
FINITE DIFFERENCE APPROXIMATIONS OF VARIOUS STEKLOV
EIGENVALUE PROBLEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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submitted by MÜCAHİT ÖZALP in partial fulfillment of the requirements for the
degree of Master of Science in Mathematics Department, Middle East Technical
University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yıldıray Ozan
Head of Department, Mathematics

Prof. Dr. Canan Bozkaya
Supervisor, Department of Mathematics, METU

Assoc. Prof. Dr. Önder Türk
Co-supervisor, Institute of Applied Mathematics, METU

Examining Committee Members:

Prof. Dr. Songül Kaya Merdan
Department of Mathematics, METU

Prof. Dr. Canan Bozkaya
Department of Mathematics, METU

Prof. Dr. Ayhan Aydın
Department of Mathematics, Atılım University

Date: 26.08.2022



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: MÜCAHİT ÖZALP
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ABSTRACT

FINITE DIFFERENCE APPROXIMATIONS OF VARIOUS STEKLOV
EIGENVALUE PROBLEMS

ÖZALP, MÜCAHİT
M.S., Department of Mathematics

Supervisor: Prof. Dr. Canan Bozkaya

Co-Supervisor: Assoc. Prof. Dr. Önder Türk

August 2022, 77 pages

In this thesis, the finite difference method (FDM) is employed to numerically solve

differently defined Steklov eigenvalue problems (EVPs) that are characterized by the

existence of a spectral parameter on the whole or a part of the domain boundary. The

FDM approximation of the Laplace EVP is also considered due to the fact that the

defining differential operator in a Steklov EVP is the Laplace operator. The funda-

mentals of FDM are covered and their applications on some BVPs involving Laplace

operator are discussed. Using Taylor’s series expansions, approximation formulas

for the derivatives of the functions are provided, with varying degrees of accuracy.

To validate our formulation of FDM, the second and fourth order formulas are first

used to approximate two test problems for which the analytical solutions are known,

namely, the Poisson problem and the Laplace EVP. It is demonstrated that the so-

lutions from the FDM agree well with the exact ones and that the results from the

fourth order scheme are superior to those from the second order one. Secondly, we

consider two Steklov eigenvalue problems that are distinct from each other by the

associated boundary conditions. Specifically, the standard Steklov EVP with a mixed
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type boundary condition involving a spectral parameter is analyzed as the first prob-

lem, whereas in the second problem, the boundary of the computational domain is

divided into two parts; one with Neumann type boundary condition and the other

with spectral boundary condition. The discretization of the problem is performed by

several orders of finite difference formulas for the first time to the best of our knowl-

edge. The agreement between the approximate and exact eigenfunctions is shown

using contour plots, and the rate of convergence of the approximate eigenvalues to

the reference ones is given. It has been noted that the use of higher order finite differ-

ence approximations -of at least second order- for not only the differential equation

but also the boundary conditions advances the rate of convergence. Consequently, the

present study demonstrates how a second-order convergence can be acquired by the

application of fourth-order finite difference formulas for both the differential operator

and the accompanying boundary conditions.

Keywords: Steklov eigenvalue problems, Laplace eigenvalue problem, finite differ-

ence method, second and fourth order schemes
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ÖZ

ÇEŞİTLİ STEKLOV ÖZDEĞER PROBLEMLERİNİN SONLU FARKLAR
YAKLAŞIMLARI

ÖZALP, MÜCAHİT
Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Canan Bozkaya

Ortak Tez Yöneticisi: Doç. Dr. Önder Türk

Ağustos 2022 , 77 sayfa

Bu tezde, tanım bölgesinin tamamında ya da bir kısmında spektral parametrenin var-

lığı ile karakterize edilen, farklı şekilde tanımlanan Steklov özdeğer problemlerini

(ÖDP) nümerik olarak çözmek için sonlu farklar yönetimi (SFY) kullanılmıştır. Stek-

lov ÖDPde diferansiyel operatör Laplace opetatörü olduğundan, Laplace ÖDPnin

SFY yaklaşımı da ele alınmıştır. SFYnin temelleri verilmiş ve Laplace operatörünü

içeren bazı sınır değer problemleri üzerindeki uygulamaları tartışılmıştır. Taylor seri

açılımları kullanılarak fonksiyonların türevleri için yaklaşım formülleri, değişen doğ-

ruluk dereceleri ile birlikte verilmiştir. SFY formülasyonumuzu doğrulamak için ilk

önce, ikinci ve dördüncü mertebeden formüller, Poisson problemi ve Laplace ÖDP

gibi analitik çözümleri bilinen iki test probleminin yaklaşık çözümünü elde etmek

için kullanılmıştır. SFY çözümlerinin gerçek çözümler ile iyi bir şekilde uyuştuğu ve

dördüncü mertebe şemasından elde edilen sonuçların ikinci mertebeden elde edilen-

lerden daha üstün olduğu gösterilmiştir. İkinci olarak, farklı sınır koşullarına sahip

iki Steklov özdeğer problemleri ele alınmıştır. İlk olarak, tüm sınırda bir spektral pa-
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rametre içeren karma tip sınır koşuluna sahip standart Steklov ÖDP analiz edilmiş,

ikinci problemde ise, bölge sınırı iki bölüme ayrılmıştır; öyle ki sınırın bir bölümü

Neumann tipi sınır koşuluna diğer bölümü ise spektral sınır koşuluna sahiptir. Yazar-

ların bilgisi dahilinde, farklı dereceden fark formülleri kullanılarak Steklov özdeğer

problemlerinin ayrıklaştırılması ilk kez yapılmıştır. Yaklaşık ve gerçek özfonksiyon-

lar arasındaki uyum eşyükselti eğrileri kullanılarak gösterilmiş ve yaklaşık özdeğer-

lerin referans özdeğerlere yakınsama oranı verilmiştir. Sadece diferansiyel denklem

için değil, aynı zamanda sınır koşulları için de daha yüksek mertebeden sonlu fark

yaklaşımlarının kullanılmasıyla- en az ikinci mertebeden- yakınsama hızının arttığı

gözlenmiştir. Sonuç olarak, hem diferansiyel operatörüne hem de beraberindeki sı-

nır koşullarına dördüncü mertebeden sonlu fark formüllerinin uygulanmasıyla, ikinci

dereceden bir yakınsaklığın nasıl elde edilebileceği bu çalışmada gösterilmiştir.

Anahtar Kelimeler: Steklov özdeğer problemleri, Laplace özdeğer problemi, sonlu

farklar metodu, ikinci ve dördüncü mertebeden şemalar
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CHAPTER 1

INTRODUCTION

Partial differential equations (PDEs) are mathematical equations having an unknown

function, two or more independent variables, the partial derivatives of the unknown

function with respect to the independent variables and a specific domain. Fluid me-

chanics, electromagnetics, and heat and mass transfer are all real-world applications

of physics and engineering that are all modelled by appropriate PDEs under certain

assumptions. The partial differential equations are classified into three types: elliptic,

parabolic, and hyperbolic PDEs. Each type has certain properties that aid in deter-

mining whether a method is appropriate for the problem modelled by the PDE, or the

solution depends on the equation and its type.

Boundary value problems (BVPs) are formed by a PDE and a few boundary condi-

tions, which are some necessary constraints on the boundary ∂Ω of the domain Ω. In

fact, BVPs are a set of equations that include the derivatives of the unknown func-

tion. Examples of BVPs that are investigated in the present thesis are the Laplace

and Steklov eigenvalue problems (EVPs), which are both modelled by elliptic type

PDEs with appropriate boundary conditions of different types, namely, Dirichlet type

(u = f(x, y) on ∂Ω with f is a given continuous function), Neumann type (∂u/∂n =

f(x, y) on ∂Ω where ∂u/∂n shows the normal derivative of u in the outward normal

direction on the boundary) and Robin (mixed) type (αu+β∂u/∂n = f(x, y) on ∂Ω).

The eigenvalue problem is defined as finding the eigensolutions (λ, u) such that

Lf = λu

where λ is a complex number which is said to be an eigenvalue of a linear operator

L, and the non-zero u is called an eigenfunction that is associated with λ in a vector
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space. Eigenvalues are often introduced in the context of linear algebra or matrix

theory. But historically, they emerged from the study of differential equations and

quadratic forms. Early in the 19th century, Augustin-Louis Cauchy generalized his

work to encompass arbitrary dimensions after realizing how it could be used to cat-

egorize the quadric surfaces [1]. Eigenvalues and eigenvectors have a wide range of

uses in including stability analysis, vibration analysis, atomic orbitals, facial recogni-

tion, and matrix diagonalization [2, 3].

A Steklov eigenvalue problem, which is one of the popular elliptic type problems,

arises in the study of many mathematical physics fields such as the vibration modes

of a structure in contact with an incompressible fluid [4], mechanical oscillators im-

mersed in a viscous fluid [5], surface waves [6] and electronic structure calculations

[7]. The problem has also daily life applications. In fact, in a recent research, it was

used to explain why spilling coffee from a mug is simpler than spilling wine from

a snifter by Krechetnikov and Mayer [8]. They used a suitable mixed Steklov EVP,

usually known as the sloshing problem, to represent the coffee’s oscillation.

In December 1895, Steklov presented Steklov eigenvalue problem in his speech at

a session of the Kharkov Mathematical Society [4]. In the present day, it is orig-

inally mentioned as Steklov problem but on some occasions it is used as Stekloff

problem. There has been significant advancement in the analysis of the Steklov EVPs

over the past few years, and some interesting problems have indeed emerged. Now,

we continue with emphasizing the motivation of the present thesis. For applications

to electrical impedance tomography, which is employed in geophysical and medical

imaging, the study of voltage to current map is crucial [9]. Additionally, the math-

ematical analysis of photonic crystals heavily relies on the Steklov spectrum [10].

Studying the nodal domains and nodal sets of Steklov eigenfunctions also presents

new difficulties. Understanding whether the nodal lines of Steklov eigenfunctions are

dense at the wave-length scale, which is a fundamental characteristic of the zeros of

Laplace eigenfunctions, is one of the interesting problems [11].

As it is well-known finding the analytical solutions of PDEs is a challenging task or

even mostly impossible. For example, there are only a few cases in which analytical

solutions to Steklov eigenvalue problems exist. It might not be possible to predict

2



the response using the existing methods as the problem equation becomes more com-

plicated due to geometry or material complexity. Thus, in such cases, the use of

numerical methods provides a good sight to understand the behavior of the related

solution.

Finite difference method (FDM) is one of the effective numerical methods for the so-

lution of partial differential equations. The method proceeds by replacing the deriva-

tives in the equation of the problem with finite difference approximations derived

by using Taylor’s series expansion around a grid point. The domain of the problem

for the two-dimensional case is divided into partitions in x and y-directions, and the

division results in grid points on the domain. Approximating the derivatives in the

differential equation yields the difference equation which can be written as a system

of algebraic equations to be solved instead of a differential equation.

In this thesis, we focus on the solution of various Steklov EVPs by using FDM. Nev-

ertheless, we start our investigation by the so called Laplace eigenvalue problem in a

square region for which the exact solution is available in order to construct and val-

idate our numerical FDM codes. Then, we extend our numerical simulations for the

Steklov eigenvalue problems with different boundary conditions defined on a square

computational domain. The results are mainly presented in terms of convergence be-

havior of the approximate eigenvalues to the reference or exact ones, and contour

plots of eigenfunctions.

1.1 Literature Survey

Approximation of the eigenvalue problems has great value in many fields of science,

such as electronic structure calculations of materials [7], machine learning [12] and

magnetohydrodynamics [13]. The Laplace eigenvalue problem and Steklov eigen-

value problem are the two significant eigenvalue problems that have received compre-

hensive study using some numerical techniques. In Section 1.1.a and Section 1.1.b,

the studies on the solutions of Laplace and Steklov eigenvalue problems by using nu-

merical techniques different from FDM are given, and finally the studies on the finite

difference approximations of eigenvalue problems are given in Section 1.1.c.
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1.1.a Numerical Methods Applied to Laplace Eigenvalue Problems

One of the fundamental concepts in many fields of mathematics and physics, such as

computer science, spectral theory, probability, dynamical systems, quantum billiards,

quantum mechanics, the theory of acoustic and quantum waveguides, is the Laplace

eigenvalue problem [14]. There are numerous works that discuss the analysis in broad

frameworks where issues like stability, convergence aspects, and error estimates are

concerned. Different types of the problem exist according to the taken boundary con-

ditions and the problem domain.

A boundary element method for the Laplace eigenvalue problem with Dirichlet type

boundary conditions is considered by Steinbach and Unger [15]. As a model prob-

lem, they studied the problem on a cubic domain, and compared the solutions ob-

tained by boundary element and finite element methods. The results showed that the

methods gave different convergence rates. In [16], Gottlieb worked on the asymp-

totic expansions of the Laplace eigenvalue problem under the Neumann and mixed

type boundary conditions. Both two and three-dimensional cases, specifically narrow

annulus, annular cylinder and thin concentric spherical cavity, were considered. In

[17], Laplace eigenvalue problem in mixed form was solved by the virtual element

method. The results for the unit square and unit disk revealed that an optimal con-

vergence order was obtained. Lederer [18] worked on the derivation of an optimal

and asymptotically exact a posteriori error estimates for the approximation of the

Laplace eigenvalue problem. First, he applied the hypercircle methods created for the

mixed Raviart-Thomas finite element eigenvalue approximations. Additionally, he

made use of the post-processings for eigenvalue and eigenfunction based on mixed

approximations with the Brezzi-Douglas-Marini finite element. To validate his the-

oretical findings, he discussed the convergence of some numerical examples on unit

square and L-shaped domains. In [19], for the Laplace-Beltrami eigenvalue problem,

Lu and Xu suggested a brand-new trace finite element approach which was first de-

veloped by Olshanskii, Reusken and Grade [20]. In their work, they focused on the

trace finite element method, specifically on unit spherical and tooth-shaped surfaces.

FuSheng et.al. [21] enriched the Crouzerix-Raviart element, and extended a special

element, to obtain the lower bounds of the eigenvalues of the Laplace eigenvalue

problem. Moreover, they used conforming finite elements to get the upper bounds for
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the eigenvalues in the postprocessing process. Liu and Oishi [22] also used the finite

element method to bind the leading eigenvalues of the Laplace EVP over polygonal

domains. They demonstrated efficiency and flexibility of their algorithm on triangle

domain, L-shaped and unit square domains with a crack.

1.1.b Numerical Methods Applied to Steklov Eigenvalue Problems

The Steklov EVP is widely investigated by using various numerical approaches, many

of which depending on the finite element method.

Monk and Zhang [23] approximated the Steklov eigenvalue problem by hybridiz-

able discontinuous Galerkin method. They demonstrated the optimal rates of con-

vergence for the eigenvalues and eigenfunctions of the sloshing problem. In [24],

spectral indicator method was applied by using the Lagrange finite element method

for the discretization, and spectral perturbation theory was employed for the compact

operators. Armentano and Lombardi [25] analyzed the approximation of Steklov

eigenvalue problem in a plane domain with an external cusp by piece-wise linear

finite elements in the discretization of the domain. Li et al. [26] studied the noncon-

forming finite elements for the solution of Steklov eigenvalue problems both on the

convex and concave domains. According to their analysis, for a special and enriched

Crouzeix- Raviart elements, they obtained lower bounds of the eigenvalues. Mora et

al. [27] focused on a posteriori error analysis of a virtual element method (VEM)

for Steklov EVP. They, further, reported the results of the two numerical test prob-

lems conducted in the work [28], and claimed that the virtual element method had the

advantage of using general polygonal meshes. This showed that the adaptive VEM

performed marginally better than the adaptive finite element method in their first test

where they obtained a second order O(h2) convergence rate of the eigenvalues for

sloshing problem in a square domain. The second test was performed in a unit square

from which an equilateral triangle is subtracted. They obtained the convergence rate

of order O(h6/5). Bi et al. [29] approximated a fourth order Steklov eigenvalue prob-

lem with conforming finite element method. They obtained the solutions by using

Bogner-Fox-Schmit and Morley elements on a square domain. Andreev and Todorov

[30] worked on the isoparametric variant of the finite element method to approxi-
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mate the Steklov EVP. They considered the numerical example over the quarter of

the unit disc in the first quadrant with Neumann and Dirichlet boundary conditions.

Moreover, for the non-self-adjoint Steklov eigenvalue problem resulting from inverse

scattering, Xu et al. [31] introduced an asymptotically exact a posteriori error esti-

mator, and its applications in adaptive finite element method were also studied. They

demonstrated numerical examples on L-shaped domain. On the other hand, Yue et

al. [32] proposed a new type of multilevel method for solving Steklov eigenvalue

problem based on Newton’s method. They proved that the iteration scheme yielded

linear convergence rate on both unit square and dumbbell-shaped domains. Finally,

a recent study on the dual reciprocity boundary element method for the solution of

Steklov eigenvalue problem was given in the work of Türk [33]. He investigated the

convergence of the method for several cases including selfadjoint and non-selfadjoint

operators. For a variety of mixed Steklov eigenvalue problems on various domains,

efficient approximations to the solution were demonstrated.

1.1.c FDM Applied to Various Eigenvalue Problems

As given in Sections 1.1.a and 1.1.b, the numerical solutions for the Laplace and

Steklov eigenvalue problems mainly uses various type of finite element approaches.

In this section, some finite difference studies on the solution of some eigenvalue prob-

lems are listed.

Aboud [34] investigated numerically nonlinear second order eigenvalue problems in

both one-dimensional bounded and unbounded domains, and compared the finite dif-

ference discretization and spectral method solutions. In [35], Carasso studied the

convergence of a centred finite difference approximation to nonselfadjoint Strum-

Liouville eigenvalue problem, and he demonstrated the rate of convergence was order

of O(∆x2). Usmani [36] approximated the eigenvalues of a two point boundary value

problem associated with a fourth order linear differential equation by some new finite

difference methods of order two and four. Motivated by the Usmani’s work, Chawla

and Shivakumar [37] derived a higher order symmetric method and applied it for com-

puting eigenvalues of Strum-Lioville problems. Sajavicius [38] took into account the

eigenvalue problems for the second order finite difference operators with nonlocal
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coupled boundary conditions in one and two-dimensions. He established the require-

ments for the existence of complex, positive, negative, and zero eigenvalues. O’Brien

et al. [39] performed a local meshless radial basis function finite difference method

on the elliptic Helmholtz eigenvalue problem with a periodic domain, in which the

numerical results displayed excellent agreement with the analytical solutions within

an error of less than 10−6. On the other hand, Kuttler [40] studied the finite difference

approximations of the Laplace eigenvalue problem. As the mesh width tends to zero,

he provided asymptotic estimates for the error. Later, Kuttler gave upper and lower

bounds for eigenvalues by finite differences on his another work, [41]. Veidinger [42]

also worked on the eigenvalues and eigenfunctions of the Laplace operator with finite

difference method. He used five point difference operator to approximate the Laplace

operator as in the present thesis. It is seen that there exists a few studies on the FDM

solution of Laplace EVP, and there is no FDM studies on the Steklov EVPs to the

best of our knowledge. This establishes the basis for our reasoning behind the FDM

solutions of the Laplace and Steklov EVPs in the present thesis.

1.2 Plan of the Thesis

The fundamentals of finite difference method are discussed in Chapter 2 along with

their applications to a few BVPs involving the Laplace operator. A derivation of

some of the FDM approximation formulas based on Taylor’s series expansions is in-

troduced. Then, in order to validate our numerical simulations and computer code, we

apply these formulas to two test problems with existing theoretical solutions. First,

the two-dimensional Poisson problem on a square domain is taken into account by

roughly approximating the second order derivative terms in the Laplace operator with

second and fourth order central difference formulas using equal length of mesh grids.

Discretization of the boundary is performed by using a suitable approximation for-

mula. The exact and FDM solutions to the Poisson problem exhibit high levels of

agreement. Then, the Laplace eigenvalue problem which is the problem that most

closely resembles the main problem of the thesis, namely the Steklov EVP, is ap-

proximated using a second order central and a compact fourth order difference for-

mulas. The analysis is carried out for the convergence of the normalized error in the
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eigenvalues. Then, a good agreement in the contour plots of the exact and numerical

eigenfunctions is obtained in the computational domain.

Chapter 3 presents the finite difference method solution of Steklov eigenvalue prob-

lems. Two Steklov eigenvalue problems, that are distinct from one another according

to the boundary conditions, are taken into consideration. In particular, as a first prob-

lem the standard Steklov EVP with a mixed type boundary condition involving a spec-

tral parameter is analyzed, while in the second problem the computational domain

boundary is divided into two parts, one with Neumann and the other with spectral

boundary conditions. The two problems are discretized using different orders of finite

difference formulas. The obtained linear system of equations, which is an eigenvalue

problem (or a generalized EVP), is integrated into a sparse matrix eigenvalue solver

in MATLAB code. If the analytical solutions are available, the numerical results are

compared to them; otherwise, they are compared to reference values, which are the

best numerical results that can be obtained by FDM on our computer. Using contour

plots, the agreement between the approximate and exact eigenfunctions is displayed,

and the rate at which the approximate eigenvalues converge to the reference ones is

investigated.

1.3 Contributions in the Thesis

In this thesis, FDM is regarded as a method for obtaining approximations to the

Laplace and Steklov EVPs. Although there are some works on Laplace eigenvalue

problem with FDM, the standard Steklov EVP and the mixed type Steklov EVP have

been analyzed by using FDM for the first time in this thesis to the best of the author’s

knowledge. When the boundary conditions are approximated using a combination

of first and second order finite difference formulas, one can obtain a linear (first or-

der) convergence behavior for eigenvalues. On the other hand, using a combination

of second and fourth order difference formulas for the approximation of boundary

conditions, which involve the spectral parameter, results in a quadratic convergence

behavior in the eigenvalues of Steklov EVP. Thus, FDM is a practical and effective

numerical method for solving Steklov eigenvalue problems because it is simple to

apply (on simple geometries) and produces a reasonable convergence rate of second
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order for the eigenvalues.
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CHAPTER 2

THE FINITE DIFFERENCE METHOD AND ITS APPLICATIONS WITH

THE LAPLACE OPERATOR

The basics of FDM and their applications on some BVPs involving Laplace operator

are reviewed in this chapter. FDM primarily focuses on producing approximation for-

mulas for the derivatives of functions of any order with varying degrees of accuracy.

In this regard, the derivation of some of these approximation formulas using Taylor’s

series expansions are presented in Section 2.1. Then, in Section 2.2, the application of

these formulas is performed to two test problems for which theoretical solutions are

known in order to validate our FDM computer code. To begin, the two-dimensional

Poisson problem is handled by approximating the terms in the Laplace operator with

second and fourth order central finite difference formulas. Following the observation

of a high degree of agreement between the exact and current numerical solutions for

the Poisson problem, the same difference formulas are used to the Laplace eigenvalue

problem, which will be the theme of the subsequent sections.

2.1 Finite Difference Method

The finite difference method is the most well-known and widely used numerical ap-

proach for the solution of partial differential equations due to its ease of coding and

efficiency in computing. FDM aims to transform the differential equations into dif-

ference equations by approximating each derivatives with a difference formula. The

finite difference approximations result in algebraic form, and they relate the value

of the solution at a point in the computational domain to the values at some nearby

points. Thus, the FDM solution procedure implies first discretizing the problem do-
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main into a mesh of nodal (grid) points, then approximating the provided differential

equation with an equivalent finite difference equation. Finally, the resulting finite

difference equations are solved according to the prescribed boundary and/or initial

conditions, and the discrete solution is obtained at only the defined grid points in the

computational domain. That is, to obtain the solution of a function u(x, y) in a reg-

ular rectangular domain Ω = [a, b] × [c, d] by using the finite difference scheme, the

solution region Ω ⊂ R2 is divided into uniform meshes of sided lengths ∆x(= h)

and ∆y(= k) as shown in Figure 2.1.

x

y

∆x = h

∆y = k

y0 = c -

yNy = d - . . . .

. . . .

.

.

.

.

.

.

.

.

a = x0

-

b = xNx

-
i, j

P
i− 1, j

i, j + 1

i, j − 1

i+ 1, j

Figure 2.1: The geometry of the meshed rectangular domain Ω.

The components of grid (mesh) point (x, y) are shown by xi = a+i∆x, yj = c+j∆y

for i = 0, 1, · · · , Nx and j = 0, 1, · · · , Ny, where Nx and Ny are the number of the

subintervals in x and y-directions, respectively. Thus, the step sizes in x-direction

becomes ∆x = h =
b− a

Nx

while ∆y = k =
d− c

Ny

is in y-direction. The value of u at

point P (xi, yj) becomes u(xi, yj) = u(a+ ih, c+ jk) = ui,j and the finite difference

solution which approximates u(xi, yj) is denoted by U(xi, yj) = Ui,j . On the other

hand, any approximation of a derivative in differential equations in terms of values at

neighboring grid points is called the finite difference approximation. The derivation
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of these finite difference formulas for functions of two variables is going to be given

by using the well-known Taylor series expansions in x-direction

u(xi +∆x, yj) = u(xi, yj) + ∆x
∂u

∂x
(xi, yj) +

1

2!
(∆x)2

∂2u

∂x2
(xi, yj)

+
1

3!
(∆x)3

∂3u

∂x3
(xi, yj) + · · ·+ 1

(n− 1)!
(∆x)n−1∂

n−1u

∂xn−1
(xi, yj)

+O(∆xn),

(2.1)

u(xi −∆x, yj) = u(xi, yj)−∆x
∂u

∂x
(xi, yj) +

1

2!
(∆x)2

∂2u

∂x2
(xi, yj)

− 1

3!
(∆x)3

∂3u

∂x3
(xi, yj) + · · ·+ (−1)n−1

(n− 1)!
(∆x)n−1∂

n−1u

∂xn−1
(xi, yj)

+O(∆xn),

(2.2)

and similarly, the Taylor series expansions in y-direction

u(xi, yj +∆y) = u(xi, yj) + ∆y
∂u

∂y
(xi, yj) +

1

2!
(∆y)2

∂2u

∂y2
(xi, yj)

+
1

3!
(∆y)3

∂3u

∂y3
(xi, yi) + · · ·+ 1

(n− 1)!
(∆y)n−1∂

n−1u

∂yn−1
(xi, yj)

+O(∆yn),

(2.3)

u(xi, yj −∆y) = u(xi, yj)−∆y
∂u

∂y
(xi, yj) +

1

2!
(∆y)2

∂2u

∂y2
(xi, yj)

− 1

3!
(∆y)3

∂3u

∂y3
(xi, yi) + · · ·+ (−1)n−1

(n− 1)!
(∆y)n−1∂

n−1u

∂yn−1
(xi, yj)

+O(∆yn),

(2.4)

where O(∆xn) and O(∆yn) are the truncation errors arise by truncating the series

after the (n − 1)-st term, in x and y-directions, respectively. We read this error as

of order ∆xn(∆yn) or O(∆xn)(O(∆yn)). Hence, O(∆xn) represents the terms that

are having a degree that of not greater than ∆xn. Then, some commonly used finite

difference formulas for approximating first and second order derivatives are obtained

as follows:
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(a) Forward difference formulas for first order partial derivatives: Taylor series ex-

pansion of u(xi+∆x, yj) around (xi, yj) given in Equation (2.1) can be written

as

u(xi +∆x, yj) = u(xi, yj) + ∆x
∂u

∂x
(xi, yj) +O(∆x2). (2.5)

Rearranging gives

∂u

∂x
(xi, yj) =

u(xi +∆x, yj)− u(xi, yj)

∆x
+O(∆x). (2.6)

Neglecting the error term O(∆x) yields

∂u

∂x
(xi, yj) ≃

u(xi +∆x, yj)− u(xi, yj)

∆x
=

ui+1,j − ui,j

∆x
, (2.7)

which is called the forward difference formula for the first order partial deriva-

tive of u in x. Similarly, one can obtain the forward difference formula for the

first order partial derivative of u with respect to y at the point (xi, yj) as:

∂u

∂y
(xi, yj) ≃

u(xi, yj +∆y)− u(xi, yj)

∆y
=

ui,j+1 − ui,j

∆y
. (2.8)

In these approximations the error is O(∆x)(or O(∆y)), so they are called the

first order approximations.

(b) Backward difference formulas for first order partial derivatives: Once Equation

(2.2) and Equation (2.4) are rearranged leaving the terms ∂u/∂x and ∂u/∂y

alone on the right hand side, we have

∂u

∂x
(xi, yj) =

u(xi, yj)− u(xi −∆x, yj)

∆x
+O(∆x), (2.9)

and
∂u

∂y
(xi, yj) =

u(xi, yj)− u(xi, yj −∆y)

∆y
+O(∆y), (2.10)

which yield the first order backward finite difference formulas to approximate

∂u/∂x and ∂u/∂y given as follows:

∂u

∂x

∣∣∣∣
i,j

≃ ui,j − ui−1,j

∆x
, (2.11)

and
∂u

∂y

∣∣∣∣
i,j

≃ ui,j − ui,j−1

∆y
. (2.12)
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(c) Central difference formulas for first order partial derivatives: By subtracting the

expansion (2.2) from the expansion (2.1) and rearranging, the partial derivative

of u with respect to x becomes

∂u

∂x
(xi, yj) =

u(xi +∆x, yj)− u(xi −∆x, yj)

2∆x
+O(∆x2), (2.13)

which yields the central difference approximation

∂u

∂x

∣∣∣∣
i,j

≃ ui+1,j − ui−1,j

2∆x
. (2.14)

Similarly, the central difference formula for
∂u

∂y
at (xi, yj) is:

∂u

∂y

∣∣∣∣
i,j

≃ ui,j+1 − ui,j−1

2∆y
. (2.15)

Here, the error term is of order ∆x2(or ∆y2), so the central difference formulas

are second order approximations.

(d) Central difference formulas for second order partial derivatives: By adding the

expansions (2.1) and (2.2), we obtain

u(xi +∆x, yj) + u(xi −∆x, yj) = 2u(xi, yj) + (∆x)2
∂2u

∂x2
(xi, yj) +O(∆x4),

(2.16)

which can be written as

∂2u

∂x2
(xi, yj) =

u(xi +∆x, yj)− 2u(xi, yj) + u(xi −∆x, yj)

∆x2
+O(∆x2).

(2.17)

Neglecting the error term, one can obtain the so called central difference for-

mula for
∂2u

∂x2
of second order as:

∂2u

∂x2

∣∣∣∣
i,j

≃ ui+1,j − 2ui,j + ui−1,j

∆x2
. (2.18)

On the other hand, adding expansions (2.3) and (2.4) the second order central

difference formula for
∂2u

∂y2
at (xi, yj) is obtained as:

∂2u

∂y2

∣∣∣∣
i,j

≃ ui,j+1 − 2ui,j + ui,j−1

∆y2
. (2.19)
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Higher order finite difference formulas approximating the partial derivatives

can be derived by taking more terms in Taylor series expansions and combining

these expansions around different points. For example, the fourth order central

difference formula to approximate the first and second order partial derivatives

with respect to x:

∂u

∂x

∣∣∣∣
i,j

=
−ui+2,j + 8ui+1,j − 8ui−1,j + ui−2,j

12∆x
+O(∆x4) (2.20)

and

∂2u

∂x2

∣∣∣∣
i,j

=
−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12∆x2
+O(∆x4) (2.21)

are obtained by combining the Taylor series expansions of u at the points

(xi − 2∆x, yj), (xi −∆x, yj), (xi +∆x, yj) and (xi + 2∆x, yj) about (xi, yj).

Similarly, the corresponding fourth order central difference formulas for the

first and second order derivatives with respect to y are obtained by combining

the Taylor series expansions of u at the points (xi, yj − 2∆y), (xi, yj − ∆y),

(xi, yj +∆y) and (xi, yj + 2∆y) about (xi, yj) as follows:

∂u

∂y

∣∣∣∣
i,j

=
−ui,j+2 + 8ui,j+1 − 8ui,j−1 + ui,j−2

12∆y
+O(∆y4) (2.22)

and

∂2u

∂y2

∣∣∣∣
i,j

=
−ui,j+2 + 16ui,j+1 − 30ui,j + 16ui,j−1 − ui,j−2

12∆y2
+O(∆y4). (2.23)

2.2 Application of the FDM and Numerical Results

The present section is devoted to give the application of the FDM to the basic el-

liptic type partial differential equations in a detailed way, namely for the Poisson

problem and the Laplace eigenvalue problem defined in a square domain. The sec-

ond and fourth order central difference formulas given in Section 2.1 are used for the

discretization of the Laplace operator in these equations.

2.2.a Test Problem 1: Poisson Problem

The two-dimensional Poisson equation is a well-known elliptic partial differential

equation that has the following related form when supplied with mixed type boundary
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conditions: −∆u = f(x, y) in Ω,

αu+ β
∂u

∂n
= g(x, y) on ∂Ω,

(2.24)

where ∆ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator, u(x, y) is some scalar po-

tential which will be determined, f(x, y) is a known source function, and Ω is the

domain of the solution with boundary ∂Ω. In the mixed type boundary condition, α,

β are constants and g(x, y) is a given function. The Poisson problem describes gen-

erally a variety of potential-related events concerned with physical potentials such as

thermodynamic or electrostatic potentials. The determination of the electrical poten-

tial for a given charge distribution and the calculation of the gravitational force can

be given as the sample applications of the Poisson problem [43, 44].

A finite difference scheme for the solution of Poisson problem (2.24) is obtained by

first discretizing the domain, which is taken as a rectangular region Ω = [a, b] ×
[c, d], and then discretizing the Poisson equation by replacing the derivatives with

the appropriate finite difference formulas given in Section 2.1. Once the domain

is discretized with a uniform mesh by taking Nx and Ny equal length subintervals,

respectively in x and y-directions, this yields the corresponding mesh sizes ∆x =

h = (b− a)/Nx and ∆y = k = (d− c)/Ny. Hence, a mesh Ωh on Ω becomes

Ωh = {(xi, yj) : xi = a+ (i− 1)h, i = 1, . . . , Nx + 1,

yj = c+ (j − 1)k, j = 1, . . . , Ny + 1}

where (xi, yj) are the mesh points. Then, the Laplace operator in Poisson equation

(2.24) at an interior node (xi, yj) can be approximated by using finite difference for-

mulas of different orders. The boundary conditions are also approximated by using

a suitable finite difference formula for the first order derivatives. This results in a

system of linear algebraic equations

AU = z, (2.25)

where A is a well-structured sparse matrix by using a suitable choice of ordering in

the solution vector U involving the unknown values of u both in the interior and on

the boundary of the problem depending on the type of the boundary conditions.
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In order to validate our finite difference computer codes in MATLAB, the numerical

simulations are performed to approximate the solution of the Poisson problem −∆u = sin(x) sin(y) in Ω,

u = 0 on ∂Ω,
(2.26)

in a square domain Ω = {(x, y) : 0 ≤ x, y ≤ π}, for which the analytical solution is

u(x, y) =
1

2
sin(x) sin(y) . (2.27)

The discrete solution is obtained by using FDM of different orders. That is, the sec-

ond order central difference formulas (2.18)-(2.19) and fourth order central differ-

ence formulas (2.21)-(2.23) are going to be employed in Section 2.2.a.1 and Section

2.2.a.2, respectively, to approximate the partial derivatives uxx and uyy in the Laplace

operator.

2.2.a.1 Approximation of the Poisson Equation by Second Order Finite Central

Difference Formulas

In this section, the derivatives uxx and uyy in the Laplace operator are replaced by

the second order central difference formulas (2.18)-(2.19) at an interior node (xi, yj).

Thus, Equation (2.26) at (xi, yj) becomes

−Ui+1,j − 2Ui,j + Ui−1,j

h2
− Ui,j+1 − 2Ui,j + Ui,j−1

k2
= sin(xi) sin(yj), (2.28)

where Ui,j is an approximation of u(xi, yj), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, h = π/Nx, k =

π/Ny, and xi = iπ/Nx, yj = jπ/Ny. When, h = k, Equation (2.28) is simplified to

4Ui,j − Ui+1,j − Ui−1,j − Ui,j+1 − Ui,j−1 =
π2

N2
sin(i

π

N
) sin(j

π

N
), (2.29)

which is the so-called five point finite difference formula for i, j = 1, 2, . . . , N with

N = Nx = Ny. The corresponding discretized boundary conditions are obtained as

u(1, y) = UN,j = 0, u(x, 0) = Ui,0 = 0,

u(0, y) = U0,j = 0, u(x, 1) = Ui,N = 0 .
(2.30)

After the insertion of boundary conditions into the difference equation (2.29), one can

obtain the system of linear equations in the matrix-vector form as follows:

AU =
( π

N

)2

z, (2.31)
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when the unknown vector U is ordered in the following form:

UT =
[
U1,1 U2,1 · · · UN−1,1 | U1,2 U2,2 · · · UN−1,2 | · · ·

| U1,N−1 U2,N−1 · · · UN−1,N−1

]
. (2.32)

Here, the coefficient matrix A of size (N−1)2×(N−1)2 is a sparse block tridiagonal

matrix constructed by the matrix D and the identity matrix I of size (N−1)×(N−1):

A =



D −I 0 0

−I D −I

0 −I D

0

−I

0 0 −I D


, D =



4 −1 0 0

−1 4 −1

0 −1 4

0

−1

0 0 −1 4


.

The right hand side vector z is

zT =
[
f1g1 f2g1 · · · fN−1g1 | f1g2 f2g2 · · · fN−1g2 | · · ·

| f1gN−1 f2gN−1 · · · fN−1gN−1

]
, (2.33)

where fi = sin(xi) and gj = sin(yj).

In Figure 2.2, a qualitative comparison between the analytical and FDM solution with

the second order central difference formulas is visualized in terms of contour plots. It

is observed that the numerical solution matches very well with the exact solution.

On the other hand, as the number of mesh points N increases, or equivalently as

the uniform mesh size h = π/N decreases, the convergence behavior of the FDM

solution to the exact solution is examined. The relative error ε = ∥u−U∥2
∥u∥2 (with respect

to L2-norm, ∥u∥2 =
√
u1

2 + u2
2 + · · ·+ un

2 where u = (u1, u2, · · · , un) ) between

the exact solution u and the approximate solution U is plotted on a log-log scale in

Figure 2.3 for N = 8, 16, · · · , 4096 to show this convergence behavior. The line with

asterisks represents the change in the error for decreasing values of h and the blue

line shows just a line with slope m = −2. As seen in Figure 2.3, the convergence

behavior of the approximate solution U is of order O(h2) as expected by the use of

second order central difference formulas to approximate derivatives.
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Figure 2.2: Exact and approximate solutions of Poisson problem by second order difference formula.
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Figure 2.3: Convergence rate of O(h2) for the Poisson problem by second order difference formula.

2.2.a.2 Approximation of the Poisson Equation by Fourth Order Central

Difference Formulas

In the discretization of the Poisson equation (2.26), the fourth order central difference

formulas (2.21)-(2.23) are applied at point (xi, yj) by taking same number of equally

spaced mesh points N in x and y-directions, that is h = k, as in the previous section.

This results in the following finite difference equation

− 1

12h2
(−Ui+2,j + 16Ui+1,j − 30Ui,j + 16Ui−1,j − Ui−2,j)−

1

12h2
(−Ui,j+2

+16Ui,j+1 − 30Ui,j + 16Ui,j−1 − Ui,j−2) = sin(xi) sin(yj),

(2.34)
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which can be rewritten as:

−Ui+2,j + 16Ui+1,j − 60Ui,j + 16Ui−1,j − Ui−2,j − Ui,j+2 + 16Ui,j+2 + 16Ui,j−1

−Ui,j−2 = −12h2 sin(i
π

N
) sin(j

π

N
),

(2.35)

for i, j = 1, 2, · · · , N − 1. The discretized form of the homogeneous boundary con-

ditions are

u(1, y) = UN,j = 0, u(x, 0) = Ui,0 = 0,

u(0, y) = U0,j = 0, u(x, 1) = Ui,N = 0 .
(2.36)

When the difference equation is written for the values of i, j = 1, 2, · · · , N − 1,

some fictitious points, the points which are not in the computational domain, appear

in the system of equations. Thus, for the evaluation of the unknown values only in

the computational domain Ωh, the values of the unknown U at these ghost points are

required, and in the computations these values are obtained from the exact solution as

follows:

Ui,−1 =
1

2
sin(

iπ

N
) sin(− π

N
), Ui,N+1 =

1

2
sin(

iπ

N
) sin(

(N + 1)π

N
),

U−1,j =
1

2
sin(− π

N
) sin(

jπ

N
), UN+1,j =

1

2
sin(

(N + 1)π

N
) sin(

jπ

N
) .

(2.37)

The use of exact values at this stage is due to the fact that we aim to test our algorithms

using these forms. Nevertheless, these boundary conditions can be approximated

by other means. After the insertion of the related ghost points and the boundary

conditions, and with a suitable ordering of the unknown values

UT =
[
U1,1 U2,1 · · · UN−1,1 | U1,2 U2,2 · · · UN−1,2 | · · ·

| U1,N−1 U2,N−1 · · · UN−1,N−1

]
, (2.38)

one can obtain the following system of linear equations in matrix-vector form:

AU = z, (2.39)

where the coefficient matrix A of size (N − 1)2 × (N − 1)2 is the block tridiagonal

matrix. It is formed by the identity matrix I and the matrix D of size (N−1)×(N−1)
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and given as:

A =



D 16I −I 0 0

16I D 16I −I

−I 16I D 16I −I

0 −I 16I D 16I

0

D 16I −I

0 −I 16I D 16I

0 0 0 −I 16I D



,

D =



−60 16 −1 0 0

16 −60 16 −1

−1 16 −60 16 −1

0 −1 16 −60 16

0

−60 16 −1

0 −1 16 −60 16

0 0 0 −1 16 −60



.

Using spy code in MATLAB, the coefficient matrix A for N = 10 is presented in

Figure 2.4. The non-zero entries of the matrix A are represented by the dots in the

figure.

The vector z is the linear combination of the vectors formed by the functions fi =

sin(xi), gj = sin(yj), that is:

z = −12h2r +
s

2
+

t

2
, (2.40)

where

rT =
[
|f1g1 f2g1 · · · fN−1g1 | f1g2 f2g2 · · · fN−1g2 | · · ·

| f1gN−1 f2gN−1 · · · fN−1gN−1

]
, (2.41)
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Figure 2.4: Sparsity pattern of the coefficient matrix A when N = 10.

sT =
[
f1g−1 f2g−1 · · · fN−1g−1 | 0 · · · 0 | f1gN+1 f2gN+1 · · ·

fN−1gN+1

]
, (2.42)

tT =
[
f−1g1 0 · · · 0 fN+1g1 | f−1g2 0 · · · 0 fN+1g2 | · · ·

| f−1gN−1 0 · · · 0 fN+1gN−1

]
. (2.43)

Figure 2.5 displays the well agreement of the exact and FDM solutions of the Pois-

son problem in terms of level surfaces. The relative error between the approximate

solution obtained using the fourth order central difference formulas and the exact so-

lution is drawn in log-log scale in Figure 2.6 to visualize the convergence behavior

of the FDM solution to the exact solution regarding the values of h = π/N with

N = 8, 16, · · · , 2048. A fourth order O(h4) rate of convergence is well observed

from Figure 2.6.

To summarize, the Poisson problem is solved using the finite difference approach

with the second and fourth order central difference formulas for the approximation of

the Laplace operator. Despite the fact that both difference formulas produce precise
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Figure 2.5: FDM and exact solutions of Poisson problem by fourth order difference formula.
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Figure 2.6: Convergence rate of O(h4) for the Poisson problem by fourth order difference formula.

results, the convergence of the approximate solution to the exact solution is faster

in the fourth order scheme. That is, in the second order scheme the convergence

behavior of the FDM solution is of order O(h2) whereas in fourth order scheme, it is

of order O(h4).

2.2.b Test Problem 2: The Laplace Eigenvalue Problem

The two-dimensional eigenvalue problem for the Laplacian is investigated on a bounded

domain Ω ⊂ R2. Specifically, we search pairs (λ, u) where λ ∈ R is called an eigen-

value of the Laplacian and function u ̸= 0 is the corresponding eigenfunction in Ω.
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Thus, the Laplace eigenvalue problem is defined as: −∆u = λu in Ω,

u = 0 on ∂Ω,
(2.44)

for which λ and u form the eigensolution.

It is well-known that one can obtain the analytical solution of the Laplace EVP in

a square [0, L] × [0, L] by using the method of separation of variables. Then, the

Laplace EVP for this domain can be written explicitly as:

−uxx − uyy = λu, (2.45)

u(0, y) = 0, (2.46)

u(L, y) = 0, (2.47)

u(x, 0) = 0, (2.48)

u(x, L) = 0. (2.49)

Suppose that the solution is written in the form

u(x, y) = X(x)Y (y), (2.50)

and then the partial derivatives become

uxx = X ′′Y, uyy = XY ′′. (2.51)

Inserting these partials in Equation (2.45), and dividing by XY (assuming XY ̸= 0

since u ̸= 0) we obtain

−X ′′

X
− Y ′′

Y
= λ. (2.52)

If it is assumed that λ = a + b such that a = −X ′′

X
and b = −Y ′′

Y
, two ordinary

differential equations with the boundary conditions are obtained as

X ′′ + aX = 0, (2.53)

Y ′′ + bY = 0, (2.54)

with the boundary conditions X(0) = X(L) = 0 obtained from Equations (2.46) and

(2.47) for Equation (2.53), and Y (0) = Y (L) = 0 using Equations (2.48) and (2.49)

for Equation (2.54).

When a ≤ 0, the ODE in Equation (2.53) with the given boundary conditions has
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trivial solution X = 0 which gives u(x, y) = X(x)Y (y) = 0. In fact, if it is assumed

that a < 0, the general solution of (2.53), using roots r1,2 = ±
√
a of its characteristic

polynomial r2 + a = 0, is

X(x) = c1e
√
ax + c2e

−
√
ax, (2.55)

where c1 and c2 are some constants. The only solution that satisfies the boundary

conditions is X = 0. In case of a = 0 the general solution of Equation (2.53) is

X(x) = c1x + c2, and the trivial solution X = 0 is obtained when the boundary

conditions are applied. Similarly, the trivial solution Y = 0 can be obtained for

Equation (2.54) where b ≤ 0 in the given boundary conditions. On the other hand,

when a > 0 and b > 0, the solutions of Equations (2.53) and (2.54) can be written as

X(x) = c1 sin(
√
ax) + c2 cos(

√
ax), (2.56)

Y (y) = c3 sin(
√
by) + c4 cos(

√
by), (2.57)

where c1, c2, c3 and c4 are arbitrary constants. From the conditions (2.46) and (2.48),

it is obtained that c2 = c4 = 0. On the other hand, applying the conditions (2.47) and

(2.49) yields

c1 sin(
√
ax) = 0, (2.58)

c3 sin(
√
by) = 0. (2.59)

Using the boundary conditions X(L) = 0 and Y (L) = 0 results in

c1 sin(
√
aL) = 0, (2.60)

c3 sin(
√
bL) = 0, (2.61)

respectively. For a nontrivial solution, we must have
√
aL = mπ and

√
bL = nπ for

some positive integers m and n. Finally, the solution for the eigenvalues are

λm,n = a+ b =
(mπ

L

)2

+
(nπ
L

)2

, where m,n ∈ Z+, (2.62)

with the corresponding non-zero eigenfunctions

um,n = c sin
(mπx

L

)
sin

(nπy
L

)
, c ∈ R. (2.63)
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On the other hand, in numerical simulations by using second and fourth order fi-

nite difference scheme, we consider the eigenvalue problem on the unit square Ω =

[0, 1]× [0, 1] that is: −∆u = −uxx − uyy = λu in Ω,

u(1, y) = u(0, y) = u(x, 0) = u(x, 1) = 0 on ∂Ω,
(2.64)

and the exact solution is

um,n = sin(mπx) sin(nπy), λm,n = (mπ)2 + (nπ)2, m, n ∈ Z+. (2.65)

The computational domain is discretized by using a uniform mesh with grid points

(xi = ih, yj = jh), 0 ≤ i, j ≤ N and h = 1/N with N being the number of

subintervals in x and y-directions.

2.2.b.1 Approximation of the Laplace EVP by Second Order Central Differ-

ence Formulas

When the partial derivatives uxx and uyy in Equation (2.64) are approximated by the

second order central difference formulas (2.18) and (2.19), we obtain the discrete

eigenvalue problem

4Ui,j − Ui+1,j − Ui−1,j − Ui,j+1 − Ui,j−1

h2
= λUi,j, (2.66)

for i, j = 1, 2, . . . , N − 1 with the boundary conditions

u(1, y) = UN,j = 0, u(x, 0) = Ui,0 = 0,

u(0, y) = U0,j = 0, u(x, 1) = Ui,N = 0 .
(2.67)

The difference equation (2.66) for 1 ≤ i, j ≤ N − 1 yields (N − 1)2 linear equations

which can be written in the matrix form

AU = λ̃U, (2.68)

which is a matrix eigenvalue problem with λ̃ = λ/N2. Here U is the reduced vector

after the insertion of homogeneous boundary conditions and is taken in the following

ordering

uT =
[
U1,1 U2,1 · · · UN−1,1 | U1,2 U2,2 · · · UN−1,2 | · · ·

| U1,N−1 U2,N−1 · · · UN−1,N−1

]
. (2.69)
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Then the matrix A has the form

A =



D −I 0 0

−I D −I

0 −I D

0

−I

0 0 −I D


,where D =



4 −1 0 0

−1 4 −1

0 −1 4

0

−1

0 0 −1 4


,

and I is the identity matrix of size (N − 1) × (N − 1) as the matrices obtained in

Section 2.2.a.1 for the Poisson problem. Since A is a sparse matrix, the eigenvalue

solvers for sparse matrices are employed in our MATLAB code. Once the system

(2.68) is solved, the discrete eigensolutions (λh
m,n, U) are obtained.

In Table 2.1, we present the smallest ten approximate eigenvalues λh
m,n and exact

eigenvalues λm,n of the Laplace EVP for N = 100, 500, · · · , 3000. In the last column

for N = 3000, the normalized errors εm,n =

∣∣∣∣λm,n − λh
m,n

λm,n

∣∣∣∣ are also given for each

eigenvalue. It is seen from Table 2.1 that as the number of grid points N increases,

the approximate eigenvalues λh
m,n approach the exact eigenvalues λm,n with an error

of less than 10−5. Moreover, the smaller eigenvalues are better approximated than

bigger ones especially for small N . Indeed, the relative error is much smaller for the

smaller eigenvalues than the ones corresponding to the larger ones.

Table 2.1: First ten ordered eigenvalues of the Laplace EVP by second order difference formula.

(m,n) λm,n N = 100 N = 500 N = 1000 N = 2000 N = 3000 (εm,n)

(1, 1) 19.7392 19.7376 19.7391 19.7392 19.7392 19.7392(9.00e-07)

(1, 2) 49.3480 49.3342 49.3475 49.3479 49.3480 49.3480(3.10e-06)

(2, 1) 49.3480 49.3342 49.3475 49.3479 49.3480 49.3480(3.10e-06)

(2, 2) 78.9568 78.9309 78.9558 78.9566 78.9568 78.9568(3.70e-06)

(1, 3) 98.6960 98.6295 98.6934 98.6954 98.6959 98.6960(7.50e-06)

(3, 1) 98.6960 98.6295 98.6934 98.6954 98.6959 98.6960(7.50e-06)

(2, 3) 128.3049 128.2261 128.3017 128.3041 128.3047 128.3048(6.80e-06)

(3, 2) 128.3049 128.2261 128.3017 128.3041 128.3047 128.3048(6.80e-06)

(1, 4) 167.7833 167.5748 167.7749 167.7812 167.7828 167.7830(1.38e-05)

(4, 1) 167.7833 167.5748 167.7749 167.7812 167.7828 167.7830(1.38e-05)
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Figure 2.7: Convergence behavior of λh
m,n to λm,n versus the step size h in log-log scale by second

order difference formula.

To illustrate the convergence behaviour of the approximate eigenvalues λh
m,n to the

exact ones, the normalized errors εm,n are plotted in Figure 2.7 for the first five eigen-

values, and it is observed that approximate eigenvalues converges to exact ones with

an order of O(h2). Since the eigenvalues λ1,2 and λ2,1 are the same, only the conver-

gence behavior for λ1,2 is presented.

2.2.b.2 Approximation of the Laplace EVP by Fourth Order Difference For-

mulas

Although the FDM is easy to implement, some difficulties arise in imposing the

boundary conditions when higher order finite difference formulas requiring ghost

points, are applied. In the Poisson problem by the fourth order finite differences

in Section 2.2.a.2, the value at the ghost points are found by using the exact solutions,

however, in Laplace EVP a different fourth order FDM, described in [45], is em-

ployed for the discretization of the Laplace eigenvalue differential equation. This new

finite difference scheme is called compact finite difference (FD) scheme, in which the
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coefficients are computed by a formulation of Taylor expansion with symmetric poly-

nomials. The aim of the compact finite difference scheme is to increase the accuracy

of FDM on Cartesian grids with mesh size h > 0, without increasing the size of

the associated stencil. The fourth order compact scheme in two-dimensions for the

Poisson equation −∆u = f is given as [45],

1

6h2
(−Ui−1,j−1 − 4Ui,j−1 − Ui+1,j−1 − 4Ui−1,j + 20Ui,j − 4Ui+1,j − Ui−1,j+1

−4Ui,j+1 − Ui+1,j+1) =
1

12
(fi+1,j + 8fi,j + fi−1,j + fi,j+1 + fi,j−1),

(2.70)

for which the truncation error is of order O(h4) and is equal to

TE = −h4

90

[
∂6u

∂x6
+

∂6u

∂y6

]
+O(h5), (2.71)

when a uniform mesh with h = k = 1/N is used. Thus, the compact FD equation for

the Laplace EVP can be obtained as:

1

6h2
(−Ui−1,j−1 − 4Ui,j−1 − Ui+1,j−1 − 4Ui−1,j + 20Ui,j − 4Ui+1,j − Ui−1,j+1

−4Ui,j+1 − Ui+1,j+1) =
λ

12
(Ui+1,j + 8Ui,j + Ui−1,j + Ui,j+1 + Ui,j−1),

(2.72)

by taking the RHS function in Equation (2.70) as f = λu for i, j = 1, 2, . . . , N − 1

with the same boundary conditions given in Equation (2.67). The difference Equation

(2.72) for 1 ≤ i, j ≤ N − 1 produces (N − 1)2 linear equations that can be written

as:

T1U = λ̃T2U, (2.73)

which is a generalized eigenvalue problem with λ̃ = 6h2λ/12. Here,

uT =
[
u1,1 u2,1 · · · uN−1,1 | u1,2 u2,2 · · · uN−1,2 | · · ·

| u1,N−1 u2,N−1 · · · uN−1,N−1

]
, (2.74)

is the reduced vector after the insertion of homogenous boundary conditions, and is

of same ordering with Equation (2.69).
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The block tridiagonal matrix T1 has the form

T1 =



A1 B1 0 0

B1 A1 B1

0 B1 A1

0

B1

0 0 B1 A1


where the matrices A1 and B1 tridiagonal matrices of size (N − 1) × (N − 1), and

are given as:

A1 =



20 −4 0 0

−4 20 −4

0 −4 20

0

−4

0 0 −4 20


, B1 =



−4 −1 0 0

−1 −4 −1

0 −1 −4

0

−1

0 0 −1 −4


.

On the other hand, T2 has the form

T2 =



A2 I 0 0

I A2 I

0 I A2

0

I

0 0 I A2


,with A2 =



8 1 0 0

1 8 1

0 1 8

0

1

0 0 1 8


,

where the identity matrix I and the matrix A2 are of size (N − 1)× (N − 1).

When we use eigenvalue solvers for the sparse matrices in our MATLAB code, we

get the results as presented in Table 2.2 which contains the smallest ten approximate

eigenvalues λh
m,n and exact eigenvalues λm,n of Laplace EVP for N = 128, 256, 512

and 1024. The normalized errors εm,n for each eigenvalue are also listed in the last

column. It is seen from Table 2.2 that the approximate eigenvalues approach the

exact eigenvalues λm,n with an error less than 10−10 as the number of grid points N
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increases. It can be observed from Table 2.1 and Table 2.2 that the approximate

Table 2.2: First ten ordered eigenvalues of Laplace EVP by the fourth order FDM.

m,n λm,n N = 128 N = 256 N = 512 N = 1024 (εm,n)

1,1 19.739208802 19.739208822 19.739208803 19.739208802 19.739208802(1.263e-11)

1,2 49.348022005 49.348021533 49.348021976 49.348022004 49.348022005(7.533e-12)

2,1 49.348022005 49.348021533 49.348021976 49.348022004 49.348022005(7.473e-12)

2,2 78.956835209 78.956836482 78.956835288 78.956835214 78.956835209(7.226e-13)

1,3 98.696044011 98.696035353 98.696043470 98.696043977 98.696044009(2.401e-11)

3,1 98.696044011 98.696035353 98.696043470 98.696043977 98.696044009(2.397e-11)

2,3 128.304857214 128.304857018 128.304857202 128.304857213 128.304857214(2.363e-12)

3,2 128.304857214 128.304857018 128.304857202 128.304857213 128.304857214(2.341e-12)

1,4 167.783274819 167.783220422 167.783271420 167.783274606 167.783274805(8.064e-11)

4,1 167.783274819 167.783220422 167.783271420 167.783274606 167.783274805(8.063e-11)

Table 2.3: Comparison of average computational times in seconds for the Laplace EVP with the

relative error of λ2,2.

Order of the method N = 256 N = 512 N = 1024

Second Order 0.42(5.0e-05) 1.85(1.3e-05) 8.52 (3.1e-06)

Fourth Order 0.71(1.0e-09) 3.43(6.2e-11) 16.69(7.2e-13)

eigenvalues obtained by fourth order finite difference scheme approach to the exact

ones simpler than the ones obtained by the second order scheme. That is, more ac-

curate results are obtained in the fourth order scheme when compared to the ones

obtained by the second order scheme by using smaller number of grid points N . In

Table 2.3, average of computational times in seconds for the simple eigenvalue λ2,2

are given with the relative error, in parenthesis, obtained for the Laplace EVP. As can

be seen from the table, the fourth order scheme is much more efficient than the second

order one. In the fourth order method, it takes 0.71 seconds to obtain error 1.0e-09

for N = 256 while in the second order method it takes 8.52 seconds to reach the

relative error at least 3.1e-06 for N = 1024. It can be concluded that the second order

finite difference scheme is more time consuming since a finer mesh must be used to

obtain the same accuracy in the fourth order scheme which requires less number of

grid points.
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Figure 2.8: Convergence behavior of λh
m,n to λm,n versus the step size h in log-log scale by fourth

order difference formula.

Figure 2.8 displays the convergence behavior of λh
m,n to λm,n in which the normal-

ized error εm,n are drawn in log-log scale. As expected due to use of a fourth or-

der scheme, we end up with a fourth order convergence as the step size decreases.

Furthermore, the approximate eigenfunctions Um,n corresponding to the eigenvalues

λh
m,n are analyzed and compared with the exact eigenfunctions um,n in terms of con-

tour plots. It is known that there exists only one eigenfunction to a simple eigenvalue

λm,n = (πm)2 + (πn)2 when m = n. To see the good agreement of the approxi-

mate eigenfunctions U1,1 and U2,2 with the exact eigenfunctions u1,1 and u2,2, they

are drawn in Figure 2.9 for the first two smallest simple eigenvalues λ1,1 and λ2,2.

On the other hand, it is observed from Table 2.2 that there are two different eigen-

values λh
m,n that approximate the double eigenvalues λm,n = λn,m = (πm)2 + (πn)2

with m ̸= n. It is known that the dimension of the exact eigenspace is two which is

spanned by the exact eigenfunctions um,n and un,m, m ̸= n corresponding to the dou-

ble eigenvalues λm,n and λn,m, m ̸= n. However, the approximate eigenspace is made

up of two different one-dimensional eigenspaces because the approximate eigenval-

ues are distinct [46]. As a result, in order to understand the convergence behavior of
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(a) Eigenfunction corresponding to λ1,1.
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(b) Eigenfunction corresponding to λ2,2
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Figure 2.9: Comparison of the exact and approximate eigenfunctions corresponding to single eigen-

values λm,n, m = n = 1, 2

approximate eigenfunctions with double eigenvalues, it is necessary to establish that

α(m,n)um,n + α(n,m)un,m = β(m,n)Um,n + β(n,m)Un,m, (2.75)

where α(m,n), α(n,m), β(m,n) and β(n,m) are constants for m,n = 1, 2, · · · , and m ̸= n,

as explained in [47]. The matrix form of Equation 2.75 is[
um,n un,m

]α(m,n)

α(n,m)

 =
[
Um,n Un,m

]β(m,n)

β(n,m)

 . (2.76)

When both sides in Equation 2.76 are multiplied with
[
(um,n)T (un,m)T

]T
from

right, we obtain(um,n)Tum,n (um,n)Tun,m

(un,m)Tum,n (un,m)Tun,m

α(m,n)

α(n,m)

 =

(um,n)TUm,n (um,n)TUn,m

(un,m)TUm,n (un,m)TUn,m

β(m,n)

β(n,m)

. (2.77)

From the orthonormality of exact eigenfunctions, that is (um,n) · (un,m) = 1 if m = n

and (um,n) · (un,m) = 0 for m ̸= n, Equation (2.77) becomesα(m,n)

α(n,m)

 = C

β(m,n)

β(n,m)

 (2.78)

where the nonsingular matrix C can be evaluated using the known values um,n, un,m,

Um,n and Un,m,

C =

(um,n)TUm,n (um,n)TUn,m

(un,m)TUm,n (un,m)TUn,m

 . (2.79)
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If we assume that
[
α(m,n) α(n,m)

]
=

[
1 0

]
, the constants

[
β(m,n) β(n,m)

]
can be

obtained from Equation (2.78), which reduces to

um,n = β(m,n)Um,n + β(n,m)Un,m. (2.80)

Similarly, if we assume that
[
α(m,n) α(n,m)

]
=

[
0 1

]
, one can obtain the constants[

β(m,n) β(n,m)

]
that give the second exact eigenfunction un,m from Equation (2.78)

as

un,m = β(m,n)Um,n + β(n,m)Un,m. (2.81)

As it is figured out from Equations (2.80) and (2.81), the exact eigenfunctions are ob-

tained as a linear combination of approximate eigenfunctions Um,n and Un,m through

the constants β(m,n) and β(n,m). In order to confirm the obtained formulas (2.80) and

(2.81) quantitatively, the approximate eigenfunctions Um,n and Un,m, and the corre-

sponding eigenfunctions are visualized in Figures 2.10, 2.11 and 2.12.
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(b) u1,2
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(c) 0.9994U1,2 − 0.0345U2,1
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(e) u2,1
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(f) −0.0345U1,2 − 0.9994U2,1
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Figure 2.10: Eigenfunctions corresponding to the eigenvalues λ1,2 and λ2,1 of Laplace EVP.
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(a) U1,3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) u1,3
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(c) −0.9973U1,3 + 0.0733U3,1
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(d) U3,1
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(e) u3,1
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(f) 0.0733U1,3 + 0.9973U3,1
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Figure 2.11: Eigenfunctions corresponding to the eigenvalues λ1,3 and λ3,1 of Laplace EVP.
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(b) u2,4
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(e) u4,2
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(f) −0.5608U2,4 + 0.8280U4,2
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Figure 2.12: Eigenfunctions corresponding to the eigenvalues λ2,4 and λ4,2 of Laplace EVP.
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The exact eigenfunctions obtained by Equations (2.80) and (2.81) in terms of linear

combinations of the approximate eigenfunctions Um,n and Un,m for m,n = 1, 2, 3

are also illustrated at the right column of Figures 2.10, 2.11 and 2.12. It is observed

that, some discrepancies occur between the exact eigenfunctions um,n, un,m and the

corresponding separate approximate eigenfunctions Um,n and Un,m. However, the

linear combinations of Um,n and Un,m provide reasonably well approximations for

the corresponding exact eigenfunctions.

To conclude, in this chapter, the applications of the second and fourth order FDMs to

the Poisson type equations including the Laplace eigenvalue problem in a square are

given. The convergence behavior of the finite difference solutions to the exact ones

are investigated in both Poisson Problem and Laplace EVP, and it is observed that the

fourth order FDM yields better convergence rate compared to the second order FDM,

as expected. Moreover, the finite difference solutions are in good agreement with the

exact solutions, which validates the correctness of our computer codes as well as the

effectiveness of the FDM for the solution of Poisson type equations, especially for

the Laplace EVP.
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CHAPTER 3

FINITE DIFFERENCE METHOD FOR THE STEKLOV EIGENVALUE

PROBLEM

In this chapter, the Steklov EVP, one of the most important problems involving Lap-

lace operator, will be examined on square domains with a variety of boundary condi-

tions. The problem is a critical component of many applications and defined as: find

the eigenvalues λ ∈ R and eigenfunctions u ̸= 0 such that
−∆u+ µu = 0 in Ω,

∂u/∂n = λρu on Γλ,

∂u/∂n = 0 on ΓN ,

(3.1)

where n denotes the unitary outward normal to the domain Ω which is in Rd, d =

1, 2, 3 with the boundary ∂Ω = Γλ ∪ ΓN where Γλ and ΓN are disjoint open subsets

of ∂Ω with Γλ ̸= ∅, and µ and ρ are given spatially dependent variables. For instance,

in the case of a vibrating free membrane, ρ is a weight function indicating the density

of the mass concentrated along the boundary.

It can be seen from Equation (2.44) and Equation (3.1) that the Steklov EVP differs

from the Laplace EVP in the place of the eigenvalues. The eigenvalues occur on the

boundary conditions in Steklov EVP whereas they are on the differential equation in

the Laplace EVP.

The presentation of the FDM approximation of the Steklov EVP is the focus of the

present chapter. Primarily, the most known form of the Steklov EVP with mixed type

boundary condition involving the spectral parameter λ given on the whole boundary,

that is ∂Ω = Γλ is considered in Section 3.1 on square domains. The discretiza-

tion of the differential equation is performed by using both second and fourth order
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central differences for the Laplace operator in Section 3.1.a and 3.1.b, respectively.

The mixed type boundary condition involving the first order partial derivatives is ap-

proximated by either backward-forward difference formulas of first order or by using

second and fourth order central difference formulas. In Section 3.2, the mixed type

Steklov EVP defined on a square domain is solved also by using the fourth order dif-

ference formulas for the differential equation while a combination of either first and

second or second and fourth order formulas are employed for the discretization of the

derivative boundary conditions. In the mixed problem the boundary of the domain is

divided into two disjoint parts, namely ∂Ω = Γλ∪ΓN having different boundary con-

ditions. That is, the mixed type boundary condition involving spectral parameter λ is

taken on Γλ, and on ΓN the Neumann type boundary condition is taken into account.

The obtained finite difference solutions are presented in terms of convergence rate of

eigenvalues and contour plots of eigenfunctions in the given computational domain.

Throughout this chapter to indicate the order of finite difference formulas applied to

the differential operator and the boundary conditions, we use the abbreviation OiBj

or OiBj,k. Here, suffix i shows the order of difference formulas employed for the

discretization of differential operator (O), while the suffices j, k show the order of

difference formulas used in approximating the derivative boundary conditions. For

example, O2B1,2 implies that a second order difference formula is used for the dis-

cretization of the differential equation, while in the approximation of the derivative

boundary conditions a combination of first and second order difference formulas are

applied.

3.1 The Standard Steklov Eigenvalue Problem

In this section, the most popular form of the Steklov EVP involving only non-homo-

genous type boundary condition with the eigenvalue parameter λ given as−∆u+ µu = 0 in Ω,

∂u

∂n
= λρu on ∂Ω = Γλ,

(3.2)

is considered on square domains for various values of ρ and µ.

First, the code validation is performed for the pure (simplified) Steklov EVP, when
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µ = 0 and ρ = 1, defined on the square Ω = [−1, 1]× [−1, 1], where the problem has

the exact solution. That is, we solve the simplified Steklov EVP∆u = 0 in Ω,

∂u

∂n
= λu on ∂Ω

(3.3)

by using fourth order central difference formulas (2.21)-(2.23) to approximate the

differential equation, while the mixed type boundary condition with dependence on

the eigenvalue λ is approximated by the second order central difference formulas

(2.14)-(2.15), that is we use the method O4B2.

The exact solution of the problem (3.3) can be found in the work of Girouard [11]

and is tabulated here in Table 3.1. Once the equations in the mid column of Table 3.1

are solved for α, the corresponding eigenfunctions and eigenvalues can be obtained.

Table 3.1: Conditions for exact eigenvalues and eigenspace of standard Steklov EVP on Ω = [−1, 1]×

[−1, 1] when ρ = 1 and µ = 0.

Eigenspace basis Conditions on α Eigenvalues
cos(αx) cosh(αy)

cos(αy) cosh(αx)
tan(α) = − tanh(α) α tanh(α)

sin(αx) cosh(αy)

sin(αy) cosh(αx)
tan(α) = coth(α) α tanh(α)

cos(αx) sinh(αy)

cos(αy) sinh(αx)
tan(α) = − coth(α) α coth(α)

sin(αx) sinh(αy)

sin(αy) sinh(αx)
tan(α) = tanh(α) α coth(α)

xy 1

Table 3.2: The smallest six eigenvalues of standard Steklov EVP with the corresponding values of α.

i αi λi N = 128 N = 256 N = 512 N = 1024

1 0 0 -6.730e-14 -3.717e-13 -1.346e-12 -5.924e-12

2 -0.937552 0.688252 0.688217 +-0.000031i 0.688249 +0.000000i 0.688266 +0.000000i 0.688251+ 0.000000i

3 -0.937552 0.688252 0.688217 +0.000031i 0.688254 +0.000000i 0.688266 +0.000000i 0.688257+ 0.000000i

4 - 1 1.000106 +0.000000i 1.000002 +0.000000i 1.000000 +0.000000i 0.999998+ 0.000000i

5 -2.365002 2.323638 2.317733 +0.000000i 2.323544 +0.000000i 2.323867 +0.000000i 2.323645+ 0.000000i

6 -2.365002 2.323638 2.323876 +0.000000i 2.323722 +0.000000i 2.323867 +0.000000i 2.323728+ 0.000000i

The smallest six eigenvalues and corresponding α values are given in Table 3.2. It

is observed that the approximate eigenvalues are obtained as complex numbers with

41



almost zero imaginary parts especially at high values of subintervals N . The reason

for obtaining imaginary parts is having a coefficient matrix which is not symmetric

in the resulting finite difference system of equations due to mixed type boundary

conditions.
The well agreement of the finite difference approximation with the exact solution is

displayed in Figure 3.1, Figure 3.2 and Figure 3.3 in terms of contour plots of eigen-

functions for N = 1024. In Figure 3.1, the exact eigenfunction u4 corresponding to

simple eigenvalue λ4 = 1 is drawn with the approximate eigenfunction U4.

-1 -0.5 0 0.5 1
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-0.5

0

0.5

1

Figure 3.1: Comparison of the exact and the FD eigenfunctions corresponding to simple eigenvalue

λ4 = 1 for Steklov EVP with ρ = 1, µ = 0.

On the other hand, the eigenfunctions corresponding to the double eigenvalues λ2 =

λ3 = 0.688252 and λ5 = λ6 = 2.323638 are drawn in Figure 3.2 and Figure 3.3,

respectively. It is observed, in Figures 3.2 and 3.3, that the contour plots of the ap-

proximate eigenfunctions (U2,U3) and (U5,U6), corresponding to double eigenvalues

λ2 = λ3 and λ5 = λ6, do not match with the exact eigenfunctions (u2,u3) and (u5,u6),

respectively, due to the fact explained in Chapter 2, Section 2.2.b.2 for the double

eigenvalues of Laplace EVP. That is, there are two linearly independent eigenfunc-

tions for the double eigenvalues, so that, any linear combinations of them also produce

an eigenfunction which may agree with the exact eigenfunction. The appropriate co-

efficients of the linear combination are found by the technique explained in Section

2.2.b.2, and the obtained results are drawn on the third columns of Figures 3.2 and

3.3. Thus, it is seen that the finite difference method gives reasonably well approxi-

mations to the exact solutions of the standard Steklov eigenvalue problem with ρ = 1

and µ = 0 in the square domain Ω = [−1, 1]× [−1, 1].
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(e) u3
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(f) 0.6295U2 − 0.4822U3
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Figure 3.2: Eigenfunctions corresponding to double eigenvalues λ2 = λ3 of Steklov EVP with ρ = 1,

µ = 0.

(a) U5
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(b) u5
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(c) 0.5608U5 + 0.8446U6
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(d) U6
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(e) u6

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(f) 0.8284U5 − 0.5363U6

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 3.3: Eigenfunctions corresponding to double eigenvalues λ5 = λ6 of Steklov EVP with ρ = 1,

µ = 0.
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In the rest of the section, the second and fourth order finite difference approximations

to the standard Steklov EVP (3.2) with non-zero µ values are considered on the square

domain Ω = [0,
√
2] × [0,

√
2] to observe the convergence behavior under different

finite difference formulas for the approximation of the boundary conditions.

3.1.a Approximation of Steklov EVP by Second Order Central Difference

Formulas

In this section, the second order central difference formulas (2.18)-(2.19) are utilized

to approximate the Poisson type differential equation given in Equation (3.2) with

right hand side function f(x, y, u) = −µu as explained in Chapter 2; Section 2.2.a.1

for the Poisson equation. When the computational domain Ω = [0,
√
2] × [0,

√
2] is

discretized by using a uniform mesh of N subintervals of equal length h = k = l/N

(l =
√
2) in both x and y-directions, and the application of the central difference

formulas to second order partials results in the following finite difference equation:

Ui+1,j − 2Ui,j + Ui−1,j

h2
+

Ui,j+1 − 2Ui,j + Ui,j−1

h2
− µUi,j = 0, (3.4)

which can be written as

(−4− h2µ)Ui,j + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 = 0, (3.5)

at an interior point (xi, yj) ∈ Ω.

On the other hand, the mixed type boundary condition with eigenvalue parameter λ

can be handled by using different finite difference formulas for the approximation

of first order partial derivative ∂u/∂n along the boundary of computational domain

Ω. Thus, the application of forward and backward difference formulas are explained

in Section 3.1.a.1, while the use of central difference formulas are given in Section

3.1.a.2.

3.1.a.1 Approximation of the Boundary Condition by First Order Backward-

Forward Difference Formulas (O2B1)

The derivative boundary condition is approximated by either forward differences

(2.7)-(2.8) or backward differences (2.11)-(2.12) along suitable boundaries in order
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to avoid the occurrence of ghost points in the resulting system of finite difference

equations.

The boundary conditions at x = 0 and y = 0 are

∂u

∂n
= −∂u

∂x
= λρu and

∂u

∂n
= −∂u

∂y
= λρu. (3.6)

Applying the forward difference formulas (2.7)-(2.8) to the partial derivatives ∂u/∂x

at x = 0 and to ∂u/∂y at y = 0 gives

U0,j =
1

1− hρλ
U1,j and Ui,0 =

1

1− hρλ
Ui,1. (3.7)

On the other hand, the boundary conditions at x =
√
2 and y =

√
2 are

∂u

∂n
=

∂u

∂x
= λρu and

∂u

∂n
=

∂u

∂y
= λρu. (3.8)

Application of the backward difference formulas (2.11)-(2.12) to the partial deriva-

tives ∂u/∂x at x =
√
2 and to ∂u/∂y at y =

√
2, respectively, results in

UN,j =
1

1− hρλ
UN−1,j and Ui,N =

1

1− hρλ
Ui,N−1. (3.9)

Once the difference equation (3.5) is written for i, j = 1, · · · , N − 1 and the dis-

cretized boundary conditions (3.7) and (3.9) are inserted, we obtain the system of

linear equations which can be expressed in the matrix form as

AU = λ̃BU. (3.10)

This is the generalized eigenvalue problem with λ̃ = hρλ and the coefficient matrix

A = T + B is of size (N + 1)2 × (N + 1)2. Here, U is the reduced vector after the

insertion of boundary conditions and involves the discrete eigenvector at the interior

nodes in the following order:

UT =
[
U1,1 u2,1 · · · UN−1,1 | U1,2 U2,2 · · · UN−1,2 | · · ·

| U1,N−1 U2,N−1 · · · UN−1,N−1

]
. (3.11)

The matrix T is the block tridiagonal matrix given as
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T =



C I 0 0

I C I

0 I C

0

I

0 0 I C


, where C =



k 1 0 0

1 k 1

0 1 k

0

1

0 0 1 k


,

with k = −4− h2µ, and I is the identity matrix of size (N − 1)× (N − 1).

On the other hand, the matrix B has the block diagonal form

B =



D 0 0 0

0 E 0

0 0

0

E 0

0 0 0 D


where the matrices D and E diagonal matrices of size (N−1)×(N−1), and obtained

as D = diag(2, 1, 1, · · · , 1, 2) and E = diag(1, 0, 0, · · · , 0, 1).

Table 3.3: First ten ordered eigenvalues of Steklov EVP by O2B1 for µ = −4 and ρ = −1.

i Ref.(λi) N = 500 N = 1000 N = 1500 N = 2000 N = 2500 N = 3000 N = 3500

1 -0.2127 -0.2162 -0.2142 -0.2136 -0.2132 -0.2130 -0.2129 -0.2128

2 -0.2127 -0.2162 -0.2142 -0.2136 -0.2132 -0.2130 -0.2129 -0.2128

3 -0.9085 -0.9121 -0.9101 -0.9094 -0.9091 -0.9089 -0.9087 -0.9086

4 2.2013 2.1928 2.1977 2.1993 2.2001 2.2006 2.2009 2..2011

5 -2.7699 -2.7767 -2.7728 -2.7715 -2.7709 -2.7705 -2.7702 -2.7700

6 -2.7699 -2.7767 -2.7728 -2.7715 -2.7709 -2.7705 -2.7702 -2.7700

7 -2.9195 -2.9263 -2.9224 -2.9211 -2.9205 -2.9201 -2.9198 -2.9197

8 -2.9195 -2.9263 -2.9224 -2.9211 -2.9205 -2.9201 -2.9198 -2.9197

9 -5.2285 -5.2389 -5.2330 -5.2310 -5.2300 -5.2295 -5.2291 -5.2288

10 -5.2285 -5.2389 -5.2330 -5.2310 -5.2300 -5.2295 -5.2291 -5.2288

When the generalized eigenvalue problem solver for the sparse matrices in MATLAB

is used, we get the approximate values of eigenvalues as presented in Table 3.3 and

Table 3.4. These tables contain the smallest ten approximate eigenvalues λh
i and the

reference values λi of the standard Steklov EVP, which has no exact solution, on

46



Ω = [0,
√
2]× [0,

√
2] for µ = −4 and µ = −4−4i with ρ = −1. Thus, to investigate

the convergence behavior of approximate solution λh
i , the reference values λi are

Table 3.4: First ten ordered eigenvalues of Steklov EVP by O2B1 for µ = −4− 4i and ρ = −1.

i Ref.(λi) N = 500 N = 1000 N = 1500

1 -0.343983+0.849909i -0.346790+0.847399i -0.344919+0.849072i -0.344295+0.849630i

2 -0.343983+0.849909i -0.346790+0.847399i -0.344919+0.849072i -0.344295+0.849630i

3 -0.950817+0.539390i -0.952935+0.537271i -0.951524+0.538683i -0.951053+0.539154i

4 0.685845+2.494587i 0.683723+2.492460i 0.685137+2.493878i 0.685609+2.494351i

5 -2.795741+0.539341i -2.793367+0.535186i -2.794953+0.537954i -2.795478+0.538878i

6 -2.795741+0.539341i -2.793367+0.535186i -2.794953+0.537954i -2.795478+0.538878i

7 -2.930115+0.472929i -2.926960+0.469209i -2.929067+0.471687i -2.929766+0.472515i

8 -2.930115+0.472929i -2.926960+0.469209i -2.929067+0.471687i -2.929766+0.472515i

9 -5.228102+0.328378i -5.207919+0.324207i -5.221378+0.326983i -5.225861+0.327912i

10 -5.228102+0.328378i -5.207919+0.324207i -5.221378+0.326983i -5.225861+0.327912i

taken as the approximate solutions obtained by using the largest value of N that our

code can handle. That is, the reference values λi are obtained by taking N = 4096 for

the selfadjoint case where µ is a real number (specifically µ = −4), and N = 2048

for the non-selfadjoint case where µ is a complex number (specifically µ = −4− 4i)

in numerical simulations. For the selfadjoint case, the approximate solutions λh
i are

obtained using the number of grid points N = 500, 100, · · · , 3500 whereas in the non-

selfadjoint case N = 500, 1000 and 1500 are used. It can be observed from Table 3.3

that as the number of grid points N increases, the approximate eigenvalues λh
i also

increase, and they approach to the reference values λi. Also, a similar behavior can be

seen for the non-selfadjoint case from Table 3.4, in which both the real and imaginary

parts approach to the reference values as N increases. The normalized relative errors

εi =

∣∣∣∣λi − λh
i

λi

∣∣∣∣, where λi denotes the reference value obtained by using N = 4096

subintervals when µ = −4 and by using N = 2000 subintervals when µ = −4− 4i,

and λi
h is the approximate solution for the i-th eigenvalue, are shown in Figures 3.4

and 3.5 for µ = −4 and µ = −4 − 4i, respectively. From Table 3.3, it can be seen

that there are double eigenvalues (λ1,λ2), (λ5,λ6), (λ7,λ8) and (λ9,λ10), so the error

figures are given only once for each couple, namely λ1, λ5, λ7 and λ9. These figures

display that the convergence behavior of the approximate eigenvalue λi is of order
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O(h) since they show a linear behavior parallel to a line with slope m = −1 in each

figure.
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Figure 3.4: Convergence behavior of λh
i to λi versus the step size h in log-log scale for µ = −4 and

ρ = −1 by O2B1.
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Figure 3.5: Convergence behavior of λh
i to λi versus the step size h in log-log scale for µ = −4− 4i

and ρ = −1 by O2B1.

To summarize, from the results given in this section, it is observed that as the number

N increases, the eigenvalues approach to the values obtained for the largest N values

with the order O(h) in both selfadjoint and non-selfadjoint cases.
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3.1.a.2 Approximation of the Boundary Condition by Second Order Central

Difference Formula (O2B2)

In this section, the second order central difference formulas (2.14)-(2.15) are em-

ployed for the approximation of first order derivatives in the mixed type bound-

ary conditions. The boundary conditions along the boundaries at x = 0,
√
2 given

in Equations (3.6) and (3.8) are discretized by using the central difference formula

(2.14), and we obtain

U−1,j = 2hρλU0,j + U1,j, (3.12)

UN+1,j = 2hρλUN,j + UN−1,j. (3.13)

Similarly, the application of central difference formula (2.15) to the y-derivatives in

Equations (3.6) and (3.8) along the boundaries y = 0 and y =
√
2 result in

Ui,−1 = 2hρλUi,0 + Ui,1, (3.14)

Ui,N+1 = 2hρλUi,N + Ui,N−1. (3.15)

Thus, the ghost points U−1,j , UN+1,j , Ui,−1, Ui,N+1 arising by writing the difference

equation (3.5) for i, j = 0, 1, 2, · · · , N are removed by using the discretized boundary

equations (3.12)-(3.15). Thus, we end up with a linear system of (N + 1)× (N + 1)

equations which can be written in the matrix form as

AU = λ̃BU, (3.16)

which is again a generalized eigenvalue problem with λ̃ = hρλ. The vector

UT =
[
U0,0 U1,0 · · · UN,0 | U0,1 U1,1 · · · UN,1 | · · ·

| U0,N U1,N · · · UN,N

]
(3.17)

is the reduced unknown vector obtained after the insertion of the boundary conditions.

The coefficient matrix A has the form
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A =



C 2I 0 0

I C I

0 I C I

I C I 0

I C I

0 0 2I C


, where C =



k 2 0 0

1 k 1

0 1 k 1

1 k 1 0

1 k 1

0 0 2 k


with k = −4 − h2µ and I is the identity matrix of size (N + 1) × (N + 1). On the

other hand, the matrix B has the form

B =



D 0 0 0

0 E 0

0 0

0

E 0

0 0 0 D


,

where D and E are diagonal matrices of sizes (N + 1) × (N + 1), that is D =

diag(−4,−2,−2, · · · ,−2,−4) and E = diag(−2, 0, 0, · · · , 0,−2).

When the generalized eigenvalue problem solver for sparse matrices in MATLAB are

used, we obtain the approximate eigenvalues of the standard Steklov EVP shown in

Table 3.5 and Table 3.6. These tables contain the smallest ten approximate eigenval-

ues λh
i for N = 512, 1024, 2048 with µ = −4 and µ = −4 − 4i, respectively. Also,

the reference values λi in the second column’s of tables are taken as the approximate

solutions using N = 4096 number of subintervals for µ = −4 and N = 2048 for

µ = −4 − 4i. It is observed that the results obtained by using central difference

for the boundary conditions are more accurate than the ones obtained in the previ-

ous section in which forward-backward differences are employed for the boundary

conditions.
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Table 3.5: Eigenvalues of Steklov EVP by O2B2 for µ = −4 and ρ = −1.

i Ref.(λi) N = 512 N = 1024 N = 2048

1 -0.21225212 -0.21224883 -0.21225133 -0.21225196

2 -0.21225212 -0.21224883 -0.21225133 -0.21225196

3 -0.90805604 -0.90805308 -0.90805534 -0.90805590

4 2.20250711 2.20250601 2.20250685 2.20250706

5 -2.76894676 -2.76893602 -2.76894420 -2.76894625

6 -2.76894676 -2.76893602 -2.76894420 -2.76894625

7 -2.91855097 -2.91854695 -2.91855001 -2.91855078

8 -2.91855097 -2.91854695 -2.91855001 -2.91855078

9 -5.22710045 -5.22713509 -5.22710870 -5.22710210

10 -5.22710045 -5.22713509 -5.22710870 -5.22710210

Table 3.6: Eigenvalues of Steklov EVP by O2B2 for µ = −4− 4i and ρ = −1.

i Ref.(λi) N = 500 N = 1000 N = 1500

1 -0.343046 +0.850747i -0.343042 +0.850748i -0.343045 +0.850747i -0.343046+ 0.850747i

2 -0.343046 +0.850747i -0.343042 +0.850748i -0.343045 +0.850747i -0.343046+ 0.850747i

3 -0.901545 -1.391922i -0.901545 -1.391921i -0.901545 -1.391922i -0.901545 -1.391922i

4 0.686552 +2.495294i 0.686551 +2.495288i 0.686552 +2.495293i 0.686552+ 2.495293i

5 -2.796523 +0.540731i -2.796511 +0.540746i -2.796521 +0.540734i -2.796523+ 0.540732i

6 -2.796523 +0.540731i -2.796511 +0.540746i -2.796521 +0.540734i -2.796523+ 0.540732i

7 -2.931161 +0.474174i -2.931155 +0.474187i -2.931159 +0.474176i -2.931160+ 0.474174i

8 -2.931161 +0.474174i -2.931155 +0.474187i -2.931159 +0.474176i -2.931160+ 0.474174i

9 -5.234826 +0.329778i -5.234859 +0.329808i -5.234832 +0.329784i -5.234827+ 0.329779i

10 -5.234826 +0.329778i -5.234859 +0.329808i -5.234832 +0.329784i -5.234827+ 0.329779i

Figure 3.6 and Figure 3.7 illustrate the normalized errors εi of λi found by second

order central difference formula in log-log scale, respectively for µ = −4 and µ =

−4−4i. These figures indicate that the approximate eigenvalue λh
i has a convergence

behavior of order O(h2) for both real and complex values of µ.

As a conclusion, the use of central difference approximations for the discretization

of the boundary conditions advances the convergence behavior of the approximate

eigenvalues λh
i to the reference values λi, to of order O(h2) for both complex and
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real values of µ when compared to the order O(h) obtained by using forward and

backward difference approximations to the boundary conditions.
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Figure 3.6: Convergence behavior of λh
i to λi versus the step size h in log-log scale for µ = −4 and

ρ = −1 by O2B2.
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Figure 3.7: Convergence behavior of λh
i to λi versus the step size h in log-log scale for µ = −4− 4i

and ρ = −1 by O2B2.

3.1.b Approximation of Steklov EVP by Fourth Order Central Difference

Formulas (O4B2,4)

In the discretization of the differential equation in (3.2), the fourth order central dif-

ference formulas (2.21)-(2.23) are applied at point (xi, yj) by taking N equal length
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subintervals in x and y-directions, that is we take h = k =
√
2/N , as in Section 3.1.a.

As a result, the following finite difference equation

1

12h2
(−Ui+2,j + 16Ui+1,j − 30Ui,j + 16Ui−1,j − Ui−2,j) +

1

12h2
(−Ui,j+2 + 16Ui,j+1

−30Ui,j + 16Ui,j−1 − Ui,j−2)− µUi,j = 0

(3.18)

is obtained at the mesh points (xi, yj), i, j = 1, 2, · · · , N . The difference equation

can also be written as

(−60− 12h2µ)Ui,j − Ui+2,j + 16Ui+1,j + 16Ui−1,j − Ui−2,j − Ui,j+2

+16Ui,j+2 + 16Ui,j−1 − Ui,j−2 = 0.
(3.19)

On the other hand, the boundary conditions are approximated by using with both the

second order central difference formulas (2.14)-(2.15) and the fourth order formulas

(2.20)-(2.22) simultaneously, to be able to handle the ghost points which occur in the

resulting finite difference equations.

The boundary conditions at x = 0 and x =
√
2 are given in Equation (3.6) and Equa-

tion (3.8), respectively. Applying second and fourth order approximation formulas

(2.14)-(2.20) to ∂u/∂x at x = 0 and x =
√
2, we obtain

U−1,j = 2hρλU0,j + U1,j, UN+1,j = 2hρλUN,j + UN−1,j, (3.20)

U−2,j = 4hρλU0,j + U2,j, UN+2,j = 4hρλUN,j + UN−2,j (3.21)

in which the ghost points U−1,j , U−2,j , UN+1,j and UN+2,j are written in terms of

the grid points inside the domain Ω. Similarly, with the use of second and fourth

order central difference formulas (2.15)-(2.22) to approximate ∂u/∂y in boundary

conditions given in (3.6)-(3.8) along y = 0 and y =
√
2, we obtain

Ui,−1 = 2hρλUi,0 + Ui,1, Ui,N+1 = 2hρλUi,N + Ui,N−1, (3.22)

Ui,−2 = 4hρλUi,0 + Ui,2, Ui,N+2 = 4hρλUi,N + Ui,N−2. (3.23)

Once the difference equation (3.19) is written for i, j = 0, 1, · · · , N the arising ghost

points in the linear system are removed by using the equations (3.20)-(3.23). Thus,

the final system will be of size (N + 1) × (N + 1) which is given in the following

generalized eigenvalue problem

AU = λ̃BU (3.24)
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with λ̃ = hρλ. Here, U is the unknown vector taken in the following order:

UT =
[
U0,0 U1,0 · · · UN,0 | U0,1 U1,1 · · · UN,1 | · · ·

| U0,N U1,N · · · UN,N

]
. (3.25)

The matrix A is constructed by the matrices C, D and the identity matrix I of size

(N + 1)× (N + 1), and they have the following forms:

A =



C 32I −2I 0 0

16I D 16I −I

−I 16I C 16I −I

0 −I 16I C 16I

0

C 16I −I

0 −I 16I D 16I

0 0 0 −2I 32I C



,

C =



k1 32 −2 0 0

16 k1 − 1 16 −1

−1 16 k1 16 −1

0 −1 16 k1 16

0

k1 16 −1

0 −1 16 k1 − 1 16

0 0 0 −2 32 k1



,
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D =



k2 32 −2 0 0

16 k2 − 1 16 −1

−1 16 k2 16 −1

0 −1 16 k2 16

0

k2 16 −1

0 −1 16 k2 − 1 16

0 0 0 −2 32 k2



,

where k1 = k2 + 1 = −60− 12µh2. On the other hand, B has the form

B =



E 0 0 0

2I F 0

0 0

0

F 2I

0 0 0 E


,

where

E =



−56 0 0 0

2 −28 0

0 0

0

−28 2

0 0 0 −56


, F =



−28 0 0 0

2 0 0

0 0

0

0 2

0 0 0 −28


are the matrices of size (N + 1)× (N + 1).

Table 3.7 and Table 3.8 contain the smallest ten approximate eigenvalues λh
i for vary-

ing number of subintervals up to N = 1500 and reference eigenvalues λi of the

standard Steklov EVP with µ = 4 and µ = −4 − 4i, respectively, and ρ = −1. The

reference values λi given in the second column’s of Tables 3.7 and 3.8 are chosen

from the approximate values obtained by using N = 2048 grid points for both values
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Table 3.7: Eigenvalues of Steklov EVP by O4B2,4 for µ = −4 and ρ = −1.

i Ref. (λi) N = 256 N = 512 N = 1024

1 -0.21225215 -0.21225070 -0.21225180 -0.21225208

2 -0.21225215 -0.21225070 -0.21225180 -0.21225208

3 -0.90805601 -0.90805146 -0.90805493 -0.90805580

4 2.20250695 2.20249594 2.20250433 2.20250643

5 -2.76894717 -2.76896256 -2.76895083 -2.76894790

6 -2.76894717 -2.76896256 -2.76895083 -2.76894790

7 -2.91855138 -2.91857370 -2.91855669 -2.91855245

8 -2.91855138 -2.91857370 -2.91855669 -2.91855245

9 -5.22710385 -5.22735338 -5.22716316 -5.22711570

10 -5.22710385 -5.22735338 -5.22716316 -5.22711570

of µ = −4 and µ = −4 − 4i. Even for the smallest value of N , it can be seen that

the approximate results are sufficiently close to the reference values, and at least five

digits accuracy is obtained.

Table 3.8: Eigenvalues of Steklov EVP by O4B2,4 for µ = −4− 4i and ρ = −1.

i Ref. (λi) N = 500 N = 1000 N = 1500

1 -0.343046 +0.850746i -0.343045 +0.850746i -0.343046 +0.850746i -0.343046+ 0.850746i

2 -0.343046 +0.850746i -0.343045 +0.850746i -0.343046 +0.850746i -0.343046+ 0.850746i

3 -0.950110 +0.540097i -0.950108 +0.540097i -0.950110 +0.540097i -0.950110+ 0.540097i

4 0.686552 +2.495294i 0.686554 +2.495290i 0.686552 +2.495293i 0.686552+ 2.495294i

5 -2.796524 +0.540730i -2.796527 +0.540738i -2.796525 +0.540732i -2.796524+ 0.540731i

6 -2.796524 +0.540730i -2.796527 +0.540738i -2.796525 +0.540732i -2.796524+ 0.540731i

7 -2.931161 +0.474173i -2.931166 +0.474181i -2.931162 +0.474175i -2.931161+ 0.474174i

8 -2.931161 +0.474173i -2.931166 +0.474181i -2.931162 +0.474175i -2.931161+ 0.474174i

9 -5.234827 +0.329777i -5.234889 +0.329794i -5.234840 +0.329780i -5.234831+ 0.329778i

10 -5.234827 +0.329777i -5.234889 +0.329794i -5.234840 +0.329780i -5.234831+ 0.329778i

Figure 3.8 and Figure 3.9 display the normalized errors εi of λi found by fourth order

central difference formula in log-log scale respectively for µ = −4 and µ = −4− 4i.

For both values of µ, these figures show that the approximate eigenvalue λh
i has a
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convergence behavior of order O(h2) to the approximate reference values.

10
-3

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-3

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-3

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-3

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-3

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-3

10
-2

10
-1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 3.8: Convergence behavior of λh
i to λi versus the step size h in log-log scale for µ = −4 and

ρ = −1 by O4B2,4.
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Figure 3.9: Convergence behavior of λh
i to λi versus the step size h in log-log scale for µ = −4− 4i

and ρ = −1 by O2B2,4.

Moreover, Figure 3.10 shows the contour plots of the eigenfunctions U1,U3,U4,U5,U7

and U9 of Steklov EVP corresponding to the eigenvalues λ1, λ3,λ4,λ5 λ7 and λ9.
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Figure 3.10: Eigenfunctions corresponding to the eigenvalues λi, i = 1, 3, 4, 5, 7, 9 of Steklov EVP

with µ = −4 and ρ = −1.

In conclusion, the relationship between the convergence order and the order of the

method used in the approximation of the boundary conditions where the eigenvalues

lie, is a significant aspect that we highlight. When the second order approximation

to the differential equation and the first order approximations forward and backward

differences to boundary conditions are applied, a first order, that is O(h) convergence

rate of the approximate eigenvalues λh
i to the reference values λi is obtained. More-

over, the convergence order is advanced to second order (O(h2)) when the boundary

conditions are approximated by the second order central difference approximations.

On the other hand, approximation of the differential equations either by the second

or fourth order central difference FDM results in a same convergence rate of order

O(h2). The reason not observing an increase in the convergence rate by the use of

fourth order finite differences could be the result of using a second order finite dif-

ference in the discretization of the boundary conditions to be able to handle the ghost

points.
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3.2 A Mixed Type Steklov Eigenvalue Problem

In this section, a mixed type Steklov EVP, in which the boundary ∂Ω = Γλ ∪ ΓN

is divided into two parts with different boundary conditions, is examined by using

fourth order finite difference formulas to discretize the differential equation since

when a second order difference formula is applied an almost linear convergence is

obtained as shown in parenthesis at the last column of Table 3.9.

Table 3.9: Eigenvalues of mixed Steklov EVP by O2B2.

Ref N = 128 N = 256 N = 512 N = 1024

0 2.778613735e-12 1.281139203e-11 5.543178875e-11 2.175425979e-10(-)

3.129881036 3.115810130 3.122909788 3.126411468 3.128150266 (1.00)

6.283141484 6.177289147 6.230393086 6.256813408 6.269989185 (1.00)

9.424777838 9.151039252 9.287981836 9.356407359 9.390600633 (1.00)

12.566370614 12.049532500 12.307415896 12.436787838 12.501556487 (0.99)

15.707963268 14.873926699 15.288996603 15.498059832 15.602915122 (0.99)

18.849555922 17.625372758 18.232987910 18.540286113 18.694691891 (0.99)

21.991148575 20.305052994 21.139658542 21.563530003 21.776902110 (0.99)

25.132741229 22.914178021 24.009281913 24.567855480 24.849561184 (0.99)

28.274333882 25.453983555 26.842135928 27.553327167 27.912684603 (0.99)

The mixed type Steklov EVP differs from the standard Steklov EVP in terms of the

taken boundary conditions. In the standard Steklov EVP, on the whole boundary the

mixed type boundary conditions with the spectral parameter λ is taken whereas in

the mixed type Steklov EVP, the boundary is divided into two parts such that on the

part Γλ the mixed type boundary condition is taken and on the part ΓN the Neumann

type boundary condition is taken. Specifically, Steklov EVP in Equation (3.1) is

considered on the domain Ω = [0, 1] × [0, 1] with ρ = 1 and µ = 0, and it has the

form 
∆u = 0 in Ω,

∂u/∂n = λu on Γλ,

∂u/∂n = 0 on ΓN ,

(3.26)

with the boundary ∂Ω = Γλ ∪ ΓN where Γλ = {(x, y) | 0 ≤ x ≤ 1, y = 1},
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ΓN = ∂Ω \ Γλ, since this problem has exact the eigensolutions that are given in [23]

as follows:

ui(x, y) = cos(iπx) cosh(iπy), λi = iπ tanh(iπ), i ∈ N. (3.27)

The discretization of the Laplace equation in Equation (3.26) is performed by the

use of fourth order formulas (2.21)-(2.23) at an interior node (xi, yj), with N equal

lengths of subintervals in x and y-directions, i.e. h = k = 1/N . Thus, the following

difference equation

1

12h2
(−Ui+2,j + 16Ui+1,j − 30Ui,j + 16Ui−1,j − Ui−2,j) +

1

12h2
(−Ui,j+2 + 16Ui,j+1

−30Ui,j + 16Ui,j−1 − Ui,j−2) = 0,

(3.28)

is obtained for the Laplace equation which can be rewritten as:

−Ui+2,j + 16Ui+1,j − 60Ui,j + 16Ui−1,j − Ui−2,j − Ui,j+2

+16Ui,j+2 + 16Ui,j−1 − Ui,j−2 = 0.
(3.29)

On the other hand, the boundary conditions are approximated either by using first or-

der backward and forward differences and second order central differences in Section

3.2.a; and by using second and fourth order central differences in Section 3.2.b as in

the previous Section 3.1 for the standard Steklov EVP.

3.2.a Approximation of the Boundary Conditions by Central-Backward and

Central-Forward Difference Formulas (O4B1,2)

The boundary condition is discretized in this section using the forward difference

formulas (2.7)-(2.8), the backward difference formulas (2.11)-(2.12) and the central

difference formulas (2.14)-(2.15).

The boundary conditions at x = 0 and y = 0 are

∂u

∂n
= −∂u

∂x
= 0 and

∂u

∂n
= −∂u

∂y
= 0. (3.30)

Applying the central difference formulas (2.14)-(2.15) and forward difference formu-

las (2.7)-(2.8) to the first partial derivative ∂u/∂x at x = 0 and to ∂u/∂x at y = 0
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respectively, we obtain

U−1,j = U1,j, U0,j = U1,j, (3.31)

Ui,−1 = Ui,1, Ui,0 = Ui,1. (3.32)

The boundary conditions at x = 1 and y = 1 are

∂u

∂n
=

∂u

∂x
= 0 and

∂u

∂n
=

∂u

∂y
= λu. (3.33)

Approximating ∂u/∂x and ∂u/∂y at x = 1 and y = 1 by the central difference

formulas (2.14)-(2.15) and backward difference formulas (2.11)-(2.12) results in,

UN+1,j = UN−1,j, UN,j = UN−1,j, (3.34)

Ui,N+1 = 2hλUi,N + Ui,N−1, Ui,N = Ui,N−1 + hλUi,N . (3.35)

Inserting these boundary conditions into the difference equation (3.29) yields (N+1)2

linear equations which can be written in the matrix form:

AU = λ̃BU (3.36)

which is the generalized eigenvalue problem with λ̃ = hλ. Here, U is the unknown

vector having the form

UT =
[
U0,0 U1,0 · · · UN,0 | U0,1 U1,1 · · · UN,1 | · · ·

| U0,N U1,N · · · UN,N

]
. (3.37)

The matrix A is in the form

A =



C 16I −I 0 0

15I D 16I −I

−I 16I D 16I −I

0 −I 16I D 16I

0

D 16I −I

0 −I 16I E 16I

0 0 0 0 −I I



,
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where the matrices C,D and E are of size (N + 1)× (N + 1) and have the forms

C =



−30 16 −1 0 0

15 −45 16 −1

−1 16 −45 16 −1

0 −1 16 −45 16

0

−45 16 −1

0 −1 16 −45 15

0 0 0 −1 16 −30



,

D =



−45 32 −1 0 0

15 −60 16 −1

−1 16 −60 16 −1

0 −1 16 −60 16

0

−60 16 −1

0 −1 16 −60 15

0 0 0 −1 16 −45



,

E =



−46 32 −1 0 0

15 −61 16 −1

−1 16 −61 16 −1

0 −1 16 −61 16

0

−61 16 −1

0 −1 16 −61 15

0 0 0 −1 16 −46



.
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On the other hand, the matrix B on the right hand side of Equation (3.36) has the

form

B =



0 0 0 0

0 0 0

0 0

0

0 2I

0 0 0 I


,

where the identity matrix I is of size (N + 1)× (N + 1).

After the generalized eigenvalue problem (3.36) is solved, the results are obtained

as given in Table 3.10. This table contains the smallest ten exact eigenvalues λi and

approximate eigenvalues λh
i for the values of N =256, 512 and 1024. Using more

grid points yields better approximations λh
i to the exact eigenvalues λi especially for

smaller eigenvalues.

Table 3.10: Eigenvalues of mixed Steklov EVP by O4B1,2.

i λi N = 128 N = 256 N = 512 N = 1024

1 0 -5.336e-13 -2.973e-12 -1.219e-11 -4.237e-11

2 3.129881 3.113851 3.121891 3.125889 3.127886

3 6.283141 6.162811 6.222714 6.252861 6.267985

4 9.424778 9.115316 9.268541 9.346236 9.385422

5 12.566371 11.985315 12.271639 12.417783 12.491793

6 15.707963 14.775431 15.232486 15.467700 15.587186

7 18.849556 17.488095 18.152431 18.496088 18.671645

8 21.991149 20.125623 21.029232 21.503164 21.745215

9 25.132741 22.690335 23.867428 24.489011 24.807929

10 28.274334 25.184437 26.666480 27.453817 27.859842

Figure 3.11 illustrates the convergence behaviour of the normalized error εi for the

corresponding eigenvalues λi, i = 2, 3, 4, 6, 8, 10. This figure shows that as in the

standard Steklov EVP, the convergence rate of the approximate eigenvalues to the

exact ones is of order O(h) in the mixed Steklov EVP when central-forward and
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Figure 3.11: Convergence behavior of λh
i to λi versus the step size h in log-log scale by O4B1,2.

central-backward differences are applied to the given boundary conditions.

3.2.b Approximation of the Boundary Condition by Second and Fourth Order

Central Difference Formulas (O4B2,4)

In this section, the mixed and Neumann type boundary conditions are discretized

by the second order central difference formulas (2.14)-(2.15) and the fourth order

central difference formulas (2.20)-(2.22). That is, the boundary conditions at x = 0

and x = 1 given in Equation (3.30) and Equation (3.33) are discretized by the second

and fourth order central difference formulas (2.14) and (2.20), and we obtain

U−1,j = U1,j, U−2,j = U2,j, (3.38)

UN+1,j = UN−1,j, UN+2,j = UN−2,j. (3.39)

Similarly, the boundary conditions at y = 0 and y = 1 given in Equation (3.30)

and Equation (3.33) are discretized by the second and fourth order central difference

formulas (2.15) and (2.22), which results in

Ui,−1 = Ui,1, Ui,−2 = Ui,2, (3.40)

Ui,N+1 = 2hλUi,N + Ui,N−1, Ui,N+2 = 4hλUi,N + Ui,N−2. (3.41)
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Inserting these boundary conditions into the difference equation (3.29) yields (N+1)2

linear equations which can be written in the following generalized EVP

AU = λ̃BU (3.42)

with λ̃ = hλ and the vector U is ordered as follows:

UT =
[
U0,0 U1,0 · · · UN,0 | U0,1 U1,1 · · · UN,1 | · · ·

| U0,N U1,N · · · UN,N

]
. (3.43)

The matrix A is formed by C and D matrices of sizes (N +1)× (N +1) as follows:

A =



C 32I −2I 0 0

16I D 16I −I

−I 16I D 16I −I

0 −I 16I D 16I

0

D 16I −I

0 −I 16I D 16I

0 0 0 −2I 32I D



,

C =



−60 32 −2 0 0

16 −61 16 −1

−1 16 −60 16 −1

0 −1 16 −60 16

0

−60 16 −1

0 −1 16 −61 16

0 0 0 −2 32 −60



,
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D =



−61 32 −2 0 0

16 −62 16 −1

−1 16 −61 16 −1

0 −1 16 −61 16

0

−61 16 −1

0 −1 16 −62 16

0 0 0 −2 32 −61



.

On the other hand, the matrix B is in the form:

B =



0 0 0 0

0 0 0

0 0

0

0 2I

0 0 0 −28I



where the identity matrix I is of size (N + 1)× (N + 1).

In Table 3.11, the approximate and exact smallest ten eigenvalues of the mixed Steklov

EVP are presented for the values of N = 256, 512, 1024. It is well observed that using

higher order central difference formulas gives better accuracy in obtaining eigenval-

ues when compared with the results in Table 3.10 obtained by the first order finite

difference formulas.
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Table 3.11: Eigenvalues of the mixed type Steklov EVP by O4B2,4.

i Ref. N = 256 N = 512 N = 1024

1 0.0000 -2.974e-12 -1.077e-11 -4.739e-11

2 3.129881 3.129920 3.129891 3.129883

3 6.283141 6.283458 6.283220 6.283161

4 9.424778 9.425848 9.425045 9.424844

5 12.566371 12.568910 12.567004 12.566529

6 15.707963 15.712931 15.709201 15.708272

7 18.849556 18.858152 18.851696 18.850090

8 21.991149 22.004817 21.994549 21.991996

9 25.132741 25.153170 25.137821 25.134007

10 28.274334 28.303455 28.281572 28.276137

This result is also certified by Figure 3.12, which shows a second order convergence

rate of the approximate eigenvalues λh
i , i = 2, 3, · · · , 10, to the exact ones. That is,

the relative error variation with respect to step size h is parallel to a line with slope

m = −2. The same convergence behavior was also obtained in the case of standard

eigenvalue problem given in Section 3.1.b.
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Figure 3.12: Convergence behavior of λh
i to λi versus the step size h in log-log scale by O4B2,4.
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Figure 3.13: Plot of the eigenfunctions of the mixed type Steklov EVP.

Finally, contour plots of the eigenfunctions corresponding to the eigenvalues λ2,λ3,

λ4, λ5, λ6, λ7 and λ8 are displayed in Figure 3.13. As observed in Table 3.11 all

eigenvalues of mixed Steklov EVP are simple so that all correspond to only one lin-

early independent eigenfunction. Thus, no matching issues between the exact and

approximate eigenfunctions observed in the simplified Steklov EVP in Section 3.1,

is encountered here in the contour plots. That is, the approximate eigenfunctions Ui

agrees very well with the exact eigenfunctions ui, i = 2, 3, 4, 5, 6, 7.

To conclude, the present chapter is devoted for the approximate solutions to the

Steklov EVPs by using finite difference approaches of different orders especially for

the discretization of the boundary conditions. It is seen that approximating only the

differential equation with higher order finite differences (in this chapter fourth order

instead of second order) has no effect in the advancement of convergence behavior

of approximate eigenvalues. However, the convergence rate becomes faster when

both the differential equation and the boundary conditions are approximated by using

higher order finite difference formulas of at least second order. That is, the conver-
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gence rate is advanced from first order (i.e. O(h)) to second order (i.e. O(h2)) by

combining a fourth order FDM in approximating the differential equation with a sec-

ond and fourth order central differences applied to the boundary conditions as shown

in Table 3.12.

Table 3.12: Convergence rates for standard and mixed type Steklov EVPs.

Standard Steklov EVP Mixed type Steklov EVP

Order of method O2B1 O2B2 O4B2,4 O2B2 O4B1,2 O4B2,4

Convergence rate of eigenvalues O(h) O(h2) O(h2) O(h) O(h) O(h2)

To the best of author’s knowledge, the solution of mixed type Steklov EVP by FDM

is not available in the literature. In this sense, this chapter can be considered as one

of the main contribution of the present thesis to the field on the numerical solutions

of the Steklov eigenvalue problems. Moreover, FDM can be thought as an effective

numerical approach for the solution of Steklov EVPs since it is easy to implement

and yields a second order convergence.
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CHAPTER 4

CONCLUSION

This thesis provides the second and fourth order FDM approximations of Poisson

problem, Laplace EVP and Steklov EVPs on square domains. The convergence be-

havior of the finite difference solutions to the exact ones is investigated in both of the

Poisson problem and the Laplace EVP. It is found that our computer codes have per-

formed correctly and efficiently with the FDM. When the second order method is used

to approximate the Laplace operator in the equation of Laplace EVP, the eigenvalues

have a quadratic convergence behavior, however, when the fourth order method is

employed, a fourth order convergence is well observed. Additionally, it is determined

that the linear combinations of the linearly independent approximate eigenfunctions

of the Laplace EVP corresponding to the double eigenvalues in the two-dimensional

case give reasonably well approximations to the related exact eigenfunctions.

On the other hand, we take into account two Steklov eigenproblems that differ from

one another due to the corresponding boundary conditions. The first one has the well-

known form which we called the standard Steklov EVP. This problem is considered

on square domains, specifically on Ω = [−1, 1] × [−1, 1] where the analytical so-

lution exists [11], and on Ω = [0,
√
2] × [0,

√
2] with no analytical solution. If the

analytical solution is available, it is utilized as a reference value to examine the con-

vergence behavior of the approximated eigenvalues, and to verify its agreement with

the approximate eigenfunctions. In the absence of analytical solutions, the best ap-

proximations (those produced with the largest N value) are used. It has been found

that using the fourth order method only for the Laplace operator and second order

method for the boundary conditions has no advancing effect on the convergence rate

of the eigenvalues. On the other hand, the convergence behavior of the approximate
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eigenvalues is improved by using higher order difference formulas to the boundary

conditions as well. Thus, a quadratic convergence behavior is obtained for the eigen-

values of the standard Steklov EVP.

Finally, the mixed type Steklov EVP [23] is considered on square domain Ω =

[0, 1]× [0, 1] with the Neumann and spectral parameter type boundary conditions on

some part of the boundary of the computational domain. Fourth order FDM is used

to investigate eigensolutions, and formulas of various orders are used to discretize the

boundary conditions. Analytical solutions are taken as the reference values to analyze

the convergence behavior of the eigenvalues. All the results for eigenfunctions ob-

tained from the numerical experiments, have been proven to be in well coherence with

the experimental and theoretical findings.

The presented numerical results have also revealed the fact that the FDM is an ef-

ficient numerical approach for the solutions of Steklov EVPs, and it is simple to

implement in order to produce a reasonably well convergence rate of eigenvalues.

The present study can be thought as a basic analysis of the Steklov EVP by using

FDM. It can be extended for the FDM solutions of Steklov type eigenvalue problems

defined in more complex computational domains, e.g. circular and cuspidal domains.

Moreover, the effect of the application of a combination of different finite difference

formulas to the differential equation and the boundary conditions can be considered

as well with a discussion of the convergence of the method.
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