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ABSTRACT

DISTANCE MATRICES AS PROTEIN REPRESENTATIONS

Dinç, Mehmet

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. M. Volkan Atalay

SEPTEMBER 2022, 56 pages

Representing protein sequences is a crucial problem in the field of bioinformatics

since any data-driven model’s performance is limited by the information contained

in its input features. A protein’s biological function is dictated by its structure and

knowing a protein’s structure can potentially help predict its interactions with drug

candidates or predict its Gene Ontology (GO) term. Yet, off-the-shelf protein repre-

sentations do not contain such information since only a small fraction of the billions

of known protein sequences have experimentally determined structures, as the cost

of running such experiments is quite high. A newly introduced neural network-based

structure prediction model, AlphaFold, claims to be able to predict protein struc-

tures with high accuracy. In this study, two-dimensional distance matrices gener-

ated from AlphaFold structure predictions are used as input features while modeling

two different bioinformatics problems; drug-target interaction (DTI) prediction and

Gene Ontology term prediction. For the DTI prediction problem, a state-of-the-art

model which already uses two-dimensional protein features, is employed as a base-

line. Then, the effect of distance matrices is observed through ablation studies. More-

over, the same model is adapted in order to tackle the GO prediction problem and its

success is compared with off-the-shelf protein representations.
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Keywords: protein distance matrices, drug-target interaction prediction, gene ontol-

ogy prediction
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ÖZ

UZAKLIK MATRİSLERİNİN PROTEİN REPREZANTASYONU OLARAK
KULLANIMI

Dinç, Mehmet

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. M. Volkan Atalay

Eylül 2022 , 56 sayfa

Herhangi bir veriye dayalı modelin performansı, girdi özniteliklerinde yer alan bilgi-

lerle sınırlı olduğundan, protein dizilerini temsil etmek biyoinformatik alanında çok

önemli bir sorundur. Bir proteinin biyolojik işlevi yapısı tarafından belirlenir ve bir

proteinin yapısını bilmek, potansiyel olarak ilaç adaylarıyla etkileşimlerini tahmin et-

meye veya Gen Ontolojisi (GO) terimini tahmin etmeye yardımcı olabilir. Yine de,

mevcut protein gösterimleri bu tür bilgileri içermemektedir zira bilinen milyarlarca

protein dizisinin yalnızca küçük bir kısmı deneysel olarak belirlenmiş yapılara sahip-

tir. Bunun nedeni de bu tür deneyleri yürütmenin maliyetinin oldukça yüksek olma-

sıdır. Yeni tanıtılan bir sinir ağı tabanlı yapı tahmin modeli AlphaFold, protein yapı-

larını yüksek doğrulukla tahmin edebildiğini iddia etmektedir. Bu çalışmada, Alpha-

Fold yapı tahminlerinden üretilen iki boyutlu uzaklık matrisleri, iki farklı biyoinfor-

matik problemi modellenirken girdi özniteliği olarak kullanılmıştır; ilaç-hedef etkile-

şimi tahmini ve Gen Ontolojisi tahmini. Ilaç-hedef etkileşimi tahmin problemi için,

halihazırda iki boyutlu protein özelliklerini kullanan son teknoloji bir model, temel

olarak kullanılıştır. Daha sonra ablasyon çalışmaları ile uzaklık matrislerinin etkisi
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gözlemlenmiştir. Ayrıca, aynı model, GO tahmin probleminin üstesinden gelmek için

uyarlanmıştır ve başarısı, hazır protein temsilleriyle karşılaştırılmıştır.

Anahtar Kelimeler: protein uzaklık matrisleri, ilaç-hedef etkileşimi tahmini, gen on-

tolojisi tahmini
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CHAPTER 1

INTRODUCTION

Data-driven methods that are also called machine learning methods are becoming

increasingly popular in bioinformatics similar to other various fields. Nowadays,

data-driven methods are widely used in tasks such as virtual screening, and protein

function prediction. These machine learning methods, especially deep learning meth-

ods which have a high number of learnable parameters, require a significant amount

of data in order to perform reasonably. Each day, the number of available data in

the world grows exponentially and biology is no different. With efforts such as the

Human Genome Project [1], the cost of genome sequencing is drastically reduced.

As of August 2022, there are 226,771,948 proteins available in UniProt [2]. How-

ever, these numbers themselves do not mean much. For a machine learning model

to thrive, the information contained in the input is as important as the amount of

available data. Yet, a protein sequence (also known as the primary structure) itself is

simply a string of characters (amino acids), and unable to represent a lot of, possibly

crucial, information about a protein. This situation is a limiting factor for the per-

formance of machine learning algorithms used in bioinformatics. To overcome this

problem, researchers proposed a plethora of different protein representations. Further

information about these methods is given in Chapter 2.

Proteins function by physically interacting with other molecules inside the cell. Such

protein-protein or protein-compound interactions are determined by the 3D shape of

the respective proteins and compounds. Therefore, knowing a protein’s 3D structure

massively helps when determining its interactions. However, the 3D structure of

a protein is hard to come by. Experimentally determining a protein’s structure is

an expensive and tedious task. Despite its importance and the recent advancements
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in X-ray crystallography [3], only 25,984 proteins in UniProt have experimentally

determined structures. This amounts to less than 1% of the proteins available in

UniProt.

To fill this gap, many researchers proposed various methods that can predict a pro-

tein’s structure from its amino acid sequence. In order to assess these methods, Criti-

cal Assessment of protein Structure Prediction (CASP) is founded in 1994 [4]. CASP

is a protein structure prediction challenge taking place every two years. In the most

recent CASP round, CASP14, AlphaFold 2 massively outscored its opponents and

generated unexpectedly accurate predictions. According to scientists, this is a major

breakthrough that would majorly impact related subfields of biology [5]. While being

far from perfect, it is believed that AlphaFold’s predictions might be good enough

when experimentally determined structures are unavailable.

Our research was conducted with the goal of answering the question of whether these

predictions could be helpful in solving bioinformatics problems or not. In order to

do so, the distance matrices constructed using AlphaFold’s predictions are employed

to tackle two prevalent problems: the drug-target interaction (Virtual Screening) pre-

diction and the Gene Ontology term (protein function) prediction. First, to unlock

the potential of distance matrices, a convolutional network, which was already built

to extract features from multi-channel 2D matrices, is adapted from an in-house pub-

lication. By running ablation studies, the significance of distance matrices and their

potential to further improve existing successful methods is shown. Then, the same

method is used on GO term prediction. Again, the importance of distance matrices

is made evident by ablation studies. However, our method is shown to underperform

when compared to different off-the-shelf methods run on the same datasets, some-

thing for which a possible explanation is given.

This thesis is structured in the following way. In Chapter 2 related work is presented.

In Chapter 3, the construction of input protein feature matrices is explained, along

with the details of the deep neural network architecture used in this study. The appli-

cation of our method to drug-target interaction prediction is explained in Chapter 4,

with a literature review on the subject. In Chapter 5, our attempt at applying our

method to Gene Ontology term prediction is explained, along with a comparison to

2



an external method and a literature survey. Finally, In Chapter 6, this thesis is con-

cluded with final remarks and possible future directions.
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CHAPTER 2

RELATED WORK

While the distance matrices used in this study are generated from 3D structure predic-

tions, it is not the only way of generating distance matrices for proteins with unknown

3D structures. Direct prediction of protein residue distance matrices (also referred to

as distance maps) is a heavily studied subject as it might be considered as a simplified

version of protein structure prediction problem [6]. Moreover, distance matrices are

not the only way of representing protein features. In this chapter, literature about both

the prediction of distance matrices and alternative protein representation methods is

presented.

Most of the methods mentioned below use Multiple Sequence Alignment (MSA)

based methods such as covariance matrix, precision matrix, etc. as input features

to their prediction models. Researchers also resort to non-coevolutionary features

such as position-specific scoring matrix (PSSM) and solvent accessibility.

Xu et al. used a neural network with several ResNet [7] blocks in order to predict

protein distance matrices [8]. However, instead of using regression, they created 25

bins of 0.5Å and tackled the problem as a multi-class classification problem. Ding

et al. took the generative modeling approach and proposed a Generative Adversarial

Network (GAN) based method that is called GANProDist [9]. DeepDist, proposed

by Wu et al., is another method that uses deep residual convolutional networks [10].

What is significant about this work is authors trained their model by using the multi-

task learning approach. DeepDist is trained to predict a real-value distance matrix and

a multi-class distance matrix (where distances are binned, similar to [8]). Authors

claim that this method improves the performance over only predicting the real-value

distance matrix. In their work, Rahman et al. showed more features are not always
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mean better results. According to the authors, more features bring extra noise and

complicate things for the prediction model. By reducing the number of features fed

to the model (compared to previous work), they achieved better predictions [11].

Protein contact maps are similar to distance maps. Instead of showing the actual

distance between each residue, contact maps only show whether two residues are in

contact or not. A pair of residues are considered to be in contact if their distance is be-

low a certain threshold, usually 9Å. Contact maps are relatively easier to successfully

predict and thus even more studied than distance matrices [12, 13, 14].

An amino acid substitution scoring matrix is a 20 × 20 matrix that represents the

rates at which various amino acids in proteins are being substituted by other amino

acids over time [15]. Values contained in these matrices can be used to generate 2D

representations of protein sequences, as shown in Figure 3.2. Most of these matri-

ces are available in AAIndex [16]. Saini et al. proposed a k-separated bigram (a

pair of amino acids) technique that represents bigram transition probabilities using

the position-specific scoring matrix (PSSM) [17]. The number k determines the spa-

tial separation between the amino acids in the bigram and does not have a predefined

optimum value. Pseudo amino acid composition (PAAC) [18], and its successor am-

phiphilic pseudo amino acid composition (APAAC) [19] are two prevalent protein

representations. Both representations make use of the physicochemical properties of

amino acids and their compositions.

Since protein sequences are represented as strings of letters, there are a lot of concep-

tual similarities -and differences- between proteins and human language [20]. This

inspired bioinformaticians to adapt Natural Language Processing (NLP) methods to

proteins. By using tricks like treating k-mers as words or sequences as sentences,

researchers were able to use famous NLP methods like word2vec [21], doc2vec [22],

BERT [23] and others [24, 25, 26, 27, 28, 29].
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CHAPTER 3

PROTEIN REPRESENTATIONS AND DEEP LEARNING ARCHITECTURE

The architecture used in this study is heavily adopted from MDeePred [30]. MDeePred

uses proteochemometric modelling, meaning both the protein and the compound fea-

tures are fed to the system. In MDeePred, compounds are represented by circular

molecular fingerprints (ECFP4). Proteins, however, are represented by multi-channel,

2D feature matrices. This made the architecture used in MDeePred suitable for this

study, as the distance matrices are two-dimensional and can simply be appended as

another channel for protein features.

3.1 Distance Matrices

A protein distance matrix is an N ×N matrix that shows the distance between every

amino acid residue pair in a protein structure, where N is the length of the protein

sequence. A protein distance matrix is calculated by measuring the distance between

Ca atoms of each residue. It is a reduced (2D) version of the actual 3D atomic struc-

ture of a protein, yet there are several advantages of using distance matrices instead

of the actual 3D structures. First of all distance matrices are invariant to rotations and

translations. Second, they require less computation to be processed. Finally, there

exist a plethora of machine learning methods, especially from the computer vision

field, that excel at handling 2D data.

Structures used in our work are acquired from “AlphaFold Protein Structure Database

(AlphaFold DB)” [31], where predicted structures of whole proteomes of certain or-

ganisms, including humans are hosted. Downloaded structures are in PDB format

which is a textual file format describing the three-dimensional structures of molecules
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held in the Protein Data Bank. Then, freely-available PConPy [32] software is used to

generate 2D distance matrices from the PDB files. Figure 3.1 visualizes this pipeline.

Figure 3.1: Pipeline of distance matrix generation. Using only a protein sequence,

AlphaFold 2 outputs a PDB file showing the predicted 3D structure. Then, PConPy

uses these 3D coordinates to create a 2D distance matrix.

3.2 Protein feature matrices taken from AAindex database

There are several different matrices used for protein representation. First of them is

2D encoding matrices, generated in order to act as a base input channel. These 2D en-

coding matrices do not have any chemical/physical information packed in them. Their

sole purpose is to represent “each possible amino acid pair in a sequence matrix” with

a unique integer. This process is show in the part ’A’ of the Figure 3.2.

In order to represent the proteins using biological, chemical and physical informa-

tion, four amino acid matrices are selected from the AAindex [16]. First two are

SIMK990101 [33] and ZHAC000103 [34], both of which bring in structural informa-

tion about the protein, shown in part ’D’ of the Figure 3.2. Third one is the BLO-

SUM62 [35] scoring matrix that brings evolutionary information, as in part ’B’ of

Figure 3.2. The last of these matrices is the Grantham matrix—GRAR740104 [36]

8



which represents the physiochemical property differences between amino acids over

composition, polarity and molecular volume, again shown in Figure 3.2 under part

’c’. These features are further summarized in table 3.1

Figure 3.2: Feature matrix generation for a sample sequence "MARV". Adapted from

[30]

Table 3.1: Protein Feature Matrices

AAIndex Database ID Feature Type Name of the Matrix

ZHAC000103 Structure Based Environment-dependent residue contact energies

BLOSUM62 Evolutionary Amino acid substitution

GRAR740104 Physicochemical Chemical distance

SIMK990101 Structure-based Distance-dependent statistical potential

Protein sequences have various lengths. The shortest protein sequence in humans is

two amino acids long, whereas the longest is 35,991. However, convolutional neu-

ral networks require fixed-size inputs to function properly. Thus, protein sequences

needed to be cut or padded to a certain length. When deciding on this length, there is

a trade-off between information and computation time. As the length increases, the

9



amount of information about the protein that is captured increases. However, since

the matrices are 2D, their size grows quadratically (N2). Protein feature matrices used

in this study are modified to have the shape of 500 × 500. Proteins that are shorter

than 500 AAs are zero-padded equally from both sides, whereas the longer proteins

are cropped equally from both sides as well. This process is further illustrated in

Figure 3.3.

Figure 3.3: I) The sequence "AR" is zero-padded from both sides to have the shape

of 4× 4. II) The sequence "ARNDQC" is cropped from both sides to have the shape

of 4× 4

3.3 Preliminaries for Deep Learning

A fully connected(FC) layer applies a linear transformation to the input vector by

multiplying it with a weight matrix.

y =
n∑

i=1

(xiwi) + b (3.1)

where y is the output of the FC layer and the x is the input. w represents the layer’s

weights and b represents the bias term. Fully connected layers are usually followed

10



by a non-linear transformation such as the Rectified Linear Unit(ReLU) [37] which

is defined as:

f(x) =

0 if x < 0

x if x ≥ 0
(3.2)

A convolutional layer is defined as:

S(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (3.3)

Where I is the 2D input and K is the 2D kernel with learnable parameters. S is

commonly referred as the feature map. Usually, this feature map is subjected to a

pooling function in order to reduce its size. Max Pooling [38] is a pooling operation

that calculates the maximum value of fixed size patches in a feature map.

Inception layer apply multiple convolutions with varying filter sizes simultaneously

in the same layer [39]. Aim of a inception layer is to allow neural network use the

most meaningful features coming from the parallel filters, instead of selecting a single

filter size and using it. Downside of inception layers is that they require significant

amount of computation.

3.4 Architecture Used in DTI Prediction

The model used in this task is a pairwise-input neural network built to achieve pro-

teochemometric modeling of the drug-target interactions. Target proteins first go

through a convolutional neural network that consists of 2 blocks, wherein each block,

convolution operation, ReLU activation, and max pooling is applied to the input, in

that order. The output of these blocks is then fed to the Inception layer. Finally, the

output of the inception module is flattened to be a 1D vector. On the other hand,

compounds that are 1024 dimensional ECFP4 fingerprint vectors pass through a net-

work with two fully connected layers, where each FC is followed by batch normal-

ization [40] and ReLU function. After both protein and the compound passes through
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their respective networks, the output of these networks is concatenated in order to

have a feature vector that includes information about both the protein and the com-

pound. This concatenated vector then passes through a network with two fully con-

nected layers, similar to the one that compounds pass through. Figure 3.4 shows the

overview of the model. The output of this whole network is a single number which

is the prediction for the binding affinity value for the input drug–target pair. The

model is trained to minimize the mean squared error (MSE) between the actual and

the predicted binding affinity values.

MSE = 1
n

n∑
i=1

(Yi − Ŷi)
2 (3.4)

where n is the number of drug-target pairs, Yi is the the real binding affinity values

for the ith input pair and Ŷi is the predicted value for the same input pair.

Figure 3.4: Architecture used in the study. Adapted from [30]
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3.5 Architecture Used in GO Prediction

The neural network model used in this task is quite similar to the one used in DTI pre-

diction. Since the GO term of a protein has nothing to do with compounds, the cor-

responding branch is removed from the network. As there are no compound features

to concatenate, the flattened output of the inception model is fed to three consecutive

fully connected layers. The model is optimized to minimize the cross entropy loss.

Cross entropy loss is defined as:

CE = −
C∑
i=1

Yilog(Ŷi) (3.5)

Where Yi is the ground truth, Ŷi is the output of the model and C is the number of

classes (GO terms).
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CHAPTER 4

DRUG-TARGET INTERACTION PREDICTION

4.1 Introduction

Drug-target interaction is the binding of a drug, a chemical substance, to a target

which in turn results in a change in the function of the target [41]. A drug is more

specifically defined in pharmaceutical terms as "a chemical substance, typically of

known structure, which, when administered to a living organism, produces a biologi-

cal effect" [42]. Target proteins also referred to as biological targets, are proteins and

nucleic acids inside a living organism bound by a drug.

There are thousands of possible targets in the human body. On the other hand, mil-

lions of different compounds are available in nature. Thus, it is virtually impossible

to exhaustively test every compound-target pair in-vitro. To this end, the field of Vir-

tual Screening (VS) was born. Virtual screening is a computational technique that

is used for filtering the possible drug candidates down to a feasible number that can

be synthesized and tested in wet labs. Virtual screening methods can be divided into

following three categories [41, 43, 44].

The first category consists of molecular docking approaches that used 3D structures

of compounds and proteins and run simulations in order to decide whether they would

bind or not [45, 46, 47, 48]. This approach is limited by the availability of 3D struc-

tures of proteins. However, recent advancements that inspired this study will possibly

have a positive impact in this field as well.

The second category is ligand-based methods. Ligand-based methods use only the

molecular proprieties of the compounds and do not take any information about the

15



target into account. They are based on the idea that molecules that bind to the same

proteins have similar properties. The biggest drawback of these methods is that their

performance suffers greatly when the targets have few or no known drugs [49, 50, 51].

The final category of methods, which also includes the method used in this study, are

called proteochemometric or chemogenomic methods. Unlike the ligand-based meth-

ods, both the compound and the target features are simultaneously used for modeling.

Since proteochemometric models do not suffer from the aforementioned drawbacks

of the other two categories, they are more popular [52, 53, 54, 55].

There is a wide variety of techniques when it comes to proteochemometric modeling.

Yu et al. used Random Forests and Support Vector Machines to tackle the DTI pre-

diction problem [56]. In their work, compounds were represented by descriptors such

as; topological descriptors, constitutional descriptors, topological charge indices, and

2D autocorrelations, whereas proteins were represented using structural and physico-

chemical descriptors such as; autocorrelation descriptors, amphiphilic pseudo-amino

acid composition and many others. DeepDTA is a deep learning model that predicts

not only whether a drug-target pair will interact or not but the strength of the interac-

tion (binding affinity) as well [57]. On the compound side, DeepDTA uses Simplified

Molecular-Input Line-Entry System (SMILES) strings, whereas the proteins are rep-

resented using their amino acid sequences. Similar to our study, it uses fixed length

inputs, therefore the sequences that are longer than this length are truncated, whereas

shorter sequences are zero-padded. By applying convolution to the protein sequence,

DeepDTA extracts local residue patterns. DeepConv-DTI is another deep neural net-

work that predicts binding affinity between drug-target pairs. Similar to DeepDTA,

protein sequences are fed to a convolutional neural network. Compounds, on the

other hand, are represented by binary fingerprints and fed to a fully connected net-

work. Outputs of both networks are then concatenated and used to predict binding

affinities [58]. EEG-DTI builds graph networks using multiple biological data types

(drug, protein, disease, side-effect). Then by applying graph convolutional networks,

they generate low-dimensional features of both the protein and the drugs. Using these

low-dimensional features, EEG-DTI predicts whether the input drug-target pair inter-

acts or not [59].
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4.2 Dataset

For drug-target interaction prediction, a reduced version of the popular Davis [60]

dataset is used. Davis and colleagues tested the interaction of 72 kinase inhibitors

against 442 kinases covering a significant portion of the human catalytic protein ki-

nome. Therefore, the dataset consists of 30,056 bioactivity values (Kd values).

In the Davis dataset, 20,931 out of 30,056 of the bioactivity values are recorded as

10 mM meaning no binding was observed in the primary screen, where ligands are

screened against the panel at a single concentration of 10 mM; that is, this value is

not the actual bioactivity value, but a placeholder number to indicate that there is no

binding at all. In a regression model, using these interactions is likely to lead to mis-

leading performance results, as the model can achieve low mean-error by predicting

every value around 10 mM. Therefore, these values are removed from the dataset, and

the remaining 9125 binding affinity values are named the Filtered Davis dataset.

Of the remaining 442 kinases, 95 of them have mutations. For this reason, their

predicted structures are not readily available in AlphaFold DB. Therefore, bioactivity

values involving said kinases are also removed from the dataset. The final dataset

consists of 6804 bioactivity values, 347 kinases, and 72 compounds.

As mentioned in chapter 3, protein sequences longer than 500 amino acids needed

to be shortened which causes information loss. Table 4.1 shows the distribution of

protein sequences by their length. As it is visible in the table, two thirds of the proteins

were cropped to a certain degree. Moreover, around 20% of the proteins lost at least

half of their sequences.

Table 4.1: Distribution of proteins in the DTI dataset by their length

length ≤ 500 500 < length ≤ 1000 length > 1000 Total

102 176 69 347
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4.3 Experiments

4.3.1 Method

Four different models with four different sets of input features were used in order

to measure the effect of distance matrices. The first model only used 2D encod-

ings. The second model used 2D Encodings and AAindex features (same combina-

tion with [30]). The third model used 2D encodings and distance matrices. Finally,

the fourth model used 2D encodings, AAindex features, and distance matrices.

Since each model had different features, they all went through individual hyperpa-

rameter optimization. As a result, each model has a different combination of learning

rate, number of neurons, mini-batch size, and dropout rate. Since this study measures

the impact of protein features, hyperparameters involving the compound branch of

the network remained untouched.

After the selection of hyperparameters, each model was run five times in order to

account for the stochasticity of the learning process. In order to evaluate the models,

a five-fold cross-validation approach was taken. In five-fold cross-validation, dataset

is split into 5 equal subsets. In each run of the model, one these subsets is used as a

test set and other four are used as a train set. The model is run 5 times and average of

these 5 runs are reported as the accuracy of the model. Folds are adapted from [30],

with the removal of unavailable proteins mentioned in the previous section.

4.3.2 Evaluation Metrics

The results of this study are evaluated in the context of two similar problems. The

first of these problems is predicting the binding affinity value between input drug-

target pairs. Binding affinity values are continuous; thus, suitable metrics must be

chosen. For this problem, results are reported using mean squared error (also the

objective function of the neural network), concordance index (CI), and the Spearman

rank correlation.

Concordance Index [61] measures whether the predicted binding affinity values of
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drug-target pairs are in the same order as the actual values. Such a metric can come

in handy when finding the optimal model that could find the best possible drug-target

pair, regardless of the correctness of the predicted binding affinity value. It is defined

as:

CI =
1

N

∑
yi>yj

h(ŷi − ŷj) (4.1)

where N is the number of pairs. yi and yj represent the actual affinity values, whereas

ŷi and ŷi represent the predicted affinity values. h(x) is a step function defined as:

h(x) =


1.0 if x > 0

0.5 if x = 0

0 if x < 0

(4.2)

The Spearman rank correlation rs is defined as the Pearson correlation coefficient

between the rank variables [62] and computed as follows: For a sample of size n, the

n raw scores Xi, Yi are converted to ranks R(Xi),R(Yi). Then covariance of these

rank variables cov(R(X),R(Y )) is divided by the standard deviations of the rank

variables σR(X) and σR(Y )

rs =
cov(R(X),R(Y ))

σR(X)σR(Y )

(4.3)

The second problem is modeled as a binary classification where binding/active drug-

target pairs are considered positive, whereas non-binding/inactive pairs are consid-

ered negatives. However, there is no universal binding affinity value that can separate

active and inactive pairs. Therefore results are recorded under three different bioac-

tivity threshold values:1 µM, 100 nM, and 30 nM. In order to evaluate these binary

results, Matthews Correlation Coefficient (MCC) [63] metric is used. MCC is defined

as:

MCC =
TP
N

− S × P√
PS(1− S)(1− P )

(4.4)
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P =
TP + FP

N
(4.5)

S =
TP + FN

N
(4.6)

N = TN + TP + FN + FP (4.7)

At any given threshold; TN (true negative) represents inactive pairs that are correctly

classified as such, TP (true positive) is the number of active pairs that are classified

correctly, FN (false negative) is the active pairs that are predicted as inactive, and

finally FP (false positive) is the number of inactive pairs that are classified as active

pairs.

4.3.3 Results

Table 4.2 shows the results of the model trained with 2D encodings only. Its purpose is

to serve as a baseline for future tests. Since the dataset adapted from MDeePred [30]

needed to be filtered due to data availability (as explained in the previous section),

it would not be fair to use the results reported in the paper. Thus, a model that uses

MDeePred features (2D encodings + AAindex matrices) is trained as well. Table 4.3

shows the results of this model. Then, in order to measure the effect of distance matri-

ces, a model is trained with the combination of 2D encodings and distance matrices.

Results are shown in table 4.4. Finally, to achieve the best possible result, a model

is trained using all features; 2D encodings, AAindex features, and distance matrices.

Results are shown in table 4.5. In each of the aforementioned tables, the first five rows

are individual runs, whereas the last row is the average value of these individual runs.

The average results of each model are also shown in table 4.6 for easier comparison.

The model trained with 2D encodings performs the worst. This is expected be-

cause 2D encodings’ sole purpose is to distinguish different amino acid pairs from

each other, and it does not contain any physical/chemical information. In the sec-

ond model, with the addition AAindex features, performance is improved. It has a

considerable increase in Concordance index and Spearman correlation and a decrease
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in MSE. This, again, is expected because by using substitution matrices, the model

is fed with more information. The third model, which uses 2D encodings and dis-

tance matrices, performed even better than the previous one. Compared to the second

model’s improvement over the baseline first model, the third model’s improvement

is almost twofold. Finally, the fourth model, where every available feature matrix is

combined, again shows improvement in every performance metric.

Table 4.2: Results of the model trained with 2D encodings.The first five rows shows

the individual runs and the last row is the average of these five individual runs.

Concordance Index Mean Squared Error Spearman Correlation MCC 1µM MCC 100nM MCC 30nM

0.691 0.622 0.527 0.337 0.465 0.430

0.684 0.623 0.526 0.330 0.457 0.421

0.688 0.623 0.530 0.337 0.452 0.429

0.688 0.627 0.520 0.329 0.453 0.453

0.690 0.613 0.528 0.321 0.473 0.450

0.688 0.622 0.526 0.331 0.460 0.437

Table 4.3: Results of the model trained with MDeePred features. The first five rows

shows the individual runs and the last row is the average of these five individual runs.

Concordance Index Mean Squared Error Spearman Correlation MCC 1µM MCC 100nM MCC 30nM

0.695 0.604 0.540 0.335 0.454 0.452

0.687 0.619 0.531 0.334 0.454 0.434

0.691 0.607 0.537 0.332 0.444 0.465

0.699 0.608 0.536 0.338 0.455 0.436

0.687 0.609 0.529 0.326 0.460 0.467

0.692 0.609 0.534 0.333 0.453 0.451

4.4 Discussion

The results obtained in this part are very much in line with the hypothesis that gave

birth to this study. The addition of AAindex features over the 2D encodings resulted

in an improvement that is similar to MDeePred, which validates our experimental

setup. Then the potency of distance matrices is shown by comparison to AAindex

features. Finally, combining all features, a top-performing model is created, which
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Table 4.4: Results of the model trained with 2D encodings and distance matrices. The

first five rows shows the individual runs and the last row is the average of these five

individual runs.

Concordance Index Mean Squared Error Spearman Correlation MCC 1µM MCC 100nM MCC 30nM

0.704 0.567 0.567 0.353 0.482 0.456

0.699 0.574 0.565 0.368 0.478 0.448

0.687 0.576 0.565 0.388 0.480 0.448

0.705 0.570 0.563 0.360 0.491 0.453

0.704 0.567 0.566 0.359 0.486 0.462

0.699 0.571 0.565 0.362 0.483 0.453

Table 4.5: Results of the model trained with every feature matrix. The first five rows

shows the individual runs and the last row is the average of these five individual runs.

Concordance Index Mean Squared Error Spearman Correlation MCC 1µM MCC 100nM MCC 30nM

0.707 0.567 0.567 0.374 0.484 0.461

0.703 0.569 0.565 0.362 0.481 0.458

0.699 0.569 0.567 0.358 0.488 0.465

0.706 0.567 0.565 0.368 0.486 0.466

0.709 0.571 0.564 0.369 0.489 0.436

0.705 0.569 0.566 0.366 0.486 0.457

Table 4.6: Average results obtained from each model.

Feature Set CI MSE Spearman MCC 1µM MCC 100nM MCC 30nM

2D Encodings 0.688 0.622 0.526 0.331 0.460 0.437

MDeePred 0.692 0.609 0.534 0.333 0.453 0.451

2D Encodings + Distance Matrices 0.699 0.571 0.565 0.362 0.483 0.453

All 0.705 0.569 0.566 0.366 0.486 0.457
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hopefully performs well when tested in complete benchmark datasets.

Considering the lower and upper bounds of the evaluation metrics, the improvements

shown in the results might seem insignificant. However, one has to keep in mind

that the models used in this part a proteochemometric, meaning that they depend on

both the compound and the protein features. For example, even if the models were

trained with meaningless protein features, they would still perform at a certain level

by memorizing the compounds. This creates a potential lower bound to performance.

Moreover, even if we had the theoretically best possible protein input features and

the best possible feature extractor on the protein side, the performance of the overall

model would be restricted by the compound side, and that creates a hypothetical upper

pound to performance. Said lower bound was not studied in this scope, and this hy-

pothetical upper bound is theoretically impossible to find. Thus, little improvements

may not be so little in perspective of the aforementioned bounds.
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CHAPTER 5

GENE ONTOLOGY PREDICTION

5.1 Introduction

In a living organism, proteins have many different roles. Some proteins are enzymes;

they facilitate biochemical reactions. Antibodies are also proteins; they identify and

neutralize foreign substances and fight infections. Some proteins are called contrac-

tile proteins; they make muscles contract. Insulin controls our blood sugar levels,

whereas hemoglobin transports oxygen in our body. It is obvious that proteins’ im-

portance to our bodies is indisputable. Knowing a protein’s function can greatly help

scientists with their efforts in curing related diseases. For example, if the insulin’s

function was not known, diabetes would not be cured.

Despite its importance, we actually know the function of only a small number of

proteins. The number of proteins manually annotated by experts roughly accounts

for the 0.5% of the proteins available in UniProt [64]. This stems from the fact that,

just as it was in drug-target interaction case, experimentally determining a protein’s

function is costly. This made scientist resort to in-silico methods.

The Gene Ontology (GO) is an initiative to create consistent descriptions of gene

and gene product attributes across all species [65]. Gene Ontology covers proteins in

three different domains;

• Molecular Function (MF) describes activities that happen at the molecular level,

such as catalysis or transport.

• Biological Process (BP) describes larger processes, or ’biological programs’

accomplished by multiple molecular activities, such as DNA repair or signal
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transduction.

• Cellular Component (CC) represents parts of a cell or its extracellular environ-

ment, such as mitochondrion or ribosome.

GO terms create a directed acyclic graph (referred to as the GO hierarchy) according

to their hierarchical relationships. In a GO hierarchy graph, a child term (node) is

more specialized than its parent term. For example, in Figure 5.1, hexose biosynthetic

process (GO:0019319) is a subtype of every other GO term in the graph. This means

that a protein with GO term GO:0019319 can also be classified as any of the parent

terms.

Figure 5.1: Example GO hierarchy. Adapted from

http://geneontology.org/docs/ontology-documentation/

Computational protein function prediction received a lot of traction from researchers [66,

67, 68]. The Critical Assessment of protein Function Annotation algorithms (CAFA)
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is a challenge that aims to evaluate new computational methods that are capable of

predicting Gene Ontology (GO) terms for proteins based on their sequences [69]. The

4th and latest edition of CAFA received 126 different submissions from 56 different

research groups.

MS-kNN was one of the most successful methods in the 2nd CAFA challenge. MS-

kNN works by finding k-nearest neighbors of the query protein with regards to differ-

ent similarity metrics such as sequence similarity. Later, by applying weighted aver-

aging to these neighbors’ functions, predictions are made for the query protein [70].

GOLabeler was the top performing method in the 3rd CAFA challenge. GOLabeler

incorporates several different classifiers trained with different protein features. Can-

didate predictions from said models are later fed into a learning to rank (LTR) model,

which then returns the final GO term prediction [71]. DEEPred is a multi-task, feed-

forward deep neural network that uses SPMap [72] features to represent proteins.

Being a multi-task network, DEEPred is trained to predict multiple GO terms corre-

sponding to different levels in the GO hierarchy, at the same time [73].

5.2 Dataset

The dataset used in this part was adopted from Protein RepresentatiOn BEnchmark

(PROBE) [64] and filtered according to the requirement and limitations of the pro-

posed method. The authors have acquired their data from the “2019_10” version of

UniProtKB/Swiss-Prot and UniProtGOA databases. They filtered the dataset so that

there were no two protein sequences with 50% similarity. The remaining terms were

grouped as “low”, “middle”, or “high” according to the number of annotated pro-

teins. “Low” groups have 2 to 30 proteins, “middle” groups have 100 to 500, and

finally, “high” groups have more than 1000 annotated proteins. Furthermore, GO

terms were also grouped according to their position in the GO hierarchy. In the GO

hierarchy graph, terms in the first third of the max depth of that branch were consid-

ered “shallow”, whereas the second and third are considered “normal” and “specific”

respectively. Finally, 25 different groups with varying numbers of annotations were

obtained, as the two groups had no corresponding GO terms ( MF-high-specific and

CC-high-specific).
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This adopted dataset underwent the following modifications in order to fit the require-

ments and the limitations of the proposed method:

• “Low” datasets are discarded, as the number of proteins in each was too low to

train a deep learning model.

• Protein sequences with more than 1400 amino acids are removed from the

datasets. This is because, as it is explained previously, feature matrices are

cropped to a certain length. There are two concerns when deciding on this

threshold. First, as the protein length increases, cropped versions used in the

study get less and less descriptive of the said protein. On the other hand, a

lower threshold means fewer proteins to train the model. Analyzing the num-

bers, 1400 seemed to be the sweet spot. However, the effect of this number is

not studied in the scope of this work.

• Proteins with multiple annotations are also removed from the datasets.

Both the number of proteins that are used in the original study and this study can be

seen in Table 5.1, Table 5.2, and Table 5.3. Moreover, the class distribution of each

dataset can be found in their respective tables. Table 5.4 for Molecular Function;

Table 5.5 for Biological Process; Table 5.6 for Cellular Component respectively.

As mentioned earlier, protein sequences longer than 500 amino acids need to be short-

ened, which causes information loss. In GO term prediction, models were also trained

with 250×250 shaped matrices to measure the effect of this number. Table 5.7 shows

the distribution of protein sequences used in GO term prediction by their length. Ac-

cording to the table, 47% of the proteins needed to be cropped to a certain extent,

whereas 14% lost at least half of their sequences.

5.3 Experiments

5.3.1 Method

For this part, five different model was trained for each dataset. In addition to the ones

used in DTI prediction ( (i) 2D encodings, (ii) 2D encodings and distance matrices,
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Table 5.1: Number of proteins in Molecular Function datasets, before and after mod-

ifications

Dataset Before After

MF High Shallow 3039 3037

MF High Normal 1324 1323

MF Middle Shallow 613 613

MF Middle Normal 369 369

MF Middle Specific 204 204

Table 5.2: Number of proteins in Biological Process datasets, before and after modi-

fications

Dataset Before After

BP High Shallow 3386 3384

BP High Normal 3288 3284

BP High Specific 2025 2022

BP Middle Shallow 896 896

BP Middle Normal 452 451

BP Middle Specific 623 622

Table 5.3: Number of proteins in Cellular Component datasets, before and after mod-

ifications

Dataset Before After

CC High Shallow 7186 7178

CC High Normal 6478 4602

CC Middle Shallow 413 413

CC Middle Normal 562 531

CC Middle Specific 413 413
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Table 5.4: Class distributions for Molecular Function datasets. ’Annotations’ column

shows the percentage of proteins annotated to each GO term in the dataset. ’Total’

column shows the number of the proteins in the dataset.

Dataset Annotations Total

MF High Shallow
GO:0046872 GO:0000981 GO:0022890 GO:0004672 GO:0016818

0.27 0.14 0.28 0.16 0.15
3037

MF High Normal
GO:0046872 GO:0000981

0.57 0.43
1323

MF Middle Shallow
GO:0022835 GO:0005524 GO:0005244 GO:0046943 GO:0036459

0.19 0.21 0.08 0.12 0.40
513

MF Middle Normal
GO:0004843 GO:0004714 GO:0003774 GO:0008227 GO:0004866

0.22 0.17 0.19 0.31 0.11
369

MF Middle Specific
GO:0003777 GO:0004386 GO:0061733

0.27 0.43 0.30
204

Table 5.5: Class distributions for Biological Process datasets. ’Annotations’ column

shows the percentage of proteins annotated to each GO term in the dataset. ’Total’

column shows the number of the proteins in the dataset.

Dataset Annotations Total

BP High Shallow
GO:0006886 GO:0051707 GO:0007399 GO:0006259 GO:0007167

0.19 0.36 0.13 0.10 0.22
3384

BP High Normal
GO:0048699 GO:0015833 GO:0019752 GO:0070647 GO:0016071

0.18 0.27 0.26 0.18 0.11
3284

BP High Specific
GO:0045944 GO:1903507 GO:0001934

0.43 0.27 0.30
2022

BP Middle Shallow
GO:0043488 GO:0043312 GO:0051091 GO:0006637 GO:0038096

0.47 0.22 0.17 0.08 0.06
896

BP Middle Normal
GO:0051092 GO:0016573 GO:0031146 GO:0071427 GO:0006613

0.29 0.21 0.18 0.16 0.16
451

BP Middle Specific
GO:0000209 GO:0071805 GO:1903169 GO:0050773 GO:0031124

0.42 0.13 0.19 0.14 0.12
622
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Table 5.6: Class distributions for Cellular Component datasets. ’Annotations’ column

shows the percentage of proteins annotated to each GO term in the dataset. ’Total’

column shows the number of the proteins in the dataset.

Dataset Annotations Total

CC High Shallow
GO:1990234 GO:1903561 GO:0005740 GO:0070013 GO:000578

0.52 0.07 0.26 0.06 0.09
7178

CC High Normal
GO:0031981 GO:0070062 GO:0015630 GO:0005768

0.53 0.27 0.11 0.09
4602

CC Middle Shallow
GO:0044853 GO:0036464 GO:0005762 GO:0005747 GO:0008076

0.11 0.18 0.44 0.18 0.09
413

CC Middle Normal
GO:0022627 GO:0000502 GO:0034705 GO:0030665 GO:0005925

0.54 0.15 0.06 0.16 0.09
531

CC Middle Specific
GO:0016591 GO:0008021 GO:0101002 GO:0005766

0.31 0.28 0.26 0.15
413

Table 5.7: Distribution of proteins in the GO dataset by their length

length ≤ 250 250 < length ≤500 500<length≤750 750<length≤1000 length>1000 Total

1869 3945 2397 1148 1514 10883
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(iii) MDeePred features -2D encodings and AAindex features-, (iv) All available fea-

tures -2D encodings, AAindex features, and distance matrices-), a model using only

the distance matrices is trained as well. With the number of combinations between

datasets and set of input features, it was not feasible to make thorough hyperparam-

eter optimization for each model. Hyperparameters are selected after a coarse grid

search. Each model was run three times. Models are evaluated with five-fold cross-

validation. Since the datasets are very much imbalanced, folds are generated in a

stratified manner. This way, all folds contain the same distribution of classes. More-

over, mini-batches used in the training process are sampled using Weighted Random

Sampler so that each batch has a class distribution similar to the whole dataset.

5.3.2 Evaluation Metric

Since the datasets used in this task are heavily imbalanced, it is generally a better idea

to use an evaluation metric other than the simpler ones, such as accuracy. Moreover,

this study includes a comparison with PROBE [64], where the authors also used F1

score to report their results. The F1 score is the harmonic mean of the precision and

recall.

F1 = 2
precision× recall

precision+ recall
=

TP

TP + 1
2
(FP + FN)

(5.1)

For the multiclass cases, F1 score is calculated for each class, then these scores are

weighted averaged by the number of true instances for each label which leads to a

single F1 score.

5.3.3 Results

Table 5.8, table 5.9, table 5.10 show the results of Molecular Function, Biological

Process, Cellular Component datasets respectively. The results are in line with the

ones from the DTI prediction part. Models trained with 2D encodings only performed

worst significantly in every dataset. The addition of AAindex features (referred to as

’MDeePred’ in the tables) more or less increased the performance in every dataset.
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Continuing the pattern from DTI prediction, the combination of 2D encodings and

distance matrices significantly outperforms the combination of 2D encodings and

AAindex features (MDeePred) in each dataset. Models trained with only the dis-

tance matrices produced some thought-provoking results. They outperformed mod-

els trained with MDeePred features, cementing the significance of distance matrices.

Moreover, they outperformed 2D encodings in ten of the sixteen datasets, where mar-

gins were minimal for both sides. At first glance, this sounds unintuitive as it makes

2D encodings seem redundant. Possible reasons for this phenomenon are explored

in the next section. Finally, as expected, models which used every available feature

achieved the highest F1 scores.

Table 5.8: F1 scores achieved on Molecular Function datasets. ’2D Encodings’ refers

to the model trained using only the 2D Encodings, ’Distance Only’ refers to the model

trained using only the distance matrices, ’MDeePred’ refers to the model trained using

the features in MDeePred -2D encodings and AAindex features-, ’All’ refers to the

model trained using 2D Encodings + distance matrices + AAindex features.

Dataset 2D Encoding Distance Only MDeePred 2D Encoding + Distance All

MF High Shallow 0.373 0.630 0.524 0.643 0.680

MF High Normal 0.669 0.847 0.761 0.861 0.867

MF Mid Shallow 0.537 0.712 0.633 0.702 0.742

MF Mid Normal 0.562 0.706 0.629 0.655 0.703

MF Mid Specific 0.545 0.650 0.577 0.643 0.652

5.3.4 Effect of Feature Size

In order to measure the impact of protein sequence length selection, a new model is

trained for each dataset using all available features (2D encodings, AAindex features,

and distance matrices), this time cropped to 250 × 250. When cut to 250 amino

acids, 83% of the proteins in the dataset faces information loss. Table 5.11 shows the

comparison between models trained with 250 × 250 shaped and 500 × 500 shaped

features. 750×750 matrices were also considered for this part; however, the resulting

input did not fit into the memory of the GPU which is used to run the experiments.
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Table 5.9: F1 scores achieved on Biological Process datasets. ’2D Encodings’ refers

to the model trained using only the 2D Encodings, ’Distance Only’ refers to the model

trained using only the distance matrices, ’MDeePred’ refers to the model trained using

the features in MDeePred -2D encodings and AAindex features-, ’All’ refers to the

model trained using 2D Encodings + distance matrices + AAindex features.

Dataset 2D Encoding Distance Only MDeePred 2D Encoding + Distance All

BP High Shallow 0.331 0.375 0.336 0.356 0.375

BP High Normal 0.297 0.425 0.322 0.419 0.430

BP High Specific 0.429 0.479 0.458 0.484 0.496

BP Mid Shallow 0.410 0.482 0.431 0.483 0.503

BP Mid Normal 0.405 0.433 0.409 0.449 0.475

BP Mid Specific 0.372 0.478 0.412 0.457 0.487

Table 5.10: F1 scores achieved on Cellular Component datasets. ’2D Encodings’

refers to the model trained using only the 2D Encodings, ’Distance Only’ refers to

the model trained using only the distance matrices, ’MDeePred’ refers to the model

trained using the features in MDeePred -2D encodings and AAindex features-, ’All’

refers to the model trained using 2D Encodings + distance matrices + AAindex fea-

tures.

Dataset 2D Encoding Distance Only MDeePred 2D Encoding + Distance All

CC High Shallow 0.430 0.517 0.484 0.505 0.529

CC High Normal 0.430 0.537 0.477 0.523 0.539

CC Mid Shallow 0.415 0.512 0.428 0.487 0.502

CC Mid Normal 0.484 0.550 0.499 0.557 0.579

CC Mid Specific 0.362 0.457 0.380 0.427 0.437
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Table 5.11: Comparison of F1 scores achieved using features with different shapes.

Dataset 500× 500 250× 250

MF High Shallow 0.680 0.562

MF High Normal 0.867 0.818

MF Mid Shallow 0.742 0.617

MF Mid Normal 0.703 0.598

MF Mid Specific 0.652 0.515

BP High Shallow 0.475 0.364

BP High Normal 0.430 0.362

BP High Specific 0.496 0.484

BP Mid Shallow 0.503 0.465

BP Mid Normal 0.475 0.412

BP Mid Specific 0.487 0.445

CC High Shallow 0.529 0.509

CC High Normal 0.539 0.527

CC Mid Specific 0.502 0.426

CC Mid Normal 0.579 0.473

CC Mid Specific 0.437 0.419
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5.3.5 Comparisons with PROBE

In PROBE [64], authors compared several feature embeddings. Those embeddings

are; APAAC [19], k-sep biagrams [17], LearnedEmbeddingVec [74], SeqVec [75],

Mut2Vec [76], Gene2Vec [77], TCGA_Embedding [78], ProtVec [79], TAPE-BERT_Avg [80],

TAPE-BERT_Pool [80], UniRep [81]. They used a Linear Support Vector Classifier

for predictions and used five-fold cross validation to evaluate these models.

For each dataset; worst (to set a baseline), median (to act as a middle-of-the pack

classifier), and best scoring models are reported from PROBE and compared to best

result achieved from this study. It needs to be noted that, scores taken from PROBE

might be a result a different model; meaning there is no single model that performs

best in every dataset. Also, while selecting the worst model, models with F1 score

less than 0.1 are disregarded. Table 5.12 shows this comparison.

Looking at the table, our models performs better than the worst model in each dataset.

While beating median models in Molecular Function dataset, our models’ success

declines in Biological Process and Cellular Component datasets. Finally, our models

seems to be no match for the best models adopted from PROBE. A possible explana-

tion is given in the next section.

5.4 Discussion

The results of this part are in line with what was expected and what was observed

in the drug-target interaction part. Distance matrices offer very significant improve-

ments, outperforming a bunch of substitution matrices. Moreover, it again seems to

be the case that a model’s performance improves with the addition of input features.

However, as mentioned earlier, the addition of 2D encodings does not seem to help

with the performance of distance matrices and, in most cases, even degrades them.

Like any other deep neural network, our models do not guarantee the most optimal

result. Thus, considering how small is the difference between F1 scores, it is hard to

say if distance only models perform better than the ones with 2D encodings because

the said difference could be a result of randomness. Under the assumption that both
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Table 5.12: Comparison with PROBE results. The ’worst’, the ’median’ and the

’best’ performing models from PROBE are compared to our best performing model.

Dataset Worst Model Median Model Best Model Our Model

MF High Shallow 0.18 0.58 0.87 0.68

MF High Normal 0.69 0.85 0.94 0.87

MF Mid Shallow 0.52 0.66 0.94 0.74

MF Mid Normal 0.60 0.65 0.92 0.70

MF Mid Specific 0.55 0.64 0.91 0.65

BP High Shallow 0.17 0.41 0.49 0.38

BP High Normal 0.17 0.43 0.67 0.43

BP High Specific 0.41 0.56 0.69 0.50

BP Mid Shallow 0.28 0.51 0.69 0.50

BP Mid Normal 0.24 0.57 0.78 0.48

BP Mid Specific 0.32 0.50 0.75 0.49

CC High Shallow 0.47 0.54 0.72 0.53

CC High Normal 0.41 0.52 0.69 0.54

CC Mid Specific 0.40 0.60 0.77 0.50

CC Mid Normal 0.48 0.68 0.74 0.58

CC Mid Specific 0.16 0.49 0.54 0.44
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models perform the same, 2D encodings’ inability to improve performance needs

explanation. It is possible that 2D encodings are not bringing in any valuable infor-

mation to the network in the presence of distance information as they do not contain

any physical/chemical information regarding the amino acids. Because it is evident

from the results that AAindex features containing biological, chemical, and physical

information indeed result in improvements.

Our already proven [30] models, with all of their bells and whistles, even with the

addition of distance matrices, are unable to compete with relatively simple SVM

classifiers reported in PROBE [64]. The most obvious reasoning is that our model’s

complexity creates a double-edged sword. On average, GO term prediction models

used in this study have around 40.000.000 (forty million) trainable parameters. Our

most prominent feature set has the shape of [500,500,6]. On the other hand, the av-

erage number of observations in high datasets is around 3400, whereas, in the middle

datasets, this number reduces to around 550. The assumption here is that such a num-

ber of observations is not enough to successfully train a complex model that is used in

this study, whereas SVM models, being less complex, did not face the same problem.

It is not possible to train an SVM using the data representations of this study, and the

features reviewed in PROBE will not work on our architecture. Therefore the only

way to prove this claim is to test both methods with a dataset that is curated to include

more observations.
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CHAPTER 6

CONCLUSION

AlphaFold’s success in the latest CASP challenge generated much hype around the

scientific communities. This study was an attempt to find out whether it was possible

to profit from these predictions in the context of our group’s research directions. To

this end, we have employed 2D protein distance matrices, a relatively primitive form

of actual 3D structures. This made the adaptation of the model used in MDeePred

possible. This system combining distance matrices and MDeePred architecture was

tested on two problems: drug-target interaction prediction and Gene Ontology term

prediction.

In drug-target interaction prediction, the effect of distance matrices was measured

by testing different models trained with different sets of features, including distance

matrices. With these experiments, distance matrices were found to be more power-

ful than various generic amino acid substitution matrices, including the very famous

BLOSUM62. Plus, it is shown that the addition of distance matrices increases the

performance of MDeePred. Nevertheless, since the dataset used in this part can be

considered novel, this last claim needs to be tested further.

In Gene Ontology term prediction, similar results were seen. Again, distance matrices

looked like the most powerful representation among the set of features that were used

in training the models. However, compared to other protein representations reviewed

in the PROBE paper, our approach did not seem so successful. A possible explanation

related to the size of datasets is given in the corresponding chapter.

In conclusion, 2D distance matrices constructed using AlphaFold structure predic-

tions are shown to be powerful representations of protein sequences. It is possible
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that with more specialized neural network architectures, distance matrices could shine

even more. Regardless, it is expected that AlphaFold or other protein structure predic-

tion systems will keep gaining traction from bioinformaticians unless a breakthrough

happens in X-ray crystallography.

6.1 Future Work

As explained in section 4.2, the Davis dataset used in DTI prediction was trimmed

due to limitations in protein structure availability. This made a direct comparison

with literature impossible. With the introduction of methods such as OmegaFold [82],

structure predictions are becoming easily accessible. The approach proposed in this

study needs to be tested with complete datasets and compared to literature.

Authors of MDeePred chose the AAindex substation matrices in the absence of the

distance matrices. For example, SIMK990101 and ZHAC000103 matrices were meant

to incorporate information about a protein’s 3D structure. With the addition of dis-

tance matrices, these features might become redundant. It is possible that there exist

different substitution matrices that synergize better with distance matrices.

Due to lack of computational resources, feature matrices used in the study are limited

to 500 × 500. However, in section 5.3, it is shown that bigger features lead to better

results. With adequate resources, bigger matrices could be tested in the future.

40



REFERENCES

[1] U. D. J. G. I. H. T. . B. E. . P. P. . R. P. . W. S. . S. T. . D. N. . C. J.-F. . O. A. .

L. S. . E. C. . U. E. . F. M. 4, R. G. S. C. S. Y. . F. A. . H. M. . Y. T. . T. A. . I.

T. . K. C. . W. H. . T. Y. . T. T. 9, Genoscope, C. U.-. W. J. . H. R. . S. W. . A.

F. . B. P. . B. T. . P. E. . R. C. . W. P. 10, I. o. M. B. R. A. . P. M. . N. G. . T. S.

. R. A. . Department of Genome Analysis, G. S. C. S. D. R. . D.-S. L. . R. M. .

W. K. . L. H. M. . D. J. 11, B. G. I. G. C. Y. H. . Y. J. . W. J. . H. G. . G. J. 15,

et al., “Initial sequencing and analysis of the human genome,” nature, vol. 409,

no. 6822, pp. 860–921, 2001.

[2] “Uniprot: the universal protein knowledgebase in 2021,” Nucleic acids research,

vol. 49, no. D1, pp. D480–D489, 2021.

[3] M. C. Thompson, T. O. Yeates, and J. A. Rodriguez, “Advances in methods

for atomic resolution macromolecular structure determination,” F1000Research,

vol. 9, 2020.

[4] J. Moult, J. T. Pedersen, R. Judson, and K. Fidelis, “A large-scale experiment to

assess protein structure prediction methods,” 1995.

[5] E. Callaway, “’it will change everything’: Deepmind’s ai makes gigantic leap in

solving protein structures,” Nov 2020.

[6] H. Huang and X. Gong, “A review of protein inter-residue distance prediction,”

Current Bioinformatics, vol. 15, no. 8, pp. 821–830, 2020.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770–778, 2016.

[8] J. Xu, “Distance-based protein folding powered by deep learning,” Proceedings

of the National Academy of Sciences, vol. 116, no. 34, pp. 16856–16865, 2019.

41



[9] W. Ding and H. Gong, “Predicting the real-valued distances between residue

pairs for proteins,” arXiv preprint arXiv:1912.06306, 2019.

[10] T. Wu, Z. Guo, J. Hou, and J. Cheng, “Deepdist: real-value inter-residue dis-

tance prediction with deep residual convolutional network,” BMC bioinformat-

ics, vol. 22, no. 1, pp. 1–17, 2021.

[11] J. Rahman, M. Newton, M. K. B. Islam, and A. Sattar, “Enhancing protein inter-

residue real distance prediction by scrutinising deep learning models,” Scientific

Reports, vol. 12, no. 1, pp. 1–13, 2022.

[12] L. Bartoli, E. Capriotti, P. Fariselli, P. L. Martelli, and R. Casadio, “The pros and

cons of predicting protein contact maps,” Protein Structure Prediction, pp. 199–

217, 2008.

[13] J. Xie, W. Ding, L. Chen, Q. Guo, and W. Zhang, “Advances in protein contact

map prediction based on machine learning,” Medicinal Chemistry, vol. 11, no. 3,

pp. 265–270, 2015.

[14] H. Huang and X. Gong, “A review of protein inter-residue distance prediction,”

Current Bioinformatics, vol. 15, no. 8, pp. 821–830, 2020.

[15] R. Trivedi and H. A. Nagarajaram, “Substitution scoring matrices for proteins-

an overview,” Protein Science, vol. 29, no. 11, pp. 2150–2163, 2020.

[16] S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama, and

M. Kanehisa, “Aaindex: amino acid index database, progress report 2008,” Nu-

cleic acids research, vol. 36, no. suppl_1, pp. D202–D205, 2007.

[17] H. Saini, G. Raicar, A. Sharma, S. Lal, A. Dehzangi, R. Ananthanarayanan,

J. Lyons, N. Biswas, and K. K. Paliwal, “Protein structural class prediction via k-

separated bigrams using position specific scoring matrix,” Journal of Advanced

Computational Intelligence and Intelligent Informatics, vol. 18, no. 4, pp. 474–

479, 2014.

[18] K.-C. Chou, “Prediction of protein cellular attributes using pseudo-amino acid

composition,” Proteins: Structure, Function, and Bioinformatics, vol. 43, no. 3,

pp. 246–255, 2001.

42



[19] K.-C. Chou, “Using amphiphilic pseudo amino acid composition to predict en-

zyme subfamily classes,” Bioinformatics, vol. 21, no. 1, pp. 10–19, 2005.

[20] D. Ofer, N. Brandes, and M. Linial, “The language of proteins: Nlp, machine

learning & protein sequences,” Computational and Structural Biotechnology

Journal, vol. 19, pp. 1750–1758, 2021.

[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[22] Q. Le and T. Mikolov, “Distributed representations of sentences and doc-

uments,” in International conference on machine learning, pp. 1188–1196,

PMLR, 2014.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[24] M. K. Mejía-Guerra and E. S. Buckler, “A k-mer grammar analysis to uncover

maize regulatory architecture,” BMC plant biology, vol. 19, no. 1, pp. 1–17,

2019.

[25] P. Ng, “dna2vec: Consistent vector representations of variable-length k-mers,”

arXiv preprint arXiv:1701.06279, 2017.

[26] J. Choi, I. Oh, S. Seo, and J. Ahn, “G2vec: Distributed gene representations

for identification of cancer prognostic genes,” Scientific reports, vol. 8, no. 1,

pp. 1–10, 2018.

[27] A. Dutta, T. Dubey, K. K. Singh, and A. Anand, “Splicevec: distributed fea-

ture representations for splice junction prediction,” Computational biology and

chemistry, vol. 74, pp. 434–441, 2018.

[28] R. You, X. Huang, and S. Zhu, “Deeptext2go: Improving large-scale protein

function prediction with deep semantic text representation,” Methods, vol. 145,

pp. 82–90, 2018.

[29] Y. Liu, Y. Liu, G. Wang, Y. Cheng, S. Bi, and X. Zhu, “Bert-kgly: A bidirec-

tional encoder representations from transformers (bert)-based model for predict-

43



ing lysine glycation site for homo sapiens,” Frontiers in Bioinformatics, p. 12,

2022.

[30] A. S. Rifaioglu, R. Cetin Atalay, D. Cansen Kahraman, T. Doğan, M. Martin,
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Appendix A

HYPERPARAMETERS OF DTI PREDICTION MODELS

Table A.1: Hyperparameters of the models used in drug-target interaction prediction.

Dataset Mini-batch Size Number of Epochs Learning Rate Number of Neurons in FC Layers

2D Encodings 32 200 0.00001 [1024,1024]

MDeePred features 32 200 0.00001 [1024,1024]

2D Encodings + Distance 32 200 0.00005 [1024,512]

All features 32 300 0.0005 [2048,1024]
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Appendix B

PARAMETERS OF GO PREDICTION MODELS

Table B.1: Hyperparameters of the models trained using only the 2D encodings.

Dataset Mini-batch Size Number of Epochs Learning Rate Number of Neurons in FC Layers

MF High Datasets 16 18 0.00001 [1024,8192,512]

MF Mid Datasets 16 12 0.00005 [1024,8192,512]

BP High Datasets 16 18 0.00001 [1024,8192,512]

BP Mid Datasets 16 15 0.00001 [1024,4096,64]

CC High Datasets 16 18 0.00001 [1024,4096,64]

CC Mid Datasets 16 15 0.00001 [1024,4096,64]

Table B.2: Hyperparameters of the models trained using only the distance matrices.

Dataset Mini-batch Size Number of Epochs Learning Rate Number of Neurons in FC Layers

MF High Datasets 16 12 0.0001 [1024,8192,512]

MF Mid Datasets 16 10 0.0001 [1024,4096,128]

BP High Datasets 16 12 0.00001 [1024,8192,512]

BP Mid Datasets 16 10 0.00001 [1024,4096,64]

CC High Datasets 16 12 0.0001 [1024,4096,128]

CC Mid Datasets 16 10 0.00001 [1024,8192,512]
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Table B.3: Hyperparameters of the models trained using the feature combination used

in MDeePred.

Dataset Mini-batch Size Number of Epochs Learning Rate Number of Neurons in FC Layers

MF High Datasets 16 25 0.0001 [1024,8192,512]

MF Mid Datasets 16 20 0.00001 [1024,8192,512]

BP High Datasets 16 25 0.00001 [1024,4096,128]

BP Mid Datasets 16 20 0.00001 [1024,4096,128]

CC High Datasets 16 25 0.0001 [1024,4096,128]

CC Mid Datasets 16 20 0.00001 [1024,8192,512]

Table B.4: Hyperparameters of the models trained using the combination of 2D en-

codings and distance matrices.

Dataset Mini-batch Size Number of Epochs Learning Rate Number of Neurons in FC Layers

MF High Datasets 16 22 0.0001 [1024,4096,128]

MF Mid Datasets 16 20 0.0001 [1024,4096,128]

BP High Datasets 16 22 0.00001 [1024,4096,128]

BP Mid Datasets 16 20 0.00005 [1024,4096,128]

CC High Datasets 16 22 0.00005 [1024,8192,512]

CC Mid Datasets 16 20 0.00001 [1024,4096,128]

Table B.5: Hyperparameters of the models trained using all features.

Dataset Mini-batch Size Number of Epochs Learning Rate Number of Neurons in FC Layers

MF High Datasets 8 32 0.0001 [1024,4096,128]

MF Mid Datasets 16 25 0.00005 [1024,4096,64]

BP High Datasets 8 32 0.00005 [1024,4096,128]

BP Mid Datasets 8 22 0.0001 [1024,8192,512]

CC High Datasets 16 30 0.0001 [1024,4096,128]

CC Mid Datasets 8 25 0.00001 [1024,2048,512]
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Appendix C

GO TERMS

Table C.1: GO terms of the Molecular Function datasets.

ID Term ID Term

GO:0046872 metal ion binding GO:0000981 DNA-binding transcription factor activity, RNA polymerase II-specific

GO:0022890 inorganic cation transmembrane transporter activity GO:0004672 protein kinase activity

GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides GO:0046872 metal ion binding

GO:0000981 DNA-binding transcription factor activity, RNA polymerase II-specific GO:0022835 transmitter-gated channel activity

GO:0005524 ATP binding GO:0005244 voltage-gated ion channel activity

GO:0046943 carboxylic acid transmembrane transporter activity GO:0036459 thiol-dependent ubiquitinyl hydrolase activity

GO:0004843 cysteine-type deubiquitinase activity GO:0004714 transmembrane receptor protein tyrosine kinase activity

GO:0003774 cytoskeletal motor activity GO:0008227 G protein-coupled amine receptor activity

GO:0004866 endopeptidase inhibitor activit GO:0003777 microtubule motor activity

GO:0004386 helicase activity GO:0061733 peptide-lysine-N-acetyltransferase activity

Table C.2: GO terms of the Biological Process datasets.

ID Term ID Term

GO:0031124 mRNA 3’-end processing GO:0006886 intracellular protein transport

GO:0051707 response to other organism GO:0007399 nervous system development

GO:0007167 enzyme-linked receptor protein signaling pathway GO:0006259 DNA metabolic process

GO:0048699 generation of neurons GO:0015833 peptide transport

GO:0019752 carboxylic acid metabolic process GO:0070647 protein modification by small protein conjugation or removal

GO:0050773 regulation of dendrite development GO:0016071 mRNA metabolic process

GO:0045944 positive regulation of transcription by RNA polymerase II GO:1903507 negative regulation of nucleic acid-templated transcription

GO:0001934 positive regulation of protein phosphorylation GO:0043488 regulation of mRNA stability

GO:0043312 neutrophil degranulation GO:0051091 positive regulation of DNA-binding transcription factor activity

GO:0006637 acyl-CoA metabolic process GO:0038096 Fc-gamma receptor signaling pathway involved in phagocytosis 79 annotations

GO:0051092 positive regulation of NF-kappaB transcription factor activity GO:0016573 histone acetylation

GO:0031146 SCF-dependent proteasomal ubiquitin-dependent protein catabolic process GO:0071427 obsolete mRNA-containing ribonucleoprotein complex export from nucleus

GO:0006613 cotranslational protein targeting to membrane GO:0000209 protein polyubiquitination

GO:0071805 potassium ion transmembrane transport GO:1903169 regulation of calcium ion transmembrane transport
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Table C.3: GO terms of the Cellular Component datasets.

ID Term ID Term

GO:1990234 transferase complex GO:1903561 extracellular vesicle

GO:0005740 mitochondrial envelope GO:0070013 intracellular organelle lumen

GO:000578 GINS complex GO:0031981 nuclear lumen

GO:0070062 extracellular exosome GO:0015630 microtubule cytoskeleton

GO:000576 GINS complex GO:0044853 plasma membrane raft

GO:0036464 cytoplasmic ribonucleoprotein granule GO:0005762 mitochondrial large ribosomal subunit

GO:0005747 mitochondrial respiratory chain complex I GO:0008076 voltage-gated potassium channel complex

GO:0022627 cytosolic small ribosomal subunit GO:0000502 proteasome complex

GO:0034705 potassium channel complex GO:0030665 clathrin-coated vesicle membrane

GO:0005925 focal adhesion GO:0016591 RNA polymerase II, holoenzyme

GO:0008021 synaptic vesicle GO:0101002 ficolin-1-rich granule

GO:0005766 primary lysosome
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