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ABSTRACT

DIRECTION OF ARRIVAL ESTIMATION BY USING ALTERNATING
DIRECTION METHOD OF MULTIPLIERS IN DISTRIBUTED SENSOR

ARRAY NETWORKS

NURBAŞ, Ekin

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Temel Engin Tuncer

Co-Supervisor: Dr. Emrah Onat

August 2022, 73 pages

In recent years, developments in microprocessor and wireless communication tech-

nologies have benefited a variety of distributed sensor network applications, including

array signal processing. Researchers have been investigating distributed implementa-

tions of array signal processing algorithms, such as Direction of Arrival Estimation,

for a variety of applications. Performance and practical implementations of those

algorithms are affected by a variety of factors, such as inter-array phase and fre-

quency matching and array geometry dependencies. Using the Alternating Direction

Method of Multipliers (ADMM) in the Sparse Bayesian Learning (SBL) framework,

we provide a new method for Direction of Arrival (DoA) estimation in distributed sen-

sor array networks. Our new method, Collaborative Direction of Arrival Estimation

(CDoAE), has a number of advantages over earlier distributed DoA estimate tech-

niques. It does not necessitate any particular array geometry or inter-array frequency

and phase matching. To minimize a shared objective function, CDoAE employs the

distributed ADMM to update the parameter set extracted by the SBL frameworks

in the local arrays. The master-node performs this update procedure, and the result
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is sent to the slave nodes. It is demonstrated that the performance of local arrays

can be greatly enhanced using this distributed DOA estimation method. Further-

more, we provide a method, CDoAE-TVR, for reducing the amount of parameters

broadcast from the local arrays to the master array, which is crucial for networks with

restricted bandwidth and energy. Several simulations, including scenarios with coher-

ent sources, have been done. It is demonstrated that the widespread use of ADMM

improves the effectiveness of the SBL output. In addition, the suggested CDoAE-

TVR technique minimizes the transmitted parameters at the cost of a minor reduction

in DoA estimation performance.

Keywords: Direction of Arrival, DoA, Alternating Direction Method of Multipliers,

ADMM, Sparse Bayesian Learning, SBL, Distributed Processing, Distributed DoA

Estimation
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ÖZ

ÇARPANLARIN ALTERNATİF YÖN YÖNTEMİ KULLANILARAK
DAĞITIK SENSOR DİZİSİ AĞLARINDA İŞARET GELİŞ AÇISI

KESTİRİMİ

NURBAŞ, Ekin

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Temel Engin Tuncer

Ortak Tez Yöneticisi: Dr. Emrah Onat

Ağustos 2022 , 73 sayfa

Son yıllarda, mikroişlemci ve kablosuz iletişim teknolojilerindeki gelişmeler, dizi sin-

yal işleme de dahil olmak üzere çeşitli dağıtılmış sensör ağı uygulamalarına oldukça

fayda sağlamıştır. Araştırmacılar geçmişten günümğüze çeşitli uygulamalar için İşa-

ret Geliş Açısı Tahmini gibi dizi sinyal işleme algoritmalarının dağıtılmış uygulama-

larını araştırmakta olup bu kapsamda çeşitli çalışmalar ve algoritmalar yer sunmuşlar-

dır. Bu algoritmaların performansı ve pratik uygulamaları, diziler arası faz ve frekans

eşleştirme ve dizi geometrisi bağımlılıkları gibi çeşitli faktörlerden etkilenmektedir.

Bu çalışmada ise, Seyrek Bayes Öğrenmesi (SBL) çerçevesindeki Çarpanların Alter-

natif Yönü Yöntemini (ADMM) kullanılarak, dağıtılmış sensör dizisi ağlarında İşaret

Geliş Açısı tahmini için yeni bir yöntem sunulmuştur.Yeni yöntemimiz CDoAE, daha

önceki dağıtılmış DoA tahmin tekniklerine göre bir takım avantajlara sahiptir. Yön-

rem, belirli bir dizi geometrisi veya diziler arası frekans ve faz eşleştirmesi gerek-

tirmeksizin çalışabilemkte olup, dağıtık bir amaç fonksiyonunu en aza indirmek ve

yerel dizilerdeki SBL parametre setini güncellemek için dağıtılmış ADMM’yi kul-
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lanmaktadır. Çalışamda, önerilen dağıtılmış DOA tahmin yönteminin yerel dizilerin

performansının büyük ölçüde artırılabileceği gösterilmiş olup, sınırlı bant genişliği ve

enerjiye sahip ağlar için de yerel dizilerden ana diziye gönderilen parametre miktarını

azaltan CDoAE-TVR yöntemi sunulmuştur. Evreuyumlu kaynaklara sahip senaryolar

da dahil olmak üzere çeşitli simülasyonlar yapılmıştır. Önerilen yöntemin yerel dizi-

lerin performansını ve etkinliğini geliştirdiği gösterilmiş olup, benzer yçntemlere de

üstünlük kurduğu görülmüştür.

Anahtar Kelimeler: İşaret Geliş Açısı, DoA, Çarpanların Alternatif Yönü Yöntemini,

ADMM, Seyrek Bayes Öğrenmesi, SBL, Dağıtık İşleme, Dağıtık İşaret Geliş Açıs

Kestirimi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Direction of Arrival (DoA) estimation is a topic that has been studied by researchers

for many years and plays an essential role in various fields such as radar, sonar, and

communication systems. In the literature there are many studies that investigates

variety of problems in DoA estimation. One important problem is the DoA estimation

for coherent sources without having any dependency on array geometry. Recently,

Sparse Bayesian Learning (SBL) method [1], [2], is presented to solve this problem.

SBL method is investigated for different problems in DOA estimation. In [3],[4]

gain/phase and mutual coupling problems are considered within the SBL framework.

Off-grid DoA estimation by the SBL method is presented in [5]. Most of the previous

SBL based approaches consider a single array. In this thesis, the advantages of SBL

method are used for a distributed sensor array structure for DoA estimation.

On the other hand, DoA estimation for distributed sensor arrays raised significant in-

terest within the community in the recent years. While there are different possibilities

for the distributed sensor array configurations, we will mainly focus on a structure

which involves a master and local sensor arrays. Each sensor array can independently

estimate DoA and transfer certain parameters to the master array. The function of the

master array is to obtain a global solution which is superior to the local results. In

the literature there are several studies that covers the DoA estimation in distributed

sensor arrays with the configuration defined above. In [6], a synchronization method

for resolving the inter array time and frequency offsets as well as jointly estimating

the DoA angles and phase offsets is presented. The main disadvantage of this method
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is the requirement to know either the signal or a part of the signal for accurate estima-

tion. Also, raw data for each sensor array should be transferred to the master node.

In [7] and [8], a method for estimating the complete covariance matrix of the whole

array is presented. Raw data is not transferred to the master node but the inter-array

synchronization for time, frequency and phase must be done before processing.

In [9], Decentralized MUSIC algorithm is presented with several advantages. In this

method, MUSIC algorithm is extended for the distributed sensor array networks by

sharing only the covariance matrices of the local nodes to the master node. There is

no need to perform gain/phase and frequency matching between the local arrays. De-

centralized MUSIC requires Forward-Backward Spatial Smoothing [10] for coherent

sources. Hence a special array structure is required for this purpose. Also the algo-

rithm needs to know the sensor positions of each array at the master node. Search-free

alternative of Decentralized MUSIC algorithm is proposed in [11].

On the other hand, decentralized implementation of ESPRIT method is proposed in

[12], [13] for DoA estimation with multiple sensor arrays. In these methods, the sig-

nal subspace of the observed signal is estimated in a distributed manner. Researchers

have shown that the Decentralized ESPRIT (D-ESPRIT) can perform accurate DoA

estimations in distributed sensor array settings but it is only applicable for the net-

works which consist of arrays with shift invariant properties. In [14] D-ESPRIT

method is extended for the arbitrary array geometries by using array interpolation

but it is known that the interpolation error directly effects the performance of the

DoA estimation.

In [15], distributed form of Alternating Direction Method of Multipliers(ADMM) is

proposed. ADMM can be used to obtain global optimum solution for convex prob-

lems. In addition, it is shown that its performance for non-convex problems is good

compared to alternative methods [16]. ADMM is used in DoA estimation in differ-

ent works [17], [18]. In [17], the problem is separated into smaller parts to be able

to process them in different processing cores. In [18], DoA cost function is divided

into two functions and solved using the ADMM algorithm. But none of these studies

covers the DoA estimation in Distributed Sensor Networks, instead they shown that

DoA estimation problem for single sensor array can be decomposed into multiple
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parts where each part of the problem can be handled in a different processors.

In this thesis, a new method, Collaborative DoA Estimation (CDoAE), in distributed

sensor arrays is proposed. CDoAE combines the advantages of SBL and ADMM

to obtain an effective method with certain advantages. CDoAE does not require

gain/phase and frequency matching for the sensor arrays. There is no need to know

the sensor positions and only a set of parameters are transferred from the local arrays

to the master array. In addition, CDoAE-Transferred Variable Reduction (CDoAE-

TVR) method is presented to reduce the number of transferred parameters from the

local arrays to the master array.

1.2 Contributions and Novelties

Contributions in this thesis are listed as follows:

• A new method for collaborative DoA estimation with distributed sensor array

network by using SBL framework and ADMM algorithm is presented.

• This new method employs SBL algorithm by modifying its structure with the

distributed ADMM framework.

• While estimating the DoA of the incoming signals in a collaborative manner,

algorithm does not require a phase and frequency matching between the dis-

tributed sensor arrays.

• Also, there is no need to know the sensor positions of the slave nodes in the

master node as well as the other slave nodes.

• Lastly, the required total number of variables that need to be transferred in

the network is reduced with the proposed Data Transfer Reduction method and

when compared to the phase and frequency matching algorithms it requires less

amount of data transfer between distributed sensor arrays.
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1.3 The Outline of the Thesis

In Chapter 2, Distributed Sensor Network (DSN), DSN types, and DSN applications

will be explained using examples from the literature. In Chapter 3, problem defini-

tion for the Direction of Arrival(DoA) estimation will be given. Moreover, the signal

model for the DoA estimation problem will be presented with the assumptions in

detail. Afterwards the literature survey for the DoA estimation algorithms will be

given. In Chapter 4, the two concepts given in the previous chapters, DSN and DoA

estimation, will be combined to address the problem of DoA estimation in distributed

sensor array networks. In addition, the signal model for the DoA estimation in dis-

tributed sensor arrays will be introduced as well as the literature survey. In Chapter

5, Sparse Bayesian Learning(SBL) which is one of the key elements for the proposed

Collaborative Direction of Arrival Estimation(CDoAE) method will be introduced.

In this chapter, SBL method for DoA estimation will be explained only for the case

where there exists a single sensor array. Extension of the SBL method for distributed

sensor array networks will be proposed in Chapter 6 where the proposed CDoAE

algorithm is introduced. In Chapter 6, proposed CDoAE method which uses the dis-

tributed Alternating Direction Method of Multipliers(ADMM) approach to modify

the variable update procedure of the SBL is introduced as well as the distributed im-

plementation of the ADMM method. Moreover, the proposed CDoAE - Transferred

Variable Reduction method(CDoAE-TVR) will be introduced to reduce the number

of variables transferred from the local nodes to the master node with a small sacri-

fice on the achieved performance. In Chapter 7, the performances of the proposed

algorithms will be investigated for different scenarios including Uniform Rectangu-

lar Array(URA) geometries, Randomized array geometries, single source scenarios,

multiple source scenarios, and non-coherent and coherent source scenarios. In Chap-

ter 8, the discussions and possible future works related with the thesis will be given.
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CHAPTER 2

DISTRIBUTED SENSOR NETWORKS

This section explains the Distributed Sensor Network (DSN) idea, DSN types, and

DSN applications using examples from the literature.

2.1 Distributed Sensor Networks

A distributed sensor network can be defined as a network that is composed of ele-

ments called as nodes that are capable of processing and communicating with one

another. Alternatively, a distributed sensor network could be described as a network

of autonomous pieces that are able to process data and function as a coherent system.

According to the given characteristics, DSN possesses the capability of operating as a

single system when all of the nodes in the network are cooperating with one another,

in addition to the capability of allowing each node in the network to function as an

independent system. According to the definitions that have been presented, DSN can

be applied in a wide variety of fields where collaborative integration of local obser-

vations is required. Since the network nodes are the ones that collect and analyze the

local data, DSN makes it possible for the computing effort to be split up and dissem-

inated across the network. Because the information that is obtained at the nodes is

shared with one another, it is possible to combine analogous observations from a vari-

ety of locations or different kinds of information in order to produce a higher quality

outcome. Figure 2.1 is a diagram that illustrates how a DSN performs its operations.

During the step named as "Signal Processing," the data that is captured by the nodes

is processed independently by each node. In the process that comes after, which

is called "Collaborative Signal Processing," the individual results are combined and
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Figure 2.1: Distributed Sensor Network Operation Flow

used to generate the final output.

2.1.1 Distributed Sensor Network Applications

Sensor technology advancements such as MEMS, wireless communications, embed-

ded systems, distributed processing, and wireless sensor applications have lately led

to a significant shift in Distributed Sensor Network (DSN). With these improvements,

DSNs become remarkably popular in a variety of fields as well as the research lit-

erature. The fact that DSNs provide a significant degree of flexibility in terms of

resource sharing, scalability, and fault tolerance is one of the primary reasons why

they are used by such a diverse variety of applications. Figure 2.2 depicts how these

applications could be classified based on the domains that they serve.
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Figure 2.2: Distributed Sensor Networks Applications

It is seen from Figure 2.2, applications in Distributed Sensor Networks can be catego-

rized under two main categories such as monitoring and tracking. In the monitoring

category, applications can vary from health monitoring to environmental monitoring.

There are many studies which cover power monitoring, factory monitoring, process

automation, and seismic monitoring. On the other hand, the tracking category con-

sists of many tracking applications such as animal tracking, vehicle tracking and ob-

ject tracking [19].

2.1.1.1 Monitoring Applications

With the improvements in the sensor technology as well as the wireless communica-

tion, distributed sensor networks become widely used in the medical field. There are

many applications for different cases including patient monitoring, disease diagnosis,

hospital management, remote patient monitoring [19].

With the help of the cost effective and rapid deployment properties of the distributed

sensor networks in addition to its robustness and livability abilities, distributed sensor

networks are becoming popular even in the harsh environments such as farms and

fields. Distributed Sensor Networks are utilized in the agricultural monitoring area
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consisting of many different applications including monitoring environmental condi-

tions, precision agriculture monitoring, detection of forest fires, pollution monitoring,

rainfall monitoring, water level monitoring and so on [20], [21], [22],[19].

Since the nodes in the distributed sensor networks are communicating with each other

and have the capability to operate as a single system, it is an effective solution to the

smart building applications. In those applications, buildings are configured with the

sensors and they are linked to each other or a single center so that the information

obtained at each node can be gathered to provide as much convenience and comfort

for the occupants [23], [19].

2.1.1.2 Tracking Applications

Commercial and military applications require target tracking. Situational awareness

on the battlefield requires precise and fast vehicle targeting. Networked sensors are

often well-suited for tracking due to their spatial coverage and sensing diversity.

By utilizing the geographical and sensory variety of a large number of sensors, the

network can reach at a global estimation by combining information from scattered

sources [24]. Asset tracking is one of the many potential military and commercial

applications for wireless sensor networks. Researchers have described a potential ap-

plication in [25] for the tracking of shipping containers on both land and sea vessels.

Another possible usage is for friendly troops to identify and track themselves [26].
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CHAPTER 3

DIRECTION OF ARRIVAL ESTIMATION

3.1 Problem Definition

The process of determining the direction of many electromagnetic waves/sources

from the outputs of a number of receiving antennas that constitute a sensor array

is referred to as direction-of-arrival estimation (DOA). DOA estimation is a signifi-

cant topic in array signal processing and has numerous applications in radar, sonar,

wireless communications, and other fields [27].

DOA estimation is usually researched as part of the broader area of array processing

and that investigates the problem of determining the source direction of the incoming

waves. The type of wave of interest could be an electromagnetic wave or a seismic

wave, depending on the application [28].

Radio direction finding, also known as estimating the direction of electromagnetic

waves that are impinging on a single antenna or an antenna array, occupied a sig-

nificant portion of the early research that was conducted on this topic. Additionally,

extensive research has been done on the topic of acoustic direction of arrival estima-

tion, and this has mostly been done in the context of sonar [28].

3.2 Signal Model

In a typical application, an incoming wave is detected by an array, and the associated

signals at different sensors in space are analyzed to determine the direction of arrival

(DoA) of the incoming signal. At each sensor the signal of interest is captured with
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Figure 3.1: Coordinate system, sensor array and source position for 2D DoA estima-

tion

a different delay, τ , caused by the displacement of the sensors in the array. In Figure

3.1, array model for the DoA estimation is summarized.

The given model can be narrowed down to the 1D scenario for simplicity by choosing

the elevation angle, θ as 90o degrees. The simplified form of the given model can be

seen in the Figure 3.2.

As it can be seen from the Figure 3.1 and 3.2, a sensor array is composed of multiple

sensors called elements and at each element signal in interest is captured with a delay.

To define the delay occurred at the each sensor in terms of sensor positions and source

directions several assumptions are made [29].
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Figure 3.2: Coordinate system, sensor array and source position for 1D DoA Estima-

tion

3.2.0.1 Far-field Source Assumption

Far-field source assumption is the assumption for the distance between the source and

the sensor array. In this assumption, a source is considered as a far-field source if the

distance between the sensor array and the source itself is greater that the Rayleigh

distance which is defined as,

dr = D2/λ (3.1)

where D denotes the array aperture and λ denotes the wave-length.

3.2.0.2 Narrowband Assumption

Narrowband assumption assumes that time-bandwidth product is small i.e.,

BTmax << 1 (3.2)

where B denotes the bandwidth of the signal of interest and Tmax denotes maximum

time to travel across the array.
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3.2.0.3 Homogeneous Propagation Medium

Signal characteristics may be altered if the transmission medium isn’t homogeneous,

hence this assumption is critical. As an example, sound waves in the sea differ from

signal waves in a homogeneous propagation medium because of its specifics. In addi-

tion, the speed of light can be affected by the medium in which it travels. Therefore it

is critical to assume that the propagation environment is homogeneous and the signal

characteristics are the same at every part of the propagation medium.

With all the given assumptions, signal model for the received signal can be written as

follows for the sensor array given in Figure 3.1.

Let’s assume that the complex signal of interest is defined as s(t) for a specific sample

t and its modulated version, sp(t) is propagating in the medium.

sp(t) = R(s(t)e2πfct) (3.3)

where fc denotes the carrier frequency for the modulation and R(.) denotes the real

part operation.

At the mth sensor, the propagating signal, sp(t) is captured with a time delay, τm and

the received signal at the mth sensor can be written as,

spm(t) = sp(t− τm) = R(s(t− τm)e
2πfcte−2πfcτm) (3.4)

Note that, since the narrow band assumption is valid, the complex source signal with

a time delay, s(t− τm) can be expressed without the time delay, i.e.,

s(t− τ) ≈ s(t) (3.5)

Thus the demodulated baseband signal at the mth sensor, ym(t), can be written as,

ym(t) = s(t)e−2πfcτm + nm(t) (3.6)
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where nm(t) denotes the additive Gaussian noise.

Furthermore, we can express the time delay for the mth sensor, τm in terms of sensor

positions and source direction. First lets define the unit direction vector, g for the

source given in Figure 3.1.

g = [cos(θ)sin(ψ), sin(θ)sin(ψ), cos(ψ)]T (3.7)

where θ denotes the azimuth angle, ψ denotes the elevation angle in Figure 3.1, and

()T denotes the transpose operation.

With the given unit direction vector in (3.7), the time delay in the mth sensor, τm, can

be written as,

τm =
−Pm ⊙ g

c
(3.8)

where c denotes the velocity of the propagation in medium(m/s), ⊙ denotes the el-

ements wise multiplication operation and Pm denotes the sensor position which is

defined as,

Pm = [xm, ym, zm]
T (3.9)

Thus, equation (3.8) becomes as follows,

τm =
−1

c
(xmcos(θ)sin(ψ) + ymsin(θ)sin(ψ) + zmcos(ψ)) (3.10)

Therefore, the time delay vector for the mth sensor, τm, can be written as,

τm =
−Pm

Tg

c
(3.11)

Let the frequency of the narrowband signal be w = 2πf(rad/s), and f (frequency in

Hz or 1/s)
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wτm =
−w
c

Pm
Tg

=
−2π

λ
Pm

Tg

(3.12)

where the wavelength, λ =
c

f
. Thus, the wave vector, k can be written as,

k =
2π

λ
g

=
2π

λ
[cos(θ)sin(ψ), sin(θ)sin(ψ), cos(ψ)]T

(3.13)

Furthermore we can define the array steering vector which incorporates all the spatial

characteristics of the array in terms of the time delays, τ = [τ1, τ2, ..., τM ]T , associ-

ated with each sensor in the array.

a(θ, ψ) = e−jwτ =


ej2π/λ(x1cos(θ)sin(ψ)+y1sin(θ)sin(ψ)+z1cos(ψ))

ej2π/λ(x2cos(θ)sin(ψ)+y2sin(θ)sin(ψ)+z2cos(ψ))

...

ej2π/λ(xM cos(θ)sin(ψ)+ysin(θ)sin(ψ)+zM cos(ψ))

 (3.14)

When there are multiple plane wave sources in (θ1, ψ1), (θ2, ψ2), ..., (θL, ψL) direc-

tions, array steering matrix A(θ, ψ) can be constructed from the steering vectors,

a(θi, ψi) as,

A(θ, ψ) = [a(θ1, ψ1),a(θ2, ψ2), ...,a(θL, ψL)]
T (3.15)

Then the array output , y(t) = [y1(t), y2(t), .., yM(t)]T can be written as,

y(t) = A(θ, ψ)S(t) + n(t) (3.16)

where S(t) is the signal matrix which composed of the source signals s1(t), s2(t), ..., sL(t)

as
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S(t) =


s1(t)

s2(t)
...

sL(t)

 (3.17)

and n(t) = [n1(t), n2(t), ..., nM(t)] denotes the noise vector composed of the indi-

vidual additive noises occurred at the each sensor.

Furthermore, the signal model can be simplified to 1D model as in Figure 3.2 by

assuming the elevation angle ψ = 90. For the simplified signal model, equation

(3.16) becomes,

y(t) = A(θ)S(t) + n(t) (3.18)

where A(θ) = [a(θ1),a(θ2), ...,a(θL)] and the steering vector, a(θ) is defined as

follows for the simplified signal model.

a(θ) = e−jwτ =


ej2π/λ(x1cos(θ)+y1sin(θ))

ej2π/λ(x2cos(θ)+y2sin(θ))

...

ej2π/λ(xM cos(θ)+yMsin(θ))

 (3.19)

3.2.0.4 Literature Survey

In the literature, DoA estimation is covered by many researchers. Starting from the

interferometric approach, many direction estimation algorithms have been introduced

in the past decades [30]. Although these methods perform significant estimations,

their spatial resolution is limited by the beam-width. In addition, super-resolution al-

gorithms based on subspace separation have been introduced. While these algorithms

provide superior performance in cases where the resolution of previous algorithms

was insufficient, ESPRIT in [31] is bounded by the displacement between elements

and MUSIC in [32] requires a special uniform linear array geometry to overcome
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the coherent source separation, so the performances of both algorithms strongly de-

pend on the array geometry. Moreover, since these algorithms are based on subspace

separation, they require the knowledge of the total number of non-coherent sources

to correctly separate the noise and signal subspace. On the other hand, researchers

have shown that the maximum likelihood algorithm can separate multiple coherent

sources without requiring any special array geometry. However, the ML algorithm

has a disadvantage in terms of computational complexity, especially in cases where

the number of sources present is high. Since the complexity of the algorithm increases

exponentially as the number of sources increases, it is not suitable for cases where

interference and multi-path effects occur. With the introduction of compressive sam-

pling theory by Nandes [], the sparse array representation in sensor array signal pro-

cessing gained attention, and the DoA estimation problem was studied by converting

the estimation problem into a norm minimization problem and diving with numerous

optimizers such as LASSO and OMP[33]. Although these methods can sufficiently

estimate the directions of coherent sources without requiring unique array geometry,

their performance can be dramatically affected by the choice of hyper-parameters.

In recent years, the sparse representation of CS has been reformulated from the

Bayesian point of view, and the sparse information is used assuming sparse prior

probabilities for the signal of interest. In this sense, there have been several ap-

proaches to the DoA estimation problem using the SBL approach for various con-

ditions such as mutual coupling, sensor position error, etc. [2], [3], [4],[34]. But

most of the previous SBL based approaches consider a single array. In this thesis, the

advantages of SBL method are used for a distributed sensor array structure for DoA

estimation.
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CHAPTER 4

DIRECTION OF ARRIVAL ESTIMATION IN DISTRIBUTED SENSOR

NETWORKS

In recent years, DoA estimation for distributed sensor arrays raised significant interest

within the community. While there are different possibilities for the distributed sensor

array configurations, we will mainly focus on a structure which involves a master and

local sensor arrays. Each sensor array can independently estimate DoA and transfer

certain parameters to the master array. The function of the master array is to obtain a

global solution which is superior to the local results.

4.1 Problem Definition and Data Model

In this section, we explain the details of the problem of DoA estimation in distributed

sensor array networks and the data model employed in this process.

We assume that there are N sensor arrays where each of these arrays can be equiv-

alently called as a sensor node. One of these sensor nodes is selected as the master

node and the rest are considered as slave nodes. Each slave node is capable to apply

signal processing tasks for DoA estimation and transmit the local estimates to the

master node as shown in Figure 4.1.

Each sensor node in Figure 4.1 can have its local coordinate system but these local

coordinates should be converted to a global coordinate system so that the source DoA

is expressed in this global coordinate system by taking North as the reference[35].

The received signal at the nth sensor node, yn(t), is given as,
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Figure 4.1: Distributed Sensor Array Network

yn(t) =
L∑
i=1

an(θi, ψi)e
j(2πfdn t+ϕn)si(t) + nn(t) (4.1)

where fdn and ϕn are the constant frequency and phase offset for each array respec-

tively and an(θi, ψi) denotes the steering vector corresponding to the direction (θi, ψi

for the nth sensor array.

We can define the received signal matrix for the nth array as,

Yn = [yn(1),yn(2), ...,yn(T )] (4.2)

which consists of the observed snapshots yn(t), t = 1, 2, ..., T where T is the total

number of snapshots. Also, it is assumed that source and the sensor nodes are in

the same plane and only the azimuth estimation is performed for simplicity. This is

not a restriction for the proposed method and it can be applied for the more general

scenario.
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Narrowband assumption is used and the signal matrix S is defined as,

S = [s1, s2, ..sL]
T (4.3)

where si is the vector which consist of N snapshots of ith source. Noise, nn(t) is

uncorrelated zero mean white Gaussian. an(θi, ψi) is the steering vector for the nth

sensor node and for the ith source with the azimuth angle θi and elevation angle ψi.

There are L sources.

It is possible to reduce the computational complexity and improve signal to noise

ratio by using singular value decomposition, (SVD), as the number of observations

increase. SVD of the array output matrix, Yn can be written as,

Yn = UL̂ΛL̂V
H
L̂

+U(N−L̂)Λ(N−L̂)V
H
(N−L̂)

(4.4)

where L̂ = L represents the number of sources. In practice L̂ can be overestimated

by looking to the eigen values of the covariance matrix of the observed signal Yn,

L̂ >= L in order to improve the convergence of CDoAE algorithm. The first term

in equation (4.4) represents the signal space, and the second term is the noise space.

If we multiply Yn with VL̂, we obtain the processed array output matrix, Ȳn, and

CDoAE uses Ȳn to obtain DoA estimates, i.e.,

Ȳn = YnVL̂ = UL̂ΛL̂ (4.5)

4.2 Literature Survey

In the literature, there are several studies which cover the problem of distributed DoA

estimation. In [6] a synchronization method for resolving the inter array time and

frequency offsets as well as jointly estimating the DoA angles and phase offsets is

presented. The main disadvantage of this method is the requirement to know either

the signal or a part of the signal for accurate estimation. Also, raw data for each sensor

array should be transferred to the master node. In [7] and [8], a method for estimating

the complete covariance matrix of the whole array is presented. Raw data is not
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transferred to the master node but the inter-array synchronization for time, frequency

and phase must be done before processing.

In [9], Decentralized MUSIC algorithm is presented with several advantages. In this

method, MUSIC algorithm is extended for the distributed sensor array networks by

sharing only the covariance matrices of the local nodes to the master node. There is

no need to perform gain/phase and frequency matching between the local arrays. De-

centralized MUSIC requires Forward-Backward Spatial Smoothing [10] for coherent

sources. Hence a special array structure is required for this purpose. Also the algo-

rithm needs to know the sensor positions of each array at the master node. Search-free

alternative of Decentralized MUSIC algorithm is proposed in [11].

In [15], distributed form of Alternating Direction Method of Multipliers(ADMM) is

proposed. ADMM can be used to obtain global optimum solution for convex prob-

lems. In addition, it is shown that its performance for non-convex problems is good

compared to alternative methods [16]. ADMM is used in DoA estimation in differ-

ent works [17],[18]. In [17], the problem is separated into smaller parts to be able

to process them in different processing cores. In [18], DoA cost function is divided

into two functions and solved using the ADMM algorithm. But none of these studies

covers the DoA estimation in Distributed Sensor Networks, instead they shown that

DoA estimation problem for single sensor array can be decomposed into multiple

parts where each part of the problem can be handled in a different processor.

In this thesis, a new method, Collaborative DoA Estimation (CDoAE), in distributed

sensor arrays is proposed. CDoAE combines the advantages of SBL and ADMM

to obtain an effective method with certain advantages. CDoAE does not require

gain/phase and frequency matching for the sensor arrays. There is no need to know

the sensor positions and only a set of parameters are transferred from the local arrays

to the master array. In addition, CDoAE-Transferred Variable Reduction (CDoAE-

TVR) method is presented to reduce the number of transferred parameters from the

local arrays to the master array.
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CHAPTER 5

SINGLE ARRAY DOA ESTIMATION IN SPARSE BAYESIAN LEARNING

FRAMEWORK

5.1 Single Array DoA Estimation in Sparse Bayesian Learning Framework

In this section, we present the procedure for DoA estimation in a single array with-

out any collaborative processing. In this respect, we present the details of the SBL

method since some of the steps of the SBL algorithm are modified in the following

section to obtain collaborative DoA estimation framework. Furthermore, single ar-

ray DoA estimation is compared with the collaborative processing to demonstrate the

performance improvement. Since we present the details of the SBL for single array,

the subscript n is removed in the following equations for simplicity.

SBL [1] is an effective approach with several important advantages in DoA estima-

tion. SBL method can handle coherent sources effectively independent of the array

geometry. SBL uses statistical Bayesian framework to achieve this, contrary to sub-

space techniques [32], [31] which employ a covariance matrix for DoA estimation.

5.1.1 Sparse Signal Model

SBL uses a sparse signal representation for DoA estimation [2]. The source signal

vector S is defined as a complex K × 1 vector whose elements are generated by

a complex K-dimensional multivariate Gaussian distribution (K >> L) where L

denotes the total number of sources in the environment.

K = KθKψ (5.1)
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where Kθ represents the number of points in the azimuth, θ, spectrum and Kψ repre-

sents the number of points in the elevation, ψ, spectrum.

In Figure 5.1, possible source directions are represented with black solid dots and

the true source directions are represented with the red circles. For each point in the

given gird, a hypothetical source sk , k = 1, 2, 3, ..., K is defined. Grid selection

can be done uniformly or the grid size, ∆θ, ∆ψ, can be determined with respect

to the beamwidth of the array so that the number of grids in the regions where the

beamwidth is large can be reduced and the number of grids in the regions where the

beamwidth is narrow can be increased for better accuracy. In addition, if there exist

a prior information about the source direction sector, then the sectors can be sampled

intensely while the rest of the spectrum is sampled coarsely. Moreover, the off-grid

source problem is not considered within the scope of this thesis but the proposed

algorithm can be extended for the off-grid source scenarios by using the methods

presented in [5] and [36].

Figure 5.1: Possible source directions in azimuth, θ, and elevation, ψ and true source

directions represented with red circles.
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Each element of S represents the signal sk from the direction (θi, ψj) and the variance

of each row corresponds to the power of the transmitted signal. The true sources are

identified after the SBL updates according to the estimated inverse source variances.

In Figure 5.2, the relationship between the elements of the s vector and the hypothet-

ical sources are shown. Each hypothetical source is represented by its variance, σ2
sk

,

and mean, µsk . Let γk = 1/σ2
sk

and assume zero mean sources, µsk = 0.

Figure 5.2: Sensor array and possible source directions with complex Gaussian dis-

tribution for Sparse Bayesian Learning framework.

Consider γ = [γ1, γ2, ..., γK ]
T , and ∆ = diag(γ), prior distribution of P (S|γ) can

be written as follows,

p(S|γ) =
L̂∏
k=1

NC(sk|0,∆−1) (5.2)

where NC(µ, σ
2) denotes a complex Gaussian distribution with mean, µ, and variance,

σ2.
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Moreover, the distribution of the γk’s are modelled as Gamma distribution in order to

enforce most of the rows of S to be zero, i.e.,

p(γ) =
K∏
k=1

Γ(γk, c, d) (5.3)

where c and d are the parameters for the Gamma distribution.

On the other hand, the additive noise terms in Ȳ , are independent and modelled

as complex Gaussian distribution where we define the noise precision as β = σ−2.

Therefore, p(nk|β) = NC(nk|0, β−1), and defining noise vector n = [n1, n2, ..., nk]
T

we can model noise as independent and identical complex Gaussian distribution,

p(n|β) =
K∏
k=1

NC(nk|0, β−1) (5.4)

Noise precision β can be assumed to be a Gamma distribution with parameters a and

b,

p(β) = Γ(β; a, b) (5.5)

Given the noise and sparse signal models, the posterior distribution of the received

signal can be expressed in terms of sk, γ and β as follows,

p(Ȳ |S, β) =
K∏
k=1

NC(yk|Ask, βI) (5.6)

where A is the steering matrix given as,

A = [a(θ1, ψ1)), ...,a(θi, ψj)), ...,a(θKθ , ψKψ))]

i = 1, 2, ..., Kθ j = 1, 2, ..., Kψ,

(5.7)

In the SBL approach, the main objective is to find the variables β and γ to estimate

the source directions. To achieve this goal, the posterior probability of these parame-

ters p(β,γ,S|Ȳ ) must be calculated. Since the computation of p(β,γ,S|Ȳ ) cannot
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be done explicitly, the problem can be transformed into the maximization of the fol-

lowing equation using Bayes’ theorem,

p(S,γ, β|Ȳ ) = p(Ȳ ,γ, β,S)/p(Ȳ ) (5.8)

Since the term of p(Ȳ ) is just a normalization factor, it can be ignored and the prob-

lem can be considered as,

max
γ,β

p(Ȳ ,S,γ, β) (5.9)

Since the problem in equation (5.9) has both observable and hidden variables, variable

update and estimate procedure can be implemented by using a two stage Expectation

Maximization (EM) Algorithm [37] which is outlined in the following part.

5.1.2 Parameter Update through EM Algorithm

EM method is based on the principle of continuously constructing a lower bound for

⟨ln((p(Ȳ |β,γ)))⟩ and then optimizing this lower bound.

⟨ln((p(Ȳ |β,γ)))⟩ = Ep(S|γ,β,Ȳ ){ln((p(Ȳ |β,γ)))} (5.10)

In the following part, two main steps of the EM algorithm, namely, Hidden Variable

Update and Hyperparameter Update are described respectively. In the first step, S is

considered as a hidden variable and the lower bound is constructed. After the lower

bound is determined, the hyperparameters, β and γ, are obtained by maximizing the

lower bound. This procedure continues until convergence.

5.1.2.1 Hidden Variable Update

In the hidden variable update stage, lower bound for expected value of the ln(p(Ȳ ,S, β,γ)),

namely, ⟨ln(p(Ȳ ,S, β,γ))⟩, is constructed to be maximized in the Hyperparameter

Update stage. To construct the lower bound, expected value of ln(p(Ȳ ,S, β,γ))

must be calculated over the distribution p(S|γ, β, Ȳ ) in the following parts. In order
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to do this, posterior distribution p(S|Ȳ , β,γ) should be written through the Bayesian

expression given below,

p(S|γ, β, Ȳ ) =
p(Ȳ |S, β)p(S|γ)

p(Ȳ |β,γ)
(5.11)

This expression for the posterior distribution can also be treated as a Gaussian distri-

bution with mean, µ = [µ1, µ2, ..., µK ]
T , and covariance matrix, Σ, respectively. The

µ and Σ for the conditional distribution can be estimated iteratively using an initial

estimate through the following expressions [3],

µj+1
k = βjΣjAHyk, k = 1, 2, ..., L̂ (5.12)

Σj+1 = (βjAHA+∆j)−1 (5.13)

At each iteration, j, lower bound for ⟨ln(p(Ȳ ,S, β,γ))⟩j+1 is constructed with the

estimated mean and variance. Note that p(Ȳ ,S,γ, β) can be written as,

p(Ȳ ,S,γ, β) = p(Ȳ |S, β)p(S|γ)p(γ)p(β) (5.14)

Using the Bayesian relations the lower bound for the expected value ⟨ln((p(Ȳ |β,γ)))⟩j+1

becomes,

⟨ln(p(Ȳ ,S, β,γ))⟩ = ⟨ln(p(Ȳ |S, β)p(S|γ)p(γ)p(β))⟩ (5.15)

The hyperparameters are estimated by maximizing the lower bound in equation (5.15).

After updating the hyperparameters, the mean and variance can be recalculated in the

next iteration.

5.1.2.2 Hyperparameter Update

In the first step of the hyper parameter estimation, noise precision β is updated first.

This is achieved by ignoring the irrelevant terms and the following expression is ob-

tained [3],
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⟨ln(p(Ȳ |S, β)p(β))⟩ = ⟨ln(p(Ȳ |S, β))⟩+ ln(p(β)) (5.16)

Equation (5.5) can be more explicitly written as,

ln(p(β)) = Const+ (a− 1)ln(β)− β/b (5.17)

Then ⟨ln(p(Ȳ |S, β))⟩ becomes,

⟨ln(p(Y |S, β))⟩ = L̂Mln(β)− β

L̂∑
k=1

||yk −Aµk||22 − βKtr{AΣAH} (5.18)

Finally, by taking the derivative of equation (5.16) with respect to β, we obtain the

following update equation [3],

βj+1 =
L̂M + (a− 1)

b+
∑L̂

k=1 ||yk −Aµk
j||22 − L̂tr{AΣAH}

, (5.19)

In the next step, a similar procedure is followed to obtain the γ update expression.

Keeping only the γ related terms and ignoring the rest in equation (5.15) can be

expressed as,

⟨ln(p(S|γ)p(γ))⟩ = ⟨ln(p(S|γ)⟩+ ln(p(γ)) (5.20)

Since γ has a Gamma distribution, logarithm of its probability density function can

be written similar to the β update step with respect to the parameters c and d,

ln(p(γ|c, d)) = Const+ (c− 1)ln(γ)− γ/d (5.21)

Then equation (5.20) can be written as,
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⟨ln(p(S|γ))⟩ = L̂ln(|∆|)−
L̂∑
k=1

⟨sHk ∆sk⟩ (5.22)

If we take the derivative of (5.20) with respect to γk the following update equation is

obtained,

γj+1
k =

L̂+ c+ 1

d+
∑L̂

l=1 [Ξ
j+1
l ]kk

(5.23)

where Ξj+1
l = µj+1

l µ
(j+1)
l

H +Σj+1 and [.]kk represents the (k, k) element of ma-

trix. Note that Gamma distribution parameters, c and d, are positive real terms as well

as γj+1
k . Hence γj+1

k is a real vector.

After obtaining µj+1,Σj+1,βj+1 and γj+1
l , a single iteration of the SBL algorithm

is completed. Algorithm continues to update hidden variables, µ and Σ, with the

recently estimated hyper-parameters, β, γ to construct the lower bound and optimize

this lower bound to obtain the updated hyper-parameters sequentially until the con-

vergence.

After the algorithm converges, spatial spectrum, P (θ, ψ), is obtained according to

the following equation,

P (θi, ψj) =
1

γk
, k = (i− 1)Kψ + j

i = 1, 2, ..., Kθ j = 1, 2, ..., Kψ

(5.24)

Note that γk corresponds to the inverse of the variance for the source coming from

the direction (θi, ψj). After obtaining the spectrum, P (θ, ψ), DoA estimation can

be done by searching for the peaks in the spectrum. Moreover, the spectrum can

be normalized to obtain values between [0, 1]. In Figure 5.3, an example spectrum

obtained by SBL method is given.
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Figure 5.3: Normalized variance spectrum obtained by SBL method and true DoAs

represented with dashed lines

The steps of the SBL method [3] for DoA estimation on a single array are given

below.
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Algorithm 1 Single Array DoA Estimation

Step 1: Initialize parameters γ0, β0, µ0,Σ0, a, b, c, d

Step 2: Update hidden variable parameters µj+1 and Σj+1 according to equation

(5.12) and equation (5.13) respectively.

Step 3: Update hyper-parameter βj+1 according to equation (5.19).

Step 4: Update hyper-parameter γj+1 according to equation (5.23)

Step 5: Check if the algorithm converged.

Step 6: If not converged go back to Step 2 otherwise report DoA angles found by

using γ equation (5.24)
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CHAPTER 6

COLLABORATIVE DOA ESTIMATION (CDOAE)

6.1 Collaborative DoA Estimation (CDoAE)

In this section, we present the collaborative DoA estimation where distributed ADMM

approach is used to modify the variable update procedure of the master node and local

nodes. This modification consists of the addition of certain constraints imposed by

the updated global variable vector transmitted by the master node to the local nodes.

In the local nodes, the updated global variable is used in a constrained equation where

the original SBL expression is modified so that the solution is forced in a direction

pointed by the global variable. In the master node, global variable is obtained by

using all the local parameters.

With the combination of the advantages of SBL and distributed ADMM, proposed

Collaborative Direction of Arrival Estimation (CDoAE) algorithm can overcome the

limitations for the Distribıted Sensor Array Networks. While SBL brings the ability of

estimating the coherent source directions without requiring a special array geometry,

distributed ADMM brings the ability of sharing limited number of parameters instead

of sharing the raw data between the nodes. Moreover, with the distributed ADMM,

each node in the network does not require the sensor positions of the other nodes and

there is no need for a synchronization step between the nodes in terms of phase and

frequency.

Since the proposed method uses the distributed ADMM framework in the defined

procedure, we present the details of the distributed ADMM algorithm at first.
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6.1.1 Distributed ADMM Algorithm

Distributed ADMM (DADMM) is introduced as a technique which enables the global

solution for a distributed sensor array [15]. Distributed ADMM has all the main fea-

tures of the ADMM algorithm where global optimum is obtained when the problem

is convex. It is known that ADMM generates a well behaved solution for non con-

vex problems in general [16]. In the following part, main features of the distributed

ADMM are presented which are valid for both local and master nodes.

In Distributed ADMM main goal is to minimize a composite function, f(γ), which

can be defined as the sum of N different convex functions, fn(γ) , n = 1, 2, 3, ..., N ,

i.e.,

min
γ
f(γ) =

N∑
n=1

fn(γ) (6.1)

In the Distributed ADMM approach, it is aimed to obtain a collaborative solution

while the each function fn(γ) is optimized at its own processor separately. Therefıre

the problem in 6.1 can be written in terms of both local variables, γ1,γ2, ...,γN , and

global variable, z, as,

min
γn

N∑
n=1

fn(γn) s.t γn = z (6.2)

The global variable z in the given equation is inserted for imposing the following

constraint,

γ1 = γ2 = γ3 = .... = γN (6.3)

For the defined problem in 6.2, augmented Lagrangian function, Lp(γ1,γ2, ...,γN , u)

can be written as,

Lp(γ1,γ2, ...,γN , z,u) =
N∑
n=1

fn(γn + uTn (γn − z) + (ρ/2)||γn − z||2) (6.4)
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Given the augmented Lagrangian function in (6.4), the distributed ADMM update

equations can be obtained as,

γn
j+1 = argmin

γn

Lp(γ1
j,γ2

j, ..,γn, ...,γN
j, zj,uj) (6.5)

zj+1 = argmin
z
Lp(γ1

j+1,γ2
j+1, ..,γn

j+1, ...,γN
j+1, z,uj) (6.6)

uj+1
n = uj

n + ρ(γj+1
n − zj+1) (6.7)

According to equation 6.5,6.6,6.7, following update steps are obtained.

γj+1
n = argmin

γn

(fi(γn) + ujT (γn − zj) + ρ/2||γn − zj ||22) (6.8)

zj+1 = 1/N
N∑
n=1

(γj+1
n + 1/ρuj

n) (6.9)

uj+1
n = uj

n + ρ(γj+1
n − zj+1) (6.10)

where ρ is scalar used as a weight value for the update term.

As it can be seen in the equations above, defined update procedure requires the ex-

change of the local variables, γn, un, and the global variable, z, between the local

nodes and the master node. In the step of updating the local variables, global variable

obtained in the previous iteration must be known in each node. Also when the global

variable is updated, the local variables estimated in each node must be gathered in the

master node before the update. In Figure 6.1, this process is shown.

In collaborative DoA estimation, we assume that there are N sensor arrays where one

of them is the master node as shown in Figure 6.1. Both master and the local nodes

proceed their own iterative processes. The local nodes transmit their parameters to

the master node so that it generates a global parameter, z, which is then transmitted
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Figure 6.1: Sensor nodes and variable exchange diagram for Distributed Alternating

Direction Method of Multipliers.

back to the local nodes. Both the master and local nodes generate their estimates

using DADMM framework. To convert the SBL DoA estimation problem into a

collaborative optimization, it assumed that the local coordinate system at each node

is converted to a global coordinate system so that each sensor array DoA is expressed

in the global coordinate system. In DADMM framework, the composite objective

function in (6.2) is selected in terms of the negative lower bound expressions in (5.20)

at each node n, i.e.,

fn(γn) = −⟨ln(p(Sn|γn))⟩ − ln(p(γn)) (6.11)

Using (5.21) and (5.22) above expression can be simplified as [3],

fn(γn) = −(L̂+ c+ 1)
K∑
k=1

ln([γn]k) + d

K∑
k=1

[γn]k +
L̂∑
l=1

tr(Ξnl∆) (6.12)
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We can write the collaborative optimization problem as follows,

min
γn

N∑
n=1

−(L̂+ c+ 1)
K∑
k=1

ln([γn]k) + d
K∑
k=1

[γn]k

+
L̂∑
l=1

tr(Ξnl∆) st.γn = z, n = 1, 2, .., N

(6.13)

Thus, the γ update in the previous SBL algorithm can be performed in a collaborative

manner by modifying the update steps according to the DADMM approach. In the

following section, the proposed method for collaborative variable update process is

presented.

6.1.2 Collaborative Variable Update

In this section, we present the collaborative variable update procedure which is es-

sential for the proposed method. In this procedure, SBL variable update equations

are modified with the distributed ADMM and the collaborative DoA estimation is

achieved.

In the first step of the proposed method, mean and variance, µn and Σn, of the hidden

variable Sn are estimated for each array in the network. After the hidden variable

estimation step, lower bound is constructed as in equation (5.16) for each node and

noise precision βn is obtained according to equation (5.19). In the third step, the local

hyperparameter γn is estimated over the modified update equation which consists of

both EM and ADMM terms. The obtained local solutions are weighted according to

a weighting function and passed to the master node. In the master node, the update

of the global solution is performed and shared with the local arrays. The remaining

ADMM updates are performed separately in each node and the algorithm iterates

until convergence by repeating the above steps. The details of the update procedure

are given below.
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6.1.2.1 Hidden Variable Update

The hidden variable estimation in Section 5.1.2.1 is used for each node. Therefore, in

each iteration, the parameters of the hidden variables µj+1
n and Σj+1

n are estimated

for each node according to equation (6.14) and (6.15) [3], i.e.,

µj+1
kn

= βjnΣ
j
nA

H
n ykn , k = 1, 2, ..., L̂ (6.14)

Σj+1
n = (βjnA

H
n An +∆j

n)
−1 (6.15)

where the subscript n is used for node index, An is the array steering matrix, ykn

represents the signal captured by the nth array. Note that equation (6.14) and (6.15)

are the same as the SBL updates in (5.12),(5.13) except the index n which indicates

that these equations are employed at each sensor node.

6.1.2.2 Hyper Parameter Update

In this part, the update of the hyper-parameters βj+1
n and γj+1

n in the jth iteration is

presented.

At each node similar βj+1 update equation in (5.19) is applied to obtain the local

estimates [3], i.e.,

βj+1
n =

L̂M + (a− 1)

b+
∑L̂

k=1 ||ykn −Anµ
j+1
kn

||22 − L̂tr{AnΣ
j+1
n AH

n }
, (6.16)

On the other hand, γn
j+1 update procedure is changed due to the terms added from

the distributed ADMM algorithm. In (6.17), an additional term,cn(γn
j), comes from

the ADMM update procedure [3], i.e.,

γj+1
n = argmin

γ
j+1
n

fn(γn
j+1) + cn(γn

j+1) (6.17)

where cn(γn
j+1) = ujT

n (γn
j+1 − zj) + (ρ/2)||γn

j+1 − zj||22) and fn(γn
j+1) is the

36



function in (6.12). Therefore, γn
j+1 update equation can be obtained by taking the

derivative of cn(γn
j+1) + fn(γn

j+1) with respect to [γn
j+1]k and equating to zero.

Note that [γn
j+1]k represents the kth element of the γn

j+1 vector. Hence,

∂f(γn
j+1))

∂[γn
j+1]k

+
∂c(γn

j+1))

∂[γn
j+1]k

= 0 (6.18)

The derivative of cn(γn
j+1) with respect to [γn

j+1]k is given as,

∂cn(γn
j+1)

∂[γn
j+1]k

= [uj
n]k + ρ([γn

j+1]k − [zj ]k) (6.19)

Similarly, derivative of fn(γn
j+1) with respect to [γn

j+1]k is written as,

∂fn(γn
j+1)

∂[γn
j+1]k

= d+
L̂∑
l=1

[Ξnl ]kk −
L̂+ c− 1

[γn
j+1]k

(6.20)

where Ξnl
is the Ξl matrix in equation (5.23) obtained at the nth sensor node.

We obtain a second order polynomial for [γn
j+1]k from (6.18) and it is given as,

[γn
j+1]2k + α1[γn

j+1]k + α2 = 0 (6.21)

where the real valued parameters α1 and α2, are given as,

α1 =
[uj ]k + d+

∑L̂
l=1[Ξ]kk

ρ
− [zj ]k (6.22)

α2 =
−K − c+ 1

ρ
(6.23)

Since (6.23) is negative, (6.21) has always two real roots, one which is positive and

the other is negative. Since [γn
j+1]k is defined as the inverse of the source variance,

σ2
sk

, the desired [γn
j+1]k is positive for a given kth source. Therefore, the root which

is positive is selected for each [γn
j+1]k , k = 1, 2, ..., K. Then, γn

j+1 vector is

constructed as,
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γn
j+1 = [[γn

j+1]1, [γn
j+1]2, ..., [γn

j+1]K ]
T (6.24)

6.1.2.3 Weight Function for the Local Estimates

In the proposed method, local estimates are weighted by a weighting function before

they are sent to the master node. The main idea behind this weighting function is to

trust the local estimates obtained at some nodes more than the estimates obtained in

the other nodes for the direction (θi, ψj) because of the non-omnidirectional perfor-

mance of the nodes.

In Figure 6.2, two uniform linear arrays with different headings are given. As it can

be seen from the figure, sensor node 1 has broadside region around 90 degrees and

has endfire region around 0 degrees in azimuth. On the other hand, sensor node 2 has

broadside region where sensor node 1 has its endfire and sensor node 2 has endfire

region where the sensor node 1 has its broadside region.

Figure 6.2: Sensor Node 1,2 and their braodside and endfire regions.

Consider a source signal which comes from the azimuth angle, θi, as in Figure 6.2. In

this scenario, the source signal is closer to the broadside region of sensor node 1 and

closer to the endfire region of sensor node 2. Therefore, we would like to trust the

estimates obtained at the sensor node 1 more than the sensor node 2 due to the fact

that the DoA estimation performances increases as the source signal getting closer to

the broadside region of the array and decreases when the source signal becomes closer

to the endfire region. With this in consideration we would like to apply a weighting
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function to emphasize our trust for each array at each direction in the spectrum in

order to improve the collaborative DoA estimation performance.

For simplicity, we assume the same weighting function for all elevation angles, ψ,

and hence ψ is selected as π/2 for weighting function generation. Therefore, for

each possible angle, θ, in the spectrum, the weighting function wn(θ) is used at each

array. We selected the weighting function using the Approximate Cramer Rao Bound

(ACRB) [38]. ACRB expresses a approximate lower bound on the variance of the

DoA estimation error and for an array with λ/2 inter-element spacing it is given as,

ACRB(θ) =
M

2NSNR||ȧ(θ)|22|
(6.25)

In this study, ignoring the common terms, weight function, wn(θ) is selected inversely

proportional to the ACRB, i.e.,

wn(θ) = ||ȧn(θ)||22 (6.26)

where ȧn(θ) is the derivative of the steering vector with respect to θ at the nth node.
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Figure 6.3: Approximate Cramer Rao Bound and the Weighting Function for URA.

In the Figure 6.3, ACRB and the weighting function corresponding to the Uniform

Rectangular Array(URA) with M = 12(3×4) elements is given. As it can be seen in

Figure 6.3, the performance of URA decreases when the DoA of the incoming signal

is closer to the end-fire of the array. Therefore, the DoA estimate obtained for an

angle closer to the end-fire can be expected to be less reliable than the angle closer to

the broadside.

After we have the weighting functions for each node, local γn and un estimates

are shared with the master node after the multiplication with the weighting function

as follows,

γ′
n
j+1 = wn ⊙ γj+1

n , (6.27)

u′
n
j+1 = wn ⊙ uj

n (6.28)

where ⊙ is the element-wise multiplication.
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6.1.2.4 Global Variable Update

After obtaining the local variables γn, un and multiplying them with the weight

function, the local variables are shared with the master array. In the master array, the

global variable is updated and shared with the local arrays. The update equation for

the global variable can be obtained from (6.9) as,

zj+1 = 1/N
N∑
n=1

(γ′j+1
n + 1/ρu′j

n ) (6.29)

Above equation is computed in the master node.

6.1.2.5 Dual Variable Update

Dual variable update is performed at each local node separately. After receiving the

global variable zj+1, dual variable is updated using (6.10) as,

uj+1
n = uj

n + ρ(γj+1
n − zj+1) (6.30)

Note that, uj
n and γj+1

n are not weighted variables different from (6.29). Once the

dual variable is updated, algorithm checks if the convergence criteria is satisfied.

6.1.2.6 Stopping Criteria

The exiting criterion for the iterations of the proposed algorithm is determined based

on the changes in the global variable z between iterations. The algorithm terminates

when the norm of the change in the global variable is less than a given threshold ϵ,

||zj+1 − zj ||22/||zj ||22 < ϵ (6.31)

The steps of the proposed collaborative DoA estimation approach, CDoAE, are pre-

sented below,
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Algorithm 2 CDoAE

Step 1: Initialize parameters, γ0
n, β

0
n, µ

0
n,Σ

0
n, an, bn, cn, dn, at each node n,

Step 2: Initialize global variable,z0, in master node

Step 3: Update hidden variable parameters,µj+1
n and Σj+1

n , according to equation

(6.14) and equation (6.15) at each node.

Step 4: Update βj+1
n according to equation (6.16) at each node.

Step 5: Update γj+1
n according to equation (6.24) at each node.

Step 6: Gather the weighted local node parameters, γj+1
n and uj

n, in the master node

Step 7: Update global variable, zj+1 according to equation (6.29)

Step 8: Distribute global variable zj+1 to local nodes.

Step 9:Update dual ADMM variable, uj+1
n at each node according to equation (6.30)

Step 10: Check if the algorithm satisfies the stopping criteria according to equation

(6.31)

Step 11: If not converged go back to Step 3.

6.2 Computational Complexity of CDoAE

In this part, computational complexity of the CDoAE method is investigated. CDoAE

method is composed of two main parts, SBL and ADMM respectively. Computational

complexity can be expressed in terms of the number of complex multiplications for

each of these methods. The complexity of CDoAE is approximately the sum of the

complexity of each algorithm given in [39], and [40] and it is given in Table 6.1.

K is the number of points used in spatial spectrum, and Mn is the number of array

elements in the nth array.

Table 6.1: Total number of multiplication per iteration for SBL, ADMM and CDoAE

Total number of multiplication per iteration

SBL O{2K3 + 6K2Mn}

ADMM O{K3}

CDoAE O{3K3 + 6K2Mn}
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6.3 Parameter Exchange Between Master and Local Nodes

In this section, the number of variables exchanged between the master and slave nodes

is discussed. It is assumed that, spatial spectrum is divided into K points and there

are N sensor arrays with M elements.

In the proposed algorithm, there are two types of variable transfers. One is the param-

eter transfer to the master node from the local nodes. The other is the global variable

transfer to the local nodes.

Local node n transfers Kx1 vector vj+1
n to the master node which is given below,

vj+1
n = wn ⊙ (γj+1

n + 1/ρuj
n) (6.32)

Then, the total number of variables transferred from the local nodes to the master

node, VLM , becomes,

VLM = J(N − 1)K (6.33)

where J is the number of iterations.

After updating the global variable at the master array, it is transferred back to the local

nodes. The total number of parameter transfer for this stage, VML, is,

VML = J(N − 1)K (6.34)

Therefore, the grand total for the parameter exchange,VT , can be given as,

VT = VLM + VML = 2J(N − 1)K (6.35)

It is possible to decrease the number of local to master variable transfer, VLM , with

a small performance degradation. This may be especially important for local nodes

which are power constrained like the IoT devices [41]. In the following section, a

method for this purpose is presented.
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6.3.1 Transferred Variable Reduction Method

Transferred Variable Reduction (CDoAE-TVR), is proposed to reduce the number of

variables transferred from the local nodes to the master node with a small sacrifice

on the achieved performance. TVR is based on the observation that as the iterations

continue, the difference between vj+1
n and vj

n decreases. Especially the change in

some of the elements of vn become smaller and they can be ignored. Therefore, only

the elements with large differences are transferred to the master node.

Hence, local nodes transfer Rx1 (R <= K + 1) vector, v̄n
j+1, instead of Kx1 vec-

tor, vj+1
n . Let g be the scalar which has the encoded element existence information

within v̄n
j+1. Note that this encoding can be easily done in binary representation. An

example is g = [1, 1, 0, ..., 0, 0, 1], which represents that first two elements of v̄n
j+1

are transmitted in a eight element vector. g is set as the last element of v̄n
j+1. The

remaining elements of v̄n
j+1 are selected as in equation (6.36), where tv denotes the

predetermined threshold.

v̄n
j+1
r =


vj+1
nr ,

∣∣∣∣vj+1
nr − vjnr
vjnr

∣∣∣∣ > tv

do not transmit, vj+1
nr o.w.

,

r = 1, 2, ...R− 1

(6.36)

After obtaining the parameter vector, v̄n
j+1, it is transferred to the master array for

the remaining steps of the proposed method. The proposed method, CDoAE, and the

reduced variable transfer method, CDoA-TVR, are compared in the Simulations part

both in terms of the performance and the number of transferred variables.
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CHAPTER 7

SIMULATIONS

7.1 Simulations

In this section, the performances of the proposed algorithms are investigated. In the

first part, performance of the CDoAE and CDoAE-TVR methods are compared with

Decentralized MUSIC [9] and non-coherent Cramer Rao Bound (CRB) with uniform

rectangular array geometries. The reason that Decentralized MUSIC is chosen as a

benchmark algorithm is that, it does not require any synchronization between sen-

sor nodes and it does not transmit the raw data, in the Decentralized MUSIC, the

local nodes share only the covariance matrices. On the other hand, there are some

limitations that Decentralized MUSIC can not overcome such as array geometry de-

pendency for coherent source DoA estimation and the sensor positions of the local

nodes must be known at the master node. Therefore, for the Decentralized MUSIC

algorithm, it is assumed that the master node has the sensor position information of

the other nodes and uniform rectangular arrays are used in the simulations to satisfy

the geometry requirement of the Spatial Smoothing algorithm where Decentralized

MUSIC algorithm uses for the coherent source DoA estimation. On the other hand,

CDoAE is not dependent on any special array geometry even in case of coherent

sources and does not require the sensor position information of the other nodes in the

master node.

In the second part, performance of the CDoAE method is investigated for randomly

distributed planar arrays. The purpose of this experiment is to show the effectiveness

of the proposed CDoAE method for randomly distributed arrays and to prove the

non-geometry dependent property of the CDoAE algorithm. To achieve this purpose,
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performance comparison is obtained with the randomized array structures. Coherent

and Non-coherent source scenarios in the first part is repeated with the new array

structure and RMSE-SNR curves are obtained for CDoAE, Decentralized MUSIC

and non-coherent Cramer Rao Bound.

7.1.1 Performance Analysis for Uniform Planar Arrays

In this part, CDoAE and CDoAE-TVR, are investigated for different scenarios which

include single source, multiple source, coherent and non-coherent sources with URA

geometry. Proposed methods are compared with Decentralized MUSIC [9] and non-

coherent Cramer Rao Bound (CRB), [42], [43]. Non-coherent CRB [42] used in the

simulations can be given as,

CRB =

(
N∑
n=1

CRBn
−1

)−1

(7.1)

where CRBn denotes the CRB obtained for the nth sensor node.

In the scenarios, two uniform rectangular array(URA) are constructed as in Figure

7.1 where local arrays and the direction of incoming signal are shown. Since decen-

tralized MUSIC algorithm requires Spatial Smoothing [10] for coherent sources, two

rectangular arrays with different orientations are selected. Note that CDoAE is not

dependent on any special array geometry even in case of coherent sources. Decen-

tralized MUSIC needs to know the array element positions for both master and local

arrays. CDoAE does not need to know array element positions in the master node.

Both methods do not need to know gain/phase mismatches between the arrays. De-

centralized MUSIC is not an iterative method and only transfers covariance matrix

elements to the master node. In the simulations, each array has a constant gain/phase

coefficient different than the other arrays. Note that this does not pose any problem

for DoA estimation in the individual arrays but array outputs can not be combined

simply due to unknown constant gain/phase factors.
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Figure 7.1: Two sensor nodes with URA with a separation of D distance are shown

in addition to source direction represented with a dashed line.

In Figure 7.1, sensor arrays are positioned with a distance, D, between them. D

can be any value and it need not to be known for both CDoAE and Decentralized

MUSIC. Dashed lines show the direction of single source for both arrays. Note that

the source direction is the same for both sensor nodes since it is represented in the

global coordinate system. The orientation of arrays are different with respect to the

source direction. Therefore, DoA performance for each array will be different and

CDoAE is expected to enhance single array performances.

7.1.1.1 Single Source Scenario

In this case, the DoA of the signal source is chosen as 26.754 degrees in azimuth

and 90 degrees in elevation. Moreover, the arrays are assumed as in the same plane

with the source and DoA estimation is performed only in azimuth angle. Performance

of the proposed algorithm is compared to the Decentralized MUSIC and SBL algo-
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rithms performed in the local arrays as well as the non-coherent CRB in (7.1) over the

RMSE-SNR curves. Simulations are conducted with SNR levels ranging from -5dB

to 20dB, and 200 iterations are performed at each SNR level to obtain RMSE values.

Table 7.1: Simulation parameters for Single Source Scenario

Simulation Parameters

Number of arrays 2

SNR -5dB to 20dB

Number of sources 1

Source directions(θ) 26.754 degrees

Source directions(ψ) 90 degrees

K 60

Number of iteration per SNR 200

In Figure 7.2 weight function in equation (6.26) for each array is shown.
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Figure 7.2: Weight functions for Array 1 and Array 2

In Figure 7.3, RMSE-SNR curves for the proposed algorithm and Decentralized MU-

SIC algorithm as well as the non-coherent Cramer Rao Bound(CRB) [42] are shown.

Moreover, CDoAE is also compared with a method which we named as "SBL-AVG",

where the local SBL results are averaged in the master node as follows,

γavg =
1

N

N∑
n=1

γJn

n , (7.2)

where γn
Jn represents the local γn estimates obtained at the nth node in the J thn

iteration for the local SBL estimations.
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Figure 7.3: RMSE-SNR curves for Decentralized MUSIC, CDoAE, SBL, SBL-AVG

and non-coherent CRB for single source.

As it can be seen in the figure, performances of both methods improves with the in-

crease in SNR level as expected and approaches to the CRB. The performance of the

CDoAE and Decentralized MUSIC algorithms are similar to each other for single

source. They perform significantly better than single array SBL result. In addition,

performance of the SBL-AVG is worse than CDoAE since CDoAE uses the global

parameter, zj , to update the local γn at each iteration which improves the local esti-

mates significantly at Hidden Variable Update step given in Chapter 6.

In the following scenarios, simulations are extended for multiple uncorrelated and

multiple coherent source cases by keeping the array structures similar to the single

source scenario.
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7.1.1.2 Multiple Uncorrelated Source Scenario

In this case, two uncorrelated sources with DoA angles, θ1 = 26.754 and θ2 = 76.456

degrees in azimuth and 90 degrees in elevation are considered. Again, DoA estima-

tion is performed in only azimuth direction. In Figure 7.4, source directions with re-

spect to the sensor nodes one and two are given. Dashed lines show the directions of

multiple sources for both arrays. In the simulations for multiple uncorrelated source

scenario, SNR levels and the number of iterations are the same as in the previous

scenario.

Figure 7.4: Two sensor nodes with URA with a separation of D distance are shown

in addition to source directions represented with a dashed line.

In the Figure 7.5, RMSE-SNR curves for both algorithms are given. CDoAE performs

better than the Decentralized MUSIC for all SNR levels and it approaches to the

non-coherent CRB. The gap between CDoAE and the single array SBL increases for

multiple sources.
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Table 7.2: Simulation parameters for Multiple Uncorrelated Sources Scenario

Simulation Parameters

Number of arrays 2

SNR -5dB to 20dB

Number of sources 2

Source directions(θ)
26.754 degrees

76.456 degrees

Source directions(ψ)
90 degrees

90 degrees

Coherent sources No

K 60

Number of iteration per SNR 200

Figure 7.5: RMSE-SNR curves for Decentralized MUSIC, CDoAE, SBL-AVG and

non-coherent CRB for multiple uncorrelated sources.
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7.1.1.3 Multiple Coherent Source Scenario

In this case, the scenario in 7.1.1.2 is modified to have two coherent sources with

the same DoA angles as in Figure 7.4. DoA estimation is performed in only azimuth

direction. Also, the effect of decreasing the number of transferred parameters in

CDoAE performance is investigated. CDoAE-TVR is compared with the original

CDoAE where all the parameters are transferred to the master node and Decentralized

MUSIC algorithm. For CDoAE-TVR method, two threshold values, tv, in equation

(6.32) are selected as tv = 0.01 and tv = 0.02 and the results are denoted as CDoAE-

TVR(a) and CDoAE-TVR(b) respectively. The experiment results given in Figure 7.6

are obtained.

Table 7.3: Simulation parameters for Multiple Coherent Sources Scenario

Simulation Parameters

Number of arrays 2

SNR -5dB to 20dB

Number of sources 2

Source directions(θ)
26.754 degrees

76.456 degrees

Source directions(ψ)
90 degrees

90 degrees

Coherent sources Yes

K 60

Number of iteration per SNR 200
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Figure 7.6: RMSE-SNR curves for Decentralized MUSIC, CDoAE, CDoAE-TVR(a),

CDoAE-TVR(b) and CRB for multiple coherent sources.

As it is expected, both Decentralized MUSIC and CDoAE methods perform slightly

worse than the uncorrelated scenario. However, the difference between Decentralized

MUSIC and CDoAE is larger due to the fact that Decentralized MUSIC must use

Forward-Backward Spatial Smoothing [10] and has array shrinkage problem whereas

CDoAE inherently can solve the case thanks to the characteristics of the SBL method.

The performance of the CDoA-TVR(a), where the threshold is chosen as tv = 0.01

is very close to the CDoAE. On the other hand, CDoAE-TVR(b), where we chose

the threshold tv = 0.02, has larger errors compared to the CDoAE. While CDoAE-

TVR(b) is better than Decentralized MUSIC at low SNR, its performance is degraded

at high SNR since decreasing the number of parameters transferred to the master node

generates larger error beyond a certain point.

In Figure 7.14, the percentage of the parameters transferred from the local nodes to the

master node is shown. It turns out that the number of transferred parameters is almost
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independent of the SNR level. This is due to the fact that most of the parameters are

transferred to the master node at the beginning of the iterations. This fact is more

obvious in Figure 7.8. The percentage of the total transferred variable is decreased

approximately %15 for CDoAE-TVR(a), where we set the threshold tv = 0.01 and

it is decreased %20 for CDoAE-TVR(b) with the threshold tv = 0.02 in equation

(6.36).

Figure 7.7: Percentage of average total number of shared variables from local nodes

to master node with CDoAE-TVR(a) and CDoAE-TVR(b)

In Figure 7.8, the number of transferred variables at each iteration is given for both

CDoAE-TVR(a) and CDoAE-TVR(b). As it can be seen, the the number of trans-

ferred variables generally decreases as the iterations continues due to the convergence

of the methods. At the beginning of the iterations, the algorithm generates an almost

uniform spatial spectrum where the variance of the parameters decreases. This in term

generates a sharp decrease in the number transferred parameters as shown in Figure

7.8. Then algorithm converges to the true spatial spectrum increasing the number of

transferred parameters.
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Figure 7.8: Percentage of total number of shared variables from local nodes to master

node with CDoAE-TVR(a) and CDoAE-TVR(b) for each iteration

7.1.2 2D DoA Estimation for Multiple Coherent Sources

In this case, the scenario in 7.1.1.3 is modified to observe the performances of the

CDoAE and Decentralized MUSIC algorithms for 2D DoA estimation problem. In

the simulations, azimuth angles of the sources, θ1 and θ2 are selected as 26.754 de-

grees and 76.456 degrees respectively. Moreover, the elevation angles of both sources,

ψ1 and ψ2, are selected as 80.567 degrees. Performance of CDoAE is compared with

Decentralized MUSIC and non-coherent CRB [42] for 2D DoA estimation [44] in

both azimuth, θ, and elevation, ψ, angles separately. The experiment results are given

in Figure 7.9.

In Figure 7.9, RMSE-SNR performances of the algorithms in azimuth, θ, estimation

is represented by solid lines and the elevation, ψ, estimation performances are repre-

sented with dashed lines.
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Table 7.4: Simulation parameters for Multiple Coherent Sources Scenario

Simulation Parameters

Number of arrays 2

SNR -5dB to 20dB

Number of sources 2

Source directions(θ)
26.754 degrees

76.456 degrees

Source directions(ψ)
80.576 degrees

80.576 degrees

Coherent sources Yes

K 200

Number of iteration per SNR 50

Figure 7.9: RMSE-SNR curves for Decentralized MUSIC, CDoAE and non-coherent

CRB for 2D DoA estimation.
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As it can be seen in Figure 7.9, similar results to the scenario in 7.1.1.3 are obtained in

both azimuth and elevation estimation performances. Decentralized MUSIC suffers

from the array shrinkage problem whereas CDoAE inherently can solve the case and

approached to the non-coherent CRB in both azimuth and elevation.

7.1.3 Performance Analysis with Random Arrays

In this part, the simulations for multiple source scenarios in the previous part is re-

peated with random array geometry structures. Since the proposed CDoAE algorithm

is not dependent to any special array geometry, simulations are conducted for non-

coherent and coherent source scenarios to show the efectiveness of the CDoAE algo-

rithm in random array geometry structure. Proposed CDoAE method is again com-

pared with Decentralized MUSIC [9] and non-coherent Cramer Rao Bound (CRB).

In the scenarios, two random arrays are constructed as in Figure 7.10 and 7.11 where

local arrays and the direction of incoming signal are shown. While constructing the

random arrays, element positions of the Uniform Rectangular Array is perturbed by

random displacements with a Gaussian distribution with mean, µ = 0 and variance,

σ2 = 0.4λ/2 to keep the array aperture similar to the previous scenarios. In the simu-

lations, each array has a constant gain/phase coefficient different than the other arrays.

Note that this does not pose any problem for DoA estimation in the individual arrays

but array outputs can not be combined simply due to unknown constant gain/phase

factors.
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Figure 7.10: Sensor node one is shown and source directions represented with dashed

line
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Figure 7.11: Sensor node two is shown and source directions represented with dashed

line
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7.1.3.1 Multiple Uncorrelated Source Scenario

In this case, two uncorrelated sources with DoA angles, θ1 = 26.754 and θ2 = 76.456

degrees are considered. In Figure 7.10 and 7.4, source directions with respect to the

sensor nodes one and two are given. Dashed lines show the directions of multiple

sources for both arrays. In the simulations for multiple uncorrelated source scenario,

SNR levels and the number of iterations are the same as in the previous scenario.

Table 7.5: Simulation parameters for Multiple Uncorrelated Sources Scenario with

Randomized Array Geometry

Simulation Parameters

Number of arrays 2

SNR -5dB to 20dB

Number of sources 2

Source directions(θ)
26.754 degrees

76.456 degrees

Source directions(ψ)
90 degrees

90 degrees

Coherent sources No

K 60

Number of iteration per SNR 200
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Figure 7.12: RMSE-SNR curves for Decentralized MUSIC, CDoAE, SBL and CRB

for multiple uncorrelated sources.

In the Figure 7.12, RMSE-SNR curves for the proposed algorithm and Decentralized

MUSIC algorithm as well as the non-coherent Cramer Rao Bound(CRB) [42] are

given. As it can be seen in the figure, performances of both methods improves with

the increase in SNR level as expected and approaches to the CRB. CDoAE performs

better than the Decentralized MUSIC for all SNR levels and it approaches to the non-

coherent CRB.

7.1.3.2 Multiple Coherent Source Scenario

In this case, the scenario in 7.1.2.1 is modified to have two coherent sources with

the same DoA angles as in Figure 7.10 and 7.11. Also, the effect of decreasing the

number of transferred parameters in CDoAE performance is investigated. CDoAE-

TVR is compared with the original CDoAE where all the parameters are transferred

to the master node and Decentralized MUSIC algorithm. For CDoAE-TVR method,
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two threshold values, tv, in equation (6.32) are selected as tv = 0.01 and tv = 0.02

and the results are denoted as CDoAE-TVR(a) and CDoAE-TVR(b) respectively. The

experiment results given in Figure 7.13 are obtained.

Table 7.6: Simulation parameters for Multiple Coherent Sources Scenario with Ran-

domized Array Geometry

Simulation Parameters

Number of arrays 2

SNR -5dB to 20dB

Number of sources 2

Source directions(θ)
26.754 degrees

76.456 degrees

Source directions(ψ)
90 degrees

90 degrees

Coherent sources Yes

K 60

Number of iteration per SNR 200
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Figure 7.13: RMSE-SNR curves for Decentralized MUSIC, CDoAE, CDoAE-

TVR(a), CDoAE-TVR(b) and CRB for multiple coherent sources.

As it is expected, Decentralized MUSIC algorithm performs worse than the Uniform

Rectangular Array scenarios due to the fact that the Spatial Smoothing algorithm re-

quiring a special array geometry. On the other hand, CDoAE methods perform better

DoA estimations than the Decentralized MUSIC algorithm at all SNR levels. More-

ovoer, the performance of the CDoAE methods increases as the SNR level increases

as expected. In addition, the performance of the CDoA-TVR(a), where the threshold

is chosen as tv = 0.01 is very close to the CDoAE. On the other hand, CDoAE-

TVR(b), where we chose the threshold tv = 0.02, has larger errors compared to the

CDoAE.

In Figure 7.14, the percentage of the parameters transferred from the local nodes to the

master node is shown. It turns out that the number of transferred parameters is almost

independent of the SNR level. This is due to the fact that most of the parameters are

transferred to the master node at the beginning of the iterations. This fact is more
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obvious in Figure 7.8. The percentage of the total transferred variable is decreased

approximately %15 for CDoAE-TVR(a), where we set the threshold tv = 0.01 and

it is decreased %25 for CDoAE-TVR(b) with the threshold tv = 0.02 in equation

(6.36).

Figure 7.14: Percentage of average total number of shared variables from local nodes

to master node with CDoAE-TVR(a) and CDoAE-TVR(b)
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CHAPTER 8

CONCLUSION

8.1 Conclusion

This thesis investigates the subject of DoA estimation in distributed sensor array net-

works. While there are a variety of possible configurations for distributed sensor

arrays, this study focuses primarily on a framework consisting of a master and lo-

cal sensor arrays, each of which is capable of independently evaluating DoA and

transferring specific parameters to the master array. It is known that the DoA esti-

mation performances are effected by some limitations for distributed sensor arrays

such as phase and frequency mismatch between the arrays, coherent sources and hav-

ing sensor position information in master array. Therefore, in this thesis, a novel

method called Collaborative DoA Estimation (CDoAE), which is aimed for use with

distributed sensor arrays is presented.

In the CDoAE algorithm, the local SBL parameters are used in the ADMM frame-

work to obtain a global solution by minimizing a common cost function. This solution

is then transmitted back to the slave nodes where the slave node improves its local es-

timate with this new updated parameter set. This process is repeated in an iterative

manner so that the final solution is obtained when the process converges or maximum

number of iterations is exceeded. Therefore, CDoAE does not require gain/phase

matching and frequency matching. It is not necessary to provide sensor location in-

formation from the local arrays to the master array since only a set of parameters are

transferred between the master array and local arrays.

Furthermore, the CDoAE-Transmitted Variable Reduction (CDoAE-TVR) approach

is presented to reduce the quantity of data that must be transmitted from the local
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arrays to the master array. A variable selection algorithm is employed in CDoAE-

TVR to decrease the number of transferred variables by only transferring variables

with higher value changes than the pre-determined threshold.

Moreover, in the simulations, it is shown that CDoAE is effective for DoA estimation

and improves the local performances significantly. Moreover, performance of the

CDoAE is compared with the Decentralized MUSIC algorithm and it is shown that

the CDoAE performs better DoA estimations than Decentralized MUSIC algorithm

especially in coherent source cases. In addition, the proposed CDoAE-TVR, is an

alternative method to decrease the number of parameters transferred to the master

node performs significant savings with a small performance degradation. This is

especially useful for power and bandwidth constrained IoT systems.

As future work, the CDoAE and CDoAE-TVR algorithms can be improved for the

cases where there exist gain/phase mismatch between the elements of the local sensor

arrays or for the cases if the sensor positions are known with an error. In both cases,

the steps of the proposed CDoAE and CDoAE-TVR algorithms can be modified to

estimate the gain/phase mismatches as well as the sensor position errors.

Moreover, using a grid based approach may effect the estimation performance neg-

atively, especially if the gird size chosen larger. In those cases, the true DoAs may

yield far away from the selected grid points for the algorithms, which is also called

as off-grid problem, an it may occur in the real world applications as well. For those

cases, signal model used in the SBL method can be extended to include the off-grid

angle offset in the Bayesian Model. With this update in the SBL data model, proposed

CDoAE and CDoAE-TVR methods can be extended for the off-grid source direction

scenarios.
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