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Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Aykut Koç
Electrical and Electronics Engineering, Bilkent University

Date:29.06.2022



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: İrfan Manisalı
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ABSTRACT

DEEP LEARNING-BASED RECONSTRUCTION METHODS FOR
NEAR-FIELD MIMO RADAR IMAGING

Manisalı, İrfan
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Sevinç Figen Öktem

June 2022, 58 pages

Near-field multiple-input multiple-output (MIMO) radar imaging systems are of in-

terest in diverse fields such as medicine, through-wall imaging, airport security, and

surveillance. These computational imaging systems reconstruct the three-dimensional

scene reflectivity distribution from the radar data. Hence their imaging performance

largely depends on the image reconstruction method. The analytical reconstruction

methods suffer from either low image quality or high computational cost. In fact,

sparsity-based methods offer better image quality than the traditional direct inversion

methods, but their high computational cost is undesirable in real-time applications.

In this thesis, we develop two novel deep learning-based reconstruction methods for

near-field MIMO radar imaging. The main goal is to achieve high image quality with

low computational cost. The first approach has a two-staged structure that consists

of an adjoint operation followed by a deep neural network. The adjoint stage ex-

ploits the observation model and back project the measurements to the reconstruction

space. The second stage employs a deep neural network which is trained to convert

the backprojected measurements to a suitable reflectivity image. For comparison, a

second approach is also developed which replaces the adjoint stage with a fully con-
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nected neural network. In this two-staged structure, the reconstruction is performed

directly from the radar measurements using neural networks which are trained end-to-

end to learn the direct mapping between the measurements and unknown reflectivity

magnitude. For each case, a 3D U-Net is used at the second stage to jointly exploit

range and cross-range correlations. We demonstrate the performance of the developed

methods using a synthetically generated dataset and compare with the commonly used

analytical methods. The developed two-staged method with adjoint provides the best

reconstruction quality while enabling fast reconstruction.

Keywords: computational imaging, image reconstruction, inverse problems, deep

learning, convolutional neural networks, multiple-input multiple-output radar imag-

ing, near-field microwave imaging
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ÖZ

YAKIN ALAN MİKRODALGA GÖRÜNTÜLEMEDE DERİN ÖĞRENMEYE
DAYALI İMGE GERİÇATIM TEKNİKLERİ

Manisalı, İrfan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sevinç Figen Öktem

Haziran 2022 , 58 sayfa

Yakın alan mikrodalga görüntüleme sistemleri tıp, duvar arkası görüntüleme, gizli si-

lah tespiti ve gözetleme gibi çeşitli alanlarda kullanılmaktadır. Bu sistemler radardan

elde edilen ölçümlerden üç boyutlu bir sahnenin yansıtıcılık dağılımını geri kazanır.

Bu görüntüleme sistemlerinin başarımı, kullanılan geriçatım yöntemine büyük ölçüde

bağlıdır. Literatürde var olan analitik yöntemlerin dezavantajları yüksek hesaplama

yüküne sahip olmaları veya düşük geriçatım başarımı göstermeleridir. Seyreklik dü-

zenlileştirmesine dayalı analitik yöntemlerin direkt evirme yöntemlerinden daha iyi

geriçatım başarımı sağlamalarına rağmen, yüksek hesaplama yükleri gerçek zamanlı

görüntülemede kullanılmalarını zorlaştırmaktadır. Bu tezde, yakın alan mikrodalga

görüntüleme sistemleri için derin öğrenmeye dayalı iki yeni geriçatım yöntemi geliş-

tirilmektedir. Bu tezin ana amacı yüksek kaliteli geriçatıma düşük hesaplama yükü ile

ulaşmaktır. Geliştirilen ilk yöntem eklenik işlemini takiben derin sinir ağı içeren iki

aşamadan oluşmaktadır. Eklenik işlemini gerçekleştiren ilk aşamada ölçüm modelin-

den faydalanılarak ölçümlerin görüntü uzayına geri izdüşümü yapılır. İkinci aşamada

ise derin bir sinir ağı kullanılarak elde edilen ara sonucun sahnenin gerçek görüntü-
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süne dönüştürülmesi amaçlanır. Karşılaştırma amacıyla geliştirilen ikinci yöntemde,

geriçatılmak istenen görüntünün direkt olarak ölçümlerden derin sinir ağları kulla-

nılarak elde edilmesi amaçlanır. Bu amaçla ilk geliştirilen yöntemin ilk aşamasında

kullanılan eklenik işleci yerine tam bağlantılı sinir ağı kullanılır. Geliştirilen iki yak-

laşımda da ikinci aşamada üç boyutlu U-Net yapısı kullanılır, böylece geriçatılan gö-

rüntünün her üç yönündeki ilinti bilgisinden de faydalanılır. Geliştirilen geriçatım

yöntemlerinin başarımları sentetik veri seti üretilerek gösterilmekte ve analitik yön-

temlerle karşılaştırılmaktadır. Eklenik işlecini içeren geliştirilen ilk yöntem, en iyi

geriçatım kalitesine hızlı bir hesaplama ile ulaşmaktadır.

Anahtar Kelimeler: hesaplamalı görüntüleme, imgenin geriçatılması, ters problemler,

derin öğrenme, evrişimli sinir ağları, çok-girdili çok-çıktılı radar görüntüleme, yakın

alan mikrodalga görüntüleme
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Aykut Koç for reading and commenting on this thesis.

I am grateful for my parents whose constant love and support keep me motivated and

confident. My accomplishments and success are because they believed in me.

This work was supported in part by the Scientific and Technological Research Council

of Turkey (TUBITAK) under grants 117E160 and 120E505. I also would like to thank

TUBITAK for their support under 2210/A scholarship program.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

2 NEAR-FIELD MIMO RADAR IMAGING . . . . . . . . . . . . . . . . . . 7

2.1 Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Image Reconstruction Problem . . . . . . . . . . . . . . . . . . . . . 9

3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Analytical Reconstruction Methods for Near-field MIMO Radar Imag-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

xi



3.1.1 Traditional Direct Inversion Methods . . . . . . . . . . . . . . 11

3.1.2 Regularized Iterative Reconstruction . . . . . . . . . . . . . . 12

3.2 Deep Learning-based Reconstruction Methods for Inverse Problems
in Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Learning-based Direct Inversion Methods . . . . . . . . . . . 15

3.2.2 Plug-and-Play Regularization . . . . . . . . . . . . . . . . . . 15

3.2.3 Learned Iterative Reconstruction Based on Unrolling . . . . . 17

4 DEVELOPED DEEP LEARNING-BASED RECONSTRUCTION METH-
ODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 First Approach: DNN-based Two-Stage (Deep2S) Reconstruction . . 19

4.1.1 First Stage: Adjoint Operation . . . . . . . . . . . . . . . . . 21

4.1.2 Second Stage: 3D U-Net Architecture . . . . . . . . . . . . . 21

4.1.3 Computational Complexity . . . . . . . . . . . . . . . . . . . 23

4.2 Second Approach: DNN-based Direct Inversion (DeepDI) . . . . . . 23

4.2.1 First Stage: Fully Connected Layer . . . . . . . . . . . . . . . 24

4.2.2 Second Stage: 3D U-Net Architecture . . . . . . . . . . . . . 25

5 NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Preparation for Experiments . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.2 Synthetic Dataset Generation . . . . . . . . . . . . . . . . . . 28

5.1.3 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Performance Comparison of Different Approaches . . . . . . . . . . 30

5.3 Performance Comparison with Random Phase . . . . . . . . . . . . . 38

5.4 SNR Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xii



5.5 Performance Comparison with Different Network Architectures . . . 41

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xiii



LIST OF TABLES

TABLES

Table 5.1 Average PSNR and SSIM Values for Different Number of Fre-

quency Steps at 30 dB SNR. Best results are shown in bold. . . . . . . . . 35

Table 5.2 Average PSNR and SSIM Values of Adjoint Operation and BP Al-

gorithm at 30 dB SNR (Number of Frequency Steps: 15). Best results are

shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 5.3 Average Runtimes for 100 Test Images at 30 dB SNR (Number of

Frequency Steps: 15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 5.4 Average PSNR and SSIM Values for Different Number of Fre-

quency Steps at 30 dB SNR. Best results are shown in bold. . . . . . . . . 39

Table 5.5 Average PSNR and SSIM Values of Adjoint Operation and BP Al-

gorithm at 30 dB SNR (Number of Frequency Steps: 15). Best results are

shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 5.6 Average Reconstruction Performances for 100 Test Images for ResNet

at 30 dB SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiv



LIST OF FIGURES

FIGURES

Figure 2.1 Near-field MIMO Radar Imaging System. . . . . . . . . . . . . 8

Figure 3.1 The plug-and-play regularization method. . . . . . . . . . . . . 17

Figure 3.2 End-to-end learned reconstruction with unrolling. . . . . . . . . 18

Figure 4.1 Architecture of DNN-based Two-Stage Reconstruction Approach. 20

Figure 4.2 Architecture of the 3D U-Net. . . . . . . . . . . . . . . . . . . . 22

Figure 4.3 Architecture of DNN-based Direct Inversion Approach. . . . . . 24

Figure 5.1 Samples of Synthetically Generated Dataset (The units of x, y,

and z-axis are meters). . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 5.2 Synthetic Dataset Generation Procedure (The units of x, y, and

z-axis are meters). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 5.3 The training and validation loss versus epoch for the 3D U-Net

model in the Deep2S Approach (when the number of frequency steps is

15 and SNR is 30 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 5.4 The training and validation loss versus epoch for the 3D U-Net

model in the DeepDI Approach (when the number of frequency steps is

15 and SNR is 30 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xv



Figure 5.5 Reconstructions of the different algorithms for the first test im-

age of the synthetically generated dataset at 30 dB SNR (Number of

Frequency Steps: 15), (The units of x, y, and z-axis are meters). . . . . . 32

Figure 5.6 Reconstructions of the different algorithms for the second test

image of the synthetically generated dataset at 30 dB SNR (Number of

Frequency Steps: 15). . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 5.7 Reconstructions of the different algorithms for the third test im-

age of the synthetically generated dataset at 30 dB SNR (Number of

Frequency Steps: 15). . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 5.8 Reconstructions of the different algorithms for the ellipsoid test

image at 30 dB SNR (Number of Frequency Steps: 15). . . . . . . . . . 37

Figure 5.9 Reconstructions of the different algorithms for the first test im-

age of the synthetically generated dataset at 30 dB SNR (Number of

Frequency Steps: 15), (The units of x, y, and z-axis are meters). . . . . . 40

Figure 5.10 Average PSNR values of adjoint operation and, Deep2S ap-

proach for 100 test images of the synthetically generated dataset versus

measurement SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.11 Average SSIM values of adjoint operation and, Deep2S approach

for 100 test images of the synthetically generated dataset versus mea-

surement SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.12 Reconstructions of the adjoint operation and, Deep2S approach

for the first test image of the synthetically generated dataset (Number

of Frequency Steps: 15). . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5.13 Reconstructions of the Deep2S Approach for the first test im-

age of the synthetically generated dataset at 30 dB SNR (Number of

Frequency Steps: 15). . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xvi



LIST OF ABBREVIATIONS

1D 1 Dimensional

2D 2 Dimensional

3D 3 Dimensional

MIMO Multiple Input Multiple Output

SAR Synthetic Aperture Radar

CNN Convolutional Neural Network

DNN Deep Neural Network

FFT Fast Fourier Transform

CPU Central Processing Unit

GPU Graphics Processing Unit

HQS Half Quadratic Splitting

ADMM Alternating Direction Method of Multipliers

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Metric

SNR SNR Signal-to-Noise Ratio

MSE Mean Squared Error

TV Total Variation

xvii



xviii



CHAPTER 1

INTRODUCTION

Near-field radar imaging systems are of interest in diverse fields such as medicine,

through-wall imaging, airport security, concealed weapon detection, and surveillance

[1–4]. Earlier near-field radar imaging systems have operated in monostatic mode,

i.e., with collocated transmitter and receiver antennas [5–7]. In such systems, a

large number of transceiver antennas are required to maintain high image quality with

fine range and cross-range resolutions. This results in high system cost, hardware

complexity, and long acquisition time [8, 9].

Recently, sparse multiple-input multiple-output (MIMO) arrays with spatially dis-

tributed transmit and receive antennas (i.e. multistatic array) have gained more atten-

tion since they can offer high resolution with reduced cost, hardware complexity, and

acquisition time. The number of antennas in MIMO systems can be significantly re-

duced compared to the monostatic case while maintaining high image quality [10,11].

Near-field radar imaging systems, operating in monostatic or multistatic mode, are

computational imaging systems that reconstruct the three-dimensional (3D) reflec-

tivity distribution of the scene from the raw radar data. As a result, the imaging

performance of such radar systems largely depends on the underlying image recon-

struction method. Various analytical reconstruction methods are used to reconstruct

the unknown scene reflectivity distribution from the measurements. These methods

can be grouped into two categories: traditional direct inversion methods and regular-

ized iterative reconstruction methods.

Traditional direct inversion methods obtain a direct solution for the equation system

that models the observations without exploiting any prior information. These meth-
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ods generally involve back projecting the measurements to the object plane using

the adjoint operator and applying a filter-like operation [12–17]. Back-projection,

filtered back-projection, and Kirchhoff migration methods [7, 14, 15, 18–24] can be

given as examples of this class of methods for MIMO radar imaging. These tradi-

tional methods generally have low computational complexity but as a drawback, they

can not offer state-of-the-art reconstruction performance. The reconstruction quality

degrades for ill-posed cased with the presence of measurement noise and limited data

(as acquired with sparse MIMO arrays).

Regularized iterative reconstruction methods on the other hand incorporate additional

prior information (such as sparsity) into the reconstruction process. Motivated by

compressed sensing theory [25–27], sparsity-based reconstruction methods are the

most commonly used iterative inversion methods and they have been widely studied

in various imaging problems including radar imaging [28–35], both for monostatic

or far-field imaging settings [30, 34, 36–46], as well as for multistatic and near-field

settings [29,33,47–52]. Although these methods provide better reconstruction quality

than the traditional direct inversion methods, they suffer from high computational

cost and large memory usage, and also require parameter tuning to achieve good

reconstruction under different observation scenarios. These aspects are undesirable

in real-time applications.

Recently, reconstruction techniques that exploit deep learning have emerged as an

alternative to the analytical methods. These methods are shown to simultaneously

achieve high reconstruction quality and low computational cost for various imaging

problems [53–56]. The existing deep learning-based approaches in the literature can

be grouped into three main classes: 1) learning-based direct inversion, 2) plug-and-

play regularization, 3) learned iterative reconstruction based on unrolling.

Learning-based direct inversion methods are aimed to perform the reconstruction di-

rectly from the measurements using a deep neural network. Hence the neural net-

work is trained to learn the direct mapping from the observations to the desired image

solely using training data. However, these methods can not provide successful results

whenever the observation model is complex, the unknown image does not look alike

observations, or there is not much training data available. For this reason, commonly
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an efficient analytical inversion method is first performed and provided to the net-

work as a warm start. Subsequently a deep neural network is employed to improve

this intermediate reconstruction. This type of approach is applied to various linear

inverse problems in imaging such as noise removal [57], deconvolution [58], super-

resolution [59,60], and tomography [12]. It has also been applied to nonlinear inverse

problems such as phase-retrieval [61–64].

The key idea in plug-and-play regularization and unrolling-based deep-learning meth-

ods is to replace the hand-crafted analytical priors in model-based reconstruction

methods with data-driven deep priors. In plug-and-play methods, a deep prior is first

learned from training data and then utilized for the regularization of a model-based

inversion method. This type of approach is applied to various linear inverse problems

such as deconvolution, super-resolution, and image inpainting problems [65–67]. It

has also been applied to nonlinear inverse problems such as phase-retrieval [68]. In

unrolling-based learned iterative reconstruction methods, an iterative reconstruction

method with deep prior is unrolled into an end-to-end trainable network [69]. These

methods can also be utilized to learn the optimum regularization parameters [70] or

the proximal operator [71]. Thus, unlike plug-and-play and direct inversion meth-

ods, unrolling-based approaches use the forward model during training, which comes

with the cost of increased training time. This type of approach has also been applied

to various inverse problems in imaging [69–71].

In the context of near-field radar imaging, deep learning-based reconstruction meth-

ods have not been studied much in the literature. Most of the proposed methods are

for far-field settings in SAR/ISAR or MIMO radar imaging [72–80]. In the near-field

radar imaging context, there are some works for deep learning-based approaches,

but most of them apply to the monostatic setting such as [81, 82]. For near-field

and MIMO radar imaging systems, there are fewer works [83] and no comprehen-

sive study. In particular, the work in [83] develops a learning-based direct inversion

method to reconstruct point scatterers from near-field MIMO radar data. In this ap-

proach, the magnitude and phase of the backprojection images are processed sepa-

rately using 2D-convolutional layer blocks. Because the used network performs 2D

processing only (using two-dimensional kernels that work on the cross-range dimen-

sions), the correlation along the range direction can not be exploited. Moreover, the

3



training and testing are performed only for simple scenes that consist of point scat-

terers. These will significantly limit the performance of the method in real practical

scenarios that involve complex extended targets (rather than simple point scatterers).

1.1 Proposed Methods

In this thesis, we developed two novel deep learning-based methods to reconstruct

the 3D scene reflectivity from the near-field observations of a MIMO imaging radar.

We also compared the performance of the developed methods with the commonly

used analytical methods. The main goal is to achieve high image quality with low

computational cost so that the developed method can be used in real-time applica-

tions. Learning-based direct inversion methods can provide such capabilities. For

this reason, the developed approaches are based on learned direct reconstruction.

The first approach has a two-staged structure that consists of an adjoint operation fol-

lowed by a 3D U-Net architecture. The adjoint stage exploits the observation model

of the system and back project the measurements to the reconstruction space. The

second stage employs a deep neural network which is trained to convert the backpro-

jected measurements to a suitable magnitude-only reflectivity image.

For comparison, a second approach is also developed which replaces the earlier ad-

joint stage with a fully connected neural network. In this two-staged structure, the

reconstruction is performed directly from the radar measurements using only neural

networks, and the observation model is not used. These neural networks are trained

end-to-end to learn the direct mapping between the measurements and the magni-

tude of the unknown reflectivity image. In both approaches, a 3D U-Net architecture

is used at the second stage to jointly exploit the correlations along both range and

cross-range directions.

Numerical simulations are performed for a microwave imaging setting. For both train-

ing and testing, a large synthetic dataset is randomly generated to obtain 3D scenes

by taking into account the complex-valued and random phase nature of scene reflec-

tivities. Using this dataset, we illustrate the performance of the developed approaches

under different imaging scenarios and compare their performance with the commonly
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used analytical reconstruction methods.

1.2 Contributions of the Thesis

The main contributions are as follows:

• Development of two novel 3D image reconstruction methods for near-field

MIMO radar imaging based on learning-based direct inversion and using 3D

convolutional layers

• Generation of synthetic 3D scenes that involves extended targets with random

phase to obtain large data for training the neural networks

• Performance comparison with the commonly used analytical methods (i.e. back-

projection and sparsity-based reconstruction)

• Comprehensive experiments on synthetic 3D scenes with quantitative and qual-

itative analysis by considering different compression and noise levels in the

observations as well as different network architectures

Compared with the previous works the developed approaches reduce memory usage

and computation time, while offering good reconstruction quality. In fact, compared

to back-projection and sparsity-based methods, the developed two-staged approach

with adjoint operation achieves the best reconstruction quality on the synthetically

generated dataset both visually and qualitatively, while also enabling fast reconstruc-

tion. All adjustable parameters of the developed approaches are learned end-to-end,

which avoids the need for parameter tuning.

1.3 The Outline of the Thesis

The thesis is organized as follows. Chapter 2 describes the working principle of a

near-field MIMO radar imaging system by introducing the observation model and

the image reconstruction problem. The related work on image reconstruction is pre-

sented in Chapter 3, which includes the review of analytical methods for near-field
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MIMO radar imaging and deep-learning based reconstruction methods for general

inverse problems in imaging. The developed deep learning-based methods for near-

field MIMO radar imaging are presented in Chapter 4. Numerical simulation results

are presented in Chapter 5, which also contains the details of the simulation setting,

synthetic dataset generation and training procedure. Finally, we conclude the thesis

and discuss future research directions in Chapter 6.
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CHAPTER 2

NEAR-FIELD MIMO RADAR IMAGING

In this chapter, we introduce the observation model for near-field MIMO radar imag-

ing in Section 2.1 and the underlying inverse problem for image reconstruction in

Section 2.2. The thesis focuses on the solution of this inverse problem by exploiting

deep learning.

2.1 Observation Model

A sample observation geometry for near-field MIMO radar imaging is illustrated in

Fig. 2.1. The transmit and receive antennas are spatially distributed on a planar

MIMO array located at z = 0. Each transmit antenna, located at (xt, yt, 0), illumi-

nates a scene that lies in the near-field of the array. Using Born approximation for the

scattered field, the signal captured by the receive antenna at (xr, yr, 0) due to a single

scatterer at (x, y, z) with reflectivity s(x, y, z) can be expressed in the time-domain

as follows [19]:

r (xt, yt, xr, yr, t) =
1

4πdtdr
s(x, y, z) p

(
t− dt

c
− dr

c

)
(2.1)

where

dt =

√
(xt − x)2 + (yt − y)2 + z2 (2.2)

dr =

√
(xr − x)2 + (yr − y)2 + z2 (2.3)

Here r (xt, yt, xr, yr, t) denotes the time-domain measurement obtained using the

transmitter at (xt, yt, 0) and the receiver at (xr, yr, 0), where dt and dr respectively
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denote the distances from the corresponding transmit and receive antenna elements to

the scatterer at (x, y, z), p(t) is the transmitted pulse, and c denotes the speed of the

light. By applying Fourier transform, the received signal due to a single scatterer

Figure 2.1: Near-field MIMO Radar Imaging System.

can be expressed in the temporal frequency domain [19] as:

r (xt, zt, xr, zr, k) =
1

4πdtdr
s(x, y, z)p(k) e−jkdte−jkdr (2.4)

Here p(k) denotes the Fourier transform of the transmitted signal, where k = 2πf/c

denotes the frequency-wavenumber and f denotes the temporal frequency. Then the

total received signal r̃ (xt, zt, xr, zr, k) due to an extended target is given by

r̃ (xt, zt, xr, zr, k) =

∫∫∫
1

4πdtdr
s(x, y, z)p(k) e−jkdte−jkdr dx dy dz (2.5)

where s(x, y, z) represents the complex-valued three-dimensional reflectivity distri-

bution of the scene.

Because the measurements will be acquired digitally and image reconstruction will

be performed on a computer, a discrete forward model is needed. The continuous

forward model in Eq. 2.1 or Eq. 2.5 is converted to a discrete model by replacing the
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three-dimensional continuous reflectivity function with its discrete representation in

terms of voxels. By using lexicographic ordering, the voxel values of the discretized

reflectivity function are put into the vector s ∈ CN . The noisy measurement vector

is also denoted by y ∈ CM , which contains the discrete set of noisy measurements

obtained using different transmitter-receiver pairs and frequency steps. Then the lin-

ear relation between the complex-valued image vector s and the measurement vector

y can be expressed as follows:

y = As+ w (2.6)

where A ∈ CM×N is the observation matrix and w is the noise vector. In general,

the observation matrix A is rectangular. The total number of rows in A is the length,

M , of the measurement vector, which is equal to the multiplication of the number of

transmit and receive antennas, and used frequency steps. The number of columns in

A is equal to the number of voxels, N .

Using the frequency-domain model given in Eq. 2.5, the (m,n)th element of the

observation matrix, representing the contribution of the nth voxel to the mth mea-

surement, can be expressed [84] as:

Am,n =
p (km) e

−jkmd
(n)
tm e−jkmd

(n)
rm

4πd
(n)
tm d

(n)
rm

(2.7)

Here the measurement index m indicates the locations of the transmitting and receiv-

ing antennas, as well as the frequency, km, used in this measurement. Moreover, d(n)tm

and d
(n)
rm respectively represent the distances from the center of the nth voxel to the

transmitter and receiver used in the mth measurement. Note that, for the sampled

reflectivity distribution, the voxel size is chosen based on the desired down-range and

cross-range resolutions of the MIMO imaging system.

2.2 Image Reconstruction Problem

As in any computational imaging system, we need to solve an image reconstruc-

tion problem after mathematically relating the unknown reflectivity distribution of
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the scene to the radar measurements as in Eq. 2.6. This requires solving a linear in-

verse problem. In the inverse problem faced here, the goal is to estimate the unknown

3D reflectivity image, s, from the noisy radar measurements, y. There are different

type of approaches for this purpose.

An analytical reconstruction approach can be used to solve the corresponding inverse

problem. Traditional direct inversion methods form the first class of the existing

analytical methods. The back-projection method can be given as an example of this

class. These traditional methods have generally low computational complexity but

as a drawback, they can not offer state-of-the-art reconstruction performance. Also,

they are not robust to noise as they directly aim to solve the equation that models

the observations (such as Eq. 2.5 or 2.6) without considering the effect of noise

and exploiting prior information. Regularized iterative reconstruction methods on

the other hand incorporates additional prior knowledge (such as sparsity prior) into

the reconstruction process. Total variation-based reconstruction can be given as an

example of this class of methods. This second class of the analytical methods provides

better reconstruction quality but with higher computational cost.

Recently, reconstruction techniques that exploits deep learning have emerged as an

alternative to analytical methods. These methods are shown to simultaneously achieve

high reconstruction quality and low computational cost for various inverse problems

in imaging. The existing deep learning-based approaches in the literature can be

grouped into three main classes: 1) learning-based direct inversion, 2) plug-and-play

regularization, and 3) learned iterative reconstruction based on unrolling. However,

in the context of near-field MIMO radar imaging, deep learning-based reconstruction

methods have not been studied much in the literature. This thesis aims to develop

deep learning-based fast reconstruction methods for near-field MIMO radar imaging

and investigate the respective merits and drawbacks of these developed methods in

comparison to the existing analytical methods in the literature.
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CHAPTER 3

RELATED WORK

The theory and the implementation of the related reconstruction methods are ex-

plained in detail in this chapter. First analytical reconstruction methods for near-field

MIMO radar imaging are reviewed in Section 3.1. Then in Section 3.2 deep learning-

based reconstruction methods for general inverse problems in imaging are examined.

The goal is to discuss the merits and drawbacks of the existing methods in the litera-

ture and the motivation of the developed methods in this thesis.

3.1 Analytical Reconstruction Methods for Near-field MIMO Radar Imaging

Analytical reconstruction methods for near-field MIMO radar imaging can be clas-

sified into two groups: 1) traditional direct inversion methods, and 2) regularized

iterative reconstruction methods.

3.1.1 Traditional Direct Inversion Methods

Traditional direct inversion methods are the first class of analytical methods. These

methods obtain a direct solution for the equation system that models the observations

and do not exploit any prior information. This generally involves back projecting

the measurements to the object plane using the adjoint of the scattering operator and

applying a filter-like operation [12–17].

There is plenty of work for classical methods in the context of near-field radar imag-

ing. These methods are implemented either in the time domain or in the frequency

domain. For monostatic radar systems with collocated transmitter and receiver an-
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tennas, commonly used methods are backprojection (also known as diffraction stack

migration or delay-and-sum algorithm), Kirchoff migration, range migration meth-

ods, and their variants [2, 5, 20]. These direct inversion methods have also been

extended for MIMO (multistatic) arrays with spatially distributed transmit and re-

ceive antennas [3, 15, 18, 19, 21–23]. The multistatic imaging configuration makes

the FFT-based imaging more challenging and requires a multidimensional interpo-

lation process [7, 19]. These traditional methods generally have low computational

complexity but as a drawback, they can not offer state-of-the-art reconstruction per-

formance. The reconstruction quality and resolution degrade in the presence of noise

or when we have limited data (as acquired with sparse MIMO arrays).

In our experiments, the backprojection (BP) algorithm is chosen from these traditional

methods for performance comparison. Considering the discrete forward model in Eq.

(2.6) with constant p(k), the three-dimensional reflectivity distribution of the scene

can be reconstructed using the BP algorithm as follows [15, 85]:

ŝn =
∑
m

ym ejkmd
(n)
tm ejkmd

(n)
rm (3.1)

Here ŝ is the reconstructed complex-valued vector for the sampled 3D reflectivity

image and y is the available measurement vector. That is, ŝn represents nth voxel

of the unknown reflectivity field of the scene and ym is the mth measurement. The

measurement index m indicates the locations of the transmitting and receiving anten-

nas, as well as the frequency, km, used in this measurement. Moreover, d(n)tm and d
(n)
rm

respectively represent the distances from the center of the nth voxel to the transmitter

and receiver used in the mth measurement.

3.1.2 Regularized Iterative Reconstruction

Different than direct inversion methods, regularized iterative reconstruction meth-

ods incorporate additional prior information (such as sparsity) into the reconstruc-

tion process to eliminate uniqueness and noise amplification issues arising from lim-

ited data and measurement noise. Motivated by compressed sensing theory [25–27],

sparsity-based reconstruction is the most commonly used regularization approach and
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has been widely studied in various imaging problems [86–91], including radar imag-

ing [28–35], both for monostatic or far-field imaging settings [30, 34, 36–46], as well

as for multistatic and near-field settings [29, 33, 47–52].

In the inverse problem for MIMO radar imaging, the goal is to reconstruct the un-

known reflectivity field of the scene, s, from the radar measurements, y. Because

scene reflectivity has correlation along both range and cross-range directions, incor-

porating a sparsity prior can improve the reconstruction quality. To enforce spar-

sity [87, 92, 93], the inverse problem is formulated as the following regularized least-

squares (LS) problem:

min
s

∥y − As∥2 + α2∥Φs∥1 (3.2)

Here Φ represents the sparsifying transform for the reflectivity field of the scene and α

denotes the regularization parameter. It is well-known that finite-difference operation

(i.e. discrete gradient operator) provides a good sparsifying transform for extended

targets. This special case is known as total-variation (TV) regularization.

Various sparsity-based reconstruction algorithms have been developed to solve the

optimization problem in Eq. 3.2 for near-field MIMO radar imaging. These algo-

rithms are generally adopted from sparsity-based reconstruction algorithms devel-

oped for two-dimensional image restoration problems and mainly differ from each

other in their convergence rate. For example, Cheng et al. [29] adopted the split aug-

mented lagrangian shrinkage algorithm (SALSA) [88] and Oktem [32] adopted the

half-quadratic regularization approach [94, 95]. There have been also some efforts to

reduce the computational cost and memory usage of such sparsity-based reconstruc-

tion algorithms by exploiting the special structure of the forward problem [33, 52].

Although sparsity-based methods provide better reconstruction quality than the tra-

ditional direct inversion methods, they suffer from higher computational cost and

memory usage due to their iterative nature and requiring computation of the forward

scattering operator and its adjoint at every iteration. They also require parameter

tuning to achieve good reconstruction under different observation scenarios. These

aspects are undesirable in real-time applications.

In our experiments, for performance comparison, we use a sparsity-based algorithm
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[32] which is a fixed-point iterative approach [94] based on half-quadratic regulariza-

tion [95]. As sparsifying transform, total variation is chosen since it provides good

reconstruction quality for extended targets. The implementation of this sparsity-based

algorithm is described in detail below.

First a smooth approximation is applied to the regularization term in Eq. 3.2 to make

l1 norm differentiable, which results in the following minimization problem [32]:

min
s

∥y − As∥2 + α2

3N∑
i=1

√
|[Φs]i|2 + β (3.3)

This problem is solved with a fixed-point algorithm by alternately calculating the

matrix W (s) using Eq. (3.4) and updating the solution s using Eq. (3.5) as follows:

W (sl) = diag

 1/2√
|[Φsl]i|

2 + β

 (3.4)

sl+1 =
(
AHA+ α2ΦHW (sl) Φ

)−1
AHy (3.5)

Here l represents the iteration count. For optimum parameter selection, we choose α

parameter that optimizes the average reconstruction performance of the test dataset.

Based on this, α is selected as 25 in all experiments.

3.2 Deep Learning-based Reconstruction Methods for Inverse Problems in Imag-

ing

In the literature, deep learning-based methods are grouped into three main classes:

1) learning-based direct inversion, 2) plug-and-play regularization, and 3) learned

iterative reconstruction based on unrolling.
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3.2.1 Learning-based Direct Inversion Methods

Learning-based direct inversion methods aim to perform the reconstruction directly

from the measurements using deep neural networks [12, 57]. The observation model

may not be used in this type of approach. That is, the neural network can be trained

to learn the direct mapping from the measurement space to the reconstruction space

solely using training data. For example, Kulkarni et al. [96] developed a non-iterative

fast algorithm to reconstruct images from compressively sensed random measure-

ments. In the end, the developed approach achieved the best reconstruction perfor-

mance with lower computational complexity compared the to existing iterative CS

reconstruction algorithms. However, these type of methods can not provide success-

ful results whenever the observation model is complex, the unknown image does not

look alike observations, or there is not much training data available.

For this reason, commonly an efficient analytical inversion method is first performed

and provided to the network as a warm start. Subsequently a deep neural network

is employed to improve this intermediate reconstruction. This type of physics-based

learning approaches are applied to various linear inverse problems in imaging such

as noise removal [57], deconvolution [58], super-resolution [59, 60], and tomogra-

phy [12]. It has also been applied to nonlinear inverse problems such as phase-

retrieval [61–64]. These show the reconstruction capability of this type of approach

since they provided the state-of-the-art reconstruction performance in various inverse

problems. Another advantage of learning-based direct inversion methods is their low

computational complexity due to their feed-forward (non-iterative) nature. Their dis-

advantage is that the performance highly depends on the training data since the learn-

ing mostly relies on this.

3.2.2 Plug-and-Play Regularization

In plug-and-play methods, the key idea is to replace the hand-crafted analytical priors

in model-based regularized reconstruction methods with data-driven deep priors. A

deep prior is first learned from training data and then utilized for the regularization of

a model-based iterative method. For this purpose, commonly variable splitting is ap-
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plied to the cost function involving the regularization term (as in Eq. 3.2). In this way,

the optimization problem is converted to simpler sub-problems. The sub-problem that

involves the regularization term can be viewed as a noise removal (denoising) prob-

lem. This problem can be solved using an appropriate denoiser. This idea forms

the basis of the plug and play regularization [97, 98]. Since deep neural networks

have been shown to achieve the state-of-the-art performance in denoising problems

in recent years, deep neural network-based denoisers have become the first choice for

plug-and-play regularization. This type of approach has been applied to various lin-

ear inverse problems in imaging such as deconvolution, super-resolution, and image

inpainting problems [65–67]. It has also been applied to nonlinear inverse problems

such as phase-retrieval problems [68].

For example, Zhang et al. [65] developed a deep prior-based iterative approach for

two-dimensional linear inverse problems such as denoising, deconvolution, and super-

resolution. In this approach, the linear inverse problem is formulated as follows:

x = argmin
x

1

2
∥y − Ax∥22 + λΦ(x) (3.6)

Here the solution minimizes a cost function composed of a data fidelity term and a

regularization term with the trade-off parameter λ. The data fidelity term ensures that

the solution is consistent with the forward model, while the regularization term en-

forces that the solution matches the prior information like sparsity in some transform

domain. The fidelity term and regularization term can be decoupled into separate sub-

problems with the aid of variable splitting methods. Half quadratic splitting (HQS)

method is used by [65] to obtain the following sub-problems:

xl+1 = argmin
x

∥y − Ax∥22 + v
∥∥x− zl

∥∥2

2
(3.7)

zl+1 = argmin
z

v

2

∥∥z − xl+1
∥∥2

2
+ λΦ(z) (3.8)

The inverse problem can then be solved by alternately solving these sub-problems.

The first subproblem is a regularized least-squares problem which has a direct solu-

tion and can be expressed in closed form. Based on Bayesian estimation, the second

sub-problem corresponds to a denoising problem. A gaussian denoiser can be used to
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solve this problem. An alternative way of solving this denoising problem is to train

a network for the denoising task and then use this deep denoiser. In [65], ResNet

architecture is used for solving the denoising sub-problem. The reconstruction is per-

formed by alternating between the denoising and data fidelity steps as shown in Fig.

3.1. Although plug-and-play methods often perform better than learning-based di-

Figure 3.1: The plug-and-play regularization method.

rect inversion methods, these approaches may require high memory usage and high

computational complexity due to their iterative nature and requiring computation of

the forward scattering operator and its adjoint at every iteration.

3.2.3 Learned Iterative Reconstruction Based on Unrolling

In unrolling-based learned iterative reconstruction methods, an iterative reconstruc-

tion method with deep prior is unrolled into an end-to-end trainable network [69]. For

example, after fixing the iteration number L, the algorithm described by Eq. (3.7) and

(3.8) can be unrolled into an end-to-end trainable network as shown in Fig. 3.2. This

type of approach is applied to various imaging problems [69–71]. These methods

are also utilized to learn the optimum regularization parameters [70] or the proximal

operator [71] from the training data. Similar to plug-and-play methods, unrolled

reconstruction methods may have high computational complexity if they involve com-

putation with large sensing matrices to evaluate the forward scattering operator and

its adjoint. Unlike plug-and-play and direct inversion methods, unrolling-based ap-
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Figure 3.2: End-to-end learned reconstruction with unrolling.

proaches use the forward model during training, which comes with the cost of in-

creased training time and complexity. But this generally provides the advantage of

better performance.
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CHAPTER 4

DEVELOPED DEEP LEARNING-BASED RECONSTRUCTION METHODS

The developed deep learning-based methods for near-field MIMO radar imaging are

presented in this chapter. The main goal is to achieve high image quality with low

computational cost so that the developed method can be used in real-time applica-

tions. Both approaches are based on learned direct reconstruction. The first approach

is a physics-based learning approach. It has a two-staged structure that consists of

an adjoint operation stage followed by a 3D U-Net architecture for refinement. The

second approach replaces the adjoint operation stage with a fully connected neural

network for comparison. Hence this approach aims to perform the reconstruction di-

rectly from the radar measurements using only deep neural networks and does not

use the physics-based model. The details of these two DNN-based approaches are

presented.

4.1 First Approach: DNN-based Two-Stage (Deep2S) Reconstruction

The first approach has two consecutive stages as shown in Fig. 4.1 where the first

stage performs an analytical computation whereas the second stage is a neural net-

work. In the first stage, the adjoint operation is used to back project the measurements

to the reconstruction space using the observation model of the system. This interme-

diate result is worse compared to a sparsity-based reconstruction like total-variation

but the adjoint operation has the benefit of fast computation due to its non-iterative

nature. Subsequently, a deep neural network is employed to improve this intermedi-

ate result. This second stage employs a DNN which is trained to convert the back-

projected measurements to a suitable magnitude-only reflectivity image. Although
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Figure 4.1: Architecture of DNN-based Two-Stage Reconstruction Approach.

scene reflectivities are complex-valued, in most applications they have random phase

nature, and as a result it is generally sufficient to reconstruct the magnitude of the re-

flectivity distribution. Because of this, the DNN is trained to improve the reflectivity

magnitudes obtained from the first stage. As DNN, a modified 3D U-net architecture

is used to jointly exploit the correlations along both range and cross-range directions.

For training, the simulated radar measurements are first passed through the adjoint

operation stage. The magnitude of the 3D reflectivity image obtained with the ad-

joint operation is then input to the second stage. The DNN in the second stage is

trained using these reflectivity magnitudes together with the corresponding ground-

truth reflectivity magnitude of the scene, which form our training input and output

respectively. For the training procedure, a synthetically generated dataset is used.
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The generation of this synthetic dataset is explained in detail in Section 5.1.2.

After training, we can process our radar measurements in the test dataset with the

proposed method to reconstruct the reflectivity magnitude of the unknown scene. In

what follows, we provide the details of each stage in our approach.

4.1.1 First Stage: Adjoint Operation

Since it is generally a difficult task for a network to learn the direct mapping from

the measurement space to the reconstruction space, we first apply the adjoint operator

to the measurements to provide the network in the second stage a warm start. The

adjoint operation encapsulates the physical model of the near-field MIMO imaging

system and involves an analytical fast computation. This stage simplifies the learning

process of the 3D U-Net architecture since it back projects the radar measurements

to the object plane. In this way, the network can be trained to improve the reflectivity

magnitude obtained from the first stage by directly working in the object plane.

In our experiments, the adjoint operation is applied to the radar measurements by

using the hermitian of the system matrix. The hermitian matrix applied on the discrete

radar measurements gives us a 3D intermediate result, ŝ, in the reconstruction space

as follows:

ŝ = AHy (4.1)

4.1.2 Second Stage: 3D U-Net Architecture

For the second stage, we develop a 3D U-Net architecture based on [99] which was

originally designed for segmentation. This 3D U-Net architecture can capture the

correlation information along both range and cross-range directions of a 3D extended

target unlike the 2D U-Net architecture proposed in [99] which can only exploit the

correlation in a two-dimensional space. To achieve this, three-dimensional convolu-

tion kernels, max pooling, and up-sampling operations are used in the network archi-

tecture instead of their two-dimensional counterparts. The 3D U-Net architecture and

its details are illustrated in Fig. 4.2. This architecture has an encoding and decoding
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Figure 4.2: Architecture of the 3D U-Net.

path. The encoding path contains the repeated application of 3× 3× 3 convolutions,

batch normalization (BN), rectified linear unit (RELU), followed by a 2× 2× 2 max

pooling with strides of two. The decoding path consists of 3 × 3 × 3 upconvolution

with strides of two in each dimension, which is followed by a RELU. In the decoding

path, there are also concatenations with the cropped feature maps from the encoding

path. The size of the input and output of the network is 25 × 25 × 49 voxels in x, y,

and z directions.

The 3D U-Net architecture has three properties that will be suited for our imaging

problem. Firstly, due to the decoding path, the effective receptive field of the network

increases. In our problem, our main purpose is the refinement of the input image.

Having a large receptive field over the input image can improve the quality of the

output image [100]. We can use encoder-decoder architecture to take the advantage of

large receptive fields. Secondly, the 3D U-Net employs multichannel filters. By this

way it can better extract the feature maps of its input. This increases the dimension

of the latent representation of our input images, which increases the expressive power

of the network [101]. Thirdly, the 3D U-Net architecture can capture the correlation

along both range and cross-range directions of the three-dimensional target, unlike

the existing approaches in the literature. This 3D U-Net architecture is used in the

second stages of the developed DNN-based algorithms.

In the end, a feed-forward approach is obtained while incorporating the physics-based

knowledge of the MIMO imaging system through the usage of the adjoint of the
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system matrix. The approach has low computational complexity as desired.

4.1.3 Computational Complexity

For an image size of N × M × L and measurement size of T × R × F where T

is the number of transmitter antennas, R is the number of receiving antennas, and F

is the number of frequency steps, the computational cost of the adjoint operation is

O(N M LT RF ). The main operations in the 3D U-Net architecture are 3D con-

volutions, batch normalization, application of the RELU function, max pooling, and

upconvolution. The computational cost of the network is dominated by the 3D con-

volution operations, which are performed in the 3D spatial domain. When the kernel

size is K ×K ×K, number of filter per layer is S with Q layers, the computational

cost of the network is O(N M LK3 S2Q) [102]. Overall, the proposed algorithm

also has O(N M LK3 S2Q) complexity. The computational cost of the algorithm is

dominated by the 3D U-Net.

4.2 Second Approach: DNN-based Direct Inversion (DeepDI)

Direct inversion from the measurement domain to the reconstruction domain is also

possible by using a proper network. For comparison, a second approach is developed

which replaces the earlier adjoint stage with a fully connected neural network. In this

two-staged structure, the reconstruction is performed directly from the radar mea-

surements using only neural networks, and the observation model is not used. These

neural networks are trained end-to-end to learn the direct mapping between the mea-

surements and the magnitude of the unknown reflectivity image. This algorithm is

inspired by the CNN-based approach proposed in [96] for the CS recovery problem.

Hence the developed algorithm contains two consecutive stages: a fully connected

layer followed by a 3D U-Net architecture. The only difference from the first recon-

struction approach (Deep2S) is that we use neural network-based computation in the

first stage of the reconstruction approach. The overall method is illustrated in Fig.

4.3.
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Figure 4.3: Architecture of DNN-based Direct Inversion Approach.

4.2.1 First Stage: Fully Connected Layer

The first stage contains a fully connected layer that takes the radar measurements as

input and outputs a 3D intermediate reconstruction for the magnitude of the unknown

reflectivity image. Since the measurements are complex-valued, the input of the fully

connected layer is provided as the concatenation of the real and imaginary parts of

the measurements. This stage learns a mapping from the complex-valued measure-

ments to the 3D reconstruction space (which represents the real-valued reflectivity

magnitude). Then, the 3D intermediate reconstruction is fed into the second stage.
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4.2.2 Second Stage: 3D U-Net Architecture

In the second stage, a deep neural network is employed to improve this 3D inter-

mediate reconstruction. Same 3D U-Net architecture in Fig. 4.2 is used for this

purpose. Instead of using a single end-to-end fully connected layer structure, we in-

troduce a second stage which contains the 3D U-Net architecture. The main reason

is to increase the reconstruction performance using a CNN structure and decrease the

training time of the whole network.

The two DNNs are trained end-to-end. For training, the simulated radar measure-

ments and the corresponding ground-truth reflectivity images are used as the input

and output respectively. For training, a synthetically generated dataset is used as ex-

plained in Section 5.1.2.

For testing, we can pass our radar measurements into the trained network to directly

obtain the reflectivity magnitude of the unknown scene as reconstruction. This ap-

proach has similar computational complexity as the first one, but since it does not

exploit physics-based knowledge, it can yield poor results.
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CHAPTER 5

NUMERICAL RESULTS

Simulation results are presented in this chapter. Firstly, we describe the simulation

setting, synthetic dataset generation, and training procedure of the neural networks

in Section 5.1. Then we present the performance of the developed methods in com-

parison with the commonly used analytical methods in Sections 5.2 and 5.3. We also

investigate the effect of SNR and different network architectures on the performance

in Sections 5.4 and 5.5.

5.1 Preparation for Experiments

In this section, we describe the details of the simulation setting, synthetic scene gen-

eration, and the training procedure.

5.1.1 Simulation Setting

The sketch of the used experimental setting is shown in Fig. 2.1. As a sparse MIMO

array topology, we consider a Mills Cross array since it is commonly used due to its

imaging performance [19, 32], but other alternatives could also be considered [103].

The width of the planar array is 0.3 m, which includes 12 uniformly spaced transmit

antennas and 13 uniformly spaced receive antennas along its diagonals in a cross

configuration. The target center is located approximately 0.5 m away from the 2D

MIMO array. The frequency ranges from 4 to 16 GHz with uniformly sampled steps.

In the numerical simulation, the number of frequency steps is selected as 7, 15, and 31

respectively to investigate the performance of the methods at different compression
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levels.

For this imaging setting, the theoretical resolution [19] is 1.25 cm in the cross-range

directions, x and y, and 2.5 cm in the down-range direction, z. Our goal is to infer the

reflectivity image within a cube of size 0.3m× 0.3m× 0.3m, where the voxel size is

chosen as 1.25cm× 1.25cm× 0.625cm in x, y, and z directions, which is half of the

expected theoretical resolution in each direction. The cube that we want to infer the

reflectivity image contains 25× 25× 49 voxels in x, y, and z directions respectively.

5.1.2 Synthetic Dataset Generation

Figure 5.1: Samples of Synthetically Generated Dataset (The units of x, y, and z-axis
are meters).

A real-world dataset is the most appropriate way of training a network. However, a
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Figure 5.2: Synthetic Dataset Generation Procedure (The units of x, y, and z-axis are
meters).

large dataset is often not available in many radar imaging applications. Therefore,

the neural networks are trained and tested using a synthetically generated dataset. To

enable generalizability to different target scenarios, 3D target images are randomly

generated within the cube we want to infer as illustrated in Fig. 5.2. Firstly, the cen-

ter of the object is randomly chosen from a uniform distribution in the range -0.05 to

0.05m for the x and y-axis and, 0.41 to 0.59m for the z-axis. Then, around the cen-

ter of the object 5 virtual centers are chosen according to a gaussian distribution with

zero mean and standard deviation of 2. Moreover, for every virtual center, 3 points are

generated according to a gaussian distribution with zero mean and standard deviation

of 1.5. The variance parameter of the gaussian distributions determines the size of the

distributed target. For a large variance, generated distributed targets take up more vol-
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ume within the cube compared to the selection of a small variance. For one synthetic

scene, we totally have 15 points chosen randomly within the cube. To obtain volumet-

ric objects, these 15 points are passed through a three-dimensional gaussian filter with

a standard deviation of 1.3. This is then passed through the sigmoid function which

performs the amplitude normalization of the generated three-dimensional targets to a

maximum value of 1. In this way, the amplitude values of the generated targets are in

the range of zero to one. With this approach, we obtain different three-dimensional

objects which spread within the cube from a randomly chosen center.

The training, validation, and test datasets contain 800, 100, and 100 images which

were randomly generated in this way.

5.1.3 Training Procedure

The implementation and the training of the networks are done using Jupyterlab 3.1.7

environment and default Adam Optimizer. The training of the networks used in the

experiments took about 8 hours for both approaches using NVDIA GeForce RTX

3060. The learning rate is chosen as 10−3, batch size equals 16, loss function is

chosen as mean square error (MSE) (l2 loss), maximum number of epoachs are set

to 100, and the early stopping criterion is selected as 15 consecutive epochs with no

drop in validation loss. Fig. 5.3 shows the learning curve of the 3D U-Net model

trained for the Deep2S approach. Fig. 5.4 shows the learning curve of the DeepDI

approach.

5.2 Performance Comparison of Different Approaches

In the experiments, we use 3D peak-signal-to-noise (PSNR) and the structural sim-

ilarity index (SSIM) as quantitative metrics. A higher SSIM and PSNR value cor-

responds to a better reconstruction or higher similarity between the reconstructed

and the ground truth image. SSIM between the three-dimensional images is calcu-

lated using [104]. PSNR between the three-dimensional images of size N ×M × L

(ground-truth image s and the reconstructed image ŝ) is calculated using the following
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Figure 5.3: The training and validation loss versus epoch for the 3D U-Net model in
the Deep2S Approach (when the number of frequency steps is 15 and SNR is 30 dB).
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Figure 5.4: The training and validation loss versus epoch for the 3D U-Net model in
the DeepDI Approach (when the number of frequency steps is 15 and SNR is 30 dB).
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Figure 5.5: Reconstructions of the different algorithms for the first test image of the
synthetically generated dataset at 30 dB SNR (Number of Frequency Steps: 15), (The
units of x, y, and z-axis are meters).

formula [105]:

PSNR = 10 log10

(
s2max

MSE

)
(5.1)
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Figure 5.6: Reconstructions of the different algorithms for the second test image of
the synthetically generated dataset at 30 dB SNR (Number of Frequency Steps: 15).

where smax is the maximum value of the image voxels (which is 1 in our experiments).

MSE is the mean square error, which is calculated by the following formula [106]:

MSE =
N−1∑
n=0

M−1∑
m=0

L−1∑
l=0

(s(n,m, l)− ŝ(n,m, l))2

N ·M · L
(5.2)
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For performance comparison, the results are obtained using the adjoint operation,

DeepDI, and Deep2S approaches, as well as TV method as we discuss its details in

Chapter 3.

Figure 5.7: Reconstructions of the different algorithms for the third test image of the
synthetically generated dataset at 30 dB SNR (Number of Frequency Steps: 15).
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Table 5.1: Average PSNR and SSIM Values for Different Number of Frequency Steps
at 30 dB SNR. Best results are shown in bold.

Number of Frequency Steps Method PSNR (dB) SSIM

31

Adjoint 22.95 0.35
DeepDI 23.25 0.62
TV 26.25 0.83
Deep2S 30.35 0.94

15

Adjoint 21.77 0.19
DeepDI 23.18 0.61
TV 25.47 0.74
Deep2S 30.39 0.94

7

Adjoint 20.33 0.12
DeepDI 22.58 0.65
TV 22.71 0.44
Deep2S 29.13 0.89

In Table 5.1, the average reconstruction performance of the algorithms for 100 test

images is given for the different frequency steps at 30 dB SNR (where SNR is de-

fined as 10 log10
(

σ2
s

σ2
w

)
). The frequency step numbers are increased twice (7, 15, and

31 respectively). Hence the compression ratio is respectively %4, %8, and %16. In

all cases, the Deep2S approach outperforms the other approaches in terms of PSNR

and SSIM metrics. When the number of frequency steps is decreased, the reconstruc-

tion performance of all approaches decreases accordingly because we have fewer

measurements to perform the reconstruction. Our problem becomes more and more

ill-posed. In the worst case when the number of frequency steps is seven, the Deep2S

approach surpasses the other approaches. Deep2S approach gives a PSNR of 29.13

dB and an SSIM value of 0.89 at the average of 100 test images. When the number of

frequency steps increases Deep2S approach passes 30 dB PSNR and 0.90 SSIM at the

average which gives the best reconstruction performance. Also, increasing the num-

ber of frequency steps from fifteen to thirty-one does not make a significant change

in the reconstruction performance. As a result, fifteen frequency steps are enough for

obtaining the best reconstruction performance for the Deep2S approach.

Figures 5.5, 5.6 and 5.7 show the results of reconstructed images for three samples in

the test dataset. In these figures, both the TV algorithm and the Deep2S approach give

the best reconstruction performance. These two methods give nearly artifacts-free re-
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Table 5.2: Average PSNR and SSIM Values of Adjoint Operation and BP Algorithm
at 30 dB SNR (Number of Frequency Steps: 15). Best results are shown in bold.

BP Adjoint

PSNR 20.34 21.77
SSIM 0.12 0.19

construction, while the adjoint operation and DeepDI approach show significant vol-

ume artifacts. The adjoint operation and DeepDI approach give poor reconstructions

which are not comparable with the TV and the Deep2S approach. In fact, the DeepDI

approach could not predict the initial position of the targets which gives worse re-

construction results. Both the TV and the Deep2S approach reduce volume artifacts

significantly. Moreover, the Deep2S approach gives a better reconstruction both vi-

sually and qualitatively compared to the state-of-the-art TV reconstruction algorithm

which have low computational complexity.

Testing two DNN-based algorithms in conditions different from the training dataset

examined in the experiment as shown in Figure 5.8. For this purpose, we introduce a

3D target image that is not contained in the synthetically generated dataset. The 3D

target image is an ellipsoid that is centered on the cube that we want to infer its re-

flectivity. The introduced target differs from the training dataset due to the following

features: The introduced target image takes up more volume than the training dataset

images within the cube. The training dataset contains targets that are shapeless and

randomly scattered in the volume. However, the introduced ellipsoid is a bulk volume

that covers a large volume within the cube.

Figure 5.8 shows the visual result of reconstructed images for different algorithms at

30 dB SNR (Number of Frequency Steps: 15). The best reconstruction is obtained by

the Deep2S approach both visually and qualitatively. Deep2S approach has a robust

performance when we introduce 3D target images that differ from the synthetically

generated dataset. As a result, the developed approach can be used in different imag-

ing scenarios, although the network is trained on a specific configuration. The adjoint

operation, DeepDI approach, and TV reconstruction show significant volume arti-

facts. Moreover, the TV reconstruction algorithm failed to fill the volume inside of

the ellipsoid.
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Figure 5.8: Reconstructions of the different algorithms for the ellipsoid test image at
30 dB SNR (Number of Frequency Steps: 15).

In Table 5.2, the average reconstruction performance of the adjoint operation and the

classical BP algorithm for 100 test images is given for fifteen frequency steps at 30 dB

SNR. The reconstruction performance of the adjoint operation outperforms the clas-
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Table 5.3: Average Runtimes for 100 Test Images at 30 dB SNR (Number of Fre-
quency Steps: 15).

Adjoint DeepDI TV Deep2S

32ms 111ms 165.04s 77ms

sical BP algorithm in terms of PSNR and SSIM metrics. As a result, we use adjoint

operation as the first stage of the Deep2S approach. The performance comparison

also carried out with adjoint operation instead of the classical BP algorithm.

Table 5.3 shows the comparison of average runtimes across different methods for 100

test images. Note that the Deep2S approach and DeepDI approach require less than a

second to reconstruct the reflectivity field of a 25× 25× 49 scene on the CPU. While

the TV reconstruction requires a runtime on the order of minutes. The Deep2S ap-

proach and DeepDI approach are three to four orders of magnitude faster than the TV

algorithm. Hence the Deep2S approach not only surpasses the other approaches in

terms of PSNR and SSIM metrics but also is computationally more efficient than the

others except for the adjoint operation which gives poor performance. The Deep2S

approach overperforms the other approaches in terms of PSNR and SSIM which have

low computational complexity. Moreover, it also gives a better reconstruction visu-

ally.

5.3 Performance Comparison with Random Phase

To work in a more realistic scenario that takes into account the complex-valued and

random phase nature of scene reflectivities, we add random phase to our synthetically

generated dataset. Random phase is added for every voxel from a uniform distribution

in the range of [−π, π]. From now on, we will only examine this realistic imaging

scenario where we add random phase to our synthetically generated dataset. The

training procedure of the networks used in these experiments are done using transfer

learning of the existing trained networks used in Section 5.2 where we don’t consider

random phase. Transfer learning is done by unfreezing the weights of the trained

networks used in Section 5.2, and re-trained the networks on the new random phase

added data within five epochs.
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Table 5.4: Average PSNR and SSIM Values for Different Number of Frequency Steps
at 30 dB SNR. Best results are shown in bold.

Number of Frequency Steps Method PSNR (dB) SSIM

31

Adjoint 24.23 0.69
DeepDI 23.90 0.83
Deep2S 28.65 0.94

15

Adjoint 23.69 0.49
DeepDI 23.37 0.81
Deep2S 29.22 0.93

7

Adjoint 22.56 0.26
DeepDI 22.70 0.73
Deep2S 28.36 0.93

Table 5.5: Average PSNR and SSIM Values of Adjoint Operation and BP Algorithm
at 30 dB SNR (Number of Frequency Steps: 15). Best results are shown in bold.

BP Adjoint

PSNR 23.26 23.69
SSIM 0.39 0.49

In Table 5.4, the average reconstruction performance of the algorithms for 100 test

images is given for the different frequency steps at 30 dB SNR. In all cases, the

Deep2S approach outperforms the other approaches in terms of PSNR and SSIM met-

rics. The reconstruction performance of all approaches decreases when the number

of frequency steps is decreased. We have observed that Table 5.4 and Table 5.1 share

similar results in terms of reconstruction performance of different algorithms. The

general trend is maintained when are dealing with a more realistic imaging scenario.

Figure 5.9 show the reconstructions of the different algorithms for the first test image

of the synthetically generated dataset at 30 dB SNR. Deep2S approach gives the best

reconstruction performance which gives nearly artifacts-free reconstruction, while the

adjoint operation and DeepDI approach show significant volume artifacts.

Lastly, in Table 5.5, the average reconstruction performance of the adjoint operation

and the classical BP algorithm for 100 test images is given for fifteen frequency steps

at 30 dB SNR. The reconstruction performance of the adjoint operation outperforms

the classical BP algorithm in terms of PSNR and SSIM metrics. As a result, we use
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Figure 5.9: Reconstructions of the different algorithms for the first test image of the
synthetically generated dataset at 30 dB SNR (Number of Frequency Steps: 15), (The
units of x, y, and z-axis are meters).

adjoint operation as the first stage of the Deep2S approach. The performance com-

parison also carried out with adjoint operation instead of the classical BP algorithm.

From now on, we will only examine the reconstruction performance of the Deep2S

approach in different experimental settings.

5.4 SNR Analysis

Deep2S approach appears to be robust to different noise levels. Figures 5.10 and 5.11

show the performance analysis of the Deep2S approach at different SNR settings. In

this experiment, we trained the network on data with a fixed number of frequency
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steps which is fifteen but varied the noise level. We obtained five different networks

which are trained for different SNR values -10, 0, 10, 20, and 30 dB.

To train our 3D U-Net Architecture the radar measurements of the generated dataset

corrupted with additive white Gaussian noise (AWGN) with the specified SNR val-

ues. In the end, the average reconstruction performance of the Deep2S approach and

adjoint operation in different SNR settings is given in terms of PSNR and SSIM met-

rics. Figure 5.10 shows the degradation of the PSNR metric along with a decrease

in SNR value for a fixed number of frequency steps. Figure 5.11 shows the degrada-

tion of the SSIM metric along with a decrease in SNR value. The results show that

even the SNR value in our experimental setting is 0 dB, the reconstruction perfor-

mance of the Deep2S approach gives a PSNR of 28 dB and an SSIM value of 0.90

at the average of 100 test images. The Deep2S approach gives an acceptable recon-

struction when the power of the measurements is equal to the power of corrupting

noise. Also, the reconstruction performance does not corrupt significantly until the

SNR of the radar measurements drops 10 dB. Until that point, the Deep2S approach

gives the best reconstruction performance in terms of PSNR and SSIM. From this

analysis, we conclude that training and testing for a high noise level configuration do

not degrade the reconstruction performance significantly. Figure 5.12 illustrates the

reconstructed images for the adjoint operation and the Deep2S approach visually for

the specified SNR values -10, 10, and 30 dB. We observe that the network trained at

-10 dB SNR gives an over smoothed reconstruction whereas the network trained at 30

dB preserves fine details and structures. As a result, in low SNR values, the Deep2S

approach gives acceptable reconstruction performance where the target initial posi-

tion, target shape, and size are correctly captured by the 3D U-Net Architecture. At

high SNR values, the Deep2S approach gives a high-quality reconstruction where the

reconstruction captures all fine details and structures of the ground-truth image.

5.5 Performance Comparison with Different Network Architectures

There is various type of Deep CNN architectures that are used for regression prob-

lems. To understand the effect of choosing different architectures on the reconstruc-

tion performance. The Residual Net [107] architecture is also trained to regress the
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Figure 5.10: Average PSNR values of adjoint operation and, Deep2S approach for
100 test images of the synthetically generated dataset versus measurement SNR.
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Figure 5.11: Average SSIM values of adjoint operation and, Deep2S approach for
100 test images of the synthetically generated dataset versus measurement SNR.
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Figure 5.12: Reconstructions of the adjoint operation and, Deep2S approach for the
first test image of the synthetically generated dataset (Number of Frequency Steps:
15).

adjoint operation result to a suitable ground truth image. Briefly, we use residual

net architecture instead of 3D U-Net architecture in the second stage of the Deep2S
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Table 5.6: Average Reconstruction Performances for 100 Test Images for ResNet at
30 dB SNR.

ResNet U-Net

PSNR 26.08 29.22
SSIM 0.66 0.93

approach. The implementation of ResNet architecture is based on [107]. In the ex-

periments, a modified version of the original ResNet architecture is used. 3D convo-

lutions are used instead of 2D convolutions. The network layer size is selected to be

10 in order to achieve a similar training time with the 3D U-Net architecture which is

seven to eight hours.

In Table 5.6, the average reconstruction performance of the Residual Net architecture

and the 3D U-Net architecture for 100 test images are given for fifteen frequency steps

at 30 dB SNR. We can conclude that the 3D U-Net architecture reconstruction per-

formance surpasses the Residual Net architecture in terms of PSNR and SSIM. This

comparison demonstrates the power of the 3D U-Net architecture which is used in the

second stage of the developed approaches. Figure 5.13 illustrates the reconstructed

images for Residual Net architecture and the developed 3D U-Net architecture vi-

sually for the first test image. By looking at Figure 5.13, Residual Net architecture

gives a poor reconstruction which has some severe volume artifact. The reconstruc-

tion obtained with Residual Net is not comparable with the 3D U-Net Architecture.

The proposed 3D U-Net Architecture provides the best reconstruction performance

compared to Residual Net architecture.

Figure 5.13: Reconstructions of the Deep2S Approach for the first test image of the
synthetically generated dataset at 30 dB SNR (Number of Frequency Steps: 15).
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CHAPTER 6

CONCLUSIONS

In this thesis, we developed two deep learning-based approaches for near-field multiple-

input multiple-output (MIMO) radar imaging based on learned direct reconstruction.

The main motivation of the developed approaches was to reconstruct the 3D complex-

valued reflectivity magnitude with high image quality and low computational cost.

For this reason, we focused on learned direct reconstruction due to their feed-forward

(non-iterative) nature. Plug-and-play and unrolled methods are not studied in this the-

sis because these approaches may require higher memory usage and computational

complexity due to their iterative nature and computation of the forward scattering op-

erator and its adjoint at every iteration. As future work, these type of methods can

also be studied for near-field MIMO radar imaging and compared with the developed

methods in this thesis.

In the first developed approach, we exploit the observation model of the physical

system by using the adjoint operation stage. The adjoint operation has the benefit of

fast computation due to its non-iterative nature and also exploits the physics-based

knowledge. This result is also refined with a DNN in the second stage, which works

as a deep denoiser. Here, it must be noted that in real practical scenarios we are

interested in imaging 3D complex extended targets which generally have correlations

along both range and cross-range directions. Therefore, the structure of the DNN

architecture is critical for obtaining a good reconstruction quality. Unlike the existing

approaches in the literature, in this thesis, we use a modified 3D U-net architecture

that involves 3D operations to exploit the correlations in the 3D object space.

We demonstrate the performance of the developed method using a synthetically gen-

erated dataset and compare its performance with the commonly used analytical meth-
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ods. It has been observed that the developed method provides the best reconstruction

quality while enabling fast reconstruction. Hence due to its low computational com-

plexity, it can be used in real-time applications. All adjustable parameters of the

developed approach are also learned end-to-end, which avoids performance deterio-

ration caused by optimum parameter selection.

For comparison, a second approach is also developed which replaces the adjoint stage

with a fully connected neural network. As expected, this pure neural network ap-

proach was outperformed by the first developed method that involves adjoint. This

result is consistent with the existing literature which emphasizes the significance

of incorporating physics-based knowledge into deep-learning based reconstruction.

However, exploring the performance with different types of 3D network architectures

(such as those mimicking transforms) may improve the reconstruction quality and is

a topic for future study.

Another contribution of the thesis is the generation of synthetic 3D scenes that in-

volves extended targets with random phase in order to obtain large data for training.

A real-world dataset is the most appropriate way of training a network. However,

a large dataset is often not available in many radar imaging applications including

near-field MIMO radar imaging. Our approach generates different three-dimensional

distributed objects that spread within the reconstruction cube from a randomly chosen

center. Another topic for future study is to modify this synthetic dataset generation

method to obtain a more realistic dataset.

As a last note, numerical simulations are performed in a specific physical setup where

we consider Mill Cross array topology and fix the number of transmitting and re-

ceiving antennas. As future work, the whole system optimization can be considered

jointly with image reconstruction task. It would be interesting to optimize he number

of antennas and their positions together with the DNN architecture in an end-to-end

fashion.
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