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ABSTRACT 

 

  

A TECHNICAL FRAMEWORK FOR GROUP STUDIES OF DIFFUSION 

TENSOR IMAGING 

 

 

Metin, Mehmet Özer 

Ph.D., Department of Health Informatics 

Supervisor: Assoc. Prof. Dr. Yeşim Aydın Son 

Co-Advisor: Assoc. Prof. Dr. Didem Gökçay 

 

 

August 2022, 120 pages 

 

 

Diffusion tensor imaging (DTI) is an ideal tool to investigate white matter 

abnormalities. In this study, novel techniques that use non-scalar metrics have been 

proposed for group-based DTI analysis. Utilization of directional statistics to 

evaluate group differences is the main achievement of this thesis. Directional 

statistics can encapsulate much more information than scalar metrics about the 

diffusion tensors extracted from groups of diffusion weighted images. We have 

introduced two new approaches to analyze group differences. The first method 

augments probabilistic fiber tractography with a new visualization technique to 

carry out group-based DTI analysis for connectivity-based hypothesis testing. 

Probabilistic fiber tractography is extended with a new method to visualize FA 

values versus arc-length. This method not only enables hypothesis testing of 

probabilistic tracts but also provides multi-resolution visualization. The second 

method introduces a new technique called tract profiling and directional statistics 

(TPDS). We have investigated different directional statistical models to find the best 

fit. During the experiments, we confirmed that carrying out directional statistical 

analysis along the tract is much more effective than voxel- or skeleton-guided 

directional statistics. As a case study, the method has been applied to identify 

connectivity differences of patients with major depressive disorder. The results 

obtained with the directional statistic-based analysis are consistent with those of 
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Network Based Statistics (NBS), but additionally, we found significant changes in 

the right hemisphere striatum, ACC, and prefrontal, parietal, temporal, and occipital 

connections as well as left hemispheric differences in the limbic areas such as the 

thalamus, amygdala, and hippocampus. Comparison with the output of the network-

based statistical toolbox indicated that the benefit of the proposed method becomes 

much more distinctive as the tract length increases.   
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ÖZ 

GRUP ÇALIŞMALARI İÇİN DIFÜZYON TENSÖRÜ GÖRÜNTÜLEME 

ALTYAPISI 

 

 

Metin, Mehmet Özer 

Doktora Lisans, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Doç. Dr. Yeşim Aydın Son 

Tez Eş-Danışmanı: Doç. Dr. Didem Gökçay 

 

 

Ağustos 2022, 120 sayfa 

 

 

Difüzyon tensör görüntüleme (DTI), beyaz cevher anormalliklerini araştırmak için 

ideal bir araçtır. Bu çalışmada, grup tabanlı DTI analizi için skaler olmayan 

metrikleri kullanan yeni teknikler önerilmiştir. Grup farklılıklarını değerlendirmek 

için yönlü istatistiklerin kullanılması bu tezin ana başarısıdır. Yönlü istatistikler, 

difüzyon ağırlıklı görüntü gruplarından çıkarılan difüzyon tensörleri hakkında 

skaler ölçümlerden çok daha fazla bilgiyi kapsayabilir. Grup farklılıklarını analiz 

etmek için iki yeni yaklaşım getirdik. İlk yöntem, bağlantı tabanlı hipotez testi için 

grup tabanlı DTI analizini gerçekleştirmek için yeni bir görselleştirme tekniği ile 

olasılıksal fiber traktografisini güçlendirir. Olasılıksal fiber traktografisi, yay 

uzunluğuna karşı FA değerlerini görselleştirmek için yeni bir yöntemle genişletildi. 

Bu yöntem, yalnızca olasılıklı yolların hipotez testini sağlamakla kalmaz, aynı 

zamanda çok çözünürlüklü görselleştirme sağlar. İkinci yöntem, yol profili 

oluşturma ve yön istatistikleri (TPDS) adı verilen yeni bir teknik sunar. En uygun 

olanı bulmak için farklı yönlü istatistiksel modelleri araştırdık. Deneyler sırasında, 

yol boyunca yönlü istatistiksel analiz yapmanın voksel veya iskelet kılavuzlu yönlü 

istatistiklerden çok daha etkili olduğunu doğruladık. Bir vaka çalışması olarak 

yöntem, majör depresif bozukluğu olan hastaların bağlantı farklılıklarını belirlemek 

için uygulanmıştır. Yönlü istatistik tabanlı analizle elde edilen sonuçlar, Ağ Tabanlı 

İstatistikler (NBS) ile tutarlıdır, ancak ek olarak, sağ hemisfer striatum, ACC ve 
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prefrontal, parietal, zamansal ve oksipital bağlantılarda önemli değişiklikler bulduk. 

talamus, amigdala ve hipokampus gibi limbik bölgelerdeki sol hemisferik 

farklılıklar. Ağ tabanlı istatistiksel araç kutusunun çıktısı ile karşılaştırma, önerilen 

yöntemin faydasının, yol uzunluğu arttıkça çok daha belirgin hale geldiğini 

göstermiştir. 

 

 

Anahtar Sözcükler: difüzyon tensor görüntüleme, difüzyon görüntülemeyle grup 

analizi, yönsel istatistik 
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CHAPTER 1 

INTRODUCTION 

Solving connectivity of the brain can be the key to understand different patterns of 

brain structures. High-level brain functions require high-level of connectivity 

patterns and brain areas interact with each other through  unique paths of execution. 

To identify these paths of execution, studying neural cells and their connection maps 

is insufficient. Although there are previous efforts, such as studies about primitive 

animals (e.g. Caenorhabditis Elegans for which the network of 302 neurons was 

completely charted using dissection and electron microscopy (Brenner 1973)), 

finding connectivity at the microscopic neuronal/axonal scale in the human brain is 

beyond this technology. A possible map of those connections will consist of 1016 

edges and 1011 nodes (Hagmann et al. 2007). This kind of detailed information 

brings incomputable and mostly irrelevant information. 

Functional connectivity is defined as combination of elements that builds a system, 

regardless of whether there exist direct structural links or connections (Sporns, 

2007). Functional connectivity is related to patterns of time-series where different 

areas correlate  in multiple different time scales. Directions or structural model of 

the components are not relevant in functional connectivity, it only captures statistical 

correlations or independence of different brain areas. Such analyses allow the 

characterization of neural interactions during particular cognitive or motor tasks. 

Functional networks are generated based on functional connectivity maps. FMRI 

and PET techniques map distinct spatial map distributions and connect temporally 

correlated brains regions (Poldrack and Sandak 2004).  

Structural connectivity can be defined as synaptic connections of neurons or 

networks of physical pathways. The cerebral cortex can be represented as densely 

coupled clusters that are also globally interconnected. These brain regions can be 

correlated with other brain regions by analyzing network hubs. Structural 

connectivity is based on classification of those network hubs.  Interpretation of such 

connectivity matrices based on connectivity patterns and network characteristics 

require large-scale connectivity analysis and mapping of cerebral cortex (Sporns et 

al., 2004).   

In cases where global organization of brain structures is more important than the 

organization of a specific structure, connectivity analysis can provide the most 
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important source of knowledge. Development and aging studies are the most notable 

studies where functional and structural connectivity analysis can be of great 

importance. In addition, psychological diseases such as attention deficit 

hyperactivity disorder and depression are known to be related with many different 

areas of the brain. There are various hypotheses claiming that a disease condition is 

mostly caused by the connectivity pattern, not the specific structures. So in order to 

differentiate the pathogenesis and its underlying cause, connectivity analysis can be 

utilized. 

On the other hand, connectivity analysis requires a robust metric to compare a 

disease state with a control state. Diffusion tensor imaging arise to be the only tool 

to understand white matter abnormalities that effects connectivity. It enables 

analyzing the white matter tissue structure, gives visibility regarding the geometry 

of major fiber bundles and quantitative information about it. One can measure 

diffusion characteristics such as tensor orientation, anisotropy etcetera (Goodlett et 

al. 2009). Since the self-diffusivity of water molecules depends on their local 

environment, tissue architecture can be identified by the diffusion tensors. 

Diffusibility metrics also enable group comparison to identify different clinical 

anomalies (Zhu et al. 2010). 

White matter abnormalities can be studied by investigating how white matter tracts 

change. Statistically differentiated orientation and integrity of the tracts can show 

possible illnesses (Sexton, Mackay, and Ebmeier 2009). Basser et. al. (1994) defines 

diffusion tensor as the covariance matrix of diffusion coefficients. It can be 

calculated from the gradient directions of diffusion per voxel (Basser, Mattiello and 

Lebihan 1994). Here, diffusion tensor is non-scalar and represented as matrix. It also 

provides neural tract directional information and scalar descriptors such as FA: 

functional anisotropy, RA is standard deviation of the tensor eigenvalues normalized 

by Apparent Diffusion Coefficient (Basser and Pierpaoli, 2011). Both RA and FA 

represent the degree of anisotropy, whereas the trace of the diffusion tensor 

expresses overall diffusion magnitude (Alexander et al. 2007). MD is in fact average 

of the eigenvalues of the diffusion tensor (Alexander et al. 2007). Since these scalar 

metrics are just descriptors of the covariance matrix of diffusion coefficients, they 

do not contain information about the full tensor distribution. As a matrix descriptor, 

these scalar values can be computed from different eigenvalue combinations so one 

can not interpret the full representation of the tensor. Using only scalar values do 

not consider the information on diffusion directions. 

The largest eigenvector of the tensor,  principal diffusion direction (PDD), represents 

the main fiber direction within a specific voxel and it is assumed that the diffusion is 

restricted in any direction perpendicular to the nerve fibers (Le Bihan et al. 2001). PDD 

has been used mainly in Directionally Encoded Color (DEC) maps that only enable 

visual comparison at  individual subject level (Pajevic and Pierpaoli 1999). Hence it is 

not suitable for quantitative group analysis. In order to evaluate PDD, which is a vector, 

statistics over vectors is needed. 
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Directional statistics is conducted on vectors and directions based on observations 

on compact Riemannian manifolds (Pennec 2006). Hence it can encapsulate much 

more information than scalar metrics about the diffusion. Without the limitation of 

scalar statistics, one can evaluate dispersion and coherence values among various  

populations, fit directional models to the data and perform hypothesis testing for 

group based studies.  

In the literature, directional statistics have been used to characterize fiber orientation 

distribution functions to estimate fiber dispersion quantitatively via fanning and 

bending fiber geometries throughout the brain (Tariq et al. 2016) (Sotiropoulos, 

Behrens, and Jbabdi 2012). In addition, directional statistics have also been utilized 

to extract bundle specific metrics from crossing fiber models (Riffert et al. 2014) 

and fiber tractography (Parker, Haroon, and Wheeler-Kingshott 2003). However, 

Watson distribution, which has been used in previous directional statistics in group 

analysis contain limited parameters (Schwartzman, Dougherty, and Taylor 2005a) 

(Hutchinson et al. 2012). Watson distribution is a bi-modal probability distribution 

on a two-dimensional unit sphere S2 in R3 which is symmetrical around mean 

direction, where each direction and its negative have the same probability. In our 

previous study (Metin and Gökçay 2014), it has been shown that Bingham 

distribution better fits into PDD distributions for white matter tracts and improves 

the depiction of variability among subjects in anisotropic tensors areas, such as fiber 

crossings. This is because Bingham distribution is a generalization of Watson 

distribution: it is bi-modal and elliptic around mean direction.  

1.1. Scope of the Thesis 

The aim of this study is to propose new group analysis methods that deal with not 

only scalar metrics but also work in vector space. The first method that has been 

proposed is histogram based group analysis method. In this study, a group analysis 

method, has been developed based on diffusion imaging that uses connectivity as 

well as diffusibility information (fractional anisotropy). A fully automatic pipeline 

has been developed (Metin and Gokcay 2013). 

The second method which is named as Track Profiling Directional Statistics 

(TPDS), proposes a new tract-based framework using directional information in 

diffusion tensors to improve statistical group analysis (Metin and Gokcay 2021). For 

this purpose, 1) we have generated a new data structure called tract profile by 

clustering fibers across subjects, 2) we have developed a method based on 

directional  statistics to compare WM differences of different groups across each 

tract profile. In order to demonstrate the superiority of the proposed framework, we 

compared the tract profiling method with two widely used techniques, TBSS (Smith 

et al. 2006) and VBA (Van Hecke et al. 2009). Furthermore, we ran a third 

comparison with the Network Based Statistic (NBS) toolbox (Zalesky, Fornito, and 

Bullmore 2010) which utilizes non-parametric statistical testing to identify the 
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components of an NxN undirected connectivity matrix that differ significantly 

between two distinct populations. 

Applications of these new methods are implemented on major depressive disorder 

(MDD). MDD is accounted as one of the first causes  that lower the living standards 

(WHO, 2001). However the pathogenesis of it is not very well known (Drevets, 

Price and Furey 2008). Because pathological conditions are not likely to be 

associated with gross brain pathology, a controlled animal or human experiment 

environment is not possible, Noninvasive techniques are critical to discover 

connectivity patterns that relate to MDD (Drevets 2004).  

To demonstrate the histogram based group analysis method, amygdala connections 

have been chosen for analysis. Since Amygdala is regarded as one of the most 

important structure that effects emotion, the connectivity analysis of Amygdala can 

be important discriminative factor that changes between MDD and control subjects. 

For MDD patients, it can be assumed that the pathways between Amygdala and 

neighboring structures will be affected. Histogram based group analysis method in 

this study could not be regarded as a distinct cut from other group analysis methods. 

However, connectivity based approach, analysis depends on not only FA values but 

also fiber tract lengths, which is addressed by the second method. 

To demonstrate the strength of TPDS in identification of differences of structural 

connectivity in Major Depressive Disorder, a small data set (n=30) is used. Although 

depression has traditionally been viewed as an affective disorder, the last few 

decades of research have shown that MDD is also associated with considerable 

disturbances in cognitive functioning, including executive functions, attention, 

memory and psychomotor speed (McClintock et al. 2010) (Castaneda et al. 2008). 

In MDD, multidimensional, systems-level differences are reported in discrete, but 

functionally integrated pathways (Mayberg 2003).  Therefore, differences in MDD 

can be expected to cover a wide range of WM tracts. So far, especially white matter 

disturbances and connectivity differences have been analyzed using DTI based 

analysis in MDD (McClintock et al. 2010; Kieseppä et al. 2010; Seminowicz et al. 

2004; Zou et al. 2008; Cullen et al. 2010; Helm et al. 2018). Most of these studies 

state that loss of integrity occurs in the WM fiber tracts of the frontal, temporal, and 

cingulate cortex of MDD patients. White matter integrity can be described as 

biophysical white matter changes as a result of micro structural characteristic in both 

intra and extra axonal environments of WM such as axonal water fraction (AWF), 

intra-axonal diffusivity, extra-axonal axial and radial diffusivities.  More 

specifically, reported abnormalities in the connectivity of the DLPFC, ACC circuits 

(Helm et al. 2018), as well as subcortical regions complement other findings 

specified in affective disorders (Sexton, Mackay, and Ebmeier 2009). 
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1.2. Outline of the Thesis 

This thesis is organized as follows. The next chapter contains background 

information about group analysis studies in Diffusion Tensor Imaging. First, the 

metrics, the methods and pitfalls for group analysis using DTI are summarized. 

Furthermore, Major Depression Disorder and previous group analysis methods that 

use DTI for these disorders are described. In Chapter 3 and 4, the methods and the 

results that has been proposed and implemented have been presented. In Chapter 3 

a novel method, histogram-based group analysis using DTI has been described and 

the results has been discussed. In Chapter 4, the main contribution of this thesis has 

been presented. Track based directional statistics (TPDS) method has been proposed 

and the implementation results has been discussed. In Chapter 5, further discussions, 

future work and conclusion has been presented. Background information about the 

basics of diffusion weighted imaging and diffusion tensor imaging is given in 

appendix A. B-spline curves has been described in appendix B and the references 

regarding implementation has been given in appendix C. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

2.1. Diffusion Tensor Imaging In Group Studies 

Diffusion tensor imaging (DTI) enables analyzing the white matter tissue structure, and 

provides  visibility and quantitative information about the geometry of major fiber 

bundles. One can measure metrics such as diffusion characteristics through  tensor 

orientation, anisotropy etc.(Goodlett et al. 2009). Since the self-diffusivity of water 

molecule is sensitive to changes in its local environment, the diffusion tensor acts as a 

probe of tissue architecture. Hence, the diffusion properties extracted by DTI proves to 

be an effective source to be used in group studies in clinical analysis. 

Diffusion tensor imaging (DTI) has been used to analyze and differentiate brain white 

matter architecture between normal and pathologic cases. Mainly for disorders such as 

schizophrenia, autism, Alzheimer's disease, normal development, and depression 

(Khurd et all. 2006). Such studies use statistical analysis of the anatomical structures in 

diffusion tensor images of diseased and normal brains. In the literature there are various 

methods to do group analysis using DTI or DWI data. These methods can be classified 

into ROI based methods, Voxel Based Analysis, Fiber Tract Based Analysis. 

ROI based studies are the oldest techniques that have been used. The regions of interest 

(ROI) are manually placed in the brain and scalar measures such as mean anisotropy or 

fractional anisotropy are derived from the diffusion tensors within the ROI to be 

analyzed. However manually placing ROI’s requires intensive anatomical knowledge 

and could be subject to user bias. A possible solution is registering all subjects to a 

common segmented atlas, select a well-known white matter structure as a template ROI 

and reverse the warping on the template ROI to find a subject’s mapped ROI. 

Tractography can also be used for placing ROI’s and evaluating the group differences.  

Voxel-wise comparison is based on the well-known voxel based morphometry 

technique (VBM), originally developed for finding local changes in grey matter density 

in T1-weighted structural brain images. The voxel-wise analysis starts with normalizing 

the images to a common template to align voxels together in all of the images, and then 

applying hypothesis testing at each voxel. In early studies the analysis mostly depended 

on scalar quantities derived from the diffusion tensors using univariate statistics 

However recent studies show that multivariate approaches provide richer information 
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than univariate statistics by using either diffusion tensor itself as a multivariate unit or 

eigenvalues and eigenvectors of the tensor.  

Fiber tract based analysis is another approach to compute the quantitative parameters of 

interest along the tracts (Gerig, Gouttard and Corouge 2004; Fillard and Gerig,2003). 

The idea behind this method considers the underlying anatomical unit in diffusion 

tensor images as a fiber tract, not a voxel (Mahnaz et al., 2007). The most important 

point of fiber tract based analysis is that if the researcher is confident in comparing the 

same tract between each subject, any statistics would represent the characteristics of that 

tract, so the findings result from different characteristics of the specific tracts rather than  

the overall anatomy/shape of the individual brains. The properties of fiber tracts can be 

scalar values derived from tensors such as MD, FA or Trace or can be solely dependent 

on tensors or shape information like curvature and torsion of the specific tract.  

Diffusion Tensor Image is by nature a non-scalar image and it potentially offers rich 

information beyond the scalar descriptors of tensors such as FA, MD and trace. There is 

an important information loss by just taking only scalar values into the consideration, and 

neglecting the tensor structure. In addition the researcher should also have a priori 

knowledge of expected changes due to the pathological cases (Khurd et all. 2006). 

Multivariate statistical analysis that uses tensor information will be the main concern. 

However since diffusion tensors are symmetric positive definite matrices, the tensor 

domain is non-linear and conventional vector space techniques can not be used. In order 

to use tensors in the group-wise analysis, one must define necessary operations such as 

distance, interpolation, filtering, and hypothesis testing on tensors. Different tensor 

metrics and statistics have been proposed for this purpose.  By the help of these metrics 

and statistics, a multivariate analysis is possible based solely on tensors, which can also 

be utilized for ROI based, voxel based and tract based analysis. Registration of diffusion 

tensor imaging and tensor interpolation can also be more precise by using these metrics.  

The tractography of DTI images will result in 1D fiber tracts that in fact do not represent 

the real anatomical bundle. So fiber tract classification and segmentation should be done 

in order to automatically label the individual bundles and assign to an anatomical 

bundle. These classifications and segmentation can be used in Fiber tract analysis and 

connectivity analysis (cortico – cortical connectivity analysis) that also can be used for 

group-wise analysis. This can only be done by generating segments of the trajectories 

into bundles and creating correspondence between points on trajectories within a bundle 

(Mahnaz et al., 2007). 

2.1.1. ROI Based Studies 

ROI methods begin by identifying anatomical brain regions and comparing the 

anisotropy or the extent of the region. Then the ROI analysis method can be done by 

voxel-wise comparison or  tract-based statistical techniques. The placement of the ROI 

can have a significant effect on the results of the analysis. In the fully manual approach, 

an anatomical expert can select the same ROI’s for all subjects or register subject images 
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on to an atlas (structural or FA images), then select ROI from an atlas image and apply 

warping to the subject ROI with the same parameters. In either case the ROI based 

analysis is problematic considering the facts in the following (Zhang et al. 2010). 

 Placing the exact ROI for each subject is a time consuming and very labor intensive 

task for large group data sets. 

 The ROIs are drawn in 2D in one of the three orthogonal views and are expanded to 

the other angles. However most of the structures can not be defined by 2D planes as 

smoothly as the structure itself (e.g. the corpus callosum and thalamic radiation). 

Sometimes it is also not basically possible to define in 2D if the shape is so complex. 

Cortico-cortical tracks, optic radiations are such examples. 

 DTI images have low resolution so even small changes in the orientation plane or 

positions of slices can result in variability of the measurements. This becomes critical 

if the structure is small.  

 If the ROI’s are not in high accuracy or covers larger structures, it is common that 

some voxels will belong to other fiber tracts or even gray matter and CSF. This 

effects the success ratio of the analysis significantly. 

 Considering those pitfalls stated above, whole brain analysis based on different 

regions or structure is not possible or effective.   

Apart from these problems, there are some automatic ROI placement methods that can 

be used in ROI based analysis. Zhang et al. (2008) has created automated placements 

of 3D region of interests. 3D ROIs are pre-defined by an expert and then the atlas with 

pre-defined ROUs are linearly or non-linearly warped to each subject's data. Although 

the proposed method has been designed for automated tractography, it can also be used 

for ROI based voxel by voxel statistics.  Zhang et al. (2010), created an atlas guided 

method to automate ROI placement. They used DTI-based human brain atlas (Oishi et 

al., 2009), that has 130 pre-segmented gray and white matter areas. The study focused 

on thalamic radiation and short association tracts that have been difficult to 

systematically reconstruct with manual ROIs. There also exist probabilistic maps of a 

comprehensive set of tracts. 

Using either manual or automatic ROI placement, the next step will be hypothesis 

testing. Within the ROIs, diffusion properties such as FA or mean diffusivity (MD) are 

averaged to create a single statistic for each group. The group differences can be 

investigated using univariate tests like t-test. 

2.1.2. Voxel-Wise Comparison 

Voxel-based morphometry looks for localized differences in grey matter density between 

two groups of subjects and it has been used in many structural imaging studies. 

Adaptation of this for DTI group studies can be simply summarized as follows (Smith et, 

al, 2006): 
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 Align all subjects’ structural and FA images to standard space template image (Atlas 

image). Optionally, FA image is first registered to structural image (intra subject 

registration) and then the structural images of different subjects can be registered on 

the template image (inter subject registration).  

 Smooth the output data to eliminate the effects of misalignment of structures. When 

the registration is imperfect, smoothing is used, because smoothing makes the data 

more Gaussian distributed. In most of the studies, 4 to  16-mm full-width half 

maximum (FWHM) smoothing is applied. 

 Carry out voxelwise statistics, using any relevant covariates for the design matrix. A 

simple univariate statistic can be used where, each voxel is processed separately and 

represented by a 1D vector of values. 

 Threshold the resulting image using T, F or Z statistics taking into account multiple 

comparison correction. The final step will be clustering of the voxels that are above 

the threshold.  

In the literature, the main diversity of these steps is in selecting voxelwise statistics (step 

3) and hypothesis testing methods (step 4). For voxelwise statistics, scalar values such 

as Fractional Anisotropy (FA), Apparent Diffusion Coefficient (ADC), Voxel Scale 

Connectivity (VSC) (Parker et al., 2002), and the coherence measure (Klingberg et al., 

2000), have been used extensively to compare diffusivity across groups of subjects (Lim 

and Helpern, 2002).  

For example, Nagy et. al.(2003) uses FA and the coherence metrics to study the abnormal 

white matter microarchitecture of brain tissues of prematurely born infants (Nagy et al., 

2003). Kubicki et al. (2002) uses FA values and analyze temporal–frontal connections, 

Reporting that left-greater-than-right asymmetry in FA values have been found (Kubicki 

et al., 2002). Counsell et al. found that ADC values in infants with overt white matter 

pathology have higher ADC values compared to healthy infants (Counsell et al., 2003).  

However, the diffusion tensor itself has much more richer information than any scalar 

representative. For example, FA values measure only the degree of anisotropy but not 

the orientation of eigenvectors of a diffusion tensor. Hence the mapping of eigenvalues 

to FA values is non-unique; for the same FA values, different sets of the eigenvalues 

can be found or vice versa. This loss of information can conceal between-group 

differences. ADC as well is a linear combination of eigenvalues that provides 

information about overall diffusivity, but it also suffers in detecting group differences. 

Like FA values, ADC values also suffer from representing direction of the diffusivity. 

As a result, voxelwise statistics that use only scalar values such as FA or ADC provide 

little insight into differences in local fiber trajectory across groups. 

There also exists non-scalar voxelwise statistics efforts in the literature. Schwartzman 

et. al. (2005) compares principal directions (PDs) for each voxel  and Martin et al. 

(1999) compares eigenvalues. Representing the tensor as a six dimensional element of 

vectors and using vector distance operation on means of the groups is another proposed 

method (Whitcher et al, 2007). However determination of tensor could not be error-free 
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due to the noise in DTI dataset so estimation techniques has been used to find positive 

definite tensor by the definition of tensor model as stated in Appendix-A.  

The tensor metrics and operations on these metrics becomes an important point if one 

wishes to use full information coming from tensor on voxelwise statistics. Basser and 

Pajavic (2003) proposed a tensor-variate statistical framework for DTI by placing 

diffusion tensors on a Euclidean manifold (Basser and Pajevic 2003). However the 

Euclidean metric is not appropriate for diffusion tensors because DTI datasets are 

commonly assumed to follow a Gaussian distribution and the distribution of noise, but   

tensors are not positive definite always, because positive-definite tensors are only a 

subspace of Euclidean space.  

Arsigny et al. (2005) used Log-Euclidean metric, where the tensors are transformed into 

symmetric matrices using logarithmic transformations and derived statistical analysis 

based on those. Finally they used exponential transformations to generate positive-

definite tensors (Arsigny et al, 2005). Another framework is called Reimannian metric 

(Pennec et al, 2006). On Riemannian manifolds, the distance function can be defined 

with affine-invariance using rotation, scale, shear, inversion invariance where it can 

only operate on tensors belonging to positive-definite symmetric matrices. The 

discussion about tensor based metrics and statistics will be described in section 2.1.4. 

Univariate two-sample hypothesis tests are generally used in group comparison. For 

each voxel, scalar values such as FA, MD are extracted and used in comparison. Two-

sample t-test can be chosen if FA values is normally distributed. Otherwise; the 

alternative hypothesis tests like permutation, bootstrap or rank-based nonparametric 

tests can be used. For multivariate testing, Hotelling T2, Cramér, log-Cramér and 

permutation tests can be used. Hotelling T2 test is much more suitable to be applied on 

Euclidian manifold, Cramér test is suitable for Reimannian manifolds and log-Cramér 

is suitable for log-Euclidian space (Whitcher et al, 2007). 

Bansal et. al. (2007) proposes a different strategy for multivariate voxel-wise analysis. 

They did not use any metrics described above to calculate Mean Tensors (MT), however 

they computed statistical properties of MT using Central Limit Theorem and then 

calculated the probability distribution of the eigenvalues and eigenvectors (Bansal et al, 

2007).  From MT they calculated eigenspace components and computed covariance 

matrix. Finally standard multivariate statistical procedures like Hotelling T2 tests has 

been applied on the distribution of eigenspace components to detect between-group 

differences in tensor morphology at each voxel.  

The main problem of voxel-wise comparison studies related with DTI is the alignment 

problem. The registration of subject’s data to common space must be totally successful. 

The registration algorithm must resolve topological variabilities and also exactly align 

even very fine structure of each brain. This is a critical step for voxel-wise analysis since 

even a small misalignment could end up with significantly underestimated parameters. 

Simon et al. (2005) and Vangberg et al. (2005) confront this problem in their studies. 

Simon et al. (2005) states that apparent FA changes as being in fact due to changes in 
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ventricle size and Vangberg et al. (2005) states that the results are strongly suggestive 

of a shift of the pyramidal tract, rather than a true change in WM integrity. To resolve 

misalignment, spatially smoothing data before computing voxelwise statistics has been 

proposed. However, the smoothing also brings new problems, Jones et al. (2005) states 

that the final result depends on amount of smoothing but there is no a common method 

to decide on smoothing amount. Jones et al. (2005) investigate this in detail and show 

that the final results depend very strongly on the amount of smoothing. Different 

smoothing extents (from 0- to 16-mm FWHM) are applied, but no consistent group 

differences have been found across the different tests. (Park et al.,2004) also 

investigated asymmetry in schizophrenia, using 3-, 6-, and 9- mm FWHM smoothing 

and the results are variant in each case. Van Hecke et al (2010), investigate isotropic 

and anisotropic smoothing for Voxel-Based DTI analyses in a simulation study and 

found that the sensitivity and the specificity values also depend on anisotropic 

smoothing kernels in a VBA study. They stated that the VBA sensitivity and specificity 

are significantly reduced when the data sets are smoothed isotopically with a FWHM 

larger than 3 mm (Van Hecke et al., 2010). 

Tract Based Spatial Statistics (TBSS) package is the most used voxel-wise analysis tool 

to analyses the group differences in the literature. TBSS tackles the alignment and 

smoothing problem for voxel-wise statistics by combining strengths of VBM-style 

analyses and Tractography-based approaches (Smith et al., 2006). VBM-style analyses 

are fully automated for investigating whole brain but alignment and smoothing are 

problematic. On the other hand, Tractography-based approaches work in the space of 

individual subject’s tractography results and do not require smoothing but do not work 

on the whole brain and require user intervention. TBSS introduces “group mean FA 

skeleton” that represents centers of all group fiber bundles. The main steps for TBSS 

analysis are as follows: 

 Preprocess: The diffusion tensors are calculated using simple least squares fit of the 

tensor model and brain extraction is done using BET tool in FSL software (Smith 

2002). 

 Alignment: A common registration target is defined (one of the subject’s image) and 

all subjects’ FA images are aligned to this target using nonlinear registration. At this 

stage, perfect alignment is not expected or required. TBSS uses ‘Image Registration 

Toolkit’ (IRTK) which is nonlinear registration tool based on free-form 

deformations and B-Splines (Rueckert et al., 1999). They limit high-dimensional 

warping so that the overall structure of registered image is not lost. The choice of the 

registration target is not random, instead the most typical subject of the entire group 

is chosen. To find this most typical subject, It registers every subject to every other 

subject, summarizes each warp field by its mean displacement, and select the target 

subject as being the one with the minimum mean distance to all other subjects.  

 FA Skeleton: From all aligned FA images, the mean is computed and skeletonization 

is applied over this mean FA image. A threshold is applied to suppress low mean FA 

areas. The different skeletonization stages can be found in Figure 1. 
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 Projecting Subject Images on to Skeleton: Each subject’s (aligned) FA image is 

projected onto the skeleton. In case of misalignment, skeleton is filled with FA 

values from the nearest relevant tract center.  

 Voxel-wise Statistics: Voxel wise statistics is carried out across subjects on the 

skeleton space FA data. Univariate linear modeling has been proposed to process 

each skeleton voxel independently, applying the general linear model (GLM, i.e., 

multiple regression) across subjects. An unpaired t test can be used to test for 

significant local FA differences between a group of patients and a group of controls.   

 

Figure 1: Different skeletonization stages. (A) Original mean FA image with final skeleton and the ROI 

used for the remaining sub-images. (B) Skeletonization stage 1, using local FA centre-of-

gravity to find tract perpendiculars. (C) Skeletonization after stage 2, using FA image second-

derivative to find remaining perpendiculars. (D) Result of smoothing the perpendicular 

direction vector image. Note that the tract appears more than a single voxel thick in some places, 

because of its 3D nature; where the fiber bundle surface lies partially parallel to the plane being 

viewed, it will not appear thin, though would do if viewed with a different 3D slicing (Smith et 

al. 2006). 

Smith et al. (2006) have applied TBSS on three different white matter diseases; 

schizophrenia, ALS and multiple sclerosis. The have analyzed data from 33 
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schizophrenics and 36 age-matched controls. After applying the TBSS 

preprocessing, they carried out a region-of-interest analysis on mean FA skeleton 

voxels in the superior cingulum bundle using unpaired t-test. They also analyzed 

data from 13 ALS patients and 20 controls. After applying the TBSS preprocessing, 

they carried out GLM analyses. Figure 2 shows the result: in blue where FA is 

reduced in ALS compared with controls—the majority of the mean FA skeleton 

shows reduction, including most of the corpus callosum and pyramidal/ 

corticospinal tracts. Red shows where FA is negatively correlated with ALS 

progression rate; this is confined to the pyramidal/corticospinal tract, clearly seen in 

coronal and axial view. 

 

Figure 2: ALS analysis with TBSS (Smith et al. 2006). 

2.1.3. Fiber Tract Analysis 

If the area of interest is well-known and if the hypothesis depends on a set of fiber 

tract differences for group studies, a better approach than voxelwise or ROI based 

analysis can be fiber tract analysis, in which the quantitative parameters of interest 

along the trajectories can be computed. In this case, the researcher has the 

opportunity to build a hypothesis that depends only on diffusivity of the fiber tract 

and/or the shape of the fiber tract itself. Majority of tractography-based analyses 

calculate the mean in the entire track of scalar values such as fractional anisotropy 

(FA) or the mean diffusivity (MD) (Pagani et al., 2005; Heiervang et al., 2006; Jones 

et al., 2006; Wakana et al., 2007;O’Donnell, Westin, and Golby 2009a). As an 

alternative, other studies measure mean FA or other scalars in regions of interest 

(ROIs) within tracts (e.g. Pierpaoli et al., 1996; Kubicki et al., 2003). The main 

algorithm behind fiber tract analysis that calculates mean differences of fiber tracts 

is as follows. 

1. Perform tractography on each subject either using deterministic or probabilistic 

methods 

a. Through visual dissection, build the tract by determining the ROI’s and perform 

tractography. 

b. Determine the tract using atlas, register the subject image on to atlas, select ROI’s 

and perform tractography. 
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c. Register each subject on to a mean image and select ROI’s to perform 

tractography. 

2. Segment the tracts/trajectories into fiber bundles. This method is not necessary if 

the fiber tract has been computed deterministically. But for probabilistic 

tractography methods, it is necessary. Classification and segmentation of fiber 

tracts will be described in section 2.1.5. 

3. Obtain correspondence between points on trajectories within a bundle. Do 

quantitative analysis on these points, either on correspondence points or by 

calculating a mean value (FA, MD, etc.) for each tract. Curvatures and other 

shape features (widths, volumes, areas) of the entire bundle can also be 

investigated.  

Each step in this algorithm proposes new challenges in implementing tract oriented 

statistics in population. In the first step, the main challenge is to find a consistent 

spatial parameterization within and between populations. Even when tractography 

seeds are set for each image, the natural variability of brain size and shape prohibits 

an automatic consistent parameterization for arc length models of diffusion. 

The second step, namely segmentation and classification of tracts, is also 

problematic and will be described in section 2.1.5.  The last step consists of one of 

the most important and challenging tasks for fiber tract based analysis is finding 

trajectory correspondences along the length of the fibers for each subject.  

There are mainly two different approaches: the first one of them is parameterizing 

the tracts by arc length, the second one is by registering the subject on common 

space (atlas). Previously mentioned tract based spatial statistics (TBSS) can also be 

considered within registration based correspondence matching. 

One of the important works on fiber tract based analysis is done by Corouge, et al. 

(2005). In this study, the preprocessing step has been done by tensor estimation and 

fiber tractography. To build template shape, fibers are reparametrized by cubic B-

spline curves. First, an origin, which can be reliably identified across subjects, is 

defined for each fiber tract (Corouge, et al, 2005). The origin can be either a 

geometric criterion, e.g., a cross-section with minimal area, or anatomical 

information such as an intersection with the midsagittal plane. Points with the same 

arc-length along the fiber tract are matched and the alignment of all curves in the 

training set is achieved by Procrustes analysis (Goodall, et all, 1991). 

After aligning the shapes, the mean shape is estimated by averaging the spatial 

coordinates at each corresponding location over the tract (Corouge, et al, 2005). The 

statistics of the diffusion tensor is calculated over cross-sections along the mean 

curve. The mean tensors are computed by interpolation (with 2x2x2 neighbors) and 

group averaging on Riemannian Manifolds. The group comparison between the 

subjects can be done on average diffusion tensor using FA, MD that has been 

computed from the mean tensors. 
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Figure 3: Algorithm for fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis 

(Corouge, et al, 2005). 

O'Donnell et al. (2009) have performed quantitative analysis of DTI data along the 

white matter tracts using tract-based morphometry (TBM). In his work, he presented an 

automatic TBM method for white matter analysis in groups building analogy between 

the voxel-based morphometry method (in which local statistical analyses are performed 

on features derived from scalar MR intensities ), and local statistical analysis of features 

derived from DTI (O’Donnell, Westin, and Golby 2009b). Their analysis not only 

considers microstructural morphometry such as FA, but also macroscopic 

morphological features regarding the entire curvatures and shape features (widths, 

volumes, areas) of the entire bundle (O'Donnell et al., 2009). 

At first step, affine registration has been applied to the subject images and the resulting 

transformation have been applied to the fibers extracted from whole brain tractography. 

Fiber bundles are then segmented simultaneously in all subjects via group fiber 

clustering (O’Donnell and Westin 2007). The second step calculates the prototype fiber 

representing each fiber bundle. For this issue 3 methods have been proposed as follows: 

Method (1) Maddah’s (2008) proposal to choose the longest fiber in the bundle (M. 

Maddah, Grimson, and Warfield n.d.). 

Method (2) Choose the fiber with the greatest length weighted by local “fiber density”. 

This will also eliminate very long outlier tracks 

Method (3) Use fiber affinity metric to choose the fiber that is the most representative 

of the bundle's trajectory across all subjects (O’Donnell, Westin, and Golby 2009b). 

Figure 4b shows the outputs of different methods. Red fiber bundle shows method 1: 

longest, blue shows method 2: fiber-density-weighted longest and light green method 
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3: embedding. This prototype bundle was parameterized using the arc length. To find 

the correspondence of points for different subject’s fiber bundles, optimal point match 

method (OP) (Kuhn, 1955) has been used for optimal assignment that rewards match 

found in directions nearly perpendicular to the prototype. At this step, all fiber bundles 

of different subjects have been parameterized and corresponding points have been 

found as seen in Figure 4b. At the end, to measure the descriptive statistics, mean FA 

across all fibers was calculated for each arc length coordinate. To do the statistical 

analysis in the group, for each arc length, a two-tailed paired t-test was employed 

  

Figure 4: Tract-based morphometry for white matter group analysis (O'Donnell et al., 2009). 

Another interesting method has been proposed by Goodlett et al. (2009). A new 

parametrization technique has been introduced based on arc length of atlas fiber tracts. 

The atlas is generated   by mapping all subjects’ images. The diffusion properties within 

a fiber bundle are then computed based on this parametrization. The sample points are 

chosen on the parametrized tracts. Diffusion properties such as FA, MD are computed 

on the sample points and modeled as continuous spatial functions of arc length, where 

the tract functions are multivariate functions which map arc length to orthogonal 

measures of tensor shape. To identify group differences, non-parametric statistic testing 

with permutation testing based on the Hotelling T2 statistic is used (Goodlett et al., 

2009). The overall algorithm is given in Figure 5 and parametrization is in Figure 6.  

 

Figure 5: Group analysis of fiber tract statistics (Goodlett et al., 2009). 

(a) (b) 
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Figure 6: Goodlett parametrization of fiber tracts, the sampled points are computed using arc length 

and tensor specific properties are computed and fitted to a function (Goodlett et al., 2009). 

2.1.4. Tensor Based Metrics and Statistics 

In order to compare group studies, we need a computation schema that derives 

statistics; compare or correlate among metrics. DTI is a multidimensional image and 

it is also non-Euclidean. The Euclidean computation on tensor matrix has mainly 

two negative effects. First, Euclidean computations can result in null or negative 

eigenvalues of tensors, but  by  definition, the tensor is a symmetric positive definite 

matrix. This is also correct considering the physical properties of water diffusion: a 

zero diffusion is impossible and a negative diffusion is undefined. To avoid this, 

computations will be limited to only the first eigenvector or orientation. Second, 

tensor’s determinant is a direct measure of the dispersion of the associated local 

water molecules movement, however if we average the tensors in Euclidean space, 

this might lead very often to a tensor swelling effect: the determinant (and thus the 

dispersion) of the Euclidean mean can be larger than the original determinants 

(Arsigny et al, 2005). By definition, diffusion tensors are covariance matrices of 

Brownian motion of water molecules, if we add more dispersion, because of 

introducing more diffusion, it becomes physically unacceptable (Arsigny et al, 

2005). The swelling effect can be seen in Figure 7. In this figure white ellipsoids are 

averaged and blue ellipsoids represent linear computations (swelling effect) and red 

ellipsoids are without swelling effect.    

 

Figure 7: Swelling effect of averaging tensors. 

In the literature, there exists a number of computational frameworks that can work 

on tensors. Pennec et. al (2006) proposed a computational framework that uses 

Riemannian manifolds (by Do Carmo et al., 1992) and developed an extensive 

calculus for performing computations on tensors consisting of  averaging, 
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interpolation and filtering (Pennec et al. , 2006).  Arsigny et al. (2005) introduced a 

log-Euclidean metric. They first transformed each tensor using logarithmic 

transformation so Euclidean calculations became possible in that space. Therefore, 

standard operations for means and variances were possible. Fletcher and Joshi 

(2004) developed the notion of principal geodesic analysis (PGA), which extended 

principal component analysis to manifolds, by using an affine–invariant metric on 

the space of symmetric positive–definite tensors (Fletcher et al., 2004). There were 

also efforts based on manifold learning techniques that provided frameworks for 

analyzing tensor information (Khurd  et al, 2006; Brun, 2006). 

2.1.4.1. Riemannian Framework for Tensor Computing 

In the geometric framework, Riemannian metric is a continuous collection of scalar 

products on the tangent space at each point of the manifold. On any curve on the 

manifold, we can use instantaneous speed vector and its norm on each point to 

compute the instantaneous speed (Pennec, 2017). Integration of those vectors along 

the curve reveals the length. On Riemannian manifold, the distance between two 

points can be computed by the minimum length among the curves joining these 

points. The curves realizing this minimum for any two points of the manifold are 

called geodesics. In Figure 8 left side shows that the tangent planes at points x and 

y of the sphere S are different: the vectors v and w of TxM cannot be compared to 

the vectors t and u of TyM. However by defining the scalar product on each tangent 

plane, the geodesics starting at x are straight lines in the exponential map and the 

distance along them is conserved (Pennec et. al, 2006). 

 

Figure 8: Riemannian metric (Pennec et. al., 2006). 

Additions and subtractions of the vectors in a Riemannian framework can be derived 

by bipoint, an antecedent of vector. Riemannian manifold loses global comparison 

of the vectors in that case. The vectors can only be compared locally. This means 

that all vectors should keep information about which points of the manifold owns 

the vector. However, one can also see a vector 𝑥𝑦⃗⃗⃗⃗  (attached at point x) as a vector 
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of the tangent space at that point. Such a vector may be identified to a point on the 

manifold using the geodesic starting at x with tangent vector 𝑥𝑦⃗⃗⃗⃗ , i.e. using the 

exponential map: y = expx (𝑥𝑦⃗⃗⃗⃗ ). Conversely, the logarithmic map may be used to 

map almost any bipoint (x, y) into a vector 𝑥𝑦⃗⃗⃗⃗  = logx(y) of TxM (Pennec et al., 

2006). This keeps local mapping and allows local comparison so addition and 

subtraction via logarithmic can easily be defined the necessary operations on 

Riemannian manifolds, as  seen in Figure 9. 

 

Figure 9: Basic standard operations in a Riemannian manifold (Pennec et. al, 2006). 

By using these operations and their derivations Pennec proposes an affine invariant 

metric that works on the space of positive define symmetric matrices (tensors) with 

a very regular manifold structure (Pennec et. al, 2006). He proposes a globally 

consistent orthonormal coordinate system (There is one and only one geodesic 

joining any two tensors) that is very close to a vector space, except that the space is 

curved. So interpolation, filtering, diffusion and restoration of tensor fields is 

possible by doing regular vector operations. They have also proposed simple 

statistical operations on tensors. 

2.1.4.2. Log- Euclidean Metrics 

Arsigny state that the Riemannian framework needs complex calculations, so it is 

not efficient for tensor computations (Arsigny et al. 2005). They propose a new 

lightweight computational framework that has not affine-invariant metric but has a 

metric that is invariant by similarity (orthogonal transformation and scale affine 

invariant) called Log-Euclidean. This framework results in classical Euclidean 

computations in the domain of matrix logarithms (Arsigny et al., 2005). 

In their paper (Arsigny et al., 2005), they first define the Logarithm for tensors 

where a tensor S has a unique symmetric matrix logarithm L = log(S). This verifies 

S = exp(L), where exp is the matrix exponential. Each symmetric matrix is 

associated to a tensor by the exponential. Then they build a Vector Space on Tensors 

to create a one-to-one mapping between the tensor space and the vector space of 

symmetric matrices. By these, one can transfer the space to tensors with the addition 

“+” and the scalar multiplication “.” Using the matrix exponential. This defines on 
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tensors the logarithmic multiplication “x” and the logarithmic scalar multiplication 

“dot”, given by: 

{
𝑆1 𝑥 𝑆2 = exp (log(𝑆1) + log(𝑆2)) 

𝛿 𝑑𝑜𝑡 𝑆 = exp( 𝛿 . log (𝑆)) =  𝑆𝛿  

Then they define Log-Euclidean Metric from a Euclidean norm ‖. ‖ on symmetric 

matrices as follows: 𝑑𝑖𝑠𝑡(𝑆1, 𝑆2) = ‖log(𝑆1) −  log (𝑆2)‖. 

The comparison of these frameworks can be seen below. Figure 10 shows the 

differences between Euclidean and Riemannian metrics. Top left image is original 

image with some noise, top right show Gaussian filtering on Euclidean metric, 

bottom left Gaussian filtering on Riemannian metric. Bottom right shows 

anisotropic filtering on Riemannian metric. It can be seen that anisotropic filtering 

on Riemannian gives the best result and Gaussian filtering on Euclidean metric is 

the worst. 

 

Figure 10: Differences of Euclidian and Riemannian metrics (Pennec et. al, 2006). 
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Figure 11 shows Bilinear interpolation of 4 tensors at the corners of a grid. Left: 

Euclidean interpolation. Middle: affine-invariant interpolation. Right: Log-

Euclidean interpolation. In both Riemannian frameworks, as opposed to the 

Euclidean case, swelling effect of the tensor is not observed where Log-Euclidean 

tensor means are slightly more anisotropic than their Riemannian counterparts. 

 

Figure 11: Interpolation differences between Riemannian and Log-Euclidian metrics (Arsigny et al., 

2005). 

Figure 12 shows regularization of a synthetic DTI slice. The original tensors are 

deformed by adding a noise. The original data is properly reconstructed in the Log-

Euclidean case, as opposed to the Euclidean case with the swelling effect.  

 

Figure 12: Regularization differences between Riemannian and Log-Euclidian metrics, Left: original 

synthetic data. Middle left: noisy data. Middle right: Euclidean regularization. Right: Log- 

Euclidean regularization.  (Arsigny et al., 2005). 

2.1.5. Fiber Classification and Segmentation 

Computing the quantitative parameters of interest along the trajectories instead of 

within a specified region makes more sense as the underlying anatomical unit in DTI 

is a fiber tract, not a voxel. The ideal case is to do the computation on an anatomical 

bundle of a fiber tract, by calculating the fiber tracts that ends up the trajectories 

(Mahnaz et al., 2007). The important problem to resolve is to segment the 

trajectories into bundles and obtain correspondence between points on trajectories 

within a bundle. 
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Figure 13: Fiber clustering overview (Brun et al., 2004). 

The necessary steps for fiber clustering are given in Figure 13. Starting from 

diffusion weighted image, fiber traces are constructed using deterministic or 

probabilistic tractography algorithms. After fiber traces have been made, for each 

fiber tract a feature vector is computed. The feature vector can consist of diffusion 

related values as well as morphological descriptors such as shape, curvature, etc. 

After mapping each fiber tract to the feature space, clustering algorithms like k-

means, K-nearest neighbors, normalized cuts, etc. can be applied to cluster the data. 

After clustering, voxel segmentation and fiber segmentation can be done on voxel 

space or fiber tracts. 

Brun et al. (2004) stated that the pairwise comparison of all fiber traces could be a 

time-demanding task so they proposed that the problem can be handled in three steps 

(Brun et al., 2004). First, they map fiber traces to Euclidean feature space preserving 

some but not all information about fiber shape and connectivity. Brun et. al. (2004) 

proposes that a fiber trace can be represented as a set of points in space where each 

point can be represented as a 9-dimensional feature vector by calculating the mean 

vector m and the covariance matrix C of the points building up the fiber trace. Brun 

et. al. (2004) also use Gaussian kernel for comparison of points in Euclidean space 

and finally, build a undirected weighted graph G = (V;E), where the nodes 

correspond to the points to be clustered and each edge has weight w(i; j) which 

represent the similarity between point i and j. They apply normalized cut algorithm 

to cluster the fiber tracts. The result of Brun’s algorithm is given in Figure 14. 
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Figure 14: Segmentation obtained from recursive bipartitioning of the fiber traces. Maximum value 

of the Ncut set to 0.2, 2.5 and 4.5 respectively (Brun et al., 2004). 

There are several other papers that have addressed clustering the fiber tracts into 

bundles. Some of the interesting ones are as follows. Batchelor et al. (2006) 

compared several mathematical tools including link, principal component analysis 

(PCA) and the Euclidean distance of Fourier descriptors to study the relative spatial 

configurations of trajectory pairs and indicated that these measures could be used in 

classifying and clustering the reconstructed fiber curves (Batchelor et al., 2006). 

Gerig et al.  (2004) and Corouge et al.  (2004) introduced Hausdorff and similar 

distance metrics to implicitly model tract’s shape characteristics. Shimony et al. 

(2002) used fuzzy c-means clustering and Gaffney et al. (2003) used curve 

clustering techniques. 

Apart from clustering, point-by-point correspondence between the trajectories of 

each cluster is also an important issue especially for fiber tract based analysis. Ding 

et al. (2003) proposed a quantification method by finding the corresponding 

segments of every trajectory. The tracks are all started from corresponding seed 

points that originate from a small ROI. But that approach might not be suitable for 

whole brain fiber analysis (Ding et al., 2003). Another method with a similar 

approach came from Batchelor et al. (2006) where a proper choice of the seed points 

is made and the same sampling of the arc-length of the fiber bundle is done. 

Batchelor et al (2006) used Procrustes algorithm to register the trajectories.  

The main problem of these algorithms is that they have strict constraints over the 

selected ROI, therefore seed points can not be applied for whole brain analysis. All 

solutions lack curve matching algorithms that enable analysis of the longer tracts 

over gross areas (Maddah et al., 2007). Maddah et al. (2007) proposes a statistical 

model of the fiber bundles that has been calculated as the mean and standard 

deviation of a parametric representation of the trajectories.  In this model, the cluster 

of the trajectories are built by defining a Gamma mixture model and expectation 

maximization (EM) is applied to separate the cluster. The group analysis is then 

performed based on the points of distance maps for each cluster center. In addition, 
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a posterior membership function is defined to do the probabilistic assignment of the 

trajectories. The results of Maddah’s algorithm is given in Figure 15.  

 

 
a 

 
b 

 
c 

Figure 15: (a) Trajectories of 5 different clusters used for quantitative analysis: Splenium (yellow), 

corticospinal (red), corticobulbar (green), middle cerebellar peduncle (blue), and genu 

(magenta). (b) A model representation of the bundles as the mean trajectory and the 

isosurfaces corresponding to spatial variation of the clusters (c) Curvature of the cluster 

center along its normalized arc length for fiber bundles shown (Maddah et al., 2007). 

2.2. Major Depression Disorder 

Gelder et al. (2001) proposes classification of primary mood disorders to be done 

according to the nature and severity of symptoms during each episode, and by the 

course of the illness (Gelder et al., 2001). Major depression is the main subtype of 

the unipolar mood disorder category, it can be defined as one or more episodes of 

low mood and/or anhedonia as well as cognitive and somatic symptoms like fatigue, 

loss of appetite, sleep disorders (Harrison, 2002).  

Drevets et. al. (2008) described MDD as a mood disorder that effects brain systems 

involved in the regulation of mood and emotional expression, reward processing, 

attention, motivation, stress responses, social cognition and neurovegetative 

function (e.g., sleep, appetite, energy, libido). Although depression has traditionally 

been viewed as an affective disorder, the last few decades of research have shown 

that MDD is also associated with considerable disturbances in cognitive functioning, 

including executive functions, attention, memory and psychomotor speed 

(McClintock et al., 2010; Castaneda et. al., 2008).  

Studies point out that MDD mainly effects the brain networks responsible from 

regulating the evaluative, expressive and experiential aspects of emotional behavior 

(Phillips et al. 2003). These circuits include the limbic-cortical-striatal-pallidal-

thalamic circuits (LCSPT), the orbital and medial prefrontal cortex (OMPFC), 

amygdala, hippocampal subiculum, ventromedial striatum, mediodorsal and midline 

thalamic nuclei and ventral pallidum (Drevets et al., 2008). The conditions that alter 
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transmission through these circuits in various ways can produce the pathological 

emotional symptoms (Drevets et al. 2008). 

One of the well-structured neurocircuitry representations is provided by Drevets et 

al. (2001). They represent the regions implicated by studies of depression arising in 

the context of neurodegenerative illness or cerebrovascular disease. The studies 

implicate limbic–thalamo–cortical (LTC) circuits, involving the amygdala, medial 

thalamus, and orbital and medial PFC, and limbic–cortical–striatal–pallidal–

thalamic (LCSPT) circuits, involving the components of the LTC circuit along with 

related parts of the striatum and pallidum as can be seen in Figure 16 (Drevets et al. 

2001).   

 

Figure 16: Anatomical circuits of mood disorders (Drevets et al. 2001). 

In his work he describes these connections as follows: red rectangles represent the 

areas that have neuromorphometric and/or histopathological abnormalities in 

primary MDD and/or BD, bi-polar disease (Drevets et al. 2001). Thalamus and 

Hypothalamus have not been microscopically examined in mood-disordered 

patients, but structural abnormalities are suspected on the basis of the finding 

regarding third ventricle enlargement in children and adults with BD.  Arrow 

direction shows the direction of abnormalities in CBF. The blue open arrow shows 

the direction of metabolic abnormalities. Solid lines show anatomical connections 

between structures. The direction of projecting axons (reciprocal connections have 

arrowheads at both ends) is indicated by closed arrows. Drevets concluded that in 
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MDD mainly prefrontal cortical areas are effected as shown in the figure (Drevets 

et al. 2001). 

Other than Drevets, Mayberg (2004) states that major depressive disorder is a 

multidimensional, systems-level disorder. MDD affects mainly functionally 

integrated pathways. The MDD can be viewed as the net result of failed regulation 

of integrated system under circumstances of cognitive, emotional or somatic stress 

as can be seen in. Figure 17. Instability of this system by an unknown factor leads 

to disequilibrium state known as a major depressive disorder (Mayberg, 2004).   

 

Figure 17: Putative sources of MDD. (Mayberg, 2006). 

Mayberg (2004) also proposes one of the most accepted models of depression as 

seen in Figure 18, which is called the Limbic-cortical dysregulation model. Mayberg 

had collected data using PET in 3 behavioral states – base-line depressed (unipolar 

and Parkinson’s disease patients), post-treatment (medication, cognitive therapy, 

placebo, surgery), and transient induced sadness (controls, patients, neurotics) – to 

form the basis of this schematic. Mayberg (2004) grouped the areas into 3 main 

compartments, cortical (blue), limbic (red) and subcortical (green). The model 

proposes that if there is modulation of dysfunctional limbic-cortical interactions 

(solid black arrows), relevant MDD patterns arises. Abbreviations: mF, medial 

prefrontal; dF, prefrontal; pm, premotor; par, parietal; aCg, dorsal anterior cingulate; 

pCg, posterior cingulate; rCg, rostral cingulate; thal, thalamus; bstem, brainstem; 

mOF, medial orbital frontal; Cg25, subgenual cingulate; Hth, hypothamus; Hc, 

hippocampus; a-ins, anterior insula; amyg, amygdala; pins, posterior insula. 

Numbers are Brodmann designations (Mayberg 2003). 
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Figure 18: Mayberg’s Model of Depression. (Mayberg, 2003). 

Vago et al. (2011) collects various findings that use functional neuroimaging striatal 

pallidal- thalamic circuitry (CLIPST) as seen in Figure 19. Solid lines show 

anatomic connections; arrows show excitatory projections; terminal endings show 

strong inhibitory projections. The model also includes structures involved in the 

processing of fear, reward, attention, motivation, memory, stress, social cognition, 

and somatic functions. Depression may arise in the context of dysfunction of one or 

more of these regions, or because of a failure of coordinated interactions within or 

between the broader circuits. It is likely that different subtypes of depression are 

mediated by disorders localized to different brain areas and respond accordingly to 

different treatments. 
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Figure 19: Corticolimbic-insular-striatal pallidal- thalamic circuitry for psychiatric disorders (Vago 

et al., 2011). 

2.2.1. Neuropathology of Major Depression Disorder 

Studies show that MDD has biological, psychological and social causes. Biological causes 

can be divided into two: brain chemicals and neurological abnormalities. Brain chemicals 

such as neurotransmitters, hormones and the endocrine system plays critical role in MDD 

pathology. Researchers have discovered associations between clinical depression and the 

function of three neurotransmitters: serotonin, norepinephrine, and dopamine, all related 

with functions that regulate emotions,  stress, sleep, appetite, and sexuality. Limbic system 

and hypothalamus have been researched commonly in various researches. 

On the other hand, researches on neurological abnormalities for MDD have become 

significantly important for MDD studies. There are several reports of cytoarchitectural 

alterations in white matter structures, characterized by a decrease in the number or 

density of glia, reductions in the size and density of neuronal populations and alterations 

in indices of synaptic terminals and dendrites. 
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Neuronal size and number: Neuronal size reflects the correlation of a neuron’s efferent 

and afferent connections. Reduced neuronal size suggests that functional and/or 

structural disconnectivity can occur. Neuronal number and size changes may reflect 

functional implications and abnormal cell death or apoptosis (as in some 

neurodegenerative disorders) or may reflect altered neurogenesis (Cotter, 2003). 

However, the consistency of the findings are not enough to state that neuronal size or 

number is altered in bipolar disorder or major depressive disorder. Morphometrical 

analysis shows that neural size reductions have been observed in anterior cingulate 

cortex, the dorsolateral prefrontal cortex and the orbito frontal cortex. There may also 

be a reduced density of larger neurons in major depressive disorder, which explains 

reduced median or mean neuronal size.  

Glial changes:  Reduction in number and density of glial cell numbers have been 

observed in major depressive disorder. Glial cells have largely been ignored and 

traditionally been viewed as neuronal supporting cells in the central nervous system – 

so-called ‘mind glue’ – with their primary roles in glutamatergic neurotransmission, 

glucose metabolism and neurotrophic support (Cotter, 2003). However, recent studies 

have shown a cortical glial cell deficit in major depressive disorder. The changes have 

been observed in the orbitofrontal cortex, anterior cingulate cortex and dorsolateral 

prefrontal cortex. The results are verified with the functional and structural imaging, 

and as well as the neuropsychological investigations. Glial cells comprise three different 

cell types (microglia, oligodendroglia and astrocytes) and it is not yet clear which ones 

of these are responsible for the observed deficit in major depressive disorder. Support 

for the possibility that astrocyte deficits are responsible for the glial cell changes has 

been provided by a proteomics investigations based on the Stanley Foundation Brain 

series (Johnston-Wilson et al., 2000), although other researchers have also found 

evidence for reductions in markers of oligodendroglia.  

Synaptic changes: Quantification of dendrites and synapses could reflect 

neuropatological changes for mood disorders. Cotter et al. (2003) reports that 

synaptophysin, complexin I and growth-associated protein-43 (GAP-43) are main factors. 

In his studies, he found that those three proteins are reduced in the anterior cingulate 

cortex in bipolar disorder, but only complexin II is reduced in major depressive disorder. 

His analysis also shows that GAP-43 and synaptophysin are not changed significantly in 

major depressive disorder in the prefrontal cortex. However, protein-25 and complexin I 

and II are found to be reduced in hippocampus in bipolar disorder, with no changes in 

major depressive disorder. As a result, cortical limbic regions are reported as the main 

areas that shows synaptic pathology (Cotter et al., 2003). 

Subcortical white matter: MRI studies show that subcortical areas can be differentiated 

between control and patient groups’ T2-weighted images for both major depressive 

disorder and bipolar disorders. White-matter hyperintensities are dominant in the deep 

white matter, around the basal ganglia and in the periventricular region (Harrison, 2002). 

Diffusion tensor imaging also verifies the findings where those hyperintensities show 

damaged areas of axonal organizations in white-matter tracts. It can be concluded that 
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mood disorder in these subjects may be due to interruption of the frontal cortical–

subcortical connections.  

2.2.2. White Matter Abnormalities in Major Depression Disorder 

Evidence from recent neuroimaging and histological techniques shows that white 

matter abnormalities can be one of the reasons of dysfunction of the related neuro 

circuitry (Fields, 2008; Herrmann et al., 2008).  Disruption of frontal-subcortical circuits 

like limbic–thalamo–cortical (LTC) circuits, involving the amygdala, medial thalamus, 

and orbital and medial PFC, and limbic–cortical–striatal–pallidal–thalamic (LCSPT) 

circuits, involving the components of the LTC circuit along with related parts of the 

striatum and pallidum may lead to a disconnection syndrome between frontal and 

subcortical regions, which correspond to the major depression (Tekin and Cummings, 

2002; Alexopoulos et al., 2002). Skolov reports that expression of oligodendroglia-

related genes is decreased in patients with MDD. The oligodendroglia-related genes are 

known to be important for forming white matter (Sokolov et al., 2007). Post-mortem 

studies have shown that deep WM abnormalities can occur in the dorsolateral prefrontal 

cortex (DLPFC) in major depressive patients (Regenold et al., 2007). Structural MRI 

studies in patients with major depression have revealed that increased WM 

hyperintensities are common and severe in frontal cortex (Taylor et al., 2003). There 

are also findings that are related with structural abnormalities. Ballmaier et al. (2004) 

reports that reduced WM volume is observed in the anterior cingulate cortex and the 

gyrus rectus. These findings show that integrity and connectivity of WM could affect 

major depression disorder and impair connection between limbic – frontal circuits that 

regulate emotional and cognitive functions. 

2.2.3. DTI Studies of Major Depression Disorder 

The earlier in-vivo studies related with MDD are mostly based on structural MRI. 

However recent studies have shifted to DTI where the main research topic is the white 

matter connectivity. Most of these studies are based on ROI analysis, although more 

recent ones focus  on VBM and TBSS. Overall most of these studies state that the loss 

of integrity occurs in the WM fiber tracts of the frontal, temporal, and cingulate cortex 

of MDD patients (Nobuhara et al., 2004; Nobuhara et al., 2006; Taylor et al., 2004; 

Yang et al.,2007). ROI analysis considers only a very small region of the brain so it is 

subjected to miss the other related changes. There are also studies that cover whole-

brain WM integrity in patients with MDD (Cullen et al., 2010; Zou et al., 2008; Yuan 

et al., 2007; Ma et al., 2007). Those studies are also aligned with previous findings that 

indicate MDD is not related with just some regions it is a result of a larger network of 

regional irregularities. (Drevets et al., 2008). Other related studies for MDD show 

reduction of FA values in parietal and occipital cortex (Yuan et al., 2007; Ma et al., 

2007), in the internal capsule (Zou et al., 2008), and sagittal striatum (Kieseppa et al., 

2010) or WM tracts such as superior longitudinal fasciculus (SLF) (Zou et al., 2008) 

and uncinate fasciculus (Cullen et al., 2010). 
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Sexton et al. (2015) had made an extensive review of diffusion tensor imaging studies in 

affective disorders. One hundred twenty citations were retrieved from EMBASE and 

MEDLINE. 54 of them have used diffusion tensor imaging and among them 27 articles 

consist comparison with healthy controls. The results are given in Figure 20 and Figure 21. 

 

Figure 20: ROI based MDD analysis (Sexton 2015). 

 

Figure 21: VBA and TBSS based MDD analysis (Sexton 2015). 
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19 studies out of 27 are based on ROI and tractography analysis, 5 out of 27 used 

VBA method and only one of the studies used TBSS method. 2 studies have used 

both ROI and VBA analysis.   

In these studies, majority of studies (21 out of 27) found at least one region that has 

significant reduction in anisotropy. Among those regions the frontal and temporal 

lobes or more specially the uncinate fasciculus, was the most common. The 

connections between the parietal and occipital lobes were only found to be 

significant by global analysis methods. In summary, there is no lateralization of 

anisotropy reductions. On the other hand, there are some studies that show increase 

in anisotropy (3 out of 27). Frontal lobe, corpus callosum, uncinate fasciculus, optic 

radiation and anterior thalamic radiation were found to be significantly increased 

and only limited to bipolar disorder. 

11 out of 27 studies investigate affective disorders where 6 studies could not find 

difference between control and patients. Only 4 studies detected change in 

diffusibility in bipolar disorder.  

ADC also has been used to compare control and patient images. Only 3 of those 

studies reported that ADC has increased. Radial and longitudinal diffusivity are also 

compared in some of the studies; increased radial diffusivity is found for affective 

disorders. Increased longitudinal diffusivity and decreased radial diffusivity were 

detected in regions where increased FA has been found. A global network change 

has been detected in superior frontal white matter, which contains fibers of the 

DLPFC and ACC circuits. Thus, all those findings support that for affective 

disorders white matter abnormalities constitute one of the factors. It is also shown 

that the network between frontal and subcortical regions contains the main areas that 

have been affected (Sexton et al. 2009). 
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CHAPTER 3 

HISTOGRAM BASED GROUP ANALYSIS METHOD AND RESULTS  

This chapter describes a novel DTI group analysis method. A fully automatized 

pipeline has been implemented and presented in INCF Neuroinformatics Congress 

in Stockhold, Sweden (Metin and Gokcay 2013). The Method has been applied to a 

limited set of subjects. Method section describes the preprocessing, processing and 

analysis pipelines, then the results are presented and discussed.   

3.1. Method 

The focus of this study is to develop a group analysis for diffusion imaging that uses 

connectivity as well as diffusibility information (fractional anisotropy). A full 

automized pipeline has been developed and Amygdala connections have been 

chosen for analysis. Since Amygdala is regarded as one of the most important 

structures that effects emotion, the connectivity analysis of Amygdala can be 

important discriminative factor that changes between MDD and control subjects. 

For MDD patients, it can be assumed that the pathways between Amygdala and 

neighboring structures will be affected. 

The proposed group analysis method in this study could not be regarded as a distinct 

cut from other group analysis methods. However, connectivity-based approach, 

analysis depends on not only FA values but also fiber tract lengths can be regarded 

novel technique. 

3.1.1. Method Pipeline 

The overall pipeline has been designed using Connectome Mapper pipeline. The 

pipeline has been revised and improved by changing and adding some steps. The 

pipeline is not homogeneous, it uses FSL (FLIRT, FNIRT for registration) (Smith, 

2004), Freesurfer (for segmentation and parcellation) (Fischl, 2002), Camino (Cook, 

2006) for tractography. At the end of the process, the pipeline traverse connectivity 

graph building, FA matching, Histogram building and group analysis technique that 

has been implemented for this thesis work. The overall pipeline can be seen in 

Figure 22. 
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Figure 22: Overall pipeline. 

The pipeline starts with converting DICOM images to NHDR and Nifti file format. 

NHDR file format is supported by NA-MIC (National Alliance for Medical Image 

Computing) and mostly used for DWI images. NHDR file is in fact an ascii file 

representing the header of raw data. NRRD (Nearly Raw Raster Data) file holds the 

combined form both raw data and ascii header. NIfTI-1 is adapted from the widely 

Analyze file format and is supported by Neuroimaging Informatics Technology 

Initiative. Nifti can be stored in dual file (.hdr & .img) or single file (.nii) storage.  

The next step is correcting the motion and eddy current artifacts. The application of 

strong field gradients required for diffusion tensor imaging (DTI) result in eddy 

currents that induce significant direction-dependent distortions in the resulting 

images. Eddy currents in the gradient coils induce (approximate) stretches and 

shears in the diffusion weighted images. To create analogy Eddy current correction 

of DTI data can be regarded as motion correction of fMRI data. 

The next step is intra subject registration of T1, T2 and DWI images. In literature, 

the registration has been done between T2 image and DWI B0 images, and then T1 

is registered on T2. So that T1, T2 and DWI images become aligned. For all 

registration steps FSL’s FLIRT and FNIRT routines has been used. All of the images 

has been registered on DWI B0 image so that we can state that all image operations 

has been done on diffusion step. This method eliminated the problem of 

transforming diffusion tensors.  

The next step is applying segmentation and parcellation steps of FreeSurfer using 

recon_all command. These steps transform patient on uniform space and try to 

segment white and gray matter as well as cortical and subcortical structures. The 

parcellation step reveals 83 distinct cortical and subcortical structures of the brain. 
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The tractography step consists of sub steps, DTI tensor estimation and tractography. For the 

entire tractography step, Camino Tool, which has been developed by University College 

London, has been used. DTI tensor estimation creates (estimates) tensors from DWI image. 

Weighted Least Square Estimation technique with shifting negative eigenvalues option has 

been used. For tractography three different techniques has been used: Deterministic 

tractography (Mori, 2003), Bayesian stochastic tractography (Friman, 2006)  and 

probabilistic index of connectivity probabilistic tractography (Parker, 2003; Parker, 2005). 

The next steps of pipeline was developed for the thesis work. ITK, VTK, Boost 

Graph, GraphViz are some of the frameworks and libraries that has been used. 

Except from Group Analysis, all of the remaining steps are written in C++, Group 

Analysis step has been written using Matlab. 

Connectivity Graph Building step accepts following inputs: 

 Fiber tracts that are output of Camino tractography steps and in VTK Poly Data 

format. VTK Poly Data Format holds data in polygon representation where each 

fiber consists of a number of voxel points that fiber passes.  

 ROI file that is the output of FreeSurfer recon_all parcellation step. The file is in 

NRRD format. Each ROI are represented by different integer ID. 

 ROI ID: filters the start area of fiber tracts: For Example, Amgydala  

 Filter: Consider only one hop neighbor. 

The algorithm of Connectivity Graph Building passes for each fiber tracts, labels 

crossing ROI areas, building weighted directed graph, where each node represents 

ROI and each edge represents the number of connections (tracts) that passes ROI A 

and goes to ROI B. It is also possible that any fiber tracts can pass more than one 

ROI. If Filtering flag is set on, it filters the results where only one hop neighbor are 

consider that either starts or end in given ROI.  

The next is FA matching for Fibers, this step accepts following inputs: 

 Connectivity Graph: for each edge voxel coordinates are provided 

 White matter mask that is output of FreeSurfer segmentation step. The positive 

integer values for voxels represents white matter areas. 

 FA scalar image: that is output of DTI tensor estimation step 

 Start ROI ID: filters the start area of fiber tracts: For Example, Amgydala  

 End ROI ID: filters the start area of fiber tracts: For Example, Putamen  

 Filter: Consider only one hop neighbor. 

FA matching for fibers step passes for each fiber tracts on FA scalar image. FA 

images and fiber space are manually aligned so that for each voxel coordinates in 

Fiber tract will have corresponding FA value in FA image. This step considers only 

white matter areas that have been given in white matter mask. The output of FA 

matching is CSV file where each row holds fiber ID, voxel coordinates, FA value 

and tract length. Tract length is calculated during traversing the fiber tract. Filter 
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field filters the result as given in Connectivity Graph Building step. Figure 23 show 

an example visualization of matching FA values on each fiber tract. 

 

Figure 23: FA values that passes on the tracts. 

The next step is histogram building. This step uses Matlab hist3 function, that builds 

3D histogram by pining the elements of the m-by-2 matrix X into a m-by-n grid of 

equally spaced containers, and outputs a histogram. Each column of X corresponds 

to one dimension in the bin grid. The histogram is build according to FA values and 

tract lengths. So that each m-by-n grid element holds number of voxels that has 

specific FA value a tract lengths. Figure 24 hows an example of such 3d histogram. 

 

Figure 24: 3d Histogram for fiber tracts of one subject. The x-axis bins are for fiber tract length and 

y-axis bins are for FA values. 
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The histogram is projected on x-y axis to build a heat map. Y-axis represents FA 

values, X-axis represents tract lengths. Figure 25 shows an example of generated 

heat map.  

 

Figure 25: Heatmap for the same histogram in 2d. 

After generating such heat map for all subjects, a t-test has been applied on each 

bins. The p value has been chosen as 0.005. Figure 26 shows a map for fiber tracts. 

The red squares represent the histogram pins that statically significantly differs 

control subjects with MDD patients. Figure 27 shows a map of p values for each 

histogram pins. The more reddish square represents the less p value.    
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Figure 26: Map for fiber tracts for each FA and fiber length match. Red square represents the 

histogram pins that statistically differs control subjects with MDD patients (p<0.05). 

 

Figure 27: Map for p values for a connection histogram. The more reddish, the more significantly 

different values. 
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3.2. Experiments and Results 

3.2.1. Subjects and Data Acquisition 

For the test of histogram based group analysis, the data set consist of 2 MDD patients 

and 4 control subjects has been used. The scans have been acquired using Siemens 

MAGNETOM 3 Tesla scanner. Anatomical T1-weighted images were collected 

using a high-resolution gradient echo sequence. T2 sequence has been collected 

using square voxels in axial directions. DTI sequence consisted of 7 b0 and 45 

gradient directions has been acquired for each subject. 

3.2.2. Results 

The whole pipeline that has been described in section 3.1 has been applied to 4 MDD 

patient and 6 control subject. The ROI are selected by evaluating the weighted 

graphs for each subject. It is found that the high correlation of connection numbers 

are common for all subject for following connections. Some of the connection 

graphs are given in Figure 28. 

 

Figure 28: Amygdala connection graphs (number of connections are averaged over the subjects). 
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For each connection, 3d histograms are calculated and t-tests are applied for each 

histogram pins. As can be seen in Figure 29, for lower FA values (0.10-0.30) there 

is a pattern that for the MDD patients’ fiber tracts regardless of the tract length FA 

values are significantly bigger than control patients. On the other hand for higher 

FA values (0.9) the MDD patients have significantly lower connections than control 

patients for lower tract length. 

As can be seen in Figure 30 the pattern is much more significant than entorinal cortex, 

for lower FA values (0.10-0.30) there is a pattern that for the MDD patients fiber tracts 

regardless of the tract length FA values are significantly bigger than control subjects. 

The situation differs with left amygdala connections with Hippocampus and Insula. 

Nearly all range of FA values, it can be seen that the number of fiber tracts of control 

subjects are significantly bigger than MDD patients. 

The pattern is almost the same for right amygdala. The only connection that has 

higher number of connections for low FA values are Entorhinal cortex connections. 

The summary of the evaluation is given in following tables.  

Table 1: Histogram based analysis of amygdala connections. 

Left Amygdala with 
Entorhinal cortex 

 Low Tract Length HighTract Length 
Low FA ↑  
High FA ↓  

 
Left Amygdala with Temporal 
Pole 

 Low Tract Length High Tract Length 
Low FA ↑  
High FA ↓  

 
Left Amygdala with Insula  Low Tract Length High Tract Length 

Low FA ↓ ↓ 
High FA ↓ ↓ 

 
Left Amygdala with 
Hippocampus 

 Low Tract Length High Tract Length 
Low FA  ↓ 
High FA ↓ ↓ 

 
Right Amygdala to Medial 
OrbitoFrontal 

 Low Tract Length High Tract Length 
Low FA ↓ ↓ 
High FA ↓ ↓ 

 
Right Amygdala to Entorhinal 
cortex 

 Low Tract Length High Tract Length 
Low FA ↑ ↑ 
High FA ↓ ↑ 

 
Right Amygdala to Putamen  Low Tract Length High Tract Length 

LOW FA ↓  
HIGH FA ↓  

 
Right Amygdala to 
Hippocampus 

 Low Tract Length High Tract Length 
LOW FA ↓ ↓ 
HIGH FA ↑ ↓ 
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Figure 29: Left amygdala with entorhinal cortex. 

 

Figure 30: Left amygdala with temporal pole. 
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Figure 31: Left amygdala with insula. 

 

Figure 32: Left amygdala with hippocampus. 



45 

 

Figure 33: Right amygdala with medial orbitofrontal. 

 

Figure 34: Right amygdala with entorhinal cortex. 
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Figure 35: Right amygdala with putamen. 

 

Figure 36: Right amygdala with hippocampus. 
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CHAPTER 4 

TRACT PROFILING AND DIRECTIONAL STATISTICS METHOD AND 

RESULTS  

This chapter describes a new DTI group analysis technique that can be applied 

though fiber tracts. This new method called tract profiling and directional statistics 

(TPDS) has been implemented. As a test set, the method has been applied to 

subject’s dataset with control and MDD patients. A part of this study has been 

presented in Human Brain Mapping, Barcelona, Spain (Metin and Gökçay 2014). 

Later, TPDS method has been published in Frontier Neuroscience 2021 (Metin and 

Gokcay 2021). 

4.1. Method 

Directional statistics, which is a statistic of vectors and directions, deals with 

observations on compact Riemannian manifolds. Thus, it can encapsulate much 

more information than scalar metrics about the diffusion. Without the limitation of 

scalar statistics, one can evaluate dispersion and coherence values among the 

populations, fit directional statistics model to the data and hopefully does hypothesis 

testing for group based studies. Previously, directional statistics have been mainly 

used to analyze paleomagnetic data, which also consist of principal paleomagnetic 

direction and uses vector space. 

There are a number of statistical distributions that can be used in directional data. 

Von Misses circular distribution is one of them which can be used for 2D data. 

Fisher distribution is a probability distribution on the two-dimensional unit sphere 

S2 in ℝ3which is uni-modal and the vectors disperse around mean direction 

symmetrically. Dimroth-Watson distribution, which is commonly known as Watson 

distribution, is bi-modal and symmetrical around mean direction. Kent distribution 

is uni-modal and elliptical that assumes the vectors of the model are dispersed 

elliptically and Bingham distribution is bi-modal and elliptical (Fisher, 1993; 

Mardia, 2000).    

Although, directional statistics have been used in analysis of DTI previously 

(Hutchinson, 2012; Schwartzman, 2005), To the best of author knowledge, there is 

no related work to evaluate which distribution fits best to describe principal 
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diffusion characteristics of DTI tensors. The assumptions and requirements of each 

directional distribution differ, that requires carefully analysis of PDD’s according to 

directional statistics. 

The objective of this work is to investigate measure of goodness of fit statistic for 

Fisher, Watson, Kent and Bingham distributions for different diffusion 

characteristics of WM and GM segments.  

4.1.1. Directional Distributions and Parameter Estimates 

4.1.1.1. Fisher Directional Statistics 

It has been developed by R. A. Fisher for statistical analysis of vectors. Originally 

the statistic is defined in 2D vectors it can be easily extended to be used in 3D. If φ 

is taken as angle about true mean direction, the probability of a direction within an 

angular area, dA, can be expressed as PdA(α)dA = PdA(α) sin(α) dαdϕ this can 

normalized to probability distribution as  

∫ ∫ PdA(α) sin(α) dαdϕ = 1

π

α=0

2π

ϕ=0

 

And the probability Pdα of finding a direction in a band of width dα between α and 

α + dα is given by: 

∫ PdA(α)dA
2π

ϕ=0

= 2πPdA(α)sin(α)dα 

This result can be simplified as PdA(α) =
K

2π sinh (K)
e(K cos(α)) Where K is constant 

that defines dispersion of the data. 

In Fisher statistics, the resultant vector, R is calculated as regular vector sum of the 

vectors under population of vectors. The mean direction is a unit vector that is in the 

same direction with R.  

�̅� =
∑ 𝑥𝑖𝑖

𝑅
,  �̅� =

∑ 𝑦𝑖𝑖

𝑅
, 𝑧̅ =

∑ 𝑧𝑖𝑖

𝑅
 

One measure of the dispersion of a population of directions is the precision 

parameter, κ. From a finite sample set of directions, κ is unknown, but a best 

estimate of κ can be calculated by 

𝐾 ≅  𝑘 =  
𝑁 − 1

𝑁 − 𝑅
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This means that as R come close to N K will be bigger, means that the dispersion is 

smaller. As R goes to 0, k come close to 1 which is uniform distribution around the 

sphere that means high dispersion. 

The circle of confidence, p, of any fisher distribution is given below; 

𝛼𝑝 = cos−1 [1 − 
𝑁−𝑅

𝑁
[(

1

𝑝
)

1

𝑁−1 − 1]] for p=0.05 means the circle of 95% confidence 

𝛼95 ≅ 
140

√𝑘𝑁
 

Finally the standard derivation is  

𝑆2 =
1

𝑁 − 1
∑∆𝑖

2

𝑁

𝑖=1

 

where ∆𝑖 is the angle between ith vector and mean direction. 

4.1.1.2. Kent Distribution 

Kent, is a probability distribution on the two-dimensional unit sphere S2 in R3 

(Kent, 1982). It is the analogue on the two-dimensional unit sphere of the bivariate 

normal distribution with an unconstrained covariance matrix. Kent distribution is 5-

parameter probability distribution where the density function is given below.  

𝐾𝑘,𝛽,𝛾1,𝛾2,𝛾3
= 𝐶(𝑘, 𝛽)𝑒{𝑘𝑋.𝛾1+𝛽[(𝑋.𝛾2)

2− (𝑋.𝛾3)
2]} 

where X is a random 3D unit vector that specifies a point on the 2D sphere.  

k is concentration parameter The concentration of the density increases with k. 

β determines the ellipticity of the equal probability contour of the distribution ,f β=0, 

the Kent distribution becomes the von Misses-Fisher distribution on the 2D sphere. 

γ1 the mean direction 

γ2 the main axis of the elliptical equal probability contours 

γ3 the secondary axis of the elliptical equal probability contours 

The normalizing factor C(k, β) is approximately given by 

𝐶(𝑘, 𝛽) =  
√(𝑘 − 2𝛽)(𝑘 + 2𝛽)

2𝜋𝑒𝑘
 

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Sphere
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Covariance_matrix


50 

The Kent distribution is equivalent to a Gaussian distribution with unrestricted 

covariance. It is generalization of von Mises-Fisher distribution where it covers non-

circular distributions of the data. 

To estimate Kent distribution parameters (𝑘, 𝛽): 

For given sample (𝑥1, … , 𝑥2) , let �̅� is mean direction and R is resultant vector, as 

calculated in Fisher statistics, define matrix H using polar coordinates of �̅� (𝜃, 𝜙) 

𝐻 = [
cos 𝜃 − sin 𝜃 0

sin 𝜃 cos𝜙 cos 𝜃 cos𝜙 − sin𝜙
sin 𝜃 sin𝜙 cos 𝜃 sin𝜙 cos𝜙

] 

B matrix will be 𝐵 = 𝐻𝑇𝑆𝐻 where S is covariance matrix of given sample, then  

𝛼 ̅ =
1

2
𝑡𝑎𝑛−1 (

2𝑏23

𝑏22 − 𝑏33
)𝑤ℎ𝑒𝑟𝑒 𝑏𝑖𝑗  𝑖𝑠 𝑖: 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑗: 𝑐𝑜𝑙𝑢𝑚𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

The matrixes K, G, V are computed as follows 

𝐾 = [
1 0 0
0 cos �̅� − sin �̅�
0 sin �̅� cos �̅�

],  G =HK, and 𝑉 = 𝐺𝑇𝑆𝐺 , 

Finally the estimates are defined as 

𝑘 = (2 − 2�̅� − (𝑣22 − 𝑣33)
−1) + (2 − 2�̅� + (𝑣22 − 𝑣33)

−1)  

𝛽 =
(2 − 2�̅� − (𝑣22 − 𝑣33)

−1) − (2 − 2�̅� + (𝑣22 − 𝑣33)
−1) 

2
 

where 𝑣22, 𝑣33 are elements of V matrix and 𝑣𝑖𝑗 denotes ith row and jth column 

element. 

4.1.1.3. Watson Distribution 

Watson distribution, also known as Dimroth-Watson’s distribution, is one of the 

axial distributions in Directional Statistics. Watson distribution assumes that 

diametrically opposite points have the same probability and probability density 

function of axial distributions possesses antipodal symmetry. f(-l,-m,-n) = g(l,m,n). 

The probability distribution of random vectors belongs to Watson’s family is 

spherical on sphere.  
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Figure 37: Watson Distribution. 

The probability distribution function of Watson distribution can be given as; 

𝑊𝑎𝑡𝑠𝑜𝑛 𝐷𝑖𝑠𝑡𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑊𝑝(𝑥; 𝜇, 𝜅) =  𝑐𝑝(𝜅)𝑒𝜅(𝜇𝑇𝑥)
2

;  𝑐𝑝(𝜅) =  
Γ (

𝑝
2
)

2𝜋𝑝/2𝑀 (
1
2
,
𝑝
2
, 𝜅)

 

where x is unit random vector, p is dimension, µ is mean vector,  is concentration 

value, M is Kummer’s confluent hypergeometic function, Γ: is gamma function and 

p is dimension of the distribution. To estimate maximum likelihood of this function, 

we take logarithm, then log-likelihood function is 

𝑙(𝜇, 𝜅 ± 𝑥1, … , ±𝑥𝑛) =  𝜅 ∑(𝑥𝑖
𝑇𝜇)2 − 𝑛𝑙𝑜𝑔 𝑀

𝑛

𝑖=1

(
1

2
,
𝑝

2
, 𝜅) 

= 𝑛 {𝜅𝜇𝑇�̅�𝜇 − 𝑙𝑜𝑔𝑀 (
1

2
,
𝑝

2
, 𝜅)} 

where �̅� is the scatter matrix of given data. Differentiation with respect to 𝜅 gives 

𝐷𝑝(𝜅) = �̂�𝑇�̅��̂�; 𝑓𝑜𝑟 𝑝 = 3;=
𝑀(1.5,3.5, 𝜅)

3 ∗ 𝑀(0.5,1.5, 𝜅)
 

And to find maximum likelihood estimate of it we need a derivative of 𝐷𝑝(𝜅) for 

p=3 

𝐷3
′ =

𝑀(2.5,3.5, 𝜅)

5𝑀(0.5,1.5, 𝜅)
−

1

9
∗ (

𝑀(1.5,2.5, 𝜅)

𝑀(0.5,1.5, 𝜅)
)
2
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Newton-Rapson method can be used to find maximum values for 𝐷𝑝(𝜅) and used 

the biggest eigenvalue of scatter matrix, t1, for a bipolar distribution or t3 for a girdle 

distribution. 

4.1.1.4. Bingham Distribution 

Bingham distribution is another example of axial distribution where it also possesses 

antipodal symmetry but as different from Watson distribution, the assumption of 

spherical dispersion on sphere is loosened, to allow for elliptical dispersion on unit 

sphere. It is the most general equivalent of the normal distribution for axial data. 

Bingham Distribution is defined as trivariate normal distribution on a unit sphere. 

Different than Watson distribution, it has three orthogonal directions as µ1, µ2, µ3 

and concentration values (𝜅𝑛) for each orientation vector (Kent 1982).  

Concentration values define dispersion of the distribution where  

1. 𝜅1 = 𝜅2 = 0 results in a spherical distribution of axes 

2. 𝜅1 = 𝜅2  ≪ 0 results in a symmetric bipolar distribution 

3. 𝜅1 < 𝜅2  ≪ 0 results in an asymmetric bipolar distribution  

4. 𝜅1 ≪ 𝜅2 < 0 results in an asymmetric griddle distribution 

5. 𝑖𝑓 𝜅1 ≪ 0 𝑎𝑛𝑑 𝜅2 = 0, then Watson distribution is obtained 

 

Figure 38: Bingham Distribution. 

𝐵𝑖𝑛𝑔ℎ𝑎𝑚 𝐷𝑖𝑠𝑡𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐵𝑝(𝑥; 𝐾) =  𝑐𝑝(𝐾)𝑒𝑥𝑇𝐾𝑥;  𝑐𝑝(𝐾) =  
Γ (

𝑝
2
)

2𝜋𝑝/2𝐹 (
1
2
,
𝑝
2
, 𝐾)
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where x is unit random vector, p is dimension K is 3x3 orthogonal orientation matrix 

with concentration values, F denoted the confluent Hypergeometric function of 

matrix argument, Γ: is gamma function and p is dimension of the distribution. For 

given random sample ±𝑥1, … , ±𝑥𝑛, the log-likelihood function can be written as: 

𝑙(𝐾;±𝑥1, … , ±𝑥𝑛) = 𝑛 {log 𝑡𝑟(𝐴�̅�) − 𝑙𝑜𝑔𝐹(
1

2
,
𝑝

2
, 𝐾)} 

We can write K and �̅� in polar form as = 𝑈𝐾𝑈𝑇 , �̅� = 𝑉𝑡𝑉𝑇 with U and V are 

orthogonal K=diag(𝜅1, … , 𝜅𝑝) and 𝑡 = (𝑡1̅, … , 𝑡�̅�) where 𝜅1 ≥ ⋯ ≥ 𝜅𝑝 and 𝑡1̅ ≥

⋯ ≥ 𝑡�̅�. As suggested by Bingham himself, following approximations can be used. 

For bipolar case: 

𝑑 = 𝑡2̅ − 𝑡3̅, 𝑠 = 𝑡1̅ + 𝑡2̅, 𝜅0 = −𝐷3
−1(𝑡1̅) 

 𝜅1 ≈ 0, 𝜅2 ≈ 𝜅0 + 𝛿,  𝜅3 = 𝜅0 − 𝛿  

In the gridle case: 

𝑑 = 𝑡1̅ − 𝑡2̅, 𝑠 = 𝑡1̅ + 𝑡2̅, 𝜅0 = −𝐷3
−1(𝑡3̅) 

𝜅1 ≈ 0, 𝜅2 = −2𝛿, 𝜅3 = 𝜅0 − 𝛿 

where  𝛿 =  
2𝑑𝜅0

𝑠(𝜅0−1.5)+1
 

4.1.1.5. Parameter Estimation and Confidence Ellipse 

The maximum likelihood estimates of concentration parameters 𝜅1, 𝜅2 can be 

obtained from maximizing the log-likelihood function, where wn are the eigenvalues 

of the principle eigenvector of the orientation matrix : 

𝐹 = −𝑁𝑙𝑜𝑔(4𝜋) − 𝑁 𝑙𝑜𝑔𝑑(𝑘1, 𝑘2) + 𝑘1𝑤1𝑘2𝑤2 

Maximum likelihood estimators of k1,k2 in the Bingham distribution for given 

eigenvalues ω1,ω2 can be estimated as calculated by Mardia and Zemroch [42]. 

The confidence ellipse around the mean direction within  specified  percentage  (%)  

of  estimated concentration values of distribution as 

𝑒%
𝑚𝑛 = √[

𝑋%
2

2𝑁(∆𝑚𝑛)
] for ∆𝑚𝑛= (𝜅𝑚 − 𝜅𝑛)(𝑤𝑚 − 𝑤𝑛) and 𝑋%

2  is chi-squared value 

for two degrees of freedom and % is p value for confidence interval. 

For p=0.01 and having 𝜅3=0 [41], ends up with the semi axes of confidence eclipse 

about the mean direction associated with 𝑤3 as below: 
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𝑒32 = −1.517
1

𝑘2𝑁(𝑤3−𝑤2)
 and 𝑒31 = −1.517

1

𝑘1𝑁(𝑤3−𝑤1)
 

4.1.2. Directional Statistic Distribution Fitting 

Directional statistics can used for many areas in Diffusion Tensor Imaging. The one 

of the ongoing research areas of DTI is the analysis steps, where there is still lack of 

solid evaluation method to be used for group-wise analysis. There are vast of work 

in tractography and connectivity analysis but for group-wise analysis, the 

researchers still uses scalar metrics and statistics. Directional statistics, on the other 

hand, uses vectors and inference based on vectors can be possible. 

However, in order to use all of the power that directional statistics offers, carefully 

analysis should be done and different types of directional distribution should be 

evaluated for different areas of brain across subjects. The research focus of this study 

is to find which directional statistics distribution describes which area of the brain 

best. 

By considering the assumptions and limitations of directional distributions along 

with diffusion properties of the brain, following hypothesis are declared and this 

study is designed to assess these hypothesizes: 

Hypothesis I: Due to bi-polarity of principal diffusion directions, Fisher and Kent 

distributions cannot be applied directly. 

Hypothesis II: For WM area that has a low probability of crossing fibers and most 

of the fibers are concentrated along major fiber directions, Bingham distribution will 

fit better. Watson distribution will be rejected due to symmetrical constraint around 

mean direction. 

Hypothesis III: For WM area that has high probability of crossing fibers and for GM 

area, the distribution tends to be symmetrical so Watson distribution will fit better.   

In this study, all of distributions given above have been tested against each other 

and goodness of fit scores has been analyzed for different parts of brain areas with 

different diffusion properties. 

4.1.2.1. Method Pipeline 

The current method that has been implemented is a modification and extension of 

my previous group analysis method. It roots from the same code base that uses some 

of the Camino libraries (Cook, 2006). 

For the analysis of goodness of fit scores for distributions following pipeline has 

been executed for all of the subjects. 
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1. Pre-processing Step: T1, T2, DWI b0 and DTI images are registered on to each 

other; grey and white matter masks are constructed and neuroanatomical labeling 

is performed for on both cortical, subcortical and white matter areas. 

2. PDD Generation: For the given ROI, primary diffusion directions have been 

extracted for each voxel using primary eigenvector of the diffusion tensor. This 

composes the data to fit. 

3. Distribution Fitting: Four different models have been constructed using Fisher, 

Kent, Watson and Bingham and distributions are fitted using maximum 

likelihood methods. 

4. Probability Density Function Evaluation: For each model, theoretical p.d.f has 

been computed using estimated parameters.  

5. Goodness of Fit Score (GoF) Evaluation: Pearson’s Chi Square tests have been 

used for goodness of fit test to test whether observed frequency distribution 

differs from a theoretical distribution. 

6. Comparison of Distributions: Chi Square test statistics for each ROI have been 

compared using ANOVA. 

4.1.2.2. Pre-processing Step 

Dicom Conversion and correcting the motion and eddy current artifacts are handled 

in first step. The application of strong field gradients required for diffusion tensor 

imaging (DTI) result in eddy currents that induce significant direction-dependent 

distortions in the resulting images. Eddy currents in the gradient coils induce 

(approximate) stretches and shears in the diffusion weighted images.  

Registration: The next step is intra subject registration of T1, T2 and DWI images. 

In literature, the registration has been done between T2 image and DWI B0 images, 

and then T1 is registered on T2. So that T1, T2 and DWI images become aligned. 

For all registration steps FSL’s FLIRT and FNIRT routines has been used. All of 

the images has been registered on DWI B0 image so that we can state that all image 

operations has been done on diffusion step. This method eliminated the problem of 

transforming diffusion tensors. 

Segmentation & Surface Extraction & Parcellation and Mask Creation: The next 

step is applying segmentation and parcellation steps of FreeSurfer using recon_all 

command. These steps transform patient on uniform space and try to segment white 

and gray matter as well as cortical and subcortical structures. The parcellation step 

reveals 83 distinct cortical and subcortical structures of the brain and white matter 

areas. 

4.1.2.3. PDD Generation 

For each voxel in a given ROI eigen decomposition has been made. A diffusion 

tensor in a symmetric, square matrix form (3x3) has been acquired from DTI image 
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that is generated in previous steps. The eigen decomposition has been done as 

described below: 

Calculate D V= λ V where D is diffusion tensor in a symmetric, square matrix form 

(3x3), V is the the eigenvector, a vector corresponding to an orientation (3x1) and λ 

is the eigenvalue, a scalar constant. For a 3x3 matrix, there are 3 sets of orthogonal 

eigenvector and eigenvalue solutions. Using a tridiagonal reduction followed by a 

QL solution results in the eigenvalues and vectors. The biggest eigen value – vector 

pair has been chosen as the principal direction of the voxel. 

4.1.2.4. Distribution Fitting 

For all of the directional distributions under test, Fisher, Kent, Watson and Bingham, 

maximum likelihood estimation methods have been implemented according to the 

routines and formulas given in following literatures (Fisher, 1993; Mardia, 2000; 

Kent, 1982). The necessary computation steps are given in Appendix-A.  

Additional routines such as bi-polarity tests, uniformity tests, randomness tests are 

also implemented. For special mathematical functions such as Bessel function, 

gamma function, Kummer’s confluent hypergeometic function and confluent 

Hypergeometric function of matrix argument special Java libraries have been found 

and used. To evaluate Fisher and Kent distribution parameters, we need to correct 

bi-polarity of the PDD so for such cases the data had separated into two modes and 

one mode had flipped to antipode. 

4.1.2.5. Probability Density Function Evaluation 

After estimating the necessary distribution parameters in previous step, the 

theoretical probability density function has been iteratively evaluated for each 

distribution. For this issue a synthetic random vector data has been generated. Each 

vector, totally 700, has different direction and almost uniformly distributed along 

sphere. So that by using the estimated parameters and probability density functions 

given in Appendix-A for the distributions, the probabilities can be estimated for each 

direction. For Watson and Bingham distribution the probabilities are symmetric 

along the axis of the distributions. 

4.1.2.6. Goodness of Fit Score (GoF) Evaluation 

In order to apply Pearson’s Chi Square tests to test whether observed frequency 

distribution differs from a theoretical distribution, following steps applied on the 

original data and synthetic random vector data and respective probability 

distributions. 
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 For Fisher and Watson distribution, the sample mean direction, �̅�, has been 

evaluated as given in Appendix-A. 

 For Kent and Bingham distribution, the axis of moment of Inertia of sample, 𝑡̅, 
has been evaluated using scatter matrix of the distribution S. For bi-polar case, it 

is the biggest eigenvector and for girdle case, it is the smallest eigenvector. 

 The transformations �̅�, �̅� has been evaluated in order to shift either �̅� or 𝑡̅ to 

positive z axis. 

 The transformation has been applied to original and synthetic data. 

 The angle 𝜃 has been calculated as the angle between positive x axis and the 

projected vector on x-y plane. 0 < 𝜃 < 2𝜋 

 The observed frequencies and expected frequencies as 𝜃1 < 𝜃 < 𝜃2, where the 

number frequency bins is 50 and  𝜃2-𝜃1  ≈ 7.2𝑜 

 The Pearson’s Chi Square is applied. 

4.1.3. Tract Profiling and Directional Statistics (TPDS) 

In this study, we propose a new tract-based framework using directional information 

in diffusion tensors to improve statistical group analysis, named as Track Profiling 

Directional Statistics (TPDS). For this purpose, 1) we have generated a new data 

structure called tract profile by clustering fibers across subjects, 2) we have 

developed a method based on directional  statistics to compare WM differences of 

different groups across each tract profile. Overall, this new DTI group analysis 

method is called tract profiling with directional statistics  (TPDS). 

4.1.3.1. Pre Processing 

We have implemented a fully automated pipeline to perform pre-processing as 

illustrated in Figure 39. 

 

Figure 39: Overall pipeline of pre processing method. 

The overall pipeline has been designed using the Connectome Mapper (Daducci et 

al. 2012). At the individual subject level, pre-processing steps are performed using 

several software toolkits. The first step is intra subject registration of T1, T2 and 

DWI images using FSL’s FLIRT as described in (Jenkinson and Smith 

2001)(Jenkinson et al. 2012). The registration is first done between the T2-weighted 
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image and DWI B0 images, and then the high resolution T1-weighted image is 

registered to the T2-weighted image. To eliminate the problem of transforming 

diffusion tensors, all of the images are registered to the DWI B0 image. This way, 

all image operations are performed on the diffusion image. For segmentation and 

parcellation of regions of interest (ROI), FreeSurfer (Fischl et al. 2002) has been 

used. These steps transform the subject’s MRI to uniform space and segment white 

and gray matter as well as cortical and subcortical structures based on the underlying 

atlas. The parcellation algorithm (Fischl et al. 2004) reveals 83 distinct cortical and 

subcortical structures of the brain using Desikan-Killiany Atlas (Desikan et al. 

2006). 

DTI processing begins with motion and eddy current artifact correction in FSL. 

Tensor estimation is done by Diffusion Toolkit (DTK) (Wang et al. 2007) and for 

tractography (Cook et al. 2005)(Parker, Haroon, and Wheeler-Kingshott 2003), 

streamline fiber-tracking algorithm in Camino has been used..  Each voxel in the 

parcellated image are selected as seeds. 83 distinct cortical and subcortical areas are 

masked, and the generated binary image is used as the seed file of the algorithm for 

particular ROIs. For tracking, Forth-order Runge-Kutta method has been chosen to 

propagate the tracks using a constant step size. Nearest-neighbor interpolation is 

applied around local voxel data. A minimum length criterion, 10 mm, is enforced to 

eliminate premature tract termination due to low SNR and low pathway anisotropy 

(Behrman-Lay et al. 2015). Each fiber bundle is pruned so that it only contains fibers 

connecting relevant regions. Number of streamlines depends on size of the ROI. No 

additional elimination technique has been applied other than minimum length. These 

steps are illustrated in the second row of Figure 39.   

Using the Connectome mapper (Daducci et al. 2012), a connection matrix is 

generated to calculate the connectivity of the areas via the fiber tracts obtained in 

the first and second rows of figure 1. After this step, the fiber tracts that connect 

corresponding brain areas will be bundled to construct relevant fiber bundles. In 

order to perform group analysis, one last step is necessary: the corresponding 

bundles of all subjects must be aligned. Therefore, both control and patient images 

are registered to ICBM DTI 81 Atlas using affine registration. The transformation 

obtained during this registration is  applied to the fiber bundles as seen in the last 

row of Figure 39. 

4.1.3.2. Tract Profiling 

Tract profiles are cross sections of the fiber tracts that connect the ROIs specified 

by the connection matrix generated in pre-processing. For the connections in each 

ROI pair, a fiber bundle is formed based on the intersections of cross-sectional areas 

of all subjects’ DWI. Then the medial line of the fiber bundle is computed. Finally, 

a cross sectional profile is generated along the medial line so that the distribution of 

PDDs along each cross section is aggregated separately for each subject group.  
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Figure 40: Cross sectional Tract bundle (b-spline representation) that covers all tracts connecting two 

regions. The outlier voxels (on the Tracts) are omitted. 

4.1.3.2.1. Overlapping Fiber Calculation 

Overlapping fibers/voxels are calculated across all of the subjects. This is done for 

each fiber bundle by calculating its maximum overlap. During this process, some 

specific bundles might be left out as outliers. In Figure 40, the overlapping fiber 

bundle is shown between the two ROIs Thalamus (green) and Rostral Anterior 

Cingulate (purple). The bundles shown with the yellow, cyan, green and red colors 

are marked as outliers and left out of the overlapping area. 

Let p be a point in the 3D image, Z3 where each voxel is represented as p. The 

adjacency can be defined as  

Nj(p) for j=6,18,26 the set of point j-adjacent to the point p.  

The sequence of points (x0, x1, …, xn) is a j-path of length n ≥ 0 from the point x0 to 

point xn in a non-empty set of points X if each point of the sequence is in X and xi 

is j-adjacent to xi-1 for each 1≤ i  ≤ n. The connectivity can be defined as j-connected 

if there is a j-path in X between them.  

The voxel image can be represented as 3D binary (m,n) image Ƥ where Ƥ = (Z3,m , 

n, B) (Kong and Rosenfeld 1989). Each element in Z3 is called a point of Ƥ and each 

point in 𝐵 ⊆ 𝑍3is called a black point and assigned 1, Each point in 𝑍3 ∖ 𝐵 is called 

a white point and assigned 0. m holds black points and n holds white points.  

In order to be used in multi-subject analysis adaptation of the definition is needed. 

For a given ROI pairs (i,j), Let Ƥ0, Ƥ1, …, Ƥk a set in S where S is super set of all 

subjects in group analysis where k is number of subjects. Tn(i,j) can be defined as a 

set of points in Ƥn where it belongs a tract connecting ROI i and j. So definition of 

black point can be also be extended as follows, a point in Ƥ is assigned as black 
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point if and only if it is also black point for all sets in Ƥ0, Ƥ1, …, Ƥk ∈ S for a given 

ROI i and j; 

A black point is called border point  if it is 6-adjacent to at least one white point. A 

black point is called end-point if it has exactly one black 26-neighbor. Black point 

p is simple in (𝑍3, 26, 6, 𝐵) if and only if all the following conditions hold (Palágyi 

et al. 2001): 

1. The set N26(p) ∩ (B ∖ {p}) is not empty. (p is not isolated point) 

2. The set N26(p) ∩ (B ∖ {p}) is 26 -connected 

3. The set (Z3 ∖ B)  ∩ N6(p) is not empty. (p is a border point) 

4. The set (Z3 ∖ B)  ∩ N6(p) is 6 -connected in the set (Z3 ∖ B)  ∩ N18(p) 

4.1.3.2.2. Medial Line Generation 

The skeleton of the overlapping bundles is calculated. The curve skeleton is a 1D 

set which runs through the center of the overlapping bundles in such a way that it 

preserves the topological properties of the overlapping area. Connectivity conditions 

are defined as follows. The sequence of points (x0, x1, …, xn) is a j-path of length 

n ≥ 0 from the point x0 to point xn in a non-empty set of points X if each point of 

the sequence is in X and xi is j-adjacent to xi-1 for each 1≤ i  ≤ n. The adjacency can 

be defined as Nj(p) the set of points j-adjacent , to the point p, where j = 6, 18, 26. 

Connectivity can be defined as j-connected if there is a j-path between them in X.  

In order to construct the aforementioned skeleton, first of all curve thinning (Blum 

H. 1967) (Kong and Rosenfeld 1989) is used on Ƥ. The medial line of the fiber 

bundles was generated as depicted in (Palágyi et al. 2001). As such, in each iteration, 

border points of Ƥ were deleted until no more deletion was possible. The algorithm 

is implemented as sequential iterations where each step checks for six sub routines 

for each of 6-directions that are immediate neighbors of a black point in Ƥ. In each 

iteration border points are deleted upon satisfying a condition called simple point 

condition . In this way, the object is shrunk uniformly in each direction. The 

operation will continue until no more shrinking is possible for each direction. By 

adding connectivity conditions, the skeleton ends up with medial line in the near 

center of the object. In Figure 41 the example medial line for the fiber bundle is 

shown with dark blue. 

procedure THINNING (X,Y) 

Y = X 

repeat  

modified = 0 

modified = modified + ITERATE(Y, Point3d(0,0,1)); 

modified = modified + ITERATE(Y, Point3d(0,0,-1)); 

modified = modified + ITERATE(Y,Point3d(0,1,0)); 

modified = modified + ITERATE(Y,Point3d(0,-1,0)); 
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modified = modified + ITERATE(Y,Point3d(1,0,0)); 

modified = modified + ITERATE(Y,Point3d(-1,0,0)); 

until modified > 0; 

function ITERATE (Y, Point3d direction) 

modified = 0 

for each point p in Y do 

 if (p+direction) is Border Point then 

  Np= GET_26_NEIGHBORS (Y, p); 

  If not Np is endpoint and Np is simple 

   Insert p in List:L 

while List:L is EMPTY do 

 p = GET_FROM_LIST 

 Np= GET_26_NEIGHBORS (Y, p); 

 If not Np is endpoint and Np is simple 

  Set_Zero (Y,p); 

  modified++; 

return modified 

The algorithm is implemented as sequential iterations where each step checks for 

six sub routines for each 6-directions. In each iterations border points are deleted if 

it satisfies simple point condition. In this way, the object is shrunk uniformly in each 

direction. The operation will continue till no more shrinking is possible for each 

direction. By adding connectivity conditions, the skeleton ends up with medial line 

in the near center of the object.      

Finally the resulting medial line is smoothed by generating a b-spline representation 

as follows. In order to generate b-spline representation of the medial line, the voxel 

coordinates on the medial line are represented as data points {𝑃𝑘}, 𝑘 ∈ 𝑀𝑒𝑑𝑖𝑎𝑙𝐿𝑖𝑛𝑒. 

A B-spline curve that fits the data is parameterized by 𝑡 ∈ [0,1], where 𝑋(𝑡) =
 ∑ 𝑁𝑖,𝑑(𝑡)𝑄𝑖

𝑛
𝑖=0 , the control points 𝑄𝑖 are unknown quantities that has been evaluated 

using least-squares fitting method described below: 

For n control points �̂� = [

𝑄0

𝑄1

⋮
𝑄𝑛

], and m sample points �̂� = [

𝑃0

𝑃1

⋮
𝑃𝑚

], the least square error 

function between B-Spline curve and sample points is the scalar valued function: 

𝐸(𝑄)̂ =
1

2
∑ |∑𝑁𝑗,𝑑(𝑡𝑘)𝑄𝑗 − 𝑃𝑘

𝑛

𝑗=0

|

2
𝑚

𝑘=0

 

To minimize the error function, E, where it is quadratic in the components of �̂�, it is a 

graph a paraboloid, so it has global minimum that can be found when all its first order 

derivates are 0. The first order partial derivatives can be written as control points, Qi  
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𝜕𝐸

𝜕𝑄𝑖
= ∑ (∑𝑁𝑗,𝑑(𝑡𝑘)𝑄𝑗 − 𝑃𝑘

𝑛

𝑗=0

)

𝑚

𝑘=0

𝑁𝑗,𝑑(𝑡𝑘) 

𝜕𝐸

𝜕𝑄𝑖
= ∑ ∑𝑁𝑖,𝑑(𝑡𝑘)𝑁𝑗,𝑑(𝑡𝑘)𝑄𝑗 − ∑ 𝑁𝑖,𝑑(𝑡𝑘)

𝑚

𝑘=0

𝑃𝑘

𝑛

𝑗=0

𝑚

𝑘=0

 

It can be written as ∑ ∑ 𝑎𝑘,𝑖𝑎𝑘,𝑗𝑄𝑗 − ∑ 𝑎𝑘,𝑖
𝑚
𝑘=0 𝑃𝑘

𝑛
𝑗=0

𝑚
𝑘=0  where 𝑎𝑘,𝑖 = 𝑁𝑘,𝑑(𝑡𝑘) for 0 ≤

𝑖 ≤ 𝑛, by setting the partial derivatives to zero vector, it leads to the system of equations: 

0 = ∑ ∑𝑎𝑘,𝑖𝑎𝑘,𝑗𝑄𝑗 − ∑ 𝑎𝑘,𝑖

𝑚

𝑘=0

𝑃𝑘 = 𝐴𝑇𝐴�̂� − 𝐴𝑇�̂�

𝑛

𝑗=0

𝑚

𝑘=0

 

Where 𝐴 = [𝑎𝑟𝑐] is a matrix with m+1 rows and n+1 columns.  

�̂� = (𝐴𝑇𝐴)−1𝐴𝑇�̂� = [(𝐴𝑇𝐴)−1𝐴𝑇]�̂� = 𝑋�̂� 

Since A is tridiagonal where it has contiguous set of upper bands and lower bands, 

the equation can be solved with Cholesky decomposition and the vector of control 

points �̂�  can be found. 

The spline is then sliced with 2-mm regular intervals so that planes that are 

perpendicular to the spline are obtained (Figure 41). Since derivative of spline is 1 

less order of yet another b-spline where new control points as  

𝑄𝑖 =
𝑝

𝑢𝑖+1+1−𝑢𝑖+1
(𝑃𝑖+1 − 𝑃𝑖)  from the surface tangent, normal vector has been 

computed and cross-sectional areas has been extracted. 

 

Figure 41: Medial line of cross sectional area between 2 ROIs (green and purple) after pruning and 

b-spline curve fitting. 
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4.1.3.2.3. Calculations of Tract Cross Sections 

The skeleton is sliced with 2-mm regular intervals so that cross sectional areas that 

are perpendicular to the b-spline are obtained using normal vectors computed from 

the surface tangents in Figure 41 For each voxel in Ƥ that intersects with these cross-

sectional areas, PDDs that represent individual subjects are added as tract profiles 

representing that slice. Hence for a tract with J slices, there are J tract profiles that 

contain PDDs which are representative of the subject group. An example tract 

profile (i.e. slice) from a single subject is shown in Figure 42. The PDDs from the 

subjects for a specific group are aggregated as follows. At each slice, there are fixed 

number of voxels, and at each voxel, there can be multiple PDDs, each coming from 

a different subject, depending on whether the subject’s tract goes through that voxel 

or not. 

 

Figure 42: Principal diffusion directions in a cross-sectional profile area from only one subject. 

4.1.3.3. Directional Statistics (DS) 

Executing statistical analysis exclusively on areas that are defined by tract profiles 

eliminates voxel-wise comparison. Hence, misalignment problems no longer exist. 

Hypothesis testing is conducted only at cross-sectional tract profiles that are 

separated by 2-mm regular intervals. For the set of PDDs embodied in each tract 

profile j, a parametric directional statistic distribution is fitted. Through such 

parametrization, the PDDs of all subjects that fit into the tract profile j are projected 

onto a sphere as shown in Figure 43.  

Watson distribution is bi-modal and symmetrical around mean direction. Watson 

distribution assumes that diametrically opposite points have the same probability. 

Also the probability density function of axial distributions possesses antipodal 

symmetry (i.e. f(-l,-m,-n) = g(l,m,n) ). The probability distribution of random 
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vectors that belong to the Watson’s family is spherical on sphere. On the other hand, 

Bingham distribution is bi-modal and elliptical (Cheng et al. 2014; Fisher, Lewis, 

and Embleton 1993).  Bingham distribution is free from symmetrical constrains, 

hence it provides more advanced distribution fitting options in comparison to the 

Watson distribution.  

After parametric representation through either Watson or Bingham distribution, two 

group of subjects can be compared by using an eclipse of confidence defined by the 

p-value. For fitting a single group’s data, the mean direction vector of the group is 

computed. If it lies inside the eclipse of confidence of the targeted distribution, then 

the null hypothesis is likely, justifying a reasonable fit to the associated directional 

distribution. On the other hand, if the confidence ellipse around the mean direction 

does not overlap for a given confidence level then the null hypothesis is unlikely, 

rejecting the fit. For two groups, the case with different means is indicated by 

separated cones of confidence, which in turn indicates significant differences. On 

the other hand, overlapping cones of confidence indicate insignificant differences, 

hence acceptance of null hypothesis. An example distribution is provided in Figure 

34, for 2 group of subjects, for a representation with Bingham distribution.  

Details of the Watson, Bingham distributions and eclipse of confidence is given in 

sections 4.1.1.3. Watson Distribution , 4.1.1.4. Bingham Distribution, 4.1.1.5. 

Parameter Estimation and Confidence Ellipse. 

 

Figure 43:  Parameter Estimation and Confidence Ellipses a: Shows vector projections of PDDs on 

unit sphere for control (blue) and for patient (red); b: First coloum : Shows an example 

of statistical signifacent difference between populations cone of confidence are not 

intersects, c: Second coloum: Shows an example for accepting null hypothesis. 
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4.2. Experiments and Results 

4.2.1. Subjects 

The control group contained of 14 healthy subjects (8 female and 6 male) with age: 

31.71 ±7.62, who had no neurological disease and were not taking any medication. 

The depression group was consisting of 16 subjects (8 female and 8 male, age: 

31.12± 8.95) . The data is collected as part of a local institutional project funded by 

METU (BAP-07-04-2012). Project management and subject recruitment was 

handled by a larger project  for which results will be published elsewhere. 

4.2.2. Data Acquisition 

We collected whole brain MRI scans using Siemens MAGNETOM 3 Tesla scanner 

situated at the Bilkent University UMRAM center. T1-weighted (TR:2500 ms, TE:3 

ms, TI: 1000 ms, FA:8o, sagittal plane 1 mm isotropic resolution ) T2-weighted 

(TR:5900 ms, TE:108 ms, FA:120o,  Spacing: 2.2) and DTI scans (TR: 8270 ms, 

TE: 83 ms, FA:90o, Spacing: 2.2, 7 images with b-factor = 0 s/mm2, 45 directions 

b-factor = 700 s/mm2) are collected from the participants in a single session.  

4.2.3. Directional Statistic Distribution Fitting 

Initially the hypothesis given in section 3.2 is verified as follows. A set of ROI’s 

given below are selected according to hypothesis criteria. 

 ROI I: highly concentrated one-directional WM area (Mid-Posterior Corpus 

Callosum (FreeSurfer Area: 252)) ,  

 ROI II: concentrated and low probability of crossing fibers WM area (White 

Matter of Left Temporal Pole (FreeSurfer Area: 3033)), 

 ROI III: high probability of crossing fibers WM area (White Matter of Left 

Temporal Pole (FreeSurfer Area: 3033)) 

 ROI IV: Gray Matter (Right-Thalamus (FreeSurfer Area: 48)) area. 

Using only 10 healthy subjects the pipeline has been applied and following test have 

been done.  

To verify hypothesis I, all ROI’s are analyzed against bi-polarity. Due to estimation 

of diffusion tensors and corresponding eigenvector, bi-polarity cannot be escaped as 

can be seen in Figure 44. The principle diffusion directions are always bi-polar and 

have nearly equal probability for opposite axis. By default this kind of data cannot 

be applied to either Fisher or Kent distributions. Hence the data had separated into 

two modes and one mode had flipped to antipode so that bi-polarity is resolved. 

However in this case, the uniformity of data along mean direction cannot be 
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satisfied. This is also one of the assumptions of the distributions. As a result we have 

enough evidence to reject both distributions and do not test are rejected.  

To verify hypothesis II and III, the pipeline described in method section has been 

finalized for all of the 10 subjects and each ROI. First of all, we must verify that the 

ROI are selected as intended. As can be seen in Figure 44 (a-b), PDD’s of Right 

Thalamus are almost uniformly distributed on unit sphere. The directions are bi-

polar and there is a uniform distribution of declinations. This is grey matter area and 

as declared in hypothesis III, for this area Watson’s distribution is expected to be 

best fit. Figure 44 (c-d) shows PDD’s of Mid Posterior Corpus. As can be seen 

PDD’s are bi-polar and concentrated along fiber tract directions. The distribution is 

dispersed elliptically. As declared in hypothesis II, for this area Bingham’s 

distribution is expected to be best fit. Figure 44 (e-f) shows PDD’s of White Matter 

of Right Transverse Temporal Gyrus. As can be seen PDD’s are bi-polar and 

concentrated along fiber tract directions. The distribution is dispersed elliptically. 

As declared in hypothesis II, for this area Bingham’s distribution is expected to be 

best fit. Figure 44 (g-h) shows PDD’s of White Matter of Left Temporal Pole. As 

can be seen PDD’s are almost uniformly distributed on unit sphere. The directions 

are bi-polar and the distribution is dispersed symmetrically around mean direction. 

This kind of distribution is best fitted with Watson’s distribution as declared in 

hypothesis III.  
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Figure 44: PDD for ROI’s (a-b) right thalamus, (c-d) Mid posterior corpus callosum, (e-f) white 

matter of right transverse temporal gyrus,  (g-h) white matter of left temporal pole. (a-c-

e-g) shows PDD’s projected on x-y plane and (b-d-f-h) is 3D-view. 

The dispersion of PDD’s are better shown in Figure 45 and Figure 46. Figure 45 

shows the ROI’s and fiber tracts after deterministic tractography has been finalized 

(Parker, 2003). Figure 45 a: shows the fiber tracts that start in White Matter of Right 

Transverse Temporal Gyrus. As can be seen, the tracts are almost uniform and there 

are mainly two fiber tract directions. Figure 45 b: shows the fiber tracts that start in 

White Matter of Left Temporal Pole. As can be seen, there is a diversity in the fiber 

directions, as a result of crossing fibers. Figure 46 emphases this issue, It represents 

the PDDs’ in 2D view for White Matter of Right Transverse Temporal Gyrus (c) 
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and White Matter of Left Temporal Pole (d). In Figure 46 c, the PDDs’ are uniform 

and in Figure 46 d, the PDDs’ are varied along many directions. 

 

Figure 45: Visualization of Fiber Tracts  a: Fiber tracts of white matter of right transverse temporal 

gyrus, b: Fiber tracts of white matter of left temporal pole. 
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Figure 46: PDDs’ in 2D view c: PDD of white matter of right transverse temporal gyrus, d: White 

matter of left temporal pole. 

The ANOVA results for GoF score comparison is shown in Table 1. For ROI I: highly 

concentrated one-directional WM area (Mid-Posterior Corpus Callosum), Bingham 

distribution fits better with Bingham (F stat: 17.29, p: 0.0001) k1=-55.02 and k2=-27.28 

distribution parameters. The high number of parameters also shows high concentration. 
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For ROI II: concentrated and low probability of crossing fibers WM area (White Matter 

of Left Temporal Pole), Bingham distribution fits better with Bingham (F stat: 2.82, p: 

0.1) k1=-7.28 and k2=-4.43 distribution parameters. Both results verify hypothesis II: 

For WM area that has a low probability of crossing fibers and most of the fibers are 

concentrated along major fiber directions, Bingham distribution will fit better. Watson 

distribution will be rejected due to symmetrical constraint around mean direction. 

For ROI III: high probability of crossing fibers WM area (White Matter of Left 

Temporal Pole) and ROI IV: Gray Matter (Right-Thalamus) area Watson 

distribution fits better with Watson distribution (F stat: 7, p: 0.012 and F stat: 5.27, 

p: 0.02 respectively) with kappa:3.53 and 2.05. Both results verify hypothesis III: 

For WM area that has high probability of crossing fibers and for GM area, the 

distribution tends to be symmetrical so Watson distribution will fit better. 

 Table 2: GoF scores and ANOVA test results for ROI’s (Assuming that chi square test statistics are 

normal distributed and variances are equal). 

 

4.2.4. Pipeline 

In summary the new preprocessing pipeline is given below. 

Preprocessing: Nearly 10 min. for each subject 

 DICOM – NIFTI Conversion 

 BET: Brain extraction for T1, T2, DWI images 

 Eddy-Current and Motion Reduction using Diffusion Toolkit 

Transformation: Nearly 30 min. for each subject 

 T1->T2 and T2->DWI Registration using FSL FLIRT and FNIRT 

 Combining T1->T2 and T2->DWI to get T1->DWI 

Segmentation and Parcellation: Nearly 12 h for each subject 

 T1 image has been segmented and parcellated. 

ROI 

Name 

Avg. # 

Voxels 

in ROI 

Tested 

Hypothesis 

Exp. 

Best Fit 

Observed Best Fit 

ROI I: 76 Hypothesis II 

(F stat: 17.29, 

p: 0.0001) 

Bingham  Bingham distribution (k1=-55.02, k2=-27.38) 

Bingham: GoF 2: 40.09|38.15|64.19|34.36|39.33|69.10|25.80|32.18|52.21|14.07 

Watson:  GoF 2:  104.4|127.4|107.0|111.1|120.8|209.6|104.5|205.1|98.12|109.1 

ROI II: 122 Hypothesis II 

(F stat: 2.82, 

p: 0.1) 

Bingham  Bingham distribution (k1=-7.28, k2=-4.43) 

Bingham: GoF 2: 31.06|97.11|53.12|47.20|55.75|51.06|12.34|35.46|48.20|28.17 

Watson:  GoF 2:  94.60|154.5|138.3|94.44|48.92|52.25|56.23|48.12|79.02|45.01 

ROI III: 148 Hypothesis III 

(F stat: 7, p: 

0.012) 

Watson  Watson distribution (kappa=3.53) 

Bingham: GoF 2: 31.39|61.97|80.91|38.68|63.08|97.95|68.12|76.19|58.26|45.09 

Watson:  GoF 2:  27.75|56.84|26.76|34.02|38.15|31.84|37.12|43.82|39.20|28.15 

ROI IV: 1160 Hypothesis III 

(F stat: 5.27, 

p: 0.02) 

Watson  Watson distribution (kappa=2.05) 

Bingham: GoF 2: 111.9|65.46|48.16|56.39|74.86|57.00|67.71|62.34|52.70|48.61 

Watson:  GoF 2:  34.68|48.10|34.42|49.27|56.09|35.99|31.83|39.07|50.47|34.65 
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Registration: Nearly 10 min for each subject   

 Segmented and parcellated T1 images are transformed into Diffusion space using 

T1->DWI transformation matrix. 

Tensor Estimation: Nearly 10 min for each subject   

 Using Diffusion Toolkit, tensors are estimated and DTI image has been 

generated. 

Area (ROI) Selection 

 Using John Hopkins Medical School DTI white matter and tract atlas, totally 48 

areas has been chosen as ROI. 

Atlas Transformation: Nearly 15 min. for each subject 

 T2 image has been registered on Atlas template T2 image using FSL FLIRT and 

FNIRT. The transformation matrix have been stored. 

 By reverting T2->Atlas transformation matrix, Atlas->T2 transformation matrix 

has been generated. By combining with T2->DWI matrix, Atlas->T2->DWI 

matrix has been generated. 

Atlas Registration: Nearly 5 min. for each subject 

 Atlas Label maps has been transformed to Diffusion space using Atlas->t2->DWI matrix. 

Below the preprocessing steps has been visually described.  

 

Figure 47: T1 image registration on DWI b0. 
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Figure 48: T2 image registration on DWI b0. 

 

Figure 49: JHU white matter atlas. 
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Figure 50: JHU white matter atlas registered on subject’s DWI bo image. 

 

Figure 51: The white matter areas registered on T1 image. 
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Figure 52: JHU atlas white matter tracts and areas. 

 

Figure 53: Gray matter areas registered on T1 image. 
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4.2.5. Results 

We have conducted two performance tests to analyze the effectiveness of the 

proposed method. First, we have analyzed the models generated by TPDS in 

comparison with VBA and TBSS. Hereby, we have adapted directional statistics to 

TPDS, TBSS and VBA to compare their overall efficiency in representing vector-

based statistical models. This test aims to show the efficiency of tract profiling over 

voxel based and skeleton based analysis. Second, we have applied the full TPDS 

algorithm to the two subject populations (i.e. MDD versus Health Controls) and 

compared the results with network based statistics, NBS. This test aims to show the 

efficiency of combining tract profiles with directional statistics over conventional 

methods.  In this test, the effects of fiber length in estimating group differences are 

also evaluated. 

Table 3: Region of interest areas. 

1 Middle cerebellar peduncle 25 Superior corona radiata R 

2 Pontine crossing tract 26 Superior corona radiata L 

3 Genu of corpus callosum 27 Posterior corona radiata R 

4 Body of corpus callosum 28 Posterior corona radiata L 

5 Splenium of corpus callosum 29 
Posterior thalamic radiation (include optic 

radiation) R 

6 Fornix (column and body of fornix) 30 
Posterior thalamic radiation (include optic 

radiation) L 

7 Corticospinal tract R 31 

Sagittal stratum (include inferior longitidinal 

fasciculus and inferior fronto-occipital 

fasciculus) R 

8 Corticospinal tract L 32 

Sagittal stratum (include inferior longitidinal 

fasciculus and inferior fronto-occipital 

fasciculus) L 

9 Medial lemniscus R 33 External capsule R 

10 Medial lemniscus L 34 External capsule L 

11 Inferior cerebellar peduncle R 35 Cingulum (cingulate gyrus) R 

12 Inferior cerebellar peduncle L 36 Cingulum (cingulate gyrus) L 

13 Superior cerebellar peduncle R 37 Cingulum (hippocampus) R 

14 Superior cerebellar peduncle L 38 Cingulum (hippocampus) L 

15 Cerebral peduncle R 39 Fornix (cres) / Stria terminalis 

16 Cerebral peduncle L 40 Fornix (cres) / Stria terminalis 

17 Anterior limb of internal capsule R 41 Superior longitudinal fasciculus R 

18 Anterior limb of internal capsule L 42 Superior longitudinal fasciculus L 

19 Posterior limb of internal capsule R 43 Superior fronto-occipital fasciculus R 

20 Posterior limb of internal capsule L 44 Superior fronto-occipital fasciculus L 

21 
Retrolenticular part of internal 

capsule R 
45 Uncinate fasciculus R 

22 
Retrolenticular part of internal 

capsule L 
46 Uncinate fasciculus L 

23 Anterior corona radiata R 47 Tapetum R 

24 Anterior corona radiata L 48 Tapetum L 
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4.2.5.1. Analysis of the Strengths of VBA, TBSS and TPDS in Tract Modeling 

In this test, we used a single group (i.e. healthy subjects). The statistics were derived 

using three different methods, VBA, TBSS and TPDS, only on white matter areas –

not GM ROIs. As seen in Figure 54, the white matter areas that have been segmented 

using FreeSurfer are mapped to ICBM DTI 81 Atlas (Mori et al. 2008) to allow for 

inter-subject data aggregation. For VBA analysis, the atlas-based white matter areas 

are overlayed for all subjects for further processing. For TPDS analysis, tract 

profiles are generated from the atlas mappings of all subjects. In TBSS, before 

performing atlas mapping, skeletonized areas are generated from individual subject 

tracts. The rest of the data processing pipeline is the same for all three methods. At 

the first step, for each ROI, based on which method is used for defining the tract, 

PDDs are generated. Then these PDDs are parametrically modeled by two separate 

directional distributions, namely Bingham and Watson. Finally in the last step, 

several PDDs are generated to represent the entire group using the newly developed 

parametrical models and goodness of fit is computed to evaluate how good the 

chosen model is. 

 

Figure 54: Comparison of VBA/TBSS with TPDS data processing pipeline. 

Hereby, to have a common framework for three methods, following goodness of fit 

analysis has been conducted. 

PDD Generation 

For each subject, primary diffusion directions are extracted for each voxel inside the 

given WM area using the primary eigenvector of the diffusion tensor. The WM area 

differs based on the chosen representation. In VBA, the WM area is extracted based 

on segmentation of the specific WM ROI. In TBSS, it is based on the skeleton of 

the tract in the WM ROI. In TPDS, it is embodied within each tract profile that 

compose the entire tract in the WM ROI.  Aggregated data from all subjects 

compose the data to be fitted for each WM area.   
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Distribution Fitting 

Watson and Bingham distributions were fitted to model each tract using the 

maximum likelihood method. For each tract, the parameters of the theoretical model 

were estimated from the pdf at hand. Then this theoretical probability density 

function was evaluated iteratively using synthetic random vector data for a total of 

700 vectors that were almost uniformly distributed along a sphere. Finally, the 

difference between the estimated pdf and the random pdf is tested for null 

hypothesis. 

Goodness of Fit Testing 

Pearson’s Chi Square tests have been used for goodness of fit tests to evaluate 

whether observed frequency distribution differs from the theoretical distribution. 

Comparison of distributions are done using ANOVA where Chi Square test statistics 

for each ROI. 

In order to apply Pearson’s Chi Square tests to test whether observed frequency 

distribution differs from a theoretical distribution, the following steps are applied on 

the original data and synthetic random vector data and respective models. 

1. For Watson distribution, the sample mean direction, �̅�, has been evaluated as 

regular vector sum of the vectors under population of vectors. The mean 

direction is a unit vector that is in the same direction with R.  �̅� =
∑ 𝑥𝑖𝑖

𝑅
,  �̅� =

∑ 𝑦𝑖𝑖

𝑅
, 𝑧̅ =

∑ 𝑧𝑖𝑖

𝑅
 

2. For Bingham distribution, the axis of moment of Inertia of sample, 𝑡̅, has been 

evaluated using scatter matrix of the distribution S. For bi-polar case, it is the 

biggest eigenvector and for girdle case, it is the smallest eigenvector. 

3. The transformations �̅�, �̅� has been evaluated in order to shift either �̅� or 𝑡̅ to 

positive z axis. 

4. The transformation has been applied to original and synthetic data. 

5. The angle 𝜃 has been calculated as the angle between positive x axis and the 

projected vector on x-y plane. 0 < 𝜃 < 2𝜋 

6. The observed frequencies and expected frequencies as 𝜃1 < 𝜃 < 𝜃2, where the 

number frequency bins is 50 and  𝜃2-𝜃1  ≈ 7.2𝑜 

4.2.5.2. Analysis of the Group Difference Maps generated by NBS and TPDS 

In this part, the proposed framework will be applied to test for differences of fiber 

tract profiles between MDD patients and control subjects. Based on the same fiber 

tracts and connectivity matrix for healthy volunteers, comparisons will be made with 

the results of Network Based Statistics. For this purpose, we used the 83x83 

connectivity matrix generated at the end of data pre-processing by the connectome 

mapper  
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Network Based Statistics 

In NBS, for each group, each pairwise association (i, j) between ROI I and ROI j is 

treated separately. First Fisher's r-to-z transform has been applied to ensure 

normality. Then, test statistic of interest –which is the normalized number of fiber 

bundles- is compared between the groups using t-statistic. In order to correct for 

multiple comparisons, permutation testing was used to select p-value controlled for 

the FWE for each connected component. For each permutation, the same threshold 

is applied to define a set of suprathreshold links of connected components. 

Suprathreshold and the number of permutations was set according to the default 

parameter settings of NBS. 

Track profiling with Directional Statistics 

In TPDS, the following procedure is repeated for each possible connection between 

distinct ROI pairs (i.e. 83x83 times divided by 2). Tract profiles between each ROI 

i and ROI j are extracted for the healthy and MDD groups. Then for each slice in 

the tract profiles, significance is tested with a threshold value of p<0.005. If there 

are n contiguous slices that satisfy this, it is indicated that the connection between 

ROIs i and j is significantly different between the control and patient groups. It is 

possible that there are multiple clusters of n contiguous slices that satisfy this 

condition. In order to reflect this information, we prepared a new 83x83 connectivity 

matrix, which contained the number of significantly different clusters between the 

two groups that are compared. Therefore, the difference map that is achieved 

through TPDS reflects a weighted graph. The more the number of significantly 

different n contiguous slices, the more the weight of the difference map. 

Selection of n must be related with a criterion related to the plausible tract lengths 

in general. In order to eliminate premature tract termination that result from low 

SNR and low pathway anisotropy [32], 10 mm is the shortest tract length to be 

considered. Since DTI image has 2.2 mm spacing, choosing n as 4 satisfies this 

constraint. In other words, at least 4 consecutive cross-sectional areas must be found 

within a fiber bundle where the PDD of each cross-sectional area belongs to 

different Bingham distribution for control and MDD groups.  

4.2.5.3. Comparison of VBA and TBSS with TPDS using Directional Statistics 

As can be seen in Table 4, Among VBA, TBSS and TPDS, the best fitted distribution 

is more representative in TPDS because the goodness of fit scores are better 

according to the p values. In addition, based on the results of TPDS, the Bingham 

distribution is reported to be more favorable than Watson distribution because only 

2 out of 48 white matter tracts are represented better with Watson. Obviously, it is 

evident that TPDS is a better alternative to represent tracts in comparison to VBA 

and TBSS, because it favors more parametrical fit to the entire set of fiber tracts. 
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Table 4: Comparison of VBA and TBSS with TPDS (VBA and TBSS have been adapted to run 

directional statistics). 

ROI 
VBA 

Distribution 
(pvalue) 

TBSS 
Distribution 

(pvalue) 

Tract Profiling 
Distribution 

(pvalue) 
Middle cerebellar peduncle No Fit  (0.803) No Fit (0.425) Bingham (0.021) 
Pontine crossing tract No Fit (0.092) Bingham (0.043) Bingham (0.004) 
Genu of corpus callosum Bingham (0.030) Bingham (0.032) Bingham (0.007) 
Body of corpus callosum Bingham (0.001) Bingham (0.001) Bingham (0.031) 
Splenium of corpus callosum Bingham (0.046) Bingham (0.036) Bingham (0.045) 
Fornix (column and body of fornix) No Fit (0.707) No Fit (0.135) Bingham (0.017) 
Corticospinal tract R No Fit (0.067) No Fit (0.087) Bingham (0.048) 
Corticospinal tract L No Fit (0.541) Bingham (0.041) Bingham (0.025) 
Medial lemniscus R No Fit (0.706) Watson (0.046) Bingham (0.036) 
Medial lemniscus L No Fit (0.278) No Fit (0.078) No Fit (0.090) 
Inferior cerebellar peduncle R Watson (0.019) Watson (0.037) Bingham (0.016) 
Inferior cerebellar peduncle L No Fit (0.970) No Fit (0.570) Bingham (0.019) 
Superior cerebellar peduncle R Watson (0.032) Bingham (0.042) Bingham (0.045) 
Superior cerebellar peduncle L Watson (0.026) Bingham (0.044) Bingham (0.012) 
Cerebral peduncle R No Fit (0.064) Bingham (0.044) Bingham (0.023) 
Cerebral peduncle L No Fit (0.078) Bingham (0.032) Bingham (0.022) 
Anterior limb of internal capsule R Watson (0.030) No Fit (0.079) Watson (0.033) 
Anterior limb of internal capsule L Bingham (0.002) Bingham (0.038) Watson (0.025) 
Posterior limb of internal capsule R Watson (0.014) No Fit (0.067) Bingham (0.008) 
Posterior limb of internal capsule L Bingham (0.017) Bingham (0.033) Bingham (0.033) 
Retrolenticular part of internal 
capsule R 

Watson (0.034) No Fit (0.074) No Fit (0.083) 

Retrolenticular part of internal 
capsule L 

Watson (0.015) No Fit (0.065) No Fit (0.106) 

Anterior corona radiata R No Fit (0.278) Bingham (0.012) Bingham (0.045) 

Anterior corona radiata L 
Bingham 
(0.0012) 

Bingham (0.002) Bingham (0.001) 

Superior corona radiata R Watson (0.043) Bingham (0.009) Bingham (0.001) 
Superior corona radiata L No Fit (0.165) Bingham (0.035) Bingham (0.019) 
Posterior corona radiata R Watson (0.002) Bingham (0.017) Bingham (0.002) 
Posterior corona radiata L Watson (0.001) Bingham (0.019) Bingham (0.006) 
Posterior thalamic radiation  R Bingham (0.003) Bingham (0.002) Bingham (0.024) 
Posterior thalamic radiation L Bingham (0.006) Bingham (0.002) Bingham (0.009) 
Sagittal stratum R No Fit (0.188) No Fit (0.488) Bingham (0.032) 
Sagittal stratum  L No Fit (0.065 ) No Fit (0.265) Bingham (0.047) 
External capsule R Bingham (0.006) Bingham (0.006) Bingham (0.001) 
External capsule L Bingham (0.001) Bingham (0.001) Bingham (0.001) 
Cingulum (cingulate gyrus) R Bingham (0.015) Bingham (0.033) Bingham (0.003) 
Cingulum (cingulate gyrus) L Bingham (0.002) Bingham (0.001) Bingham (0.001) 
Cingulum (hippocampus) R Watson (0.004) Bingham (0.004) Bingham (0.001) 
Cingulum (hippocampus) L No Fit (0.118) Bingham (0.019) Bingham (0.041) 
Fornix (cres) / Stria terminalis Bingham (0.004) No Fit (0.050) Bingham (0.009) 
Fornix (cres) / Stria terminalis Bingham (0.012) No Fit (0.128) Bingham (0.005) 
Superior longitudinal fasciculus R Watson (0.002) Bingham (0.043) Bingham (0.021) 
Superior longitudinal fasciculus L Watson (0.025) Bingham (0.040) Bingham (0.011) 
Superior fronto-occipital fasciculus R Bingham (0.003) Bingham (0.018) Bingham (0.001) 
Superior fronto-occipital fasciculus L Bingham (0.044) Bingham (0.026) Bingham (0.006) 
Uncinate fasciculus R No Fit (0.483) No Fit (0.091) Bingham (0.003) 
Uncinate fasciculus L No Fit (0.896) Bingham (0.039) Bingham (0.002) 
Tapetum R No Fit (0.595) No Fit (0.092) Bingham (0.092) 
Tapetum L No Fit (0.535) No Fit (0.103) Bingham (0.004) 
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A close inspection of Table 4 reveals that in terms of representing a given WM tract 

parametrically, TBSS is superior to VBA, and TPDS is superior to TBSS. It is 

evident that VBA contains more noise than TBSS and TPDS, because it contains 

the entire WM area from all subjects. Due to high noise, VBA fails to represent some 

of the tracts parametrically. On the other hand, TBSS is better than VBA, because it 

removes the areas -hence noise associated in these parts- that lie outside the fiber 

bundles which constitute the skeleton. However, TBSS is not better than TPDS, 

because it smooths out the tracts while forming the skeleton and loses specificity. 

Overall, the tract profiles computed in TPDS are selective in choosing representative 

samples of the DWI’s that are more informative, because outliers are removed while 

computing the medial line. Since the data points all belong to the same tract and on 

the same cross-section over medial line, very similar diffusion properties are 

expected for each analysis point. This tends to eliminate all negative effects of 

misalignment of images and partial volume effect. Due to this property, the 

computational effectiveness of TPDS is higher than other methods, because the 

model can be decided with much less number of data points. 

The advantage of the Bingham distribution might be explained through the ease of 

fitting a griddle distribution in comparison to fitting a homogeneous mean direction 

distribution.  The griddle distribution allows for more parameters, hence it makes 

the development of a more general model possible. Furthermore, the computational 

accuracy of the Bingham distribution is better because the tracts represented with 

this distribution fit to the PDD of the actual tracts with a smaller p value. 

4.2.5.4. Comparison of the Group Differences in Connectivity Maps Using 

Network Based Statistics and TPDS 

In NBS, with corrected p<0.005, 7 regions and 8 connections have been observed to 

contain lower FA in MDD. Particularly the connections in the right hemisphere, 

between superior frontal cortex and rostral/caudal components of the anterior 

cingulate cortex, caudate and inferior parietal cortices had lower FA in MDD. These 

connections are shown in Figure 55 as green lines. 

In TPDS, significantly different connections between the healthy and MDD groups 

are seen in Figure 55 as red lines.  The thickness of the lines reflects the weights, or 

in other words the number of cross sectional areas above the threshold n (eg. A 

weight value of 1 indicates that there exist only one slice cluster with significantly 

different n contiguous tract profiles, whereas a weight value of 6 indicates there exist 

6 disjoint clusters of n contiguous tract profiles that are significantly different). The 

right hemisphere differences reported by NBS, namely frontal (superior frontal and 

rostral middle frontal), medial (caudal and rostral anterior cingulate) are also 

detected by our method. But additionally, TPDS revealed differences between the 

healthy and MDD populations in limbic, temporal cortex, occipital cortex and 

hippocampal connections, as well as a few left hemisphere areas such as amygdala, 

hippocampus and thalamus. 
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The strength of the tract profile structure lies in the reduction of the misalignment 

problem. Furthermore, observations of the directional changes become more 

specific because contributions of the local changes can be reported along the tract 

not by the contribution of isolated voxels but by several slices across the two ROIs. 

Therefore the proposed directional statistics comparison is expected to be a superior 

differentiator for especially long tracts. 

In order to verify this, the following analysis has been done. For each tract 

connecting 83 different regions, z-score of each the length is plotted against z-score 

of the number of significantly different profile slices. For this purpose, the maximum 

overlapping shape (skeleton) is used. When regression lines are fitted to investigate 

the relationship with tract length and the number of different clusters, it is seen that 

the likelihood of finding clusters of voxels that differ in long tracts are higher in 

directional statistics.  This has been also tested using a linear regression model, 

where it has been found that the z-score of tract length significantly correlated with 

z-score of the number of significantly different profile slices (p<0.05, Adjusted R-

Squared: 0.00162) as seen in Figure 56. Although the effect size is small, we can 

indicate that TPDS is a powerful method to find differences in two populations, 

especially as the tract lengths get longer. 

 

Figure 55: Map of ROIS with statistically different connectivity between control and patient groups. 

Green lines represent the common connections that are found different between the groups 

using NBS. Red lines represent the significantly different connections detected by the 

directional statistics using tract profiling.  
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Figure 56: Scatter diagram of z-score of tract lengths versus significantly different clusters. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

In this study, we proposed novel frameworks for WM fiber connectivity analysis 

using a histogram based method and a tract profile based method with directional 

statistics (TPDS). In contrast with other group studies (Goodlett et al. 2009b) that 

are based on FA values, directional statistics deals with compact Riemannian 

manifolds, which allow observations regarding local diversities of principal 

diffusion directions of voxels in different groups of subjects. 

The first method is histogram based group analysis that focus on developing a group 

analysis method that uses connectivity as well as diffusibility information (fractional 

anisotropy). Other than FA values, any other scalar metrics can be used. A fully 

automatized pipeline has been developed. Histogram based statistical group analysis 

method is a novel technique that cross matches FA values with tract lengths. This 

method has been implemented by extending the pipeline and applied on the real 

data. As far as I know, the method is unique that uses probabilistic tractograpy, cross 

matches FA according to fiber tracts lengths and apply statistical group comparison. 

The pipeline has been applied on limited set of MDD data and the analysis on 

Amygdala connections shows that entorinal cortex, hippocampus and insula 

connections are effected by MDD. For entorinal cortex for lower FA values (0.10-

0.30) there is a pattern that for the MDD patients fiber tracts regardless of the tract 

length FA values are significantly bigger than control subjects. And for 

hippocampus and insula, nearly all range of FA values, it can be seen that the number 

of fiber tracts of control subjects are significantly bigger than MDD patients (Metin 

and Gokcay 2013). 

On the other hand, in the second method, we used a pipeline implementation which 

can be regarded as quantitative tractography. We analyzed diffusion properties on 

the exact tracts and derived the statistics over sample points taking neighborhood 

cells into consideration. A similar method has been offered by Corouge et al. (2006) 

where diffusion properties along the fiber tracts, called fiber property profiles, were 

extracted. In that study, fiber tract parameterization was based on an arc length 

parameter, starting from each fiber’s intersection with an “origin” plane.  Goodlett 

et al. (2009a) also proposed a similar tract profiling approach, where diffusion 

properties are calculated along the tract for each fiber bundle. Our method 

introduces 3 main improvements to these quantitative tractography methods. First, 
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we are not just limiting the method with known anatomical fiber bundles but we can 

derive statistics from any pair of connected grey matter areas. Second, we have 

introduced skeletonization and pruning to allow for applying statistics only within 

common areas across the groups. Third, we introduced vector analysis using 

directional statistics instead of scalar analyses such as FA, MD etc.   

There exist other methods which use directional statistics in DTI (Schwartzman, 

Dougherty, and Taylor 2005b) (Hutchinson et al. 2012). However, these methods 

analyze group differences based on ROIs, not fiber tracts, ignoring the underlying 

connectivity. We have devised the tract profiling algorithm to operate on relevant 

voxels among the fibers that connect each ROI obtained from fully automatic brain 

segmentation and parcellation. Local registration errors are reduced after calculating 

cross-sectional area of the fibers, and finding medial lines (i.e. profiles) to continue 

tract analysis. Afterwards, Bingham distribution, which is the most general form of 

directional distribution is used for tract based directional analysis, ensuring 

minimum parametric assumptions about the dataset. To the best of our knowledge 

this approach have not been implemented in group analysis of DTI before. 

Neurite orientation dispersion and density imaging (NODDI) is a novel neurite 

imaging and analysis framework that provide sensible neurite density and 

orientation dispersion estimates (Zhang et al. 2012). Unlike FA, NODDI analyzes 

density and orientation dispersion separately. NODDI uses orientation distribution 

function (ODF), defined as Watson distribution which constrains the dispersion 

about the dominant orientation (Zhang et al. 2012).  However, Bingham distribution 

fits better to diffusion properties, in comparison to Watson. Bingham-NODDI 

extends NODDI method by generalizing it with Bingham distribution to cover 

anisotropic orientation dispersions of neurites (Tariq et al. 2016) . Similarly, in our 

study, we found that modeling ODF using Bingham distribution explains the data 

better regardless of the tract identification, be it through VBA, TBSS or our method, 

TPDS. A major difference between our approach and NODDI is in the estimation 

of the dispersion. The modeling we used to implement the Bingham distribution 

estimates dispersion in the vicinity of the dominant orientation, separately for the 

primary and secondary dispersion orientations. This eliminates the key limitation of 

NODDI, which fails to model complex neurite configurations such as those arising 

from fanning and bending axons. On another front, just like ours, orientation 

dispersion (ODI) generated by the NODDI method can be also used with TBSS 

method instead of FA metric (Timmers et al. 2016)(Taoka et al. 2020). In this aspect, 

the main difference between our method and NODDI is in extending fiber dispersion 

along the tracts that connect 2 ROIs. By allowing such extension, our method 

enables using fiber dispersions as track characteristics and analyzing disease related 

effects on connectivity of the tracks other than the voxel itself. 

We have demonstrated that in addition to scalar diffusibility changes, analyzing 

principal diffusion directions along a tract detects local changes better than scalar 

values. The strength of the directional statistics based analysis we proposed lies in 

its applicability to TBSS and VBA as well; it is not limited to tract profiles. 
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However, in directional statistics, the misalignment problem though the tract 

becomes more critical compared to scalar statistics like FA. Voxel-based analysis 

needs to register the subject’s images to a common coordinate frame. However, the 

fiber tracts do not accurately align during this process due to variation in tract size 

and shape. Especially long-range fiber tracts contain more shape variation across 

subjects (Wassermann et al. 2011), so they are more prone to such misalignment. 

This problem is still valid for TBSS because even the voxel skeletons do not ensure 

that all relevant voxels correspond to the same tract (De Groot et al. 2013). 

As seen from the results of the first set of performance tests, tract profiles are 

superior structures for resolving the shape differences in comparison to VBA and 

TBSS, because tract profiles are better in terms of fitting a model to PDD vectors. 

We investigated the goodness of fit characteristics of VBA and TBSS respectively 

on all WM areas and on skeletonized WM areas using directional statistics. We 

found that several tracts in VBA and TBSS are rejected to fit to the most general 

Bingham distribution which contains minimum assumptions about the data. In 

comparison when  tract profiling is used, most tracts could be fit parametrically, 

except a few. A parametrical model is advantageous in data processing, since it 

facilitates population-based comparisons.  

The aforementioned tests also show how directional statistics can be adapted to the 

widely used analysis methods such as TBSS or VBA. Instead of FA values, PDD 

vectors can be used over each voxel within the skeleton. FA metric uses the 

eigenvalues of the underlying diffusion characteristics of the voxel and defines only 

the amount of diffusion asymmetry, where PDD uses the first eigenvector of the 

diffusion characteristic. FA metric is sensitive to the underlying fiber architecture 

and correlates with PDD changes in disease conditions. However, FA does not have 

a direction attribute. Different orientations might result in the same FA value simply 

because orientational changes of the diffusion property of the voxel might not result 

in FA changes, when there is a difference in eigenvector orientation but not its value. 

So FA metric is not as sensitive as PDD in differentiating diffusion characteristics 

along the fiber track. As presented in chapter 4 , Bingham distribution fits better to 

describe the differences in majority of white matter tracks. Further studies should 

be conducted to ease adaptation of directional statistics to TBSS skeletons and also 

to resolve issues related to the multiple comparison problem. 

PDD analysis using directional statistics is not a summary statistic of each track but 

a measurement of diffusional properties of the fiber bundle connecting a pair of 

ROIs.  The statistics of each fiber track voxel are summarized by many points using 

directional statistics along the fiber bundle. Fiber bundle skeletonization and 

normalization of PDD over tract cross sections allows for error-correction and noise 

cancellation that might arise from tractography artifacts or misalignment. This 

should also be valid for trajectory changes of tracts under disease related conditions, 

as long as a prominent disfiguration or an abnormal morphological change caused 

by a tumor deviation does not severely divert the alignment of the fiber bundles. In 
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such a case, a lot of false positives may affect the model along the fiber bundles, 

hindering the correct estimation of PDDs along the actual, but diverted tract.          

During the second set of performance tests, the results of tract profiling directional 

statistics (TPDS) and NBS are compared to see whether these methods report the 

differences between the healthy and MDD populations consistently. We found that 

most of the right hemisphere specific connectivity differences reported earlier in 

MDD have been detected by both of these approaches. The results are much more 

consistent among the shorter tracts such as frontal connections of the anterior 

cingulate. However, TPDS reveals additional connectivity differences mainly 

among longer tracts such as those between temporal and occipital cortex as well as 

those that contain areas with low FA values and higher crossing fibers such as 

amygdala, hippocampus and thalamus. Another strength of TPDS is due to its 

revelation about weights.  

These findings are also consistent with MDD models proposed by Drevets (Drevets, 

Price, and Furey 2008) and Mayberg (Mayberg 2003) where MDD can be defined 

through a Limbic-cortical dysregulation model. In this model, Limbic–thalamo–

cortical (LTC) circuits, involving the amygdala, thalamus, and orbital and medial 

PFC, and limbic–cortical–striatal–pallidal–thalamic (LCSPT) circuits are the 

mainly affected areas. These connections are found be affected both using NBS and 

TPDS. Additionally, TPDS revealed temporal, parietal and occipital cortex 

connections that are different in MDD. Mainly the differences on Inferior Fronto-

Occipital tracts can be also supported by other DTI studies that report significantly 

decreased FA values among MDD patients (Cheng et al. 2014).  

The ROIS that are reported to have statistically significant connectivity differences 

in MDD versus healthy participants are consistent with the two well-known 

lateralization models of emotion. According to the right hemisphere hypothesis, 

right hemisphere is dominant in emotional processing (Alves, Fukusima, and Aznar-

Casanova 2008). On the other hand, the valence hypothesis posits that left 

hemisphere processes positive (or approach related) information, but the right 

hemisphere processes negative (or avoidance related) information (Alves, 

Fukusima, and Aznar-Casanova 2008). Within the context of MDD, hypoactivity in 

left hemisphere fronto-striatal loops indicate lack of downregulation of the sub-

cortical areas. TPDS –but not NBS- reported differences in the connectivity of Left 

hemisphere amygdala, thalamus and hippocampus consistent with the valence 

hypothesis. Furthermore, the abundant presentation of right hemisphere ROIs 

support the right hemisphere hypothesis indicating that the connectivity within the 

right hemisphere may be a biomarker for MDD. TPDS revealed a larger right 

hemisphere network which was sidestepped by NBS. This network is predominantly 

composed of the basal temporal lobe structures as well as occipital ROIs such as 

precuneus and pericalcarine. Differences in the temporal and parietal functionality 

in MDD is reported less in comparison to front striatal structures, however, there is 

a growing body of literature that focuses on the hypoactivity of the right hemisphere 

temporal areas in MDD (Bruder, Stewart, and McGrath 2017). The detection of such 
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ROIs by TPDS is supportive of these studies reported in (Bruder, Stewart, and 

McGrath 2017). Finally, several rsfMRI biomarkers of MDD are reported in 

(Drysdale et al. 2017). After clustering these biomarkers through machine learning 

techniques, four different subtypes of MDD can be derived, based on four different 

clusters of ROIs. Unfortunately, the temporal areas of the brain are excluded in this 

study, due to a lack of data collection from several participating research sites. 

However, the ROI network reported by both NBS and TPDS in Figure 55 is also 

reported in (Drysdale et al. 2017), verifying our results in a much larger sample size. 

In their meta-analysis over 231 patients with MDD and 261 comparison participants, 

Yi Liao et. al. (2013) found 4 consistent locations of decreased FA: white matter in 

the right frontal lobe, right fusiform gyrus, left frontal lobe and right occipital lobe. 

Mainly right inferior longitudinal fasciculus, right inferior fronto-occipital 

fasciculus and right posterior thalamic radiation involved in such changes (Liao et 

al. 2013). This covers most of the connection pairs we have found especially Right 

fusiform gyrus connections with R. Inferior Temporal, Parahipppocampal and 

temporal gray matter are important because NBS method failed to reveal all of these 

areas consistent with the meta-analysis. 

In another meta-analysis (Wen et al. 2014), reduced FA is reported in the DLPFC 

and uncinate fasciculus (UF) of patients with late life depression (Wen et al. 2014). 

Those regions are part of frontostriatal and limbic networks consistent with our 

findings. This is also consistent with NBS analysis, especially the connections 

colored in green. 

Another recent meta-analysis study have analyzed WM anisotropy and diffusivity 

in 1305 MDD patients and 1602 healthy controls (age range 12–88 years) from 20 

samples worldwide (van Velzen et al. 2020). On the adults, lower FA was observed 

in 16 of the 25 ROIs. The largest changes have been found mainly in anterior corona 

radiata (ACR), corona radiata (CR), corpus callosum (CC), genu of the corpus 

callosum (GCC), body of the corpus callosum (BCC) and anterior limb of the 

internal capsule (ALIC). Significantly lower FA was also observed in the superior 

fronto-occipital fasciculus (SFO), sagittal stratum (SS), internal capsule (IC), 

posterior corona radiata (PCR), superior corona radiata (SCR), inferior fronto-

occipital fasciculus (IFO), fornix/stria terminalis (FXST), external capsule (EC), 

and cingulate gyrus of the cingulum bundle (CGC). It is quite important to note that 

most of these regions are better fitted by TPDS in comparison to TBSS and VBA. 

Superior fronto-occipital fasciculus (Left-Right), Sagittal stratum (Left-Right), 

Superior corona radiata (Left-Right), Posterior corona radiata (Left-Right), Superior 

fronto-occipital fasciculus (Left-Right), Inferior fronto-occipital fasciculus (Left-

Right), External capsule (Left-Right), Fornix (cres) / Stria terminalis (Left-Right), 

Cingulum (Left-Right) are all better modeled using TPDS. This is also true for 

Anterior and Superior Corona Radiata where only Right Anterior Corona Radiata 

are modelled better with TBSS skeleton. The parts of corpus callosum is on the other 

hand fitted better as Genu of corpus callosum for TPDS, Body of corpus callosum 

for VBA and Splenium of corpus callosum for TBSS. 
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To conclude, we have shown that by analyzing principal diffusion directions (PDD) 

using directional statistics, more insight is gained about fiber tracts regarding 

population differences. While other connectivity-based analysis methods may 

disregard the differences between longer fibers, TPDS becomes more robust as fiber 

tract length increases.  In areas with low FA values, distribution of PDDs among the 

fiber tracts can differentiate connectivity-based dysfunctions better, due to the 

power of directional statistics.  When we implemented TPDS in two subject 

populations, one healthy, the other with MDD, we found several WM tracts 

differences that are not reported in other methods such as NBS and TBSS. It is 

imperative to use TPDS on other subject populations and with more subjects to 

justify its strength in comparison to other methods that perform WM tract-based 

group analysis.   

5.1. Future Work 

Although in this study only voxel-wise analysis has been done, directional statistics 

can encapsulate much more information that empowers all of the areas described. 

Because it is based on statistics of vectors/directions and deals with observations on 

compact Riemannian manifolds, directional statistics can be used for not only voxel-

wise and connectivity related group studies but also tractography, outlier detection 

and fiber clustering. In the future, these applications can be considered to enhance 

group studies and develop a better understanding of the structural correlates of 

clinical diagnoses. The directional statistics analysis suggested here can also be 

applied by augmenting the existing methods, namely TBSS and VBA. Such an 

addition to the existing methods is valuable because it opens up the possibility to 

use parametric fitting along with directional statistics. The proposed method could 

also be extended considering second and third directions of the diffusion tensor. This 

can be modeled separately, fitting different distribution model for each direction and 

analyzing the statistical changes of each direction in disease conditions. 
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APPENDICES 

APPENDIX A 

DIFFISION TENSOR IMAGING 

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique 

based on measuring the Brownian motion of water molecules and has been used to 

study white matter fiber structures of human brain in vivo. DTI has been used in 

discover anatomical connectivity and functional coupling between regions of the 

brain, as well as in clinical applications such as neurosurgery planning and brain 

disorder diagnosis. 

DTI measures the self diffusion of water in biological tissue. Since tissue structure 

locally affects the Brownian motion of water molecules, DTI can identify coherent 

organization of tissue. Neural fiber tracts contain parallel axons whose membranes 

restrict diffusion, so the self-diffusion of water is most probable along the tracts. It 

is likely that in addition to axonal direction and myelination, other physiologic 

processes, such as axolemmelic flow, extracellular bulk flow, capillary blood flow, 

and intracellular streaming, may contribute to white matter anisotropy. Thus in DTI 

imagery of the brain, the local structure of the diffusion tensor can be treated as an 

approximation to the local neural fiber structure.  

Diffusion tensor images (DTI) based on diffusion weighted images (DWI). DWI is 

a magnetic resonance sequence that is able to construct a probability density 

function (PDF) at each voxel that estimates the 3-D displacement probability of 

water due to diffusion along the applied magnetic gradient. DWI images contain 

information about the anatomy essential for quantifying white matter architecture 

and connectivity patterns. DWI images reveal details about the connectional and 

microstructural anatomy of the living human brain that are inaccessible to any other 

in vivo imaging modality. DTI is in fact constructed from DWI. Diffusion weighted 

image (DWI) volumes from six or more noncollinear magnetic gradient directions 

are used to construct a diffusion tensor at each voxel by modeling the diffusion PDF 

as an anisotropic Gaussian function. Diffusion tensor images (DTI), in particular, 

describe the local diffusion process or the 3D probability profile of water diffusion 
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in tissue using a 3×3 symmetric positive definite matrix at each voxel. As a result 

DTI can be regarded as low-pass, Gaussian approximation to the actual microscopic 

structure of the neuroanatomy, but it provides a fast and non-invasive anatomical 

measurement. 

1.1. Basics of Diffusion: 

Diffusion imaging makes use of the variability of “Brownian motion” of water 

molecules in brain tissue. Brownian motion refers to the random movement of 

molecules. Water molecules are in constant motion, and the rate of movement or 

diffusion depends on the kinetic energy of the molecules and is temperature 

dependent. Figure 56(a) shows the diffusion-driven random trajectory (red line) of 

a single water molecule during diffusion. The dotted white line (vector r) represents 

the molecular displacement during the diffusion time interval, between t1 = 0 

and t2 = Δ. The displacement distribution for free water molecules is a Gaussian 

(bell-shaped) function. At 37°C, with a diffusion time interval of Δ = 50 msec, the 

characteristic distance (standard deviation of the Gaussian distribution) typically is 

17 μm, which means that about 32% of the molecules have moved at least this far, 

whereas only 5% of them have traveled farther than 34 μm (Le Bihan, 2003). Figure 

1 shows a typical displacement distribution due to diffusion in a one-dimensional 

model. For each displacement distance r (x-axis) there is a corresponding 

probability n/N (y-axis), which is the proportion of molecules within a voxel that 

were displaced that distance within a time interval Δ (the duration of the diffusion 

experiment). 

In systems with a concentration gradient of diffusing molecules, diffusion leads to 

a net displacement of the diffusing molecules. In isotropic solutions (i.e. solutions 

without a concentration gradient) the probability of displacement of molecules is 

equal in all directions, and the mean molecular displacement is zero. The mobility 

of the molecules can be characterized by a physical constant, the diffusion 

coefficient, i.e. D. In case of a pure liquid this is also called self-diffusion coefficient. 

D is related to the root mean square displacement (RMS), which is the root of the 

mean displacement of a molecule over a given time. The Einstein relation that 

describes this relation in 1-D is: diffDtRMS 2
 where tdiff is the time over which 

the diffusion is measured (diffusion time). The diffusion coefficient is closely 

related to the size of molecules, and temperature (T) according to the Stokes-

Einstein equation: 

  fkTD /  

in which k the Bolzmann constant, T the absolute temperature and f the friction 

coefficient, which depends on the size of the particle and the viscosity of the fluid. 

However when a container limits the diffusion, the molecules are reflected when 

they reach a boundary. In this situation, the diffusion distance increases linearly with 

the square root of time only for short diffusion times and reaches a plateau at longer 
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times. In biological tissues, physical barriers often restrict diffusion. These barriers 

can be membranes and organelles, which are generally partially permeable. This 

leads to an intermediate situation, where the diffusion distance increases in 

proportion to the square root of time (for long diffusion times), but the diffusion 

distances are much smaller than for free diffusion. The diffusion coefficient 

measured by nuclear magnetic resonance (NMR) is also called apparent diffusion 

coefficient (ADC). This coefficient takes into account that it is not a measure of the 

'intrinsic' diffusion coefficient (D), but a coefficient that depends on the interactions 

of the diffusing molecule with the cellular structures over a given diffusion time. 

The ADC can be described as follows: 
2/DADC   In this equation D is the 

intrinsic diffusion coefficient and    is the tortuosity, which is a measure of the 

hindrance imposed by physical barriers. 

Diffusion in a homogeneous medium is well described as having a Gaussian 

distribution. Depending on the type of molecule, the temperature of the medium, 

and the time allowed for diffusion, the distribution will be wider or narrower. The 

spread of the Gaussian distribution is controlled by a single parameter: variance 

(σ2). Variance, in turn, depends on two variables, so that σ2 = 2 · D · Δ, where D, 

the diffusion coefficient, characterizes the viscosity of the medium or the ease with 

which molecules are displaced. The diffusion coefficient for water at 37°C is 

approximately D = 3 · 10−9 m2/sec.  

 

a 

 

b 

Figure 1. Displacement distribution function (Hagmann et al., 2006) 

When molecules are agitated by thermal energy alone (ie, when molecular 

displacement takes place through the process of diffusion), the displacement 

distribution is centered. This means that the average or net displacement of the 

molecular population is zero. Factors other than heat also may contribute to 

molecular displacement. For example, a pressure gradient in a pipe may affect 

molecular displacement. In an ideal setting with no turbulence and no friction, all 

molecules undergo the same nonzero displacement r. However if molecules are 
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displaced over a nonzero average distance (by applying a pressure gradient), this 

type of displacement is called flux. 

Biological tissues are highly heterogeneous media that consist of various 

compartments and barriers of different diffusivities. In terms of its architecture, a 

tissue can be regarded as a porous structure made up of a set of more or less 

connected compartments in a network-like arrangement. The movement of water 

molecules during diffusion-driven random displacement is affected by 

compartmental boundaries and other molecular obstacles in such a way that the 

actual diffusion distance is reduced compared with unrestricted diffusion. The 

characteristic of neuronal tissue is its fibrillar structure. Neuronal tissue consists of 

tightly packed and coherently aligned axons that are surrounded by glial cells and 

that often are organized in bundles. As a result, the micrometric movements of water 

molecules are hindered to a greater extent in a direction perpendicular to the axonal 

orientation than parallel to it. Consequently, molecular displacement parallel to the 

fiber typically is greater than that perpendicular to it. When diffusive properties 

change with the direction of diffusion, the dominant condition is anisotropy, and the 

associated displacement distribution is no longer isotropic and Gaussian, like that in 

unrestricted diffusion, but cigar shaped.  

The synthetic generated examples are given in Figure 2. In (a) water molecules are 

placed within impermeable spheres that may simulate the situation a water molecule 

in a glass of water. The distribution is similar to that in unrestricted diffusion but 

narrower because there are barriers that hinder molecular displacement. The glass 

of water a population can be homology with semipermeable spheres with a 

membrane that water molecules can cross with some resistance. Such intermediate 

conditions will produce a displacement distribution that is not as narrow as that for 

a volume containing impermeable spheres but narrower than that for a volume with 

free diffusion. In (b) shows the diffusion probability density function within a voxel 

in which all the axons are aligned in the same direction. The displacement 

distribution is cigar shaped and aligned with the axons. It could resemble the fiber 

bundles of neurological tissues. The distribution may be even more complicated if 

the underlying tissue contains fibers with various orientations (c). The diffusion 

probability density function within a voxel that contains two populations of fibers 

intersecting at an angle of 90°. The molecular displacement distribution produces a 

cross shape (Hagmann et al, 2006).  

Experimental evidence suggests that the tissue component predominantly 

responsible for the anisotropy of molecular diffusion observed in white matter is not 

myelin, as one might expect, but rather the cell membrane. The degree of 

myelination of the individual axons and the density of cellular packing seem merely 

to modulate anisotropy. Furthermore, axonal transport, microtubules, and 

neurofilaments appear to play only a minor role in anisotropy measured at MR 

imaging (Beaulieu C., 2002). 
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a 

 
B 

 
C 

Figure 2. A synthetic Diffusion within a single voxel (Hagmann et al., 2006) 

1.2. Diffusion Weighted Imaging (DWI) 

To depict the displacement distribution, diffusion must be linked to the signal 

intensity measured at MR imaging. Under a magnetic field Bo, spinning protons 

undergo precession around the axis parallel to the magnetic field Bo with the rate of 

precession given by the Lamor equation: 

𝑓 = 𝛾𝐵0 
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in which γ is the gyromagnetic ratio in MHz/Tesla for the spin under consideration. 

An external 90 radiofrequency (RF) pulse alternating with Lamor frequency excites 

the net magnetization of the spins to lie in the transverse plane perpendicular to Bo 

and renders all spins coherent in phase (the excitation process). After the RF signal 

is turned on, the transverse component of the net magnetization decays 

exponentially as individual protons dephase with a relaxation time constant, T2, 

which varies depending on the tissue characteristics (the relaxation process). To 

generate the T2-weighted image, the divergence in the magnitude of tissue-specific 

free‐ induction decay of the transverse magnetization is detected. This T2-weighted 

imaging, as are most other structural MRI techniques, is based on the assumption 

that the excitation and relaxation processes of a spin occur at stationary positions, 

changing only in the orientation of the spin.  

On the other hand, the diffusion-weighted imaging (DWI) utilizes the spin 

translation under the gradient magnetic field. The gradient magnetic field has both 

strength and direction that can be represented by a vector G (i.e., d B(x)/dx, where 

B(x) is the magnetic field at the location x, shown in Figure 3). The phase 

accumulation of a spin for time duration δ under a constant magnet field gradient G 

can be written as a function of the spin location x(t), as 

Θ =  𝛾 ∫ 𝐺. 𝑥(𝑡)𝑑𝑡
𝛿

0

 

When x(t) is stationary for the time duration δ, the phase accumulation is simply 

proportional to the multiplication of the magnitude of G and position xG, a projected 

position of x along the direction of G. When a spin moves along the direction of the 

magnetic-field gradient, phase accumulation becomes more complex, depending on 

the path x on which the spin moves. As shown in Figure 3, translation along the 

gradient magnetic field direction will lead a spin through a varying magnetic field. 

The spin will have a higher or lower precession frequency when it moves along a 

higher or lower field. When multitudes of spinning protons move randomly along 

the magnetic-field gradient, the accumulated phases of spins for a given duration 

will shift incoherently. The phase incoherence due to the random motion of spinning 

protons is detected as a decrease in the transverse magnetization signal (Hae-Jeong 

Park, 2005). 
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Figure 3. Nonstationary spin in the magnetic‐ field gradient in diffusion weighted imaging (Hae-

Jeong Park, 2005) 

There are various methods of DWI, but in this section only two of the most common 

methods will be discussed: gradient-echo DWI and spin-echo DWI. In the gradient-

echo DWI two magnetic fields of identical strength and duration but of opposite 

directional gradients are used. As shown in Figure , after a 90o excitation RF pulse, 

all randomly phased stationary spins align and stay in phase under the homogeneous 

magnetic field. When the first gradient magnetic pulse is applied, the precession 

frequencies of protons depend on their location, as the strength of the magnetic field 

is proportional to the location of the spin. Spins in a weak magnetic field rotate 

slowly, whereas precession is faster in a strong magnetic field. During the time 

period of Δ, the phase difference between spins accumulates. When the first gradient 

is turned off, all spins run with the same frequency, and thus the phase difference is 

sustained until they experience a new gradient pulse. When the second magnetic-

field gradient pulse (with the same strength and duration but in the opposite gradient 

direction from the first one) is applied, it will cause the spins that were rotating faster 

at the previous gradient field to rotate more slowly, and vice versa. At the end of the 

second gradient, all stationary spins will have a coherent phase, which leads to a 

peak signal amplitude in the receiver coil. When spins under the gradient magnetic 

field move along the gradient direction (lower panel of Figure 4), the spins will gain 

or lose the frequency according to their path. Therefore, the second gradient will not 

completely rephase the translating spins as a result attenuated signal of the net 

magnetization is detected due to their incomplete rephase. 
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Figure 4. Gradient-Echo DWI (Hae-Jeong Park, 2005) 

The spin-echo pulse sequence (Stejskal and Tanner, 1965), as shown in Figure 5, 

uses one strong identical diffusion-weighting gradient pulse on each side of the 180o 

refocusing pulse. The first pulsed gradient accumulates phase shifts for all spins, 

depending on their position and motion during the application of the first gradient. 

The 180o pulse inverts the phase of the spins, and the second gradient will induce 

another phase shift, thus canceling out the phase shifts for the stationary spins (the 

upper six spins in Figure 5). Spins that have changed positions during the time 

period (the lower six spins in Figure 5) will experience different phase shifts due to 

the two gradient pulses, and thus they will not become completely refocused. This 

incomplete phase realignment will consequently lead to signal attenuation. 
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Figure 5. Spin – Echo DWI (Hae-Jeong Park, 2005) 

Signal attenuation due to water diffusion can be defined by the relationship between 

the diffusion-weighted signal, S, and the non-diffusion-weighted signal, S0, as 

below (Stejskal and Tanner, 1965): 

𝑆 = 𝑆0 exp(−𝑏𝐷) 

𝑏 =̃  𝛾2|𝐺|2𝛿2(Δ −
𝛿

3
) 

where the gradient factor, b, is determined by the diffusion-sensitizing gradient 

having strength |G| for the duration δ, with the time delay Δ between the two 

diffusion-gradient pulses. γ is the gyromagnetic ratio of proton of the water molecule 

(42 MHz/Tesla). The non-diffusion-weighted signal, S0, is a T2-weighted signal at 
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the echo time (TE), i.e., the time from RF excitation pulse to the center of the echo 

being received. The diffusion coefficient D reflects molecular ‘‘diffusivity’’ along 

the direction of the magnetic-field gradient G. Since the diffusion coefficient D, 

measured at a voxel can also be affected by many things like tissue perfusion, the 

partial volume averaging effects, and other experimental errors, mostly “Apparent 

diffusion coefficient (ADC)” is calculated as follows. With the previously 

determined b value for NMR acquisition and the measured diffusion weighted signal 

S, it is necessary to acquire the diffusion-weighted images with at least two different 

b-values. The ADC, D, can be derived from two DWIs as follows: 

𝑆(𝑏0) =  𝑆0 exp(−𝑏0𝐷) 

𝑆(𝑏1) =  𝑆0 exp(−𝑏1𝐷) 

𝐷 = −
1

𝑏1 − 𝑏0
ln 

𝑆(𝑏1)

𝑆(𝑏0)
 

The ADC D is the slope representing the logarithmic difference of attenuation 

according to the different b-values. In practice, instead of acquiring two different b 

values, researchers often choose b0 to be zero, which yields S(b0) = S0, a T2-

weighted image without diffusion weighting. Therefore, ADC D can be found by 

acquiring a DWI at a single b-value and a non-diffusion-weighted T2 reference 

image. 

1.3. Diffusion Model (Tensor Model) Estimation 

In ADC imaging, diffusion is assumed to follow a free-diffusion physical model and 

is described by an isotropic Gaussian distribution. This model often is too simplistic, 

especially if the orientation of axonal bundles is interested where the diffusion is 

anisotropic (not the same in all directions). A model to capture diffusion properties 

as well as the direction an orientation of anisotropy is needed. One of the most 

commonly used model fitting technique for DWI images is Diffusion Tensor 

Imaging (Tensor Model Estimation) which was originally developed by (Basser et 

al., 1996) for three-dimensional assessment of diffusion data in vivo, achieved by 

measurement of DWIs along at least six directional gradients. DTI is a three‐
dimensional technique that uses the diffusion tensor instead of a single diffusion 

coefficient in the DWI. Signal attenuation due to the diffusion under the magnetic-

field gradient G = [Gx Gy Gz ] becomes: 

𝑆 =  𝑆0 exp(−𝑏. 𝐷) =  𝑆0 exp( − ∑∑𝑏𝑖𝑗𝐷𝑖𝑗),   𝑖, 𝑗 = 𝑥, 𝑦, 𝑧

3

𝑗=1

3

𝑖=1

  

Where bij = γ2δ2 (Δ – δ/3) GiGj , I,j=x,y,z for the spin-echo sequences is an element of 

the gradient factor matrix b. An isotropic diffusion can be derived simply by replacing 

the tensor matrix D with DI, i.e., the identity matrix multiplied by diffusivity D. 

So the formula above can be written as; 



113 

ln [
𝑆

𝑆0
] =  −𝑏. 𝐷 

Where b = [bxx byy bzz 2bxy 2bxz 2byz] and D = [Dxx Dyy Dzz Dxy Dxz Dyz], 

For the derivation of the diffusion tensor matrix D with six independent variables, 

at least six equations are required. Therefore, at least six diffusion measurements 

along the noncollinear noncoplanar gradient directions, plus one nondiffusion 

weighted measurement as the reference datum, are required in order to obtain the 

complete solution. There are three widely used methods used for estimating the 

tensor in the literature. Ordinary least squares (OLS), weighted linear least squares 

(WLLS) and nonlinear least squares (NLLS).  

With Ordinary least squares method, ln(DWI) =  ln(I0)- BmD where L is an Nx1 

column vector containing the log of the diffusion-weighted intensities for each of N 

measurements, and B is gradient vector depends on magnitude and duration of the 

diffusion encoding gradients, if we write P as [Dxx Dyy Dzz Dxy Dxz Dyz ln(I0)] 

then L=BP and with reverse solution P=(BtB)-1BtL, which can be calculated easily.  

In WLLS, D can be found from the standard linear least squares solution P =(Bt∑-

1B)-1Bt∑-1L where L is an Nx1 column vector containing the log of the diffusion-

weighted intensities for each of N measurements and ∑ represents the covariance 

matrix of the data points that are fitted. However the situation is not such simple. 

Due to high noise ratio (Johnson noise, Eddy currents, motion including periodic 

beat of CSF with blood flow, partial volume effect, etc.) The direct solution could 

resolve in non symmetric non positive definite matrix (with negative eigenvalues) 

and by the definition of tensor model, tensors must be symmetric positive definite 

matrix so there could be no direct solution but an estimate of it.  

One of the common estimation method is gradient descent algorithm constructed as  

I(q) =  I0 e –b(q) . D + noise where I(q) is observed value at q step. The problem 

reduces to finding the symmetric non-negative definite matrix D that minimizes the 

error functional (cost function) E(D, J) = ½ ∑ w(q) (I0 e –b(q) . D - I(q))2. Generally, 

estimate D, adjust through a gradient step to find new estimate for D until D 

converges. Construct gradient step to guarantee D is always positive definite (no 

negative eigenvalues). This is called nonlinear least squares (NLLS) method for 

diffusion weighted images. 

1.4. Tractography 

The fiber-tracting algorithms virtually create a trace of a particle by following the 

local fiber orientation as defined by the diffusion-tensor field. It is based on the 

assumption that local fiber orientation (for each voxel) is parallel to the major 

eigenvector of the diffusion tensor. A number of fiber-tracting algorithms have been 

developed (Basser et al., 2000; Conturo et al., 1999; Jones et al., 1999; Mori et al., 

1999; Poupon et al., 2000) since the introduction of DTI.  
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One of the main problem of fiber tractography is smoothly connecting each discrete 

voxel to the adjacent one in the principal direction given by the local diffusion tensor. 

Jumping from one voxel to the neighboring voxel, however, may result in nonsmoothed 

and erroneous trajectories. To prevent the errors caused by discrete quantization of the 

tensor field, fiber tracking is generally conducted on the continuous representation of 

the tensor field. In the continuous tensor field, the trajectory and its tangent vector (i.e., 

the major eigenvector) can be calculated not only restrictedly at the regular discrete 

voxel but also anywhere in the three-dimensional continuous field, This can be 

accomplished through the interpolation of the tensor field using linear interpolation, 

Lagrange polynomials, or B-spline functions.  

Although there are various methods, the overall algorithm for general fiber 

tractography can be constructed and given in Figure 6. 

 

Figure 6. Diagram of general fiber tractography (Hae-Jeong Park, 2005) 

1.4.1. Deterministic / Streamline Fiber Tractography 

One of the most common used tractography method is deterministic / streamline 

method where fiber tracts can be computed by propagation of an anterograde and a 

retrograde streamline from an initial seed point in the direction of the major 

eigenvector for a small spatial step. The points on the trajectory r(s) can be derived 

by dr(s) / ds = v(s) where v(s) is a unit tangent vector to r(s) at the time s. With the 
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initial condition, r(s = 0) = r0, called the seed point, the solution for this differential 

equation can be derived by an iterative process: rs+1 = rs+h.vs  

 

Figure 7.  The basic streamline algorithms in the continuous tensor field (Hae-Jeong Park, 2005) 

There are mainly two different equation solver algorithm for this equation. The 

simplest algorithm for solving the equation is the Euler method, which utilizes the 

major eigenvector as the propagation direction rs+1= rs + h.e1(rs) where e1 (rs) is 

the major eigenvector at point rs. The algorithm can be seen in Figure 7b. However, 

the Euler method can suffer from large accumulated errors unless the step h is small 

enough to prevent the error. The most well-known integration solver is the fourth-

order Runge–Kutta method. To obtain the propagation direction, v(s), four tangent 

vectors at neighboring points are evaluated as can be seen in Figure 7c. once at the 

initial point, twice at the trial midpoints, and once at the trial endpoint. 

The streamline techniques are deterministic in the sense that they utilize the 

eigenvector field reduced from the tensor field and do not allow for uncertainty of 

fiber direction. In the streamline technique, therefore, there is no mechanism to 

evaluate how reliably the path represents the true pathway or to evaluate how much 

more probable the connectivity from a seed point to a certain point is, compared to 

any other certain point. 
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1.4.2. Probabilistic / Connectivity Based Fiber Tractography 

More recent approaches are statistical in nature and take into consideration all of the 

diffusion information with the assumption that the probability of a fiber’s 

propagating in a given direction is proportional to the corresponding diffusion 

coefficient. In contrast to the streamline approach, which is a one-to-one mapping, 

all probabilistic approaches have in common that a single initial seed can have 

multiple end-points or a probability map, which makes it possible to evaluate the 

relative connectivity between the regions. 

Fiber Tractography with Solving Diffusion Equations: Some authors try to solve 

fiber tractography by the help of natural diffusion calculation such as heat and fluid 

diffusion. These diffusion characteristics can be represented as a partial differential 

equation and solving them also solves the diffusion problem by finding fiber 

tractography by solving PDEs where the diffusion coefficients of the heat equation 

equal the diffusion coefficients of the diffusion tensor. The solution can be obtained 

by iterative simulation of a peak concentration as it diffuses inside the brain based 

on the heat equation (Gembris et al., 2001) or based on the heat equation with a 

convection term to enhance the anisotropy of the diffusion equation (Batchelor et 

al., 2002 ). Hageman et al. try to solve the problem using the dynamics of a viscous 

fluid described by the second-order nonlinear Navier–Stokes equations by linear 

partial differential equations (PDE). The Navier–Stokes equations govern flow for 

a viscous Newtonian fluid, a fluid whose internal stress forces are linearly related to 

its strain forces (Hageman et al., 2009). 

Fast-Marching Tractography:  Parker et al. proposes a front propagation method 

called fast-marching tractography wherein the interface or front propagates in the 

direction of high diffusibility. The variable rate of the propagation is governed by 

the directionality of the tensor. In the direction of the major eigenvector, e1, the front 

propagates faster than the direction of the other two eigenvectors, e2 and e3. The 

front, started at a seed point, will cross regions in the brain at different times, and 

this generates a map of the arrival time at all points in the brain from the seed point. 

From this arrival-time map, the path of connection from a seed point to any point in 

the volume can be calculated by finding the minimum cost path back to the seed 

point from that point. Although this method is performed on the eigenvector field as 

the streamline approach is, its one-to-many mapping is the element that provides the 

evaluation of relative connectivity (Parker et al., 2002). 

The Monte Carlo Random-Walk Simulation: During the diffusion process, a 

particle performs a random walk through the medium. A Monte Carlo random-walk 

simulation (Hagmann et al., 2003; Koch et al., 2002) is based on this particle 

phenomenon with a local transition probability. The probability of transition in a 

given direction is chosen depending on the local diffusion coefficient along the 

propagation direction. The particle moves for a short time by stepping along a 

random direction, which is determined according to the transition probability at the 

initial location. In each iterative step, a new direction is randomly sampled and the 
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new transition-probability distribution is determined by the diffusion tensor at each 

location. Toward the new direction, the virtual particle propagates with a diffusivity 

corresponding to the direction. Particles will move with a higher probability when 

traveling along the fiber direction than when they travel perpendicular to it. In a 

number of such random walks starting from a region, the frequency that some other 

region has been reached can be used as a relative measure of the anatomical 

connectivity between the two regions. In order to constrain the random-walk process 

with the global properties of the fiber trajectory, hybrid approaches have been 

designed in order to find the optimal path between a pair of regions by combining 

the a priori information on the path curvature with the information from the 

diffusion-tensor data (Hagmann et al., 2003). 

The Probabilistic Approach Using Uncertainty: Constructing the diffusion tensor 

from the diffusion-weighted data is a model fitting technique that tries to fit of a 

local diffusion model to the diffusion-weighted data at each voxel. The underlying 

distribution is Gaussian. However, uncertainty exists in the relationship between the 

diffusion measurements and the underlying fiber structures. Noise in the NMR 

signal can be one source of this uncertainty. Behrens et al. presented a method for 

the treatment of these uncertainties. They formulated the local uncertainty in the 

parameters of the generative diffusion model at a voxel level, in the form of posterior 

probability density functions on these parameters. Global connectivity is based on 

the probabilistic tractography, which incorporates every possible fiber orientation at 

every voxel with the probability given by the measured diffusion-tensor data 

(Behrens et al., 2003). 
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APPENDIX B 

B-SPLINE CURVES 

A B-spline curve is defined for a collection of n +1 control points {𝑄𝑖}𝑖=0
𝑛  by  

𝑋(𝑡) =  ∑𝑁𝑖,𝑑(𝑡)𝑄𝑖

𝑛

𝑖=0

 

The control points can be any dimension but all of the same dimension. d  is the 

degree of the curve and 𝑁𝑖,𝑑(𝑡) is B-spline basis functions ,  where  ti  is scalar for 0 

0 ≤ 𝑖 ≤ 𝑛 + 𝑑 + 1 where    𝑡𝑖 ≤ 𝑡𝑖+1.  t is referred as a knot.  

𝑁𝑖,𝑗(𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑗 − 𝑡𝑖
𝑁𝑖,𝑗−1(𝑡) +

𝑡𝑖+𝑗+1 − 𝑡

𝑡𝑖+𝑗+1 − 𝑡𝑖+1
𝑁𝑖+1,𝑗−1(𝑡) 

and it starts with  

𝑁𝑖,0(𝑡) = {
1, 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1

0   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The knot vector can be classified as either open or periodic. If open, the knots are 

either uniform or nonuniform. Periodic knot vectors have uniformly spaced knots. 

Uniform knots are 

𝑡 = {

0, 0 ≤  𝑖 ≤ 𝑑
𝑖 − 𝑑

𝑛 + 1 − 𝑑
, 𝑑 + 1 ≤ 𝑖 ≤ 𝑛

1, 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑑 + 1
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APPENDIX C 

SOURCE CODE AND INSTRUCTIONS 

The source code developed in these studies has been open sourced and publicly 

available. Here are the repositories and descriptions for each. 

https://github.com/ozermetin/DirectionalStatistics : main repository for directional 

statistics method 

https://github.com/ozermetin/camino : forked from Camino project, additional 

TPDS modules are added. 

https://github.com/ozermetin/automationscripts : various automation scripts for the 

pipeline, including some Matlab modules. 

https://github.com/ozermetin/KentStatistics : repository for Kent statistics 

https://github.com/ozermetin/cmp : Connectome Mapper fork 

https://github.com/ozermetin/cmp_nipype: Connectome Mapper nipype plugin fork 

https://github.com/ozermetin/connectomeviewer Connectome Viewer fork 

https://github.com/ozermetin/VTK VTK fork 

https://github.com/ozermetin/ets Enthought Tool Suite fork 

https://github.com/ozermetin/Slicer Slicer fork  

 

 

 

 

 

 

 

https://github.com/ozermetin/DirectionalStatistics
https://github.com/ozermetin/camino
https://github.com/ozermetin/automationscripts
https://github.com/ozermetin/KentStatistics
https://github.com/ozermetin/cmp
https://github.com/ozermetin/cmp_nipype
https://github.com/ozermetin/connectomeviewer
https://github.com/ozermetin/VTK
https://github.com/ozermetin/ets
https://github.com/ozermetin/Slicer
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