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ABSTRACT

ANALYTICAL PRICING FORMULA UNDER THREE-STATE
REGIME-SWITCHING MODEL

Tekı̇n, Özge

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Prof. Dr. Rogemar S. Mamon

August 2022, 122 pages

Economic and financial data display diverse behavior at different time intervals due
to their dynamics and stochastic nature. To build explanatory models, different time
periods with similar characteristics can be grouped together under a single regime.
In this study, it is assumed that the states of the economy follow a homogeneous
first-order continuous-time finite-state hidden Markov chain process.

We consider the valuation of European options in a three-state Markov switching ex-
tension of the Black-Scholes-Merton framework. In this context, the interest rate,
drift, and volatility parameters of the underlying asset depend on the underlying mar-
ket regime that switches among a finite number of states. Due to the additional source
of randomness caused by the underlying Markov chain, the market is incomplete. The
regime switching Esscher transform is applied to determine the equivalent martingale
measure. Under this measure, the analytical formula for the regime-switching Eu-
ropean options is derived. The option pricing procedure under this model has been
studied in the literature for the two-state regime-switching framework. In this the-
sis, we utilize the joint density function of occupation times of the Markov chain
proposed by Falzon to obtain the analytical solution for the three-state model. The
calculations of the Greeks for the regime-switching European option by using the
proposed method are presented.
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Some of the exotic options can be represented in terms of the European options.
We also consider this relationship for the barrier options and show how our method
can be extended for both the valuation of regime-switching barrier options and their
Greeks. The validity of the method is illustrated by presenting several examples and
comparing them with the results existing in the literature.

Lastly, we consider the regime-switching guaranteed minimum maturity benefit val-
uation. Considering the long life of variable annuity contracts, insurance providers
need to take into account both interest rate and mortality fluctuations in addition to
stock market fluctuations. We consider interest rate, mortality, and underlying fund
dynamics to be switching among the states, and we propose the formulae for two dif-
ferent models by assuming independent filtration for the mortality component. The
first model assumes that both financial and mortality parameters are regulated by the
same underlying Markov chain. On the other hand, the second model assumes that the
parameters of the mortality model are based on a separate second Markov chain. This
study is complemented with some numerical examples to highlight the implication of
our approach on pricing these contracts under a regime-switching framework.

Keywords: Regime-switching models, Markov chain, occupation time, European op-
tions, barrier options, guaranteed minimum maturity benefit
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ÖZ

ÜÇ-DURUMLU REJİM DEĞİŞİM MODELİ ALTINDA ANALİTİK FİYATLAMA
FORMÜLÜ

Tekı̇n, Özge

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Prof. Dr. Rogemar S. Mamon

Ağustos 2022, 122 sayfa

Ekonomik ve finansal veriler, dinamikleri ve stokastik yapıları nedeniyle farklı zaman
aralıklarında farklı davranışlar sergilemektedir. Açıklayıcı modeller oluşturmak için
benzer özelliklere sahip farklı zaman periyotları tek bir rejim altında gruplandırılabi-
lir. Bu çalışmada, ekonominin durumlarının homojen bir birinci mertebeden, sürekli
zamanlı, sonlu durumlu saklı Markov zinciri süreci izlediği varsayılmaktadır.

Black-Scholes-Merton çerçevesinin üç durumlu Markov rejim değişimi modeline ge-
nişletilmesi durumunda Avrupa tipi opsiyonların değerlendirilmesi problemini ele
alınmıştır. Bu bağlamda, faiz oranını, dayanak varlığın sapma ve oynaklık parametre-
leri altta yatan Markov zincirine bağlıdır ve parametre değerleri sonlu sayıda durum-
lar arasında geçiş yapmaktadır. Altta yatan Markov zincirinin sebep olduğu belirsiz-
lik nedeniyle, piyasa eksiktir (incomplete). Eşdeğer martingale ölçüsünü belirlemek
amacıyla Markov rejim değiştirme modeli için Esscher dönüşümü uygulanarak, bu
ölçü altında, parametreleri altta yatan Markov zincirine bağlı olan Avrupa tipi op-
siyonlar için analitik formül türetilmiştir. Bu model altındaki fiyatlama prosedürü,
literatürde altta yatan Markov zincirinin iki durumlu olduğu model altında incelen-
miştir. Bu tezde altta yatan Markov zincirinin üç durumlu olduğu model için analitik
çözümü elde etmek amacıyla Falzon tarafından önerilen ortak olasılık yoğunluk fonk-
siyonunun kullanılması önerilmiştir. Önerilen yöntem kullanarak altta yatan Markov
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zincirine göre parametre değerleri değişen Avrupa tipi opsiyonlar için parametre has-
sasiyetlerinin hesaplamaları sunulmuştur.

Egzotik opsiyonlardan bazıları Avrupa tipi opsiyonlar cinsinden ifade edilebilir. Bu
ilişki bariyer opsiyonları açısından ele alımıştır ve hem altta yatan Markov zincirine
göre parametre değerleri değişen bariyer opsiyonları için hem de bu opsiyonların pa-
rametre hassasiyeti hesaplamları için önerdiğimiz yöntemin nasıl genişletilebileceğini
gösterilmiştir. Yöntemin geçerliliği, çeşitli örnekler ile ve bu yöntem ile elde edilen
sonuçların literatürde var olan sonuçlarla karşılaştırılması ile gösterilmiştir.

Son olarak, vade sonunda minimum garanti ödemeli fayda opsiyonu değerlemesi
Markov rejim değişimi modeli altında ele alınmıştır. Değişken annüite sözleşmele-
rinin uzun ömürlü oldukları düşünüldüğünde sigorta sağlayıcılarının borsadaki dal-
galanmalara ek olarak hem faiz oranı hem de ölümlülük oranlarındaki dalgalanmaları
dikkate almaları gerekmektedir. Faiz oranı, ölümlülük oranı ve temel fon parametrele-
rinin altta yatan Markov zincirine bağlı olduğu modeli ele alınmaktadır ve ölümlülük
bileşeni için bağımsız filtreleme varsayımı altında iki farklı model önerilmektedir. İlk
model, hem finansal hem de ölümlülük parametrelerinin aynı temel Markov zinciri ta-
rafından düzenlendiğini varsayarken, ikinci model, ölüm modelinin parametrelerinin
ayrı bir ikinci Markov zincirine dayandığını varsaymaktadır. Bu çalışma, Markov re-
jim değiştirme çerçevesi altında bu sözleşmelerin fiyatlandırılması konusundaki yak-
laşımımızın etkisini göstermek için sayısal örneklerle tamamlanmıştır.

Anahtar Kelimeler: Rejim değişimi modelleri, Markov zinciri, işgal süresi, Avrupa
tipi opsiyonlar, bariyer opsiyonları, vade sonunda mimimum garanti ödemeli fayda
opsiyonları

x



xi



xii



ACKNOWLEDGMENTS

I would like to express my very great gratitude to my thesis supervisor Prof. Dr. Ömür
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CHAPTER 1

INTRODUCTION

Regime-switching models are one of the powerful tools that explain the stochastic

processes which have structural changes between different states. Because of their

dynamic and stochastic nature, economic and financial data may exhibit different

behavior for different time intervals. There are times when dramatic events disrupt

the normal behavior of economies. A prominent example is the business cycle, and

other examples are currency crises and stock market bubbles. Different time periods

that share similar characteristics might be grouped together under a single regime in

order to obtain explanatory models.

In conjunction with this, regime-switching models have been used to model differ-

ent problems in various fields of finance and actuarial sciences including valuation of

equity options [8, 9, 32, 43], interest rate instruments (bonds and interest rate deriva-

tives) [14, 16, 15, 55], and energy and commodity derivatives [56, 27], portfolio se-

lection [19], pricing and hedging variable annuities [34, 60, 28]

The remainder of this chapter is outlined as follows. Section 1.1 provides an liter-

ature review. In this section, the literature on the pricing of financial and actuarial

products covered in this thesis is reviewed under the subsections of European option

pricing, barrier option pricing, and guaranteed minimum maturity benefit valuation.

In addition, the literature on occupation time distribution, which is one of the main

building blocks of the thesis, is given. Motivation and the contribution of the thesis

is presented in Section 1.2. The structure of the remaining chapters of the thesis is

given in Section 1.3.
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1.1 Literature Review

In the field of economics, the origin of the regime-switching models may be traced

all the way back to the work of Goldfield and Quandt [29]. They demonstrated that

the non-linearity in economic data can be explained by regime-switching regression

models. Hamilton [33] utilized regime-switching model to identify business cycles

and credited for popularizing the regime-switching models in economics and econo-

metrics literature. Since then, regime-switching models have received a great deal of

attention and have been applied in a variety of fields, including option valuation, risk

management, actuarial valuation, and others.

In this study, since the pricing problem for European options, barrier options, and

guaranteed minimum maturity benefit contracts is the primary focus of our investiga-

tion, we present the literature reviews for these sub-areas separately. Mind map of the

studies used as main references for this study is illustrated in figure Figure 1.2.

1.1.1 European Option Pricing

The Black-Scholes [2] and Merton [49] model assumes that the underlying asset price

dynamics are modeled by a geometric Brownian motion with constant appreciation

rate and volatility. Despite the success of the Black-Scholes formula, numerous em-

pirical studies have shown that the model has some drawbacks in terms of the fea-

tures of the underlying assets, namely the leptokurtic feature, volatility smile, and

volatility clustering phenomena of the asset return distribution [23, 47, 59, 58, 26].

In order to overcome the aforementioned shortcomings, various extensions of the

standard Black-Scholes model have been proposed in the literature, including the

jump-diffusion models, stochastic volatility models, and regime-switching models.

Numerous researchers have investigated the valuation of financial instruments under

the regime-switching framework. For the European option, Naik [50], Guo [32],

Elliott et al. [12], and McKinlay [48] provide an closed-form pricing formula. Closed-

form formula which assume a model in which the volatility of the returns of the

underlying risky assets is subject to random shifts first proposed by Naik in [50].

Naik [50] assumed two-state model and used occupation time distribution formula
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presented by Pedler [53]. Guo [32] also presented an explicit formula by deriving the

formula for the probability density of occupation time for a two-state model.

One of the biggest problems encountered in option pricing problems under regime-

switching framework is that the market is incomplete because of the presence of the

additional source of randomness caused by the underlying Markov chain. Conse-

quently, there is more than one equivalent martingale measure (EMM), and hence,

more than one no-arbitrage price for an option.

Different approaches have been proposed for pricing and hedging derivative securities

in incomplete financial markets. Guo [32] used the so-called change-of-state contract

that pays one dollar when the current state switches to another state in order to com-

plete the market. This change-of-contracts behaves like an insurance contract in a

sense that it protects the holder from any losses resulting from the regime-switching.

Elliot, Chan, and Siu [12] considered the option pricing problem when the underlying

asset is driven by a Markov regime-switching geometric Brownian motion (GBM).

They assumed that the market parameters, namely the market interest rate, the ap-

preciation rate (drift), and the volatility of the underlying asset, were assumed to

depend on a continuous-time hidden Markov model, which models the market modes

(regimes). They utilized the regime-switching Esscher transform to determine the

equivalent martingale measure. They also demonstrated that the results driven from

Esscher transform when pricing a contingent claim, are equivalent to those driven

from the minimum entropy martingale measure. The general form of the semi-closed

formulation for European call options under regime switching framework is given by

Elliot et al. [12] without making any specification about the joint density function

of the occupation times. They also presented the general form of the characteristic

function of the occupation times.

McKinlay [48] considered the model where a continuous-time finite Markov chain

drived the drift and the volatility but not the interest rate. McKinlay [48] presented

a proof for the two-state explicit formula and stated the formula for the three-state

case. He also employed the Monte Carlo simulation and the Fourier transform method

to obtain the European option prices and compared these results with the solutions

obtained by numerical integration by considering Pedler’s occupation time density
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function for a two-state model.

As stated by Zeng et al. [62], Zhang et al. [63], and Boyle et al. [4], and to the best

of our knowledge, the pricing problem for regime-switching European options in a

two-state regime-switching model can be solved analytically. However, closed-form

solutions for models with more than two states are not yet available and N -state

results are often obtained by simulation or numerical techniques.

Mamon and Rodrigo [46] obtained an explicit solution for European options in a

regime-switching economy by considering the solution of a system of PDEs. Fur-

thermore in a similar setting, Buffington and Elliot [8, 9] presented a method for

pricing European and American options using partial differential equations.

Liu, Zhang, and Yin [43] employed a fast Fourier transform (FFT) approach in or-

der to price the European option in a Markov regime-switching model. They also

assumed a two-state economy. Zeng et al. [62] presented a numerical comparison

of the Monte Carlo simulation and the finite-difference method for European op-

tion under a regime-switching framework. Bollen [3] presented a lattice method and

Monte Carlo simulation for valuing both European and American options in regime-

switching models.

1.1.2 Barrier Option Pricing

Numerous academics and practitioners have examined the valuation of barrier op-

tions, which is a significant subject in the theory and practice of finance. Mer-

ton [49] calculated the analytical value of our down and call option. Rubinstein and

Reiner [57] derived closed-form pricing formulae for several single-barrier option

types. Buhchen [7] investigated the risk-neutral pricing of double knock-out bar-

rier options using the method of images. Hieber and Scherer [38] used Brownian

bridge concept to present an efficient Monte-Carlo method for barrier option pricing

in regime-switching framework. Closed-form estimate for the price of a European

barrier option with time dependent parameters are provided by Lo, Lee and Hui [44].

Elliot, Siu and Chan [18] derived semi-analytical approximation formula for barrier

options under the regime-switching model by considering the results given by Lo
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et al. [44] and they obtained a formula which can be calculated by using the joint

conditional density of the occupation time of the Markov chain.

1.1.3 Guaranteed Mimimum Maturity Benefit Pricing

In Europe and Canada, variable annuities are known as unit-linked contracts and seg-

regated funds, respectively. Equity linked contracts include embedded guarantees to

protect the policyholder against the downside risk.

Variable annuity providers offer a variety of guarantee riders. Besides guaranteed

minimum death benefit (GMDB) riders, three main types of guaranteed living ben-

efit (GLB) riders exist: guaranteed minimum accumulation benefit (GMAB) riders,

guaranteed mimimum maturity benefit (GMMB) riders, guaranteed minimum income

benefit (GMIB) riders and guaranteed minimum withdrawal benefit (GMWB) riders.

These guarantees are relevant to long-dated option pricing since they depend on the

survival of the policyholder. The guarantees are subject to interest rate risk, mortality

risk, and equity risk.

There are many studies in the literature that comprehensively address these risks [5,

34, 61, 54, 41, 42, 40, 24, 45]. Variable annuities provide long-term protection against

the effect of inflation on fixed income in comparison with fixed annuities. Sales of

variable annuities tend to increase when the stock market grows, but sales of fixed

annuities tend to decrease as the stock market grows. Table 1.1 shows individual

annuity sales in the last few years in the US. 1

Table 1.1: Annuity Sales in the U.S. between 2017-2021

Variable Annuity Fixed Annuity Total

Year Amount
($ billions)

Percent
Change

Amount
($ billions)

Percent
Change

Amount
($ billions)

Percent
Change

2017 98.2 - 105.3 - 203.5 -
2018 100.2 0.02% 133.6 0.27% 233.8 14.9%
2019 101.9 0.017% 139.8 0.05% 241.7 3.4%
2020 98.6 -0.032% 120.5 -0.14% 219.1 -9.4%
2021 125.3 0.271% 129.2 0.07% 254.3 16.1%

1 Source: http://www.iii.org/media/facts/statsbyissue/annuities/.
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Considering these long-dated contracts, the regime-switching method is an effective

method to explain the behavior of risks that contracts are based on.

Ignatieva [40] investigated pricing and hedging of the Guaranteed Minimum Ben-

efits (GMBs) under regime switching framework via Fourier Space-Time-stepping

algorithm. Pricing of equity-indexed annuities and GMDBs under a double regime-

switching model by using the fast Fourier is presented by Fan et al. [24]. Mamon

et al. [45] investigated the valuation of GMMBs by assuming the dynamics of inter-

est rate, mortality rate, and stock index are modulated by a hidden Markov model.

They employed the Fourier transform method and compared the results with Monte

Carlo simulation method and also presented the evaluation of the Greeks. They also

presented parameter estimation of the model by recursive HMM based filtering tech-

nique.

1.1.4 Occupation Time Distribution of Markov Chains

In order to calculate the option prices with this approach, the joint density function of

the occupation time needs to be specified.

Several researchers studied the theoretical joint density function for a two-state Markov

chain in literature. Darroch and Morris [11] stated the conditional moment generating

function of occupation time. Pedler [53] explicitly derived the density function of the

occupation time in a certain state for two state continuous time Markov chain pro-

cess. Hsia [39] obtained the joint probability density function of the occupation time

of a special three-state Markov process in which the qij 6= 0 for i 6= j but qii = 0,

i = 1, 2, 3. Good [30] derived and expression for the interior solution for the joint

density function of occupation time of Markov chain when all the states have been

visited at least once. Falzon [22] extended the Good [30]’s solution by also consid-

ering the boundary solutions. For the general case, Falzon [22, 21] and Pearce et

al. [52] obtained the conditional joint probability density of the occupation time (ac-

cumulated sojourn time) of the three-state Markov chain in which the initial state of

the process is known. Falzon [22] solved the Kolmogorov equations of the solution

of the probability of the accumulated sojourn time in a three-state Markov chain. The

solution was obtained in infinite sums of convolutions of modified Bessel functions.
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Then Falzon [22] generalized the formula, first to four-states and finally to N states

by using the relations between spanning trees and the probability densities.

1.2 Motivation and Contribution of the Thesis

The main motivation for this thesis is to obtain analytical pricing and hedging formu-

lae for financial and actuarial contracts under the three-state regime-switching frame-

work. The intuition behind the regime switching framework is that it allows the model

parameters to switch according to the regimes of the market and/or economy. In pric-

ing problems, it provides a more general environment in which the model becomes

a weighted standard Black-Scholes formula in which the weights are determined ac-

cording to the time spent on each state during the maturity of the contract. It also

recovers the standard Black-Scholes formula when the number of states is one.

For the two-state model, this behavior of the regime-switching model is illustrated

in Figure 1.1 2. It is observed that the regime-switching option prices converge for

larger Falzon’s formula is given for the case in which the Markov process starts from

state 1. It is also possible to use the formula proposed by Falzon for cases in which

the Markov chain starts from state 2, or state 3 based on the transition rate matrix

provided in the remark below.

Remark. Let the initial state be l ∈ {1, 2, 3}. In the following without loss of gen-

erality we define a permutation of the states and corresponding transition rate matrix

M so that

Q = PMP T

is the transition rate matrix Q = (qij) with i, j ∈ S.

T values and are all between those given by the two classical Black-Scholes models.

For the market which has a regime-switching behavior, using the standard Black-

Scholes formula might be too restrictive.

Naik [50] , Guo [32], Elliott et al. [12], and McKinlay [48] provided a closed-form
2 The parameters of this example are as follows: initial stock price S0 = 36, strike price K = 40, the interest

rates (0.1, 0.3), and the volatilities are (0.25, 0.35) for the two-state. The transition rate probabilities are qji = 1
for i 6= j.
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Figure 1.1: Black-Scholes vs Regime Switching

pricing formula for European options. Naik [50], Guo [32], and McKinlay [48] also

specified the formula under different assumptions for the two-state model. Elliott et

al. [12] presented a general formula for N -state case and also characteristic function

of occupation times. The joint density of occupation times is needed to apply the

presented formula.

Our aim is to extend this framework to the three-state economy. In order to put this

method into practice, information about the joint probability distribution of occupa-

tion time of Markov chains is needed. For this reason, the distributions of occupation

times of Markov chains are investigated in the existing literature.

We investigate the joint density function of the occupation time for the three-state

Markov chain proposed by Falzon [22] and show that it can be used in the calculation

of the Markov-modulated option pricing problem. To the best of our knowledge, the

Markov-modulated option pricing formula by considering this approach has not yet

been presented in the literature under the three-state regime-switching framework.

We observe that the Falzon’s formula for three states is also reduced to a two-state

formula proposed by Pedler [53].

We also carry out numerical analysis, to show the impact of the proposed approach.

In order to verify the validity of the results, we compare our result with the results
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existing in the literature. We observe that our approach needs less computation time

in Monte Carlo approach for the two-state and three-state models.

Another advantage of the formulation is that it facilitates further analysis. By using

this formulation we also calculate the option Greeks and compare the results with the

finite-difference method results.

We extend this approach further for the valuation of barrier options and guaranteed

minimum maturity benefit contracts, since these contracts can be written in terms of

European options.

1.3 Structure of the Thesis

In Chapter 2, we provide a brief mathematical background, including related theories

regarding Markov processes. The model presented in this thesis and in the Elliot et

al. [12] is explained in detail.

The occupation time distributions are one of the key building blocks of the thesis. In

Chapter 3, therefore, the details of Pedler [53] and Falzon [22]’s respective two-state

and three-state occupation time distributions are introduced.

In Chapter 4, we describe the principal pricing formula for European options under

the assumption that the model parameters (drift, volatility, and interest rate) are gov-

erned by a Markov chain. In this chapter, we also provide the proof of the formula.

In the proposed formula, another expectation needs to be taken into account with

respect to occupation time distributions. So, we describe how the Falzon’s formula

may be broken down into four separate sections and evaluated. Using this formula

and the Leibniz rule, it is possible to calculate the Greeks: delta, gamma, rho, and

vega calculations are presented.

We demonstrate that the comparison of the numerical integration results with the

results obtained by using the FFT and Monte Carlo method. For the three-state model,

we confirm that our results with the results presented in Zeng et al. [62]. Furthermore

we calculate the option Greeks with the proposed approach and observe that they are

consistent with the finite-difference results.
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Proposed approach can be extent for some of the exotic options. Chapter 5 describes

the application of the proposed approach to barrier options. The pricing formula for

the regime-switching barrier options and corresponding Greeks are given. Numerical

examples in order to show the accuracy of the proposed method are presented.

In Chapter 6 we demonstrate that the proposed approach presented in Chapter 4 can

also be used in the valuation of Guaranteed Minimum Maturity Benefit (GMMB)

contract, since it can be written in terms of the European options. We propose for-

mulae for two different models by assuming independent filtration for the mortality

component. The first model assumes that both financial and mortality parameters

are regulated by the same underlying Markov chain. On the other hand, the second

model assumes that the parameters of the mortality model are based on a separate

second Markov chain. Numerical results for GMMB contract pricing models and

corresponding Greeks are reported in Chapter 6.

Finally, Chapter 7 concludes the study with the main findings of the thesis and a

discussion on potential future studies.
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CHAPTER 2

PRELIMINARIES

In this study, we assume that the model parameters are modulated by a finite-state

continuous-time Markov chain. The purpose of this chapter is to present the general

structure of continuous-time Markov chains and some of their useful properties. In

addition, we present the framework for the main model used in the thesis, based on

Elliot et al. [12].

2.1 Continuous Time Markov Chains

A Markov chain Xt, t ≥ 0 where Xt are random variables with values in finite or

countable state-space X is a stochastic process which satisfy the Markov property.

Definition 2.1.1 (Norris [51]). The Markov assumption states that the future val-

ues of the process is independent of its past given its present. More explicitly, a

continuous-time stochastic process taking values in the finite state space X has the

Markov property if for any j ∈ X

P(Xt = j|Xr, 0 ≤ r ≤ s) = P(Xt = j|Xs),

for all r < s < t < ∞ and r, s, t ∈ T , with T ⊆ R+ := [0,∞). If moreover it

satisfies the condition

P(Xt+s = j|Xs = i) = P(Xt = j|X0 = i) = Pij(t)

it is called time-homogeneous.

Theorem 2.1.1. The family P (t)t≥0 is a stochastic semigroup which satisfies the fol-

lowing properties:
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i) P (0) = 1,

ii) P (t) is stochastic, that is

a) P has non-negative entries, i.e., Pij ≥ 0, ∀i, j ∈ X ,

b) rows of P sum to 1, i.e.,
∑

j∈X Pij = 1, ∀i ∈ X .

iii) (Chapman-Kolmogorov equations) For all times s and t the transition proba-

bility functions are obtained from Pik and Pkj as

Pij(t+ s)
∑
k∈X

Pik(t)Pkj(s) ⇐⇒ P (t+ s) = P (t)P (s).

Definition 2.1.2. Let {Xt}t≥0 be a continuous time Markov chain with transition

probabilities P (t) = (Pij(t)). The generator or infinitesimal generator of the Markov

chain is the matrix

Q = lim
h→0

P (h)− 1

h
(2.1)

with entries as Q = (qij)i,j∈X . It has the following properties:

(i) 0 ≤ −qii =<∞ for all i,

(ii) qij ≥ 0 for all i 6= j,

(iii)
∑

j∈X qij = 0 for all i.

The quantities qij referred as instantaneous transition rates and indicates the rate at

which the process transition from state i to state j. This rate measures the average

number of transition from state i to state j. The diagonal entries −qii are the overall

rates of leaving state i.

Rearranging (2.1) gives the infinitesimal transition matrix yields

P (h) = Qh+ 1 + o(h), (2.2)

which states that

Pij = qijh+ o(h) (2.3)

Pii = 1 + qiih+ o(h). (2.4)

In order to compute Pij(t) for all t > 0 and all states i, j ∈ X one need to determine

a differential equation that Pij(t) must satisfy, and then solve the equation.
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Theorem 2.1.2. The transition probability function Pij of a continuous-time Markov

chain satisfy the system of differential equations for all pairs i, j ∈ X , and t ≥ 0

P
′

ij(t) =
∑
k∈X\j

qkjPik(t) + qjjPij(t), (2.5)

P
′

ij(t) =
∑
k∈X\i

qikPkj(t) + qiiPij(t). (2.6)

The (2.5) and (2.6) are called Kolmogorov’s forward equation and backward equa-

tion, respectively.

Theorem 2.1.3. Let Ti be the time that a homogeneous continuous time Markov chain

process spends in state i. Then we have

P(Ti > s+ t|Ti > s) = P(Ti > t)

for s, t ≥ 0. Hence Ti is exponential distributed and memoryless.

The time spent in state i before transitioning to state j for i 6= j is distributed expo-

nentially with t ∼ Exp (−qii). The pseudocode to generate a continuous time Markov

chain is given in Algorithm 1.

Algorithm 1 Algorithm for Simulating a Time-Homogeneous Continuous-Time

Markov Chain on a Discrete State Space
1: Choose an initial value for X0 = Y0 = ei for some i ∈ I . Set n = 0, T0 = 0

2: while Tn < T do

3: Draw a random variable from exponential distribution with corresponding pa-

rameter depending on the current state of the chain, An ∼ Exp (qYn, Yn
)

4: Set n = n+ 1

5: Set Tn+1 = Tn + An

6: Simulate the new state Yn+1

7: end while

Example 2.1.1. An example with the transition rate matrix
−5 5 0

1 −2 1

3 1 −4
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Figure 2.1: The two realizations of a continuous-time Markov chain

is considered. For T = 10 and the initial state is X0 = 1, the two realizations (paths)

of the Markov chain are illustrated in Figure 2.1.

Henceforth, when we reference to the Markov chain, we shall assume that it is a

homogeneous first-order continuous-time Markov chain.

2.2 Model

Consider a standard probability space (Ω,F ,P) and let {Wt}t∈T denote a standard

Brownian motion on this complete probability space with respect to P. Let T de-

note the time index set [0, T ] of the model. The states of the economy follows a

continuous-time hidden Markov chain process {Xt}t∈T on (Ω,F ,P) with a finite

state-space X := (x1, x2, . . . , xN) and it takes values from the set of canonical unit

vectors {e1, e2, . . . , eN}, where ei = (0, . . . , 1, . . . , 0)> ∈ RN , where > is a transpose

of a vector. {Xt}t∈T and {Wt}t∈T are assumed to be independent.
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Then by following Elliot, Aggoun and Moore [13] the semi-martingale representation

of {Xt}t∈T is written as

Xt = X0 +

∫ t

0

QXsds+Mt (2.7)

where Q = (qij) is the generator matrix, such that
∑N

j=1 qji = 0 and qij ≥ 0 if i 6= j.

Here, {Mt}t∈T is an RN -valued martingale increment with respect to the filtration

generated by {Xt}t∈T .

The instantaneous market interest rate {rt}t∈T of the bank account is given by

rt := r(t,Xt) = 〈r,Xt〉, (2.8)

where r := (r1, r2, . . . , rN)> with ri > 0 for each i = 1, 2, . . . , N and 〈·, ·〉 denotes

the inner product in RN . Bank account dynamics are described by

dBt = rtBtdt, B0 = 1.

It is assumed that the stock appreciation rate {µt}t∈T and the volatility {σt}t∈T of

risky underlying asset S also depend on {Xt}t∈T and are described by

µt := µ(t,Xt) = 〈µ,Xt〉, σt := σ(t,Xt) = 〈σ,Xt〉, (2.9)

where µ := (µ1, µ2, . . . , µN)> and σ := (σ1, σ2, . . . , σN)>. The parameters are de-

pend on the Markov chain X with σi > 0 for each i = 1, 2, . . . , N . The dynamics

of the stock price process {St}t∈T is given by the following Markov-modulated geo-

metric Brownian motion (GBM)

dSt = µtStdt+ σtStdWt, S0 = s > 0, (2.10)

for t ∈ [0, T ]. The solution of (2.10) is

St = S0 exp

(∫ t

0

(
µu −

1

2
σ2
u

)
du+

∫ t

0

σudWu

)
. (2.11)

Let Zt denote the logarithmic return ln
(
St/S0

)
over the interval [0, t]. Hence, the

stock price dynamics can be written as

St = Su exp(Zt − Zu), (2.12)

where

Zt =

∫ t

0

(
µt −

1

2
σ2
s

)
ds+

∫ t

0

σsdWs. (2.13)
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The market is complete if and only if every contingent claim is attainable. Due to

the presence of an additional source of uncertainty related to regime-switching, the

market in Markov regime-switching model is in general incomplete. The standard

Black-Scholes perfect replication approach cannot be used in this situation. For

the fair valuation we need to determine an equivalent risk-neutral martingale mea-

sure to ensure that there are no arbitrage opportunities in the market described by

the model [35, 36, 37]. There are two commonly used approaches in the literature.

Guo [32] proposed to use Arrow-Debreu securities related to cost of switching to

complete the market. Elliot et al. [12] suggested to use of a regime-switching version

of the Esscher transform to obtain a price kernel for option pricing in an incomplete

market. We will follow the latter.

First, we need to describe the related filtrations under P:

i) FXt for filtration generated by {Xt}t∈T ,

ii) FWt for filtration generated by {Zt}t∈T ,

iii) Ft = FXt ∨ FWt .

Let θt := θ(t,Xt) be the regime-switching Esscher parameter, which depends on Xt,

and be defined by

θ(t,Xt) = 〈θ,Xt〉 =
N∑
i=1

θi〈Xt, ei〉 (2.14)

where θ := (θ1, θ2, . . . , θN)> ∈ RN .

Then, as stated by Elliot et al. [12], the regime-switching Esscher transform Qθ equiv-

alent to P on Ft is defined by

dQθ

dP

∣∣∣∣
Ft

=

exp

(∫ t
0
θsdZs

)
EP

[
exp

(∫ t
0
θsdZs

)∣∣∣∣FXt ] (2.15)

= exp

(∫ t

0

θsσsdWs −
1

2

∫ t

0

θ2
sσ

2
sds

)
, t ∈ T . (2.16)

Let {θt}t∈T be the family of risk-neutral regime-switching Esscher parameters. The

fundamental theorem of asset pricing[35, 36, 37] states that the no arbitrage principle
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is equivalent to the existence of an equivalent martingale measure under which the

discounted asset prices are martingale. The martingale condition is given by consid-

ering enlarged filtration

S0 = EQ
θ̃

[
exp(−

∫ t

0

rsds)St|Ft
]
, (2.17)

for any t ∈ T . By the martingale condition, an equivalent martingale measure Qθ̃ is

determined as

θ̃t =
rt − µt
σ2
t

, t ∈ T . (2.18)

Then, θ̃t = 〈θ̃, Xt〉, where

θ̃ =

(
r1 − µ1

σ2
1

,
r2 − µ2

σ2
2

, . . . ,
rN − µN
σ2
N

)
. (2.19)

The Radon-Nikodym derivative Qθ̃ with respect to P on Ft is given by

dQθ̃

dP

∣∣∣∣
Ft

= exp

[ ∫ t

0

(
rs − µs
σs

)
dW (s)− 1

2

∫ t

0

(
rs − µs
σs

)2

ds

]
. (2.20)

Then, the dynamics of the stock price and the logarithmic returns under Qθ̃ are as

follows:

dSt = rtStdt+ σtStdW̃t, (2.21)

dZt =

(
rt −

1

2
σ2
t

)
dt+ σtdW̃t, (2.22)

where W̃t = Wt +
∫ t

0

(
rs−µs
σs

)
ds is a standard Brownian motion with respect to the

enlarged filtration Ft under Qθ̃.

We define the path integral of r and σ2 on the interval [0, T ] by

Pt,T =

∫ T

t

r(s)ds =

∫ T

t

〈r,Xs〉ds, (2.23)

and

Vt,T =

∫ T

t

σ2(s)ds =

∫ T

t

〈σ,Xs〉2ds, (2.24)

respectively.

In order to calculate these equations we need to define the occupation time of the

Markov chain. In the next chapter, definition of the occupation time of the Markov

chain and the conditional joint density functions of the Markov chain are presented.
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CHAPTER 3

OCCUPATION TIME OF A MARKOV CHAIN

The occupation time (accumulated sojourn time) of the Markov chain plays an im-

portant role in option pricing problems when the parameters of the underlying asset

are modulated by the Markov chain. This is because we need to use the joint density

function of the occupation time of the Markov chain for the valuation of the regime

switching derivatives. The time that the Markov chain spends in a particular state is

called the occupation time. In this chapter, definition of the occupation function is

given first. In Section 3.2 Pedler’s conditional joint probability density function of

occupation times for two state Markov chain is given. Section 3.3 presents the con-

ditional joint probability density function of occupation times for three state Markov

chain stated by Falzon.

3.1 Occupation Time

Let Ji(t, T ) denote the occupation time of a homogeneous continuous-time Markov

chain during a finite time interval.

Definition 3.1.1. The occupation time of the Markov chain processX for each subset

of the state-space during a finite time interval [t, T ] is given by

Ji(t, T ) :=

∫ T

t

1{X(s)=i}ds for i ∈ {1, 2, . . . , N}.

Since Ji is the time spent by the process in state i during a finite interval of time [t, T ],
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length of time duration can be written as the summation of the occupation times

T − t =
N∑
i=1

Ji, (3.1)

for i ∈ {1, 2, . . . , N}.

3.2 Joint Density Function of Occupation Times: Two-State

Darroch and Morris [11] presented the Laplace transform of occupation times, and

Pedler [53] stated the distribution of the occupation times in a two-state continuous-

time Markov chain via inverse Laplace transform. Pedler’s result is given in the fol-

lowing theorem.

Theorem 3.2.1 (Probability density function of the two-state Markov process [53, 6]).

Let Q denote transition rate matrix of a Markov chain X , with

Q =

−q12 q12

q21 −q21


for q12, q21 ≥ 0 and the initial probability matrix be given as

π =

π1

π2

 .
For a two-state Markov-modulated model, the probability density function of the oc-

cupation time in state 1 is

f(J1, t) = e−q12J1−q21(t−J1)
{
π1δ(t− J1) + π2δ(J1)

+ [π1(q12q21J1/(t− J1))1/2 + π2(q12q21(t− J1)/J1)1/2]

× I1[2(q12q21J1(t− J1))1/2]

+ (π1q12 + π2q21)I0[2(q12q21J1(t− J1))1/2]
}
,

where δ is the Dirac delta function.

If we know the initial state of the chain, the probability density function of the occu-

pation time can be written in more specific form. The probability density function of
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the occupation time of state 1 given the process starts in state 1 is

fX0=(1,0)(J1, T ) = e−q12J1−q21(T−J1)

{
δ(T − J1) + (q12q21J1/(T − J1))1/2

× I1

[
2(q12q21J1(T − J1))1/2

]
+ q12I0

[
2(q12q21J1(T − J1))1/2

]}
,

and

Ir(z) =
∞∑
k=0

(z/2)2k+r

k!(k + 1)!
,

which is the modified Bessel function of order r.

Similarly, the probability density function of the occupation time of state 1, given the

process starts in state 2, is

fX0=(0,1)(J1, T ) = e−q12J1−q21(T−J1)

{
δ(J1) + (q12q21(T − J1)/(J1))1/2

× I1

[
2(q12q21J1(T − J1))1/2

]
+ νI0

[
2(q12q21J1(T − J1))1/2

]}
.

Proof is given by Pedler [53].

3.3 Joint Density Function of Occupation Times: Three-State

In this section we present the conditional joint density of occupation time for three-

state Markov chain. Falzon [22] set up the Kolmogorov equations for the evolution of

the probability density of the states by considering the final state of the process. The

set up of the problem and consequences are presented in the sequel.

Consider a three-state continuous-time finite state Markov process with state-space

S = {1, 2, 3}. The transition rate matrix is given as Q = (qij) with i, j ∈ S. Let

J(t) = (J2(t), J3(t)) ∈ R2
+, where Jk(t) is a random variable representing the time

spent in state k (i.e., occupation time, accumulated sojourn time) up to time t ∈ R+.

In order to reduce the dimension let J1(t) = t− J2(t)− J3(t).

Let fi denote the probability density of J(t) at time t and final state i. Evolution of
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the probability density is given by the following system of Kolmogorov equations:

∂f1

∂t
(J , t) =

3∑
i=1

qi1fi(J , t), (3.2)

∂fk
∂t

(J , t) =
3∑
i=1

qikfi(J , t)−
∂fk
∂Jk

(J , t), k ∈ {2, 3}. (3.3)

It is assumed that the process starts in state 1 so that J2 = J3 = 0 at t = 0. The initial

probability density is given by fk(J , 0) = δk0δ(J), where δij is the Kronecker delta

defined by

δij =

1 if i = j,

0 otherwise,

and δ is the Dirac distribution at J = (0, 0).

Let H denotes the Heaviside unit step function. Then, let H(J) = H(J2, J3) defined

by

H(J) =
N=3∏
i=2

H(Ji) =

0 if ∃ Ji < 0 ∈ J for i = 2, 3

1 otherwise.
(3.4)

Falzon [20] solved the given Kolmogorov equations for the system via transform

methods which yields the following theorem.

Theorem 3.3.1 ([22]). The joint probability density of the accumulated sojourn time

in a three-state Markov chain is given by

f(J , t) = f1(J , t) + f2(J , t) + f3(J , t)

= e−ε(J ,t)[α1(J , t) + α2(J , t) + α3(J , t)] (3.5)

where Ji is the time spent in state i ∈ {1, 2, 3}, J1 is defined to be t − J2 − J3 and

ε(J , t) = −
∑3

k=1 qkkJk. Here, α1, α2 and α3 can be expressed as

α1(J , t) = δ(J) + q12q21H(J2)δ(J3)F0,2(J2, 0, t)

+ q13q31δ(J2)H(J3)F0,2(0, J3, t)

+H(J)γ(J)[µ1F1,4(J , t) + µ2F1,3(J , t) + µ3F1,2(J , t)]

+H(J)[2µ1F0,3(J , t) + µ2F0,2(J , t)],
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α2(J , t) = q12H(J2)δ(J3)F0,1(J2, 0, t)

+H(J)q12J2[µ1F1,3(J , t) + µ2F1,2(J , t) + µ3F1,1(J , t)]

+H(J)[q13q31q21F0,2(J , t) + q13q32F0,1(J , t)],

α3(J , t) = q13δ(J2)H(J3)F0,1(0, J3, t)

+H(J)q13J3[µ1F1,3(J , t) + µ2F1,2(J , t) + µ3F1,1(J , t)]

+H(J)[q12q21q13F0,2(J , t) + q12q23F0,1(J , t)],

where the function Fm,n is given by

Fm,n(J , t) = H(J1)
∞∑
p=0

∞∑
i=0

∞∑
j=0

∞∑
k=0

γ(J)pJp+2i+j+n−1
1 (µ1J2J3)i(µ2J2J3)j(µ3J2J3)k

p!(p+ 2i+ j + n− 1)!(i+ j + k +m)!i!j!k!
,

(3.6)

The proof can be found in Falzon [22]. The auxiliary functions used in the formulae

are as follows:

µ1 = q12q21q13q31, (3.7)

µ2 = q13q32q21 + q12q23q31, (3.8)

µ3 = q23q32, (3.9)

γ(J) = q12q21J2 + q13q31J3. (3.10)

Remark. The functions Fm,n can be written as

Fm,n(J , t) = H(J1)
∞∑
p=0

∞∑
i=0

∞∑
j=0

∞∑
k=0

γ(J)pJp+2i+j+n−1
1 (µ1J2J3)i(µ2J2J3)j(µ3J2J3)k

p!(p+ 2i+ j + n− 1)!(i+ j + k +m)!i!j!k!

= H(J1)Jn−1
1

∞∑
i=0

∞∑
j=0

(µ1J
2
1J2J3)i(µ2J1J2J3)j

i!j!

×
∞∑
k=0

(µ3J2J3)

k!(i+ j +m+ k)!

∞∑
p=0

(γ(J)J1)p

p!(p+ 2i+ j + n− 1)!

= H(J1)Jn−1
1

∞∑
i=0

∞∑
j=0

(µ1J
2
1J2J3)i(µ2J1J2J3)j

i!j!
(3.11)

×Gi+j+m(µ3J2J3)G2i+j+n−1(γ(J)J1).

where

Gn(y) =
∞∑
k=0

yk

(n+ k)!k!
. (3.12)
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Noting that
√
yI1(2

√
y) = y

∞∑
k=0

yk

k!(k + 1)!
, (3.13)

it is deduced that

Gn(y) = y−n/2In(2
√
y). (3.14)

Hence, Fm,n can be calculated by using Bessel functions.

Remark. Note that when J2 = 0 we may rewrite (3.11) as

Fm,n(0, J3, t) = H(J1)
∑
d

Jn−1
1 (q31q13J1J3)d

m!d!(d+ n− 1)!

= H(J1)
Jn−1

1

m!
Gn−1(q31q13J1J3).

Similarly, when J3 = 0 we have

Fm,n(0, J3, t) = H(J1)
Jn−1

1

m!
Gn−1(q21q12J1J2).

The joint density function of the occupation time for a two-state Markov chain is a

special case of the three-state Markov chain and it is given in the following lemma.

Lemma 3.3.1. The accumulated sojourn time for a two-state Markov process is

w(J2, t) = e−q12tδ(J2) + q12e
−q12(t−J2)−q21J2F0,1(J2, 0, t) (3.15)

+ q12q21e
−q12(t−J2)−q12J2F0,2(J2, 0, t), (3.16)

where

F0,n(J2, 0, t) =

(√
(t− J2)

(q12q21J2)

)n−1

In−1(2
√

(q12q21J2(t− J2))), (3.17)

with Ir being the modified Bessel function of order r.

Proof. Let the transition rates to and from state 3 equal zero. Since q13 = q31 = q23 =

q32 = 0 we get q33 = 0, µ1 = µ2 = µ3 = 0 and γ(J) = q12q21y2. Then

Q =


q11 q12 q13

q21 q22 q23

q31 q32 q33

 =


q11 q12 0

q21 q22 0

0 0 0

 (3.18)
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Plugging in these values into the expression for f(J , t) in (3.5) yields

f(J , t) = e(q11J1+q22J2+q33J3)
[
δ(J) + q12q21H(J2)δ(J3)F0,2(J2, 0, t)

+ q13q31δ(J2)H(J3)F0,2(0, J3, t)

+H(J)γ(J)[µ1F1,4(J , t) + µ2F1,3(J , t) + µ3F1,2(J , t)]

+H(J)[2µ1F0,3(J , t) + µ2F0,2(J , t)]

+ q12H(J2)δ(J3)F0,1(J2, 0, t)

+H(J)q12J2[µ1F1,3(J , t) + µ2F1,2(J , t) + µ3F1,1(J , t)]

+H(J)[q13q31q21F0,2(J , t) + q13q32F0,1(J , t)]

+ q13δ(J2)H(J3)F0,1(0, J3, t)

+H(J)q13J2[µ1F1,3(J , t) + µ2F1,2(J , t) + µ3F1,1(J , t)]

+H(J)[q12q21q13F0,2(J , t) + q12q23F0,1(J , t)]
]

= e(q11J1+q22J2)
[
δ(J) + q12F0,1(J2, 0, t) + q12q21F0,2(J2, 0, t)

]
.

Since q11 = −q12 and q22 = −q21, it can be written as

w(J2, t) = f(J2, 0, t) = e−q12tδ(J2) + q12e
−q12(t−J2)−q21J2F0,1(J2, 0, t)

+ q12q21e
−q12(t−J2)−q21J2F0,2(J2, 0, t),

and hence, the proof is completed.

It has been observed that the joint density function of the occupation time of the

three-state Markov process proposed by Falzon [22] can be reduced to the two-state

formula. The reduced formula is consistent with the joint density function of the

occupation time of the two-state Markov process formula proposed by Pedler [53].

This indicates that the Falzon’s three-state formula can be considered as the general

formula for the number of states N ≤ 3.

3.3.1 Probabilistic Interpretation of the Formula

In order to make the formula more straightforward and provide a probabilistic in-

terpretation, Falzon [22] reformulated the solution for the three-state accumulated

sojourn time distribution using algebraic manipulation. A new expression for the

formula in Theorem 3.3.1 may be interpreted as follows.
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Corollary 3.3.1 ([22]). Recall that the joint probability density of the accumulated

sojourn time in a three-state Markov chain is given by

f(J , t) = f1(J , t) + f2(J , t) + f3(J , t)

= e−ε(J ,t)[α1(J , t) + α2(J , t) + α3(J , t)],

where Ji is the time spent in state i = {1, 2, 3}, J1 is defined to be t − J2 − J3

and ε(J , t) = −
∑3

k=1 qkkJk. Here, α1, α2 and α3 can be expressed in terms of the

component functions F0,n and new defined function Lm,n:

α1(J , t) = {δ(J) + q12q21δ(J3)F0,2(J2, 0, t) + q13q31δ(J2)F0,2(0, J3, t)

+H(J)[q12q13L1,1(J , t) + q12q23L0,1(J , t) + q13q32L1,0(J , t)]} (3.19)

α2(J , t) = {q12δ(J3)F0,1(J2, 0, t)

+H(J)[q12q13L0,1(J , t) + q12q23L−1,1(J , t) + q13q32L0,0(J , t)]}
(3.20)

α3(J , t) = {q13δ(J2)F0,1(0, J3, t)

+H(J)[q12q13L1,0(J , t) + q12q23L0,0(J , t) + q13q32L1,−1(J , t)]}
(3.21)

where

Lm,n(J , t) = H(J1)
∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

ya+b−c+m
10 yd+c−b+n

20 ya01y
b
21y

c
12y

d
02

a!b!c!d!(a+ b− c+m)!(d+ c− b+ n)!

(3.22)

= H(J1)
∞∑
b=0

∞∑
c=0

yb−c+m10 yc−b+n20 yb21y
c
12

b!c!

×
∞∑
a=0

∞∑
d=0

(y10y01)a(y20y02)d

a!d!(a+ b− c+m)!(d+ c− b+ n)!

= H(J1)
∞∑
b=0

∞∑
c=0

yb−c+m10 yc−b+n20 yb21y
c
12

b!c!
Gm+b−c(y10y01)Gn−b+c(y20y02)

(3.23)

and the terms in the numerator are:

y10 = q21J1, y20 = q31J1, y01 = q12J2,

y21 = q32J2, y12 = q23J3, y02 = q13J3.
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In compact form the formula can be written as

f(J , t) = e−ε(J ,t){δ(J) + q12δ(J3)[q21F0,2(J2, 0, t) + F0,1(J2, 0, t)]

+ q13δ(J2)[q31F0,2(0, J3, t) + F0,1(0, J3, t)]

+H(J) (q12q13[L1,1(J , t) + L0,1(J , t) + L1,0(J , t)]

+ q12q23[L0,1(J , t) + L−1,1(J , t) + L0,0(J , t)]

+q13q32[L1,0(J , t) + L0,0(J , t) + L1,−1(J , t)])}. (3.24)

We may, further define Lm(Ji, t) in which one of the Ji is equal to zero, as follows

Lm(Ji, t) = H(J1)
∑
a

ya+m
(i−1)0y

a
0(i−1)

(a+m)!a!
for i ∈ {2, 3}.

Hence,

F0,m+1(J2, 0, t) = q−m21 Lm(J2, t),

and

F0,m+1(0, J3, t) = q−m31 Lm(J3, t).

Therefore, the two-state formula can be rewritten by using these new expressions as

f(J , t) = eε(J ,t)[δ(J2)︸ ︷︷ ︸
A

+H(J){q12L1(J2, t)︸ ︷︷ ︸
B

+ q12L0(J2, t)︸ ︷︷ ︸
C

}]. (3.25)

The first term, A, indicates the boundary solution and arises from the cases when the

Markov chain never leaves the initial state. The second term, B reflects events that

have the same number of transitions from state 1 to state 2 as there are from state

2 to state 1, but with one less sojourn in state 2. Similarly, the third term comes

from situations in which each state has an equal number of total sojourns and an extra

transition into state 2, the final state.

Let f(i)(J , t) denotes the probability density when the final state of the process is i.

Then the joint probability density can be written in terms of the component densities

f(1)(J , t), f(2)(J , t), and f(3)(J , t) as follows:

f(1)(J , t) = e−ε(J ,t){δ(J) + q12δ(J3)L1(J2, t) + q13δ(J2)L1(J2, t)

+H(J)[q12q13L1,1(J , t) + q12q23L0,1(J , t) + q13q32L1,0(J , t)]},

f(2)(J , t) = e−ε(J ,t){q12δ(J3)L0(J2, t)

+H(J)[q12q13L0,1(J , t) + q12q23L−1,1(J , t) + q13q32L0,0(J , t)]},
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Figure 3.1: Spanning trees of a 3-node digraph rooted from node 1 [22]

f(3)(J , t) = e−ε(J ,t){q13δ(J2)L0(J3, t)

+H(J)[q12q13L1,0(J , t) + q12q23L0,0(J , t) + q13q32L1,−1(J , t)]}.

In these probability density functions, the terms Lm,n can be rewritten as

Lm,n(J , t) = H(J1)
∑
a

∑
b

∑
c

∑
d

ya+b−c+m
10 yd+c−b+n

20 ya01y
b
21y

c
12y

d
02

a!b!c!d!(a+ b− c+m)!(d+ c− b+ n)!

(3.26)

= ym10y
n
20H(J1)

∑
a

∑
b

∑
c

∑
d

(y01y10)a(y02y
d
20)
(
y12y20

y10

)c (
y21y10

y20

)b
a!b!c!d!(a+ b− c+m)!(d+ c− b+ n)!

Each of the components in the summands’ numerators may be interpreted as a two-

step transition event. The first two elements represent a route that starts in state 1 and

ends in state 1. The third component relates to transactions between state 2 and state

1 with a stopover in state 3 in between. These occurrences replace an equal number

of state 2 to state 1 transitions, according to the third factor’s denominator. Similar

interpretations apply to the fourth component. For example, L0,0 counts all of the

potential transition cycles with state 1 serving as both the starting and ending states.

The subscripts in Lm,n gives information about the transitions;m additional transition

from state 2 to state 1 and n additional transition from state 3 to state 1, as well as

m+n full sojourns in state 1. Falzon [22] also gave an explanation about the relation

with each qkj a directed line in a three-node spanning tree. The coefficients of the

Lm,n in each densityfi show the sequence of the edges in each directed tree that starts

at node 1. In Figure 3.1, three such directed trees are illustrated.

Also, subscripts in L is determined by the coefficients to assure the final state is i, for
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example, the first interior term in f1 is q12q13L1,1, which is related to the first tree in

the Figure 3.1. In order to make state 1 the final state further transitions are required

as follows:

2 1 13

Therefore we require m = 1 and n = 1 for this to occur. Similarly, it is required to

have m = 0, n = 1 for the second term and m = 1, n = 0 for the third term, in order

to make state 1 the final state. Falzon [22] using the relations between spanning trees

and the probability densities first generalize formula for four-state case and then N-

state case. Further information about the generalization to N-state case can be found

in Falzon [22].

To demonstrate the behavior of the distribution, we consider a three-state Markov

chain with the transition rate matrix

Q =


−2 1 1

1 −2 1

1 1 −2

 .
The behavior of the conditional joint distribution of the three-state Markov chain for

different values of T are illustrated in the Figure 3.2, Figure 3.3, and Figure 3.4.

(a) T = 0.5 (b) T = 1

Figure 3.2: Conditional joint distribution of occupation times

Remark. Falzon [22] stated that they used appropriate finite sums to approximate

the infinite summing in order to put the formulas Fm,n and Lm,n into practice. The
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(a) T = 5 (b) T = 10

Figure 3.3: Conditional joint distribution of occupation times

(a) T = 15 (b) T = 20

Figure 3.4: Conditional joint distribution of occupation times

stopping condition used was that the difference between two successive partial sums

must be smaller than the selected precision. In the majority of instances, they found

that the stopping condition was satisfied before less than term terms of each sum

were evaluated with 15 decimal digit precision. In Example 4.1.4, we have included

an application result that supports this claim.

Falzon’s formula is given for the case in which the Markov process starts from state

1. It is also possible to use the formula proposed by Falzon for cases in which the

Markov chain starts from state 2, or state 3 based on the transition rate matrix provided

in the remark below.

Remark. Let the initial state be l ∈ {1, 2, 3}. In the following without loss of gen-

erality we define a permutation of the states and corresponding transition rate matrix
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M so that

Q = PMP T

is the transition rate matrix Q = (qij) with i, j ∈ S.
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CHAPTER 4

EUROPEAN OPTION PRICING UNDER

REGIME-SWITCHING FRAMEWORK

In this chapter we formulate the option pricing formula under regime-switching model

when the underlying Markov chain has three states. The model dynamics are intro-

duced in Section 2.2. We first state the general N -state from introduced by Elliot

et al. [12], then in Section 4.1.1 formula for the three-state Markov chain is pre-

sented with its proof. Since the Monte Carlo method is widely used as a true-value

benchmark for assessing other numerical algorithms we present the Monte Carlo al-

gorithm for the regime-switching European option pricing problem. Fast Fourier

transform (FFT) is an another conventional method for the option pricing problem un-

der regime-switching context. We briefly summarize these methods in Section 4.1.2

and Section 4.1.3, respectively. Then we outline numerical examples that are per-

formed to investigate the assessment of the proposed method with other methods in

Section 4.1.4. We also present an example in Section 4.1.5 demonstrating that the

infinite sum given in the main pricing formula can be stated by the finite sum of

acceptable value.

The Greeks are important tools in financial risk management. Each Greek measures

the sensitivity of the value of derivatives or a portfolio to a small change in a given un-

derlying parameter. Hence, we also investigate the computation of the Greeks under

the regime-switching framework by using proposed formula given in Section 4.1.1.

European call option Greeks are obtained by taking derivatives with respect to the

corresponding parameter and utilizing double Leibniz rule. We compare the results

which are obtained by the finite difference method with the results of the analytical
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solution.

4.1 Implementation of Regime-Switching Option Pricing

The general form of the N -state regime switching formula is stated without proof by

Elliot et al. [9, 8, 12] as follows:

C(t, T, St) :=

∫ T

t

· · ·
∫ T

t

C(t, T, St, Pt,T , Vt,T )fXt(J1, J2, . . . , JN)dJ1 . . . dJN ,

(4.1)

where

C(t, T, St, Pt,T , Vt,T ) = StN(d1,t,T )−K exp(−Pt,T )N(d2,t,T ), (4.2)

and

d1,t,T = (Vt,T )−1/2

(
ln
St
K

+ Pt,T +
1

2
Vt,T

)
,

d2,t,T = d1,t,T − (Vt,T )1/2.

In the following section, by using the relation given in (3.1), we present the formula

under three-state can be obtained as a 2-fold integral. When the market interest rate

of the bank account is a constant McKinlay [48] presented the formula for two-state

and three-state cases. In the following subsection, we extend the proof presented by

McKinlay [48] for the model in which all parameters are governed by the Markov

chain and the number of state is three.

4.1.1 Formula for the Three-State Model

In the sequel, we use fX(t)(J2, J3) instead of f(J2, J3, T ) for the conditional joint

density function of the occupation times when the state of the Markov process at time

t is given.

Theorem 4.1.1. Let the parameters of the underlying asset and the market interest

rate depend on the underlying three-state continuous time Markov chain. Then, the

European call option price at time t with a strike price K with maturity T is given by

C(S(t), t, T ) =

∫ T−t

0

∫ T−t−J3

0

CBS(S(t), K, p̄, T − t, v̄
)
fX(t)(J2, J3)dJ2dJ3 (4.3)
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where 0 ≤ J2 < T − t, 0 ≤ J3 < T − t, p̄ =
pX(t)(J2,J3)

T−t , v̄ =
√

vX(t)(J2,J3)

T−t ,

and CBS(S(t), K, r, T − t, σ) is the Black-Scholes formula for the call option and

fX(t)(J2, J3) is the joint density of the occupation times of state two and state three

during the time interval [t, T ] conditional on X(t).

Proof. The price of a European type option with payoff g(S(T )) at maturity is given

by

C(t) = EQ
[

exp

(
−
∫ T

t

rsds

)
g(S(T ))

∣∣∣Ft] (4.4)

Using double expectation law, we can write

EQ
[

exp

(
−
∫ T

t

rsds

)
g(S(T ))

∣∣∣Ft]
= EQ

[
EQ
[

exp

(
−
∫ T

t

rsds

)
g(S(T ))

∣∣∣FXt ∨ FWt ]∣∣∣∣Ft]. (4.5)

Then, the inner integral can be written as

EQ
[

exp

(
−
∫ T

t

rsds

)
g(S(T ))

∣∣∣FXt ∨ FWt ]
= EQ

[
exp

(
−
∫ T

0

rsds

)
× g
(
S0 exp

{∫ T

0

rsds−
1

2

∫ T

0

σ2
sds+

∫ T

0

σsdW̃ (s)

})∣∣∣FXt ∨ FWt ]
= EQ

[
exp

(
−
∫ T

t

rsds

)
× g
(
S(t) exp

{∫ T

t

rsds−
1

2

∫ T

t

σ2
sds+

∫ T

t

σsdW̃ (s)

})∣∣∣FXt ∨ FWt ]
= EQ

[
exp(Pt,T )g

(
S(t) exp

{
Pt,T−

1

2
Vt,T+

√
Vt,Tx

})∣∣∣FXt ∨FWt ]
=

∫
R

exp(Pt,T )g

(
S(t) exp

{
Pt,T−

1

2
Vt,T+

√
Vt,Tx

})
φ(x)dx,

where φ(x) stands for the probability density of the standard normal distribution (with

zero mean and unit variance). Hence, (4.5) can be written as

EQ
[

exp

(
−
∫ T

t

rsds

)
g(S(T ))

∣∣∣Ft]
= EQ

[ ∫
R

exp(Pt,T )g

(
S(t) exp

{
Pt,T −

1

2
Vt,T +

√
Vt,Tx

})
φ(x)dx

∣∣∣Ft]. (4.6)
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Since we consider the underlying Markov chain has three state, let fX(t)(J2, J3) be the

conditional joint density of the occupation time of the states during the time interval

[t, T ], given X(t) = 1, and for 0 ≤ J2 < T − t, 0 ≤ J3 < T − t define

vX(t)(J2, J3) = σ2
1(T − t− J2 − J3) + σ2

2(J2) + σ2
3(J3), (4.7)

and

pX(t)(J2, J3) = r1(T − t− J2 − J3) + r2(J2) + r3(J3). (4.8)

Note that Vt,T = vX(t)(J2, J3) and Pt,T = pX(t)(J2, J3) , where J2 and J3 are the total

time spent by the Markov chain process X at state 2 and state 3, respectively, during

the time interval [t, T ] where X(t) = 1. We may therefore rewrite (4.6) as

EQ
[

exp

(
−
∫ T

t

rsds

)
g(S(T ))

∣∣∣Ft]
= EQ

[ ∫
R

exp(pX(t)(J2, J3))g

(
S(t) exp

{
pX(t)(J2, J3)− 1

2
vX(t)(J2, J3)

+
√
vX(t)(J2, J3)x

})
×φ(x)dx

∣∣∣Ft]
=

∫ T−t

0

∫ T−t−J3

0

∫
R

exp(pX(t)(J2, J3))g

(
S(t) exp

{
pX(t)(J2, J3)−1

2
vX(t)(J2, J3)

+
√
vX(t)(J2, J3)x

})
φ(x)fX(t)(J2, J3)dxdJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

[
exp(pX(t)(J2, J3))

×
∫
R

(
S(t) exp

{
pX(t)(J2, J3)−1

2
vX(t)(J2, J3)+

√
vX(t)(J2, J3)x

}
−K

)+

φ(x)dx

]
×fX(t)(J2, J3)dJ2.dJ3

We now consider the inner integral∫
R

(
S(t) exp

{
pX(t)(J2, J3)− 1

2
vX(t)(J2, J3) +

√
vX(t)(J2, J3)x

}
−K

)+

φ(x)dx

=

∫
R
1{St exp[pX(t)(J2,J3)− 1

2
vX(t)(J2,J3)+

√
vX(t)(J2,J3)x]>K}

×S(t) exp

{
pX(t)(J2, J3)−1

2
vX(t)(J2, J3)+

√
vX(t)(J2, J3)x

}
φ(x)dx

−
∫
R
1{S(t) exp[pX(t)(J2,J3)− 1

2
vX(t)(J2,J3)+

√
vX(t)(J2,J3)x]>K}Kφ(x)dx.

(4.9)
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We have:

S(t) exp

{
pX(t)(J2, J3)− 1

2
vX(t)(J2, J3) +

√
vX(t)(J2, J3)x

}
> K

⇐⇒ pX(t)(J2, J3)− 1

2
vX(t)(J2, J3) +

√
vX(t)(J2, J3)x > ln

(
K

S(t)

)
⇐⇒ x >

ln(K/S(t))− pX(t)(J2, J3) + vX(t)(J2, J3)/2√
vX(t)(J2, J3)

.

Define h := (ln(K/S(t)) − pX(t)(J2, J3) + vX(t)(J2, J3)/2)/
√
vX(t)(J2, J3), then

(4.9) becomes∫
R

(
S(t) exp

{
pX(t)(J2, J3)− 1

2
vX(t)(J2, J3) +

√
vX(t)(J2, J3)x

}
−K

)+

φ(x)dx

=

∫
R
1{x>−h}S(t) exp

{
pX(t)(J2, J3)− 1

2
vX(t)(J2, J3) +

√
vX(t)(J2, J3)x

}
φ(x)dx

−
∫
R
1{x>−h}Kφ(x)dx. (4.10)

The first integral of (4.10) can be calculated as∫
R
1{x>−h}S(t) exp

{
pX(t)(J2, J3)− 1

2
vX(t)(J2, J3) +

√
vX(t)(J2, J3)x

}
φ(x)dx

(4.11)

=S(t)epX(t)(J2,J3)−vX(t)(J2,J3)/2

∫
R
1{x>−h}e

√
vX(t)(J2,J3)xφ(x)dx

=S(t)epX(t)(J2,J3)−vX(t)(J2,J3)/2 1√
2π

∫ ∞
−h

e
√
vX(t)(J2,J3)x−x2/2dx

=S(t)epX(t)(J2,J3)−vX(t)(J2,J3)/2 1√
2π

∫ ∞
−h

e−
(x−
√

vX(t)(J2,J3))2

2
+
vX(t)(J2,J3)

2 dx

=S(t)epX(t)(J2,J3) 1√
2π

∫ ∞
−h

e−
(x−
√

vX(t)(J2,J3))2

2 dx

=S(t)epX(t)(J2,J3) 1√
2π

∫ ∞
−h−
√
vX(t)(J2,J3)

e−y
2/2dy

(
where y = x−

√
vX(t)(J2, J3)

)
=S(t)epX(t)(J2,J3) 1√

2π

∫ h+
√
vX(t)(J2,J3)

−∞
e−y

2/2dy

=S(t)epX(t)(J2,J3)Φ
(
h+

√
vX(t)(J2, J3)

)
=S(t)epX(t)(J2,J3)Φ(d1),

where Φ is the standard normal cumulative distribution function and d1 = h +√
vX(t)(J2, J3).
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Now, consider the second integral on the right-hand-side of (4.10), which can be

calculated as ∫
R
1x>−hKφ(x)dx =

1√
2π

∫ ∞
−h

Ke−x
2/2dx

=
K√
2π

∫ h

−∞
e−x

2/2dx

= KΦ(d1 −
√
vX(t)(J2, J3)).

Therefore, inserting these into (4.4) we obtain the European call option price

C(t) =

∫ T−t

0

∫ T−t−J3

0

exp(−pX(t)(J2, J3))
[
S(t) exp(pX(t)(J2, J3))Φ(d1)

−KΦ(d1 −
√
vX(t)(J2, J3))

]
fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

[
S(t)Φ(d1)−K exp(−pX(t)(J2, J3))Φ(d1 −

√
vX(t)(J2, J3))

]
× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

CBS

(
S(t), K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t

)
× fX(t)(J2, J3)dJ2dJ3, (4.12)

whereCBS is the standard Black-Scholes formula with the corresponding parameters.

This completes the proof.

Remark. Similarly, it can be showed that the put option prices can be expressed as

P (S(t), t, T ) =

∫ T−t

0

∫ T−t−J3

0

P BS(S(t), K, p̄, T − t, v̄
)
fX(t)(J2, J3)dJ2dJ3,

where P BS is the standard Black-Scholes put option formula. Regime-switching put

option formula can also be obtained by regime-switching version of the put-call parity

as follows

P (S(t), t, T ) + S(t) = C(S(t), t, T )

+

∫ T−t

0

∫ T−t−J3

0

K exp(−pX(t)(J2, J3))fX(t)(J2, J3)dJ2dJ3

P (S(t), t, T ) = C(S(t), t, T )− S(t)

+

∫ T−t

0

∫ T−t−J3

0

K exp(−pX(t)(J2, J3))fX(t)(J2, J3)dJ2dJ3.
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We examine the Falzon’s formula (for the conditional joint distribution of the accu-

mulated sojourn time for the Markov chain) in four parts for better understanding. It

is assumed that the initial state is known to be state 1. Recall the joint probability

density of the accumulated sojourn time in a three-state Markov chain is given by

f(J , t) = e(q11J1+q22J2+q33J3)
[
δ(J) + q12q21H(J2)δ(J3)F0,2(J2, 0, t)

+ q13q31δ(J2)H(J3)F0,2(0, J3, t)

+H(J)γ(J)[µ1F1,4(J , t) + µ2F1,3(J , t) + µ3F1,2(J , t)]

+H(J)[2µ1F0,3(J , t) + µ2F0,2(J , t)]

+ q12H(J2)δ(J3)F0,1(J2, 0, t)

+H(J)q12J2[µ1F1,3(J , t) + µ2F1,2(J , t) + µ3F1,1(J , t)]

+H(J)[q13q31q21F0,2(J , t) + q13q32F0,1(J , t)]

+ q13δ(J2)H(J3)F0,1(0, J3, t)

+H(J)q13J2[µ1F1,3(J , t) + µ2F1,2(J , t) + µ3F1,1(J , t)]

+H(J)[q12q21q13F0,2(J , t) + q12q23F0,1(J , t)]
]
,

where J(t) = (J2(t), J3(t)) ∈ R2
+ and H(J) denote the Heaviside unit step function.

H(J) given in (3.4) denotes H(J2)H(J3) which is equal to 0 for either J2 ≤ 0 or

J3 ≤ 0 and 1 when J2 > 0 and J3 > 0.

The formula includes four cases. The breakdown of the formula according to all

possible cases is as follows. Note that since it is assumed that the initial state is 1, i.e.,

the process starts from state 1, this formula includes all cases in which J1 > 0. In the

sequel, we use the notation fkX(0)=1(J2, J3) for k ∈ {1, 2, 3, 4} where k represents the

case number.

case 1) J1 > 0, J2 = 0, J3 = 0

f 1
X(0)=1(J2, J3) = f(J , t) = e(q11J1+q22J2+q33J3)(δ(J)) (4.13)

This is the scenario in which the Markov chain does not change its state; the

Markov chain remains in its initial state. We can utilize the conventional Black-

Scholes formula with the initial state parameters in this scenario. Figure 4.1

depicts a realization of a Markov chain for this scenario.
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1

2

3

Time

States

T
Figure 4.1: Realization of Case 1

case 2) J1 > 0, J2 > 0, J3 = 0

f 2
X(0)=1(J2, J3) = f(J , t) = e(q11J1+q22J2+qq33J3)[q12q21H(J2)δ(J3)F0,2(J2, 0, t)

+ q12H(J2)δ(J3)F0,1(J2, 0, t)] (4.14)

This part of the formula considers cases where the Markov chain spends time

in state 1 and state 2 but never goes into state 3. Figure 4.2 demonstrates how a

Markov chain behave in this case.

1

2

3

Time

States

T
Figure 4.2: Realization of Case 2
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case 3) J1 > 0, J2 > 0, J3 > 0

f 3
X(0)=1(J2, J3) = f(J , t)

= e(q11J1+q22J2+q33J3)
[
H(J)γ(J)[µ1F1,4(J , t) + µ2F1,3(J , t)

+ µ3F1,2(J , t)]H(J)[2µ1F0,3(J , t) + µ2F0,2(J , t)

+H(J)q12J2[µ1F1,3(J , t) + µ2F1,2(J , t) + µ3F1,1(J , t)]

+H(J)[q13q31q21F0,2(J , t) + q13q32F0,1(J , t)]

+H(J)q13y3[µ1F1,3(J , t) + µ2F1,2(J , t) + µ3F1,1(J , t)]

+H(J)[q12q21q13F0,2(J , t) + q12q23F0,1(J , t)]
]

(4.15)

This part of the formula deals with the case that all states visited at least once,

and such a chain is illustrated in Figure 4.3.

1

2

3

Time

States

T
Figure 4.3: Realization of Case 3

case 4) J1 > 0, J2 = 0, J3 > 0

f 4
X(0)=1(J2, J3) = f(J , t) = e(q11J1+q22J2+q33J3)[q13q31δ(J2)H(J3)F0,2(0, J3, t)

+ q13δ(J2)H(J3)F0,1(0, J3, t)] (4.16)

Similar to case 2, this part of the formula considers the situations where the

Markov chain spends time in state 1 and state 3 but never goes into state 2.

Figure 4.4 displays the Markov chain’s behavior in this scenario.
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1

2

3

Time

States

T
Figure 4.4: Realization of Case 4

4.1.2 Monte Carlo Simulation

The basic idea of Monte Carlo simulations is the producing the large amounts of re-

peated random samplings in order to approximate results. The Law of Large Numbers

(LLN) and the Central Limit Theorem (CLT) provide the theoretical foundation upon

which these broad class of computational algorithms are built.

In addition to their many other benefits, simulation techniques are renowned for their

applicability to complicated systems and their straightforward implementation, par-

ticularly in light of improvement of the computational power.

It is a well known fact that order of converge speed for Monte Carlo simulation is

O(1/
√
N), where N is the number of sample paths. To put it another way, increasing

the sample size one hundredfold is required to improve the estimate by one significant

digit.

In the field of finance, having the ability to quickly collect relevant data and make

pricing and risk management decisions is essential. When we compare Monte Carlo

simulation method with the other numerical methods, namely, tree methods and finite-

difference algorithms, we can observe that these methods offer substantially faster

convergence rates of order O(1/N) and O(1/N2), respectively. However using vari-

ance reduction methods (control variates, antithetic variates) or a quasi-Monte Carlo

methodology may increase efficiency of the Monte Carlo method even more.

In this study, Monte Carlo (MC) algorithm is used as benchmark values in numerical
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experiments. In order to price path independent options it is adequate to obtain the

final stock price ST at the maturity, not the whole stock price trajectory {St}t∈[0,T ].

Hence, first we need to simulate the Markov chain for each path and obtain the occu-

pation times J1, J2, and J3 for the three-state Markov chain. By using the independent

increments property of Brownian motion and properties of the sum of two indepen-

dent normally distributed random variables we can write

(lnSt|Ft) = lnS0

+

∫ J1

0

(
r1 −

1

2
σ2

1

)
ds+

∫ J1

0

σ1dW̃ (s)

+

∫ J1+J2

J1

(
r2 −

1

2
σ2

2

)
ds+

∫ J1+J2

J1

σ2dW̃ (s)

+

∫ T

J1+J2

(
r3 −

1

2
σ2

3

)
ds+

∫ T

J1+J2

σ3dW̃ (s)

= ln(S0) + r1J1 + r2J2 + r3J3 −
1

2

(
σ2

1J1 + σ2
2J2 + σ2

3J3

)
+ σ1W̃ (J1) + σ2(W̃ (J1 + J2)− W̃ (J1)) + σ3(W̃ (T )− W̃ (J1 + J2))

d
=N (µ∗, σ∗) ,

where

µ∗ = ln(S0) + r1J1 + r2J2 + r3J3 −
1

2

(
σ2

1J1 + σ2
2J2 + σ2

3J3

)
and

σ∗ = σ2
1J1 + σ22J2 + σ2

3J3.

Hence, to simulate the conditional random variable lnSt|Ft we only need one pseudo-

random sample. Pseudo-code for option pricing via Monte Carlo approach under

regime-switching framework is given in Algorithm 2.

4.1.3 Fast Fourier Transform (FFT)

There has been a great deal of use of fast Fourier transforms in the valuation of finan-

cial derivatives. The approach is applicable to problems where the characteristic func-

tions of the underlying price process can be derived analytically. Carr and Madan [10]

45



Algorithm 2 Monte Carlo Simulation for Markov Modulated Option Pricing
Require:

1: Initial stock price S0, Strike price K, Maturity time T

2: Regime-switching interest rate vector r, Regime-switching volatility vector σ

3: Initial state of the Markov chain X0 = j

4: Transition rate matrix of the Markov chain Q

5: Number of simulation paths nr,

Ensure: European call option price C

6: for k = 1, 2, . . . , nr do

7: Simulate a Markov chain on which the parameters of the simulated path will

depend on.

8: Find the states of the simulated chain.

9: Calculate the P k
(t,T ), and V k

(t,T ) given in (2.23), (2.24), respectively.

10: Simulate the Markov-modulated Stock prices Sk(T )

Sk(T ) = S0 exp
{

(P k
(0,T ) − V k

(0,T )/2) +
√
V k

(0,T )z
}

(4.17)

where z is a random number from the standard normal distribution.

11: Calculate the discounted final payoff for each simulation

DP [k]← exp{−P k
(0,T )}max(Sk(T )−K, 0)

12: end for

13: Calculate the Monte Carlo option price

C =
1

nr

nr∑
k=1

DP [k]

presented the fundamental idea of using FFT method to price European-style options

under the variance gamma model.

For the sake of completeness, we present a brief introduction of the application of fast

Fourier transform in the sequel.

The Fourier transform of a piecewise continuous real function f , which satisfies the

integrability condition ∫ ∞
−∞
|f(x)|dx <∞, (4.18)
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is defined as

f̂(u) =

∫ ∞
−∞

eiuxf(x)dx, (4.19)

for u ∈ R, where i =
√
−1. The inverse transform of f is defined by

f(x) =
1

2π

∫ ∞
−∞

e−iuxf̂(u)du. (4.20)

Fourier transform of C(k) can be obtain by assuming f(x) is the density function of

log-price (ST = S0e
ZT ). The details of the model given in Section 2.2. Under the

risk-neutral probability measure Q, European call option price at time t = 0 with

maturity T > 0 and strike price K > 0 is given by

C(K) = E
[

exp

(
−
∫ T

0

rtdt

)
(ST −K)+

]
, (4.21)

where rt = r(t,Xt) = 〈r,Xt〉 is the Markov-modulated interest rate. Define the

modified log-strike as k = ln
(
K
S0

)
to guarantee k = 0 will correspond to the at-the-

money case for all possible conditions. Then (4.21) can be written as

C(k) = S0E
[

exp

(
−
∫ T

0

rtdt

)
(eZT − ek)+

]
. (4.22)

Fourier transform of the European call option price is

Ĉ(u) =

∫ ∞
−∞

eiukC(k)dk

=

∫ ∞
−∞

eiukS0E
[

exp

(
−
∫ T

0

rtdt

)
(eZT − ek)+

]
dk

= S0

∫ ∞
−∞

eiuk
∫ ∞
−∞

exp

(
−
∫ T

0

rtdt

)
(ey − ek)+f(y)dydk

= S0

∫ ∞
−∞

exp

(
−
∫ T

0

rtdt

)
eiuk

∫ ∞
−∞

(ey − ek)+f(y)dydk

= S0

∫ ∞
−∞

exp

(
−
∫ T

0

rtdt

)
f(y)

∫ ∞
−∞

eiuk(ey − ek)+dkdy

since the order of integration does not matter due to the Fubini’s theorem. Last equa-

tion can be written in the form

Ĉ(u) = S0

∫ ∞
−∞

exp

(
−
∫ T

0

rtdt

)
f(y)

∫ y

−∞
eiuk(ey − ek)+dkdy (4.23)

since
∫∞
y
eiuk(ey − ek)dk = 0. Since the inner integral of (4.23) does not decay to 0

as k goes to −∞, Carr and Madan [10] suggested to use a damping factor parameter
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ρ to define the modified call price1 as

c(k) = eρk
C(k)

S0

, −∞ < k <∞. (4.24)

The Fourier transform of the dampened call option price can be written as

ĉ(u) =

∫ ∞
−∞

eiukc(k)dk

=

∫ ∞
−∞

eiukeρk
C(k)

S0

dk

=

∫ ∞
−∞

eiukeρkE
[

exp

(
−
∫ T

0

rtdt

)
(eZT − ek)+

]
dk

= E
[ ∫ ∞
−∞

eiukeρkE
[

exp

(
−
∫ T

0

rtdt

)
(eZT − ek)+

∣∣∣FXT ]dk]
= E

[ ∫ ∞
−∞

eiukeρk
∫ ∞
−∞

exp

(
−
∫ T

0

rtdt

)
(ey − ek)+fFXT (y)dydk

]

By using the tower property of conditional expectation 2

ĉ(u) = E
[ ∫ ∞
−∞

eiukeρkE
[

exp

(
−
∫ T

0

rtdt

)
(eZT − ek)+

∣∣∣FXT ]dk]
= E

[ ∫ ∞
−∞

eiukeρk
∫ ∞
−∞

exp

(
−
∫ T

0

rtdt

)
(ey − ek)+fFXT (y)dydk

]
= E

[ ∫ ∞
−∞

eiukeρk exp

(
−
∫ T

0

rtdt

)∫ ∞
k

(ey − ek)fFXT (y)dydk

]
= E

[ ∫ ∞
−∞

exp

(
−
∫ T

0

rtdt

)
fFXT (y)

∫ ∞
k

eiukeρk(ey − ek)dkdy
]

= E
[ ∫ ∞
−∞

exp

(
−
∫ T

0

rtdt

)
fFXT (y)

∫ ∞
k

e(iu+ρ)key − e(iuk+ρ+1)kdkdy

]
= E

[ ∫ ∞
−∞

exp

(
−
∫ T

0

rtdt

)
fFXT (y)

(
e(iu+ρ+1)y

iu+ ρ
− e(iu+ρ+1)y

iu+ ρ+ 1

)
dy

]
= E

[
exp

(
−
∫ T

0

rtdt

)(
φFT (u− i(1 + ρ))

iu+ ρ
− φFT (u− i(1 + ρ))

iu+ ρ+ 1

)]
=

E
[

exp
(
−
∫ T

0
rtdt

)
φFT (u− i(1 + ρ))

]
(iu+ ρ)(iu+ ρ+ 1)

(4.25)

where fFXT (y) is the conditional density function of y given FT and

φFT (u) = E[eiuY |FT ] =

∫ ∞
−∞

eiuyfFXT (y)dy. (4.26)

1 Positive damping parameter for call options and negative damping parameter for put options are considered.
2 IfH ⊆ G, then E[E[X|G]|H] = E[X|G], a.s.
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The option pricing formula can be written by using the inverse Fourier transform

formula as follows:

C(k) =
e−ρkS0

2π

∫ ∞
−∞

e−iukĉ(u)du (4.27)

=
e−ρkS0

π

∫ ∞
0

e−iukĉ(u)du. (4.28)

Thus, in order to calculate the option pricing formula the distribution of the log-price

is required to calculate the expectation in (4.25). Under probability measure Q,

ST = S0 exp

{∫ T

0

(
µs − 1

2
σ2
s

)
ds+

∫ T

0

σsdWs

}
. (4.29)

Define the logarithmic returns as Z(T ) = log(ST/S0) during the time horizon [0, T ].

Z(T ) is normally distributed conditional onFT with the following mean and variance

E[Z(T )|FT ] =

∫ T

0

(
µs − 1

2
σ2
s

)
ds (4.30)

and

Var[Z(T )|FT ] =

∫ T

0

σ2
sdt. (4.31)

Then the characteristic function of ZT can be written in terms of the following prede-

fined notations:

Lt,T =

∫ T

t

〈µ,Xs〉ds =
N∑
i=1

µiJi(t, T ), (4.32)

Pt,T =

∫ T

t

〈r,Xs〉ds =
N∑
i=1

riJi(t, T ), (4.33)

Vt,T =

∫ T

t

〈σ,Xs〉2ds =
N∑
i=1

σ2
i Ji(t, T ). (4.34)

The characteristic function is therefore obtained as

φFT (u) = exp

(
iu(L0,T −

1

2
V0,T )− 1

2
u2V0,T

)
, (4.35)
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which yields to

ĉ(u) =
E
[

exp
(
−
∫ T

0
rtdt

)
φFT (u− i(1 + ρ))

]
(iu+ ρ)(iu+ ρ+ 1)

=

E
[

exp
(
− P0,T

)
exp

(
iu+ (1 + ρ)(LV0,T (−1

2
)− 1

2
(u− i(1 + ρ))2V0,T

)]
(iu+ ρ)(iu+ ρ+ 1)

=

E
[

exp

(
(1 + ρ)

(
LV0,T (1

2
)

)
− P0,T − 1

2
u2V0,T + iu

(
LV0,T (1

2
+ ρ

)))]
(iu+ ρ)(iu+ ρ+ 1)

,

where

LV0,T (α) = L0,T + αV0,T .

Still, we could not calculate this expression without knowing the values of L0,T , V0,T ,

and P0,T which depend on the occupation time of the Markov chain.

Recall that we define the occupation time of the Markov chain as follows:

Ji(0, T ) =

∫ T

0

〈Xu, ei〉du =

∫ T

0

1{X(u)=i}du. (4.36)

Hence
∑N

i=1 Ji(0, T ) = T , and

L0,T =
N−1∑
i=1

(µi − µN)Ji(0, T ) + µNT, (4.37)

V0,T =
N−1∑
i=1

(σ2
i − σ2

N)Ji(0, T ) + σ2
NT, (4.38)

P0,T =
N−1∑
i=1

(ri − rN)Ji(0, T ) + rNT. (4.39)

It follows that

ĉ(u) =

E
[

exp

(
(1 + ρ)

(
LV0,T (1

2
ρ)

)
− P0,T − 1

2
u2V0,T + iu

(
LV0,T (1

2
+ ρ

)))]
(iu+ ρ)(iu+ ρ+ 1)

=

exp(B(u)T )E
[

exp

(
i
∑N−1

j=1 A(u, j)Jj(0, T )

)]
(iu+ ρ)(iu+ ρ+ 1)

, (4.40)
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where, for j = 1, . . . , N − 1,

A(u, j) =

[
(µj − µN) +

(
1

2
+ ρ

)
(σ2

j − σ2
N)

]
u+

1

2
u2(σ2

j − σ2
N)i

+

[
(rj − rN)− (1 + ρ)(µj − µN)− 1

2
ρ(1 + ρ)(σ2

j − σ2
N)

]
i,

B(u) =iu

[
µN +

(
1

2
+ ρ

)
σ2
N

]
− 1

2
u2σ2

N + (1 + ρ)µN − rN +
1

2
ρ(1 + ρ)σ2

N .

Consequently, we can obtain the solution by using the characteristic function of the

occupation times of the Markov chain. Recall the following lemma suggested by

Elliot et al. [12].

Lemma 4.1.1. Consider the N state Markov switching model. Let

J(t, T ) := (J1(t, T ), J2(t, T ), . . . , JN(t, T ))

denote the vector of occupation times and D denote a diagonal matrix consisting of

the elements in the vector ν := (ν1, ν2, . . . , νN)> ∈ RN as its diagonal, i.e. D =

diag (ν). Then, the conditional characteristic function of J(t, T ) is given by

E
[
exp(i〈ν, J(t, T )〉)

∣∣∣FZt ] = E[exp

(
i
N∑
j=1

νk, Jj(t, T )

)
|FZt ]

= 〈exp[(Q+ iD)(T − t)]Xt,1〉 (4.41)

where i =
√
−1 and 1 = (1, 1, . . . , 1) ∈ RN .

The proof of the lemma is given in Section A.1.

The result in the lemma is used in the (4.40) by setting νj = A(u, j). This yields to

ĉ(u) =

exp(B(u)T )E
[

exp

(
i
∑N−1

j=1 A(u, j)Jj(0, T )

)]
(iu+ ρ)(iu+ ρ+ 1)

=
exp(B(u)T )〈exp[(Q+ iD∗)(T )]X0,1〉

(iu+ ρ)(iu+ ρ+ 1)
,

where D∗ = diag(A(u)) with A(u) = (A(u, 1), A(u, 2), . . . , A(u,N))> ∈ RN . Con-

sequently by using the inverse Fourier transform option price is obtained:

C(k) =
e−ρkS0

2π

∫ ∞
−∞

e−iukĉ(u)du

=
e−ρkS0

π

∫ ∞
0

e−iukĉ(u)du

=
e−ρkS0

π

∫ ∞
0

e−iuk
exp(B(u)T )〈exp[(Q+ iD∗)(T )]X0,1〉

(iu+ ρ)(iu+ ρ+ 1)
du.
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An approximation forC(k) can be found by numerical integration: for simplicity take

uj = j∆u, j = 0, 1, . . . , N − 1, where ∆u is the grid size in the variable u. Then, the

approximation can be written by the following summation

C(k) ≈ e−ρkS0

π

N−1∑
j=0

e−iujkĉ(uj)∆u. (4.42)

Let ∆k be the grid size in modified log-strike k as follows

kl =

(
l − N

2

)
∆k, (4.43)

for l = 0, 1, . . . , N − 1. Then

c(kl) ≈
e−ρl∆keρ(N/2)∆kS0

π

N−1∑
j=0

e−ijl∆u∆keij∆u(N/2)∆k ĉ(j∆u)∆u, (4.44)

for l = 0, 1, . . . , N − 1. We note from the study of Carr and Madan [10] that

∆u∆k =
2π

N
. (4.45)

Hence,

c(kl) ≈
e−ρl∆keρ(N/2)∆kS0∆u

π

N−1∑
j=0

e−ijl(2π/N)eijπ ĉ(j∆u), (4.46)

for l = 0, 1, . . . , N−1. Among the parameters ∆u, ∆k andN only two can be chosen

and the third will depend on that parameters by the restriction (4.45). As stated by

Carr and Madan [10] choosing small ∆k to obtain a fine grid for the integration re-

quires to have relatively large ∆u with few strikes lying in the desired region near the

stock price. In order to increase the accuracy of the integration, we utilize Simpson’s

rule weightings into the summation to obtain

c(kl) ≈
e−ρl∆keρ(N/2)∆kS0∆u

π

N−1∑
j=0

e−ijl(2π/N)eijπ ĉ(j∆u)w(j), (4.47)

for l = 0, 1, . . . , N − 1 where the weights w(j) are

w(j) =


1
3
, if j = 0,

4
3
, if j is odd,

2
3
, if j is even.

(4.48)
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4.1.4 Numerical Implementation

To assess the performance of the proposed approach, we compare our results with

the ones existing in the literature. First we consider the example given by Liu et

al. [43]and replicate their study. We also compare computation times of Monte Carlo,

FFT and proposed numerical integration method results. Second, we consider the

Markov-modulated European put option pricing example given by Zeng et al. [62] for

the two-state and three-state cases. We also show in Section 4.1.5 how the infinite sum

given in the main pricing formula may be represented by the finite sum of acceptable

value.

4.1.4.1 Two-State

Example 4.1.1. We investigate the same problem given in Liu, Zhang and Yin [43].

The considered option has the following maturity T = 1, and initial asset price

S(0) = 100. The two-state Markov chain model is considered with the parame-

ters q12 = 20, q21 = 30, µ1 = r1 = 0.05, µ2 = r2 = 0.1, σ1 = 0.5, σ2 = 0.3. Hence,

the generator matrix is

Q =

−20 20

30 −30

 .
We calculated the option price by using the formula given in (4.12). Option prices are

given in Table 4.1 and Table 4.2.

Table 4.1: Option prices, X(0) = 1

ln(K/S0) (K) Monte Carlo FFT
Numerical Integration

(Pedler)
−0.3 (74.082) 34.9863± 0.2599 34.7736 34.7735

−0.2 (81.873) 29.5938± 0.2463 29.6558 29.6958

−0.1 (90.484) 24.7160± 0.2316 24.7635 24.7634

0 (100) 20.1046± 0.2159 20.1160 20.1160

0.1 (110.517) 15.9563± 0.1990 15.8806 15.8806

0.2 (122.140) 12.2101± 0.1795 12.1569 12.1570

0.3 (134.986) 9.1409± 0.1577 9.0059 9.0059

Numerical integral results obtained with the distribution function proposed by Pedler

[53] are consistent with the results obtained by Monte Carlo and FFT methods.
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Table 4.2: Option prices, X(0) = 2

ln(K/S0) (K) Monte Carlo FFT
Numerical Integration

( Pedler)
−0.3 (74.082) 34.6853± 0.2539 34.747 34.7416

−0.2 (81.873) 29.8875± 0.2451 29.6423 29.6423

−0.1 (90.484) 24.6601± 0.2304 24.6886 24.6884

0 (100) 20.004± 0.2189 20.0224 20.0224

0.1 (110.517) 15.8254± 0.1970 15.7735 15.7735

0.2 (122.140) 12.1263± 0.1772 12.0433 12.0434

0.3 (134.986) 8.7514± 0.1518 8.8932 8.8932

We also compare the computation times of Monte Carlo, FFT and numerical integra-

tion approaches and the results are given in the Table 4.3. It can be observed that the

proposed method requires less computation time according to the the Monte Carlo

and FFT methods.

Table 4.3: Computation Times, X(0) = 1

ln(K/S0) (K) Monte Carlo FFT
Numerical Integration

(Pedler)
−0.3 (74.082) 270.222515 0.390784 0.002510

4.1.4.2 Three-State

Example 4.1.2 (Validation of the Formula). In order to assess the performances of

the proposed pricing method, we consider a regime-switching dynamic driven by a

three-state Markov chain, i.e., N = 3. We evaluate the pricing formula given in (4.3)

by using standard integration routines. We implemented our valuation model in the

MATLAB® environment, using the build-in integration functions.

We consider the Markov-modulated European put option pricing example given by

Zeng et al. [62]. They compared the Monte Carlo and finite difference method results.

The parameters are S0 = 36, K = 40, T = 1, (they considered constant interest rate

parameters r = 0.1), the interest rates are (0.1, 0.1), (0.1, 0.1, 0.1) and the volatilities

are (0.15, 0.25), (0.15, 0.25, 0.35) for the two-states, three-states respectively. The

transition rate probabilities are qji = 1, j 6= i. The result are given in Table 4.4.

We can conclude that our results are consistent with the results given Zeng et al. [62].
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Table 4.4: Comparison of the results
MC (Zeng et al.)
(500,000 simulation)

MC (Our Results)
(500,000 simulation)

Proposed
Method

PX0=1 (2-state) 2.7022±0.0015 2.7010±0.096 2.7023
PX0=2 (2-state) 3.3203±0.0017 3.3259±0.0118 3.3203
PX0=1 (3-state) 3.3562±0.0016 3.3524±0.0118 3.3566
PX0=2 (3-state) 3.7653±0.0018 3.7596±0.0132 3.7643
PX0=3 (3-state) 4.2508±0.0020 4.2548±0.0147 4.2511

Example 4.1.3. The convergence graphs of Monte Carlo approach for two-sate and

three state are given in Figure 4.5b and Figure 4.5a, respectively.
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Figure 4.5b and Figure 4.5a show the 96% confidence intervals for the number of

replications used by the Monte Carlo method. The dots and the pink line represent the

Monte Carlo prices and numerical integration results, respectively. It can be observed

from figures that roughly after 214 samples, the Monte Carlo results converge to the

numerical integration results. Table 4.5 presents the Monte Carlo results with 96%

confidence interval and proposed numerical integral results for two and three-state

cases by considering different numbers of states. The calculation times for the Monte

Carlo and proposed methods are listed in columns four and six, respectively. The

proposed method requires less computation time than the Monte Carlo method.
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Table 4.5: Comparison of the results

States
Number

of
samples

Monte Carlo
(MC) Price

with CI

Time
(MC)

Numerical
Integration

(NI)

Time
(NI)

2-State

100,000
2.7001

CI = [2.6780 2.722]
52.061607

2.7023 0.282781200,000
2.6978

CI = [2.6822 2.7134]
238.337820

500,000
2.7010

CI = [2.6912 2.7109]
1601.545945

3-State

100,000
3.3379

CI = [3.3109 3.3650]
148.334582

3.3566 3.368099200,000
3.3422

CI = [3.3231 3.3613]
485.029417

500,000
3.3668

CI = [3.3547 3.3790]
3593.297081
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4.1.5 Numerical Calculation Details

Example 4.1.4. We consider another numerical example is to illustrate the analysis

for the number terms in the calculation of component function F given in (3.11). We

calculate Euoropean call option prices with the initial stock price S0 = 26, strike price

K = 40, initial state of the Markov chain X0 = 1, and the remaining parameters are

given in Table 4.6.

Table 4.6: Parameter set for the calculation of Eureopen options under RS

Transition Rate Matrix Model Parameters

States State 1 State 2 State 3 Interest Rate Volatility

State 1 -2 1 1 0.1 0.15
State 2 1 -2 1 0.2 0.25
State 3 1 1 -2 0.3 0.35

Let p denotes the number terms in the calculation of component function F . For dif-

ferent values of p and T the corresponding European call option prices are obtained.

To show the convergence of the pricing formula we take the difference of prices for

subsequent values of p for each T . The results are illustrated in Figure 4.6. Figure 4.7

illustrates the corresponding CDF values with respect to p values. From both figures

we can observe that after the ninth term the calculations converges.
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4.1.6 Implied Volatility

Stochastic variability in the market parameters is not reflected in the Black-Scholes

model. Hence, one of the drawback of the Black-Scholes model is that its failure to

capture the volatility smile. The implied volatility of the underlying asset, rather than

being constant, should change with respect to maturity and exercise price of option.

We take the Markov-modulated European (call or put) prices as observed prices and

back out the implied volatility from Black-Scholes formula. We considered the pa-

rameters given in the Zeng et al. [62] as follows: S0 = 36, K = 40, T = 1,

(Zeng et al. considered constant interest rate parameters r = 0.1), the interest rates

(0.1, 0.1, 0.1) and the volatilities are (0.15, 0.25, 0.35) for the three-states. The tran-

sition rate matrix is

Q =


−2 1 1

1 −2 1

1 1 −2


We plot the implied volatility against the strike priceK and time the maturity as given

in Figure 4.8

The unique form of the curve illustrates that the implied volatilities for out-of-the-

money options are often higher than those of at-the-money options. The implied
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Figure 4.8: Implied Volatility Curves

volatility reaches its minimum at K = 36 (at money) and increases as K moves away

from K = 36. This is the well-known volatility smile phenomenon in stock options,

and it can be observed that the regime-switching models can exhibit this behavior.

4.2 Calculation of the Greeks

In this thesis we focus only on the first order Greeks that are represented by the first

derivatives with respect to the corresponding parameters. The second or higher order

Greeks can be obtained by following the same methodology.

The risk can be controlled and managed by the use of the sensitivity parameter. Op-

tion market makers and traders at financial institutions often make use of Greeks as

a risk management tool for option positions. Greeks can be used to quantify the risk

associated with individual stock options.

In the sequel, the formulae of the Greeks, namely, Delta, Gamma, Rho and Vega are

presented for regime-switching European option. To illustrate the behavior of the

Greeks numerical example is given.

Corollary 4.2.1. Let C∆, CΓ denote the Delta and Gamma of an attainable Euro-
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pean call option with strike price K and payoff (ST − K)+ at the maturity date T .

Similarly let Cρi and Cνi denote the state dependent Rho and Vega of the correspond-

ing option for state i ∈ {1, 2, 3}. Formulae for the regime-switching European call

option Greeks are given as follows:

(i) Delta and Gamma:

CG(t) =

∫ T−t

0

∫ T−t−J3

0

CBS
G

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

for G ∈ {∆,Γ}.

(ii) Rho for i ∈ {1, 2, 3}:

Cρi(t) =

∫ T−t

0

∫ T−t−J3

0

JiKe
−pX(t)(J2,J3)Φ(d2)fX(t)(J2, J3)dJ2dJ3,

(iii) Vega for i ∈ {1, 2, 3}:

Cνi(t) =

∫ T−t

0

∫ T−t−J3

0

Ke−pX(t)(J2,J3)φ(d2)
Jiσi√
σ̄
fX(t)(J2, J3)dJ2dJ3.

(4.49)

where σ̄ = σ2
1(T − J2 − J3) + σ2

2J2 + σ2
3J3.

Proof. The price at time t of a European call option with payoff (ST−K)+ at maturity

is given by

C(S,K, r, T − t, σ) = SΦ(d1)−Ke−r(T−t)Φ(d2) (4.50)

where

d1 =
ln
(
S
K

)
+
(
r + σ2

2

)
(T − t)

σ
√

(T − t)
, (4.51)

d2 = d1 − σ
√

(T − t) =
ln
(
S
K

)
+
(
r − σ2

2

)
(T − t)

σ
√

(T − t)
(4.52)

By substituting the corresponding regime-switching parameters the formula given by

(4.50) becomes

CBS
G

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


= SΦ(d1)−Ke−pX(t)(J2,J3)Φ(d2), (4.53)
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where

d1 =
ln
(
S
K

)
+ r1(T − J2 − J3) + r2J2 + r3J3 +

σ2
1(T−J2−J3)+σ2

2J2+σ2
3J3

2√
σ2

1(T − J2 − J3) + σ2
2J2 + σ2

3J3

, (4.54)

d2 = d1 −

√
vX(t)(J2, J3)

T − t
√

(T − t) (4.55)

= d1 −
√
σ2

1(T − J2 − J3) + σ2
2J2 + σ2

3J3 (4.56)

=
ln
(
S
K

)
+ r1(T − J2 − J3) + r2J2 + r3J3 − σ2

1(T−J2−J3)+σ2
2J2+σ2

3J3

2√
σ2

1(T − J2 − J3) + σ2
2J2 + σ2

3J3

(4.57)

Now, we state the following remark, which is useful in the proof of the main results:

Remark. (4.54) can be written as

d1

√
σ2

1(T − J2 − J3) + σ2
2J2 + σ2

3J3 = ln

(
S

K

)
+ r1(T − J2 − J3) + r2J2 + r3J3

+
σ2

1(T − J2 − J3) + σ2
2J2 + σ2

3J3

2

⇒ ln(S)− ln(K) + r1(T − J2 − J3) + r2J2 + r3J3 = d1

√
σ̄ − σ̄

2

=
1

2
(d2

1 − (d1 −
√
σ̄)2)

⇒ ln(S) + ln

(
1√
2π

)
− d2

1

2
= ln(K)− (r̄) + ln

(
1√
2π

)
− d2

2

2

⇒ S
1√
2π
e−

d21
2 = Ke−r̄

1√
2π
e−

d22
2

⇒ Sφ(d1) = Ke−r̄φ(d2)

where σ̄ = σ2
1(T − J2 − J3) + σ2

2J2 + σ2
3J3 and r̄ = r1(T − J2 − J3) + r2J2 + r3J3

First first we prove (i)
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(i) Delta and Gamma:

C∆(t) =
∂C(t)

∂S

=
∂

∂S

∫ T−t

0

∫ T−t−J3

0

CBS

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

∂

∂S
CBS

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

CBS
∆

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3,

where the result follows from the Leibniz integral rule since CBS is continuous

in T and S, and fX(t)(J2, J3) is continuous in J2 and J3 on (0, T − t). The

result for the CΓ can be proved in a similar way.

(ii) Rho:

Cρi(t) =
∂C(t)

∂r1

=
∂

∂ri

∫ T−t

0

∫ T−t−J3

0

CBS

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

∂

∂ri
CBS

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

(
Sφ(d1)

∂d1

∂ri
+ JiKe

−pX(t)(J2,J3)Φ(d2)

−Ke−pX(t)(J2,J3)φ(d2)
∂d2

∂ri

)
fX(t)(J2, J3)dJ2dJ3 (4.58)

=

∫ T−t

0

∫ T−t−J3

0

JiKe
−pX(t)(J2,J3)Φ(d2)fX(t)(J2, J3)dJ2dJ3 (4.59)
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(iii) Vega:

Cν1i(t) =
∂C(t)

∂σi

=
∂

∂σi

∫ T−t

0

∫ T−t−J3

0

CBS

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

∂

∂σi
CBS

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3 (4.60)

=

∫ T−t

0

∫ T−t−J3

0

Ke−pX(t)(J2,J3)φ(d2)
Jiσi√
σ̄
fX(t)(J2, J3)dJ2dJ3.

(4.61)

The proof is completed.

Remark. We were unable to write down explicitly the theta Greek due to compli-

cated calculation, so the finite difference method is used to calculate the value of

theta. In addition, we also used the finite difference method to validate other Greek

calculations, namely, delta, gamma, rho, and vega, to check the accuracy of the pro-

posed method. Therefore, the corresponding formulae for using the finite difference

method are presented below.

We employ the finite difference approximation result to obtain numerical results for

the calculation of the sensitivities. For simplicity we denote the European Call option

pricing formula as follows

C(S, d) := C

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t

 , (4.62)

where d represents the vector of the other parameters as d =
[
K,

pX(t)(J2,J3)

T−t , T − t
]
.

Delta of the corresponding option can be calculated with the following central differ-

ence second-order approximation formula

C∆(S, d) =
C(S + δ, d)− C(S − δ, d)

2δ
+O(δ2)

≈ C(S + δ, d)− C(S − δ, d)

2δ
,
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where δ 6= 0 is a small change in the stock price S.

The other first order sensitivities, namely, rho, vega, and theta can be obtained sim-

ilarly by considering the small perturbations on the corresponding parameter, i.e.,

ri ± δri , νi ± δνi and τ ± δτ , respectively. Since gamma is a second order sensitivity

it can be calculated by the following formula

CΓ(S, d) =
C(S + δ, d)− 2C(S, d) + C(S − δ, d)

δ2
+O(δ2)

≈ C(S + δ, d)− 2C(S, d) + C(S − δ, d)

2δ2
.

For theta, denote the European Call option pricing formula by C(T − t, dΘ) where

dΘ =
[
S,K,

pX(t)(J2,J3)

T−t

]
. Theta of the option formula is given as

CΘ(T − t, dΘ) =
C(T − t+ δt, dΘ)− C(T − t− δt, dΘ)

2δt
+O(δt2)

≈ C(T − t+ δt, dΘ)− C(T − t− δt, dΘ)

2δt
.

Rho and Vega of the corresponding option can be obtained similarly by using the

central difference formula.

4.2.1 Numerical Implementation

We consider a European call option with parameter set in which strike price K = 50,

interest rates are (0.1, 0.2, 0.3) and the volatility rates are (0.15, 0.25, 0.35) for three-

states. The transition rate probabilities are qji = 1, j 6= i. By using the formulae

presented in Corollary 4.2.1 delta, gamma, rho and vega sensitivities are illustrated

for different initial stock prices and maturities in Figure 4.9, Figure 4.10, Figure 4.11,

and Figure 4.12 respectively. Theta is calculated via finite-difference method and

illustrated in Figure 4.13.

It can be observed from the figures that Delta, Gamma, and Theta of the regime-

switching European options are quite similar to the standard European option’s Greeks

since these Greeks are calculated as linear combinations of the standard European op-

tions. The Delta of a standard European call option, for example, is equal to Φ(d1),

and when the call option is deep in the money, Φ(d1) approaches 1, but never exceeds
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(a) Delta (b) Gamma

Figure 4.9: Delta and Gamma surfaces

(a) ρ1 (b) ν1
Figure 4.10: Rho and Vega surfaces: ρ1, ν1

(a) ρ2 (b) ν2
Figure 4.11: Rho and Vega surfaces: ρ2, ν2

1, because it is a cumulative distribution function. In the same way, the Gamma of

the European option with a regime switch acts similar to the Gamma of the standard

European option.
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(a) ρ3 (b) ν3
Figure 4.12: Rho and Vega surfaces: ρ3, ν3

Figure 4.13: Theta surface

The Rho and Vega surfaces for the regime-switching options are given in Figure 4.10,

Figure 4.11, and Figure 4.12 for states one, two, and three, respectively. The general

behavior of the Rho and Vega Greeks is similar to that of the corresponding Greeks of

the European option. However, it is observed that the Rho and Vega values for state

one are higher than the values of the other states. Since for this example, we assume

that the process starts from state one, the the influence of the associated Greeks for

state one is greater than the others.

We compare the results obtained by the analytical solution with the results obtained

by the finite difference method. The results of the finite difference method as well
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as the difference between the analytical solution and the finite difference results are

plotted in Section A.4. Right-hand panels show the differences between the finite

difference results and the left-hand panels show the results of the finite difference

method. The difference between the two methods is in the order of 10−3.
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CHAPTER 5

EXTENSION TO BARRIER OPTIONS

In this chapter, we demonstrate how the proposed method can be applied to barrier

option pricing problems. It is possible to express barrier options in terms of Euro-

pean options. As a consequence of this, the pricing formula for the regime-switching

barrier options and corresponding Greeks can be derived by using this connection.

Numerical examples are presented in order to show the accuracy of the proposed

method. Lastly, we present the specific form of the regime-switching barrier option

formula proposed by Elliot, Siu and Chan [18] for the three-state regime-switching

model.

5.1 Barrier Option Pricing

Barrier options are one of the commonly traded exotic options in the OTC and FX

markets. Barrier options are important tools in the sense that many exotic options

can be decomposed into barrier options. The payoff of a barrier option depends on

whether or not the stock price S reaches a pre-specified barrier level B during the

life of the option. A barrier option can be an "out" or "in" option. An out option

becomes worthless when the underlying asset price crosses a predefined barrier and

the opposite is true for an in option. Merton [49] derived a closed-form solution for

down-and-out call option. Rubinstein and Reiner [57] presented pricing formulas for

all eight types of barrier options. The following formulae used in the valuation of the
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barrier options under Black-Scholes setting with no rebate 1

A1 = ΞSΦ(Ξx1)− ΞKe−rTΦ(Ξx1 − Ξσ
√
T ) (5.1)

A2 = ΞSΦ(Ξx2)− ΞKe−rTΦ(Ξx2 − Ξσ
√
T ) (5.2)

A3 = ΞS

(
B

S

)2(µ+1)

Φ(Ψy1)− ΞKe−rT
(
B

S

)2µ

Φ(Ψy1 −Ψσ
√
T ) (5.3)

A4 = ΞS

(
B

S

)2(µ+1)

Φ(Ψy2)− ΞKe−rT
(
B

S

)2µ

Φ(Ψy2 −Ψσ
√
T ) (5.4)

where

x1 =
ln(S/K)

σ
√
T

+ (1 + µ)σ
√
T , x2 =

ln(S/B)

σ
√
T

+ (1 + µ)σ
√
T ,

y1 =
ln(B2/SK)

σ
√
T

+ (1 + µ)σ
√
T , y2 =

ln(B/S)

σ
√
T

+ (1 + µ)σ
√
T ,

µ =
r − σ2/2

σ2
.

Corresponding in and out barrier option formulae are given in Table 5.1.

5.1.1 Regime-Switching Barrier Option Pricing

In order to examine the formulae given in the literature for fixed parameters under

the regime-switching model, another expectation with occupation time distributions

should be taken over these formulae.

For example, we consider down-and-out (DO) call option, in which it pays (ST−K)+

at maturity if the stock price process does not go below a pre-specified barrier B up

to maturity. Pricing formula for this option at time t is

CB
DO(S(t), K, r, T − t, σ) = e−r(T−t)EQ[(ST −K)+1{τB>T}|Ft]

where τB is the first passage time defined as τB = inf{t > 0 : St ≤ B}. Closed-

form solution of European down-and-out call option for B < K is presented by

Merton [49], Rubinstein and Reiner [57] and Buchen [7] as follows under constant
1 Rebate is the payment to the option holder if the barrier level is reached.
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Table 5.1: Barrier option formulae

Barrier Type Barrrier
Setting

Price Ξ,Ψ

Down-and-in
call

S0 > B
CDI(K>B) = A3

CDI(K<B) = A1 − A2 + A4

Ξ = 1,Ψ = 1

Ξ = 1,Ψ = 1

Up-and-in
call

S0 < B
CUI(K>B) = A1

CUI(K<B) = A2 − A3 + A4

Ξ = 1,Ψ = −1

Ξ = 1,Ψ = −1

Down-and-in
put

S0 > B
PDI(K>B) = A2 − A3 + A4

PDI(K<B) = A1

Ξ = −1,Ψ = 1

Ξ = −1,Ψ = 1

Up-and-in
put

S0 < B
PUI(K>B) = A1 − A2 + A4

PUI(K<B) = A3

Ξ = −1,Ψ = −1

Ξ = −1,Ψ = −1

Down-and-out
call

S0 > B
CDO(K>B) = A1 − A3

CDO(K<B) = A2 − A4

Ξ = 1,Ψ = 1

Ξ = 1,Ψ = 1

Up-and-out
call

S0 < B
CUO(K>B) = 0

CUO(K<B) = A1 − A2 + A3 − A4

Ξ = 1,Ψ = −1

Ξ = 1,Ψ = −1

Down-and-out
put

S0 > B
PDO(K>B) = A1 − A2 + A3 − A4

PDO(K<B) = 0

Ξ = −1,Ψ = 1

Ξ = −1,Ψ = 1

Up-and-out
put

S0 < B
PUO(K>B) = A2 − A3

PUO(K<B) = A1 − A3

Ξ = 1,Ψ = −1

Ξ = 1,Ψ = −1

parameter assumption

CB
DO(S(t), K, r, T − t, σ) = CBS(S(t), K, r, T − t, σ)

−
(
S(t)

B

)(1−2r/σ2)

CBS
(
B2

S(t)
, K, r, T − t, σ

)

where CBS(S(t), K, r, T − t, σ) is the plain (vanilla) European call. Since we as-

sume that the model’s parameters depend on the underlying Markov chain, by taking

another expectation with respect to the joint occupation time density function, we ob-
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tained the representation for the regime-switching down-and-out call option formula:

CDO(t) =

∫ T−t

0

∫ T−t−J3

0

CB
DO

(
S(t), K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t

)
× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

(
CBS

(
S(t), K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t

)
−
(
S(t)

B

)(1−2pX(t)(J2,J3))/vX(t)(J2,J3)

× CBS

(
B2

S(t)
, K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t

))
× fX(t)(J2, J3)dJ2dJ3.

where B is the barrier level and fX(t)(J2, J3) is the joint probability density of the

occupation time of the three-state Markov chain given by Theorem 3.3.1 in Chapter

3.

5.1.2 Numerical Implementation

In this subsection in order validate the our result, we use the results presented by

Hieber and Scherer [38] in the first example. In the second example a Monte Carlo

based algorithm is used as a benchmark values in numerical experiment.

Example 5.1.1. Hieber and Scherer [38] used Brownian bridge concept to present an

efficient Monte-Carlo method for barrier option pricing in regime-switching frame-

work. They used the Brownian bridge to calculate probability of barrier crossing

between regime switching times. In this method, they only needed to control the

barrier hits at regime change times, so there was no need to simulate the underlying

presence between regime change.

In this section, we compare the result of our proposed method with the results pre-

sented by Hieber and Scherer [38]. We considered the six different scenarios given in

Hieber and Scherer, θj = (−q11,−q22, σ1, σ2, B,K) with S0 = 1, T = 1 and interest

rate is assumed to be constant and equal to 3%. The scenarios with corresponding

parameters are shown in Table 5.2.
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Table 5.2: The scenarios considered for calculating barrier option prices

Parameters

Scenarios −q11 −q22 σ1 σ2 B K

θ1 0.8 0.6 0.15 0.25 0.6 0.6
θ2 0.8 0.6 0.15 0.25 0.8 0.8
θ3 0.8 0.6 0.15 0.25 0.9 0.9
θ4 0.2 0.1 0.1 0.25 0.8 0.8
θ5 1.0 0.6 0.1 0.25 0.8 0.8
θ6 3.0 2.0 0.1 0.25 0.8 0.8

Table 5.3 gives the result of down-and-out call option prices under two-state regime

framework. It can be observed that our findings are consistent with the results ob-

tained by Hieber and Scherer [38].

Table 5.3: Comparison of the results

Results

Scenarios θ1 θ2 θ3 θ4 θ5 θ6

Hieber and Scherer 0.4177 0.2217 0.1186 0.2232 0.2233 0.2225
The proposed method 0.4177 0.2217 0.1179 0.2232 0.2222 0.2215

In the following example, we consider a three-state regime-switching framework

with the assumption that all model parameters are governed by the same underlying

Markov chain.

Example 5.1.2. In order to show the comparison of the method with the Monte Carlo

simulation approach we consider an example with the initial stock price S0 = 100,

strike price K = 100, barrier level B = 80, maturity time T = 1, initial state X0 = 1

and the remaining parameters given as:

Table 5.4: Parameter set for the calculation of barrier options under RS

Transition Rate Matrix Model Parameters

States State 1 State 2 State 3 Interest Rate Volatility

State 1 -1 0.5 0.5 0.04 0.25
State 2 0.5 -1 0.5 0.06 0.35
State 3 0.5 0.5 -1 0.08 0.45
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Figure 5.1: Convergence Graph

It can be observed in Figure 5.1 that the Monte Carlo results converge to the proposed

method’s result after the 210 number of samples. The corresponding barrier option for

different time to maturity and initial stock price values are presented in Figure 5.2.

Figure 5.2: Price surface of the regime-switching barrier option

The red line indicates the barrier level, and the value of the down-and-out call op-

tion decreases as the stock price declines, and it is worthless below the barrier by

definition.
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5.2 Sensitivity Analysis for Barrier Options

In this section derivation of the Greeks for regime-switching down-and-out barrier

options are investigated. Greeks for other type of barrier options can be obtained

similarly.

We first consider the calculation of Delta of the associated regime-switching barrier

option. It can be obtained by the same approach that we presented in Corollary 4.2.1

as

C∆
DO =

∂CDO

∂S

=
∂

∂S

∫ T−t

0

∫ T−t−J3

0

CB
DO

(
S(t), K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t

)
× fX(t)(J2, J3)dJ2dJ3

C∆
DO =

∂

∂S

∫ T−t

0

∫ T−t−J3

0

(
CBS

(
S(t), K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t

)
−
(
S(t)

B

)(1−2pX(t)(J2,J3))/vX(t)(J2,J3)

× CBS

(
B2

S(t)
, K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t

))
× fX(t)(J2, J3)dJ2dJ3.

By using Leibniz rule we can write
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C∆
DO =

∫ T−t

0

∫ T−t−J3

0

∂

∂S

CBS

S(t), K,
pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


−
(
S(t)

B

)(1−2pX(t)(J2,J3))/vX(t)(J2,J3)

×CBS

 B2

S(t)
, K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

CBS
∆

S(t), K,
pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


−

{(
1− 2r̄

σ̄

)(
S(t)

B

)(−2r̄/σ̄)
1

B

× CBS

 B2

S(t)
, K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


− B2

S(t)2
Φ(dB1 )

(
S(t)

B

)(1−2r̄/σ̄)
}
× fX(t)(J2, J3)dJ2dJ3

where

dB1 =
ln
(

B2

S(t)K

)
+ (r̄ + 0.5σ̄) (T − t)√
σ̄(T − t)

,

σ̄ =
σ2

1(T − t− J2 − J3) + σ2
2J2 + σ2

3J3

T − t
,

and

r̄ =
r1(T − t− J2 − J3) + r2J2 + r3J3

T − t
.

Similarly the gamma of the down-and-out barrier option is stated as

CΓ
DO =

∂CDO

∂S2
=
∂C∆

D0

∂S
.
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Hence,

CΓ
DO =

∫ T−t

0

∫ T−t−J3

0

CBS
Γ

S(t), K,
pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


−

{(
1− 2r̄

σ̄

)
1

B

[(
−2r̄

σ̄

)(
S(t)

B

)(− 2r̄
σ̄
−1)

× CBS

 B2

S(t)
, K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


− B2

S(t)
Φ(dB1 )

(
S(t)

B

)(− 2r̄
σ̄ )
]

+
B2

S(t)
Φ(dB1 )

(
S(t)

B

)(1− 2r̄
σ̄ )
− B2

S(t)
φ(dB1 )

∂dB1
∂S(t)

(
S(t)

B

)(1− 2r̄
σ̄ )

− B2

S(t)
Φ(dB1 )

(
1− 2r̄

σ̄

)(
S(t)

B

)(− 2r̄
σ̄ ) 1

B

}
.

Corresponding interest rate sensitivities can be written as

Cρi
DO =

∫ T−t

0

∫ T−t−J3

0

∂

∂ri

CBS

S(t), K,
pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


−
(
S(t)

B

)(1−2pX(t)(J2,J3))/vX(t)(J2,J3)

×CBS

 B2

S(t)
, K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

(
∂
(
CBS

(
S(t), K, r̄, T − t,

√
σ̄
))

ri

−

{
log

(
S(t)

B

)(
S(t)

B

)(1− 2r̄
σ̄ )
− 2Ji

σ̄

(
CBS

(
B2

S(t)
, K, r̄, T − t,

√
σ̄

))

+
∂
(
CBS

(
B2/S(t), K, r̄, T − t,

√
σ̄
))

ri

(
S(t)

B

)(1− 2r̄
σ̄ )
})

× fX(t)(J2, J3)dJ2dJ3
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Hence,

Cρi
DO =

∫ T−t

0

∫ T−t−J3

0

(
JiKe

−pXt (J2,J3)Φ(d2)

−

{
log

(
S(t)

B

)(
S(t)

B

)(1− 2r̄
σ̄ )
− 2Ji

σ̄

(
CBS

(
B2

S(t)
, K, r̄, T − t,

√
σ̄

))

+JiKe
−pXt (J2,J3)Φ(dB2 )

(
S(t)

B

)(1− 2r̄
σ̄ )
})

× fX(t)(J2, J3)dJ2dJ3.

Vega can be obtained as follows

Cνi
DO =

∫ T−t

0

∫ T−t−J3

0

∂

∂σi

CBS

S(t), K,
pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


−
(
S(t)

B

)(1−2pX(t)(J2,J3))/vX(t)(J2,J3)

×CBS

 B2

S(t)
, K,

pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

(
∂
(
CBS

(
S(t), K, r̄, T − t,

√
σ̄
))

σi

−

{
log

(
S(t)

B

)(
S(t)

B

)(1− 2r̄
σ̄ )

+
4r̄σiJi
σ̄

(
CBS

(
B2

S(t)
, K, r̄, T − t,

√
σ̄

))

+
∂
(
CBS

(
B2/S(t), K, r̄, T − t,

√
σ̄
))

σi

(
S(t)

B

)(1− 2r̄
σ̄ )
})

× fX(t)(J2, J3)dJ2dJ3.

Hence,

Cνi
DO =

∫ T−t

0

∫ T−t−J3

0

(
Ke−pXt (J2,J3)φ(d2)

Jiσi√
σ̄

−

{
log

(
S(t)

B

)(
S(t)

B

)(1− 2r̄
σ̄ )

+
4r̄σiJi
σ̄

(
CBS

(
B2

S(t)
, K, r̄, T − t,

√
σ̄

))

+Ke−pXt (J2,J3)φ(dB2 )
Jiσi√
σ̄

(
S(t)

B

)(1− 2r̄
σ̄ )
})

× fX(t)(J2, J3)dJ2dJ3.
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5.2.1 Numerical Implementation

In order to present the Delta and Gamma Greeks of the regime-switching barrier

option we consider an example with the istrike price K = 50, barrier level B = 5,

initial state X0 = 1 and the remaining parameters given as:

Table 5.5: Parameter set for the calculation of barrier options under RS

Transition Rate Matrix Model Parameters

States State 1 State 2 State 3 Interest Rate Volatility

State 1 -2 1 1 0.1 0.15
State 2 1 -2 1 0.2 0.25
State 3 1 1 -2 0.3 0.35

Figure 5.3: Delta of the regime-switching Barrier option

It can be observed from Figure 5.3 and Figure 5.5 that even though their general

behavior is similar to the Greeks of the European option, the behavior of the corre-

sponding Greeks near the barrier level demonstrates fluctuations. Delta and Gamma

of the regime-switching barrier option grows faster near the barrier and maturity gets

closer according to the regime-switching European options.

The next subsection describes another approach proposed by Elliot, Siu, and Chan [18].

Lo, Lee, and Hui [44] presented a closed-form approximation to price of the up-and-
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Figure 5.4: Comparison with Finite Difference: B∆

Figure 5.5: Gamma of the regime-switching Barrier option

Figure 5.6: Comparison with Finite Difference: BΓ
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out call option with time-dependent parameters. Elliot, Siu, and Chan [18] modified

the formula presented by Lo et al. [44] to price up-and-out put option under regime-

switching framework. Elliot et al. [18] reconsidered the formula in terms of the joint

density function of the occupancy time and converted relevant parts of the formula to

fit the regime-switching framework. We give the details of the formula based on the

idea that the parameters of the model are controlled by the three-state Markov chain.

5.2.2 Regime-Switching Barrier Option Pricing by Elliot et al. [18]

In this section we present the (semi)-analytical approximation to price the up-and-out

put option under regime-switching framework suggested by Elliot et al. [18] based on

the study of Lo, Lee and Hui [44] .

Lemma 5.2.1. Let τ := T − t denotes the time to maturity for each τ ∈ T = [0, T ].

Then the price of the up-and-out put option PUO(t, S(t)) can be approximated as

follows:

PX
UO(t, S(t)) ≈ − exp (c3(τ) + c2(τ) + c1(τ) + S(t))B

[
Φ

(
S(t) + c1(τ) + 2c2(τ)√

2c2(τ)

)

−Φ

(
S(t) + c1(τ) + 2c2(τ)− ln(K/B)√

2c2(τ)

)]
+K exp(c3(τ))

×

[
Φ

(
S(t) + c1(τ)√

2c2(τ)

)
− Φ

(
S(t) + c2(τ)− ln(K/B)√

2c2(τ)

)]
+ exp(c3(τ) + (β − 1)(S(t) + c1(τ)) + (β − 1)2c2(τ))B

×

[
Φ

(
−S(t) + c1(τ) + 2(β − 1)c2(τ)√

2c2(τ)

)

−Φ

(
−S(t) + c1(τ)2(β − 1)c2(τ) + ln(K/B)√

2c2(τ)

)]
−K exp(c3(τ) + β(S(t) + c1(τ)) + β2c2(τ))

×

[
Φ

(
−S(t) + c1(τ) + 2βc2(τ)√

2c2(τ)

)

−Φ

(
−S(t) + c1(τ) + 2βc2(τ) + ln(K/B)√

2c2(τ)

)]
(5.5)
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where Φ is the cumulative normal distribution and

c1(τ) :=

∫ τ

0

(
r(u)− 1

2
σ2(u)

)
du, (5.6)

c2(τ) :=
1

2

∫ τ

0

σ2(u)du, (5.7)

c3(τ) := −
∫ τ

0

r(u)du, (5.8)

β(t) := −c1(t)

c2(t)
.

The adjustable parameter, which controls the movement of the barrier is chosen by

Lo, Lee, and Hui [44] to be an optimal value that minimizes the given path integral∫ t

0

[Z∗(u)]2du,

where Z∗(t) := ln(S(t)/B) = −c1(τ) − βc2(t), which is an absorbing moving

barrier along the axis given by the value ln(S(t)/B). Optimal value βopt for β is

βopt =

∫ t
0
c1(τ)c2(τ)dτ∫ t
0
[c2(τ)]2dτ

. (5.9)

For constant model parameters βopt is equal to

βopt = 1− 2rσ−2. (5.10)

For regime switching parameters the value of β is given as:

β(t) := −c1(t)

c2(t)
. (5.11)

Note that, when the model parameters are constant (5.11) is reduced to (5.10). Since

the model parameters depend on the underlying Markov chain, (5.6), (5.7), (5.8) and

(5.11) can be written with the help of occupation time of the Markov chain as follows:

c1(τ) =
N∑
i=1

(
ri −

1

2
σ2
i

)
Ji(t, T ), (5.12)

c2(τ) =
1

2

N∑
i=1

σ2
i Ji(t, T ), (5.13)
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c3(τ) = −
N∑
i=1

riJi(t, T ), (5.14)

β(t) = −
N∑
i=1

(
ri

1
2
σ2
i

σ2
i

)
Ji(0, t). (5.15)

For each t ∈ T , the minimal σ−field is defined as F(t) := FW (t) ∨ FX(t) and

F := {F(t)|t ∈ T }. Now given the current information F(t), the conditional price of

the up-and-out put option is given by:

P ∗UO(t, S(t), β(t)) := EQ[P (t, S(t), X)|F(t)].

Note that

β(t) = −
N∑
i=1

(
ri − 1

2
σ2
i

σ2
i

)
Ji(0, t) ∈ F(t) ⊂ F .

Let J(t, T ) = (J1(t, T ), J2(t, T ), . . . , JN(t, T ))′ ∈ [t, T ]N . Write fX(t),(j) for the

joint conditional density function of J(t, T ) given F(t), where j ∈ [t, T ]N . Then the

conditional price of the up-and-out put option can be written as

P ∗UO(t, S(t), β(t)) =

∫
[t,T ]N

PX
UO(t, S(t))fX(t),(j)dj. (5.16)

By using this lemma stated by Elliot, Siu and Chan [18] and utilizing the joint condi-

tional density function of occupation times given in Theorem 3.3.1 in Chapter 3, we

obtained the following corollary.

Corollary 5.2.1. Consider three-state case under which the parameters of the under-

lying asset and the market interest rate depend on the underlying three-state contin-

uous time Markov chain. Then, the up-and out put option price with a strike price K

and the barrier level B at time t is given as

P ∗UO(t, S(t), β(t)) =

∫ T

t

∫ T−J3

t

PX
UO(t, S(t))fX(t)(J2, J3)dJ2dJ3 (5.17)

= ψ(t, T ) + ξ(t, T ) + η(t, T ) + ζ(t, T ) (5.18)

where

ψ(t, T ) =

∫ T

t

∫ T−J3

t

PX
UO(t, S(t))f 1

X(t)(J2, J3)dJ2dJ3,

ξ(t, T ) =

∫ T

t

∫ T−J3

t

PX
UO(t, S(t))f 2

X(t)(J2, J3)dJ2dJ3,
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η(t, T ) =

∫ T

t

∫ T−J3

t

PX
UO(t, S(t))f 3

X(t)(J2, J3)dJ2dJ3,

ζ(t, T ) =

∫ T

t

∫ T−J3

t

PX
UO(t, S(t))f 4

X(t)(J2, J3)dJ2dJ3,

where f 1
X(t)(J2, J3), f 2

X(t)(J2, J3), f 3
X(t)(J2, J3), and f 4

X(t)(J2, J3) are stated in (4.13),

(4.14), (4.15), and (4.16), respectively. Here 0 ≤ J2 < T − t, 0 ≤ J3 < T − t, and

fX(t)(J2, J3) is the joint density of the occupation times of state two and state three

during the time interval [t, T ] conditional on X(t).
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CHAPTER 6

VALUATION OF GUARANTEED MIMIMUM MATURITY

BENEFIT CONTRACTS UNDER REGIME-SWITCHING

FRAMEWORK

We demonstrate that the proposed approach presented in Chapter 4 can also be used

in the valuation of Guaranteed Minimum Maturity Benefit (GMMB) contract, since

it can be written in terms of the European options. We propose formulae for two

different models by assuming independent filtration for the mortality component. The

first model assumes that both financial and mortality parameters are regulated by the

same underlying Markov chain. On the other hand, the second model assumes that

the parameters of the mortality model are based on a separate second Markov chain.

6.1 Guaranteed Minimum Maturity Benefit Pricing

Variable annuity (VA) contracts have recently become more popular as the need for

products that can cover the longevity risk associated with an aging population has

increased. The guarantees in VA contracts offers policyholders a range of investment

options and protect their investment funds from losses. In this sense, these guarantees

have characteristics similar to financial options.

There are two main types of guarantees: guaranteed minimum death benefits (GMDB)

and guaranteed minimum living benefits. Guaranteed minimum living benefits can be

divided into three groups: GMxB, where x stands for the type of guarantee rider, such

as maturity (M), income (I), or withdrawal (W).
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The assumption of constant parameters may not represent the real world dynamics

accurately for the valuation of variable annuities due to the long-term nature of these

contracts. For this reason, in this study, the pricing problem is investigated under the

regime-switching parameter assumption.

In addition to the Markov-modulated drift and diffusion rates for the equity process

and the Markov-modulated interest rate, we assume that the mortality rate also relies

on the underlying Markov chain. Under this framework we consider two models:

for the first model, one Markov chain governs all model parameters (equity process

parameters, interest rate, and mortality rate), but for the second model, we assume

that the mortality rate is modified by another Markov chain.

6.1.1 Model 1 : Common Markov Chain for the Model Parameters

We assume that all of the model parameters depend on a single Markov chain. The

details of the Markov chain and the fund dynamics are given in Section 2.2 in Chapter

2. Markov modulated mortality rate is given by

κt := κ(t,Xt) = 〈κ,Xt〉

where {Xt}t∈T is the Markov chain. We define the path integral of κ on the interval

[0, T ] by

Mt,T =

∫ T

t

κ(s)ds =

∫ T

t

〈κ,Xs〉ds. (6.1)

Assuming that the underlying Markov chain has three states with the conditional joint

density of the occupation times of the states during the time interval [t, T ], given

X(t) = 1, and for 0 ≤ J2 ≤ T − t, 0 ≤ J3 ≤ T − t, we can define

mX(t)(J2, J3) = κ1(T − t− J2 − J3) + κ2J2 + κ3J3.

Therefore the expected survival probability, say L(t, T ), can be represented as

L(t, T ) = EQ[e− ∫ T
t κ(s)ds|Ft

]
=

∫ T−t

0

∫ T−t−J3

0

exp(−mX(t)(J2, J3))fX(t)(J2, J3)dJ2dJ3.

A GMMB guarantees the minimum level of benefit at maturity conditional on the

policyholder survival function and can be written as the combination of the survival
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function L(t, T ), the zero-coupon bond B(t, T ) and the European call C(S, t, T ).

The insurer’s liability is (G − FT )+, where FT is the policyholder’s fund level at

maturity T and G is the minimum guarantee. If the guarantee exceeds the fund value

at contract maturity T , the insurance company must pay the difference between G

and FT , i.e. (G−FT ), with FT is related to the performance of the stock index ST by

FT = F0
ST
S0

e−ψT

where ψ is the constant continuously compounded management charge rate. For

simplicity we assume F0 = S0 and ψ = 0. The fair value of a GMMB at time t with

no lapse1 assumption is given as

PGMMB = EQ[e− ∫ T
t κ(s)dse−

∫ T
t r(s)ds max(G,FT )

∣∣Ft]
Assuming independence between the survival function and the financial components

the price of GMMB contract can be written as

PGMMB = EQ[e− ∫ T
t κ(s)dse−

∫ T
t r(s)ds max(G,FT )

∣∣Ft]
= EQ[e− ∫ T

t κ(s)ds
∣∣Ft]EQ[e− ∫ T

t r(s)ds max(G,FT )
∣∣Ft]

= L(t, T ) EQ[e− ∫ T
t r(s)ds max(G,FT )

∣∣Ft]
Furthermore, the financial component can be decomposed to a unit zero-coupon fund

and a European call option written on the fund F with strike price G as follows:

PGMMB = L(t, T )EQ[e− ∫ T
t r(s)ds max(G,FT )

∣∣Ft]
= L(t, T )

(
GEQ[e− ∫ T

t r(s)ds
∣∣Ft]+ EQ[e− ∫ T

t r(s)ds max(0, FT −G)
∣∣Ft])

= L(t, T )(GB(t, T ) + C(F, t, T )) (6.2)

where

B(t, T ) = EQ[e− ∫ T
t r(s)ds

∣∣Ft]
=

∫ T−t

0

∫ T−t−J3

0

exp
{
−pX(t)(J2, J3)

}
fX(t)(J2, J3)dJ2dJ3,

and C(F, t, T ) is given in (4.3).

1 The probability that policyholders may terminate their policies early for a variety of reason is referred to as
lapse risk.
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6.1.2 Model 2 : Independent Markov Chains for Mortality and Financial Pa-

rameters

In this model, we suppose that the mortality rate is controlled by different homo-

geneous continuous-time Markov chain process {XM
t }t∈τ with a finite state space.

We assume that {XM
t }t∈τ , {Xt}t∈τ , and {Wt}t∈τ are independent. Semi-martingale

representation of {XM
t }t∈τ is given as

XM
t = XM

0 +

∫ t

0

QMXsds+MM
t , (6.3)

where QM is the generator matrix with QM =
(
qMij
)
, 1 ≤ i, j ≤ N ,

∑N
j=1 q

M
ij = 0

and qMij ≥ 0 if i 6= j. The mortality rate is given by

κt := κ(t,XM
t ) = 〈κ,XM

t 〉.

The filtration generated by {XM
t }t∈τ is denoted by FXM

t .

It is assumed that the interest rate and volatility parameter of the underlying fund

is modulated by the other Markov chain process {Xt}t∈τ . The enlarged filtration is

given by Gt = FXM

t ∨ FXt ∨ FWt . The pricing formula for the GMMB at time t is

given as

PGMMB = EQ[e− ∫ T
t κ(s)dse−

∫ T
t r(s)ds max(G,FT )

∣∣Gt]
= EQ[e− ∫ T

t κ(s)ds
∣∣Gt]EQ[e− ∫ T

t r(s)ds max(G,FT )
∣∣Gt]

= EQ[e− ∫ T
t κ(s)ds

∣∣FXM

t

]
EQ[e− ∫ T

t r(s)ds max(G,FT )
∣∣Ft]

= LM(t, T )(GB(t, T ) + C(F, t, T )). (6.4)

In contrast to Model 1, the survival probability for this model must be computed using

the parameters of the Markov chain process {XM
t }t∈τ . This model reduces to Model

1 if {XM
t }t∈τ and {Xt}t∈τ have the same generator matrix.

6.1.3 Numerical Implementation

We consider an example to illustrate the application of proposed method with the

parameters S0 = 36, T = 1, G = 50, the interest rates r = (0.1, 0.15, 0.2), the

volatility rates σ = (0.15, 0.25, 0.35), and the mortality rates κ = (0.3, 0.4, 0.5)
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for three states. For Model 1, the transition rate probabilities are qji = 1, j 6= i. For

Model 2, we assume that the transition rate probabilities for {Xt}t∈τ are qji = 1, j 6= i

and for {XM
t }t∈τ are qji = 0.5, j 6= i.

The left panels of Figure 6.1 and Figure 6.2 demonstrate the comparison of the

GMMB contract prices calculated with the proposed approach and those obtained

through Monte Carlo simulation for Model 1 and Model 2, respectively. The right

panels illustrate the difference between the proposed price and the Monte Carlo price.

It is observed that for a number of samples greater than 213, Monte Carlo prices con-

verges to the price obtained by the proposed method.
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Figure 6.1: Convergence Graph for Model 1
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Figure 6.2: Convergence Graph for Model 2
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Table 6.1: GMMB Results
Number

of
samples

Monte Carlo
(MC) Price with CI

Time
(MC)

Numerical
Integration

(NI)

Time
(NI)

GMMB
3-State
Model 1

100,000
31.0674

CI = [31.0487 31.0861]
58.539949

31.0526 4.624355
200,000

31.0705
CI = [31.0573 31.0837]

272.945588

500,000
31.0624

CI = [31.0540 31.0708]
2042.429812

GMMB
3-State
Model 2

100,000
31.7035

CI = [31.6842 31.7229]
113.687162

31.6877 5.095991
200,000

31.6956
CI = [31.6830 31.7092]

542.694302

500,000
31.6935

CI = [31.6848 31.7021]
3543.745838
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Table 6.1.3 reports the results for GMMB contract prices for Model 1 and Model

2 obtained using Monte Carlo simulations and the proposed approach for different

numbers of samples. It is observed that the prices obtained by the Monte Carlo ap-

proach are close to those obtained by the proposed approach. Columns four and six

list the computation times for the Monte Carlo and proposed methods, respectively.

The proposed method requires less computation time than the Monte Carlo method.

Figure 6.3 and Figure 6.3 illustrate the GMMB contract prices for Model 1 and Model

2 respectively.

Figure 6.3: GMMB Surface Graphs (Model 1)

Figure 6.4: GMMB Surface Graphs (Model 2)

6.2 Sensitivity Analysis for GMMB

It is clear from (6.2) that the GMMB formula can be divided into two parts: the mor-

tality component and the financial component. As a result, the Greek calculation can

be performed separately on the mortality and financial components. For simplicity
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we first consider the Model 1. As performed by Ignatieva, Song and Ziveyi [40], and

Mamon, Xiong and Zhao [45] we can write this approach as follows:

PGMMB = L(t, T )(GB(t, T ) + C(F, t, T ))

= Mortality(t, T )× Financial(t, T,G)

We first consider the financial Greeks. Calculation of delta and gamma Greeks of the

associated European option can be obtained by the same approach that we presented

in Corollary 4.2.1 as

CG(t) =

∫ T−t

0

∫ T−t−J3

0

CBS
G

S,K, pX(t)(J2, J3)

T − t
, T − t,

√
vX(t)(J2, J3)

T − t


× fX(t)(J2, J3)dJ2dJ3

for G ∈ {∆,Γ}. Hence the delta and gamma Greeks of the GMMB is given as

∂PGMMB

∂S
= L(t, T ) C∆(t), (6.5)

∂PGMMB

∂S2
= L(t, T ) CΓ(t). (6.6)

Similarly, the vega of the GMMB can be written as

∂PGMMB

∂νi
= L(t, T ) Cνi(t) (6.7)

where Cνi(t) is given in (4.49) for i ∈ {1, 2, 3}. In order to determine the GMMB’s

interest rate sensitivity, we must examine both the zero-coupon bond and the Euro-

pean option, as both are depend on the interest rate parameter. Differentiating corre-

sponding zero-coupon bond with respect to ri, we obtain:

∂B(t, T )

∂ri
=
∂EQ

[
e−

∫ T
t r(s)ds

∣∣Ft]
∂ri

=
∂

∂ri

(∫ T−t

0

∫ T−t−J3

0

exp{−pX(t)(J2, J3)}fX(t)(J2, J3)dJ2dJ3

)
By Leibniz rule it can be written as

∂B(t, T )

∂ri
=

∫ T−t

0

∫ T−t−J3

0

∂

∂ri

(
exp{−pX(t)(J2, J3)}fX(t)(J2, J3)dJ2dJ3

)
=

∫ T−t

0

∫ T−t−J3

0

(−Ji) exp{−pX(t)(J2, J3)}fX(t)(J2, J3)dJ2dJ3. (6.8)
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Hence, the sensitivity of the GMMB contract with respect to Markov modulated in-

terest rate parameter can be written with the aid of (6.8) and (4.59) as

∂PGMMB

∂ri
= L(t, T )

(
G
∂B(t, T )

∂ri
+
∂C(F, t, T )

∂ri

)
. (6.9)

In order to calculate the sensitivity with respect to mortality component we differ-

entiate the GMMB with respect to Markov modulated mortality parameter κi, yields

∂PGMMB

∂κi
=
∂L(t, T )

∂κi
(GB(t, T ) + C(F, t, T )) , (6.10)

where

∂L(t, T )

∂κi
=

∂

∂κi

∫ T−t

0

∫ T−t−J3

0

exp{−mX(t)(J2, J3)}fX(t)(J2, J3)dJ2dJ3

=

∫ T−t

0

∫ T−t−J3

0

∂

∂κi

(
exp{−mX(t)(J2, J3)}fX(t)(J2, J3)dJ2dJ3

)
=

∫ T−t

0

∫ T−t−J3

0

(−Ji) exp{−mX(t)(J2, J3)}fX(t)(J2, J3)dJ2dJ3.

In the calculation of the theta sensitivity, all three distinct parts, namely the mortal-

ity component, zero-coupon bond, and European option, must be taken into account

because they are all influenced by the parameter T . The calculation of theta is given

below:

∂PGMMB

∂(T − t)
=
∂L(t, T )

∂(T − t)
(GB(t, T ) + C(F, t, T ))

+ L(t, T )
∂

∂(T − t)
(
GB(t, T ) + C(F, t, T )

)
=
∂L(t, T )

∂(T − t)
(GB(t, T ) + C(F, t, T ))

+ L(t, T )

(
G
∂B(t, T )

∂(T − t)
+
∂C(F, t, T )

∂(T − t)

)
,

where the terms ∂L(t,T )
∂(T−t) ,

∂B(t,T )
∂(T−t) , and ∂C(F,t,T )

∂(T−t) can be obtained via finite difference

method.

6.2.1 Numerical Implementation: GMMB Greeks

In this section, to illustrate the sensitivity analysis results for GMMB, we consider

an example. Under Model 1, in which all model parameters, namely, mortality and
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Table 6.2: Parameter set for the calculation of Greeks of GMMB

Transition Rate Matrix Model Parameters

States State 1 State 2 State 3 Interest Rate Volatility Mortality Rate
State 1 -2 1 1 0.1 0.15 0.3
State 2 1 -2 1 0.15 0.25 0.4
State 3 1 1 -2 0.2 0.35 0.5

finance, modulated by the same underlying Markov chain. The considered GMMB

contract has the guarantee level G = 50, the initial state of the underlying Markov

chain is given as state 1,X0 = 1, and the remaining parameters are given in Table 6.2.

Figure 6.5: Delta and Gamma of the regime-switching GMMB

(a) ρ1 (b) ν1
Figure 6.6: Rho and Vega surfaces: ρ1, ν1

The Greek calculation is performed separately on the mortality and financial com-

ponents. Even though the general behavior of the financial Greeks for small time to

maturity values is similar to the regime-switching European options, for larger values

of the time to maturity, the values of the financial Greeks get closer to zero. The

reason for this tendency is the multiplication of the financial Greek component with
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(a) ρ1 (b) ν1
Figure 6.7: Rho and Vega surfaces: ρ2, ν2

(a) ρ1 (b) ν1
Figure 6.8: Rho and Vega surfaces: ρ3, ν3

Figure 6.9: κ1 of the regime-switching GMMB

the mortality component. Similar to the Rho and Vega sensitivities, the sensitivity

of the mortality component, Kappa values for state 1 is higher than the other states.

Because we assume in this example that the process begins at state 1, the associated

95



Figure 6.10: κ2 of the regime-switching GMMB

Figure 6.11: κ3 of the regime-switching GMMB

Greeks have a greater influence than the others.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we first consider the option pricing problem when the appreciation rate

and the volatility of the underlying asset, as well as the market interest rate param-

eters, are driven by a continuous-time finite-state hidden Markov chain. We follow

the Elliot et al. [12]’s approach in which the regime-switching Esscher transform is

utilized to determine the equivalent martingale measure. We consider the proposed

closed-form formulae for the European option pricing under regime-switching frame-

work by several researchers, namely, Elliot et al. [12], McKinlay [48], Naik [50]. We

elaborate the formula for the general three-state case in which all of the model pa-

rameters are depend on the underlying Markov chain.

In order to use the proposed regime-switching option pricing formula, one needs to

obtain the joint density function of occupation times. Several researchers studied

occupation time distribution function for the two-state case. Pedler [53], Guo [31],

and Fuh et al. [25] obtained the joint probability density function of occupation times

of the two-state Markov chain.

In two-state regime-switching models, the pricing problem for European options can

be solved analytically, but in more complex models with more than two states, closed-

form solutions have not been found, as stated by Zeng et al. [62], Zhang et al. [63],

Boyle et al. [4]

In this study, in order to extend the analytical solution for more than two states we

propose to utilize Falzon’s formula. Falzon [22, 21, 52] presented the joint density

function of the occupation time for three-state case. For simplicity, in our applica-
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tions we break down the proposed conditional joint density function into four parts,

according to possible visits of the process.

We observe that the Falzon’s formula can be reduced to the two-state case by consider-

ing suitable parameters and it is consistent with the formula proposed by Pedler [53].

The numerical example given by Liu et al. [43] is considered in order to test the pro-

posed method by comparing it with Monte Carlo and FFT methods. Consistent results

are obtained and it is observed that in terms of computation time proposed method

requires less time.

The conditional joint probability density function derived by Falzon has the condition

that the Markov process starts from state one. In order to generalize this initial state

condition we transform the corresponding transition rate by the help of permutation

matrix. Zeng et al.[62]’s study is used as a benchmark to test our results when the

initial state of the Markov chain starts from any of the three-states. We obtained

consistent results for this scenarios as well.

Falzon [22] reconsidered the functions Fm,n as sums of products of Bessel functions

in order to obtain the feasible form for numerical computation. Falzon [22] stated

that the infinite summation in the formula can be approximated by a suitable finite

sum. We conducted a numerical example to check how many terms are needed to

obtain a sufficient result. To demonstrate the convergence of the pricing formula, we

take the difference between prices for successive values of the number of terms in the

summation for each T . It is observed that even though the required number of terms

rises as T grows, its rate is less than the increase of T .

Empirical studies show that the implied volatility of the underlying asset, rather than

being constant, should change with respect to the maturity and exercise price of the

option. Hence, another concern that needs to be addressed is whether the stylized

facts of volatility smile can be better explained using a regime-switching model. We

take the Markov-modulated European call prices as observed prices and back out the

implied volatility from the Black-Scholes formula. The implied volatility surfaces

with respect to the strike price and time to expiry is illustrated. The implied volatility

reaches a minimum at the strike price corresponding to an at-the-money option, and

it increases as it moves away from the strike price, which is known as the volatility
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smile phenomenon. For options with longer maturities, the volatility smile becomes

flatter, which can be explained by the fact that B-S model pricing errors are higher

than those for shorter maturities. A further observation is that the volatility smile is

asymmetric in relation to the strike, which is in agreement with market observations

and supports the idea that the regime-switching model has practical utility.

Sensitivity analysis, which examines how the value of a contingent claim changes as a

result of changes in a particular parameter’s value, is fundamental to risk management

in the derivatives market. Using the proposed closed-form solution, we have shown

that Greeks, namely Delta, Gamma, Rho and Vega can be calculated with the help of

the double Leibnez rule. The finite difference method is the common methodology

for sensitivity computations of the regime-switching models. As a consequence, we

compare our findings with those obtained using the finite difference approach in order

to verify the Greek formulas.

Our approach can further be extended for the valuation of the some of the exotic

options with can be expressed in terms of the European options. As a consequence of

this, the pricing formula for the regime-switching barrier options and corresponding

Greeks can be derived by using this connection. In this thesis we examine down-and-

out barrier options, however the other knock-out and knock-in barrier options can be

considered similarly. Several numerical examples are presented to illustrate that the

recommended methodology yields precise results.

Due to their long-term nature, variable annuities may include regime switching dur-

ing their maturity time. It makes them suitable candidates to be modeled with regime-

switching models. In this study we considered GMMB contracts which are insurance

products with embedded option features. Using the assumption that the mortality

component undergoes its own unique filtering, we derive the formulae for two distinct

models. The first model assumes that the Markov chain that controls the financial pa-

rameters also controls the mortality parameters. The second model, on the other hand,

assumes that the mortality model’s parameters are obtained from a separate second

Markov chain. The GMMB formula for two models can be divided into two parts:

the mortality component and the financial component. As a result, the Greek calcula-

tions are performed separately on the mortality and financial components. Numerical
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experiments to check the accuracy of the proposed method are performed.

To sum up, in this thesis we generalize the Black-Scholes framework by consider-

ing three-state regime-switching framework. Consequently, the constant parameter

disadvantage of the Black-Scholes model has been mitigated, and the theoretical el-

egance of the Black-Scholes model has been exploited. Moreover it is demonstrated

that the proposed model can capture the asymmetric structure of the volatility smile

phenomenon. The approach is flexible because it can also be used in the valuation

of other financial instruments. Hence, the method can be useful for option valuation

and hedging for practitioners as well in terms of accuracy and computation speed.

Figure 7.1 summarizes the main contributions of the thesis to the existing literature.

Our results could be extended in a number of directions. The first is to extend current

work to the N -state case. Falzon [22] and Pearce et al. [52] deduced the solution for

case N = 4 by applying probabilistic interpretation to the three-state solution. Then,

using graph theory and the matrix tree theorem, extend the probabilistic reasoning to

get the general form for the case with n states. By using the formula for the N-state

case, it is possible to extend the regime switching option pricing problem.

Another important direction is to calibrate the model parameters to real market data.

The probability distribution observed in financial and actuarial data changes over

time. Hence, in order to determine the appropriate number of states as well as the

parameters of the models to be used, parameter estimation needs to be utilized as a

first step. As a future extension, with real data parameter estimation can be considered

first, and then the proposed pricing method can be applied.

The risk factors namely, the market risk and the mortality rate risk may exhibit more

complex relation in real market data. Another relevant future direction is to consider

the correlation between the risk factors via diffusion factor in addition to the under-

lying Markov chain.

The proposed method used in the pricing of regime-switching European, barrier op-

tions and GMMB contracts can be applicable to other financial contracts such as

quando options, spread options, and power options.
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APPENDIX A

PROOF OF SOME THEOREMS

A.1 Proof of Lemma 4.1.1

Proof. The proof is a modification of Lemma 5.1 in Elliot and Siu [17]. Consider an

RN valued process Y (t) := {Y (t, u)|u ∈ [t, T ]}

Y (t, u) := exp(i〈ν, J(t, u)〉)X(u)

= exp

(
i

∫ u

t

〈ν,X(s)〉ds
)
X(u).

Then,

dY (t, u) = i〈ν,X(u)〉Y (t, u)du+ exp(i〈ν, J(t, u)〉)dX(u).

Semi-martingale dynamics of the Markov chain X is given in (2.7) can be written as

dX(u) = QX(u)du+ dM(u).

Note that

〈ν,X(u)〉Y (t, u) = diag νY (t, u)

= DY (t, u).

Consequently,

dY (t, u) = i〈ν,X(u)〉Y (t, u)du+ exp(i〈ν, J(t, u)〉)(QX(u)du+ dM(u))

= (Q+ i diag ν)Y (t, u) + exp(i〈ν, J(t, u)〉)dM(u).

Hence,

Y (t, u) = Y (t, t) +

∫ u

t

(Q+ i diag ν)Y (t, s)ds+

∫ u

t

exp(〈ν, J(t, s)〉)dM(s)

= X(t) +

∫ u

t

(Q+ i diag ν)Y (t, s)ds+

∫ u

t

exp(〈ν, J(t, s)〉)dM(s).
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Since the final integral in this expression is a martingale, taking expectation by con-

ditioning both sides on FZt gives

E[Y (t, u)|FZt ] = X(t) +

∫ u

t

(Q+ i diag ν)E[Y (t, s)|FZt ]ds.

Solving yields

E[Y (t, T )|FZt ] = X(t) exp((Q+ i diag ν)(T − t))

= X(t) exp((Q+ iD)(T − t))

Consequently the conditional characteristic function of J(t, T ) is

ΦJ(t,T )|FZt (ν) = E[exp(i〈ν, J(t, T )〉)|FZt ] (A.1)

Since 〈X(T ),1〉 = 1 we can plug it (A.1). Hence

ΦJ(t,T )|FZt (ν) = E[exp(i〈ν, J(t, T )〉)〈X(T ),1〉|FZt ]

= E[〈exp(i〈ν, J(t, T )〉)X(T ),1〉|FZt ]

= 〈E[exp(i〈ν, J(t, T )〉)X(T )|FZt ],1〉

= 〈E[Y (t, T )|FZt ],1〉

= 〈X(t) exp((Q+ i diag ν)(T − t)),1〉

= 〈X(t) exp((Q+ iD)(T − t)),1〉.
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A.2 Pseudo-Code for Barrier Option Pricing via MC Approach Under RS

Algorithm 3 Monte Carlo Simulation for RS Down-and-Out Barrier Option
Require:

1: Initial stock price S0, Strike price K, Barrier level B, Maturity time T

2: Regime-switching interest rate vector r, Regime-switching volatility vector σ

3: Initial state of the Markov chain X0 = j

4: Transition rate matrix of the Markov chain Q

5: Number of simulation paths nr,

Ensure: Regime-switching down-and-out barrier option price CDO

6: Create a k × 1 random vector called RV

7: for k = 1, 2, . . . , nr do

8: Simulate a Markov chain on which the parameters of the simulated path will

depend on.

9: Find the states of the simulated chain.

10: Calculate the P k
(t,T ) and V k

(t,T ) given in (2.23), (2.24).

11: Simulate the Markov-modulated Stock prices Sk(T ) and SkB(T )

Sk(T ) = S0 exp
{

(P k
(0,T ) − V k

(0,T )/2) +
√
V k

(0,T )RV (k)
}

(A.2)

SkB(T ) =

(
B2

S0

)
exp

{
(P k

(0,T ) − V k
(0,T )/2) +

√
V k

(0,T )RV (k)
}

(A.3)

12: Calculate ξk = 1−
2Pk

(0,T )

V k
(0,T )

13: Calculate the discounted final payoff for each simulation

DP [k]← exp{−P k
(0,T )}

(
max(Sk(T )−K, 0)−

(
S0

B

)ξk
max(SkB(T )−K, 0)

)
14: end for

15: Calculate the Monte Carlo option price

CDO =
1

nr

nr∑
k=1

DP [k]
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A.3 Pseudo-Code for GMMB Pricing via MC Approach Under RS

Algorithm 4 Monte Carlo Simulation for GMMB Pricing: Model 1
Require:

1: Initial fund value S0, Guarantee level G, Maturity time T

2: Regime-switching interest rate vector r, Regime-switching volatility vector σ

3: Regime-switching mortality vector κ

4: Initial state of the Markov chain X0 = j

5: Transition rate matrix of the Markov chain Q

6: Number of simulation paths nr

Ensure: GMMB price PGMMB

7: for k = 1, 2, . . . , nr do

8: Simulate a Markov chain on which the parameters of the simulated path will

depend on.

9: Find the states of the simulated chain.

10: Calculate the P k
(t,T ),V

k
(t,T ) and Mk

(t,T ) given in Eq.(2.23), Eq.(2.24), Eq.(6.1).

11: Simulate the Markov-modulated fund value Sk(T ) at time T .

Sk(T ) = S0 exp
{

(P k
(0,T ) − V k

(0,T )/2) +
√
V k

(0,T )z
}

(A.4)

where z is a random number from the standard normal distribution.

12: Calculate the discounted final payoff for financial component

DP [k]← exp{−P k
(0,T )}

(
max(Sk(T ), G)

)
13: Multiply with mortality component

MDP [k]← exp{−Mk
(0,T )}DP [k]

14: end for

15: Calculate the Monte Carlo GMMB price

PGMBB =
1

nr

nr∑
k=1

MDP [k]
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A.4 Sensitivity Analysis: Comparison with Finite Difference Method

In this section, the results of the proposed method are compared to the results of the

finite difference method to show the validity of proposed method.

A.4.1 Regime-Switching European Option

Table A.1: Parameter set for the calculation of European option Greeks under RS

Transition Rate Matrix Model Parameters

States State 1 State 2 State 3 Interest Rate Volatility

State 1 -2 1 1 0.1 0.15
State 2 1 -2 1 0.2 0.25
State 3 1 1 -2 0.3 0.35

Figure A.1: Comparison with Finite Difference: Delta

Figure A.2: Comparison with Finite Difference: Gamma
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Figure A.3: Comparison with Finite Difference: ρ1

Figure A.4: Comparison with Finite Difference: ρ2

Figure A.5: Comparison with Finite Difference: ρ3
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Figure A.6: Comparison with Finite Difference: ν1

Figure A.7: Comparison with Finite Difference: ν2

Figure A.8: Comparison with Finite Difference: ν3
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A.4.2 Regime-Switching GMMB

Figure A.9: Comparison with Finite Difference: Delta

Figure A.10: Comparison with Finite Difference: Gamma

Figure A.11: Comparison with Finite Difference: ρ1
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Figure A.12: Comparison with Finite Difference: ρ2

Figure A.13: Comparison with Finite Difference: ρ3

Figure A.14: Comparison with Finite Difference: ν1
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Figure A.15: Comparison with Finite Difference: ν2

Figure A.16: Comparison with Finite Difference: ν3

Figure A.17: Comparison with Finite Difference: κ1
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Figure A.18: Comparison with Finite Difference: κ2

Figure A.19: Comparison with Finite Difference: κ3
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