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ABSTRACT

IMPLEMENTATION AND ASSESSMENT OF MODERN
SHOCK-CAPTURING SCHEMES FOR HYPERSONIC VISCOUS FLOWS

ŞAHİN, ÇAĞATAY

M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Özgür Uğraş Baran

Co-Supervisor: Assist. Prof. Dr. Hediye Atik

August 2022, 75 pages

Spatially second order accurate Finite Volume Method (FVM) is the most preferred

method in Computational Fluid Mechanics (CFD) with its acceptable results in short

computation times. FVM’s accuracy heavily relies on the particular numerical scheme

with which the fluxes are evaluated. Despite the maturity of traditional flux schemes

today, simulations of a viscous hypersonic flow are still challenging. Since these cases

involve strong shock waves and viscous layers with non-linear gradients, appropriate

shock capturing is necessary for robust and accurate solutions. In this thesis, modern

shock-capturing schemes based on Liou’s AUSM and Von Neumann and Richtmyer’s

artificial viscosity are studied and implemented in an in-house CFD solver. The ac-

curacy and robustness of the implemented methods for viscous hypersonic flow prob-

lems are tested with well-known numerical experiments. The comparison of the ob-

tained results with each other and experimental data in the literature is presented. The

advantages and disadvantages of schemes among each other are identified.
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ÖZ

HİPERSONİK VİSKOZ AKIŞLAR İÇİN MODERN ŞOK YAKALAMA
ŞEMALARININ UYGULANMASI VE DEĞERLENDİRİLMESİ

ŞAHİN, ÇAĞATAY

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Özgür Uğraş Baran

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Hediye Atik

Ağustos 2022, 75 sayfa

Uzayda ikinci dereceden hassas Sonlu Hacim Yöntemi (SHM) kısa hesaplama süre-

lerinde kabul edilebilir sonuçları ile Hesaplamalı Akışkanlar Mekaniği’nde (HAD)

en çok tercih edilen yöntemdir. SHM’nin doğruluğu, akıların hesaplamasında kul-

lanılılan numerik şemaya büyük ölçüde bağlıdır. Günümüzde geleneksel akı şema-

larının olgunluğuna rağmen, viskoz bir hipersonik akışın simülasyonları hala zorlu-

dur. Bu durumlar, güçlü şok dalgaları ve doğrusal olmayan gradyanlara sahip viskoz

katmanlar içerdiğinden, gürbüz ve doğru çözümler için uygun şok yakalama yön-

temlerinin kullanılması gereklidir. Bu tezde, Liou’nun AUSM şemasına ve Von Ne-

umann ile Richtmyer’in yapay viskozitesine dayanan modern şok yakalama şemaları,

incelenmiş ve bir özgün HAD çözücüsünde uygulanmıştır. Viskoz hipersonik akış

problemleri için uygulanan yöntemlerin doğruluğu ve gürbüzlüğü, iyi bilinen sayısal

deneylerle test edilmiştir. Elde edilen sonuçların birbirleriyle ve literatürdeki deney-

sel verilerle karşılaştırılması sunulmuştur. Şemaların birbirleri arasındaki avantaj ve

dezavantajları belirlenmiştir.
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viii



To my family

ix



ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my thesis su-
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CHAPTER 1

INTRODUCTION

1.1 Numerical Solutions of Hypersonic Flows

With the explosive development of computational resources and algorithms in the past

decades, computational methods have been an essential component of engineering de-

sign and analysis, especially in fluid dynamics applications. Of course, experimental

measurements and empirical calculations will always have a role. But, compared to

these methods, Computational Fluid Dynamics (CFD) offers significant advantages

in terms of cost, test time, ease of use, and output data quality. Today, CFD methods

have mature abilities to solve flow fields with sophisticated geometries and complex

physical processes. However, despite these advances, simulations of a hypersonic

flow are still challenging and have room for improvement.

1.1.1 Hypersonic Flight

Hypersonic flight means flying approximately at least five times faster than the speed

of sound. Vehicles with this ability 1.1 can enable easy space missions, the rapid

military response at long range, and faster commercial transport. Therefore, it has

been an growing demand to design air vehicles capable of flying at hypersonic speeds.

To create such vehicles, engineers need to understand the behaviors and properties of

hypersonic flows around the aerodynamic bodies.

One of these properties is the presence of strong shock waves close to the body’s

surface in external flow. As a result of the high Mach number, these strong shock

waves will result in extreme temperature, and also pressure jumps over the shock

1



wave. The small part of the flow field between the bow shock and the surface is called

the shock layer. For increasing Mach numbers, shock angles over bodies become

smaller and smaller. Thus, shock waves tend to hug closely to the body geometry at

hypersonic speeds, making the shock layer smaller. This situation leads to shock wave

interactions with other flow phenomena as shown in Figure 1.2, such as secondary

shocks and boundary layers.[10]

Figure 1.1: A concept vehicle hypersonic transport. [1]

A vast amount of kinetic energy, contained by the freestream of hypersonic flow,

is transformed into heat by viscous effects within the boundary layer. As a result,

increased temperature in the boundary layer results in a decrease in density and an

increase in viscosity coefficient via Sutherland’s law. These phenomena make the

thickness of hypersonic boundary layers larger than low Mach numbers at the same

Reynolds number. Because of the wide boundary layer flow, the outer inviscid flow

changes considerably, and these changes in the inviscid flow, in turn, affect the bound-

ary layer. This interaction between the viscous region and the outer inviscid flow is

named hypersonic viscous interaction. These interactions can affect hypersonic vehi-

cles’ surface heat transfer and pressure distributions. Therefore, viscous interaction

alter, lift and drag forces, and also stability characteristics.

High-temperature effects are another essential characteristic of hypersonic flow fields,

which dominate flow properties. Viscous dissipation of the kinetic energy and strong

shock transitions in hypersonic flows leads to high gas temperatures. The extreme

2



temperature can cause dissociation and ionization within the air. Therefore, the gas

no longer behaves as thermally and calorically perfect and must instead be considered

chemically reacting. That high-temperature, chemically reacting flow can influence a

hypersonic vehicle’s aerodynamic forces and moments.

Figure 1.2: Physical effects characteristic of hypersonic flow.[1]

1.1.2 CFD Challenges

The complex physical phenomena in hypersonic flow make the development of nu-

merical simulations very troublesome. Accurate prediction of heat transfer distribu-

tion on a surface is the main problem in hypersonic flow computations. However,

even if we neglect chemical reactions and try to solve the flow domain with ideal gas

assumption, it is still one of the toughest problems to solve in CFD. The calculation

accuracy of heating prediction is closely connected to the computational mesh and

numerical methods. Since there are huge variable jumps at shock waves and strong-

nonlinear temperature and pressure distributions in the boundary layer, the mesh need

to be dense and high quality in those regions. Also, the numerical scheme’s robustness

and accuracy are essential in accurate heating prediction. Low-dissipative, high-order

numerical methods must be used to resolve this complex flow domain. However, due

to the Gibbs phenomenon, which is the name of the oscillatory behavior of differ-

entiable equations variables around discontinuities, solutions of these low-dissipative

3



schemes suffer from shock anomalies (instabilities or oscillations), including the car-

buncle phenomena.

Figure 1.3: Structure of the carbuncle phenomena (density contours around a cylin-

der).[2]

The carbuncle phenomena is a numerical instability that forms as a tumor ahead of

the bow shock along the stagnation line, as seen in Figure 1.3. In 1988, the carbun-

cle phenomena was first observed by Imlay and Peery[11]. They performed invisicid

flow simulatons around a blunt body problem at hypersonic speeds. Their trial of cap-

turing the bow shock with a low-dissipative scheme (Roe) resulted in a non-physical

solution. Later, Quirk [12] revealed that the carbuncle phenomena could be triggered

easily by low diffusion schemes designed to capture contact and shear discontinuities

with minimal smearing. Also, he presented a list of problems with anomalous solu-

tions. Quirk proposed a new test problem to examine whether a scheme is free from

shock instability, called Quirk’s test or Odd-even problem. This test corresponds to

the unsteady flow problem in which a planar shock wave moves in a 1-D tube left to

right. It became an efficient tool for diagnosing the schemes and revealing their sus-

ceptibility to the carbuncle flaw. These shock anomalies, particularly the carbuncle

4



phenomena, can severely degrade the predictability of hypersonic heating since it is

essential to understand and cure this instability problem.

1.1.3 Shock-Capturing

In non-linear hyperbolic problems, oscillations and wiggles occur near large gradi-

ents, like shock waves. This problem is known as the Gibbs phenomenon. The main

idea behind eliminating these anomalies is to introduce numerical dissipation to the

conservative governing equations. Dissipation enlarges the thickness of a shock from

one to a few elements in the computational domain by smearing discontinuity. There-

fore, strong discontinuity is replaced by thin transition layers, where flow variables

change rapidly but continuously. By dividing a large gradient into smaller ones, we

relax spurious oscillations at its front. This process is known as shock-capturing. But,

this extra dissipation must be bounded near shock regions, mainly for viscous flow

solutions. Otherwise, it can degrade the accuracy of the overall solution, especially

in high gradient regions, such as boundary-layer. In summary, a numerical method

suitable for the solution of flows that involve strong shock waves, like hypersonic

ones, should be robust against the unphysical shock anomalies. Considering the dis-

cussions on the boundary layer interactions, these methods should simultaneously

provide a high boundary-layer resolution.[13]

1.2 Literature Survey

Capturing strong shock waves is one of the primary research subjects of CFD. Since

hypersonic flow solutions are very delicate to shock instabilities, like the carbuncle

phenomena. Although many active efforts exist to generate high-order methods [10]

for hypersonic flow solutions. Due to its robust and conservative performance, the fi-

nite volume method(FVM), which is spatially second-order accurate, is still generally

used for these computations, especially in industrial applications. And in FVM, the

method’s performance heavily relies on shock-capturing methods used in the solution.

In 1950, Von Neumann and Richtmyer [14] proposed the first shock-capturing method.

The method’s main idea is introducing an artificial viscosity term into the governing

5



equations to smear shock waves over several grids. Later, in 1954, Lax[15] introduced

a simple scheme that obtains numerical flux by averaging the left and right states

arithmetically(central differencing). The scheme, later called the Lax-Friedrichs or

Rusanov method, could capture shock waves without adding artificial viscosity. Al-

though, their method is simple, it is too dissipative.

In 1959, Godunov revealed his paper [16] which significantly impacted the further

evolution of inviscid flux functions. He offered a method that relies on the solution of

the Riemann problem for flux calculations. His approach demonstrated exceptional

robustness, accuracy. Therefore, it became very popular after its discovery by western

academia in the 80s, and many researchers employed his unique idea to solve Euler

equations. These inviscid flux evaluation functions can be classified as Flux Vector

Splitting (FVS) and Flux Difference Splitting (FDS) methods.

First FVS schemes, introduced by Steger&Warming [17] and Van Leer [18], are ad-

vantageous because of their high stability. This stability property, which stems from

excessive numerical dissipation, makes them robust for simulations of high-speed

flows involving strong shock waves and expansions. However, these methods are

not recommended for viscous flows because of their poor boundary and shear layer

resolution and inaccurate estimates of heat transfer rates.

Another approach, FDS schemes, which solve the Riemann problem for Euler equa-

tions approximately at the cell interfaces, can be generally classified into two groups

as complete and incomplete Riemann solvers. The incomplete Riemann solvers, in-

cluding the Harten-Lax-van Leer (HLL) scheme[19] and the Harten-Lax-van Leer-

Einfeldt (HLLE) scheme[20], assume a wave structure consisting of two waves that

separate three constant states. This assumption lead to excessive dissipation due to

a lack of contact discontinuity. Thus these two methods also have high resistance

to shock instabilities but they are unsuitable for viscous flow calculations like FVS

schemes. On the opposite, complete Riemann solvers, like Roe [21] and HLL with

contact (HLLC) [22], have the same wave structure (three-wave) as the exact Rie-

mann problem solution and reveal minimal dissipation. Therefore, they are qualified

for computing viscous flows. However, such schemes are very vulnerable to shock

instabilities and carbuncle phenomena, which restrict their application range in hy-

6



personic flows.

To solve this dilemma, many researchers have made tremendous efforts. Numer-

ous methods have been proposed to enhance the CFD codes’ performance of shock-

capturing at high speeds. The general strategy for eliminating shock instabilities is

introducing additional numerical dissipation in the vicinity of the shock waves. How-

ever, this dissipation must be minimized in regions like the stagnation and the bound-

ary layer (low-speed areas) to resolve continuous variable gradients accurately. For

years, to balance shock-capturing schemes between accuracy and robustness, three

primary methodologies have been employed by researchers.

The first strategy to overcome the shock wave instabilities is switching to a comple-

mentary shock-stable scheme near shock waves and relative low-dissipative schemes

elsewhere. Quirk [12] introduced the idea of hybridizing complementary Riemann

solvers for high-speed flow calculations. His idea gathered much attention in the

following years. Several scientists followed him and proposed their hybrid flux func-

tions. For notable recent studies reader is referred to Wang’s, Shen’s and Xie’s works

[23, 24, 25]. These schemes combine a contact-shear wave preserving complete

solver with an incomplete diffusive one. To switch between solvers, they used shock

sensors. These sensors allow to determine the appropriate solver depending on the

flow conditions encountered. While the diffusive scheme is employed near shock

waves to suppress oscillations and instabilities, and the accurate solver is used to re-

solve the remaining regions. The switching function should be designed carefully to

sustain the accuracy and robustness of schemes, especially for unstructured grids. Si-

mon mentioned [26, 27, 28] that hybrid fluxes require complete evaluation of both flux

functions, and they are generally computationally expensive to implement. Because

of that, he chose to hybridize fluxes by adding diffusive components of incomplete

solvers to complete ones to reduce the cost of functions.

Second approach is intoduced by NASA scientist Liou [29] in 1993. He identified

dissipative pressure term in the mass flux is responsible for the instabilities of high-

speed computations. With that discovery, he introduced a simple, robust and accu-

rate approach for high-speed flow computations, which is called Advection Upstream

Splitting Method (AUSM). Many AUSM scheme variants emerged since then, and
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they are categorized as AUSM-family schemes. These schemes are stable and also

accurate by being able to capture contact discontinuities. This feature achieved by

separating pressure-flux terms from the mass-flux based terms. Thus, they have been

very popular for compressible flow applications. Liou also developed an all-speed ex-

tension [30] of the classical method, which is applicable from low to high Mach num-

ber flow solutions. However, this scheme, AUSM+up, has insufficient robustness and

requires a user-defined parameter, the cut-off Mach number. This requirement also

limits the usage of the scheme to internal flow problems. In recent years, to avoid the

problem-dependent parameters of AUSM+up, Kitamura and Shima have introduced

their all-speed AUSM scheme, SLAU(Simple Low-dissipative AUSM) [31]. How-

ever, SLAU is not robust enough for hypersonic flows and is not extendable to real

gas flows. Thus, Kitamura further developed SLAU2 [32] which has good perfor-

mance in hypersonic flow computations. Also, Kitamura tried to formulate HLLC

in a very similar form to the AUSM scheme to combine the strengths of both flux

functions. The resultant scheme, HLLC with low-dissipation scheme (HLLCL) [33]

, is applicable to both low and high Mach number flows.

In 2017, Rodionov [34] proposed another approach for curing numerical instabilities

in hypersonic flows. Differently from the hybrid methods, which use numerical dissi-

pation inherent in inviscid flux functions to capture strong shock waves, he suggested

adding explicit dissipation, which relies on Von Neumann and Richtmyer’s [14] ar-

tificial viscosity to smear discontinuities. Rodionov’s method introduces numerical

dissipation in the form of the RHS of the Navier-Stokes equations. Since applied dis-

sipation is independent of the combined flux function, it can be used to cure the shock

instabilities with all Riemann solvers. In the following years, he proposed three im-

proved versions of classical method [35, 36, 37] to expand the range of applications.

1.3 Motivation,Objective and Outline of the Thesis

As mentioned in the previous sections, robust and accurate hypersonic flow analysis

is essential in the aerospace industry. Although there are lots active efforts to develop

high-order methods, such as ENO, WENO, for hypersonic computations, spatially

second order accurate FVM is the most preferred method in CFD with its acceptable
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results with significantly less computational costs. To ensure FVM’s accuracy in high-

speed flows, many shock-capturing schemes, which are robust against unphysical

shock anomalies and capable of resolving gradients in low-speed regions, have been

proposed in recent years.

The current shock capturing schemes has their stregths and weaknesses. Hybrid

schemes are robust, but costly. AUSM family solvers solves many problems, but

they are less accurate than some Riemann solvers. The artificial viscosity methods’s

parameters may be problem and mesh dependent. Therefore in this thesis our moti-

vations are:

• Determine dissipative behaviours of common shock capturing schemes

• Propose a new method that combines the strength of Riemann based methods

and artificial viscosity methods and show that this method can be applicable in

a wide range of Mach numbers.

Therefore, this thesis aims to compare the performance of prominent shock-capturing

methods in the literature in viscous high-speed flow computations. For that purpose,

widely known AUSM+up, SLAU2 flux functions are explained and implemented into

the in-house compressible flow solver, which already has HLLC and Roe. Further-

more, Rodinov’s artificial viscosity approach is also investigated and added to the

code. In addition, instead of Rodinov’s shock detection sensor, a new pressure-

ratio based sensor based on Chen’s work [7] is suggested to tune artificial viscos-

ity. The new approach removes the weaknesses of the Rodinov’ method including

mesh-dependent parameters. Several numerical experiments are conducted to assess

implemented methods’ performance in high-speed applications. Obtained results are

compared with each other and the ones presented in the literature.

The main objective of this work is to compare the before-mentioned shock-capturing

schemes with numerical experiments to understand the features inherited by each

technique also their advantages and disadvantages. And by implementing them into

the in-house FVM solver, enhancing its high-speed flow solution capability. The

scope of this thesis is limited to ideal gases. Chemistry, radiation, and material abla-

tion are not considered.
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This thesis is organized as follows. Chapter 2 briefly reviews governing equations of

viscous compressible flows and their related finite volume discretization. Godunov’s

method of solution and construction of traditional flux functions are also given in the

same section. In chapter 3, the theory behind implemented shock-capturing methods

is presented. Then, the accuracy and robustness of the proposed methods for hyper-

sonic flow problems are tested with well-known test cases in Chapter 4. Finally, the

conclusion and future works are presented in Chapter 5.
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CHAPTER 2

GOVERNING EQUATIONS AND NUMERICAL METHOD

This chapter aims to describe the foundations on which this work is built. Firstly,

governing equations for the compressible, viscous flow are presented in conservative

form. Secondly, the finite volume discretization method and usage of compressible

Euler equations for inviscid flux derivation are explained. Finally, the traditional

methodologies for evaluating the inviscid fluxes are presented.

2.1 Governing Equations

Governing equations of viscous, heat conducting, compressible flow without any ex-

ternal body force or heat generation are known as Navier-Stokes equations. They are

a system of non–linear equations, which consist of conservation of mass, momentum

and energy [38][39]. The general form of the conservation equation states that the

rate of change of total quantity q within the control volume Ω. In the absence of

sources equation becomes

∂

∂t

ˆ

Ω

qdΩ +

˛

S

−→
F · d

−→
S = 0 (2.1)

where
−→
F ,flux vector of q, is the amount of the quantity crossing a unit surface per

unit time and
−→
S is the face of the control volume. This integral form of conserva-

tion equation(2.1) is utilized to write three-dimensional Navier-Stokes equations in

integral form as
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∂

∂t

ˆ

Ω

−→
QdΩ +

˛

S

(
−→
Fc −

−→
Fv) · d

−→
S = 0 (2.2)

−→
Q represents the vector of conservative variables, while

−→
Fc is known as inviscid flux.

Both vectors contain five cartesian components for three-dimensional case.

−→
Q =



ρ

ρu

ρv

ρw

ρE


,
−→
Fc =



ρ

ρu

ρv

ρw

ρE


U +



0

nx

ny

nz
−→
V


p (2.3)

Where U is the contravariant velocity, that is the velocity normal to the surface ele-

ment d
−→
S . It can be defined as

U =
−→
V · −→n (2.4)

To describe the work of viscous stresses and the heat conduction in the fluid, vector

of viscous fluxes
−→
Fv is defined as in equation (2.5)

−→
Fv =



0

τxxî+ τxy ĵ + τxzk̂

τyxî+ τyy ĵ + τyzk̂

τzxî+ τzy ĵ + τzzk̂

(σx + k ∂T
∂x

)̂i+ (σy + k ∂T
∂y

)ĵ + (σz + ∂T
∂z

)k̂


(2.5)

Shear stress terms can be formulated with second viscosity coefficient λ ,and the

dynamic viscosity coefficient µ as follows.

σx = τxxu+ τxyv + τxzw (2.6)

σy = τyxu+ τyyv + τyzw (2.7)
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σz = τzxu+ τzyv + τzzw (2.8)

τxx = λ(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
) + 2µ

∂u

∂x
(2.9)

τyy = λ(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
) + 2µ

∂v

∂y
(2.10)

τzz = λ(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
) + 2µ

∂w

∂z
(2.11)

τxy = τyx = µ(
∂u

∂y
+
∂v

∂x
) (2.12)

τxz = τzx = µ(
∂u

∂z
+
∂w

∂x
) (2.13)

τyz = τzy = µ(
∂v

∂z
+
∂w

∂y
) (2.14)

Navier-Stokes equations are coupled and should be solved simultaneously. It’s seen

that, there are six primary flow variables, density ρ, pressure p, temperature T and

three velocity components u, v, w. Therefore, in order to close the system of equa-

tions, it is necessary to constitute relations between fluid properties by an equation of

state. In general, compressible flows are assumed to be perfect gas. The equation of

state for a perfect gas can be written as in Equation 2.15.

p = ρRT (2.15)

2.2 Finite Volume Method (FVM)

The differential formulation of conservation laws assumes variables are sufficiently

smooth in all solution domainsto allow the differentiation operation. On the other
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hand, the intgeral form indicates conservation laws in which the smooth change of

variables assumption is relaxed to allow discontinuities in solution domains. Thus,

problems, involving discontinuities such as shocks, must be solved by integral form

of governing equations for accurate results.

The finite volume method is a discretization method, which divides the physical do-

main into arbitrary control volumes and applies the integral conservation laws to that

local volume. Historically, it was introduced in CFD independently by Mc Donald

[40] and MacCormack and Paullay [41]. The method relies upon the direct discretiza-

tion of the integral form of the conservation laws. Thus, FVM obeys the physics of

the compressible flow and allows solutions with discontinuities. It is the most pre-

ferred method today in CFD. The reasons for this are its generality, simple structure,

and ease of implementation for arbitrary mesh, including both structured and unstruc-

tured grids.

Figure 2.1: Example of two dimensional quadrilateral computational cell.

In FVM, the surface integral part of conservation equation (2.1) is approximated by

the sum of the fluxes crossing the individual faces of the control volume. The conser-

vation law for control volume given in Figure 2.1 can be defined as

Ωi

(
∂−→qi
∂t

)
+

4∑
j=1

−→
F ij ·

−→
S ij = 0 (2.16)

The key point of this formulation is the fact that the time variation of q inside the

volume ,Ωi, only change with the surface flux contributions. Thus, the accuracy of

the method directly depends on the particular function with which the fluxes are eval-

uated. In Navier-Stokes equations, inviscid flux terms are related to the hyperbolic
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nature of the equations, whereas the viscous stress terms are related to the parabolic

nature. Therefore, while viscous flux can be generally computed by a central differ-

ence, researchers have developed numerous different methods to obtain the inviscid

flux through the cell interface.

2.3 Discretisation of Inviscid Fluxes

In general, the Euler equations describe the inviscid flows. Therefore, inviscid fluxes

are approximated from the discretization of these conservation equations. In con-

densed notation Euler Equations can be written as in Equation (2.17).

∂
−→
Q

∂t
+
−→
∇ ·
−→
F = 0 (2.17)

where
−→
Q ,and

−→
F are same with Navier-Stokes equations.

−→
Q =



ρ

ρu

ρv

ρw

ρE


,
−→
F =



ρ

ρu

ρv

ρw

ρE


U +



0

î

ĵ

k̂
−→
V


p (2.18)

These equations are hyperbolic type partial differential equations. They have direc-

tional and wavelike propagation characteristic. The inviscid flux terms are directly

related to the hyperbolic nature of these equations. Therefore, numerical method for

the evalutaion of inviscid fluxes must follow the physics of the flow and be consistent

with the direction at which information propagates. For this reason, modern inviscid

flux schemes are generally based on upwind discretizations, in opposition to central

discretizations. Central schemes schemes do not consider any information about the

wave propagation in the discretization, while upwind schemes determine the cell face

fluxes according to the propagation direction. There are many flux functions avail-

able today to simulate the direction of the propagation of information in a flow field.

According to Blazek and Toro they can be divided into two main groups as:[38, 3]

• Godunov Type Methods
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• Flux Vector Splitting Methods

2.4 The Method of Godunov

Godunov type methods are first group of upwind methods. They use the piecewise

(cell-averaged or slope limited) data in each cell to construct the left and right states at

every mesh face. Then, interface fluxes are computed by solving the Riemann Prob-

lem, exactly or approximately, on that interface. Therefore, local properties of basic

solutions to the Euler equations are directly introduced in the discretization strategy.

The method is originally proposed by Godunov with first-order, cell averaged data

reconstruction and exact Riemann-based flux function.

2.4.1 Riemann Problem

The Riemann problem is an initial value problem(IVP) with a discontinuous initial

profile for hyperbolic systems. The initial profile is constant two different states at

both sides of a discontinuity at x = 0. The Riemann problem for the one dimensional

Euler equations can be written as given below

∂
−→
Q

∂t
+
∂
−→
F (
−→
Q)

∂x
= 0 (2.19)

−→
Q =


ρ

ρu

E

 ,−→F =


ρu

ρu2 + p

u(E + p)

 (2.20)

with initial conditions stated as

−→
Q(x, t0) =


−→
QL ifx < 0

−→
QR ifx > 0

(2.21)

In case of Euler equations, Riemann problem is is an extended shock tube problem.

The shock tube problem consists of two stationary gases in a tube that are separated

by a diaphragm. Then the diapghram ruptures and a wave structure builds up.
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If the viscous effects are neglected and an infinitely long tube is taken into consider-

ation, the flow following the rupture of the diaphragm can be obtained by the exact

solution of the Euler equations. The solution combines shock waves, contact discon-

tinuity, and rarefaction waves. In the Riemann problem, left and right particle speeds,

uL and uR, can be non–zero, but the solution procedure of the problem is the same as

the shock–tube problem.

Figure 2.2: Sod’s shock tube problem.

Solution of the Riemann problem is constant along the lines x/t. Therefore, the

Riemann problem has four constant states, which are separated by the three waves

corresponding to the three eigenvalues with speeds u,u ± a. The middle wave is

always a contact discontinuity, while the left and right waves can be either shock or

expansion waves. Each wave separates two constant states on the left and right side of

the wave. The wedge between the two non-linear waves is called the star region and

is separated by the contact discontinuity in the two constant states
−→
Q ∗L,

−→
Q ∗R, which

are the states respectively on the left and right side of the contact discontinuity. The

velocity, u∗, and the pressure, p∗, in the star region are constant where densities take

two different values ρ∗L, ρ∗R. From left to right solution has the four constant states
−→
QL,
−→
Q ∗L,

−→
Q ∗R,

−→
QR.

Figure 2.3: Structure of the Riemann problem solution for Euler equations.[3]
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According to the generated wave type, there can be four different wave patterns. A

complete solution of the Riemann problem requires the determination of the types of

the waves, their relative strenghts, and the flow properties in each region between the

waves and the contact surface.

Figure 2.4: Possible wave patterns of the Riemann problem solution for Euler equa-

tions.[3]

Riemann problem has a similarity solution
−→
Q(x/t), and depends on the ratio of space

and time coordinates x/t and the data states
−→
QL,
−→
QR.

2.4.2 Godunov Approach

Godunov has suggested a finite volume method[16] in 1959 to solve fluid dynamics

problems with a large number of shock waves and contact discontinuities. In his

method, solution is considered as piecewise constant over each volume at a fixed

time t = tn[4].

This generates local Riemann problems, which are centered at the boundaries between

adjacent cells. The cell interfaces seperate two different fluid states
−→
QL at the left side

and
−→
QR at the right side, like the diaphragm in the shock tube.
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Figure 2.5: Piecewise constant distribution.[4]

Godunov recommended advancing the solution to a next time step t = tn+1 by numer-

ical fluxes, which are evaluated by the solution of local Riemann problems for Euler

equations at cell interfaces. For one dimensional problems the Godunov scheme is

written as

−→
Qn+1 =

−→
Qn +

∆t

∆x
(
−→
F i− 1

2
−
−→
F i+ 1

2
) (2.22)

with intercell numerical flux given by

−→
F i+ 1

2
=
−→
R (
−→
QL,
−→
QR) (2.23)

where
−→
Q i+ 1

2
(0) is the solution of the Riemann Problem(

−→
QL,
−→
QR) along the ray

x/t = 0. For original first-order method right and left states are assumed to be equal

to the cell average. Godunov assumes that no wave interaction takes place within

each cell. Therefore, to use this methodology, ∆t , should be limited by the condition

that the adjacent Riemann problems do not interfere.
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Figure 2.6: Reimann problem solution at interaces.[4]

2.4.3 Exact Solution of Riemann Problem

Most important part of the Godunov’s method is the solution of the Riemann problem.

An analytic solution of the Riemann problem for the Euler equations is unavailable,

not even for ideal gases. However, it is possible to compute the solution numeri-

cally by iterative methods to any degree of accuracy. In order to obtain the complete

solution solution at the contact discontinuity should be evaluated with an iterative

process. This region is cshown in Figure 2.3, and called the star region. After the

flow properties(p∗, u∗, ρ∗L, ρ∗R) are evaluated, all wave can be calculated.

The exact solution procedure, which is based on Rankine-Huoniot conditions, ex-

ploits the constancy of the velocity and pressure values in star region. The solution

for pressure p∗ and the u∗ of the Riemann problem for Euler equations obeying the

caloric EoS

e =
p

ρ(γ − 1)
(2.24)

is given by following non-linear, algebraic equations

fL(p) + fR(p) + (uR − uL) = 0 (2.25)

where
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fL(p) =


(p− pL)

√
2

ρL(p(γ+1)+pL(γ−1))
ifp > pL(shock)

2aL
γ−1

((
p
pL

) γ−1
2γ − 1

)
ifp ≤ pL(rarefaction)

(2.26)

fR(p) =


(p− pR)

√
2

ρR(p(γ+1)+pR(γ−1))
ifp > pR(shock)

2aR
γ−1

((
p
pR

) γ−1
2γ − 1

)
ifp ≤ pL(rarefaction)

(2.27)

These equations may be solved iteratively to obtain p∗ with Newton- Raphson method.

This method requires and very dependent on inital start value ,p0, to find the root in

less iteration. More detailed information about method and the effect of the initial

guess can be found in Toro’s book [3] chapter 4. Once p∗ is obtained u∗ value can be

obtained from

u∗ =
1

2
(uR + uL) +

1

2
[fR(p∗)− fL(p∗)] (2.28)

and ρ∗R, ρ∗L from isentropic relations. The solution of Riemann problem for x-split

three-dimensional Euler equations is basically the same as the solution for corre-

sponding one-dimensional problem for the quantities p, u, ρ.

Figure 2.7: Structure of the Riemann problem solution for the three-dimensional

case.[3]

There are two additional characteristic fields related with the two eigenvalues at speed

u. These shear waves are related with the tangential velocity components w and v.

These components are obtained with upwind manner as
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q(x, t) =

qR if x
t
< u∗

qL if x
t
> u∗

(2.29)

where q represents v and w.

2.4.4 Approximate Riemann Solvers

Exact Riemann solvers can calculate the solution of the Riemann problem for Euler

equations (2.17) by an iterative method. It is a computationally expensive procedure.

In order to avoid this iterative method, approximate Riemann solvers are commonly

employed for estimation of numerical fluxes. These solvers are preferred due to their

simplicity and acceptable accuracy. Some traditional examples of approximate Rie-

mann solvers are given below.

2.4.4.1 Roe Flux

The most popular of all approximate Riemann solvers is Roe’s approximate solver,

which was first presented in 1981[21]. To avoid the computationally expensive iter-

ative operations of the Riemann problem, Roe linearized the Euler equations about

an average state and then solved exactly by splitting the flux difference between two

computational cells into contributions from forward-moving and backward-moving

waves according to the direction of wave propagation. Among various approximate

flux functions, the Roe scheme is well known for its accuracy. The three-dimensional

numerical flux across the cell interface is written as

−→
F ROE =

FL + FR
2

− Â∆
−→
Q

2
(2.30)

where ∆Q = QR−QL and Â is the x-direction Jacobian matrix of Euler equatipons,

which constructed with Roe-averaged quantities.
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Â =



0 1 0 0 0

(γ − 1)Ĥ − û2 − â2 (3− γ)û −(γ − 1)v̂ −(γ − 1)ŵ (γ − 1)

−ûv̂ v̂ û 0 0

−ûŵ ŵ 0 û 0

1
2
û[(γ − 3)Ĥ − â2] Ĥ − (γ − 1)û2 −(γ − 1)ûv̂ −(γ − 1)ûŵ γû


(2.31)

These quatities, denoted by hats, are averaged by weighting with
√
ρ as following

ρ̂ =
√
ρLρR (2.32)

û =
uL
√
ρL + uR

√
ρR√

ρL +
√
ρR

(2.33)

v̂ =
vL
√
ρL + vR

√
ρR√

ρL +
√
ρR

(2.34)

ŵ =
wL
√
ρL + wR

√
ρR√

ρL +
√
ρR

(2.35)

Ĥ =
HL
√
ρL +HR

√
ρR√

ρL +
√
ρR

(2.36)

â =

√
(γ − 1)(Ĥ − (û2 + v̂2 + ŵ2)

2
) (2.37)

The term Â∆Q can be rewritten in the following form

Â∆
−→
Q =

5∑
i=1

α̂i

∣∣∣λ̂i∣∣∣ R̂i (2.38)

where α̂i stands for wave strengths,λ̂i for eigenvalues and R̂i for right eigenvectors of

the Jacobian matrix Â. Detailed information on methodologies to find α̂i ,λ̂i and R̂i

readers is referred to Toro [3] chapter 11.
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2.4.4.2 HLLC Flux

An approach is introduced by Harten Lax and van Leer [19] in 1983 to solving the

Riemann problem approximately. The main idea in the solver is the assumption of a

wave configuration which consists of two waves instead of three. The resulting solver

forms the basis of a family of very accurate and robust Godunov type methods.

Main shortcoming of the original method is ignoring the presence of intermediate

waves. Because of that, the resolution of physical features such as contact disconti-

nuity and shear waves could be very inaccurate. A more accurate method, HLLC [22],

proposed by Toro in 1992. This HLLC accepts three–wave solution of the Riemann

problem with a more satisfactory resolution of middle waves. This method assumes

a middle zone, including a contact discontinuity, divided by the right and left going

waves.

Figure 2.8: Wave model for the HLLC solver.[5]

The three-dimensional flux term for the interface with normal in the x-direction was

given by Toro as follows

−→
F HLLC =



−→
F L ifSL ≥ 0

−→
F ∗L =

−→
F L + SL(

−→
Q ∗L −

−→
QL) ifSL < 0 ∩ S∗ ≥ 0

−→
F ∗R =

−→
F R + SR(

−→
Q ∗R −

−→
QR) ifSR > 0 ∩ S∗ ≤ 0

−→
F R ifSR ≤ 0

(2.39)

Where two intermediate states in the star region
−−→
Q∗L and

−−→
Q∗R,which are seperated by
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the contact discontiunity, were determined from equation (2.40).

−−−→
Q∗L/R =

SL/R − uL/R
SL/R − S∗



ρL/R

ρL/RS∗

ρL/RvL/R

ρL/RwL/R

EL/R + (S∗ − uL/R)(ρL/RS∗ +
ρL/R

SL/R−uL/R


(2.40)

The middle wave speed S∗ can be calculated by the expression (2.41).

S∗ =
pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)
(2.41)

The left and right wave speed estimation method based on Roe averaged values is

proposed by Einfeldt [20].

SL = min(uL − aL, û− ĉ), SR = max(uL − aL, û− ĉ) (2.42)

û =
uL
√
ρL + uR

√
ρR√

ρL +
√
ρR

(2.43)

ĉ2 =
c2L
√
ρL + c2R

√
ρR√

ρL +
√
ρR

+

√
ρL
√
ρR

2(
√
ρL +

√
ρR)2

(uR − uL)2 (2.44)

With simple and accurate formulation, the HLLC is one of the most popular and

adjustable approximate solvers in the literature. For years, the HLLC solver has been

applied to various CFD applications.

2.5 Flux Vector Splitting Methods

The Flux Vector Splitting (FVS) Methods are considered as the more general defi-

nition of upwind schemes. They only account for the sign of the eigenvalues of the

Euler equations to compute numerical flux at cell interface. The flux vector F at the

cell center is simply split into components stemmed from the waves traveling to up-

stream and downstream directions, F+ and F−. Then, intercell numerical flux Fi+1/2
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is constructed from two contributions; one comes from the forward component F+
i in

the left cell and the other comes from the backward component F−i+1 of right cell as

shown in2.9.

Figure 2.9: Splitting of the flux for cell i.[3]

FVS approach comes from homogenity property of hyperpolic type system of equa-

tions. Time dependent Euler equations 2.17 satisfy this requirement as follows

−→
F = Â

−→
Q (2.45)

Where Â is the jacobian matrix 2.31 of Euler eqautions. Therefore, flux term can be

constructed by splitting Â into two component Â+ and Â− under the restriction of its

negatif and positive eigenvalues as follows

−−−→
Fi+1/2 =

−→
F+
i +
−−→
F−i+1 (2.46)

−→
F+
i = Â+

i

−→
Qi,

−−→
F−i+1 = Â−i+1

−−→
Qi+1 (2.47)

FVS methods are computationally less expensive than Godunov type Riemann solvers.

However, they have excessive numerical dissipation because of the lack of the entropy

wave. The well-known FVS schemes presented by Steger- Warming [17], and Van

Leer [18] are more efficient but considerably less accurate than Roe’s solver.

The promiment family of FVS solvers in today’s are AUSM based solvers. These

solvers are superior to the classical FVS methods due to their superior shock-capturing

features. These solvers and their implementations will be explained in detail in the

next chapter.
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CHAPTER 3

SHOCK-CAPTURING METHODS

The aforementioned traditional solvers have robust and accurate characteristics for

many flow applications. However, they are inadequate for high-speed, viscous flow

solutions. In this research, AUSM-family schemes and artificial-viscosity based meth-

ods are explored and implemented into the in-house compressible flow solver to re-

solve this problem. This chapter describes the detailed methodology and construc-

tions of these methods.

3.1 AUSM-family Schemes

The Advection Upstream Splitting Method (AUSM) is a flux splitting method intro-

duced by Liou and Steffen in 1991 [29]. Developers of the method aimed to design

a new algorithm that is as efficient as flux vector splitting schemes and as accurate as

the Godunov type schemes for high-speed flow calculations. The method has been

formulated on the Euler equations. The key idea is to split inviscid flux into the

two physically distinct parts, namely convective and pressure fluxes, and discretize

them separately. The convective terms were considered as passive scalar quantities

convected by interface velocity. On the other hand, pressure terms were governed by

acoustic waves. Also, by its simple discretization strategy, AUSM is easliy extendable

to fluid calculations other than the ideal gas. This is a critical feature for hypersonic

flow simulations. The three-dimensional flux term for the interface with normal in

the x-direction is written as follows
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−→
F =



ρu

ρu2 + p

ρuv

ρuw

ρuH


=
−−→
F (c) +

−−→
F (p) = u



ρ

ρu

ρv

ρw

ρH


+



0

p

0

0

0


(3.1)

where H is the enthalpy per unit mass, defined by

H =
E + P

ρ
(3.2)

In order to define intercell numerical flux
−−→
F1/2 in terms of right and left states, Liou

and Steffen took

−−→
F1/2 =

−−→
F

(c)
1/2 +

−−→
F

(p)
1/2 (3.3)

and defined convective flux
−−→
F

(c)
1/2, by introducing advective velocity u1/2 = M1/2aL/R,

as

−−→
F

(c)
1/2 = u1/2



ρ

ρu

ρv

ρw

ρH


L/R

= M1/2



ρa

ρau

ρav

ρaw

ρaH


L/R

(3.4)

with definition

[∗]L/R =

[∗]L ifM1/2 ≥ 0

[∗]R ifM1/2 ≤ 0
(3.5)

Advection Mach number M1/2 was given as a sum of the contributions of left and

right states split Mach numbers

ML/R =
uL/R
aL/R

(3.6)

M1/2 = M+
L +M−

R (3.7)
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by splitting just as in the Van Leer’s flux vector splitting relations

M± =

±
1
4
(M ± 1)2, if |M | ≤ 1

1
2
(M ± |M |), if |M | > 1

(3.8)

For calculating presssure flux
−−→
F

(p)
1/2, pressure term p1/2 was given as

p1/2 = p+L .pL.+ p−R.pR (3.9)

which was split by using polynomial expansions of the characteristic speeds

p± =


1
4
(M ± 1)2(2∓M), if |M | ≤ 1

1
2
(M±|M |)

M
, if |M | > 1

(3.10)

Finally flux term was expressed as

−→
F AUSM =

M1/2 +
∣∣M1/2

∣∣
2



ρa

ρau

ρav

ρaw

ρaH


L

+
M1/2 −

∣∣M1/2

∣∣
2



ρa

ρau

ρav

ρaw

ρaH


R

+



0

p1/2

0

0

0


(3.11)

Splitting the inviscid flux into its convective and pressure components opens up a

new family of inviscid flux functions. Many improvements were proposed as the

“AUSM-family” schemes upon the formulation chosen for convective and pressure

fluxes. Structures and methodologies of prominent AUSM-family schemes 3.1, which

preserve the solution robustness and accuracy in high-speed visocus flow simulations,

are given below.

3.1.1 AUSM+up

The first improved version of the original AUSM, AUSM+[42], was introduced by

one of the original authors of AUSM, Liou. The new version of the scheme has

several desirable features:
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Figure 3.1: AUSM (Advection Upstream Splitting Method) family tree.[6]

• high resolution of contact discontinuities and normal stationary shocks

• preserving positivity of scalar quantities

• free of oscillations and anomalies at stationary and moving shocks.

More advanced Mach number and pressure term splittings were introduced in the

new formulation for better accuracy. Also, Mach number and velocity splittings were

unified by introducing a common speed of sound term a1/2 at interface.

u1/2 = M1/2a1/2 (3.12)

Despite success in high speed external fow simulations practice, AUSM+ revealed

that it could not preserve its robustness and accuracy in low-speed regions. To over-

come this issue, Liou introduced AUSM+up [30], an extension of AUSM+, for flows

at all-speed regimes. Inserting additional velocity Mp and pressure diffusion pu to

the flux resulted in a more stable and accurate scheme. The x-split formulation of

algorithm is given as follows

ML/R =
uL/R
a1/2

(3.13)
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M1/2 = M+
L +M−

R +Mp (3.14)

M± =

±
1
4
(M ± 1)2 ± β(M2 − 1)2, if |M | ≤ 1

1
2
(M ± |M |), if |M | > 1

(3.15)

Mp = −KP

fa
max((1− σM̄2), 0)

pR − pL
ρ̄a21/2

(3.16)

p1/2 = p+L .pL.+ p−R.pR + pu (3.17)

p± =


1
4
(M ± 1)2(2∓M)± αM(M2 − 1)2, if |M | ≤ 1

1
2
(M±|M |)

M
, if |M | > 1

(3.18)

pu = −Kup
+
Lp
−
R(ρL + ρR)(faa1/2)(uR − uL) (3.19)

The common speed of sound incorporates the information of flow direction into flux

evaluation,which supress generation of unnecessary expansion shocks. Formulation

of it was given by Liou as

a1/2 = min(ãL,ãR) (3.20)

where

ãL =
(a∗)2

max(a∗, uL)
, ãR =

(a∗)2

max(a∗,−uR)
(3.21)

The critical speed of sound a∗ formulation was given as

(a∗)2 =
2(γ − 1)

γ + 1
H (3.22)

Scaling function fa was introduced to scale the numerical dissipation according to the

flow speed.

fa = Mo(2−Mo) (3.23)
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Recommended values and formulations of necessary parameters for all-speed exten-

sion of the algorithm were given as

β =
1

8
, Kp = 0.25, Ku = 0.75, σ = 1 (3.24)

ρ̄ =
ρL + ρR

2
(3.25)

M̄2 =
u2L + u2R

2a21/2
(3.26)

(Mo)
2 = min(1,max(M̄2,M2

co)) (3.27)

α =
3

16
(−4 + 5f 2

a ) (3.28)

The cutoff Mach number, Mco, is a user-defined parameter, inherited from the pre-

conditioning procedures. Especially for external flow solutions, it is chosen as the

free-stream Mach number.

Mco = M∞ (3.29)

The final form of numerical flux is defined as

−→
F AUSM+up =

M1/2a1/2 +
∣∣M1/2a1/2

∣∣
2



ρ

ρu

ρv

ρw

ρH


L

+
M1/2a1/2 −

∣∣M1/2a1/2
∣∣

2



ρ

ρu

ρv

ρw

ρH


R

+



0

p1/2

0

0

0



3.1.2 SLAU and SLAU2

Existing all-speed flux schemes need at least one problem-dependent parameter, like

cutoff Mach number in AUSM+-up, which can sometimes restrict the scheme’s ap-

plicability. Simple Low-dissipation AUSM (SLAU) was introduced by Japanese sci-

entists Kitamura and Shima in 2011 [31]. Developers aimed to create a new scheme
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without any tunable parameter while it keeps the robustness and accuracy of AUSM-

family fluxes at all speed regimes. SLAU eliminated the need for the cutoff Mach

number by scaling dissipative terms according to multidimensional velocities. The

final form of the x-split flux with new mass flux and pressure term calculations is

written as follows

ṁ1/2 =
1

2
(ρL(uL +

∣∣V̄n∣∣+) + ρR(uR −
∣∣V̄n∣∣−))− χ

a1/2
4p (3.30)

where

∣∣V̄n∣∣+ = (1− g)
∣∣V̄n∣∣+ g |uL| ,

∣∣V̄n∣∣− = (1− g)
∣∣V̄n∣∣+ g |uR| (3.31)∣∣V̄n∣∣ =

ρL |uL|+ ρR |uR|
ρL + ρR

(3.32)

4p = |pL − pR| (3.33)

g = −max(min(ML, 0),−1)min(max(MR, 0), 1) (3.34)

ML/R =
uL/R
a1/2

(3.35)

Definition of interface speed of sound a1/2 was borrowed from AUSM+.

a1/2 = min(ãL,ãR) (3.36)

ã =
(a∗)2

max(a∗, |u|)
(3.37)

(a∗)2 =
2(γ − 1)

γ + 1
H (3.38)

χ = (1− M̂)2 (3.39)

M̂ = min(1,
1

a1/2

√
u2L + v2L + w2

L + u2R + v2R + w2
R

2
) (3.40)

New pressure term was introduced for calculation of pressure flux as

p1/2 =
pL + pR

2
+
p+L − p

−
R

2
(pL − pR) + (1− χ)(p+L + p−R − 1)

pL + pR
2

(3.41)
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Pressure was split same as AUSM+up with α = 0 for simplicty.

p± =


1
4
(M ± 1)2(2∓M), if |M | ≤ 1

1
2
(M±|M |)

M
, if |M | > 1

(3.42)

Although its parameter-free nature differentiates SLAU from the other preceding

AUSM-family flux functions, it still suffers from shock anomalies under certain con-

ditions. Moreover, because the pressure term of SLAU is based on the ideal gas

assumption, it is not extendable to real gas solutions. Therefore, to increase the ro-

bustness of SLAU against shock instabilities, developers proposed SLAU2. They dis-

covered that numerical dissipation is limited to a constant value regardless of Mach

number at supersonic flow speeds in the original scheme. And limited dissipation is

insufficient for high supersonic Mach numbers. A new pressure term p1/2 formula-

tion was introduced to overcome this shortage. Also, with the new formulation of

the pressure term, which is based on the perfect gas assumption, developers made

SLAU2 free from that restriction. Modified pressure flux formulation was given as

p1/2 =
pL + pR

2
+
p+L − p

−
R

2
(pL−pR)+

√
u2L + v2L + w2

L + u2R + v2R + w2
R

2
(p+L+p−R−1)

ρL + ρR
2

a1/2

(3.43)

where

a1/2 = min(ãL,ãR) (3.44)

ã =
(a∗)2

max(a∗, |u|)
(3.45)

(a∗)2 =
2(γ − 1)

γ + 1
H (3.46)

p± =


1
4
(M ± 1)2(2∓M), if |M | ≤ 1

1
2
(M±|M |)

M
, if |M | > 1

(3.47)

and the final form of SLAU2 is written as

−→
F SLAU2 =

ṁ1/2 +
∣∣ṁ1/2

∣∣
2



1

u

v

w

H


L

+
ṁ1/2 −

∣∣ṁ1/2

∣∣
2



1

u

v

w

H


R

+



0

p1/2

0

0

0


(3.48)
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3.2 Artifical Viscosity Methods for Curing Numerical Instabilities

In traditional shock-capturing methods, numerical dissipation provides the appropri-

ate smearing of discontinuities, which is inherent in the schemes. Therefore, re-

searchers generally explore the dissipative mechanisms of flux functions and try to

control them to smooth out oscillations and anomalies near shock waves. In 1950,

another methodology was introduced by Von Neumann and Richtmyer [14], which is

based on the explicit introduction of numerical dissipation into the Euler equations to

ensure the sufficient smearing of strong discontinuities. Since the introduced dissi-

pative terms are in the form of physical viscosity, they are named artificial viscosity

terms, and the methods based on this concept are called artificial viscosity methods.

This additional dissipation is in the form of the right-hand side of the Navier-Stokes

equations. In one-dimensional form, the artificial dissipation is given as in equation

3.49.

(c∆x)2

V

∂u

∂x

∣∣∣∣∂u∂x
∣∣∣∣ (3.49)

where V and u are the specific volume and fluid velocity, respectively. c is a dimen-

sionless constant near unity. This technique does not alter inviscid flux calculations,

such that it can be combined with different inviscid flux schemes. This flexibilty

of Artificial Viscosity methods is a very favorable feature. However, an appropriate

method is required to ensure that the diffusion is applied to the shock layer only in-

stead of the physically correct features present in the flowfield. Moreover, the artificial

viscosity coefficient expression should cure the shock anomalies in a wide range of

flow and geometry conditions without user-dependent parameters. To achieve these

objectives, researchers try to generate sensors that maintain the accuracy of the gen-

eral solution while applying the smallest amount of artificial viscosity to necessary

regions.

3.2.1 Rodionov’s Artificial Viscosity Method

In 2017, Russian researcher Alexander V. Rodionov proposed a new artificial vis-

cosity approach to cure hypersonic flow instabilities [34]. He formulated a multidi-

35



mensional artificial viscosity coherent with Von Neumann and Richtmyer’s artificial

viscosity 3.49 as given in equation 3.50.

µAV = CAV ρh
2
∣∣∣∇ · −→V ∣∣∣ (3.50)

where CAV is a dimensionless, user-dependent parameter and h is the characteristic

mesh size. Because of the possibility of artificial viscosity dampening relevant infor-

mation, it is vital to ensure that the artificial viscosity is applied only in areas where

it is required. Therefore, Rodinov thresholded his approach only to compressed cells

to achieve that goal as

µAV =

CAV ρh
2
∣∣∣∇ · −→V ∣∣∣ if∇ ·

−→
V < 0

0 otherwise
(3.51)

Then, to preserve the scheme quality in the shockless compression regions, he intro-

duced a shock detection sensor, which based on characteristic mesh size and speed of

sound a . The modified formulation was written as

µAV =

CAV ρh
2

√(
∇ ·
−→
V
)2
−
(
Cth

a
h

)2
if∇ ·

−→
V < −Cth ah

0 otherwise

(3.52)

where Cth is the threshold coefficient and it was chosen to be Cth = 0.05 as a re-

sult of numerous test simulations by Rodionov. Also, for more physically consistent

solutions, he presented an artificial heat conductivity term as

kAV =
µAVCp
Pr

(3.53)

where Cp is the specific heat at constant pressure, Pr is the Prandtl number taken

equal to 0.75. He presented an expression, which based on diagonal length of cells di

for the characteristic mesh size in his formula as

h =
max(di)√

3
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and, calibrated Cmin
AV according to that expression. However, calculating all of the

diagonal lengths is a computationally expensive procedure. Therefore, in our work,

characteristic mesh size derived as the cube root of cell volume h = 3
√
V for three

dimensional solutions and root of cell area h =
√
A for two dimensional ones. Cmin

AV

recalibration for this characteristic mesh size calculation will be presented in the next

chapter. The resultant method is named Rodinov’s artificial viscosity (RAV). By com-

bining it with Roe and HLLC complete Reimann solvers, Roe+RAV and HLLC+RAV

schemes are generated.

3.2.2 A Pressure Ratio Based Artificial Viscosity Method

Although, Rodionov demonstrated the efficiency of his method on several well-known

test problems, his shock sensor structure is considered to be case-dependent because

of dimensional parameters, cell size and speed of sound, in it. To avoid these di-

mensional parameters and to increase the application range of the method, a new

pressure-ratio based shock sensor [7] is borrowed to detect shock waves and activate

artificial viscosity. It’s defined as

hk = min

(
pi
pk
,
pk
pi

)
(3.54)

h = min
k

(hk) (3.55)

g =
1 + cos(πh)

2
(3.56)

The subscript k is the index for all neighboring interfaces of applied cells.

The function h selects the minimum value of hk from all the adjacent interfaces as

shown in Figure 3.2. Then, the function g embraces a strecth function to ensure a

smoother transition of applied artificial viscosity. This sensor is applicable to both

types of grids, structured and unstructured. In smooth regions, the function g tendsto

zero because of the negligible change in the pressure value as given in Figure 3.3. In

contrast, near discontinuities, the function g increases with the increase of pressure

gradient.
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Figure 3.2: Illustration of the function h for cell i.

Figure 3.3: Pressure ratio based function g.[7]

Chen uses that term to scale his additional dissipation term, obtained from the differ-

ence between Roe and HLL flux functions. In this study, this term is used for scaling

artificial viscosity as given in 3.57 . Self-generated sensor is named as pressure-ratio

based artificial viscosity method(PRAV) and implemented to Rodionov’s method as

follows

µAV =

gCAV ρh
2
∣∣∣∇ · −→V ∣∣∣ if∇ ·

−→
V < 0

0 otherwise
(3.57)

Artificial heat conductivity term kAV used in the same way as given in 3.53 with-
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out modification. That method is also combined with Roe and HLLC solvers and

Roe+PRAV and HLLC+PRAV schemes are generated.

3.3 CFD Solver

All mentioned shock capturing methods are implemented in our finite volume solver.

It is based on an open-source compressible flow solver, flowPsi, built on a rule-based

programming framework, Loci.

Inviscid and viscous flux calculations in the solver are built as separate libraries.

HLLC and Roe schemes are available in the inviscid flux library as standard C++

functions, which construct inviscid flux from the left and the right flow variables. Im-

plemented AUSM-family schemes, AUSM+up and SLAU2, are designed and applied

in a similar way to these schemes. On the other hand, the artificial viscosity term is

formulated and implemented similarly to the molecular viscosity term in the viscous

flux library.

All the runs are performed with implicit time stepping. A fast and robust sparse

matrix solver, line-symmetric Gauss-Seidel, is used in these implicit computations.

In analyses with second-order spatial accuracy, Green-Gauss reconstruction and the

Venkatakrishnan limiter are used to form a sufficient condition, which avoids intro-

ducing oscillation in the solution process . Also, the k−ω SST model, which has high

accuracy in external flow analysis, is used for simulations with turbulence modeling.
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CHAPTER 4

NUMERICAL EXPERIMENTS AND RESULTS

This chapter presents several numerical tests to compare the implemented AUSM and

artificial viscosity based shock-capturing schemes. The primary focus of this study is

on investigating the accuracy and robustness of the implemented methods for viscous

hypersonic problems.

Firstly, an inviscid hypersonic flow example is considered to show the capability of

the proposed methods to solve problems with strong shocks. For this purpose, a well-

known benchmark case is selected and used.

Then, a flat plate example follows this to understand the boundary-layer resolution

capabilities of the implemeneted methods to ensure boundary layer simulations are

unaffected due to inclusion of extra dissipation.

Finally in last test case, performances of the implemented methods are compared

for calculations of three-dimensional simulations and heat transfer prediction. The

problem solved here is the hypersonic flow past a ballistic rocket geometry (HB-2).

With these validation cases, implemented methods are compared among each other

and with the experimental data.

4.1 Hypersonic Inviscid Flow Over a Cylinder

Hypersonic inviscid flow past a cylinder is a typical problem [25, 8] for examining

the catastrophic shock anomalies of low diffusion upwind schemes. As previously

mentioned, shock-capturing methods, which have minimal dissipation, are generally

vulnerable to shock instabilities such as the carbuncle phenomena.
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4.1.1 Problem Set-Up

In this numerical experiment, a cylinder with a 0.5-meter radius is located in a uni-

form gas where the upstream Mach number is set as 20. The freestream conditions

are selected to be the properties of air at sea level conditions, T∞ = 288.15 K ,

P∞ = 101325 Pa. All simulations are conducted with the first-order accurate spatial

schemes with CFL = 0.5. All solutions are iterated up to 50000 steps unless shock

anomalies cause a divergence.

Density contours computed by different schemes are illustrated to examine if insta-

bilities occur. For that purpose, 30 contour levels varying from 2.0 to 8.5 are used.

This severe test case is simulated to evaluate and compare the ability of implemented

methods to capture strong shock waves.

Figure 4.1: Aspect ratio of grids.[8]

Since shock instabilities are highly sensitive to computational mesh, generating a

computational domain is the main task for systemically assessing the shock robust-

ness of relevant methods. Henderson and Menart’s [8] two main conclusions about

mesh dependencies of shock instabilities are as follows:

• If the cell faces are more aligned with the shock wave, these faces introduce

more numerical dissipation to the solution. Thus, the possibility of shock insta-

bilities occurring is decreasing.

• Instabilities are independent of the computational cell size but mostly depend

on the aspect ratio. A wide control volume parallel to the shock wave intro-

duces numerical dissipation to the solution in that direction. Therefore, control

volumes with short edges perpendicular to the shock wave and long edges par-

allel to it decrease the possibility of occurring shock instabilities, as given in

the Figure 4.1.

According to these findings, a cylindrical shape computational domain is created

as given in Figure 4.2.This domain type is designed to ensure that grid lines, dis-
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Figure 4.2: Solution domain with boundary conditions

tributed uniformly in both directions, around the bow shock wave do not align with

it and shock instabilities are noticeable. The aspect ratio effect is investigated by

changing the number of divisions in the radial direction while holding the number of

mesh points in the circumferential direction constant as 321, which division is recom-

mended in [2]. For this purpose, three different meshes with different radial division

as given in Table 4.1 are generated and simulated with low-dissipative HLLC and

Roe’s schemes. Using meshes with lower aspect ratio cells would be impractical—

that kind of meshes are only for special studies. So, they are not considered.

Density contours of solutions given in Figures 4.34.44.5 respectively. Results clearly

show that even though the Roe scheme exhibits the aforementioned carbuncle anomaly,

the HLLC scheme also produces incorrect density contours near the stagnation stream-

line. The reason, why the HLLC scheme does not produce as catastrophic as with

the Roe flux, is that the solution of two-dimensional simulations of HLLC remains
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Table 4.1: Uniform divisions of meshes with different aspect ratios.

Radial Division Circumferential Division

90 321

125 321

250 321

bounded and can’t produce disastrous oscillations as given in Reference [43].

(a) Computational domain (b) Density contours of ROE flux (c) Density contours of HLLC flux

Figure 4.3: Computational domain and solutions of 90-321 grid
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(a) Computational domain (b) Density contours of ROE flux (c) Density contours of HLLC flux

Figure 4.4: Computational domain and solutions of 125-321 grid

(a) Computational domain (b) Density contours of ROE flux (c) Density contours of HLLC flux

Figure 4.5: Computational domain and solutions of 250-321 grid

Shock instabilities are clearly observable for both schemes on the grid, with 125 grid
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points in the radial direction and 321 in the circumferential direction. Thus, this grid

is used compare the shock-capturing capabilities of implemented methods.

This numerical experiment is used to calibrate the artificial viscosity based methods’

CAV parameters. This user-dependent parameters are calibrated to their minimum

value to eliminate the relevant shock instabilities. Calibrated values, which are also

used without changing in the following experiments, are presented in Table 4.2. Al-

though our characteristic mesh size calculation methods are different, the minimum

CAV values of all artificial viscosity based schemes are found 0.3 as suggested by

Rodinov.

Table 4.2: CAV minimum calibrated values.

HLLC+PRAV 0.3

HLLC+RAV 0.3

ROE+PRAV 0.3

ROE+RAV 0.3

4.1.2 Results

(a) SLAU scheme (b) AUSM+up scheme

Figure 4.6: Density contours of AUSM based methods
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(a) ROE+RAV scheme (b) HLLC+RAV scheme

Figure 4.7: Density contours of RAV methods

(a) ROE+PRAV scheme (b) HLLC+PRAV scheme

Figure 4.8: Density contours of PRAV methods

The computed results with implemented schemes are shown in Figures 4.64.74.8 .

Also, density solutions of implemented methods over the stagnation line are presented

in Figure 4.9 for detailed examination. The proposed SLAU2 scheme produced a

clean shock profile, and its post-shock regions are free from shock anomalies. The

AUSM+up scheme has a more wiggly solution in the shock region but is also free
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from shock anomalies. These solutions show that the presented all-speed AUSM

schemes are highly resistant to strong shock waves.

1.0 0.9 0.8 0.7 0.6 0.5
x

1
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SLAU
AUSM+Up
HLLC
HLLC+PRAV
HLLC+RAV
ROE
ROE+PRAV
ROE+RAV

Figure 4.9: Densities over the stagnation line.

On the other hand, computational solutions for both artificial viscosity based methods

are given, where nearly no visible shock instabilities and post-shock wiggles appear.

High shock robustness is achieved by adding artificial viscosity to necessary regions.

Compared with the corresponding original schemes’ the results of those new schemes

are greatly improved.

In Figure 4.10, contours of Mach number (top half) and artificial viscosity,µAV , (bot-

tom half) computed by ROE+RAV and ROE+PRAV is presented. As can be seen,

artificial viscosities in both schemes tend to their maximum near shock waves but

zero in other regions. However, pressure-ratio based shock sensor still stands out

with its advantages, such as not including case-dependent parameters like the speed

of sound and mesh size.

48



(a) ROE+RAV (b) ROE+PRAV

Figure 4.10: Contours of Mach number and artificial viscosity,µAV

By this numerical experiment, it has been ensured that the implemented schemes have

high shock capture capabilities. The following two experiments will test whether this

ability causes accuracy degradation throughout the resolving continuous gradients.

4.2 Subsonic Flat Plate

In the previous computational experiment, the shock-capturing abilities of the imple-

mented methods were tested. This section is employed to ensure that the implemented

methods do not affect the continuous gradients. For this aim, a subsonic flat plate

problem is solved numerically in this section. The solution domain and boundary

conditions are shown in Figure 4.11.
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4.2.1 Problem Set-Up

The computational mesh4.12 is the 2nd most fine mesh out of five recommended to

be used in flat plate validation studies by NASA[44]. The rectangular computational

domain has 193 cells in the normal to wall direction and 273 cells in the streamwise

direction. Grids are clustered toward the plate to keep the first cells y+ ≤ 1 to resolve

the viscous region accurately. Also, a dense mesh is defined at the leading edge of the

flat plate to resolve the stagnation point with reasonable accuracy.

All solutions are calculated with second-order spatial accuracy. The computations are

conducted for 20000 steps and CFL numbers are increased up to 500.

Figure 4.11: Solution domain with boundary conditions

Figure 4.12: Computational domain.

Firstly, a laminar boundary layer problem is conducted to assess the abilities of the

implemented methods of resolving shear layers without turbulence modelling. Com-

puted flow conditions are given in Table 4.3. Figures 4.134.14 show the comparison

of the velocity profiles (at L = 1m) against η = y
x

√
Re , and wall skin frictions of all

implemented methods with the Blasius exact laminar boundary layer solutions [45].

Also, the effect of the accumulation of molecular, turbulent, and artificial viscosities

in turbulent flows on the solution accuracy is tested. For this purpose, the same prob-
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Table 4.3: Laminar flow conditions.

M 0.2

T∞ 300 K

p∞ 2290 Pa

ReL 2 ∗ 105

lem is conducted at a higher Reynolds number with the k−ω SST [46] RANS model.

Turbulent flow conditions are given in Table 4.4. The original schemes and their ar-

tificial viscosity added versions are compared regarding wall skin friction. Solutions

are presented in Figure 4.15 .

Table 4.4: Turbulent flow conditions

M 0.3

T∞ 288 K

p∞ 101325 Pa

ReL 13.9 ∗ 106

4.2.2 Results

0.0 0.2 0.4 0.6 0.8 1.0
u/u
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7 Blasius
SLAU
AUSM+Up
HLLC+PRAV
HLLC+RAV
ROE+PRAV
ROE+RAV

(a) Standart view. (b) Zoomed view.

Figure 4.13: Non-dimensional velocity for the flat plate laminar boundary layer prob-

lem.
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Figure 4.14: Wall skin frictions for the flat plate laminar boundary layer problem.
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(a) Standart view. (b) Zoomed view.

Figure 4.15: Wall skin frictions for the flat plate turbulent boundary layer problem.

All solutions, which cannot be distinguished unless examined in detail, agree very

well with the Blasius solution. As expected, AUSM-type methods produce not the

same but very close solutions to complete Riemann solvers Roe and HLLC. Also,

artificial viscosity added schemes give identical results to classical ones in both lami-

nar and turbulent solutions. This shows us that both Rodinov’s and self-implemented

dimensional parameter free shock sensors, which control artificial viscosity, work

successfully. Results of that test case show that implemented methods are not only
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robust for capturing strong shocks but also accurate for the boundary layer calcula-

tions. Therefore, all implemented methods can be used in viscous flow problems.

4.3 Ballistic Rocket Geometry HB-2

In previous tests, it has been ensured that implemented methods are carbuncle-free

and precise in boundary layer solutions. This final test compares implemented meth-

ods in terms of applicability on three-dimensional unstructured meshes and assesses

their aerodynamic heating solution capabilities. For this purpose, this test case con-

siders the hypersonic flow over the standard ballistic correlation model HB-2.

4.3.1 Problem Set-Up

Model is one of two hypersonic rocket configurations that the Supersonic Tunnel

Association introduced in 1960. The HB-2 has an axisymmetric, analytical shape

that consists of a sphere at the nose, cylinder at the body, and flare at the base, which

is given in Figure 4.16.

Figure 4.16: HB-2 geometry.[9]

With its simple geometry, the HB-2 geometry reduces uncertainties from the geomet-

rical complexity. Therefore, it has great usage for experimental and numerical hyper-

sonic test techniques validation. There are many experimental studies that investigate

aerodynamic force and heating characteristics of HB-2 in hypersonic regimes. To test

implemented methods’ performance on three-dimensional unstructured grids static

pressure distribution of the model at zero angle of attack is compared with the results

of the experiments conducted by Gray and Lindsay[47] in 1964.

Three different cases with varying Mach numbers are performed to evaluate the meth-
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ods at different speeds. Also, to compare the aerodynamic heating prediction capabil-

ities of implemented methods, q̇ distribution data of the tests performed by the Japan

Aerospace Exploration Agency (JAXA) [48] are used. In order to minimize errors

caused by mesh topology, analyses performed for calculating q̇ distribution are ob-

tained by the axisymmetric solution of the two-dimensional structured mesh. Flow

properties of all conducted simulations are given in Table 4.5. While the viscous

walls are considered adiabatic for the pressure distribution comparisons, it is stated

as 300 K, identically to JAXA’s measurement strategy, in the simulations where the

heat transfer is calculated. Also, cylinder diameter D is set to 0.1 m.

Table 4.5: Flow properties for simulations.

Parameter Case-1 Case-2 Case-3 Axis-Case

T∞ 100 K 100 K 100 K 55.3 K

p∞ 1343 Pa 943 Pa 420 Pa 74.5 Pa

M 3.99 5.05 8.04 9.59

ReD 0.54 ∗ 106 0.48 ∗ 106 0.34 ∗ 106 0.18 ∗ 106

Two types of solution domains are generated for simulations. The first one is a two-

dimensional domain that consists of a bow and a vertical line. It is generated for

axisymmetric simulations. The solution domain with boundary conditions is given in

Figure 4.17.

Figure 4.17: Axisymmetric domain with boundary conditions.

The computational mesh is a fine structured grid clustered toward the body with a

growth factor of 1.1. First cells’ y+ are taken as 0.05 to capture heat transfer under
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hypersonic flow conditions by directly solving the wall. Thanks to the low compu-

tational cost of the axisymmetric domain, a dense mesh is created to capture aerody-

namic heating rates. Generated grid is presented in Figure4.18.

(a) Standart view. (b) Zoomed view.

Figure 4.18: Axisymmetric computational domain.

Second domain is a semi-ellipsoid, which is generated for three-dimensional analy-

ses. The solution domain with boundary conditions is given in Figure 4.19

Figure 4.19: Three-dimensional domain with boundary conditions.

The solution domain is discretized with high-quality mesh to ensure high fidelity re-
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sults. To obtain pressure distributions accurately, a dense, unstructured mesh is gener-

ated. Also, the boundary layer is modeled with prism cells, and a mesh independency

study is carried out. To satisfactorily resolve the highly viscous boundary layer, 30

layer prism cells, which have dimensionless first layer height (y+) between 0.2 and

0.3 for different cases, are generated.

Figure 4.20: Three-dimensional computational domain.

(a) Standart view. (b) Zoomed view.

Figure 4.21: Prism layers.
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Mesh independency is examined with axial force results to obtain optimum grid den-

sity with minimum spatial discretization error. This examination is carried out with

the SLAU2 scheme for the case with the highest Mach number(Case-3). Results are

given in Figure 4.22. As seen, axial force do not change notably(less than %0.001)

even if we increase the total number of cells after 12.5 million. Thus, this mesh size

is chosen and used in three-dimensional analyses.

Figure 4.22: Axial force for different number of cells.

Flow simulations are conducted at given conditions for all implemented methods. Ob-

tained results are compared with the experimental results. All analyses are performed

with second-order spatial accuracy. Although in Reference [49], it is suggested to

assume the flow field as laminar due to low Reynold Numbers for HB-2 calculations,

Reference [50] mentioned that a proper turbulence model increases the accuracy of

hypersonic flow calculations. Therefore, the k − ω SST [46] turbulence model is

employed for all cases to resolve complex flow structures more accurately and stably.

All analyses are iterated until residuals drop at least two orders and stop decreasing.

The convergence history for each case is given in Figures 4.23, 4.24.

CFL numbers and iteration numbers used to conduct simulations are given in Ta-

ble4.6.
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Table 4.6: Simulation parameters .

Parameter Case-1 Case-2 Case-3 Axis-Case

CFL 0.5 0.3 0.2 0.1

Iteration 15000 15000 15000 100000

(a) Case-1 (b) Case-2

(c) Case-3

Figure 4.23: Convergence history of three-dimensional analyses.

Figures 4.23, 4.24 show that all implemented methods display well-behaved conver-

gence histories. Schemes from AUSM family showed similar convergence perfor-

mance for all cases. Also, RAV and PRAV methods generated almost identical resid-

ual histories within themselves with ROE and HLLC schemes. This shows us that

artificial viscosity has a dominant effect on the solution’s convergence performance,

regardless of the Riemann solver to which it is added. Although the drop rates of

residuals are similar for all methods, artificial viscosity based methods, especially

PRAV, are decreased residuals to lower orders than AUSM type schemes. In this way,
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Figure 4.24: Convergence history of axisymmetric analyses.

they generated more stable solutions.

Artificial viscosity,µAV , contours of ROE+RAV and ROE+PRAV methods for Case-3

are presented in Figure 4.25 to examine whether methods affect the solutio domain

while producing these stable solutions. As seen from the contours, the RAV method

produces more artificial viscosity than the PRAV method due to its shock sensor with

dimensional parameters. This shows us dimensional-parameter free PRAV method-

ology affects the solution domain less than RAV method for solutions with similar

convergence performance.
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(a) ROE+PRAV

(b) ROE+RAV

Figure 4.25: µAV contours of artificial viscosity methods for Case-3.

Also, velocity profiles of ROE+RAV and ROE+PRAV methods at x = 0.2m for the

same case compared with SLAU2 solutions in Figure 4.26. From the similarity of

results, it has been ensured that both artificial viscosity based methods do not affect

boundary layer solutions, as expected.

4.3.2 Results

In Figures 4.27, 4.28, 4.29 the pressure ratio along the HB-2 model wall for Cases

1,2, and 3 are shown. As given in the figures, the computational results are not exact

but in good agreement with experimental measurements for all Mach numbers. While

two pressure drops, related to the two expanding curves in the fore-body, are captured

excellently by all methods, they disagree with experiment a little near the joint of the

body and flare for all cases. These mismatches can be related to numerical errors

arising from using unstructured meshes or vortex effects in that region.

The only difference between the implemented methods, which show almost identi-

cal compatibility for all cases, is that highly stable artificial viscosity based methods
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Figure 4.26: Velocity profiles for the HB-2 boundary layer.

produce smooth distributions, whereas AUSM schemes exhibit slight oscillatory be-

havior, as expected.
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(a) Standart view.

(b) Zoomed view 1. (c) Zoomed view 2.

Figure 4.27: Pressure distribution prediction over model surface for Case-1.
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(a) Standart view.

(b) Zoomed view 1. (c) Zoomed view 2.

Figure 4.28: Pressure distribution prediction over model surface for Case-2.
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(a) Standart view.

(b) Zoomed view 1. (c) Zoomed view 2.

Figure 4.29: Pressure distribution prediction over model surface for Case-3.

Figure 4.30 shows the comparison of numerical heat transfer predictions obtained

from the solution of the axisymmetric model with the experimental results. Similar

to pressure distribution comparisons, numerical predictions of q̇ of all implemented

methods are compatible with JAXA’s experimental measurements. However, that

case reveals methods’ differences more clearly. For example, while artificial viscos-

ity based methods maintain their smoothness, AUSM schemes produce more visible

oscillating results than pressure distribution. Also, the PRAV methodology generates

more compatible results with experimental data than RAV, especially in the flare re-

gion. This shows us RAV method can cause distortions in the solution domain due
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to its excessive viscosity production. In contrast, PRAV preserves its accuracy in the

entire domain for solutions with the same stability.

(a) Standart view.

(b) Zoomed view 1. (c) Zoomed view 2.

Figure 4.30: Heat transfer prediction over model surface for axisymmetric case.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

In this study, the performances of three different shock-capturing methodologies are

analyzed for viscous flow calculations in hypersonic regimes. The first methodol-

ogy is based on all-speed AUSM family schemes. Prominent SLAU2 and AUSM+up

are implemented into the in-house CFD solver. The second method is based on an

explicit diffusion term based on Von Neumann and Richtmyer’s artificial viscosity.

ROE+RAV, and HLLC+RAV schemes are generated by adding that diffusion to the

Roe and HLLC complete Reimann solvers. This artificial diffusion must only be

introduced in shock layers, without any effect in the flow regions without disconti-

nuities. For this, the shock sensor has a critical role in this methodology. However,

the shock sensor of RAV method can be case-dependent because of its dimensional

parameters. Therefore, a final methodology, which combines the artificial viscos-

ity of RAV with a pressure-ratio based shock sensor, is proposed. ROE+PRAV, and

HLLC+PRAV schemes are generated with this methodology.

All methods are validated by several numerical test cases in Chapter 4. The main

focus of the numerical examples is understanding the different shock-capturing tech-

niques and the detailed comparison between them. For this purpose, firstly, an in-

viscid hypersonic flow over blunt body problem is used to demonstrate the need for

shock-capturing when low-dissipative Reimann solvers are used. This test also shows

the capability of the implemented methods to solve problems with strong shocks.

Then, a flat plate example is conducted to understand the boundary-layer resolution

capabilities of these methods. Finally, in the last test case, the implemented methods’
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performances are compared for calculations of three-dimensional configurations and

heat transfer prediction with the HB-2 model.

Results show that both AUSM family schemes and artificial viscosity based meth-

ods are highly resistant to shock anomalies and have low diffusion at low speeds.

Also, both are applicable to three-dimensional unstructured grids. When compared

with each other, they have benefits as well as drawbacks relative to each other. Ar-

tificial viscosity based methods produce much more stable and smoother solutions

with better convergence performance than AUSM family schemes. However, as a

critical deficiency, they have a user-defined parameter, CAV ,that might need recali-

bration for different solutions. On the other hand, their simple, easily extendable and

almost user-defined parameter free structures of AUSM family schemes provide great

advantages.

When AUSM family schemes are compared among themselves, SLAU2 is advanta-

geous over AUSM+up by its user-defined parameter free formulation and more stable

characteristics. Also, the self-generated PRAV shock sensor is proved to be more ac-

curate than RAV sensor, especially for heat transfer predictions, with less impact on

the overall domain.

5.2 Future Works

Implicit solution of numerical problems provides higher stability with larger time

steps than an explicit ones. However, the derivatives of the interface fluxes, which are

hard to evalute exactly for complex flux functions like AUSM family schemes, are

needed for the implicit formulation. Generally, CFD solvers, like our in-house solver,

employ approximate Roe jacobian regardless of used flux function for an implicit

solution. However, when possible, an exact jacobian of the used flux function is

preferred because it is more efficient. Therefore, exact jacobians of AUSM+up and

SLAU2, which are constructed by automated differentiation technique [51], can be

implemented to enhance stability and accuracy results.

Although PRAV shock sensor produces accurate and stable results in tests, improve-

ments can be made, especially for decreasing dependency on CAV parameter and
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make it usable for wide range of applications.

Implemented methods are tested in this study on simple models without the angle of

attack or side-slip angles. Thus, the physical complexity of the problem simulated can

be increased. Flow problems remain to be investigated by the implemented methods’

performance on highly turbulent or involving complex structures like shock-shock

or shock-boundary layer interactions. Furthermore, chemical reactions and material

ablation can be added to the simulated problems.

69



70



REFERENCES

[1] J. D. Anderson, Hypersonic and high temperature gas dynamics. Aiaa, 2000.

[2] M. Pandolfi and D. D’Ambrosio, “Numerical instabilities in upwind methods:

analysis and cures for the “carbuncle” phenomenon,” Journal of Computational

Physics, vol. 166, no. 2, pp. 271–301, 2001.

[3] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a prac-

tical introduction. Springer Science & Business Media, 2013.

[4] C. Hirth, “Numerical computation of internal and external flows,” Computa-

tional methods for inviscid and viscous flows, vol. 2, 1990.

[5] E. F. Toro, The Riemann problem: solvers and numerical fluxes, vol. 17. Else-

vier, 2016.

[6] K. Kitamura, Advancement of Shock Capturing Computational Fluid Dynamics

Methods, vol. 136. Springer, 2020.

[7] S.-s. Chen, C. Yan, B.-x. Lin, L.-y. Liu, and J. Yu, “Affordable shock-stable item

for Godunov-type schemes against carbuncle phenomenon,” Journal of Compu-

tational Physics, vol. 373, pp. 662–672, 2018.

[8] S. Henderson and J. Menart, “Grid study on blunt bodies with the carbuncle

phenomenon,” in 39th AIAA thermophysics conference, p. 3904, 2007.

[9] A. Kryuchkova, “Numerical simulation of a hypersonic flow over HB-2 model

using UST3D programming code,” in Journal of Physics: Conference Series,

vol. 1250, p. 012010, IOP Publishing, 2019.

[10] G. E. Barter, “Shock capturing with PDE-based artificial viscosity for an adap-

tive, higher-order discontinuous Galerkin finite element method,” tech. rep.,

MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF AERONAU-

TICS AND ASTRONAUTICS, 2008.

71



[11] K. Peery and S. Imlay, “Blunt-body flow simulations,” in 24th Joint Propulsion

Conference, p. 2904, 1988.

[12] J. J. Quirk, “A contribution to the great Riemann solver debate,” in Upwind and

High-Resolution Schemes, pp. 550–569, Springer, 1997.

[13] A. S. Mohamed Sherif, “Shock-capturing techniques for Euler equations in the

framework of Hybridizable Discontinuous Galerkin,” Master’s thesis, Universi-

tat Politècnica de Catalunya, 2018.

[14] J. VonNeumann and R. D. Richtmyer, “A method for the numerical calculation

of hydrodynamic shocks,” Journal of applied physics, vol. 21, no. 3, pp. 232–

237, 1950.

[15] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numer-

ical computation,” Communications on pure and applied mathematics, vol. 7,

no. 1, pp. 159–193, 1954.

[16] S. Godunov and I. Bohachevsky, “Finite difference method for numerical com-

putation of discontinuous solutions of the equations of fluid dynamics,” Matem-
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