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ABSTRACT

DETECTION OF CLEAN SAMPLES IN NOISY LABELLED DATASETS
VIA ANALYSIS OF ARTIFICIALLY CORRUPTED SAMPLES

Yıldırım, Botan
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. İlkay Ulusoy

August 2022, 77 pages

Recent advances in supervised deep learning methods have shown great successes

in image classification but these methods are known to owe their success to mas-

sive amount of data with reliable labels. However, constructing large-scale datasets

inevitably results with varying levels of label noise which degrades performance of

the supervised deep learning based classifiers. In this thesis, we make an analysis of

sample selection based label noise robust approaches by providing extensive exper-

imental evaluation. First, adverse effects of memorization of the noisy samples are

investigated over results of a base model. Second, importance of knowledge of noise

rate is analyzed for approaches utilizing a prior about noise rate. Third, superiority of

recent semi-supervised based robust approaches over supervised ones is proved. Ad-

ditionally, synthetically corrupted controlled datasets are used to show effects of the

noise rate over training performance. Finally, a new framework is proposed to classify

samples as clean or noisy by investigating train loss dynamics. To avoid heavily tuned

parameters during clean sample detection, proposed framework artificially corrupts a

noisy dataset and utilizes these artificially corrupted samples in a clean/noisy voting

process. Moreover, following recent semi-supervised learning based label noise ro-
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bust methods, framework applies semi-supervised and contrastive learning after clas-

sification of samples as clean-noisy. Also, effect of the co-training approach during

semi-supervised learning is investigated and its effectiveness is proved.

Keywords: noisy labelled classification dataset, clean labelled sample extraction,

classifier neural networks, deep learning, semi-supervised learning, contrastive learn-

ing, co-training
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ÖZ

SANAL OLARAK KİRLETİLMİŞ ÖRNEKLEMLERİN ANALİZİ
ARACILIĞIYLA GÜRÜLTÜLÜ ETİKETLENMİŞ VERİ SETLERİNDE

TEMİZ ÖRNEKLEM TESPİTİ

Yıldırım, Botan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İlkay Ulusoy

Ağustos 2022 , 77 sayfa

Güdümlü derin öğrenme metodlarındaki son gelişmeler görüntü sınıflandırmada bü-

yük başarılar sergilemiştir fakat bu methodlar başarılarını çok miktarda güvenilir

etiketli veriye borçludur. Ancak büyük boyutlu veri setleri oluşturmak, kaçınılamaz

olarak değişken seviyelerde gürültülü etiketlerle sonuçlanmaktadır ve bu durum, gü-

dümlü derin öğrenme tabanlı sınıflandırıcıların performansını bozmaktadır. Bu tezde,

etiket gürültüsüne karşı gürbüz olan, örneklem seçme tabanlı yöntemler kapsamlı de-

neysel değerlendirmeler sağlanarak analiz edilmiştir. İlk olarak, gürültülü örneklem-

leri ezberlemenin kötü yanları temel bir methodun sonuçlarına bakılarak incelenmiş-

tir. İkinci olarak, gürültü bilgisinden faydalanan yöntemler için gürültü seviyesini bil-

menin önemi analiz edilmiştir. Üçüncü olarak, yakın geçmişte önerilen, yarı güdümlü

yapay öğrenme tabanlı ve gürbüz yöntemlerin güdümlü olanlara üstünlüğü kanıtlan-

mıştır. Ekstradan, yapay bir şekilde kirletilen kontrollü veri setleri, gürültü seviyesi-

nin eğitim performansı üzerindeki etkisini göstermek için kullanılmışltır. Son olarak,

örneklemleri temiz ya da gürültülü diye sınıflandırmak için eğitim kayıp değerlerini
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inceleyen yeni bir yapı önerilmiştir. Temiz örneklem tespiti esnasında aşırı derecede

hassas ayarlanmış paremetreleri önlemek amacıyla önerilen yöntem, gürültülü veri

setini sanal bir şekilde ekstradan kirletmekte ve bu yeni, sanal gürültülü örneklem-

leri temiz/gürültülü oylama işlemi esnasında kullanmaktadır. Ekstradan, son zaman-

larda önerilen, yarı güdümlü derin öğrenme tabanlı ve etiket gürültüsüne gürbüz yön-

temlere benzer bir şekilde, önerdiğimiz yöntem, örneklemlerin temiz-gürültülü sınıf-

landırmasından sonra yarı güdümlü ve karşılaştırmalı öğrenmeden faydalanmaktadır.

Ayrıca, eş eğitim yaklaşımının yarı güdümlü eğitim esnasındaki etkisi incelenmiş ve

yararlılığı kanıtlanmıştır.

Anahtar Kelimeler: etiket gürültülü sınıflandırma veri setleri, temiz etiketli örneklem

ayıklama, sınıflandırıc sinir ağları, derin öğrenme, yarı güdümlü öğrenme, karşılatır-

malı öğrenme, eş eğitim
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High Performance and Grid Computing Center (TRUBA resources).
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Deep neural networks are exhibiting state of the art results in countless computer

vision problems for a while and one of the most studied problem in deep neural net-

work context is image classification [4], [5], [6], [7]. Despite the impressive learning

ability of deep learning-based classifiers, they mainly owe their success to the mas-

sive amount of collected classification data with reliable labels such as ImageNet[8],

MS-COCO[9], etc. The term reliable labels refer to clean(correct) labels while incor-

rectly labeled samples are called noisy labeled samples which means that the given

label of the sample is not the actual one. Some examples of noisy labeled samples

from Clothing1M[2] dataset are given in FIG. 1.1.

Figure 1.1: Some examples of noisy labelled samples. Labels written as red: given

labels, Labels written as green: correct labels.

Constructing large-scale classification datasets with clean labels is a challenging prob-

lem since the annotation process is expensive and time-consuming. Moreover, expert

knowledge is a must for some datasets such as CUB-200[10], which requires to be la-

belled by ornithologists, and ROP[11], which is annotated by three different medical
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doctors. Despite the spent time and expert’s knowledge, ROP[11] states %27 dis-

agreement among labels of three experts which indicates the difficulty of obtaining

medical datasets with clean labels.

Some popular methods to handle labelling problems are searching images with tags

from social media[12], querying commercial search engines[13] and using meta-data

such as texts that are linked to an image downloaded from a webpage. These ap-

pealing and uncostly solutions uncontrollably result with noisy labelled samples. An

example of a noisy labelled sample can be observed in Figure 1.2. Both images given

in Figure 1.2 are searched with "apple" tag in a search engine and, 1.2a is obtained as

a noisy sample which contains an image of a phone from the Apple brand while 1.2b

is an example of a clean sample since it is a real apple image. The example given in

1.2 shows how samples obtained from search engines can result with noisy labels.

(a) An Apple brand phone image (b) A real apple image

Figure 1.2: An example case of noisy labeled sample obtained from a search engine.

The images are taken from store.storeimages.cdn-apple.com and media.istockphoto.

As stated, noisy labels can be a natural outcome of the difficult labeling process as

in the case of ROP[11] or outcome of the proposed solutions to construct large-scale

datasets in a fast and cheap way. Therefore, learning from noisy labeled datasets

becomes an important area of research to find answers to how noisy labels affect deep

neural networks based classifiers and how one can train a classifier neural network to

be robust to label noise. Once, these mentioned questions are answered correctly, the

power of easy data collection processes and label noise robust deep neural networks

can be combined to solve various classification problems easily and in a fast way.
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There have been various attempts in the literature to understand the effects of noisy

labels. Although deep neural networks are powerful tools that can generalize very

well despite training with noisy samples[14], they still have a tendency to overfit

noisy labels[15], [16] because of their large number of parameters. Overfitting can

be observed even over complete random noise[17] although there is not any underly-

ing logical structure. Therefore, handling memorization problem is becoming more

crucial to avoid performance degradation caused by noisy labelled datasets and so,

several approaches are proposed in the literature nowadays [18], [19], [20], [3], [21],

[22], [23], [24] by utilizing different strategies.

1.2 Scope and Contributions of the Thesis

This study mainly focused on sample selection-based label noise robust classifiers.

Most of the sample selection-based methods report their performances over specific

datasets with some tuned parameter sets. This thesis prepares a common test setup us-

ing multiple datasets with varying conditions to provide a fair comparison of sample

selection-based methods. A detailed analysis of these methods over multiple cases is

done to show their weak and effective sides.

The second focus of this thesis is decreasing the number of parameters that need

to be tuned and avoiding any need for a clean validation set. Some approaches make

assumptions about the noise rate of the datasets or utilize probabilistic models with

heavily tuned parameters during the detection of the clean samples by claiming that

noise rate estimation or other parameters can be tuned via a small clean validation set.

However, a clean validation set may not be available in most real-world scenarios and

so, performing validation to tune required parameters may not be possible. Therefore,

this study focused on a solution to avoid any requirement of a clean validation set and

decrease the number of parameters to be tuned during the clean-noisy classification

of samples. The proposed work further corrupts the given noisy dataset artificially to

obtain surely noisy samples and classify the remaining samples as clean-noisy utiliz-

ing surely noisy samples in an offline voting pipeline. The proposed solution follows

a different way from most of the methods that exist in the literature and so, brings a

3



novelty to the literature. Additionally, an analysis related to the differences between

synthetic and real-world noises is provided in our proposed method.

Recent works proved the effectiveness of the semi-supervised and contrastive learn-

ing approaches within the context of learning in the existence of label noise. Simi-

larly, the proposed method utilizes a semi-supervised learning strategy, which is well

used in recent years in label noise literature, after offline noisy-clean classification of

samples. This thesis also investigates the effect of the co-training approach on perfor-

mance during the semi-supervised learning part of our proposed method by training

neural networks with and without co-training.

A summary of the contributions of this thesis can be given as:

• Extensive experimentation over a common setup to provide a fair comparison

of the samples selection-based label noise-robust methods.

• A novel approach corrupts a noisy dataset artificially to obtain surely noisy

samples and utilizes surely noisy samples in an offline voting pipeline to detect

clean samples without using a clean validation set or heavy parameter tuning.

• An analysis related to differences between synthetic and real-world noise.

• An analysis of the co-training approach during utilizing semi-supervised learn-

ing over samples classified as noisy and clean in the offline voting pipeline.

1.3 The Outline of the Thesis

The work presented in this thesis consists of five chapters. In Chapter 1, the problem

of interest, our motivation, the scope of the work, and contributions are introduced.

In Chapter 2, a detailed formulation of the problem, required background information,

and proposed solutions of the described problem from the literature are given.

In Chapter 3, the proposed method by this work to solve the problem of interest is

explained in detail.
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In Chapter 4, an extensive experimental analysis of the literature and the proposed

method of this thesis is presented for a better understanding of the described problem

and proposed solutions. In this chapter, detailed information about datasets utilized

in experiments, experimental setups and detailed experimental results with findings

are given in Sections 4.1, 4.2, 4.3 respectively. Explanation of the experimental setup

given in Section 4.2 includes information related to implemented algorithms, their

network structures, and strategies applied during trainings. Also, an analysis of sam-

ple losses and clean sample extraction performance of the proposed method of this

thesis are presented in Section 4.4 and Section 4.5 respectively.

In Chapter 5, an overall summary of this thesis and some conclusions based on ex-

periments are given.
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CHAPTER 2

BACKGROUND AND RELATED WORK

For a better understanding of the study presented in this thesis, required background

information and related references from the literature are given in this chapter. Firstly,

a detailed formulation of the problem of interest is presented in section 2.1. Secondly,

some label noise models utilized during synthetic noise generation processes to simu-

late real-world label noise are presented in section 2.2. Finally, some notable solutions

proposed in the literature to handle label noise are given in section 2.3.

2.1 Formulation of Classification Problem in Existence of Noisy Labels

A traditional supervised classification problem is formulated with a training dataset,

a mapping function, parameters of the mapping function, a quality measure for pre-

dictions(generally a loss function), and an objective function to be minimized during

parameter optimization.

Training dataset is represented as Dtrain = {(x1, y1), ..., (xN , yN)} where (xi, yi) ∈
(X, Y )N and sampled according to a distribution P over (X, Y ). Here, xi, yi, N

represent ith image, label of ith image and number of samples in the train dataset

respectively. yi is C dimensional one hot vector where C is the number of total

classes in the dataset.

The supervised classification problem’s goal is to learn a function f : X− > Y

parametrized with θ that maps the input image to a class label. The quality of predic-

tions/mappings is generally measured with the use of a loss function L(fθ(x), y).

Optimal θ parameters of the function are obtained by an optimization process whose
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objective function is set to the expected risk and formulated as follows:

RL,P (fθ) = EP [L(fθ(x), y)] (2.1)

where Ep denotes the expectation over distribution P .

The distribution P is generally unknown, so computing the expected risk is unfeasi-

ble. Instead of minimizing expected risk, a general approach is minimizing empirical

risk, which is defined as follows:

R̂L,Dtrain(fθ) =
1

N

N∑
i=1

L(fθ(x), y) (2.2)

Then, the exact solution of the traditional classification problem is formulated as fol-

lows:

θ⋆ = argmin
θ

R̂L,Dtrain(fθ) (2.3)

On the other hand, the classification problem forms a new shape in a noisy label

setup compared to the traditional one. Noisy labelled training dataset is represented

as Dtrain
n = {(x1, ỹ1), ..., (xN , ỹN)} where (xN , ỹN) is sampled according to a noisy

distribution Pn. In this case, the solution of the classification problem is formulated

as follows:

θ⋆n = argmin
θ

R̂L,Dtrain
n

(fθ) (2.4)

Optimizing the mapping function parameters θ in noisy label setup results with a

parameter set diverged from the optimal one.

θ⋆n ̸= θ⋆ (2.5)

The goal in classification problem with noisy label setup is obtaining optimal param-

eter set θ⋆ while only Dtrain
n is available instead of Dtrain.

As an obvious conclusion, applying the optimization process to classifier parameters

θ according to traditional supervised classification approaches is not enough to con-

verge to the optimal parameter set. Therefore, various training strategies are proposed

in the literature to find the best classifier parameters in the existence of label noise.
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2.2 An Overview of Noise Types

Developing and testing noise robust deep neural networks in a controlled manner are

challenging problems since the lack of reliable labels makes it impossible to construct

desired setups with specific noise rates. Thus, various methods proposed in the liter-

ature follow a prevalent approach, such as corrupting the desired amount of samples

of a clean dataset to create a noisy labeled dataset synthetically. These synthetically

generated noisy labeled datasets can be viewed as a simulation of the noisy real-world

datasets.

Various label noise models are proposed and utilized in the literature to construct

noisy labeled datasets. The most known types are uniform noise, class-dependent

noise, and feature-dependent noise.

2.2.1 Uniform Label Noise

In this noise model, the probability of misclassifying a sample from its true class to

any other class is uniformly distributed. Many proposed methods in the literature

basically choose desired amount of samples in a clean dataset and flip their labels

following a uniform distribution[20], [3]. This process can be represented by a noise

transition matrix whose entries are formulated as follows:

Lmn =


p if m = n

1− p

N − 1
if m ̸= n

(2.6)

where Lmn represents the probability of a sample from class m to be misclassified

with class n, 1 − p is the noise rate of the corrupted dataset, and N is the number of

total classes in the dataset.

2.2.2 Class Dependent Label Noise

In this noise type, the misclassification probability of a sample depends on its true

class. This can be achieved either by assigning random probabilities to inter-class
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transitions [25] or taking class similarities into consideration during probability as-

signment. One work[26] applies corruption uniformly between similar classes such

as "bed" and "couch" but not "bed" and "beaver" in CIFAR100[27]. Some other

works [28], [3] follow a special corruption strategy named as "pair flipping" where

misclassification is possible only from one class to its neighbor classes. One another

recent work[29] follows a more structured way by utilizing a deep neural network’s

predictions over a test set to construct class dependent noise transition matrix.

2.2.3 Feature Dependent Label Noise

In this case, the misclassification probability of a sample depends on the similarity

between its feature and the features of the other samples. Feature-dependent noise

is a more complicated noise model compared to uniform and class-dependent label

noise models since its corruption process requires extracting features of each sample

and finding similarities between them in the feature domain; hence it is rarely referred

in the literature. One recent work[29] applies knowledge distillation[30] idea to cor-

rupt a clean dataset with feature dependent noise. In this work, a teacher network

is trained over clean samples, and then a weighted sum of teacher network predic-

tions and original hard labels are used to create soft labels for each instance. This

approach claims that training a student network(a second network) with soft labels,

which are generated by the teacher network, results with a more sparse distribution

in data feature space compared to direct training over hard labels. After training the

student network, the softmax probability of each instance is checked to find instances

that have similar features, and the labels of these instances are corrupted according to

similarities.

2.3 Related Work on Learning Classifiers in Existence of Label Noise

Training robust classifier models over noisy labeled datasets goes back a long way

[31], and numerous methods have been presented in the literature to avoid adverse

effects of label noise. The works presented in the literature are grouped under various

groups in different works [1], [32], [33], [34]. Following a similar way with literature,
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we collect these proposed methods under five main groups, which are "Noise Tran-

sition Matrix Estimation", "Sample Importance Weighting", "Robust Losses", "Meta

Learning" and "Sample Selection" in this section. The main focus of the work pre-

sented in this thesis falls into "Sample Selection" group, and so the proposed methods

of this group are given in a more detailed way compared to other ones, and an exper-

imental evaluation of these works is presented in Chapter 3.

2.3.1 Noise Transition Matrix Estimation

Noise Transition Matrix Estimation approaches mainly analyze training datasets to

discover an underlying structure between instances and their given classes. As an

output of this analysis, they construct a matrix named as noise transition matrix to

represent noise that exists in the dataset. FIGURE 2.1 presents two examples of the

described matrix for two different noise types, and the probability given in each entry

of this matrix represents the probability of labeling an instance from True Label as

Noisy Label.

Figure 2.1: Two examples of noise transition matrix: (a) symmetric noise, (b) asym-

metric noise, for a dataset with %40 noise rate and 5 classes. Image is taken from [1].

There are some works such as [35], [36], [37] which are utilizing points named as

anchor points for estimating noise transition matrix. Anchor point term is used for

instances with almost surely clean labels. In a more formal way, a sample xi ∈ X is

described as an anchor point of the ith class if P (Y = i|xi) = 1 [35]. For these anchor

points, the transition matrix can be estimated as follows by assuming that the noise

transition matrix is independent of instances and noisy class posterior probabilities

are known:
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P̂ (Ỹ = j|xi) =
C∑

k=1

P̂ (Ỹ = j|Y = k, xi)P (Y = k|xi) = P̂ (Ỹ = j|Y = i, x) = P̂ij

(2.7)

Here, P̂ij represents entry of the transition matrix in jth row, ith column. P (Y = k|xi)

is non-zero for only k = i since it is an anchor point.

Noisy class posterior(P̂ (Ỹ = j|Y = i, x)) used in the formula can be estimated by

training a deep neural network and using its class probability estimations for anchor

points.

Once an estimation for the transition matrix is obtained, a popular approach is uti-

lizing the matrix in the construction of a noise-aware-corrected loss. [38] formulates

a new loss lcorrected using noise transition matrix instead of original loss l such as

minimizing lcorrected over noisy data corresponds to minimizing l over clean data.

[39] adds an additional layer at the top of the softmax layer using transition matrix

to convert clean class probability into noisy class probability, and then this additional

layer is removed at the end of training to provide clean class estimation for instances.

[40] further works on idea of [39] and names the approach of multiplying network

predictions with noise transition matrix as "Forward Loss Correction".

2.3.2 Sample Importance Weighting

Sample Importance Weighting approaches introduce a weighting scheme over in-

stances of the training dataset to decrease contribution from possible noisy samples

and avoid their adverse effects. Weighting is applied at loss calculation step such as:

R̂l,Dn =
1

N

N∑
k=1

w(xk)l(fθ(xk), ỹi) (2.8)

where Dn is noisy labelled dataset, R̂l,Dn is empirical loss over noisy dataset, xk is

the kth instance of dataset, fθ is neural network, ỹi is noisy label and w(xk) is the

weight of the kth instance decided by Sample Importance Weighting algorithm.

[41] assigns a weight of 1 to detected possible clean samples on softmax loss calcu-

lation, while a weight smaller than 1 is assigned to detected possible noisy samples,
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and this smaller weight is adjusted according to the probability of being noisy. [42]

is another sample weighting method based on meta-learning. This approach decides

the weights of the training samples by utilizing another small clean dataset as a val-

idation dataset. Loss over the clean validation dataset is formulated as an objective

function of train sample weights, and the objective function is minimized to find the

optimum weights of each training sample. [43] combines meta-learning idea with

a multi-layer perceptron to regress weights of each sample instead of direct assign-

ment. Here, MLP regresses a weight for each sample by taking loss coming from the

main network as input, and regression is again done by minimizing classification loss

over a clean validation subset. [44] follows a different approach based on class pro-

totype extraction using autoencoders. Class prototypes are constructed with a clean

reference subset which is thought to be representative enough for each class. During

training, each sample is weighted in loss calculation according to the similarity be-

tween its feature vector and the prototype of its given class. [45] proposes weighting

samples in loss calculation according to their gradient value. During training, a low

gradient of a sample indicates that the sample is easy to learn and has a small loss in

loss calculation. These easy-to-learn samples are most likely to be correctly labeled;

therefore, samples with low gradient values are emphasized with a large weight in

loss calculation.

2.3.3 Robust Losses

Robust Loss approaches propose modifying loss function to prevent adverse effects

of noisy labeled instances during training. [46] provides an analysis to understand

what makes a loss function robust against label noise. In their analysis, they com-

pared mean absolute error(MAE), mean square error(MSE), and cross-entropy(CE)

losses. The compared MAE, MSE and CE losses are given in Equations 2.9, 2.10,

2.11 respectively.

LMAE =
1

C

C∑
i=0

|p(y = i|x)− p̂(y = i|x)| (2.9)

LMSE =
1

C

C∑
i=0

|p(y = i|x)− p̂(y = i|x)|2 (2.10)
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LCE =
1

C

C∑
i=0

p(y = i|x) log(p̂(y = i|x)) (2.11)

According to the claim of this work, MAE is simple yet robust to label noise, while

MSE and CE are not. CE loss is known for its tendency to learn from hard samples

more compared to easy ones, while MAE is affected by all samples more uniformly.

This property of the CE loss is useful during training with a clean dataset, but during

training with noisy samples, hard samples are more likely to be noisy, so CE is less

robust than MAE. Additionally, experimental works of [46] show that MSE has a

robustness between MAE and CE. [47] further analyses the robustness of MAE to

noisy labels and claims that MAE’s robustness comes from its ability of emphasising

uncertain instances and not from treating all samples uniformly as claimed in previous

works. Also, they mentioned a problem of MAE, like its tendency to underfit data

due to its small weight variance over samples. Small weight variance over samples

prevents learning from even far different and rare instances. They propose a new

robust loss named as IMAE, which is a modified version of MAE in order to solve

the underfitting problem of MAE by keeping its robustness against to label noise.

IMAE solves the underfitting problem by appropriately adjusting the weight variance

of MAE. On the other hand, [48] proposes a study to solve the robustness problem

of CE loss. They showed that DNNs tend to overfit to noisy samples and underfit

to remaining ones, even to hard ones with CE loss, since hard samples are easy to

learn compared to noisy ones during training. They tried to modify CE loss with an

additional term to make learning from hard samples possible while providing noise

tolerance. They are inspired by symmetric KL divergence and strengthen CE with an

additional symmetric, noise-robust counterpart term named as Reverse Cross Entropy.

Also, both theoretical and empirical evidence of the robustness of the modified CE

loss function is provided.

2.3.4 Meta Learning

Deep learning approaches eliminate the need for hand-crafted feature extraction in

most machine learning problems. Still, these approaches need many parameter-tool

tunings, such as optimizer type, learning rate, loss functions, sample weights, net-

work design, etc. Meta-learning is a way of learning to learn itself by avoiding these
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mentioned parameter-tool tuning processes [49], [50]. Meta-learning approaches de-

scribe a meta objective according to desired parameter-tool tuning task and optimize

its original model and its training procedure by minimizing meta objective function.

[42] utilizes meta-learning to reweight its samples during training, and so, it falls into

both Sample Importance Weighting and Meta-Learning groups. The meta objective

function of the work is defined as a loss over a small clean validation dataset, and

variables of the objective function are defined as weights of the noisy samples used

during training. [51] follows a different approach based on the teacher-student net-

work strategy. Here, the teacher network is trained over an available clean dataset

to transfer its knowledge to the student network during training over the main noisy

dataset, and the process is called as knowledge distillation [30]. Teacher network

trained over clean dataset acts as a source of variance for noisy dataset to eliminate

default variance of dataset caused by noisy labels. This elimination process is done

by defining the loss function of the student network as a weighted sum of the losses

between student network predictions and noisy labels, and losses between student

network predictions and teacher network predictions. [52] utilizes two networks such

as student and teacher networks, and proposes a meta objective function to be used

before traditional backward propagation of student network. Their meta-learning al-

gorithm generates multiple clones of the original batch with noisy labels during each

mini-batch. For each generated batch with noisy labels, a student network update is

done, and then a consistency loss is calculated between predictions of the student and

teacher networks. Here, the proposed meta objective of the algorithm is consistency

loss between teacher and student networks. In this way, the student network is forced

to provide consistent predictions with the teacher network, so the student network

does not overfit to generated noisy labels. On the other hand, the teacher network

is updated as an exponential moving average of the student network, which makes

it reliable. After minimization of the meta objective, the student network follows a

traditional parameter update over original labels.

2.3.5 Sample Selection

The sample selection strategy mainly groups instances in the training dataset as clean

and noisy to avoid any weight update coming from noisy instances during training.
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Decoupling[18] states that wrong predictions result with a weight update which makes

the classifier better. Since predictions are most likely to be wrong at initial iterations

compared to the last ones, there are fewer updates at the last iterations compared to

initial ones. On the other hand, a neural network memorizes clean samples at initial

iterations and then memorizes noisy samples as training progresses[16]. Both these

statements mean that updates are mainly done by noisy samples at the last iterations

of training since predictions of noisy samples are likely to be wrong because of their

incorrect labels. Decoupling proposes checking whether a sample is worthy to up-

date or not using an update criterion to decrease the effect of noisy samples at the

last iterations. For this purpose, Decoupling trains two randomly initialized networks

simultaneously and updates both network parameters using samples that fall into the

disagreement region, which naturally decreases the number of samples in weight up-

date at the last iterations.

MentorNet[19] introduces "learning to teach" approach to learning with noisy labels

task. "learning to teach" approach consists of two networks named as teacher and

student networks, where the pre-trained teacher network leads to the student network

during training for useful sample extraction. MentorNet uses an LSTM model named

as MentorNet(teacher network) to supply a curriculum to the student network. The

curriculum is a weighting scheme such as provided weights by MentorNet are used

as coefficients of training samples in loss calculation, and these provided weights in-

crease the importance of probably clean samples in student network train loss. One

another approach, which MentorNet proposes, is using a predefined curriculum in-

stead of using a teacher network. This predefined curriculum is based on choosing

small loss instances as probably correct samples and ignoring the remaining ones in

loss calculations. This predefined curriculum-based MentorNet version is known as

self-paced MentorNet.

Co-teaching[20] utilizes small loss observation[16], which proves that clean samples

are most likely to have small losses compared to noisy samples. Co-teaching trains

two networks simultaneously, and during each iteration, a desired percentage of sam-

ples are selected from small loss instances, possible clean samples, for each network

independently. Here, the desired percentage of small loss instances is found by a
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variable named as remember rate, which is formulated as follows:

R(T ) = 1−min(
T

Tk

τ, τ) (2.12)

Here, τ depends on the noise rate of the dataset and ideally should be set to 1 − ϵ if

the noise rate is ϵ. Tk is an epoch threshold used for warm-up, such as all samples are

used at the first epoch, and the rate of used samples is decreased to τ until Tk.

After sampling small loss instances, each network is updated by its peer network’s

small loss instances, which can be viewed as each network teaches to the other by

sharing its knowledge. The main motivation behind using two networks is utilizing

different learning abilities for filtering different types of errors during training.

Co-teaching+[3] states that networks used in Co-teaching[20] converge to a consen-

sus as training progresses, and so, the Co-teaching algorithm turns into self-paced

MentorNet[19] which suffers from accumulated error caused by sample selection

bias. To prevent convergence of Co-teaching to self-paced MentorNet, networks used

in the Co-teaching algorithm should be kept diverged during training. Co-teaching+

observed that the "Disagreement" strategy introduced by Decoupling[18] is a useful

tool for keeping two networks diverged from each other during training, while the

"Disagreement" strategy can not directly handle noisy label problem effectively. Co-

teaching+ unifies Co-teaching and Decoupling algorithms to obtain a more powerful

tool for combating noisy labels. Co-teaching+ mainly proposed using two networks

during training, getting samples in the disagreement region, choosing small loss in-

stances in the disagreement region for both networks, and updating the weights of a

network using its peer network’s small loss instances.

JoCoR[21] suspects necessity of "Disagreement" approach used by both Decoupling[18]

and Co-teaching+[3] for training two networks to handle noisy labels. Noisy samples

also exist in the disagreement region, and so, Decoupling is not successful enough

to handle the noisy label problem. On the other hand, Co-teaching+ suffers from the

insufficient number of samples at high noise rates since it selects samples utilizing

a strategy such as taking the desired percentage of small loss instances in the dis-

agreement region, which filters most of the samples. These observations related to

the "Disagreement" strategy indicate that it is not a good approach for handling the

noisy label problem. JoCoR also trains two networks simultaneously but this time us-
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ing a single joint loss function which also includes a regularization term to decrease

divergence between networks. This joint loss term is the summation of standard clas-

sification losses from both networks and an additional regularization loss named as

contrastive loss. Contrastive loss is defined as symmetric KL divergence between

predictions of a sample coming from two networks which helps networks to reach a

consensus in predictions. JoCoR claims that both networks are more likely to agree

on clean samples, while a disagreement exists for samples with incorrect labels, and

agreement over a sample results with a small joint loss. For this reason, after calcu-

lating joint loss for each sample, JoCoR chooses the desired percentage of small loss

instances for weight update.

Nested Co-teaching[22] is another promising work which combines a compression

regularization method named as Nested Dropout[53] with Co-teaching[20] algorithm.

Nested Dropout[53] provides importance ordered outputs at the end of a network,

and it was originally proposed for adaptive data compression. Since Nested Dropout

provides importance ordered outputs, one can easily remove meaningless parts of the

output by cutting it from the desired dimension. This nice property of Nested Dropout

can be easily utilized during learning with noisy labels since representations learned

by noisy data are also meaningless. Nested Co-teaching states a weakness of the

Co-teaching algorithm related to the small loss selection strategy. They claim that a

network should be reliable enough for the small loss selection strategy. Otherwise, an

unreliable network can provide a small loss for a noisy sample while a large loss for

a clean sample, resulting in incorrect selections. For this reason, they came up with a

two stages strategy where two networks are trained with Nested Dropout approach to

obtain two reliable base networks in the first stage, and two base networks are further

fine-tuned using the Co-teaching algorithm.

SELF[23] is a recent work that utilizes the mean teacher network concept in noisy

labeled training problem. The mean teacher approach utilizes a student and teacher

network during training. The student network is trained over provided batches by

method, while the teacher network is set to the moving average of the student net-

work’s weights. Each batch consists of possible clean and noisy samples detected by

the algorithm. The clean-noisy detection process is also based on the moving aver-

age approach. All samples are assigned as clean at the initial iteration. As training
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progresses, network prediction of each sample is used in moving average calcula-

tions to find a representative prediction for each sample. For the current iteration, a

sample is assigned as possible noisy if its moving average prediction differs from its

ground truth label. The student network utilizes all samples during loss calculation

by applying supervised learning to possible clean samples and unsupervised learning

to possible noisy samples. Clean samples are used in traditional classification loss

calculations, while noisy samples are used in a consistency loss between student and

teacher networks.

The work named Area Under the Margin Ranking[24] provides a novel approach

based on the analysis of clean and noisy samples through an artificial noisy set. They

mainly propose creating an artificial class that does not originally exist in the training

dataset and assigning a desired percentage of samples to the created artificial class

to obtain undoubtedly noisy samples. The purpose of creating surely noisy sam-

ples is to investigate their train dynamics to classify the remaining samples as clean

or noisy. Train dynamics investigation is based on a metric named as Area Under

Margin(AUM). AUM is the average of Margin values of a sample calculated at each

iteration, and Margin is defined as the difference between the largest class score and

the second largest class score for a sample. Their claim is that noisy samples have a

tendency to have a small AUM value compared to clean samples, and one can apply a

threshold to AUM values in the training dataset to classify samples as noisy or clean.

The created artificial samples are used for setting the AUM threshold.

DIVIDEMIX[54] is another sample selection-based approach that utilizes multiple

powerful tools from different deep learning domains. To achieve robust training, they

use Co-training[55] idea by training two networks together. At the beginning of the

algorithm, they start with warm-up training using cross-entropy loss with an addi-

tional penalty term which is simply negative cross entropy and avoids overconfident

predictions. Penalty term slows down memorization of the noisy sample and pro-

vides a more even loss distribution during training. Then, they follow a similar way

with [56] to separate samples as clean and noisy by fitting a Mixture of Gaussians

to samples’ loss values during training. Each network chooses clean samples for its

peer network to avoid self-bias during the clean sample selection process. After the

clean-noisy classification of the samples, clean samples are treated as labeled samples

19



while noisy ones as unlabelled samples. In this way, one set with labeled samples and

one set with unlabeled samples are obtained, and these sets are utilized with a semi-

supervised learning approach. During each iteration, one batch is taken from each set

and passed through an augmentation process separately. Augmented versions of the

samples from both sets are passed through networks to obtain label predictions. Then,

the labels of the labeled set are updated by taking the weighted sum of the original

label and current network predictions. As a next step, Mixup[57] augmentation is ap-

plied between the labeled set with updated labels and the unlabelled set with network

label predictions. Mixup outputs are divided into two parts. In one part, samples

from the labeled set are dominant, while in the other one, samples from the unlabeled

set are dominant. Cross entropy loss is calculated for the part where labeled samples

are dominant, and mean square error is calculated for the part where unlabelled sam-

ples are dominant. Also, the previously mentioned penalty loss is calculated for each

mixup output. Finally, the weighted sum of cross-entropy loss, mean square error,

and penalty loss is calculated for optimization.

UNICON[58] utilizes Co-training[55] idea with two networks for increasing robust-

ness. Two networks start learning with warm-up training, and then each network

classifies samples as clean or noisy using Jensen Shannon Divergence(JSD) for its

peer network. JSD is a tool of probability theory that calculates divergence between

two distributions, and so it actually shows the similarity between two distributions.

UNICON calculates divergence between yi and pi where i is sample index, yi is given

label of sample, pi is average of two networks’ predictions(p1i , p
2
i ) for sample of in-

terest. This calculation is formulated as given in Eq. 2.13. The function KL given in

the equation is the well-known Kullback–Leibler divergence.

pi =
p1i+p2i

2

di = JSD(yi, pi) =
KL(yi,mi)+KL(pi,mi)

2

mi =
yi+pi

2

(2.13)

UNICON classify a sample as noisy if calculated divergence(di in Eq. 2.13)is high.

After the classification of samples, clean samples are treated as labeled samples, while

noisy ones are treated as unlabeled samples. Similar to DIVIDEMIX, all samples are

passed through an augmentation process, and augmented images are given to net-

works to predict their labels. Labels of the labeled set are updated by taking the
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weighted sum of the original labels and network predictions. On the other hand, label

predictions obtained from networks for the unlabeled set are used as sample labels in

that iteration. Labeled set with updated labels and unlabeled set with network predic-

tions are combined with Mixup[57] augmentation. Similar to DIVIDEMIX, Mixup

outputs are divided into two parts, and in one of them, samples of the labeled set are

dominant, while in the other one, samples of the unlabeled set are dominant. Cross

entropy loss is calculated for the labeled set dominant part, and mean square error is

calculated for the unlabeled set dominant part. Also, UNICON utilizes augmented

images of the unlabeled set via contrastive learning and calculates a contrastive loss.

As a final step, UNICON calculates a penalty term for each sample to avoid overcon-

fident predictions. To find the final total loss, the weighted sum of the cross entropy

loss, mean square error, contrastive loss, and penalty loss is calculated, and the total

loss is used for optimization purpose.

To summarize all explained sample selection methods, we collect all of them by giv-

ing their some key features in Table 2.1. Explanation of these key features is given

below.

• Single / Two Network(s): Some methods are utilizing two networks simulta-

neously during training to increase robustness. "Two" and "Single" keys corre-

spond to two networks and single network usage respectively.

• Clean Sample Selection Method: Each method utilizes a different approach

to filter clean samples. "SL" key means that approach utilizes small loss selec-

tion technique. "GT-P-C" corresponds to checking ground truth and network

prediction consistency for clean sample detection. "AUM" refers to a special

metric named as area under margin which is thresholded for each sample to

classify it as clean or not. "GMM" corresponds to fitting Gaussian Mixture

Models to sample losses to divide them as clean or noisy in a unsupervised

manner. "JSD" refers to Jensen Shannon Divergence which is thresholded to

detect clean samples.

• Networks Agreement / Disagreement: Some approaches with two networks

utilize agreement or disagreement of the network predictions during training.

Here, "D" and "A" corresponds to utilizing disagreement and agreement recpec-
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tively.

• Clean Data: Some methods may utilize a clean validation dataset during

training. Here, "+" means that method uses a clean dataset.

• Noise Rate Info.: Some methods utilize a prior information about noise rate

during clean sample detection. Here, "+" means that method uses noise rate

information.

• Online Selection: Clean-noisy classification of samples can be done during

main training or as a pre-processing before main training. Here, online selec-

tion means that classification is done during main training.

• Semi Supervised Learning: Detected noisy samples can be utilized during

training using Semi-Supervised Learning. Here, "+" means that method utilizes

Semi-Supervised Learning.

Table 2.1: Properties of Sample Selection Algorithms

Algorithm

Name

Single / Two

Network(s)

Clean

Sample

Selection

Method

Networks

Agreement /

Disagreement

Clean

Data

Noise

Rate

Info.

Online

Selection

Semi

Supervised

Learning

Decoupling Two - D - - + -

SP MentorNet Single SL - - + + -

Co-teaching Two SL - - + + -

Co-teaching+ Two SL D - + + -

JoCoR Two SL A - + + -

Nested

Co-teaching

Two SL - + + + -

SELF Two GT-P-C - - - + -

AUM

Ranking

Single AUM - - - - -

DIVIDEMIX Two GMM - - - + +

UNICON Two JSD - - - + +
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CHAPTER 3

PROPOSED METHOD: OFFLINE CLEAN-NOISY CLASSIFICATION OF

SAMPLES VIA CONTROLLED ARTIFICIALLY NOISY SUBSET

Train loss dynamic of samples contains useful hints about the correctness of their

labels. Multiple studies[19], [20], [3], [22] utilize small loss selection trick by claim-

ing that a neural network learns from clean samples first and then, overfits to noisy

samples. Consequently, clean samples’ loss are small compared to noisy ones until

overfitting starts. Power of this simple approach has been extensively investigated and

proved in [19], [20], [3] and [22]. Some important weaknesses of these studies are

predefined hyperparameters and assumptions related to the noise rate of the dataset.

The amount of small loss samples to be chosen as clean depends on the real noise

rate of the dataset, and performance degrades if noise rate estimation differs from the

exact rate. Noise rate can be estimated via validation if a small clean validation set

exists, but this is not possible for most real-world cases.

In this chapter, we propose a pipeline, which is based on train loss dynamic investiga-

tion utilizing artificially corrupted samples of a noisy dataset, for classifying samples

as clean or noisy without any assumption related to noise rate. Further, we utilize

samples via Semi-Supervised Learning after classifying them as clean or noisy.

3.1 Methodology

3.1.1 Overview

An overall diagram of our proposed approach is given in Figure 3.1. Our approach can

mainly be divided into three parts such as artificially corruption of a noisy dataset to
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obtain a controlled setup with surely noisy samples, classification of samples as clean-

noisy utilizing artificially corrupted samples, and a final semi-supervised learning-

based training process using predicted clean and noisy subsets.

Noisy

Dataset

Dn

Artificially

Corruption

Process

Artificially

Corrupted

Dataset

Clean-Noisy

Classification

of Samples

Predicted

Noisy

Samples

Predicted

Clean

Samples

Final

Training

Process

Figure 3.1: Overall Pipeline

3.1.2 Details of the Proposed Method

3.1.2.1 Artificial Corruption Process of Noisy Dataset

The first step of our approach is artificially corrupting noisy dataset Dn to obtain a

controlled dataset D̃n and it is depicted in Figure 3.2. Here, the main purpose is to

obtain surely noisy samples and observe their train losses to classify the remaining

samples as clean or noisy.

The input of the corruption pipeline is noisy dataset Dn with K samples, and each

sample is from one of the C possible classes {0, 1, ..., C − 1}. %s of K samples

are chosen for the corruption process and form a new set Dn1 while the remaining

ones form another set Dn2. Total class number is increased from C to C + 1 for both

subsets Dn1 and Dn2 by modifying their one-hot ground truth label vectors and new

possible classes are {0, 1, ..., C}. After increasing the number of classes, the original

ground truth class of samples of the subset Dn2 is preserved, and Dn2 is converted

into a new set Dn4. On the other hand, all samples of Dn1 are assigned to artificially

created Cth class, and in this way, all samples of set Dn1 are guaranteed to be noisy.

After increasing the number of classes and assigning samples to the new class, subset
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Dn1 is converted into a new set Dn3. As a final step of the corruption process, subsets

Dn3 and Dn4 are combined by preserving their indices to obtain a final dataset D̃n.

Dataset Dn ,

C Classes ,

K Samples

Sampling

Process

Dataset Dn1 ,

C Classes ,
K∗s
100

Samples

Dataset Dn2 ,

C Classes ,

K− K∗s
100

Samples

Increase Class

Number to C+1,

Assign all Samples

to Artificial class C+1

Increase Class

Number to C+1,

Keep Ground Truth

Labels

Dataset Dn3 ,

C+1 Classes ,
K∗s
100

Samples

Dataset Dn4 ,

C Classes ,

K− K∗s
100

Samples

Combine

Dataset D̃n ,

C+1 Classes ,

K Samples

Figure 3.2: Artificially Corruption Process of Noisy Dataset

3.1.2.2 Classification of Samples as Clean-Noisy

Once the artificially corrupted dataset D̃n is obtained, a neural network-based classi-

fier is trained over the new dataset. During this training, the loss value of each sample

at each iteration is stored for the next steps. Here, the aim is to find some clues about

noisy samples based on losses of artificially corrupted samples.

Following the first training phase, our approach continues with a voting process. An

overall diagram of the voting pipeline is given in Figure 3.3. Losses obtained after

first training phase are divided into two loss sets Lai and Lri where Lai and Lri are

losses of samples corresponded to Dn3 and Dn4 at ith epoch respectively. Here, Lai

is losses of surely noisy samples and is used as an indicator of label noise. For each

epoch i from 0 to El, mean value of the Lai is obtained and represented as uai. Then,
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each loss value Lrij , which is loss value of jth sample at ith epoch, is compared with

uai. If Lrij is larger than uai, NVrj is increased by one, otherwise CVrj is increased.

Here, NVrj and CVrj are noisy and clean votes of jth sample respectively. After

voting each sample for all first El epoch, the voting phase is ended. At the end,

possible minimum and maximum values of NVrj and CVrj are 0 and El respectively.

ith Epoch

Lai =

(Lai0, Lai1, Lai2, ...)

Lri =

(Lri0, Lri1, Lri2, ...)

Take Mean uai

Loss Comparison

Lrij > uai

Lrij < uai

Inrease NVrj

Inrease CVrj
Increase i

until Ei

Figure 3.3: Clean-Noisy Voting Strategy

A thresholding-based noisy-clean classification is followed as the next step of the vot-

ing process. Each CVrj value is compared with Vt, which is the voting threshold. If

CVrj is larger than Vt, jth sample is classified as clean, otherwise it is classified as

noisy.

As an output of classification process, we obtain a clean and a noisy set which are

represented as X = {(x0, y0), ..., (xn, yn)} and U = {u0, ..., um} respectively. Here,

xi, yi are ith image of clean set and its corresponding label respectively. ui is the ith

image of the noisy set, and its label is ignored since it is classified as noisy. These

two sets are provided to Semi-Supervised Learning step to train our final classifier.

3.1.2.3 Semi-Supervised Learning Based Final Training

The final step of our approach is training a neural network-based classifier over the

extracted clean(X) and noisy(U ) subsets. To be able to utilize noisy subset without
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degrading network performance, a semi-supervised learning-based approach is fol-

lowed similar to recent works [54], [58]. Additionally, two classifier networks(g1(.),

g2(.)) are trained together to increase the robustness of the approach against possible

samples misclassified as clean.

The input of the training process is noisy and clean subsets, where the clean subset

is used as a labeled set while the noisy one is used as an unlabeled set. During each

iteration, one of the networks is frozen, and just the other free one is trained for the

current iteration, and two networks are alternately trained in this way.

To train the free network, labeled set X is passed through a strong augmentation

process twice, which results with Xs1 and Xs2. On the other hand, unlabelled set U

is passed through a strong augmentation twice to obtain Us1, Us2 and passed through

a weak augmentation twice to obtain Uw1 and Uw2.

For utilizing unlabelled set in semi-supervised learning, its weak augmented versions

Uw1 and Uw2 are passed through both networks(g1(.), g2(.)) and predictions of the

both networks are averaged to create label predictions for unlabelled set as given in

Equation 3.1.

W1 = g1(Uw1)

W2 = g1(Uw2)

W3 = g2(Uw1)

W4 = g2(Uw2)

W = W1+W2+W3+W4

4

(3.1)

Then, strongly augmented versions of both labelled(Xs1, Xs2) and unlabelled(Us1,

Us2) sets are given to MixUp[57] augmentation and during this augmentation aver-

aged network predictions w are used as ground truth of Us1, Us2. Details related to

the MixUp augmentation algorithm are given below.

MixUp Augmentation: MixUp[57] is a simple but powerful augmentation technique

that can be done easily just by mixing both input data features and their labels. A basic

formulation of the MixUp augmentation is given in Equation 3.2. xi, ui are input data

features of two samples from (Xs1, Xs2) and (Us1, Us2) respectively. yi, wi are labels
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of xi, ui respectively where yi ∈ Y and wi ∈ W .

α value is sampled from beta distribution. Both feature and label vectors are mixed

using sampled α value.

x̂i = αxi + (1− α)ui

ŷi = αyi + (1− α)wi

xi ∈ {Xs1 +Xs2}, ui ∈ {Us1 + Us2}
yi ∈ Y, qi ∈ W

Dmixup = {(x̂0, ŷ0), (x̂1, ŷ1), ...}

(3.2)

A visualization of the mixing features of two samples can be observed in Figure 3.4.

Figure 3.4: An example of MixUp Augmentation

Mixup augmentation increases samples number synthetically in a fast way. Also,

Mixup provides a way of label smoothing since the final label is the weighted sum

of the input labels. In this way, the individual effect of each label decreases during

training, so if there is any mislabelled ground truth, its effect will decrease during

training. For this reason, Mixup augmentation is a powerful and robust tool against

noisy labeled samples.

After applying MixUp augmentation to strongly augmented versions of labelled and

unlabelled sets, we obtain a new set Dmixup = {(x̂0, ŷ0), (x̂1, ŷ1), ...} with soft labels

as output of MixUp augmentation. Then, Dmixup is given to the free network to

calculate cross-entropy loss which is given in Eq. 3.3.
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LX =
1

|Dmixup|

|Dmixup|∑
i=0

1

C

C∑
c=0

p(ŷi = c|x̂i) log(p̂(ŷi = c|x̂i)) (3.3)

Here, p̂ and p correspond to predicted and true class distributions, respectively. i is

index of the sample and c corresponds to cth class.

On the other hand, we utilize strongly augmented versions of the unlabeled set(Us1,

Us2) further via contrastive learning. Contrastive learning makes it possible to use

samples without ground truth labels, and it can be viewed as a tool to avoid memo-

rization of noisy samples in our approach. Details related to contrastive learning are

given below.

Contrastive Learning: Contrastive learning is a machine learning algorithm utilized

during learning a mapping function from the input images to a latent space where

visually similar inputs are located close to each other while visually dissimilar ones

are distant from each other. It is a powerful tool in self-supervised learning since the

optimization of the contrastive loss function can be done without using any ground

truth label.

FIGURE 3.5 presents a simple pipeline for contrastive learning. For a given unla-

belled train set U = {ui}Ni=1, each image is passed through an augmentation algo-

rithm twice to generate two different images with the same class label. In our case,

these augmented sets are Us1 = {ui,s1}Ni=1 and Us2 = {ui,s2}Ni=1 which are already

generated at the beginning of the SSL training pipeline.

Augmented images ui,s1 and ui,s2 are passed through the feature extractor part of

our free network, which is a fully convolutional network. Feature extractor provides

middle representations hi1 and hi2 for augmented inputs. Then, middle representa-

tions are further processed via a dense layer(MLP) known as the projection head.

Latent space representations zi1 and zi2 are obtained at the output of the projection

head(dense layer). zi1 and zi2 are the final(latent space) representations of the in-

puts ui,s1, ui,s2 and these representations are directly used in contrastive loss function

which is given in Equation 3.4.
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Figure 3.5: Contrastive Learning Pipeline

li,1 = − log
exp(sim(zi1,zi2))

τ∑k=N
k=1

∑2
m=1 Ikm̸=i1

exp(sim(zi1,zkm))
τ

(3.4)

N is the number of images used in contrastive loss calculation, τ is temperature sharp-

ening constant, Ikm̸=i1 is an indicator function that gives 0 if km = i1 and 1 in all

other cases. sim(.) is a similarity function that can be defined as cosine similarity be-

tween inputs. When contrastive loss is calculated for all augmented images according

to Eq. 3.4, overall contrastive loss can be calculated via Equation 3.5.
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LC =
1

2N

N∑
i=1

(li,1 + li,2) (3.5)

By minimizing overall contrastive loss, the network learns to map two augmented

versions of a single image to close region in latent space, and so, the network learns

underlying visual similarities in the augmented images.

By utilizing explained contrastive learning algorithm, a contrastive loss LC is calcu-

lated for Us1, Us2 as given in Equation 3.5. Then, final total loss is calculated as given

in Equation 3.6.

LT = LX + λC ∗ LC (3.6)

Here, λC is coefficient of the contrastive loss which controls effect of the contrastive

learning in overall train.
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CHAPTER 4

EXPERIMENTAL EVALUATION OF PROPOSED METHOD AND

LITERATURE

This chapter aims to analyze strong and negative sides of the sample selection based

label noise robust algorithms proposed in the literature and proposed method of this

thesis(see Chapter 3) through extensive experimentation. In the beginning of the

chapter, widely used datasets in label noise robust training literature are presented.

Then, experimental setup is introduced by giving details related to dataset prepara-

tion, tested algorithms, their network structures and training strategies. As a next

step, detailed results of each algorithm over prepared datasets are presented and find-

ings obtained from test results are given. Thereafter, an analysis of sample losses is

provided to see differences of clean samples, noisy samples and artificially corrupted

samples by the proposed method of this thesis. At final, clean sample extraction per-

formance of the proposed method of this thesis is presented.

4.1 Datasets Used in Experiments

In label noise robust training literature, widely used datasets are MNIST[59], MNIST-

Fashion[60], CIFAR10[27], CIFAR100[27], Clothing1M[2] and Animal10N[61]. In

fact, MNIST, MNIST-Fashion, CIFAR10 and CIFAR100 are clean datasets but they

are frequently used in label noise robust training literature after they are corrupted

by utilizing synthetic noise generation methods(see Section 2.2). On the other hand,

Animal10N and Clothing1M are real world noisy datasets.
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4.1.1 MNIST

MNIST[59] dataset is a handwritten digit dataset which contains 60000 train and

10000 test images. Each image in MNIST is a gray-level image with size of 28x28.

There are 10 different digit classes in MNIST dataset.

4.1.2 MNIST-Fashion

MNIST-Fashion[60] is article image dataset which contains 60000 train and 10000

test images similar to MNIST[59]. Each image is a gray-level image with size of

28x28 and dataset contains 10 different classes.

4.1.3 CIFAR10

Cifar10[27] is a toy dataset which contains 10 different object classes inside. There

are 50000 train and 10000 test images in dataset. Each image is RGB image with size

of 32x32.

4.1.4 CIFAR100

Cifar100[27] contains 100 different object classes inside. It is a more complicated

dataset compared to Cifar10[27] because of its large number of classes. There are

50000 train and 10000 test images and each image is RGB image with size of 32x32

similar to Cifar10 dataset.

4.1.5 Animal10N

Animal10N[61] dataset is a real world noisy dataset which is constructed by col-

lecting animal images using search engines and then, annotating these images by 15

annotators. The noise rate of Animal10N is estimated to be %8 and the reason of

noisy samples is confusing animal classes. Animal10N contains 10 different animal
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classes inside. There are 50000 train and 5000 test images in dataset and each image

is RGB image with size of 64x64.

4.1.6 Clothing1M

Clothing1M[2] dataset is a real world noisy dataset which is collected from online

shopping websites. There are 14 different clothing classes in dataset. Clothing1M

contains two sets inside which are clean set and noisy set. Clean set contains 74000

images which are manually labelled by annotators. Clean set is divided into train

data, validation data and testing data with 50000, 14000 and 10000 images respec-

tively. These clean train, validation and test sets are shown in orange circle, green

circle and red circle in Figure 4.1 respectively. Also, Clothing1M provides original

initial labels of some images of the clean set and these labels belong to before of the

annotation process and so, these images also can be used as noisy labelled samples us-

ing their noisy labels. These images are shown as overlap of orange and blue circles,

green and blue circles, red and blue circles in Figure 4.1. On the other hand, noisy

part of Clothing1M contains 1 million images which are not annotated manually and

so, these 1 million images are noisy labelled directly. These images are shown in the

non-overlapping part of blue circle in Figure 4.1.

To summarize Clothing1M distribution with Figure 4.1, non-overlapping part of or-

ange circle contains 22933 images with only clean labels, overlapping part contains

24637 images with both initial noisy labels and clean labels. Non-overlapping part of

green circle contains 6848 images with only clean labels, overlapping part contains

7465 images with both initial noisy labels and clean labels. Non-overlapping part

of red circle contains 5131 images with only clean labels, overlapping part contains

5395 images with both initial noisy labels and clean labels. Non-overlapping part of

blue circle contains 1 million images with only noisy labels.

Each image of Clothing1M is RGB image with varying size. There is not a constant

size for all images.
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Figure 4.1: Clothinh1M dataset image distribution. Image is taken from [2].

4.2 Experimental Setup

For analysing literature, some popular sample selection based algorithms are imple-

mented and tested over different datasets under varying noise levels. For a fair com-

parison between algorithms, similar networks and training strategies are applied in

these implementations. Now, detailed information related to preparation of datasets,

algorithms, their network structures and training strategies will be provided in the

following subsections.

4.2.1 Preparation of Datasets

As mentioned in Section 4.1, MNIST, MNIST-Fashion, CIFAR10 and CIFAR100 are

originally clean datasets. During experiments, these clean datasets are corrupted by

uniform synthetic noise(see Section 2.2.1) under varying noise levels such as %20,

%30, %40 and %50.

As a real world noisy dataset, we use Animal10N. We do not apply additional pro-

cessing for Animal10N and it is used directly.

Clothing1M is also a real world noisy dataset and it is utilized in three different ways

during experiments for a detailed analysis of the sample selection methods.

The first version of Clothing1M is constructed with clean part of Clothing1M. Noise

rate of the noisy part of Clothing1M is constant and it is not exactly known. Therefore,
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controlled experiments with noisy part of Clothing1M are not possible. To achieve

a controlled environment with a realistic and complex dataset, clean part of Cloth-

ing1M is corrupted with uniform synthetic noise under varying noise rates similar to

corruption of our toy datasets and this version of Clothing1M is called as Clothing1M

V1. Available noise rates in Clothing1M V1 are %10, %20, %30, %40 and %50.

The second version of Clothing1M is constructed with clean and clean-noisy over-

lapping parts of Clothing1M. To achieve a controlled environment with real world

noise instead of uniform synthetic noise, surely noisy samples in the overlapping re-

gion are randomly sampled to create 4 different sets with %5, %10, %15 and %20

noise rates and these versions are called as Clothing1M V2 in our thesis. We only can

achieve %20 maximum noise rate in Clothing1M V2 since number of surely noise

samples is limited.

The third version of Clothing1M is directly constructed with noisy part of Cloth-

ing1M. Clothing1M suffers from class imbalance problem since number of samples

exist in classes varies with a large amount. One followed approach in the literature is

finding class with minimum number of samples and randomly sampling from other

classes with an amount of samples exist in the found class with minimum number

of samples. We also follow same approach and a class balanced noisy Clothing1M

subset with approximately 270000 images is obtained. This final version is called as

Clothing1M V3.

4.2.2 Implemented Algorithms

For evaluation of label noise robust training literature, a base model, Self-Paced Men-

torNet, Co-teaching, Co-teaching+, Nested Co-teaching, DIVIDEMIX and UNICON

algorithms are implemented and compared with each other.

Base model is a simple classifier model. It does not include any specific precaution to

handle noisy label problem. The main purpose of training a base model is observing

improvements gained by all other algorithms proposed to handle label noise problem

and analyzing effect of noisy samples over train-test losses and performance.
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On the other hand, Self-Paced MentorNet, Co-teaching, Co-teaching+ and Nested Co-

teaching are four popular sample selection based robust methods which utilize small

loss selection approach. These algorithms apply small loss selection trick during

training to eliminate possible noisy samples.

Self-paced MentorNet is a special case of the MentorNet where a predefined curricu-

lum is used during training. Predefined curriculum is choosing only samples with

small loss for backpropagation calculation. Algorithm utilizes a single network and

network uses small loss samples chosen by itself in its optimization process at each

iteration.

Co-teaching can be seen as an updated version of the Self-Paced MentorNet. It

utilizes two networks during training which are randomly initialized with different

weights. Each network chooses its small loss instances and updates its parameter

using its peer network small loss instances. Difference between Co-teaching and

Self-Paced MentorNet can be visualized in FIGURE 4.2.

Co-teaching+ claims that networks used in Co-teaching reach a consensus as training

progress and Co-teaching algorithm is simply converted into self-paced MentorNet.

For this reason, Co-teaching+ tries to keep both networks divergent from each other

and this is done by applying small loss selection operation on the samples in dis-

agreement region of networks. Comparison of the Co-teaching and Co-teaching+

algorithms can also be visualized in FIGURE 4.2.

Figure 4.2: Loss Flow through Self-paced MentorNet, Co-teaching and Co-

teaching+. Image is taken from [3]
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Nested Co-teaching claims that networks used in both Co-teaching and Co-teaching+

algorithms should be trustable enough for selection of small loss instances at the

beginning of algorithms. Therefore, it proposes a two stage based method for noise

robust training where the first stage aims to provide two trustable networks for small

loss instance selection and the second stage aims to fine tune trustable networks of the

first stage using Co-teaching algorithm. The first stage of algorithm utilizes Nested

Dropout[53] idea for training of trustable base networks. Nested Dropout is a way of

importance ordered representation learning which makes possible to learn underlying

structure of clean samples in the important part of output feature vector.

The other two implemented algorithms, DIVIDEMIX and UNICON are sample selec-

tion based robust algorithms which exploit semi-supervised learning. DIVIDEMIX

utilizes two networks during training. During each iteration, it fits GMM to sample

loss values for detection of clean samples in an unsupervised manner. Then, each

network gives its clean and noisy predictions to its peer network as training data.

Each network uses clean and noisy predictions of its peer network as labelled and

unlabelled sets respectively. Then, labels of labelled set are refined by utilizing both

networks in co-refinement. Also, labels of unlabelled set are predicted by utilizing

both networks in co-guessing. Thereafter, samples of both labelled and unlabelled

sets are mixed via MixUp augmentation and these are used in semi-supervised learn-

ing loss calculations.

On the other hand, UNICON also follows a very similar approach with DIVIDEMIX.

UNICON also utilizes two networks during training. During each iteration, network

predictions are averaged to obtain common predictions for samples and then, Jensen-

Shannon Divergence(JSD) is calculated between this averaged predictions and ground

truth labels. Thereafter, samples are classified as clean or noisy according to their

JSD values. Possible clean samples are utilized as a labelled set while possible noisy

samples are utilized as an unlabelled set. A constrastive learning loss is calculated

from unlabelled set different from DIVIDEMIX. Also, similar to DIVIDEMIX, both

networks are utilized to refine labels of labelled set via co-refinement and guess labels

of unlabelled set via co-guessing. Then, labelled and unlabelled sets are mixed using

MixUp augmentation. Additional to contrastive loss, semi-supervised learning loss is

calculated using output of MixUp augmentation. At final, networks are updated using

39



weighted sum of contrastive and semi-supervised learning losses.

The final implemented algorithm is the method proposed of this thesis and it is de-

scribed in detail in Chapter 3. Also, more detail about implemented methods of the

literature can be seen in Section 2.3.5 and related references.

4.2.3 Network Structures

Mainly implementations of two networks are used during experiments according to

dataset type and independent of the algorithms. MNIST, MNIST-Fashion, CIFAR10,

CIFAR100 and ANIMAL10N datasets are simpler datasets compared to Clothing1M

in terms of both image size and number of images. For this reason a simpler custom

network used for these datasets while a more complicated network is utilized for

Clothing1M experiments.

This custom CNN used for simple datasets is taken from original Co-teaching al-

gorithm implementation[20] and will be named as CoTeachingCNN throughout our

thesis. CoTeachingCNN is constructed with 9 convolutional layers which are fol-

lowed by a batch normalization and leaky ReLU activation function. Negative slope

of the each leaky ReLU is set to 0.01. A 2D max pooling operation is applied to

donwsample feature maps after leaky ReLUs coming after 3rd and 6th convolutional

layers. A 2D average pooling layer is used after leaky ReLU coming after 9th con-

volutional layer. Dropout is applied after 2D max pooling layers. Both dropout rate

is set to 0.25. At the end, a single fully connected layer is applied after 2D average

pooling layer to obtain class scores.

The complicated network used during experiments over Clothing1M is ResNet50[62].

Network structure of ResNet50 besides of last fully connected layer is preserved dur-

ing experiments. The last layer is modified according the number of classes exist in

Clothing1M.

For the methods utilizing contrastive learning(UNICON and the proposed method of

this thesis), both network types(CoTeachingCNN, ResNet50) are further modified by

adding a projection head in parallel to fully connected layer at the end of network.

This projection head is also a fully connected layer followed by 1D batch normal-
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ization layer. Output of the projection head is a vector with 128 entries. Projection

head is only used during training for loss calculations and it can be removed during

inference time. Further detail about projection head is given in Section 3.1.2.3.

4.2.4 Training Strategies

Base model, SP-MentorNet, Co-teaching and Co-teaching+ are trained for 200 epochs

over MNIST, MNIST-Fashion, CIFAR10, CIFAR100 and ANIMAL10N with ADAM

optimizer. Initial learning rate of ADAM optimizer is set to 0.001 and then, it is lin-

early decreased to 0 after 80th epoch for MNIST, MNIST-Fashion, CIFAR10, ANI-

MAL10N and after 100th epoch for CIFAR100. β1 value of optimizer is set to 0.9 un-

til 80th epoch for MNIST, MNIST-Fashion, CIFAR10, ANIMAL10N and until 100th

epoch for CIFAR100 and then, it is set to 0.1. β2 value is set to 0.999 throughout

training. As a loss function, cross entropy loss is used for all methods and datasets.

On the other hand, base model, SP-MentorNet, Co-teaching and Co-teaching+ are

trained for 30 epochs with SGD optimizer over Clothing1M V1 and Clothing1M V3.

Initial learning rate of SGD optimizer is set to 0.01 for Clothing1M V1 experiments

while it is set to 0.02 for experiments of Clothing1M V3. Learning rate is decayed by

0.1 after 5th epoch for both Clothing1M V1 and Clothing1M V3 experiments. β1 and

β2 values of optimizer are set to 0.9 and 0.999 respectively throughout training for

both Clothing1M experiments. Again, cross entropy loss is used over both version of

Clothing1M for loss calculation.

Nested Dropout contains two stages and different strategies applied at each stage. In

the first stage, networks are trained for 350 epochs with batch size of 320 over MNIST,

MNIST-Fashion, CIFAR10, CIFAR100, and trained for 100 epochs with batch size of

128 over ANIMAL10N, and trained 30 epochs with batch size of 448 in Clothing1M

V1 and Clothing1M V3 experiments. In all experiments SGD optimizer is utilized.

Before starting training for 350 epochs, 100 epochs and 30 epochs, a warm-up training

is applied for warming learning rate which continues 6000 iterations. Initial learning

rate of SGD optimizer is set to 0.1 and then, decayed by 0.1 after 200th and 300th

epochs for MNIST, MNIST-Fashion, CIFAR10 and CIFAR100 experiments. Initial

learning rate of SGD optimizer is set to 0.1 and then, decayed by 0.2 after 50th and
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75th epochs for ANIMAL10N. For Clothing1M case, initial learning rate is set to

0.02 and it is decayed by 0.1 after 5th epoch. Momentum and weight decay param-

eters of SGD optimizer are set to 0.9 and 5e − 4 respectively in all experiments.

In the second stage, networks are initialized with outputs of the first stage. Both

networks are trained for 100 epochs with batch size of 320 over MNIST, MNIST-

Fashion, CIFAR10, CIFAR100, and trained for 30 epochs with batch size of 128 over

ANIMAL10N, and trained for 30 epochs with batch size of 448 in Clothing1M V1

and Clothing1M V3 experiments. Similar to first stage, SGD optimizer is utilized

in all experiments. Initial learning rate of SGD optimizer is set to 0.001 and then,

decayed by 0.1 after 50th epoch for MNIST, MNIST-Fashion, CIFAR10, CIFAR100.

For ANIMAL10N case, initial learning rate is set to 0.004 and it is decayed by 0.1

after 5th epoch. For Clothing1M V1 and Clothing1M V3 cases, initial learning rate

is set to 0.002 and it is decayed by 0.1 after 5th epoch. Warm-up training is not ap-

plied in the second stage of the algorithm. Similar to the first stage, momentum and

weight decay parameters of SGD optimizer are set to 0.9 and 5e − 4 respectively in

all experiments.

Self-paced MentorNet, Co-teaching, Co-teaching+ and Nested Co-teaching algorithms

utilize small loss selection trick during training. Small loss selection trick requires

sorting samples according to their loss during each iteration and a desired percentage

of samples with smallest loss are chosen for backpropagation calculations. Desired

percentage is defined with a parameter kr named as keep rate and it is related to nr

(noise rate). In theory, kr should be equal to 1−nr since kr is used to keep clean sam-

ples. In practice, it is hard to know nr and so kr but Co-teaching and Co-teaching+

studies claim that it can be estimated by validation over a small clean subset. Co-

teaching and Co-teaching+ assumed that nr is known during its experiments. In our

works, kr is set to 1 − nr similar to original implementations and it is also set to a

constant value 0.7 to see keep rate effect over performance. During trainings, keep

rate starts from 1.0 and it is decreased to desired value kr linearly until a predefined

epoch and then, it remains constant at desired rate. This predefined epoch is set to 10

for SP-MentorNet, Co-teaching and Co-teaching+ while it is set to 0 for Nested Co-

teaching over all datasets. The main reason of linearly decreasing keep rate from 1.0

to kr is that networks learn from clean samples at the beginning of training and then,
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start to learn from noisy ones as training progress. Also, networks are not trustful at

initial epochs and difference between the clean and noisy samples is not observable.

In Nested Co-teaching case, networks are trustful since it is already trained in the first

stage. Therefore, mentioned predefined epoch is set to 0 in Nested Co-teaching.

DIVIDEMIX is trained for 300 epochs with batch size of 64 over MNIST, MNIST-

Fashion, CIFAR10, CIFAR100, ANIMAL10N, and trained for 80 epochs with batch

size of 32 over Clothing1M V1 and Clothing1M V3. Each epoch of Clothing1M ex-

periments contains 1000 random batches instead of iterating over whole data. During

all experiments, SGD optimizer is used with a momentum of 0.9 and a weight decay

of 0.0005. At the beginning of trainings, a warm-up training is applied for 10 epochs

over CIFAR10, 30 epochs over MNIST, MNIST-Fashion, CIFAR100, ANIMAL10N,

and 1 epoch over Clothing1M V1, Clothing1M V3. During warm-up training, clas-

sical supervised learning is applied instead of semi-supervised learning over labelled

sets, and after warm-up training, semi-supervised learning starts. Learning rate of

DIVIDEMIX is set to 0.02 for MNIST, MNIST-Fashion, CIFAR10, CIFAR100, and

0.002 for ANIMAL10N, Clothing1M V1, Clothing1M V3. Beta distribution param-

eter of Mix-Up augmentation is set to 4 for MNIST, MNIST-Fashion, CIFAR10, CI-

FAR100 and 0.5 for ANIMAL10N, Clothing1M V1, Clothing1M V3. Temperature

sharpening is applied for all network predictions and temperature T is set to 0.5.

UNICON is trained for 300 epochs with batch size of 64 over MNIST, MNIST-

Fashion, CIFAR10, ANIMAL10N, and 350 epochs with batch size of 64 over CI-

FAR100, and 40 epochs with batch size of 32 over Clothing1M V1, and 200 epochs

with batch size of 32 over Clothing1M V3. Each epoch of Clothing1M V3 experiment

contains 1000 random batches instead of iterating over whole data. During all experi-

ments, SGD optimizer is used with a momentum of 0.9 and a weight decay of 0.0005.

At the beginning of trainings, a warm-up training is applied for 10 epochs over CI-

FAR10, MNIST, MNIST-Fashion, and 30 epochs over CIFAR100 while warm-up

training is not applied in ANIMAL10N and Clothing1M experiments. During warm-

up training, classical supervised learning is applied instead of semi-supervised learn-

ing over labelled sets, and after warm-up training, semi-supervised learning starts.

Learning rate of UNICON is set to 0.02 for MNIST, MNIST-Fashion, CIFAR10, CI-

FAR100, and 0.002 for ANIMAL10N, Clothing1M V1, Clothing1M V3. Beta dis-
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tribution parameter of Mix-Up augmentation is set to 4 for MNIST, MNIST-Fashion,

CIFAR10, CIFAR100 and 0.5 for ANIMAL10N, Clothing1M V1, Clothing1M V3.

Temperature sharpening is applied for all network predictions and temperature T is

set to 0.5. Weight of the constrastive learning loss is set to 0.025 during weighted

sum calculation of the total loss for all experiments.

The proposed method of this thesis contains two training stages. At initial training

stage, a classical supervised learning is applied for detection of clean-noisy samples.

This first training stage is exactly same with base model training and detail of base

model training is already given at the beginning of this section. During clean-noisy

classification of samples, voting process is done for first El epochs. This El is set to

10 for MNIST, MNIST-Fashion, CIFAR10, CIFAR100, ANIMAL10N while it is set

set to 3 for Clothing1M V1, Clothing1M V2, Clothing1M V3. If a sample has clean

vote larger than Vt, it is assigned as clean. This Vt is set to 6 as majority decision for

MNIST, MNIST-Fashion, CIFAR10, CIFAR100, ANIMAL10N while it is set to 3 as

consensus decision for Clothing1M V1, Clothing1M V2, Clothing1M V3. In the sec-

ond stage of training, semi-supervised learning with an additional contrastive learning

component is applied to detected clean-noisy sets. During second stage, our network

is trained for 200 epochs with batch size of 128 over MNIST, MNIST-Fashion, CI-

FAR10, CIFAR100, ANIMAL10N and, 50 epochs with batch size of 128 over Cloth-

ing1M V1, Clothing1M V3. During second stage of all experiments, SGD optimizer

is used with a momentum of 0.9 and a weight decay of 0.0005. At the beginning of

trainings, a warm-up training is applied for 30 epochs over MNIST, MNIST-Fashion,

and 20 epochs over CIFAR10, CIFAR100, ANIMAL10N and 3 epochs over Cloth-

ing1M V1, Clothing1M V3. During warm-up training, classical supervised learning

is applied over labelled set instead of semi-supervised learning, and after warm-up

training, semi-supervised learning and contrastive learning start. Learning rate of our

method is set to 0.01 for MNIST, MNIST-Fashion, and 0.02 for CIFAR10, CIFAR100,

ANIMAL10N, and 0.002 for Clothing1M V1, Clothing1M V3. Beta distribution pa-

rameter of Mix-Up augmentation is set to 4 for MNIST, MNIST-Fashion, CIFAR10,

CIFAR100, ANIMAL10N and 0.5 for Clothing1M V1, Clothing1M V3. Weight of

the constrastive learning loss is set to 0.025 during weighted sum calculation of the

total loss for all experiments.
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During base model, SP-MentorNet, Co-teaching, Co-teaching+, Nested Co-teaching,

same augmentation strategies are followed. As augmentation stragies for these meth-

ods, random horizontal flipping, random vertical flipping, padding with 4 pixels and

random cropping is applied for MNIST, MNIST-Fashon, CIFAR10 and CIFAR100.

Random cropping is done with size of 28x28 for MNIST, MNIST-Fashion and 32x32

for CIFAR10, CIFAR100. For Clothing1M experiments, images are resized to 256x256

and then, a region with size of 224x224 is cropped from center. Then, random hor-

izontal flip is applied to cropped images. During DIVIEMIX same augmentation

strategies are followed over all datesets except ignoring random vertical flipping in

DIVIDEMIX.

On the other hand, SSL part of our proposed method and UNICON apply two aug-

mentation strategies which are named as weak and strong augmentations. Weak aug-

mentation of these two approaches is same as the one used in the other methods while

a new strategy is followed for strong augmentation. Strong augmentation only differs

with one step from weak augmentation. Strong augmentation adds one additional step

after random flipping of weak augmentation such as CIFAR10Policy[63] for MNIST,

MNIST-Fashion, CIFAR10, CIFAR100, ANIMAL10N and ImageNetPolicy[63] for

Clothing1M V1, Clothing1M V3.

4.3 Test Accuracy Results

In this section, results of the label noise robust algorithms, which are presented in

Section 4.2.2, are given in detail. Results over each dataset are given and analysed in

independent sections and additionally, algorithms are compared with each other.

4.3.1 Results over MNIST

All implemented algorithms are trained over MNIST dataset which is corrupted with

%20, %30, %40, %50 synthetic uniform noise and Table 4.1 presents test accuracies

of these trained models. Small loss selection based algorithms are trained twice for

two keep rate cases and so, they are included twice with two tags in Table 4.1. Exper-

iments with KR=(1-NR) tag utilize noise rate information and set keep rate to ratio of
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the clean samples while experiments with KR=0.7 assume that noise rate is unknown

and set keep rate to a predefined constant number which is 0.7.

Table 4.1 shows that even base model results with good test accuracy larger than

90% for all noise levels. The main reason behind success of the base model is that

MNIST is actually a simple dataset and base network can easily capture underlying

structure of clean samples in simple datasets even under label noise.

On the other hand, small loss selection based methods(SP-MentorNet, Co-teaching,

Co-teaching+, Nested Co-teaching) outperform base model under all four noise lev-

els. When SP-MentorNet, Co-teaching and Co-teaching+ algorithms are compared

with each other, similar results are observed for three algorithms and all methods

seem to be successful. Nested Co-teaching results with nearly %99 test performance

under all four noise levels.

Table 4.1: Test Accuracies of Algorithms over MNIST

Noise Rate 20 30 40 50

Base 94.90 93.82 92.48 90.66

SP-MentorNet / KR=(1-NR) 97.49 97.05 96.97 96.70

Co-teaching / KR=(1-NR) 97.53 97.21 97.16 96.82

Co-teaching+ / KR=(1-NR) 97.55 97.27 97.12 97.10

Nested Co-teaching / KR=(1-NR) 99.04 99.11 98.91 98.81

SP-MentorNet / KR=0.7 96.92 97.05 95.06 94.46

Co-teaching / KR=0.7 97.07 97.21 95.18 93.49

Co-teaching+ / KR=0.7 97.06 97.27 96.01 95.19

Nested Co-teaching / KR=0.7 99.04 99.11 98.91 98.81

DIVIDEMIX 98.23 99.12 98.82 98.15

UNICON 93.46 98.98 98.97 98.95

Our Approach with SSL 99.18 99.04 99.16 98.96

When keep rate effect is analysed for small loss selection methods, we see that Nested

Co-teaching is not affected by knowledge of noise rate and provides successful results
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even under constant keep rate(KR=0.7). On the other hand, a performance degrada-

tion is observed in results of SP-MentorNet, Co-teaching and Co-teaching+ under

%40 and %50 noise rates when constant keep rate(KR=0.7) is utilized instead of the

clean sample rate(KR=(1-NR)). Performance degradation increases with increasing

noise rate since constant keep rate of 0.7 is equivalent to removing only %30 of sam-

ples as noisy in all cases and increasing noise rate to above %30 increases number of

noisy samples observed by neural network during training. Also, reason of observ-

ing similar results under %20 noise rate in both keep rate cases is removing %30 of

samples as noisy in constant keep rate case. Removing %30 of samples eliminates all

noisy samples in %20 noise rate case.

Semi-Supervised Learning based approaches(DIVIDEMIX, UNICON and our pro-

posed method) provide consistently good results under all noise levels except UNI-

CON under %20 noise rate. UNICON presents poor performance under low noise

rates(%20 in our case) and they also shared this observation in the their paper[58].

According to their explanation, an effective contrastive learning requires an unla-

belled dataset with enough number of samples. Unlabelled set is constructed with

detected noisy samples during training and so, when noise rate is low algorithm per-

formance degrades because of ineffective contrastive learning.

4.3.2 Results over MNIST-Fashion

All implemented methods are trained over synthetically corrupted MNIST-Fashion

with uniform noise. Experiments are repeated for %20, %30, %40 and %50 noise

rates and experiment results are provided in Table 4.2. Small loss selection based

methods are trained twice for two keep rate cases to analyse effect of prior knowl-

edge about noise rate.

Sharp decreases are observed in base model performance as noise rate increases and

this indicates that base model is affected much more by adverse effects of label noise

in MNIST-Fashion compared MNIST dataset(see Table 4.1). This is a sign of that

MNIST-Fashion is a more complicated dataset compared to MNIST and so, network

faces difficulties during discovering an underlying structure in MNIST-Fashion com-
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pared to MNIST in existence of label noise. Importance of noise robust algorithms is

more clear when performance gained by robust methods compared to base model is

analysed in Table 4.2. Larger performance increases are observed with these robust

algorithms in MNIST-Fashion compared to MNIST dataset.

On the other hand, when small loss selection based methods(SP-MentorNet, Co-

teaching, Co-teaching+, Nested Co-teaching) algorithms are compared with each

other according to Table 4.2, similar results are observed and none of them can be

claimed to better than others.

Again, similar to MNIST results, Nested Co-teaching preserves its performance for

all noise levels when noise rate is assumed to be unknown and a constant keep

rate(KR=0.7) is used during its Co-teaching stage. On the other hand, SP-MentorNet,

Co-teaching and Co-teaching+ algorithms also preserve its performance under %20

noise rate while a huge performance degradation is observed under %40 and %50

noise rates in constant keep rate case(KR=0.7) since constant keep rate of 0.7 causes

updates from noisy samples under %40 and %50 noise rates. Importance of prior

knowledge of noise rate for SP-MentorNet, Co-teaching and Co-teaching+ can be

understood from this observation.

Different from MNIST experiments, Semi-Supervised Learning(SSL) based approaches

DIVIDEMIX and UNICON do not provide successful results and outperform Nested

Co-teaching under all noise levels except %50 noise rate case. We suspect from tuned

parameters by these algorithms since originally provided parameters are not tuned

over MNIST-Fashion and we test these algorithms with their given parameters in our

common setup.

Similar to MNIST results, UNICON presents poor performance under low noise

rate(%20 noise rate case) because of the ineffective contrastive learning caused by

less number of unlabelled data. DIVIDEMIX also results with a similar pattern in

experiments such as network accuracy increases with increasing noise rate but it can

not be related to contrastive learning since DIVIDEMIX does not utilize contrastive

learning. We can not find exact reason of low performance of the DIVIDEMIX but we
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Table 4.2: Test Accuracies for MNIST-Fashion

Noise Rate 20 30 40 50

Base 88.83 85.59 80.69 77.99

SP-MentorNet / KR=(1-NR) 93.78 93.29 92.88 91.82

Co-teaching / KR=(1-NR) 93.96 93.46 93.14 91.99

Co-teaching+ / KR=(1-NR) 94.22 93.66 93.21 92.13

Nested Co-teaching / KR=(1-NR) 94.15 93.63 93.02 91.92

SP-MentorNet / KR=0.7 92.86 93.29 88.69 85.09

Co-teaching / KR=0.7 93.66 93.46 89.14 83.74

Co-teaching+ / KR=0.7 93.38 93.66 90.27 86.81

Nested Co-teaching / KR=0.7 94.26 93.63 93.02 91.69

DIVIDEMIX 88.31 89.97 91.70 92.14

UNICON 89.75 92.66 92.99 93.46

Our Approach with SSL 94.58 94.48 93.98 93.20

conclude that DIVIDEMIX works poorly at low noise rates compared to high noise

rates according to MNIST-Fashion results.

4.3.3 Results over CIFAR10

All implemented algorithms are trained over synthetically corrupted CIFAR10 with

uniform noise under %20, %30, %40, %50 noise rates.

FIGURE 4.3 presents train and test losses of the base model over CIFAR10 under

all noise levels. For all noise levels, train loss decreases continuously throughout

training as it can be observed in FIGURE 4.3. On the other hand, test loss decreases

for a while and then, starts to increase. Train and test sets are not from the same

distribution since there are noisy instances in train set while not in test set. Therefore,

when network starts to memorize its train set and so noisy samples, a performance

degradation and loss increase are expected over test set which coincides with our

observation related to train-test losses. This is the main problem of the noisy labelled

datasets: performance degrades once network overfit to noisy samples. One another
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important point is that test loss decreases for a while at the beginning of train. This

means that network actually learns from clean samples first and so, test loss decreases

at the beginning. Then, network starts to memorize noisy instances and so, test loss

increases.

Figure 4.3: Train-Test Losses vs Epochs for CIFAR10 in Base Model

Table 4.3 presents test accuracies of all algorithms over CIFAR10 under all noise lev-

els. Small loss selection based methods are trained twice for two keep rate cases to

analyse effect of prior knowledge about noise rate and so, there are two experimental

results for these methods in Table 4.3.

When base model results given in Table 4.3 are analysed, more sharp decreases are

observed in test accuracies as noise rate increases in CIFAR10 compared to MNIST

and MNIST-Fashion results given in Table 4.1 and Table 4.2. These sharper decreases

can be related to difficulty of CIFAR10 compared to MNIST and MNIST-Fashion.

All small loss selection based algorithms(SP-MentorNet, Co-teaching, Co-teaching+,

Nested Co-teaching) outperform base model with a large margin under all noise levels

as it can be seen in Table 4.3. Under %50 noise rate and KR = (1−NR) case, small
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loss selection algorithms provide a performance improvement up to %30 compared

to base model which clearly presents effectiveness of small loss selection algorithms

and adverse effect of label noise.

When SP-MentorNet, Co-teaching, Co-teaching+ and Nested Co-teaching algorithms

are compared with each other for KR = (1 − NR) case according to results of Ta-

ble 4.3, Nested Co-teaching outperforms the other three ones under all noise levels.

Co-teaching+ results are affected more adverse compared to other ones with increas-

ing amount of noise level. The main reason of this observation about Co-teaching+

is related to number of sampled instances after filtering process. Co-teaching+ only

keeps small loss instances which fall into disagreement region of two networks and so,

as noise rate increases number of filtered possible clean samples decreases sharply.

Therefore, Co-teaching+ faces difficulty to find enough samples to update network

parameters and results with worse performance compared to other three small loss

selection based algorithms at high noise rates. This claim about Co-teaching+ can be

proved by comparing SP-MentorNet and Co-teaching+ results for KR = (1 − NR)

case. SP-MentorNet is worse than Co-teaching+ at low noise rates such as %20, %30

while it is better than Co-teaching+ at high noise rates such as %40, %50.

Under constant keep rate of 0.7, approximately, %1 performance decrease is observed

in Nested Co-teaching algorithm under all noise levels compared to KR = (1−NR)

case besides of %30 noise. Performance does not change under %30 noise rate since

0.7 keep rate corresponds to %30 noise rate. On the other hand, SP-MentorNet, Co-

teaching and Co-teaching+ algorithms provide similar performance under %20 noise

rate while a huge performance degradation is observed under %40 and %50 noise

rates in constant keep rate case(KR = 0.7) compared to KR = (1 − NR) case be-

cause of the reasons explained in Sections 4.3.1 and 4.3.2.

We provide results of our approach with and without Co-training and we observe

a very limited performance gain with Co-training under all noise levels. UNICON,

DIVIDEMIX and our proposed approach have a clear superiority over all other al-

gorithms. The main reason behind this success is utilizing noisy samples without

their labels via Semi-Supervised Learning(SSL) instead of ignoring them like small
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Table 4.3: Test Accuracies for CIFAR10

Noise Rate 20 30 40 50

Base 79.24 69.18 60.58 50.20

SP-MentorNet / KR=(1-NR) 88.89 87.29 84.77 80.58

SP-MentorNet / KR=0.7 88.69 87.29 79.36 67.66

Co-teaching / KR=(1-NR) 89.52 88.01 85.86 81.32

Co-teaching / KR=0.7 90.32 88.01 79.94 68.12

Co-teaching+ / KR=(1-NR) 89.12 87.04 84.31 78.74

Co-teaching+ / KR=0.7 89.28 87.04 79.88 70.11

Nested Co-teaching / KR=(1-NR) 90.39 88.93 86.91 84.53

Nested Co-teaching / KR=0.7 89.77 88.93 85.91 83.27

DIVIDEMIX 89.71 92.47 93.34 93.50

UNICON 92.11 93.81 94.48 94.53

Our Approach with SSL 93.21 93.07 92.06 90.71

Our Approach with SSL + Co-training 93.34 93.08 92.46 91.17

loss selection methods SP-MentorNet, Co-teaching, Co-teaching+ and Nested Co-

teaching. In both UNICON and DIVIDEMIX, a strange result is observed such as

performance increases as noise rate increases as in case of MNIST-Fashion experi-

ments. This is probably an outcome of tuning model parameters to high noise level

cases in UNICON and DIVIDEMIX. On the other hand, our proposed model results

are as expected since our performance decreases with increasing level of noise.

4.3.4 Results over Cifar100

Different from the previous experiments, CIFAR100 experiments are done only for

two noise levels since CIFAR100 includes 100 classes and it becomes hard to corrupt

dataset at desired noise rate according to exact definition of uniform noise. All im-

plemented algorithms are trained over CIFAR100 under %20, %40 synthetic uniform

noise rates.

FIGURE 4.4 presents train and test losses of the base model over CIFAR100 under
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two noise levels. The train-test loss trend explained in CIFAR10 experiment is ob-

served in CIFAR100 case too as it can be seen in FIGURE 4.4. Again, train loss

decreases throughout training while test loss decreases for a while and then, starts to

increase as a result of memorization of noisy samples.

Figure 4.4: Train-Test Losses vs Epochs for Base Model over CIFAR100

Table 4.4 present test accuracy of all algorithms over CIFAR100. According to results

given in Table 4.4, small loss selection based algorithms(SP-MentorNet, Co-teaching,

Co-teaching+, Nested Co-teaching) outperform base model with a large amount sim-

ilar to CIFAR10 experiments. On the other hand, when small loss selection based

algorithms are compared with each other, Nested Co-teaching seems to be the best al-

gorithm under both noise rate. Additionally, Co-teaching+ algorithm again provides

compatible results with SP-MentorNet at low noise rate while SP-MentorNet outper-

forms Co-teaching+ at high noise rate as a result of filtering approach of Co-teaching+

explained in Section 4.3.3.

Semi-Supervised Learning based approaches DIVIDEMIX and UNICON outperform

all other algorithms with a large margin especially under %40 noise rate. Success of

these two algorithms is a result of utilization of noisy samples as unlabelled samples

during semi-supervised learning. On the other hand, our semi-supervised learning

based proposed approach fails under both noise rate. Reason behind failure of our

proposed approach is our clean-noisy sample detection process. During noisy sam-

ple detection, we utilize artificially corrupted samples to simulate real noisy samples

but all these artificially corrupted samples are member of a single class and so, these

artificially corrupted samples from a single class face difficulty about simulating real

noisy samples of CIFAR100 with large number of classes. Since our artificially cor-
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Table 4.4: Test Accuracies for CIFAR100

Noise Rate 20 40

Base 54.32 41.33

SP-MentorNet / KR=(1-NR) 62.70 57.54

SP-MentorNet / KR=0.7 64.34 53.04

Co-teaching / KR=(1-NR) 63.79 57.55

Co-teaching / KR=0.7 64.92 53.16

Co-teaching+ / KR=(1-NR) 62.17 55.90

Co-teaching+ / KR=0.7 63.37 52.62

Nested Co-teaching / KR=(1-NR) 67.42 61.32

Nested Co-teaching / KR=0.7 68.08 60.34

DIVIDEMIX 72.71 70.28

UNICON 71.53 71.70

Our Approach with SSL 53.71 30.49

Our Approach with SSL and Co-training 54.77 31.36

rupted samples fail to simulate real noisy samples, we have a poor clean-noisy sample

detection process and poor detection process results with low test accuracy over CI-

FAR100.

Despite of failure of our proposed method, we still observe nearly %1 improvement

over test accuracy by utilizing Co-training since Co-training combines different learn-

ing abilities of two networks during training.

4.3.5 Results over Clothing1M

4.3.5.1 Clothing1M V1

All algorithms are trained over Clothing1M V1 which is synthetically corrupted ver-

sion of clean part of Clothing1M dataset. Corruption is applied for %10, %20, %30,

%40, %50 noise rates with uniform noise.

54



FIGURE 4.5 presents train and test losses of the base model over Clothing1M V1

under all noise levels. In all cases, test loss decreases for a while and then, a very large

increase in test loss is observed while train loss decreases continuously throughout the

training. As it is explained in previous experiments, this is an expected result since

network actually learns from clean sample first at the beginning of training and it

memorizes noise samples as training progresses.

Figure 4.5: Train-Test Losses vs Epochs for Base Model over Clothing1M V1

Table 4.5 presents test accuracy of all algorithms over Clothing1M V1 for all noise

levels. Base model provides a baseline to see robustness of all other algorithms.

All small loss selection based algorithms(SP-MentorNet, Co-teaching, Co-teaching+,

Nested Co-teaching) outperform base model with large margins under all noise levels

for both KR=0.7 and KR=(1-NR) cases. Clothing1M V1 results also prove impor-

tance of prior knowledge of noise rate for small loss selection algorithms. Similar to

results of the toy datasets(CIFAR10, CIFAR100, etc.), Nested Co-teaching preserves

its performance in KR=0.7 case compared to KR=(1-NR) case but all other small loss

selection algorithms(SP-MentorNet, Co-teaching, Co-teaching+) degrade in KR=0.7

case at high noise rates %40 and %50. On the other hand, under %10 and %20 noise

levels, all small loss selection methods provide better results in KR=0.7 case com-

pared to KR=(1-NR) case. This is because of the imperfect filtering performance of
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the small loss selection methods. Under %10 and %20 noise levels, theoretically keep

rate should be equal to 0.9 and 0.8 but since filtering process of these algorithms is not

perfect, keep rate should be less than 0.9, 0.8 to avoid any update from noise samples.

KR=0.7 case satisfies this practical requirement and so, algorithms achieve better

performance under %10 and %20 noise levels in constant keep rate experiments.

Semi-Supervised Learning(SSL) based approaches(DIVIDEMIX, UNICON and our

proposed approach) outperform all other algorithms under all noise levels but power

of SSL based approaches is more clear under high noise rates such as %40 and %50

since directly filtering nearly half of the samples is not a good approach to learning

in noise label problem.

We provide results of our proposed method over Clothing1M V1 with and without

Co-training approach. Power of combining different learning ability of two networks

came with Co-training approach is more observable over Clothing1M V1 compared

to toy dataset results since it provides an improvement of nearly %1 under all noise

levels in Clothing1M V1 dataset.

Table 4.5: Test Accuracies for Clothing1M V1

Noise Rate 10 20 30 40 50

Base 69.15 63.30 55.33 47.48 39.68

SP-MentorNet / KR=(1-NR) 72.59 71.95 70.59 69.38 66.46

SP-MentorNet / KR=0.7 75.74 75.03 70.59 62.82 52.37

Co-teaching / KR=(1-NR) 73.43 72.60 71.98 71.37 68.64

Co-teaching / KR=0.7 76.82 76.00 71.98 64.29 54.93

Co-teaching+ / KR=(1-NR) 74.97 72.05 65.88 66.77 48.24

Co-teaching+ / KR=0.7 75.34 73.60 65.88 59.65 43.56

Nested Co-teaching / KR=(1-NR) 77.12 75.81 75.04 73.03 67.98

Nested Co-teaching / KR=0.7 78.46 76.89 75.04 72.15 67.90

DIVIDEMIX 79.67 79.35 79.52 78.45 77.40

UNICON 78.12 78.28 78.08 77.79 76.24

Our Approach with SSL 77.45 77.33 75.90 74.60 72.54

Our Approach with SSL-Co-training 78.46 78.20 76.99 75.87 74.23
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4.3.5.2 Clothing1M V3

All algorithms are trained over Clothing1M V3 which is class balanced version of

noisy part of Clothing1M dataset with unknown noise rate.

FIGURE 4.6 presents train and test losses of the base model over Clothing1M V3.

Different from synthetic uniform noise experiments, test loss directly starts to in-

crease after a few epochs. Also, train loss does not decrease directly and oscillates

for a while. These both observations can be related to difficulty of the real world

noise compared to synthetic uniform noise. Since real world label noise is a hard case

compared to synthetic one, learning over train set takes time and loss oscillates. Also,

again since real world label noise hard, network faces more difficulties to generalize

over a clean test set.

Figure 4.6: Train-Test Losses vs Epochs for Base Model over Clothing1M V3

Table 4.6 presents test accuracies of all algorithms over Clothing1M V3 for all noise

levels. Since noise level of the Clothing1M V3 is not known exactly, small loss

selection methods are trained only for KR = 0.7 case. All loss selection based

methods outperform base model and Co-teaching seems to best one among them.

Different from synthetic noise experiments, Nested Co-teaching can not outperform

other small loss selection methods in real world label noise case. Actually, they report

a performance larger than %74 in Clothing1M in [22] but we noticed that they actually

utilize clean part of Clothing1M during training. We did not utilize any clean set in

our experiments given in this thesis and so, a performance decrease is observed in

Nested Co-teaching compared to their reported performance.
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Semi-Supervised Learning(SSL) based approaches(DIVIDEMIX, UNICON and our

proposed approach) outperform all other methods similar to synthetic uniform noise

results with help of utilizing noisy labelled samples instead of removing them.

We provide results of our proposed method over Clothing1M V3 with and without

Co-training. We do not observe any improvement with Co-training approach over

Clothing1M V3 in our proposed approach.

Table 4.6: Test Accuracies for Clothing1M V3

Noise Rate Unknown

Base 65.59

SP-MentorNet / KR=0.7 71.37

Co-teaching / KR=0.7 72.30

Co-teaching+ / KR=0.7 70.77

Nested Co-teaching / KR=0.7 71.83

DIVIDEMIX 74.50

UNICON 74.49

Our Approach with SSL 73.44

Our Approach with SSL-Cotraining 73.59

We also investigated consistency of the best three algorithms by repeating experi-

ments five different times and report results in Table 4.7. We did not observe large

standard deviations in the results since initial newtorks are already pre-trained and the

only randomness come from augmentations and sample shuffling.

Table 4.7: Test Accuracies for Clothing1M V3 from 5 Random Runs

Mean Accuracy Standard Deviation

DIVIDEMIX 74.44 0.244

UNICON 74.30 0.248

Our Approach with SSL-Cotraining 73.62 0.096
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4.3.6 Results over Animal10N

All algorithms are trained over Animal10N which is estimated to have %8 noise rate.

FIGURE 4.7 presents train and test losses of the base model over Animal10N. A

loss pattern similar to synthetic uniform noise experiments is observed in Animal10N

experiment. Network first learns from clean samples and so, test loss decreases at

the beginning and then, it starts to increase as network memorizes noisy samples.

There is a smooth decrease in Animal10N compared to results of the Clothing1M

V3, although Animal10N is a real world noisy labelled dataset. This may be related

with estimated low noise rate of Animal10N.

Figure 4.7: Train-Test Losses vs Epochs for Base Model over Animal10N

Table 4.8 presents test accuracy of all algorithms over Animal10N dataset. Since

exact noise rate of ANIMAL10N dataset is unknown, small loss selection based al-

gorithms are trained only for a predefined noise rate such as 0.7(KR=0.7) for SP-

MentorNet, Co-teaching, Co-teaching+ and 0.8(KR=0.8) for Nested Co-teaching.

Nested Co-teaching is trained for predefined keep rate of 0.8 different from the other

small loss selection methods since they proposed this keep rate for ANIMAL10N in

their work [22]. Results given in the table shows that SP-MentorNet, Co-teaching and

Co-teaching+ fail over ANIMAL10N dataset since they are inferior to base model.

The main reason behind failure of SP-MentorNet, Co-teaching and Co-teaching+ is

their dependency to keep rate and so, a prior knowledge of noise rate. SP-MentorNet,
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Co-teaching, Co-teaching+ utilize a keep rate of 0.7 during training which means that

they filter %30 of samples as noisy at each iteration but estimated noise rate of AN-

IMAL10N is nearly %8 and so, these small loss selection algorithms miss some of

their clean samples, especially hard ones. Missing these hard clean samples causes

their failure compared to base model. On the other hand, Nested Co-teaching is su-

perior to base model since it has a low dependency to keep rate.

Semi-Supervised Learning based approaches(DIVIDEMIX, UNICON and our pro-

posed approach) outperform all other methods over ANIMAL10N. As discussed in

previous experiments(CIFAR10, CIFAR100, Clothing1M), superiority of these ap-

proaches comes from utilization of noisy samples as unlabelled samples during SSL.

We provide results of our proposed method over ANIMAL10N with and without Co-

training. We observed a %1 improvement in test accuracy by utilizing Co-training.

Co-training exploits two networks which have different learning abilities and support

each other. As a result of utilizing different learning abilities of these networks, we

observed an improvement via Co-training. Our proposed approach with SSL and Co-

training provides compatible results with state of the art methods DIVIDEMIX and

UNICON.

Table 4.8: Test Accuracies for Animal10N

Noise Rate Unknown

Base 79.79

SP-MentorNet / KR=0.7 76.47

Co-teaching / KR=0.7 78.59

Co-teaching+ / KR=0.7 76.84

Nested Co-teaching / KR=0.8 84.08

DIVIDEMIX 86.98

UNICON 86.64

Our Approach with SSL 85.21

Our Approach with SSL and Co-training 86.29
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We also investigated consistency of the best three algorithms by repeating experi-

ments five different times and report results in Table 4.9. We did not observe large

standard deviations in the results.

Table 4.9: Test Accuracies for Animal10N from 5 Random Runs

Mean Accuracy Standard Deviation

DIVIDEMIX 87.00 0.103

UNICON 86.61 0.228

Our Approach with SSL-Cotraining 85.91 0.263

4.4 Loss Analysis of Clean-Artificial-Noisy Samples for Proposed Method

In this section, an analysis of train loss dynamics for artificially corrupted datasets

is provided. Analysed losses are obtained during clean-noisy classification step of

our proposed algorithm(see Section 3.1.2.2). Analysis of the losses is done over

Clothing1M V1 and Clothing1M V2 datasets(see Section 4.2.1) since Clothing1M

is a more challenging dataset compared to other toy datasets and make possible to

compare synthetic and real world noise .

4.4.1 Clothing1M V1

Here, train loss histograms of the clean, noisy and artificial samples of Clothing1M

V1 dataset are given for first five epochs. Histograms are provided for two cases such

as a low and high noise rate which are %20 and %50 respectively. Noisy samples

of this dataset are not real world noisy samples and they are output of uniform noise

corruption process.

FIGURE 4.8 and FIGURE 4.9 present histograms for %20 and %50 noise rate cases

respectively. Both figures contain 5 columns which correspond to epochs from 0 to 4

in order. Both figures show us neural networks fit to clean samples faster than noisy

and artificial samples since peak value in the loss histograms of clean samples moves

left(to small values) in a fast manner compared to others. On the other hand, networks
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do not fit to noisy and artificial samples easily according to histograms. Additionally,

peak values of histograms of artificial samples occurred at a loss value less than noisy

ones and higher than clean ones and so, artificial samples can provide a threshold for

separation of clean and noisy samples.

High and low noise rate cases have an important difference such as networks fit to

clean samples more easily in low noise rate which should coincides with our expecta-

tions since learning at high noise rate is hard compared to learning at low noise rate.

However, artificial samples still seem to be helpful for separation of clean and noisy

samples at high noise rates.

Figure 4.8: Noise Histograms of Clean-Noisy-Artificial Samples of Clothing1M V1

for %20 Noise Rate
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Figure 4.9: Noise Histograms of Clean-Noisy-Artificial Samples of Clothing1M V1

for %50 Noise Rate

All observations related histograms of Clothing1M V1 imply that artificial sample

idea should be successful for detection of clean samples under uniform synthetic

noise.

4.4.2 Clothing1M V2

Here, train loss histograms of the clean, noisy and artificial samples of Clothing1M

V2 dataset are given for first five epochs. Histograms are provided for two cases such

as a low and high noise rate which are %5 and %20 respectively. Noisy samples of

this dataset are real world noisy samples.

FIGURE 4.10 and FIGURE 4.11 present histograms for %5 and %20 noise rate cases
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respectively. Both figures contain 5 columns which correspond to epochs from 0 to

4 in order. Compared synthetic noise loss analysis(see Section 4.4.1), neural net-

works more easily and fast fit to both clean and noisy samples during training over

Clothing1M V2 which contains real world noisy samples. In real world noise case,

we observe that peak value in the histogram of artificial samples occurred at a loss

value which is higher than both peaks of noisy and clean samples histograms which

indicates that networks fit to noisy and clean samples faster than artificial samples.

This observation shows us that artificial samples can not mimic noisy samples in real

world noise case exactly.

Figure 4.10: Noise Histograms of Clean-Noisy-Artificial Samples of Clothing1M V2

for %5 Noise Rate
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Figure 4.11: Noise Histograms of Clean-Noisy-Artificial Samples of Clothing1M V2

for %20 Noise Rate

Observations from both high and low noise rate cases are consistent and both im-

plies that artificial samples are not successful for setting a threshold to distinguish

clean samples from noisy ones since artificial samples can not mimic noisy samples

and peak values of the loss histograms of artificial samples do not fall into a region

between the peaks of clean and noisy ones.

4.5 Clean Sample Extraction Performance of the Proposed Method

In this section, clean sample extraction performance of our proposed method is pre-

sented. Firstly, performance over toy datasets such as MNIST, MNIST-Fashion, CI-

FAR10, CIFAR100 is provided. These toy datasets are corrupted with synthetic uni-

form noise. Secondly, performance over two variations of Clothing1M(Clothing1M
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V1 and Clothing1M V2) is presented. Clothing1M versions are more realistic datasets

compared to toy ones. Also, Clothing1M V2 contains real world noisy samples which

makes it different from other datasets.

Tables 4.10, 4.11, 4.12, 4.13 present clean sample extraction performance over MNIST,

MNIST-Fashion, CIFAR10, CIFAR100 respectively. False positive percentage value

given in the tables corresponds to new noise rate of the filtered dataset and recall of

the clean samples shows us how much of the clean samples are detected correctly in

the filtered dataset. Besides of CIFAR100, our proposed algorithm is successful in

terms of both finding clean samples and eliminating noisy samples over toy datasets.

This observation coincides with our expectations mentioned in Section 4.4 about de-

tecting clean samples successfully using artificial samples in synthetic uniform noise

case.

The only unexpected results from toy datasets are obtained over CIFAR100 dataset.

While noisy samples are detected successfully, we lost most of the clean samples

during filtering operation. The most probable reason of bad results obtained over CI-

FAR100 is large number of classes exist in dataset. CIFAR100 has 100 classes inside

and this large number of classes complicates things. We utilize artificial samples to

mimic noisy samples during clean-noisy classification of samples. Our artificially

corrupted samples are from a single class while original noisy samples(samples cor-

rupted with synthetic uniform noise) of CIFAR100 can be from any of the 100 classes

and so, mimicking original noisy samples via our artificial samples is getting difficult

in CIFAR100 dataset.

Table 4.10: Clean Sample Extraction Performance over MNIST

Noise Rate True Positive False Positive Recall of Clean Samples

20 99.85 0.14 99.90

30 99.65 0.34 99.88

40 99.36 0.63 99.86

50 98.79 1.20 99.82
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Table 4.11: Clean Sample Extraction Performance over MNIST-Fashion

Noise Rate True Positive False Positive Recall of Clean Samples

20 98.99 1.01 98.53

30 98.39 1.60 98.43

40 97.42 2.57 98.25

50 95.42 4.57 97.99

Table 4.12: Clean Sample Extraction Performance over CIFAR10

Noise Rate True Positive False Positive Recall of Clean Samples

20 97.54 2.45 94.14

30 95.17 4.82 92.29

40 92.11 7.88 91.02

50 86.79 13.2 87.90

Table 4.13: Clean Sample Extraction Performance over CIFAR100

Noise Rate True Positive False Positive Recall of Clean Samples

20 99.72 0.27 34.27

30 99.66 0.33 13.65

Tables 4.14 and 4.15 present clean sample extraction performance over Clothing1M

V1 and Clothing1M V2 respectively. Similar to toy datasets case, our expectation is

obtaining good results over Clothing1M V1 since it contains uniform synthetic noise

but not real world noise. Table 4.14 shows that clean samples extraction performance

of Clothing1M V1 coincides with our expectations which are obtained in Section 4.4

since our algorithm able to eliminates majority of noisy samples without losing too

much clean samples.

On the other hand, we expect a poor clean sample extraction performance over Cloth-

ing1M V2 because of our observations from Section 4.4. Table 4.15 shows that we

have high recall rate for clean samples under all noise levels but our noisy sample

detection performance is poor. Poor performance of the noisy sample detection pro-
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cess can be understood from false positive rates which represent new noise rates of

the filtered datasets. We observed that false positive rates given in the table are very

close to original noise rates and so, we can claim that most of the noisy samples are

classified as clean wrongly.

Table 4.14: Clean Sample Extraction Performance over Clothing1M V1

Noise Rate True Positive False Positive Recall of Clean Samples

10 97.69 2.31 95.77

20 94.98 5.02 94.86

30 91.92 8.08 93.81

40 88.63 11.37 90.28

50 85.53 14.47 85.60

Table 4.15: Clean Sample Extraction Performance over Clothing1M V2

Noise Rate True Positive False Positive Recall of Clean Samples

5 96.86 3.14 96.72

10 92.81 7.19 96.99

15 88.03 11.97 97.18

20 83.40 16.60 97.22
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CHAPTER 5

CONCLUSION

In this work, the strong and weak sides of the sample selection-based methods are

investigated. To achieve a fair comparison of these methods, a common setup is con-

structed, and extensive experimentation results of the algorithms are provided. In

addition to investigated methods, a novel pipeline is proposed and compared with

methods from the literature over a common setup. Firstly, non-robust base models

are trained over datasets with both synthetic uniform and real-world label noise to

prove the tendency of the deep neural networks to learn from clean samples first and

then learn from noisy samples. This tendency justifies the small loss selection idea

since clean samples should have small loss values compared to noisy ones as a result

of learning from clean samples firstly. Also, the experimental results of the small loss

selection methods proved this conclusion. Secondly, small loss selection methods are

trained twice by utilizing and not utilizing prior knowledge related to the noise rate

of the dataset. Experimental results showed that the performance of the small loss

selection methods degrades when prior knowledge of noise rate is not utilized during

training, and this is the main weakness of these methods.

Thirdly, semi-supervised learning-based methods from the literature are trained over

noisy datasets. Experiments proved their superiority over supervised learning-based

methods in general. The superiority of semi-supervised learning-based methods re-

vealed that each sample in the dataset is important and should be utilized during

training even if it is noisy labeled. Fourthly, a weak side of contrastive learning over

noisy labeled datasets is proved. At low noise rates, contrastive learning results with

low performance since it utilizes noisy labeled samples as unlabelled samples during

training, and a contrastive loss calculated over a small amount of unlabeled data de-
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grades network performance.

Fifthly, we proposed our overall pipeline, which is based on classifying samples

as clean or noisy utilizing artificially corrupted samples and then training classified

samples via semi-supervised learning. Experimental results of the proposed method

proved the power of the idea of utilizing artificially corrupted samples during the

clean sample detection process. We have investigated loss histograms of the clean,

noisy, and artificial samples for both uniform synthetic and real-world noise cases.

Histograms of the synthetic noise cases showed that artificial samples can be utilized

successfully to separate noisy and clean samples in datasets with synthetic uniform

noise. On the other hand, histograms of the real-world noise case showed that arti-

ficial samples are not good enough to mimic real-world noisy samples. These ob-

servations are also supported by clean sample extraction experiments. Clean sample

extraction experiments revealed that our proposed algorithm is successful in terms

of detecting both clean and noisy samples in synthetically corrupted datasets with

uniform noise while not successful good enough in terms of detecting noisy samples

in real-world noisy datasets. Despite being unsuccessful in terms of detecting noisy

samples in real-world noisy datasets, our algorithm has a high recall rate for clean

samples, and it is still able to decrease the noise rate of real-world noisy datasets with

small amounts. Finally, our models trained with semi-supervised learning over sam-

ples classified as clean-noisy outperform small loss selection methods in general and

provide compatible results with other semi-supervised learning based state of the art

methods. Also, our proposed method is trained twice with and without the co-training

approach to see its effectiveness. These experiments about co-training showed that

utilizing two networks during training makes it possible to combine different learning

abilities of these networks, and combining different learning abilities is an effective

approach for learning in the existence of label noise since we observe a performance

increase in general with the co-training approach.
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