
−

𝑓2

2𝜎𝑓
2
   

(3.10) 
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The velocity standard deviation has been converted to standard deviation of clutter 

power spectrum in Hz using the Doppler relation: 

 𝜎𝑓 =
2𝜎𝑣

𝜆
   (3.11) 

   

The corresponding auto-correlation function is 

 𝑅(𝜏) = 𝑒−4𝜋𝜎𝑓
2𝜏2   (3.12) 

   

Hence the covariance matrix can be represented as 

 1 ( ) . ... (( 1) )

( ) 1 . ... (( 2) )

. . . ... .

. . . ... .

(( 1) ) (( 2) ) . ... 1

r r

r r

r r

R T R N T

R T R N T

R N T R N T

 
 


 
 
 
 
   

C
  

(3.13) 

where Tr is the pulse repetition interval. 

 

 

3.1.3 Clutter Suppression 

We review clutter suppression methods such as optimal MTI filters and PD 

processing, clutter suppression performance metrics, and provide simulation results 

of some examples. 

3.1.3.1 Optimum  MTI Filter [42] 

Consider a complex signal column vector 𝐲𝑚 = [𝑦[𝑚]𝑦[𝑚 − 1]…𝑦[𝑚 − 𝑁 + 1]]
𝑇
 

and a filter weight vector 𝐡 = [ℎ[0]…ℎ[𝑁 − 1]]𝑇, where [∙]𝑇 denotes matrix 

transpose. For simplicity 𝐲𝑚 will be written as simply 𝐲. A single output sample 𝑧  
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of the filter is represented by 𝑧 = 𝐡𝑇𝐲. The target signal vector is shown by t and the 

interference vector by w, so that 𝐲 = 𝐭 + 𝐰. Denote the expected value of 𝐰∗𝒘𝑻 as 

the interference covariance matrix SI. 

When the covariance matrix of the interference I
S   is known, coefficients of the 

optimum clutter suppression filter are given by the equation 

 

𝐡 = [
ℎ[0]
⋮

ℎ[𝑁 − 1]
] = 𝐒𝐈

−1𝐭∗   

(3.14) 

 

Target signal can be represented as follows if the target moves with a constant radial 

velocity 

 𝐭 = [1𝑒−𝑗2𝜋𝑓𝐷𝑇⋯𝑒−𝑗2𝜋𝑓𝐷(𝑁−1)𝑇]
𝑻
   (3.15) 

   

where 𝑓𝐷  is Doppler frequency. 

The filtered data can be shown as  

 𝑧 = 𝐡𝑇𝐲 = 𝐭𝐻(𝐒𝐈
−1)∗𝐲   (3.16) 

   

where [∙]𝐻 denotes Hermitian transpose. 

Thus, the fast time/slow time data sequence is high-pass filtered in the slow-time, 

producing another fast time/slow time data matrix where the clutter components are 

attenuated. 

 

3.1.3.2 Pulse Doppler (PD) Processing 

PD processing differs from optimum MTI filtering in that high-pass filtering in the 

slow-time domain is replaced by explicit spectral analysis of slow-time data for each 

range bin. Thus, the result is a data matrix whose dimensions are fast time and 

Doppler frequency. 
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The aim is to pass the data through a bank of filters, each of them tuned to a different 

Doppler frequency. The filtered data can be presented to optimum MTI filter as 

follows  

 𝑧 = 𝐭𝐻(𝐒𝐈
−1)∗𝐲 = 𝐭𝐻𝐲𝑤   (3.17) 

   

where 𝐲𝑤 = (𝐒𝐈
−1)∗𝐲 = [𝑦𝑤[0]… 𝑦𝑤[𝑁 − 1]]

𝑻
  shows whitened data. 

 𝑧 = ∑ 𝑦𝑤[𝑘]𝑒
𝑗2𝜋𝑘𝑓𝐷𝑇𝑁−1

𝑘=0    (3.18) 

   

We can perform the same operation using N-point DFT assuming 𝑓𝐷 = −
𝑛

𝑁𝑇
  : 

 𝑧[𝑛] = ∑ 𝑦𝑤[𝑘]𝑒
−𝑗2𝜋𝑘𝑛/𝑁𝑁−1

𝑘=0    (3.19) 

   

 𝐳 = 𝐷𝐹𝑇(𝐲𝑤) = [𝑧[0]… 𝑧[𝑁 − 1]]
𝑻
  (3.20) 

   

 𝐳 = 𝐷𝐹𝑇((𝐒𝐈
−1)∗𝐲) (3.21) 

   

Thus, the nth DFT sample corresponds to a Doppler filter bank output assuming 

Doppler frequency 𝑓𝐷 = −
𝑛

𝑁𝑇
, i.e. the Doppler frequency coincides exactly with one 

of the DFT sample frequencies. Because the N-point DFT calculates N different 

outputs from each input vector, actually it applies a bank of N matched filters 

simultaneously, each of them tuned to a different Doppler frequency. The peak value 

of the DFT amplitude is highest when Doppler frequency is exactly 𝑓𝐷 = −
𝑛

𝑁𝑇
, and 

decreases when target Doppler frequency is between DFT sample frequencies. This 

amplitude decrease is defined as Doppler straddle loss.  

Doppler spectrum of a moving target has side-lobes in addition to the main-lobe 

which is centered at 𝑓𝐷. In order to reduce amplitude of these side-lobes, windowing 

can be applied before taking DFT [42]. Then (3.19) becomes as follows 

 𝑧[𝑛] = ∑ 𝑤[𝑘]𝑦𝑤[𝑘]𝑒
−𝑗2𝜋𝑘𝑛/𝑁𝑁−1

𝑘=0    (3.22) 

 

where 𝑤[𝑘] represents coefficients of selected windowing filter. 
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3.1.3.3 Clutter Suppression Performance Analysis 

Some useful figure of merits necessary to analyze clutter suppression performance 

are defined in [42]. The first criterion is clutter attenuation (CA). It is simply as 

follows 

 

 𝐶𝐴 =
𝑐𝑙𝑢𝑡𝑡𝑒𝑟𝑝𝑜𝑤𝑒𝑟𝑎𝑡𝑡ℎ𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑝𝑢𝑡

𝑐𝑙𝑢𝑡𝑡𝑒𝑟𝑝𝑜𝑤𝑒𝑟𝑎𝑡𝑡ℎ𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡
=

𝑃𝐶𝑖𝑛

𝑃𝐶𝑜𝑢𝑡
   (3.23) 

 

Clutter power at the filter output can be calculated analytically  

 𝑃𝐶𝑜𝑢𝑡 = ℎ𝐻𝑆𝐼
−1ℎ   (3.24) 

   

where h is the vector of coefficients of the MTI filter. 

Another measure of the MTI filter performance is the improvement factor (IF), which 

can be defined as ratio of (signal to clutter ratio) SCR at the filter output to the SCR 

at the filter input.  

 𝐼𝐹 =
𝑆𝐶𝑅𝑜𝑢𝑡

𝑆𝐶𝑅𝑖𝑛
=

𝑃𝑆𝑜𝑢𝑡

𝑃𝑆𝑖𝑛

𝑃𝐶𝑖𝑛

𝑃𝐶𝑜𝑢𝑡
= 𝐺 ∙ 𝐶𝐴   (3.25) 

   

where 𝐺 =
𝑃𝑆𝑜𝑢𝑡

𝑃𝑆𝑖𝑛
 is power gain of the filter. The numerator of G (the signal power at 

the filter output) can be expressed as 

 𝑃𝑆𝑜𝑢𝑡 = ℎ𝐻𝐭∗𝐭ℎ   (3.26) 

   

where t is the desired target signal vector. 

Minimum detectable Doppler (MDD) or minimum detectable velocity (MDV) is 

another metric.  Let's define SCR loss as reduction in SCR relative to no clutter case 

- the maximum SCR possible, and "acceptable" value of SCR loss L0 (typical value 

-3dB). MDD and usable Doppler space fraction (UDSF) are illustrated in Figure 3.1. 

MDD is the Doppler shift above which the SCR loss is greater than L0 [44]. 
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Figure 3.1.  Illustration of minimum detectable Doppler 

3.1.3.4 Simulation Results 

Numerical simulations have been performed to show examples for rain clutter 

modeling and clutter suppression. We compared IF for optimum MTI and PD 

processing methods at various scenarios. Radar simulation parameters are listed in 

Table 3.2 and the rain clutter simulation parameters referring to section 3.1.2 are 

listed in Table 3.3.  

Table 3.2 Radar simulation parameters 

Target fluctuation Swerling-0 

Pulse width 30µs 

Bandwidth 20MHz 

Number of pulses, N 64 

PRI 75µs 

Carrier frequency 9GHz 
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Table 3.3 Rain clutter simulation parameters 

Parameter Value Explanation 

R  15000 the slant range to clutter in m 

ΔR 7.5 Range resolution, m 

η -62dB Volume reflectivity of rain for 9.3GHz, 

m-1 

φ2  2.8 the two-way half power antenna elevation 

beamwidth in degree 

k  4 the velocity gradient in the vertical 

direction of the beam in m/s/km 

V0 10 the wind speed in the beam center in m/s 

θ2 2.8 the two-way half power 

antenna azimuth beam width in degree 

β 45 the azimuth angle relative to the 

wind direction at beam center in degree 

ψ 10 the elevation angle in degree 

σturb 1 m/s 

σshear 0.82 m/s 

σbeam 0.16 m/s 

σfall 0.17 m/s 
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v  1.31 Standard deviation of Doppler velocity 

spectrum m/s 

f
 78.6 Standard deviation of Doppler frequency 

spectrum Hz 

V 3.3e4 Volume resolution cell 

SCR -1.92dB Signal to clutter ratio (before considering 

attenuation) 

vz 5 Rain fall velocity, m/s 

vw 8 : upper limit 

Beaufort-4 

Wind speed, m/s 

vp 0 Radar platform velocity, m/s 

Aw - Ab 45 Azimuth angle between beam axis and 

wind, degrees 

v0 6.5 Mean clutter velocity, m/s 

 

 

Figure 3.2 shows improvement factor obtained analytically and by simulations for 

optimum MTI and PD processing clutter suppression methods when mean clutter 

velocity is V0=6.5 m/s and standard deviation of Doppler velocity spectrum is 

σv=1.31 m/s.  
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Figure 3.2. Improvement factor comparison for V0=6.5 m/s and σv=1.31 m/s 

In Figure 3.2, it is observed that IF obtained by analytical calculation and simulation 

results coincide after suppressing the clutter using an optimum MTI filter. Optimum 

MTI filter results in slightly higher IF compared to PD processing. 

Figure 3.3 and Figure 3.4 shows improvement factor for various standard deviation 

of Doppler velocity σv=3.93 m/s and σv=0.1 m/s, respectively.  Comparing Figure 

3.2, Figure 3.3 and Figure 3.4, one can conclude that lower MDV can be obtained 

for lower values of σv. On the other hand, maximum IF does not change significantly 

depending on σv. 
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Figure 3.3. Improvement factor comparison for V0=6.5 m/s and σv=3.93 m/s 

 

 

Figure 3.4.  Improvement factor comparison for V0=6.5 m/s and σv=0.1 m/s 

Figure 3.5 shows the improvement factor when the clutter suppression filter assumes 

V0=0 m/s while true mean clutter velocity is V0=6.5 m/s. It is obvious that there is a 

performance degradation if the correct mean clutter velocity is not known.  
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Figure 3.5.  Improvement factor comparison for V0=6.5 m/s and σv=0.1 m/s when 

clutter suppression filter assumes V0=0 m/s 

We have also investigated how the clutter suppression performance changes when 

correct standard deviation of Doppler velocity spectrum is not known for different 

target velocities. Figure 3.6 and Figure 3.7 present improvement factor versus ratio 

of assumed σv to true σv for MTI filtering and PD processing respectively. The figures 

show that we obtain higher MDV if we assume higher values of σv when we do not 

know exact value of σv. Hence, we can suggest to apply slightly higher values of σv 

in the clutter suppression filter when exact value of Doppler spread is not known. 
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Figure 3.6.  MTI filter - comparison of IF vs assumed Doppler spread of the clutter 

 

Figure 3.7. PD processing - comparison of IF vs assumed Doppler spread of the 

clutter 
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3.2 Target Fluctuation Model  

In chapter 2, we supposed that the echo of an individual target did not change with 

time. However, we usually do not expect the amplitude of the received signal from 

a moving target to be constant [2]. A reasonable way of evaluating the impact of a 

fluctuating cross section is to suppose an acceptable model and to examine it 

analytically. In this section, we examine the target fluctuation models. 

3.2.1  Swerling Target Models 

The Swerling models are based on the probability density function (pdf) and time 

correlation characteristics of the received signals from a target [42]. The Swerling 

models are relevant to a finite set of pulses. A rotating surveillance radar was 

considered in the development of the Swerling models. When the radar beam scans 

through a target (a single scan), it accumulates returns from that target in the proper 

range resolution cell for multiple pulses. If the beam passes through the target, no 

more returns are received until the next scan. As the beam returns to the target 

position; then another set of multiple pulses is received. It is supposed that all of the 

pulses from a single scan are used for detection. Therefore, we are interested in the 

joint statistics of a set of target echo samples from contiguous pulses of a single scan.  

The Swerling models are composed of the four combinations of 2 probability density 

functions (pdf’s) for the individual echo powers and 2 presumptions concerning the 

correlation of pulses during a single sweep, as given in the following table: 
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Table 3.4 Swerling Target Models 

probability density 

function of power 

decorrelation 

scan-to-scan pulse-to-pulse 

exponential 1 2 

chi-square, degree 4 3 4 

 

We assume the pdf of the particular echo powers are either exponential (Swerling 1 

and 2) or fourth-degree chi-square (Swerling 3 and 4). The voltage distributions are 

the Rayleigh and the fourth-degree chi distributions. Regarding the correlation, the 

“scan-to-scan decorrelation” means that all the echoes have the same value during a 

particular scan, drawn from the same pdf. All of the pulses in the next scan are again 

same as one another, but not same as pulses in the previous scan. Rather, their value 

is new, drawn independently from the same pdf. 

3.2.2  Moderately Fluctuating Targets 

There are two main situations that are used in the literature to detect the pulse train 

reflected from a fluctuating target [41]: (i) fast fluctuation where the fluctuation 

correlation time is shorter than PRI (uncorrelated), (ii) slow fluctuation where the 

correlation time is longer than CPI (fully correlated). ). For the target amplitude 

with Rayleigh distribution, the slow fluctuation corresponds to the Swerling-1 

model, and the fast fluctuation corresponds to the Swerling-2 model. In practice, 

medium-speed fluctuating (partially correlated) targets occur, indicating the 

situations between these two extremes, that is, the correlation time of the 

fluctuation is short compared to the total observation time, but longer than the time 

between pulses [45] (0< ρ< 1).  

According to Table 3.4, Swerling-1 target fluctuation model has the assumption of 

scan-to-scan decorrelation. The “scan-to-scan decorrelation” means that all the 
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echoes have the same value during a particular scan, drawn from the same pdf. All 

of the pulses in the next scan are again same as one another, but not same as pulses 

in the previous scan. Rather, their value is new, drawn independently from the 

same pdf. However, it is not be the case in moderately fluctuating targets. We can 

assume that amplitude of target echo is decorrelated throughout a scan 

continuously. That is, amplitude is not fully correlated during a scan. 

Hence, we can model target echo amplitude of moderately fluctuating target as 

correlated Rayleigh random variables.  

Suppose that N represents number of samples in the signal amplitude fluctuation 

process, and Nj, the jth element of N, satisfies the recursion 

𝑁𝑗 = 𝜌𝑁𝑗−1 +√1 − 𝜌2𝑈𝑗, 𝑗 = 2,3, … 

or equivalently in terms of 𝑁𝑗−𝑘 ( k elements before jth element of N ) 

 𝑁𝑗 = 𝜌𝑘𝑁𝑗−𝑘 + ∑ 𝜌𝑖√1 − 𝜌2𝑈𝑗−𝑖
𝑘−1
𝑖=0    (3.27) 

 

with ρ real, 1   , where Uj sequence consists of mean-zero independent complex 

Gaussian random variables with 

 𝐸{𝑈𝑗
2} = 0; 𝐸 {|𝑈𝑗|

2
} = 1 

   

(3.28) 

We can verify it simply if such a recursion begins with a zero-mean complex 

Gaussian random variable 𝑁1 having 

 𝐸{𝑁1
2} = 0; 𝐸{|𝑁1|

2} = 1 

   

(3.29) 

Therefore, the covariance matrix CN of N is represented by 
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 2 1

2

2 3

1 2 3

1 ...

1 ...

1 ...

. . . ... .

... 1

N

N

N
N

N N N

C

  

  

  

  







  

 
 
 
 
 
 
 
 

   

(3.30) 

 

 

 

3.3 Detection of Moderately Fluctuating Targets by Hybrid Integration 

In this section, we present a hybrid integration method to detect moderately 

fluctuating targets. Firstly, we describe the hybrid integration procedure. Secondly, 

we derive the expressions of detection and false alarm probability in hybrid 

integration for four different fluctuation types. Finally, we show simulation results 

after applying hybrid integration method for both static and range-migrating targets. 

3.3.1 Procedure to perform Hybrid Integration 

Integrating signals received from nonfluctuating or slowly-fluctuating targets 

coherently gives better Pd vs SNR performance, while noncoherent integration gives 

better performance for pulse-to-pulse fluctuations [46]. We can integrate the signals 

received from a fluctuating target in a more efficient manner, 

i) divide the observation time into blocks where fluctuation is assumed not 

decorrelated,  

ii) integrate the signals coherently in each block,  

iii) integrate the resultant integrals noncoherently.  
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We want to examine the performance for this kind of hybrid integration. 

Hybrid integration scheme is given in Figure 3.8. Observation time is 

divided into K blocks, each block is a pulse train having N pulses. Each block 

is integrated coherently by collecting N pulses to obtain 𝑦𝑘 's. Then resultant 

integration output z is obtained by integrating 𝑦𝑘 's noncoherently. 

 

Figure 3.8 Hybrid integration scheme 

 

3.3.2  False Alarm and Detection Probability 

We derive the PD and PF expressions for four different cases when hybrid 

integration is performed: 

1. Nonfluctuating target 

2. Fully correlated Swerling-1 target 
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3. Statistically independent fully correlated Swerling-1 target in each block 

4. Statistically independent partially correlated Swerling-1 target in each block 

In cases 3 and 4, K' coherent pulse trains each consisting of N' pulses are transmitted 

for a total of K'N' pulses. Each of the K' pulse trains is transmitted at a different 

frequency, spaced sufficiently far apart that the target fluctuation processes at the 

different frequencies can be assumed to be statistically independent. Analytical 

expressions of PD and PF will be given for the case N=N' and K=K'. K' and N' values 

will be swept in the simulations. 

We assume detection will be based on KN samples of data 𝑠𝑘𝑛 during a CPI, where 

𝑠𝑘𝑛 is the signal received from a point-target. 

H1: 𝑠𝑘𝑛 = 𝑎𝑘𝑛 + 𝑤𝑘𝑛        

H0:  𝑠𝑘𝑛 = 𝑤𝑘𝑛         

where 𝑎𝑘𝑛 is echo amplitude of target, and 𝑤𝑘𝑛 is complex Gaussian noise, in-

phase and quadrature channels each contain i.i.d. ~𝑁(0,
𝜎2

2
). 

3.3.2.1 Case I - Nonfluctuating Target 

For nonfluctuating target model, echo amplitude of target is deterministic, 

  

   𝑎𝑘𝑛 = 𝐴∀𝑘, 𝑛 (3.31) 

          

   𝑆𝑁𝑅 =
|𝐴|2

𝜎2
 (3.32) 

 

Coherent integration 

N pulses are integrated coherently in each of K blocks. 
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𝑦𝑘 = ∑𝑠𝑘𝑛

𝑁

𝑛=1

 

(3.33) 

 

H0: 𝑦𝑘 = ∑ 𝑤𝑘𝑛
𝑁
𝑛=1  ~𝑁𝐶(0,𝑁𝜎2)  

H1: 𝑦𝑘 = 𝑁𝐴 + ∑ 𝑤𝑘𝑛
𝑁
𝑛=1  ~𝑁𝐶(𝑁𝐴,𝑁𝜎2) (3.34) 

       

SNR value for 𝑦𝑘  can be given as 

  𝑆𝑁𝑅𝑐𝑜ℎ = 𝑁 ∙ 𝑆𝑁𝑅 (3.35) 

 

Noncoherent integration [42] 

After normalizing the coherent integration outputs of each block, and performing 

square-low noncoherent integration, hybrid integration output z is obtained. 

 

 
𝑟𝑘 =

|𝑦𝑘|
2

𝜎2
 

(3.36) 

 

Under hypothesis 𝐻0, the pdf of 𝑟𝑘 is exponential : 

 
𝑝𝑟𝑘(𝑟𝑘|𝐻0) = {

𝑒−𝑟𝑘 𝑟𝑘 ≥ 0
0𝑟𝑘 < 0

 
(3.37) 

 

Under hypothesis 𝐻1, the pdf of 𝑟𝑘 is Rician : 

 

 
𝑝𝑟𝑘(𝑟𝑘|𝐻1) = {

𝑒−(𝑟𝑘+𝑆𝑁𝑅𝑐𝑜ℎ)𝐼0(2√𝑆𝑁𝑅𝑐𝑜ℎ𝑟𝑘)𝑟𝑘 ≥ 0

0𝑟𝑘 < 0
 

(3.38) 

   

where 𝐼0(. ) is the modified Bessel function of the first kind. 
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 (3.39) 

Since z is the sum of K scaled random variables, the pdf of z is the K-fold convolution 

of the pdf given in (3.37) and (3.38). This can be found using characteristic functions. 

Under H0 hypothesis: 

 

Characteristic function of 𝑟𝑘 is given by  

 

𝐶𝑟𝑘(𝑞) = ∫ 𝑝𝑟𝑘(𝑟𝑘)𝑒
𝑗𝑞𝑟𝑘𝑑𝑟𝑘

∞

−∞

=
1

1 − 𝑗𝑞
 

(3.40) 

 

Characteristic function of z is  

 

 
𝐶𝑧(𝑞) =

1

(1 − 𝑗𝑞)𝐾
 

(3.41) 

 

The pdf of z is obtained by inverting its characteristic function using the inverse 

Fourier transform  

 

𝑝𝑧(𝑧|𝐻0) =
1

2𝜋
∫ 𝐶𝑧(𝑞)𝑒

−𝑗𝑞𝑧𝑑𝑞

∞

−∞

 

(3.42) 

 

Then, the Erlang density is obtained 

 

 

𝑝𝑧(𝑧|𝐻0) = {
𝑧𝐾−1

(𝐾 − 1)!
𝑒−𝑧𝑧 ≥ 0

0𝑧 < 0

 

(3.43) 
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The false alarm probability can be obtained by integrating from the threshold to 

infinity. The result is  

 

𝑃𝐹𝐴 = ∫ 𝑝𝑧(𝑧|𝐻0)𝑑𝑧

∞

𝑇

= 1 − 𝐼 (
𝑇

√𝐾
,𝐾 − 1) 

(3.44) 

 

where 𝐼(𝑢,𝑀) = ∫
𝑒−𝜏𝜏𝑀

𝑀!
𝑑𝜏

𝑢√𝑀+1

0
. 

Now we determine the probability of detection 𝑃𝐷.  

Under H1 hypothesis: 

Each individual data sample 𝑟𝑘 is Rician; the corresponding characteristic function 

is 

 

 
𝐶𝑟𝑘(𝑞) =

1

𝑞 + 1
𝑒
−(

𝑞
𝑞+1

)𝑆𝑁𝑅𝑐𝑜ℎ
 

(3.45) 

   

and the characteristic function of the sum of K samples is 

 

 
𝐶𝑧(𝑞) =

1

(𝑞 + 1)𝐾
𝑒
−𝐾(

𝑞
𝑞+1

)𝑆𝑁𝑅𝑐𝑜ℎ
 

(3.46) 

 

The pdf of z is given by 

 

 
𝑝𝑧(𝑧|𝐻1) = (

𝑧

𝐾 ∙ 𝑆𝑁𝑅𝑐𝑜ℎ
)
(𝐾−1)/2

𝑒−𝑧−𝐾∙𝑆𝑁𝑅𝑐𝑜ℎ𝐼𝐾−1(2√𝐾𝑧𝑆𝑁𝑅𝑐𝑜ℎ) (3.47) 

 

We can find 𝑃𝐷 by integrating (3.47) 

 



 

 

75 

 

𝑃𝐷 = ∫ 𝑝𝑧(𝑧|𝐻1)𝑑𝑧

∞

𝑇

 

 

 

= 𝑄𝑀(√𝐾 ∙ 𝑆𝑁𝑅𝑐𝑜ℎ, √2𝑇)

+ 𝑒−(𝑇+𝐾∙𝑆𝑁𝑅𝑐𝑜ℎ)∑(
𝑇

𝐾 ∙ 𝑆𝑁𝑅𝑐𝑜ℎ
)
(𝑟−1)/2

𝐼𝑟−1(2√𝐾 ∙ 𝑆𝑁𝑅𝑐𝑜ℎ𝑇)

𝐾

𝑟=2

 
(3.48) 

 

where 𝑄𝑀 is Marcum’s Q-function.  

Hence, we have obtained detection and false alarm probability expressions for non-

fluctuating targets as given in (3.44) and (3.48). 

3.3.2.2 Case II - Fully Correlated Swerling-1 Target 

The signal received from fully correlated Swerling-1 target can be expressed as 

follows for two hypotheses: 

 

H0: 𝑠𝑘𝑛 = 𝑤𝑘𝑛  

H1: 𝑠𝑘𝑛 = 𝑎𝑘𝑛 + 𝑤𝑘𝑛 (3.49) 

 

For Swerling-1 target, echo amplitude of target �̃� is a Rayleigh distributed random 

variable but it is a fixed value for all KN pulses. 

 𝑎𝑘𝑛 = �̃�∀𝑘, 𝑛 (3.50) 

 

 𝑆�̃�𝑅 =
|�̃�|

2

𝜎2
 (3.51) 

 

Coherent integration 

N pulses are integrated coherently in each of K blocks. 
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𝑦𝑘 = ∑𝑠𝑘𝑛

𝑁

𝑛=1

 
(3.52) 

 

H0: 𝑦𝑘 = ∑ 𝑤𝑘𝑛
𝑁
𝑛=1  ~𝑁𝐶(0,𝑁𝜎2)  

H1: 𝑦𝑘 = 𝑁�̃� + ∑ 𝑤𝑘𝑛
𝑁
𝑛=1  ~𝑁𝐶(𝑁�̃�, 𝑁𝜎2) (3.53) 

 

SNR value for 𝑦𝑘 can be given as 

 𝑆𝑁�̃�𝑐𝑜ℎ = 𝑁 ∙ 𝑆𝑁�̃�𝑐𝑜ℎ (3.54) 

 

Noncoherent integration [42] 

After normalizing the coherent integration outputs of each block, and performing 

square-low noncoherent integration, hybrid integration output z is obtained. 

 𝑟𝑘 =
|𝑦𝑘|

2

𝜎2
 (3.55) 
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 (3.56) 

 

Since 𝑃𝐹𝐴 is determined only by the pdf when there is no target, target fluctuation 

has no effect on 𝑃𝐹𝐴. Namely, the false alarm probability is same as given in (3.44).  

Under H1 hypothesis: 

Similar to (3.45), characteristic function of z is as follows 

 

 

 
𝐶𝑧(𝑞; 𝑆𝑁�̃�𝑐𝑜ℎ, 𝐾) =

1

(𝑞 + 1)𝐾
𝑒
−𝐾(

𝑞
𝑞+1

)𝑆𝑁�̃�𝑐𝑜ℎ
 

(3.57) 
 

(3.58) 
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Equation (3.58) is the same expression as equation (3.45) except that now 𝐶𝑧 is 

written explicitly as a function of  𝑞, 𝑆𝑁�̃�𝑐𝑜ℎ, 𝐾 . 

After taking expected value of the characteristic function over 𝑆𝑁�̃�𝑐𝑜ℎ, 

 

 

𝐶�̅�(𝑞; 𝑆�̅�𝑅𝑐𝑜ℎ, 𝐾) = ∫ 𝑃𝑆�̃�𝑅𝑐𝑜ℎ(𝑆𝑁�̃�𝑐𝑜ℎ)𝐶𝑧(𝑞; 𝑆𝑁�̃�𝑐𝑜ℎ, 𝐾)𝑑𝑆𝑁�̃�𝑐𝑜ℎ

∞

0

 

(3.59) 

 

where 𝑃𝑆𝑁�̃�𝑐𝑜ℎ(𝑆𝑁�̃�𝑐𝑜ℎ) is pdf of 𝑆�̃�𝑅𝑐𝑜ℎ and will be exponential. 

 
𝑃𝑆𝑁�̃�𝑐𝑜ℎ(𝑆𝑁�̃�𝑐𝑜ℎ) =

1

𝑆𝑁�̃�𝑐𝑜ℎ
𝑒−𝑆𝑁�̃�𝑐𝑜ℎ/𝑆𝑁𝑅̅̅ ̅̅ ̅̅ 𝑐𝑜ℎ 

(3.60) 

 

𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑐𝑜ℎ is the average SNR of 𝑦𝑘 over CPI. 

 

 
𝐶�̅�(𝑞; 𝑆𝑁𝑅̅̅ ̅̅ ̅̅

𝑐𝑜ℎ, 𝐾) =
1

(𝑞 + 1)𝐾−1(1 + 𝑞(1 + 𝐾 ∙ 𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑐𝑜ℎ))

 
(3.61) 

 

The pdf of z is given by 

 

𝑝𝑧(𝑧|𝐻1) =
1

𝐾𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑐𝑜ℎ

(1 +
1

𝐾𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑐𝑜ℎ

)

(𝐾−2)

 

× 𝐼 (
𝑧

(1 + 1/(𝐾𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑐𝑜ℎ))√𝐾 − 1

,𝐾 − 2) 𝑒−𝑧/(1+𝐾𝑆𝑁𝑅̅̅ ̅̅ ̅̅ 𝑐𝑜ℎ) 

 (3.62) 
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𝑃𝐷 = 1 − 𝐼 (
𝑇

√𝐾 − 1
, 𝐾 − 2) + 

(1 +
1

𝐾𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑐𝑜ℎ

)

𝐾−1

𝑒−𝑇/(1+𝐾𝑆𝑁𝑅̅̅ ̅̅ ̅̅ 𝑐𝑜ℎ) 

× 𝐼 (
𝑇

(1 +
1

𝐾𝑆𝑁𝑅̅̅ ̅̅ ̅̅
𝑐𝑜ℎ

)√𝐾 − 1
,𝐾 − 2) 

(3.63) 

Hence, we have found the detection and false alarm probability expressions for fully 

correlated Swerling-1 targets as given in (3.44) and (3.63). 

3.3.2.3 Case III - Statistically independent fully correlated Swerling-1 

target in each block 

In this target model, echo amplitude of target is assumed to have same value within 

𝑁 pulses drawn from Rayleigh pdf. The next N pulses are same as one another but 

not to ones in previous 𝑁 pulses. Rather, their value is new, drawn independently 

from Rayleigh pdf. 

 𝑎𝑘𝑛 = 𝐴𝑘 ∀𝑛 (3.64) 

 

𝐴𝑖 and 𝐴𝑗 are independent if 𝑖 ≠ 𝑗. 

SNR of 𝑠𝑘𝑛  for kth block of N pulses in CPI is exponentially distributed, and can be 

given as 

 𝑆𝑁𝑅𝑘 =
|𝐴𝑘|

2

𝜎2
 (3.65) 

 

Coherent integration 

N pulses are integrated coherently in each of K blocks. 



 

 

79 

 

 
𝑦𝑘 = ∑𝑠𝑘𝑛

𝑁

𝑛=1

 
(3.66) 

 

H0: 𝑦𝑘 = ∑ 𝑤𝑘𝑛
𝑁
𝑛=1  ~𝑁𝐶(0,𝑁𝜎2)  

H1: 𝑦𝑘 = 𝑁𝐴𝑘 + ∑ 𝑤𝑘𝑛
𝑁
𝑛=1  ~𝑁𝐶(𝑁𝐴𝑘 , 𝑁𝜎

2) (3.67) 

 

SNR of 𝑦𝑘 is 𝑆𝑁𝑅𝑘,𝑐𝑜ℎ = 𝑁 ∙ 𝑆𝑁𝑅𝑘         

 

Noncoherent integration 

After normalizing the coherent integration outputs of each block, and performing 

square-low noncoherent integration, hybrid integration output z is obtained. 

 𝑟𝑘 =
|𝑦𝑘|

2

𝜎2
 (3.68) 
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 (3.69) 

 

 

Under H1 hypothesis: 

The characteristic function of 𝑟𝑘 is as follows 

 

 
𝐶𝑟𝑘(𝑞; 𝑆𝑁𝑅𝑘,𝑐𝑜ℎ) =

1

𝑞 + 1
𝑒
−(

𝑞
𝑞+1

)𝑆𝑁𝑅𝑘,𝑐𝑜ℎ
 

(3.70) 

Averaging 𝐶𝑟𝑘(𝑞) over 𝑆𝑁𝑅𝑘,𝑐𝑜ℎ gives us 
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𝐶�̅�(𝑞; 𝑆�̅�𝑅) = ∫ 𝑆𝑁𝑅𝑘,𝑐𝑜ℎ(𝑆𝑁𝑅𝑘,𝑐𝑜ℎ)𝐶𝑟𝑘(𝑞; 𝑆𝑁𝑅𝑘,𝑐𝑜ℎ)𝑑𝑆𝑁𝑅𝑘,𝑐𝑜ℎ

∞

0

 

(3.71) 

 

 
𝐶�̅�(𝑞; 𝑆�̅�𝑅) =

1

1 + 𝑞(1 + 𝑆�̅�𝑅)
 

(3.72) 

 

Then perform N-fold multiplication 

 

 
𝐶�̅�(𝑞; 𝑆�̅�𝑅) = (𝐶�̅�(𝑞; 𝑆�̅�𝑅))

𝐾
=

1

(1 + 𝑞(1 + 𝑆�̅�𝑅))𝐾
 

(3.73) 

 

Inverse transforming 

 

 
𝑝𝑧(𝑧|𝐻1) =

𝑧𝐾−1𝑒
−

𝑧
(1+𝑆�̅�𝑅)

(1 + 𝑆�̅�𝑅)𝐾(𝐾 − 1)!
 

(3.74) 

 

 

 
𝑃𝐷 = 1 − 𝐼 (

𝑇

(1 + 𝑆�̅�𝑅)√𝐾
,𝐾 − 1) 

(3.75) 

3.3.2.4 Case IV: Statistically independent partially correlated Swerling-1 

target in each block 

Partially correlated Swerling-1 target model implies that fluctuations have a shorter 

correlation time than the CPI and longer than the PRI. 

Scholtz [47] evaluated the receiver performance for the block-coherent frequency-

hopping transmitter approach. In this approach, the observation time is divided into 

K intervals. A coherent pulse train is transmitted coherently during each interval, but 
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carrier frequency is changed between intervals. Coherent integration is employed 

during each interval and the results are noncoherently integrated over the K intervals. 

Echo amplitude of target for N pulses in the ith block {𝑎𝑖1⋯𝑎𝑖𝑁}  is drawn from 

correlated Rayleigh pdf. In the next N pulses, target amplitude {𝑎(𝑖+1)1⋯𝑎(𝑖+1)𝑁}  

is drawn from the same pdf independent of previous pulses. 

Covariance matrix of signal amplitude fluctuation process : 

 𝐶𝑎 = 𝐸{𝒂𝒂𝐻} (3.76) 

 

 

where 𝒂 = [𝑎11⋯𝑎𝐾𝑁]. 

 

'

'

'

...

...

... ...

...

a

a

a

a

C O O

O C O
C

O O C

 
 
 
 
 
    (3.77) 

 

where 𝐶𝑎
′ and O are NxN submatrices, O includes only zeroes. The matrix 𝐶𝑎

′  

represents the covariance matrix of the elements of 𝑎𝑘𝑛  (𝑛 = 1,… ,𝑁) which 

correspond to measurements for a given coherent pulse train containing  N  pulses. 

Then, the covariance matrix becomes as follows 

 

2 1

2

' 2 3

1 2 3

1 ...

1 ...

1 ...

. . . ... .

... 1

N

N

N
a

N N N

r r r

r r r

C r r r

r r r







  

 
 
 
 
 
 
 
   (3.78) 

 

Decorrelation time 𝑡𝑑𝑒𝑐𝑜𝑟  of target fluctuation can be defined as 𝑟
𝑡𝑑𝑒𝑐𝑜𝑟
𝑃𝑅𝐼 =

1

𝑒
  

For example,𝑟 = 0.9 implies 𝑡𝑑𝑒𝑐𝑜𝑟 = 9.5𝑃𝑅𝐼. 
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In this analysis: 

While constituting target fluctuation model, CPI is divided into K' intervals, each of 

which is composed of N' pulses. A coherent pulse train composed of N' pulses is 

transmitted coherently during each of the K' intervals, but carrier frequency is 

changed between intervals such that another statistically independent fluctuation 

process is utilized within each of the K' intervals. 

In order to perform block-coherent integration, CPI is divided into K blocks, each of 

which is composed of N pulses. A block of N pulses is predetection integrated during 

each of K intervals, and the results are postdetection integrated over the K  intervals. 

In [47], Scholtz found analytical expression of detection probability for the case N = 

N' , K = K' which is given by 

 

 
𝑃𝐷 = 1 − 𝐼 (

𝑇

𝜎1
2
, 𝐾) 

(3.79) 

 

where 𝜎1
2 is the conditional variance 

 𝜎1
2 = 𝐸{(𝑟𝑘

2|𝐻1)} (3.80) 

 

 

3.3.3  Simulation Results 

Since we are interested in moderately fluctuating targets, we performed two groups 

of simulations for Case III (3.3.2.3) and Case IV (3.3.2.4) in this subsection. 
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3.3.3.1 Simulations: Case III 

Simulations are carried out in order to see if theoretical PD values coincide with 

simulation results. Simulation parameters are given in Table 3.5. After applying 

Keystone Transform, hybrid integration has been performed. In this target model, 

echo amplitude of target is assumed to have same value within N pulses drawn from 

Rayleigh pdf. The next N pulses are same as one another but not as ones in previous 

N pulses. Rather, their value is new, drawn independently from Rayleigh pdf. 

 

PD versus log2(N) is shown in Figure 3.9 where N' (number of pulses during which 

echo amplitude of target is same) is swept. SNR per pulse is adjusted such that 

PD=0.9 and PF=10-4  for 𝑁 = 𝑁′. In addition, theoretical PD value [47] for 𝑁 = 𝑁′ 

is shown in the figure. It is seen that PD values obtained in the simulation is consistent 

with the theoretical PD.  We also note that selecting𝑁 = 𝑁′ gives best achievable 

PD for a given N'.  

Figure 3.10 shows SNR per pulse required to obtain PD=0.9, PF=10-4 for𝑁 = 𝑁′. 

Lowest SNR per pulse can be achieved when N=8. 

Table 3.5 Simulation parameters 

Carrier 

frequency 

9GHz 

Bandwidth 20MHz 

PRI 10µs 

Number of 

pulses in a CPI 

64 

Radial velocity 0 m/s 
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Figure 3.9. PD versus log2(N) when PF=10-4 

 

 

Figure 3.10. SNR per pulse required to obtain PD=0.9, PF=10-4 
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3.3.3.2 Simulations: Case IV 

Echo amplitude of target for N pulses in each block is drawn from correlated 

Rayleigh pdf. In the next N pulses, target amplitude is drawn from the same pdf 

independent of previous N pulses. 

We explored the performance for different values of N' in the simulations. Total 

number of pulses in CPI is kept constant KN=64. We swept both K and K' in 

{20,21,...,26}. PD versus log2(N) is shown in Figure 3.11 -Figure 3.16 for different 

values of r and corresponding decorrelation time , which is defined as the time for r 

to fall to 1/e, as shown in Table 3.7 where  PF=10-4. N'=64 corresponds to the case 

where carrier frequency is constant during observation time, while N'=1 corresponds 

to the case where each pulse has different carrier frequency. Keystone Transform has 

been applied before hybrid integration. 

 

Table 3.6 Simulation parameters 

Carrier 

frequency 

9GHz 

Bandwidth 20MHz 

PRI 500µs 

Number of 

pulses in a CPI 

64 

Radial velocity 0 m/s 

 

Remarks regarding Figure 3.11 -Figure 3.16 are as follows: 

 Theoretical PD values given by Scholtz [47] for N'=N cases are consistent 

with PD values obtained in simulations. 
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 For a given N, maximum PD can be achieved when N'=N. 

 For a given N', maximum PD may not be achieved when N=N' depending on 

correlation coefficient r. For example, N=1 gives the maximum PD for all 

values of N' when r=0.3. On the other hand, N=N' gives the maximum PD for 

all values of N' when r=1.When the correlation between pulses in each block 

is low enough e.g. r=0.3, integrating non-coherently all pulses (i.e. N=1) 

gives the best detection performance independent of N' ( number of pulses 

transmitted with same frequency in each block). On the other hand, if the 

pulses in each block are fully correlated (e.g. r=1), we can achieve the best 

detection performance with coherent integration of the pulses which has the 

same transmission frequency in hybrid integration scheme. Hence, we expect 

for a given N'  that N=N' gives the maximum PD only if the correlation 

between pulses in each block is very high. 

Table 3.7 Decorrelation times for correlation coefficients  

r /decort PRI
 

0.3 0.83 

0.6 1.96 

0.8 4.48 

0.9 9.49 

0.95 14.50 

1 ∞ 
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Figure 3.11. PD versus log2(N) for r=0.3 

 

 

Figure 3.12. PD versus log2(N) for r=0.6 
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Figure 3.13. PD versus log2(N) for r=0.8 

 

Figure 3.14. PD versus log2(N)  for r=0.9 
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Figure 3.15. PD versus log2(N) for r=0.95 

 

Figure 3.16. PD versus log2(N) for r=1 

 

Another aim of the simulations is to examine the detection performance when there 

is range migration and Keystone Transform is applied to mitigate range migration 
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effect before integration. In the simulations, radial velocity is taken v=500m/s which 

causes to 2.13 range resolution cell migration. PD versus log2(N) is shown in Figure 

3.17 - Figure 3.22 for different values of r and corresponding decorrelation time as 

shown in Table 3.7.  

Following remarks can be noted on Figure 3.17 - Figure 3.22: 

 There is a degradation on PD  compared to theoretical formula given by 

Scholtz [47] because KT can’t eliminate the range migration perfectly due to 

interpolation loss. 

 For a given N, maximum PD can be achieved when N'=N.   

 For a given N', maximum PD may not be achieved when N=N' depending on 

correlation coefficient r. As explained for the zero velocity case, we expect 

for a given N'  that N=N' gives the maximum PD only if the correlation 

between pulses in each block is very high. 

 

 

Figure 3.17. PD versus log2(N) for r=0.3 v=500m/s 
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Figure 3.18.  PD versus log2(N) for r=0.6 v=500m/s 

 

Figure 3.19.  PD versus log2(N) for r=0.8 v=500m/s 
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Figure 3.20.  PD versus log2(N) for r=0.9 v=500m/s 

 

Figure 3.21.  PD versus log2(N) for r=0.95 v=500m/s 
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Figure 3.22.  PD versus log2(N) for r=1 v=500m/s 

Figure 3.23 shows PD versus log2(N) when SNR is increased 0.8dB with respect to 

Figure 3.21. It shows that almost same PD curve can be obtained with a 0.8 dB SNR 

loss for r=0.9 when there is range migration and Keystone Transform is applied.  

 

 

Figure 3.23. PD versus log2(N) for r=0.9 v=500m/s 
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To summarize, simulation results show that (i) it is possible to find which N value 

gives the best detection probability for a given combination of SNR, correlation 

coefficient and total number of pulses, and (ii) there is a degradation in detection 

performance of about 0.8 dB SNR due to interpolation loss during KT when KT is 

applied to remove range migration for moderately fluctuating targets. 

3.4 Range Migration Compensation by KT Under Sea Clutter 

In this section, we examine the case where both range migration and sea clutter exist. 

Firstly, we generate realistic synthetic clutter data. Next, we perform a numerical 

simulation where we suppress the clutter and apply KT.  

3.4.1 Realistic Synthetic Clutter Generation 

In order to see the effect of the sea clutter on the performance of Keystone 

Transform, a simulation has been implemented. Real data [48] is used to generate 

realistic clutter. Environment information and radar parameters associated with the 

data is given in Table 3.8. Real data is composed of radar echo collected for 14 

seconds. Real data is composed of 33001×31 array as shown in Figure 3.24, 

corresponding to 31 range gate and 33001 pulses. In Figure 3.25, range-time 

intensity plot of the real data is shown. In this dataset, a pencil duck has been 

deployed at sea in the range of 3485m. We can obtain clutter data if we crop the part 

of the data corresponding to the range up to 3500m. After cropping, the new range-

time intensity plot of the clutter data is shown in Figure 3.26.  
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Table 3.8  Environment information and radar parameters associated with the real 

clutter data 

Wind speed [m/s] 9.1 

Maximum (gust) 

speed [m/s] 

13.4 

Direction of wind 

[°N] 

191 

Maximum height of 

wave [m] 

4.56 

Wave direction [°N] 160 

Wave period [s] 14.29 

Pulse repetition 

interval [s] 

4e-4 

Sampling period [s] 1e-7 

Pulse width [s] 1e-7 

Polarization of 

antenna 

VV 

Transmit frequency [Hz] 9e9 
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Figure 3.24. Real array data 

 

 

 

Time, s 

Range 

gate 

number 

#1 

#2

1 

0 12 
400µs 
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Figure 3.25. Range-time intensity plot of the real data 

 

Figure 3.26 Range-time intensity plot of the clutter data 

 

The goal is to generate a synthetic clutter data which has similar characteristics of 

the real clutter data. Firstly, the texture component of the real clutter data can be 

obtained by averaging the intensity of the clutter. Then, we generate a new speckle 
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component. Finally, by combining the speckle and the texture components we obtain 

a generated clutter data which has a similar characteristics of real clutter data. 

According to compound K-distribution model [37], samples of the complex envelope 

of the sea clutter process are stated as the multiplication of two components 

𝑐(𝑡𝑓 , 𝑡𝑠) = √𝜏(𝑡𝑓 , 𝑡𝑠)𝑥(𝑡𝑓 , 𝑡𝑠) where 𝜏 is gamma distributed texture component, and 

𝑥(𝑡𝑓 , 𝑡𝑠) = 𝑥𝐼(𝑡𝑓 , 𝑡𝑠) + 𝑥𝑄(𝑡𝑓 , 𝑡𝑠)  is a complex Gaussian process;  𝑥𝐼 and 𝑥𝑄 are the 

in-phase and quadrature components which are supposed to meet 𝐸𝑡𝑠{𝑥𝐼(𝑡𝑓 , 𝑡𝑠)} =

0 , 𝐸𝑡𝑠{𝑥𝑄(𝑡𝑓 , 𝑡𝑠)} = 0 with 𝐸𝑡𝑠 {(𝑥𝑄(𝑡𝑓 , 𝑡𝑠)
2
)} = 𝐸𝑡𝑠 {(𝑥𝐼(𝑡𝑓 , 𝑡𝑠)

2
)} =

1

2
, tf is fast 

time, ts is slow time. 

Average power of the backscattered signal over time T is as follows 

 

 

1

𝑇
∫|𝑐(𝑡𝑓 , 𝑡𝑠)|

2
𝑑𝑡𝑠



𝑇

=
1

𝑇
∫|𝜏(𝑡𝑓 , 𝑡𝑠)||𝑥(𝑡𝑓 , 𝑡𝑠)|

2
𝑑𝑡𝑠



𝑇

 

(3.81) 

 

In fact, the texture is assumed to be constant during each CPI due to its long 

correlation time. When T is less than or comparable with CPI, texture can be 

considered constant. Using the assumption𝐸𝑡𝑠 {(𝑥(𝑡𝑓 , 𝑡𝑠)
2
)} = 1, we obtain 

average power gives estimate of texture.  

 

 

1

𝑇
∫|𝑐(𝑡𝑓 , 𝑡𝑠)|

2
𝑑𝑡𝑠



𝑇

= |𝜏(𝑡𝑓 , 𝑡𝑠)|
1

𝑇
∫|𝑥(𝑡𝑓 , 𝑡𝑠)|

2
𝑑𝑡𝑠



𝑇

≈ |𝜏(𝑡𝑓 , 𝑡𝑠)| 
(3.82) 

 

To get an estimate of the texture component, we find the average intensity of the 

array for each range bin in Figure 3.26. For instance, Figure 3.27 shows intensity of 

the original data for 16th range bin and the average intensity for a moving window of 
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length 256. Figure 3.28 shows range-time plot of the estimated texture component 

for whole array. 

 

 

Figure 3.27. Range-time intensity plot 

 

Figure 3.28. Range-time plot of the estimated texture 
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In the simulation, we will take the number of pulses in a coherent pulse interval (CPI) 

as N=256. So, first 256 samples for each range bin are used in the simulations. 

Range-Time intensity plot of the original data in the 1st CPI is given in Figure 3.29. 

Figure 3.30 shows the range-time intensity plot of texture in the first CPI.  

 

Figure 3.29. Range-Time intensity plot of original data in the 1st CPI 
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Figure 3.30. Range-time intensity plot of texture in the first CPI 

 

 

Since it is stated in [37] that speckle component decorrelates in the order of 10ms, 

we can generate correlated Rayleigh random variables with decorrelation time of 

10ms to obtain our speckle component of clutter. Range time plot of the generated 

speckle is given in Figure 3.31. 
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Figure 3.31. Range time plot of the generated speckle 

 

By multiplying the square-root of the texture with generated speckle, we get a 

generated clutter data which has a similar characteristics of real clutter data. Figure 

3.32 shows the range time plot of generated clutter. 
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Figure 3.32. Range time plot of the generated clutter 

 

Now, we can compose the signal backscatters from the target. It is assumed the target 

has a radial velocity of v=300m/s and an initial range of 3555m. In this simulation, 

Swerling-0 type nonfluctuating target has been created. 

The received signal is the summation of clutter echo, target echo and additive white 

Gaussian noise of 3dB. 

The clutter echo can be constituted by using a tapped-delay line channel model as 

assumed in [49]. The truncated tapped-delay line model is shown in Figure 3.33. 

Assuming the channel is slowly fading and frequently selective, the noiseless 

received signal from the channel can be expressed in the form  

 

 
𝑟𝑙(𝑡) = ∑ 𝑐𝑛(𝑡)

𝐿

𝑛=1

𝑠𝑙(𝑡 − 𝑛/𝑊) 
(3.83) 

 

where W is the bandwidth used by the real bandpass signal, 𝑠𝑙(𝑡) is lowpass 

equivalent signal transmitted through the channel, 𝑐𝑛(𝑡) is time-variable channel 

coefficients, and L is the truncation size.  
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Figure 3.33. Tapped-delay line model of the channel 

   

3.4.2 Numerical Simulation 

A numerical simulation has been performed to examine the performance of KT and 

clutter suppression together. Simulation parameters are shown in Table 3.9.               
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Table 3.9 Simulation parameters 

Signal to Clutter Ratio -10.7dB 

Signal to Noise Ratio 3 dB 

Radial target velocity 300 m/s 

Number of pulses in CPI 256 

Decorrelation time of 

speckle component 

10 ms 

 

It is observed in real data that the clutter echoes are not stationary and have a speed 

of about 4m/s. Hence, the output of the tapped-delay line channel is created as it has 

a speed of 4m/s.   

Range-Time plot for this received signal is given in Figure 3.34.  

 

Figure 3.34. Range-Time plot of the received signal 

Range-Doppler plot of the received signal is shown in Figure 3.35.  
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Figure 3.35. Range-Doppler plot of the received signal 

 

Clutter effects can be reduced by suppressing the low Doppler frequencies. A simple 

4-delay line canceller can be used to suppress the signals having low Doppler 

frequencies [2].  

After reducing the clutter, the Range-Doppler plot is as shown in Figure 3.36. 
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Figure 3.36. Range-Doppler plot after clutter reduction 

Coherent integration output of the received signal after clutter suppression and KT 

applied is shown in Figure 3.37. 
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Figure 3.37. Coherent integration output of the received signal after clutter 

suppression and KT applied 

Note that amplitude of coherent integration output is higher in range of 3555m when 

KT is applied. Hence, we have shown that detection performance can be improved 

if KT is applied after suppressing the clutter. 

 

3.5 Range Migration Compensation by KT under Rain Clutter 

In this section, we investigate the case where KT is applied for range migrating 

targets under rain clutter. We will compare performances for both cases where 

i. we suppress the rain clutter first and then apply KT, 

ii. we apply KT first before suppressing the rain clutter. 

We used the following parameters in the simulations: 

Table 3.10 Simulation Parameters 

Parameters Value 

Carrier frequency 9 GHz 

Pulse width 30µs 

Bandwidth 20MHz 

N -number of pulses 

in CPI 

64 

PRI 75µs 

Target velocity 15.125 vblind 

Range resolution 7.5m 
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Range migration 

during one CPI 

16.13m 

SCR -30B 

 

The received signal is composed of target and clutter component. Range-Doppler 

plot of the received signal is given in Figure 3.38. 

 

Figure 3.38. Range-Doppler plot of the received signal 

Range-Doppler plot after applying sinc interpolation is given in Figure 3.39 
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Figure 3.39. Range-Doppler plot after applying sinc interpolation 

Figure 3.40 shows the Range-Doppler plot after sinc interpolation and Doppler 

ambiguity correction has been applied respectively. It is seen that Doppler spectrum 

has been enlarged after Doppler ambiguity correction. MTI filter after Doppler 

ambiguity correction  is not expected to suppress clutter perfectly since the MTI filter 

is applied according to clutter covariance matrix before Doppler ambiguity 

correction.  
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Figure 3.40. Range-Doppler plot after sinc interpolation, Doppler ambiguity has 

been applied respectively 

Figure 3.41 shows Range-Doppler plot after sinc interpolation, Doppler ambiguity 

and MTI filter has been applied respectively. 
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Figure 3.41. Range Doppler plot after KT and clutter suppression applied 

respectively. 

Figure 3.42 shows Range-Doppler plot when we apply sinc interpolation, clutter 

suppression and Doppler ambiguity correction respectively. Clutter has been 

suppressed better with respect to Figure 3.41,  as expected. 
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Figure 3.42. Range-Doppler plot when we apply sinc interpolation, clutter 

suppression and Doppler ambiguity correction respectively 

Figure 3.43 shows Range-Doppler plot when clutter is suppressed and KT is applied 

respectively. It has better clutter suppression performance with respect to Figure 

3.41. 
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Figure 3.43. Range-Doppler plot when clutter is suppressed and KT is applied 

respectively 

Hence, we can conclude that suppressing the clutter before applying KT improves 

performance more especially in clutter suppression compared to applying KT before 

suppressing the clutter. 

 

Note that we assume static clutter covariance for rain clutter. In case of variable 

clutter characteristics, adaptive clutter estimation methods [50] can be applied. In 

such a case, performance could be improved by joint methods, i.e. considering 

solving clutter suppression and targeting detection problems together instead of 

sequential operations.  
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3.6 Range Migrating Target Detection in Range Migrating Clutter 

 

When the radar has high velocity motion, range of clutter backscattered from rain or 

cloud will migrate, and classical clutter suppression techniques will not work due to 

range migration of clutter. In this section, we propose a method to solve range 

migration problem jointly for range migrating clutter and the range migrating target. 

In such a case, we need to align range profiles of clutter before suppressing clutter. 

Then, we can align range profiles of target. The flow diagram of the proposed 

algorithm is given in Figure 3.44. 

 

Figure 3.44. Range alignment of range migrating clutter and target 

After matched filtering, range alignment of clutter can be done by applying KT 

without sweeping all possible Doppler ambiguity factors, because we know radar 

platform’s velocity and find Doppler ambiguity factor corresponding to platform’s 

velocity. Thus, range alignment of clutter includes sinc interpolation and Doppler 

ambiguity correction, which can be performed by employing (2.12) and (2.16) 

respectively.  Doppler ambiguity correction term can be found by following 

expression: 

 
𝐶(𝐹𝑐) = exp[−𝑗2𝜋𝐹𝑐

𝑚𝑓𝑐
(𝑓𝑐 + 𝑓)

] 
(3.84) 

 

Matched 

filtering 

Clutter 

suppression 

KT sinc 

interpolation 

𝐶(𝐹𝑐) 𝐶(𝐹𝑐, 𝐹𝑡) 

Range alignment 

of clutter Range alignment 

of target 
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where Fc is Doppler ambiguity factor for radial speed between clutter and radar.  

Then, clutter can be suppressed easily if we have clutter statistics. Since we 

performed interpolation step of KT while we are aligning clutter range profiles, we 

do not need to perform interpolation step of KT again for range alignment of target 

once more. It will be sufficient to correct Doppler ambiguity for target. However, we 

should take into consideration that we corrected Doppler ambiguity for clutter. 

Doppler ambiguity correction can be performed as given in (2.16). Therefore, we 

will update Doppler ambiguity correction term as follows: 

 
𝐶(𝐹𝑐 , 𝐹𝑡) = 𝑒𝑥𝑝[−𝑗2𝜋(𝐹𝑡 − 𝐹𝑐)

𝑚𝑓𝑐
(𝑓𝑐 + 𝑓)

] 
(3.85) 

 

where Ft is Doppler ambiguity factor for radial velocity between target and radar. 

By this proposed method, we can align range profiles of both clutter and target 

without bringing additional computational cost with respect to only range alignment 

of target. 

3.6.1 Simulation 

We have the following scenario and radar parameters: 

Table 3.11 Scenario and radar parameters 

Radar platform velocity 312 m/s 

Target velocity 616 m/s (approaching) 

Carrier frequency 9 GHz 

Pulse width 30µs 

Bandwidth, B 20MHz 

N -number of pulses in CPI 32 
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Table 3.11 continues  

PRI 480µs 

Range resolution 7.5m 

SCR -30B 

 

Table 3.12 Rain clutter simulation parameters 

Parameter Value Explanation 

R  15000 the slant range to clutter in m 

ΔR 7.5 Range resolution, m 

η -62dB Volume reflectivity of rain for 9.3GHz, m-

1 

φ2  2.8 the two-way half power antenna elevation 

beamwidth in degree 

k  4 the velocity gradient in the vertical 

direction of the beam in m/s/km 

V0 10 the wind speed in the beam center in m/s 

θ2 2.8 the two-way half power 

antenna azimuth beam width in degree 

β 45 the azimuth angle relative to the 

wind direction at beam center in degree 

ψ 10 the elevation angle in degree 

σturb 1 m/s 

σshear 0.82 m/s 
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Table 3.12 continues 

σbeam 0.16 m/s 

σfall 0.17 m/s 

v  1.31 Standard deviation of Doppler velocity 

spectrum m/s 

f
 

78.6 Standard deviation of Doppler frequency 

spectrum Hz 

V 3.3e4 Volume resolution cell 

SCR -1.92dB Signal to clutter ratio (before considering 

attenuation) 

vz 5 Rain fall velocity, m/s 

vw 8 : upper limit 

Beaufort-4 

Wind speed, m/s  

vp 0 Radar platform velocity, m/s 

Aw - Ab 45 Azimuth angle between beam axis and 

wind, degrees 

v0 6.5 Mean clutter velocity, m/s 

   

 

In simulations, optimum MTI filter is used for clutter suppression. Figure 3.45-

Figure 3.47 show range - Doppler plot after range alignment of clutter, clutter 

suppression and range alignment of target, respectively, which are the steps of block 

diagram shown in Figure 3.44. 
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Figure 3.45. Range - Doppler plot after range alignment of clutter 

 

Figure 3.46. Range - Doppler plot after clutter suppression 
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Figure 3.47. Range - Doppler plot after range alignment of target 

 

Comparing Figure 3.46 with Figure 3.45, we note that clutter has been suppressed 

and we have only range migrating target in range-Doppler plot. We can notice that 

amplitude of range-Doppler plot has been amplified after aligning the target’s range 

profiles in Figure 3.47. 

In addition, performance for different Doppler velocity of target are examined. 

Figure 3.48 shows IF vs ratio of Doppler velocity to blind speed. As expected, we 

obtain higher IF performance when target velocity is further away from clutter speed. 
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Figure 3.48. IF vs ratio of Doppler velocity to blind speed 

Furthermore, IF performance against Doppler spread of clutter is examined and 

shown in Figure 3.49. We observe that IF performance degrades with increasing 

Doppler spread. 

Hence, we have shown effectiveness of the proposed method by numerical 

simulations. 
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Figure 3.49. IF against Doppler spread of clutter 
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CHAPTER 4  

4 PROPOSED RANGE MIGRATION COMPENSATION METHODS 

In this chapter, we propose two different methods (published in [51] and [52]) to 

compensate range migration with lower computational complexity than the KT and 

the RFT while achieving similar detection performance.  

4.1 Efficient Implementation of KT and RFT Utilizing CZT [51] 

We propose an efficient new technique to repeat execution of the CZT with different 

initial points and the same angular distance on the spiral contour. Consequently, not 

only the KT and the RFT can be applied with lower computational load using the 

proposed method but also possibly other applications demanding to repeat execution 

of the CZT. Mathematical analysis shows that the proposed technique is same as the 

standard CZT algorithm. Therefore, the same detection performance can be achieved 

with lower computational load as the existing KT and RFT implementations by 

implementing the KT and the RFT using the proposed method. In addition, we show 

by computer simulations that there is no performance loss compared to the standard 

KT and RFT. 

 

Implementation of the KT algorithm using the repeated execution of the CZT has 

been reviewed in 2.2.4. Doppler ambiguity compensation, CZT and IFFT over range 

frequency is repeated 𝑁𝐹 times, where 𝑁𝐹 denotes the number of possible values of 

Doppler ambiguity factor 𝐹. 
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4.1.1 A New RFT method to execute repeated CZT  

We can write the matched filter output as given in (4.1).  

 𝑌(𝑓, 𝑛) = |𝑃(𝑓)|2exp[−𝑗4𝜋(𝑓 + 𝑓𝑐)
(𝑅0 + 𝑣𝑛𝑇𝑟)

𝑐
] (4.1) 

 

 

Radial velocity between the radar and the target is represented as follows 

 𝑣 = 𝐹𝑣𝑏𝑙𝑖𝑛𝑑 + 𝑣𝑟𝑒𝑠 (4.2) 

 

   where Doppler ambiguity factor is 𝐹 = 𝑟𝑜𝑢𝑛𝑑(𝑣/𝑣𝑏𝑙𝑖𝑛𝑑); (.)round  is the function 

which returns the nearest integer, blind speed is defined as 𝑣𝑏𝑙𝑖𝑛𝑑 =
𝑐

2𝑓𝑐𝑇𝑟
 , 

resv  is the 

residual velocity with | |
2

 blind
res

v
v  . 

If (4.2) is substituted in (4.1), we obtain the following expression:  

 

𝑌(𝑓, 𝑛, 𝐹) = |𝑃(𝑓)|2exp[−𝑗2𝜋(𝑓 + 𝑓𝑐)
2𝑅0
𝑐
]

× exp[−𝑗2𝜋(𝑓 + 𝑓𝑐)
2𝑣𝑟𝑒𝑠
𝑐

𝑇𝑟𝑛]exp[−𝑗2𝜋𝐹𝛼𝑓𝑛]

 

(4.3) 

   

where 𝛼𝑓 =
𝑓𝑐+𝑓

𝑓𝑐
. 

Doppler ambiguity compensation can be performed as follows  

 𝑌𝑐,𝑅𝐹𝑇(𝑓, 𝑛, 𝐹) = 𝑌(𝑓, 𝑛, 𝐹)𝐶𝑅𝐹𝑇(𝑓, 𝑛, 𝐹) (4.4) 

 

    where we define Doppler ambiguity compensation factor as 

    𝐶𝑅𝐹𝑇(𝑓, 𝑛, 𝐹) = exp[𝑗2𝜋𝐹𝛼𝑓𝑛]. 

After compensating the Doppler ambiguity, we have the following expression 
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𝑌𝑐,𝑅𝐹𝑇(𝑓, 𝑛, 𝐹) = |𝑃(𝑓)|2 exp [−𝑗2𝜋(𝑓 + 𝑓𝑐)
2𝑅0
𝑐
] 

exp[−𝑗2𝜋(𝑓 + 𝑓𝑐)
2𝑣𝑟𝑒𝑠
𝑐

𝑇𝑟𝑛] (4.5) 

     

We do not have to search for all possible velocity values. Rather, the ambiguity is 

compensated and the residual velocity is searched assuming known Doppler 

ambiguity factor F. Thanks to the CZT1, we can search the residual velocity index k: 

 𝑍𝑅𝐹𝑇(𝑓, 𝑘, 𝐹) = 𝐶𝑍𝑇
𝑛
[𝑌𝑐,𝑅𝐹𝑇(𝑓, 𝑛, 𝐹)] (4.6) 

 

where CZT parameters are given as A=1 and 𝑊𝑓 = exp[𝑗2𝜋(𝑓 + 𝑓𝑐)
2∆𝑣

𝑐
𝑇𝑟]. If there 

is equality between the searching residual velocity and the true residual velocity, i.e. 

𝑣𝑟𝑒𝑠 = 𝑘Δ𝑣, amplitude of the coherent integration output shown in (4.6) is 

maximum.  

If the Doppler ambiguity is unknown, it can be found by searching coherent 

integration outputs giving the maximum peak amplitude over the potential ambiguity 

factor F values. The following expression shows how to find coherent integration  

 
𝑧𝑅𝐹𝑇(𝑡

~
, 𝑘, 𝐹) = 𝐼𝐹𝐹𝑇

𝑓
[𝑍𝑅𝐹𝑇(𝑓, 𝑘, 𝐹)] (4.7) 

 

where k is the search velocity index. 

                                                 

 

1 CZT is defined in 2.2.4  
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Figure 4.1. Implementation of KT employing repeated CZT operations 

To summarize, we represent single formulation to implement both the KT and the 

RFT using repeated CZT. Figure 4.1 represents not only implementation of the KT 

with repeated CZT but also block diagram of the RFT using repeated CZT.   

4.1.2 Proposed method for efficient implementation of recurrent CZT 

As mentioned in 4.1.1, Doppler ambiguity compensation and CZT operation is 

repeated for possible values of ambiguity factor in the RFT and the KT 

implementations.  There are 2 tricks to be employed  for reduction of computational 

load of both implementations: 

 

1. Instead of multiplying with an ambiguity correction term, initial point of CZT 

can be set in terms of 𝑓 and 𝐹. We set 𝐴𝑓(𝐹) = exp(−𝑗2𝜋𝐹𝛼𝑓) for the RFT 

and 𝐴𝑓(𝐹) = exp(𝑗2𝜋𝐹/𝛼𝑓) for the KT.(See Eq. 3.3) 

2. We can reduce the computational load of the repetition of CZT operation for 

various 𝐴𝑓(𝐹) values in the following way.  

Calculation of the CZT operation for a particular value of  𝐹 is given as follows  

 
𝑍(𝑓, 𝑘, 𝐹) =∑𝑌(𝑓, 𝑛)[𝐴𝑓(𝐹)]

−𝑛𝑊𝑓
𝑛𝑘

𝑛

 
(4.8) 
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where 𝑌(𝑓, 𝑛) is the matched filter output in range frequency and slow time index. 

     Regarding the 2nd trick, (4.9) is substituted in (4.8): 

 [𝐴𝑓(𝐹)]
−𝑛𝑊𝑓

𝑛𝑘 = [𝐴𝑓(𝐹)]
𝑘−𝑛[𝐴𝑓(𝐹)]

−𝑘𝑊𝑓
𝑛𝑘 = 𝑊

𝑓

𝑛2+𝑘2−(𝑘−𝑛)2

2  (4.9) 

     

 

𝑍(𝑓, 𝑘, 𝐹)

= [𝐴𝑓(𝐹)]
−𝑘𝑊𝑓

𝑘2/2
∑𝑊𝑓

𝑛2/2
𝑥(𝑛)𝑊𝑓

−(𝑘−𝑛)2/2
[𝐴𝑓(𝐹)]

𝑘−𝑛

𝑛

 
(4.10) 

 

Actually𝑍(𝑓, 𝑘, 𝐹) includes a convolution: 

 
𝑍(𝑓, 𝑘, 𝐹) = [𝐴𝑓(𝐹)]

−𝑘𝑊𝑓
𝑘2/2

∑𝑢𝑓(𝑛)𝑣𝑓(𝑘 − 𝑛, 𝐹)

𝑛

 
(4.11) 

 

   𝑍(𝑓, 𝑘, 𝐹) = [𝐴𝑓(𝐹)]
−𝑘𝑊𝑓

𝑘2/2
[𝑢𝑓(𝑛) ∗ 𝑣𝑓(𝑛, 𝐹)] (4.12) 

    

     where 𝑢𝑓(𝑛) = 𝑊𝑓
𝑛2/2

𝑌(𝑓, 𝑛), 𝑣𝑓(𝑛, 𝐹) = 𝑊𝑓
−𝑛2/2

[𝐴𝑓(𝐹)]
𝑛} and 

 * represents convolution. 

Convolution operation can be computed by employing IFFT and FFT’s: 

        𝑍(𝑓, 𝑘, 𝐹) = [𝐴𝑓(𝐹)]
−𝑘𝑊𝑓

𝑘2/2
𝐼𝐹𝐹𝑇

𝑛
[𝐹𝐹𝑇

𝑛
[𝑢𝑓(𝑛)]𝐹𝐹𝑇

𝑛
[𝑣𝑓(𝑛, 𝐹)]] (4.13) 

 

Hence, we obtain (4.13) for the computation of CZT of 𝑌(𝑓, 𝑛). The new method 

proposed to implement CZT is shown in Figure 4.2 as a block diagram. 
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Figure 4.2. New method to implement CZT  

If the two tricks are applied, we obtain the block diagram of the proposed RFT and 

KT implementation as given in  Figure 4.3.  Note that we must repeat only 1 IFFT 

operation  in the proposed CZT implementation, because we can compute and store 

FFT of 𝑊𝑓
−𝑛2/2

[𝐴𝑓(𝐹)]
𝑛 for all values of 𝐹.  

After applying the two previously mentioned maneuvers, a modified implementation 

of KT and RFT employing recurrent CZT operations is obtained as shown in Figure 

4.3.  Since the prestored values of FFT of 𝑊𝑓
−𝑛2/2

[𝐴𝑓(𝐹)]
𝑛 can be used, only one 

IFFT will be required to be repeated. On the contrary, the RFT and the KT 

implementations with repeated CZT shown in Figure 4.1 can be performed by 

repeating single IFFT and FFT for each 𝐹.  

 

Figure 4.3. Proposed implementation of KT and RFT employing recurrent 

CZT operations 
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4.1.3 Computational Load Comparison 

Processes in the implementation of the existing RFT and KT algorithms and 

computational complexity of these processes are given in Table 4.1 –  

 

 

Table 4.4, where 𝑁 is the number of pulses to be integrated, 𝑀 is the number of range 

bins in PRI, 𝑁𝐹 is the total number of ambiguity factors, 𝑁𝑣 is the number of searched 

velocities, and 𝐾 is the number of search residual velocities. We assume that 𝐾 is an 

integer satisfying 𝑁𝑣 = 𝐾𝑁𝐹. To simplify the investigation, we set 𝐽 = 𝑁𝑣 + 𝑁, and 

𝑇 = 𝐾 + 𝑁. 

Table 4.1 Computational load of processes in the existing KT with CZT 

Step Processing Number of complex 

multiplications 

Obtaining 

Y(f,n) 

MN-point complex multiplication and 

N groups of M-point FFT 
𝑀𝑁 +

𝑀𝑁

2
𝑙𝑜𝑔𝑀 

Ambiguity 

compensation 

NF  groups of MN-point complex 

multiplication 

𝑁𝐹𝑀𝑁 

CZT over n NF  repetition of M groups of N-point 

CZT of N-point input 

2𝑁𝐹𝑀𝑁𝑙𝑜𝑔2𝑁 

IFFT over f NF repetition of N groups of M-point 

IFFT 
𝑁𝐹

𝑀𝑁

2
𝑙𝑜𝑔𝑀 
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Table 4.2 Computational load of processes in the proposed KT with CZT 

Step Processing Number of complex 

multiplications 

Obtaining 

Y(f,n) 

MN-point complex multiplication 

and N groups of M-point FFT 
𝑀𝑁 +

𝑀𝑁

2
𝑙𝑜𝑔𝑀 

CZT over n NF  repetition of M groups of N-

point modified CZT of N-point 

input 

(𝑁𝐹 + 1)𝑀𝑁𝑙𝑜𝑔2𝑁 

IFFT over f NF  repetition of N groups of M-

point IFFT 
𝑁𝐹

𝑀𝑁

2
𝑙𝑜𝑔𝑀 

 

Table 4.3 Computational load of processes in the existing RFT with CZT 

Step Processing Number of complex 

multiplications 

Obtaining 

Y(f,n) 

MN-point complex 

multiplication and N groups of 

M-point FFT 

𝑀𝑁 +
𝑀𝑁

2
𝑙𝑜𝑔𝑀 

CZT over n M  groups of Nv -point CZT of 

N-point input 

𝑀𝐽𝑙𝑜𝑔𝐽 

IFFT over f N groups of M-point IFFT 𝑀𝑁

2
𝑙𝑜𝑔𝑀 
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Table 4.4 Computational load of processes in the proposed RFT with CZT 

Step Processing Number of complex 

multiplications 

Obtaining 

Y(f,n) 

MN-point complex 

multiplication and N groups of 

M-point FFT 

𝑀𝑁 +
𝑀𝑁

2
𝑙𝑜𝑔𝑀 

CZT over 

n 

NF  repetition of M groups of 

K-point modified CZT of N-

point input 

𝑀
(𝑁𝐹 + 1)

2
𝑇log𝑇 

IFFT over 

f 

NF  repetition of N groups of 

M-point IFFT 

𝑁𝐹𝑀𝑁

2
𝑙𝑜𝑔𝑀 

 

Table 4.1 and Table 4.3  show computational load of the processes in the existing 

KT and RFT using CZT, while Table 4.2 and  

 

 

Table 4.4 show computational load of the processes in the existing KT and RFT 

using CZT, respectively. 

Table 4.5 depicts the total number of complex multiplications required in the 

proposed and the standard RFT and KT algorithms. 

The ratios of the proposed methods’ computational complexity to the existing 

methods’ complexity are shown in Figure 4.4 where 𝑀 = 512, 𝑁 = 4,𝑁𝑣 = 1024. 

The reduction in the computational load of the KT is a factor of 1.5 for moderate and 
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high 𝑁𝐹. The reduction in the computational load of the RFT is more than a factor of 

2 for moderate 𝑁𝐹. However, the proposed RFT is not favorable for extreme 𝑁𝐹. 

 

 

 

Table 4.5  Computational load of the existing and the proposed methods  

Algorithm Number of complex multiplications 

Standard KT 
𝑀𝑁[1 +

(𝑁𝐹 + 1)

2
log𝑀 + 𝑁𝐹(1 + 2log2𝑁)] 

Proposed KT 
𝑀𝑁[1 +

(𝑁𝐹 + 1)

2
log𝑀 + (𝑁𝐹 + 1)𝑙𝑜𝑔2𝑁] 

Standard RFT 𝑀[𝑁 + (𝑁log𝑀 + 𝐽log𝐽)] 

Proposed RFT 
𝑀[𝑁 +

(𝑁𝐹 + 1)

2
(𝑁log𝑀 + 𝑇log𝑇)] 
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Figure 4.4. The ratios of the proposed methods’ computational complexity to the 

existing methods’ complexity over 𝑁𝐹 

 

Furthermore, we have investigated the impact of 𝑁 on the efficiency. The proposed 

KT is more favorable for higher values of 𝑁, on the contrary to the proposed RFT. 

We also find that the proposed RFT is more advantageous if 𝑁𝐹 and 𝐾 values are 

close. 

The four algorithms’ computational load over 𝑁𝑣 is shown in Figure 4.5 for 𝑀 =

512,𝑁 = 4,𝑁𝐹 = 𝐾. It is clear that the proposed methods are more efficient than the 

existing methods. 
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Figure 4.5. The algorithms’ computational load over 𝑁𝑣 

4.1.4 Simulations 

A computer simulation has been carried out to observe the equality between the 

coherent integration output of the existing and the proposed methods. Radar 

parameters are given as carrier frequency 𝑓𝑐 = 3GHz , bandwidth 𝐵 = 10𝑀Hz, 

sampling frequency is 10 MHz, pulse width is 100 µs, pulse repetition interval 𝑇𝑟 =

0.5𝑚𝑠. 

Simulation parameters are set as: 𝑅0 = 60𝑘𝑚, 𝑣 = 500
𝑚

𝑠
, 𝑁𝑣 = 800,𝑁𝐹 = 8, 𝐾 =

100,𝑀 = 5000 , the single-sample SNR after matched filtering is 0dB. Amplitude 

of the coherent integration output of the proposed RFT is depicted in Figure 4.6. The 

maximum differences between normalized coherent integration output results of the 

existing and the proposed methods are 1.08 10-12 for RFT and 1.65 10-12 for KT. 
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Namely, both are equal within the numerical precision tolerances offered by the 

computers used. 

 

Figure 4.6. Amplitude of the coherent integration output of the proposed RFT 

 

4.1.5 Summary 

We proposed a lower complexity method to execute repeated CZT operations with 

differing initial points and constant angular distance on the spiral contour. We have 

depicted that the KT can be implemented with o loss in performance using the 

proposed method. In addition, a new method to implement the RFT using repeated 

CZT has been developed. Then, we have developed a new RFT implementation with 

lower computational complexity and the same performance compared to the existing 

RFT. Consequently, we have provided a computer simulation, which demonstrates 

the equality of integration performances of both the existing and the proposed RFT. 
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Both KT and RFT implementations proposed in this work are more favorable when 

there is Doppler ambiguity. The proposed KT implementation is more advantageous 

for higher number of pulses to be integrated and higher number of possible ambiguity 

factors. The proposed RFT implementation is computationally efficient when a low 

number of pulses are integrated which is commonly encountered  for low PRF mode 

due to limited integration time and the searching ambiguity factor number NF is not 

too high. 

4.2 Low Complexity Range Alignment Technique Based on Doppler 

Ambiguity Shift Transform [52] 

In this section, a low complexity method to compensate range migration is proposed. 

The proposed method searches for the Doppler ambiguity factor and the residual 

velocity jointly. Besides, a novel method, called Doppler ambiguity shift transform 

(DAST) is introduced to search for Doppler ambiguity factor. We show with analysis 

and simulations that the proposed method achieves almost same detection 

performance as the standard RFT method. 

4.2.1 Proposed algorithm 

We can write the matched filter output as given in (4.14). 

        

𝑌(𝑓, 𝑛) = |𝑃(𝑓)|2𝑒𝑥𝑝[−𝑗
4𝜋

𝑐
(𝑓 + 𝑓𝑐)(𝑅0 + 𝑣𝑛𝑇𝑟)]

+ 𝑃∗(𝑓)𝑈(𝑓, 𝑛) (4.14) 

 

Instead of searching for the velocity by using CZT in the existing RFT, we can 

correct Doppler ambiguity and search for the residual velocity. 

We express radial velocity in terms of the blind and the residual velocity: 

        𝑣 = 𝐹𝑎𝑚𝑏𝑣𝑏𝑙𝑖𝑛𝑑 + 𝑣𝑟𝑒𝑠 (4.15) 
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where the Doppler ambiguity factor is represented by 𝐹𝑎𝑚𝑏 = 𝑟𝑜𝑢𝑛𝑑(𝑣/𝑣𝑏𝑙𝑖𝑛𝑑),  the 

blind speed is given as 𝑣𝑏𝑙𝑖𝑛𝑑 =
𝑐

2𝑓𝑐𝑇𝑟
 , and 

resv  is the residual velocity with 

| |
2

 blind
res

v
v  . 

Inserting (4.15) into  (4.14), we get the following expression: 

        

𝑌(𝑓, 𝑛) = |𝑃(𝑓)|2𝑒𝑥𝑝[−𝑗
4𝜋

𝑐
(𝑓 + 𝑓𝑐)(𝑅0 + 𝑣𝑟𝑒𝑠𝑛𝑇𝑟)]

× 𝑒𝑥𝑝[−𝑗2𝜋𝐹𝑎𝑚𝑏

𝑓

𝑓𝑐
𝑛] + 𝑃∗(𝑓)𝑈(𝑓, 𝑛)

 

(4.16) 

 

We suggest to use CZT in order to search for the Doppler ambiguity factor and the 

residual velocity different from the existing RFT. CZT of 𝑌(𝑓, 𝑛) is computed as 

follows 

        

𝑍(𝑓, 𝑘) = 𝐶𝑍𝑇
𝑛
[𝑌(𝑓, 𝑛)] =∑𝑌(𝑓, 𝑛)𝐴−𝑛𝑊𝑛𝑘

𝑛

 

𝑘 = 0,1, . . . , 𝐾 − 1 

(4.17) 

 

where we 𝐾 =
𝑣𝑏𝑙𝑖𝑛𝑑

Δ𝑣
 is defined as the number of the residual velocities to be 

searched. 

Inserting 𝑌(𝑓, 𝑛), 𝐴 , and 𝑊into (4.17), we have the following expression 

        

𝑍(𝑓, 𝑘) =∑𝑌𝑐(𝑓, 𝑛)𝑒𝑥𝑝[−𝑗2𝜋𝐹𝑎𝑚𝑏

𝑓

𝑓𝑐
]

𝑛

 

× exp[𝑗2𝜋𝑛𝑘(𝑓 + 𝑓𝑐)
2Δ𝑣

𝑐
𝑇𝑟] + 𝐻(𝑓, 𝑘) 

(4.18) 

 

where 𝑌𝑐(𝑓, 𝑛) can be expressed as given in (4.19). 
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𝑌𝑐(𝑓, 𝑛) = |𝑃(𝑓)|2exp[−𝑗4𝜋(𝑓 + 𝑓𝑐)(𝑅0 + 𝑣𝑟𝑒𝑠𝑛𝑇𝑟)/𝑐] 
(4.19) 

 

We can rewrite (4.18): 

        

𝑍(𝑓, 𝑘) =∑𝑌𝑐(𝑓, 𝑛)𝑒𝑥𝑝[−𝑗2𝜋(𝑘𝑎𝑚𝑏 − 𝑘)
(𝑓 + 𝑓𝑐)

𝑓𝑐

𝑛

𝐾
]

𝑛

+ 𝐻(𝑓, 𝑘) 
(4.20) 

 

where  

𝑘𝑎𝑚𝑏 = 𝐹𝑎𝑚𝑏𝐾
𝑓

(𝑓+𝑓𝑐)
 , and 𝐻(𝑓, 𝑘) = 𝐶𝑍𝑇

𝑛
[𝑃∗(𝑓)𝑈(𝑓, 𝑛)]. 

 

the Doppler-ambiguity-compensated CZT output can be obtained after substituting 

𝑘 + 𝑘𝑎𝑚𝑏 for 𝑘 in the signal component of (4.20). 

        

𝑍𝑐(𝑓, 𝑘) =∑𝑌𝑐(𝑓, 𝑛)𝑒𝑥𝑝[𝑗2𝜋
(𝑓 + 𝑓𝑐)

𝑓𝑐

𝑛𝑘

𝐾
]

𝑛

 

(4.21) 

 

That is to say, the Doppler ambiguity can be compensated if we shift 𝑍(𝑓, 𝑘)in 

Doppler frequency for each 𝑓, but one should consider the change in phase and 

amplitude of 𝑍(𝑓, 𝑘) while shifting 𝑍(𝑓, 𝑘) 

 in 𝑘. Substituting 𝑌𝑐(𝑓, 𝑛) in (4.20), we get 

        

𝑍(𝑓, 𝑘) = |𝑃(𝑓)|2𝑒𝑥𝑝[−𝑗2𝜋(𝑓 + 𝑓𝑐)
2𝑅0
𝑐
]∑𝑒𝑥𝑝[−𝑗2𝜋𝑥𝑛]

𝑛

+ 𝐻(𝑓, 𝑘) 
(4.22) 

where 𝑥 = (𝑓 + 𝑓𝑐)
2𝑣𝑟𝑒𝑠

𝑐
𝑇𝑟 + 𝐹𝑎𝑚𝑏

𝑓

𝑓𝑐
+

(𝑓+𝑓𝑐)

𝑓𝑐

𝑘

𝐾
. 
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The expression (4.22) can be rearranged as 

 

        

𝑍(𝑓, 𝑘) = |𝑃(𝑓)|2 exp [−𝑗2𝜋(𝑓 + 𝑓𝑐)
2𝑅0
𝑐
]
sin(𝜋𝑁𝑥)

sin(𝜋𝑥)
exp[𝑗𝜋𝑥(𝑁

− 1)]] + 𝐻(𝑓, 𝑘) 
(4.23) 

 

Obviously, phase and amplitude variations exist due to the shifting of 𝑍(𝑓, 𝑘) 𝑘𝑎𝑚𝑏 

samples. Therefore, we introduce a novel technique, DAST (Doppler ambiguity shift 

transform), for the Doppler ambiguity compensation. DAST can be applied by 

shifting 𝑘
^

𝑎𝑚𝑏 = 𝑟𝑜𝑢𝑛𝑑(𝑘𝑎𝑚𝑏)  samples for each 𝑓 in 𝑍(𝑓, 𝑘) and correcting the 

phase and amplitude variation coming from shifting: 

        

𝐷𝐴𝑆𝑇[𝑍(𝑓, 𝑘), 𝐹𝑎𝑚𝑏] 

= 𝑍(𝑓, 𝑘 + 𝑘
^

𝑎𝑚𝑏) × 𝑒𝑥𝑝[𝑗𝜋(𝑁 − 1)
(𝑓 + 𝑓𝑐)

𝑓𝑐

𝑘
^

𝑎𝑚𝑏

𝐾
]|

𝑠𝑖𝑛(𝜋𝑦)

𝑠𝑖𝑛(𝜋𝑁𝑦)
| 

(4.24) 

where 𝑦 = 𝐹𝑎𝑚𝑏
𝑓

𝑓𝑐
−

𝑓+𝑓𝑐

𝑓𝑐

𝑘𝑎𝑚𝑏

𝐾
. 

The Doppler ambiguity factor can be searched by applying coherent integration for 

each 𝐹𝑎𝑚𝑏 value, and choosing 𝐹𝑎𝑚𝑏 value giving the maximum peak amplitude. 

One can perform coherent integration by taking IDTFT on (4.24): 

 

        

𝑧𝑐(𝑡
~
, 𝑘, 𝐹𝑎𝑚𝑏) = 𝐼𝐷𝑇𝐹𝑇

𝑓
[𝐷𝐴𝑆𝑇[𝑍(𝑓, 𝑘), 𝐹𝑎𝑚𝑏]]𝐹

^

𝑎𝑚𝑏

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝐹𝑎𝑚𝑏

[|𝑧𝑐(𝑡
~
, 𝑘, 𝐹𝑎𝑚𝑏)|] 

(4.25) 

Figure 4.7 shows the block diagram of the proposed method. 
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Figure 4.7. Block diagram of the proposed algorithm employing DAST 

Section 4.1 [51] , we developed a low complexity method to repeat execution of CZT 

for searching the Doppler ambiguity number and the residual velocity. Although in 

this way we can reduce the computational complexity compared to the RFT [21] 

realized with CZT, there would be a significant improvement in complexity 

reduction if we could get rid of repeating CZT. For this reason, we propose a new 

method to perform single CZT instead of repeating CZT many times in searching for 

the Doppler ambiguity number and the residual velocity. 

4.2.2 Computational Load Analysis 

Table 4.6 depicts the number of complex multiplications required in the existing RFT 

[19] examined in 2.3.4, the RFT realized with CZT [21] examined in 2.3.5, and the 

proposed method. where 𝑁 is the number of pulses to be integrated, 𝑀 is the number 

of range bins in PRI, 𝑁𝐹 is the total number of ambiguity factors, 𝑁𝑣 is the number 

of searched velocities, and 𝐾 is the number of search residual velocities. We assume 

that 𝐾 is an integer satisfying 𝑁𝑣 = 𝐾𝑁𝐹. To simplify the investigation, we set 𝐽 =

𝑁𝑣 + 𝑁, and 𝑇 = 𝐾 + 𝑁. 
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Table 4.6  Number of complex multiplications for algorithms 

Algorithm Number of complex multiplications 

Conventional RFT [19] 

(see in 2.3.4)   

𝑀[𝑁 + 𝑁𝑙𝑜𝑔𝑀 + 𝑁𝑁𝑉 + 𝑁𝑉/2] 

CZT-based RFT [21] 

(see in 2.3.5) 

𝑀[𝑁 + 𝑁𝑙𝑜𝑔𝑀 + 𝐽𝑙𝑜𝑔𝐽] 

Proposed method 
𝑀[𝑁 +

𝑁

2
𝑙𝑜𝑔𝑀 + 𝑇𝑙𝑜𝑔𝑇 + 𝑁𝐹𝐾 +

𝑁𝑁𝐹
2

𝑙𝑜𝑔𝑀] 

 

Figure 4.8 shows the ratio of the proposed method’s computational complexity to 

the existing method’s [21] complexity depending on  the velocity search resolution 

Δ𝑣. We assume 𝑓𝑐 = 0.5GHz, 𝑓𝑠 = 𝐵 = 20𝑀Hz, pulse repetition interval 𝑇𝑟 =

240µs, 𝑁 = 32 , 𝑣𝑚𝑎𝑥 = 15000 m/s, which corresponds to M = 4800, 𝑁𝐹 = 25. 

In addition, the impact of 𝑁 on the efficiency is examined. Figure 4.9 shows the ratio 

of the proposed method’s computational complexity to the existing method’s [21] 

complexity depending on number of pulses in CPI. We assume 𝑁𝑣 = 5120, 𝑁𝐹 =

20,𝑀 = 4800. We note that the proposed algorithm has a much lower 

computational complexity compared to the existing method [21] , particularly at a 

lower velocity search resolution and a lower number of impulses in CPI, which is 

the usual case when high velocity resolution is needed at low and medium PRF is 

radars. 
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Figure 4.8.  Ratio of the proposed method’s computational complexity to the 

existing method’s [21] complexity depending on  the velocity search resolution Δ𝑣 
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Figure 4.9 Ratio of the proposed method’s computational complexity to the 

existing method’s [21] complexity over 𝑁 when 𝑁𝐹=𝐾 

4.2.3 Simulation Results 

A computer simulation has been carried out for the performance comparison of the 

existing [21] and the proposed algorithm. We assume a simple point target model, 

LFM envelope , non-fluctuating Swerling-0 signal model, and complex additive 

Gaussian white noise background. Radar parameters are given as carrier frequency 

𝑓𝑐 = 0.5GHz , bandwidth 𝐵 = 20𝑀Hz, sampling frequency is 40 MHz, pulse width 

is 60 µs, pulse repetition interval 𝑇𝑟 = 240µs. Simulation parameters are set as: v = 

7000 m/s, N = 16, K = 64, Nv = 1536. Figure 4.10 and Figure 4.11 demonstrate that 

the DAST compensates the range migration.  

Figure 4.12 shows probability of detection vs. single-sample SNR for the CZT based 

RFT [21]  and the proposed method where false alarm probability is𝑃𝐹 = 10−4. 
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Simulation result depicts that approximately same detection performance can be 

achieved by the proposed method. 

 

Figure 4.10.  Range - Doppler plot of |Z|, i.e., before DAST 
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Figure 4.11. Range- Doppler plot of |DAST[Z]|, i.e., after DAST 

 

Figure 4.12.  𝑃𝐷 vs SNR after matched filtering with false alarm probability 𝑃𝐹 = 

10−4 
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4.2.4 Summary 

We proposed a low complexity algorithm to compensate the range migration. Instead 

of searching for the radial velocity, we search jointly the residual velocity and the 

Doppler ambiguity factor. CZT is employed to search for the residual velocity. We 

have introduced a new computationally inexpensive method, DAST, searches and 

corrects the Doopler ambiguity. It turns out that the proposed method can be used to 

achieve approximately the same detection performance as with the RFT. The 

computational efficiency has been improved by more than ten times comparing with 

our previously proposed algorithm [51]. 
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CHAPTER 5  

5 CONCLUSIONS 

In this thesis, we have considered the range migration problem that can arise 

especially in conjunction with wide bandwidth, long integration time, and high speed 

target in radar systems. 

We have approached the range migration issue from two different perspectives: 

exploring new RMC methods to strike a balance between the computational 

efficiency and the detection performance, and investigating the RMC methods in 

realistic radar environment including clutter and target fluctuation. 

Realistic synthetic sea clutter data has been generated and it is shown that detection 

performance can be improved if KT is applied after suppressing this clutter for 

detection of range-migrating target. It has been depicted that suppressing the clutter 

before applying KT improves performance compared to applying KT before 

suppressing the clutter. The main reason is that Doppler spectrum gets larger after 

applying the KT and the clutter cannot be suppressed perfectly since the clutter 

suppression filter is applied according to clutter covariance matrix before applying 

the KT.   

A new method has been proposed to eliminate the range migration problem jointly 

for range migrating clutter and the range migrating target. By the proposed method, 

we can align range profiles of both clutter and target without bringing additional 

computational cost with respect to only range alignment of target. 

A hybrid integration scheme has been presented to detect moderately fluctuating 

targets.  It is shown that it is possible by the combination of hybrid integration and 

frequency diversity to achieve the best detection probability for a given combination 

of SNR, correlation coefficient and total number of pulses. When the KT is applied 
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to remove range migration for moderately fluctuating targets, the detection 

performance is degraded about 0.8 dB SNR due to interpolation loss during KT.  

We have proposed [51] an efficient implementation of repetitive CZT to reduce 

computational complexity of the KT because the KT requires repeated execution of 

CZT for each potential Doppler ambiguity factor. We found a new implementation 

of RFT that uses repetitive CZT operation. In this way, we managed to reduce the 

complexity of the RFT as well by employing our new efficient repetitive CZT 

method. The proposed method turns out to be mathematically equivalent to the 

standard method, so there is no loss of performance. 

We have introduced [52] another efficient method to search for the Doppler 

ambiguity and the residual velocity without repeating CZT, which is more than ten 

times more efficient compared to [51]. The proposed method is more favorable 

especially in low and medium PRF radars with high velocity resolution.  

In this thesis, we have investigated the range migration compensation under the 

target fluctuation and the clutter separately. Future research may consider another 

realistic case when the target fluctuation and the clutter exist at the same time. 

Performance of the combination of hybrid integration scheme with frequency 

diversity can be evaluated for this case. New methods can be explored to handle the 

target fluctuation and clutter together. It would be interesting how to combine 

frequency diversity and hybrid integration to improve detection performance for a 

given clutter statistics and fluctuation correlation coefficient. In addition, one could 

take the complex nature of sea clutter fluctuations into account to provide a better 

performance. 
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