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ABSTRACT

UNIVERSAL ADVERSARIAL PERTURBATIONS USING ALTERNATING
LOSS FUNCTIONS

Şen, Deniz

M.S., Multimedia Informatics, Department of Modelling and Simulation

Supervisor: Prof. Dr. Alptekin Temizel

August 2022, 49 pages

Deep learning models have been the main choice for image classification, however,
recently it has been shown that even the most successful models are vulnerable to ad-
versarial attacks. Unlike image-dependent attacks, universal adversarial perturbations
can generate an adversarial example when added to any image. These perturbations
are usually generated to fool the whole dataset and most successful attacks can reach
100% fooling rate, however they cannot be controlled to stabilize around a desired
fooling rate. This thesis proposes 3 algorithms (Batch Alternating Loss, Epoch-Batch
Alternating Loss, Progressive Alternating Loss) that utilize alternating loss scheme
where the loss function is selected at each iteration to be either adversarial or norm
loss based on some condition. Progressive Alternating Loss has been the best per-
forming attack in terms of the fooling rate stabilization and Lp norm. Furthermore,
training-time spatial filtering was applied to each of these proposed attacks to reduce
the artefact-like perturbations which naturally form around the center, which was
shown to be successful for L2 attacks.

Keywords: adversarial attack, universal adversarial perturbations, alternating loss
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ÖZ

DÖNÜŞÜMLÜ KAYIP FONKSİYONLARININ KULLANIMI İLE
EVRENSEL ÇEKİŞMELİ BOZULMALAR

Şen, Deniz

Yüksek Lisans, Çokluortam Bilişimi, Modelleme ve Simülasyon Bölümü

Tez Yöneticisi: Prof. Dr. Alptekin Temizel

Ağustos 2022, 49 sayfa

Derin öğrenme modelleri imge sınıflandırma için ana seçim olmuşlardır, ancak son
zamanlarda en başarılı modellerin bile çekişmeli saldırılara karşı savunmasız olduğu
gösterilmiştir. İmgeye özel saldırıların aksine, evrensel çekişmeli bozulmalar her-
hangi bir imgeye eklendiği zaman bir çekişmeli örnek üretebilir. Bu bozulmalar ge-
nelde bütün bir veri setini yanıltacak şekilde üretilir ve çoğu başarılı saldırı 100%
yanıltma oranına kontrolsüzce ulaşabilir, fakat istenilen bir yanıltma oranında stabi-
lize edilemez. Bu tez dönüşümlü kayıp fonksiyonu yöntemini kullanan 3 algoritma
(Yığına Bağlı Dönüşümlü Kayıp, Dönem-Yığına Bağlı Dönüşümlü Kayıp, İlerleyen
Dönüşümlü Kayıp) önermektedir; dönüşümlü kayıp fonksiyonları her yinelemede be-
lirli bir koşula göre çekişmeli ya da norm kayıp fonksiyonlarından biri olarak seçil-
mektedir. İlerleyen Dönüşümlü Kayıp yönteminin yanıltma oranları ve Lp normlarına
göre en başarılı saldırı olduğu görülmüştür. Ayrıca, önerilen her saldırıya uzamsal
filtreleme uygulanmış, böylece doğal şekilde imgenin orta kısmında oluşan yapay gö-
rünümlü bozulmalar azaltılmıştır. Bu uygulamanın L2 saldırılarında başarılı olduğu
görülmüştür.

Anahtar Kelimeler: çekişmeli saldırı, evrensel çekişmeli bozulmalar, dönüşümlü ka-
yıp
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Deep learning models have become the norm regarding tasks such as image classi-
fication. These models learn the patterns on high volumes of data in the forms of
non-linear mathematical functions by estimating the parameter set that best repre-
sents the training data distribution. In the specific case of image classification, the
models learn the decision boundaries that best separate different classes of samples
from each other in the formulated feature space; this means that if a sample is very
close to a decision boundary, to the perception of the neural networks, the class of
the sample can be highly ambiguous. It was shown that sampling from these "am-
biguous" areas of the feature space does not directly translate to human perception;
therefore, such an image may confuse a model while not affecting the human visual
perception. Adversarial learning aims to capitalize on this phenomenon by develop-
ing algorithms that craft special perturbations which, when added to a benign image,
do not affect the human perception yet force deep learning models to misclassify even
the simplest images. These additions are called adversarial perturbations, and their
combination with benign images are called adversarial examples. This subject poses
a crucial problem for deploying AI models in real life. For instance, if an autonomous
driving AI model is embedded into a vehicle without considering the existence of ad-
versarial examples, an attacker might perturb the real-life traffic signs to mislead the
vehicles, which could potentially cause catastrophic accidents to occur [1]. Despite
the existence of several adversarial defense mechanisms that were proven to be effec-
tive, creating new attacks that can overcome these defense methods is equally crucial
for the further improvement of these defenses, which will lead to more secure deploy-
ment of AI models in the real life [2, 3, 4, 5, 6, 7].

Conventional adversarial example generation methods are image-dependent; there-
fore, to generate an adversarial dataset, each image must go through the same algo-
rithm, which is a costly operation, especially if the algorithm involves an iterative
optimization process (most successful adversarial attacks are iterative). However, it
has been shown that image-independent perturbations also exist. These universal ad-
versarial perturbations (UAP), when added to any benign image, make it adversarial
[8].
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Despite being adversarial perturbations, UAPs have distinct properties compared to
image-dependent adversarial perturbations; for instance, while image-dependent ad-
versarial perturbations visually appear like noise, UAPs contain image-like features
about the target class. These features are strong enough to dominate the actual im-
age features relative to the deep network’s features space; as a result, the network
effectively perceives the UAP as the actual image and the benign image as noise [9].
This fundamental difference brings out a new problem that is not valid for image-
dependent attacks; controlling the fooling rate over a dataset. To fool a predefined
fraction of a dataset with standard adversarial attacks, only a part of the dataset could
be attacked. On the other hand, since -strong- UAPs are formed by image-like fea-
tures, randomly applying them to any image is likely to produce the same outcome as
any other image; thus, reaching a 100% fooling rate is quick and uncontrollable.

1.2 Proposed Methods and Models

This thesis adapts the concept of Alternating Loss (AL) into the UAP training proce-
dure by proposing 3 different algorithms:

• Batch Alternating Loss Training(B-AL)

• Epoch-Batch Alternating Loss Training(EB-AL)

• Progressive Alternating Loss Training(P-AL)

B-AL training uses the current fooling rate to approximate the performance of the
UAP over the whole dataset. On the other side, EB-AL strictly backpropagates the
adversarial loss function until the desired fooling rate is achieved over an epoch of
training, regardless of the individual performance over a batch. P-AL takes advantage
of the fooling rate performance of the current epoch until a point of optimization; this
way, the fooling rate can be stabilized around the desired level.

Following the algorithms, it is experimentally and visually shown that minimization-
based UAPs tend to generate image-like features around the corners while having
visually incoherent and adversarially weak noise around the center of the image. Spe-
cific filtering operations are integrated into each proposed training scheme to make
use of this phenomenon to reduce the overall noise. These filtering operations effec-
tively eliminate unwanted noise.

1.3 Contributions and Novelties

The main findings of this thesis were originally published in a paper in AAAI-22
Workshop on Adversarial Machine Learning and Beyond [10]. This thesis aims to
elaborate further on the subject. The contributions of this work are as the following:

2



• Parametrization of the fooling rate for UAP training

• Integration of AL scheme into UAP training

• Proposition of application of spatial filters to enhance the quantitative and vi-
sual performance of the UAPs

1.4 The Outline of the Thesis

Chapter 2 starts by presenting a taxonomy of the types of adversarial attacks and pro-
ceeds with brief introductions of the state-of-the-art image-dependent and universal
adversarial attacks. Chapter 3 presents the detailed descriptions of the proposed al-
gorithms. Then the filtering operation is explained, along with the common filters’
types and descriptions. Next, Chapter 4 begins with the details of the experimental
setup, followed by the results of unfiltered and filtered attacks. Also, a study about
the occurrence of the perturbations around the edges of the UAPs is given in this sec-
tion. Chapter 5 compiles the results from the previous section and their discussions.
Finally, Chapter 6 gives an overview of the thesis and potential future work.

3
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CHAPTER 2

LITERATURE SURVEY

In this section, widely used adversarial attacks are presented in a brief and informative
manner. The literature review starts by giving a taxonomy of the adversarial attack
algorithms, based on several properties. The proposed algorithms are also fit into
the given taxonomy. Then, the explanations of the most popular image-depend and
universal adversarial attacks are presented briefly.

2.1 Types of Adversarial Attacks

There are several ways that adversarial attacks can be categorized, such as targeted
and non-targeted attacks, where the objective of the adversarial attack is respectively
either forcing the model to predict the target class or to simply make a wrong predic-
tion for any input sample.

An alternative way to categorize the adversarial attacks is according to their access
to the target model. White-box attacks assume complete knowledge of the model
parameters such as the architecture, weights, gradients, and training procedure; on
the other hand, black-box attacks are performed without such knowledge. Thanks
to the high transferability of the adversarial examples, most of the time, the black-
box attacks are performed by attacking off-the-shelf models in a white-box setting
and feeding the obtained adversarial examples to an unknown target model to achieve
misclassification. In some cases, the attacker may only know the architecture of the
target model; these attacks are classified as gray-box; however, these attacks are also
mostly applied in the same way as black-box attacks, disregarding some exceptions
[11].

Furthermore, adversarial attacks can be single-step or iterative, where the algorithm
makes either a single or multiple updates over the learned perturbation vector. Despite
being more computationally efficient, single-step attacks are usually less successful
than iterative attacks.

Adversarial attacks can also either be norm-bounded or minimization based. Norm
bounded attacks usually limit the amount of change between the original sample and
the adversarial example (the limit is usually defined as ϵ, and the norm function is

5



mostly taken as Lp). In contrast, minimization attacks try to minimize the norm of
the perturbation vector as much as possible while still fooling the network.

Finally, the adversarial perturbations may either be image-dependent (i.e., only effec-
tive for a specific image) or universal (i.e., can be applied to any image from a target
dataset). Image-dependent attacks are usually less perceivable by the human eye
while being very costly as they require each image to be attacked individually. Uni-
versal attacks, on the other hand, are more perceivable by humans while only needing
to be trained once over a training set; then, the learned perturbation can be added to
any target image to generate an adversarial example. This quality also makes UAPs
more usable in the real world, while the image-dependent attacks are more suitable
for offline cases, such as CAPTCHA [12].

The taxonomy of the adversarial attacks proposed in this thesis or presented in the
next section is given in Table 1. As all the given attacks are white-box in terms of
access to the target model, such a column was not included in the table; besides, each
of these attacks can be turned into black-box by transferring the adversarial examples
that were generated in white-box settings.

2.2 Image-dependent Adversarial Attacks

In the remainder of this thesis the following variables are used, descriptions of which
are as the following:

• x: Benign image

• y: Class label of x

• v: Adversarial perturbation

• f : Target classifier

• t: Target class

• ϵ: Maximum amount of perturbation

6
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2.2.1 L-BFGS

The concept of adversarial examples was proposed along with the first adversarial at-
tack on a neural image classifier; the algorithm used a box-constrained optimization
method as given in Equation 1 [13]. This optimization tries to optimize a min-max
problem, where the first term signifies the Lp norm of the learned perturbation, and the
second term is the adversarial loss. The first term inherently increases the adversarial
loss (since reducing the norm weakens the misclassification power while making the
perturbation less perceivable to humans), while the second term tries to minimize it.
Hypothetically, when the optimization converges, an imperceptible and adversarially
successful example should be obtained. The algorithm was named by the literature
after the optimization algorithm that the attack used. This attack is image-dependent,
white-box, iterative, and minimization; furthermore can be both targeted and untar-
geted depending on the formulation of the adversarial loss function (Equation 1 shows
a targeted setting).

Minimize c|v|+ lossf (x+ v, t) subject to x+ v ∈ [0, 1]m (1)

2.2.2 Fast Gradient Sign Method

Fast Gradient Sign Method (FGSM) is a single-step adversarial attack. Despite its
weak fooling rate performance due to its simplicity, it is still being widely used as
a benchmark for new adversarial attacks [3]. The formal definition of the attack is
given in Equation 2.

xadv = x+ ϵsign(▽xJ(x, y)) (2)

FGSM resembles a step of gradient descent, except the step is taken in the same di-
rection as the gradient to maximize the loss and successfully generates an adversarial
example. This attack is image-dependent, norm bounded (because of ϵ scale), white-
box, single-step, and targeted (although it is possible to make the attack targeted by
taking a standard gradient descent step towards the target class).

2.2.3 Basic Iterative Method and Projected Gradient Descent

Basic iterative method (BIM) and projected gradient descent (PGD) algorithms con-
vert FGSM into an iterative attack, achieving the same amount of perturbation ϵ, while
taking smaller steps defined by α. BIM and PGD are defined in the equations 3 and 4
respectively [2, 1].

vi+1 = Clipϵ{vi + αsign(▽x+viJ(x+ vi, y))} (3)
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vi+1 = Projectϵ{vi + αsign(▽x+viJ(x+ vi, y))} (4)

The main idea of both attacks is to take fixed-sized steps on the loss curve until the
total amount of perturbation exceeds the boundary (ϵ). When the boundary is reached,
the norm of the perturbation is pulled back into a valid range by simply clipping the
perturbation values (BIM) or projecting it into the nearest Lp boundary (PGD). BIM
and PGD are iterative, norm bounded, white-box, and untargeted attacks, although
they can be turned into targeted attacks by taking gradient descent steps towards the
target.

2.2.4 DeepFool

DeepFool estimates the geometric locations of the decision boundaries of a classifier
and iteratively updates the perturbation vector until it reaches the closest decision
boundary [14]. Given a binary classifier (for the sake of simplicity, although the attack
can be performed against multi-class classifiers as well), the distance estimation and
optimization are done via the closed-form formula given in Equation 5.

r∗(x0) := argmin||r||2 subject to sign(f(x0 + r)) ̸= sign(f(x0)) = −
f(x0)

||w||22
w (5)

Theoretically, the perturbation vector with the smallest Lp norm should be achieved
since the resulting adversarial perturbation lies just on the other side of the decision
boundary. This attack is strictly untargeted on paper since the main idea of the dis-
tance estimation is to find the closest decision boundary, i.e., the closest class that
is not the original label of the image; however, as the decision boundaries are also
non-linear, estimation of the distance to a target boundary can still be effective (this
property is used in UAP [8] as well). Furthermore, DeepFool is an iterative, mini-
mization, white-box, and image-dependent attack.

2.2.5 Carlini&Wagner

Carlini&Wagner (C&W) is another iterative minimization-based adversarial attack
and is still being used as a benchmark for new adversarial attacks [15]. C&W refor-
mulates the adversarial attack definition such that the non-linear C(x + v) = t can
be embedded into the optimization without being a box constraint. For that, a new
adversarial loss function is proposed, which can be seen in Equation 6. The overall
optimization is given in Equation 7.

F (m) = max(maxi ̸=t(Z(m)i)− Z(m)t, 0) (6)
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minimize||1
2
(tanh(v) + 1)− x||pp + c.F (

1

2
tanh(v) + 1) (7)

Equation 7 is first optimized using Adam optimizer for several iterations, then the
scale factor c is adjusted in a binary search step; if the newly learned v is a successful
attack, decrease the value of c, otherwise, increase it. In practice, v with the smallest
c yields the best result in terms of ||Lp|| norm and attack success. This attack is
iterative, minimization, white-box, image-dependent and can be either targeted or
untargeted depending on the adversarial loss.

2.2.6 Perceptual Color Distance Alternating Loss

Perceptual Color Distance C&W (PerC-C&W) aims to learn adversarial perturbations
that cannot be perceived by human eye, by reformulating Equation 7 where instead of
optimizing the traditional ||Lp|| norm, the perceptual color distance CIEDE2000 [22]
is optimized [16]. However, since C&W is a considerably slow algorithm (mainly
because of the unparallelizable binary search procedure), "Perceptual Color Distance
Alternating Loss (PerC-AL)" was also introduced. The adversarial perturbation is
iteratively optimized using a loss function based on the attack success; if the current
perturbation is successful, optimize the CIEDE2000 norm of the perturbation; else,
optimize the classification loss. A similar approach was selected in this thesis work
as well. This attack is white-box, iterative, image-dependent, minimization and can
be either targeted or untargeted.

2.2.7 Spatially Transformed Adversarial Examples

An alternative approach to the adversarial example generation problem is proposed in
that, rather than learning the perturbations in the pixel space, an algorithm learns the
most optimal flow field that, when applied to the benign image, can fool the target net-
work [17]. In this way, the distortions on the adversarial example originate from the
already existing pixels in the image, and there is no extra additive noise, which makes
them less perceptible. This approach was taken further by doing the optimization on
the chrominance channels of the YUV transformation of the benign image [23]. In
this way, the perturbations do not affect the shapes in the image, which makes the
attack even less perceptible. These attacks are also image-dependent, minimization,
iterative, white-box, and targeted.

2.3 Universal Adversarial Perturbations

The attacks described in the previous section were strictly image-dependent, and to
generate an adversarial dataset, each algorithm must be applied to each sample indi-
vidually. This section describes UAPs, which require a training set to either train the
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UAP directly as if it is a parameter of the target model or a UAP generator model.
Note that all of the mentioned attacks are inherently iterative during training but
single-step during the application of the UAP into the benign image.

2.3.1 Universal Adversarial Perturbation

The problem of learning a single perturbation that, when applied to any image, can
fool a deep network was first introduced and named "Universal Adversarial Perturba-
tions" [8]. The UAP problem is defined as given in Equation 8. The aim is to learn
a UAP v with a norm smaller than ϵ, that, in conjunction with any sample x from a
dataset µ, will fool the classifier f with at least a probability of δ.

Px∼µ(f(x+ v) ̸= f(x)) ≥ δ s.t. ∥ν∥p ≤ ϵ (8)

The work proposed a universal attack where a learned perturbation is iteratively ap-
plied to each sample of a dataset and put through DeepFool [14] algorithm if the
current sample cannot fool the network. This way leads to a procedure that accumu-
lates the smallest image-dependent perturbations over the whole dataset and obtains
a single UAP; note that this procedure is very costly and does not guarantee an opti-
mal result. UAP attack is a universal, norm bounded, white-box, iterative and can be
either targeted or untargeted.

2.3.2 Network for Adversary Generation

Network for adversary generation (NAG) is a generative model that aims to learn
the distribution of UAPs. As opposed to a standard generative adversarial network
(GAN) or autoencoder (AE) model, NAG only trains a generator, whose weights are
updated based on the loss obtained by the target network [18, 24]. The target network
is fed three batches of inputs each iteration; an adversarial batch, a benign batch, and
a shuffled adversarial batch. The loss function used to train NAG is composed of
2 parts; a fooling loss and a diversity loss. The fooling loss is computed using the
adversarial batch and the benign batch, in that the distance between the predictions
made on these batches is wanted to be maximized to ensure misclassification. On
the other side, the diversity loss aims to maximize the distance between the generated
UAPs of the same batch to force the generator to create diverse UAPs. NAG generates
norm-bounded attacks by adding a scaled tanh non-linearity at the end of the last
deconvolution layer of the generator. As tanh is defined in the interval of [-1,1], when
the function is scaled by ϵ, the generated UAP is guaranteed to be in the defined range.
NAG is a universal, white-box, and norm-bounded attack.
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2.3.3 Feature-UAP

Feature-UAP (F-UAP) trains the UAP vector as if it is a weight of the target network;
however, the loss function becomes an adversarial one to maximize the fooling rate
performance [9]. This algorithm is also efficient in that the UAP can be trained using
mini-batches and Adam optimizer; therefore, the convergence is achieved relatively
quickly. This work also investigates the existence and surprisingly good performance
of the UAPs by correlating the logits of the networks with benign images and UAPs.
They find that when the network is fed a benign image, it produces a high positive
correlation; however, when it is coupled with a UAP, the correlation of the UAP with
the logits becomes strong, while the correlation of the actual image becomes weak.
In this way, it is concluded that UAPs fool the networks by showing themselves as the
actual image while showing the real image as some noise, such as Gaussian. F-UAP
is also a norm-bounded adversarial attack, where the UAP is clamped by some ϵ every
iteration after the update.

2.3.4 High-pass UAP

The existence of the UAPs was investigated from a deep steganography standpoint,
which is a method where some message is encoded and added to an arbitrary benign
image, which is in result called a container [19]. The container is then put through
some decoder to extract the hidden message out of the image. It was found that
the encoder networks strictly learned to encode the messages with high frequencies,
which also meant that the human eye could struggle to perceive the distortions coming
from the message. High-pass UAP (HP-UAP) was developed using this information;
the algorithm is very similar to F-UAP, except that after each iteration, the UAP is
filtered by a differentiable high-pass filter. This operation not only eliminates the
visible artifacts from the UAP but also increases the performance of the UAP.

2.3.5 Fast Feature Fool

Fast feature fool (FFF) is a different adversarial attack in that the algorithm does not
require any image data to train a UAP [20]. Instead, the UAP is fed into the target
network by itself and trained to maximize the activation (therefore the output of the
non-linear activation function such as ReLU) of each layer. It is also stated that it was
empirically found that only maximizing the convolution layer activations is sufficient.
To achieve this maximization, the loss function given in Equation 9 is used, where K
is the number of layers of the target network, and l̄i(v) is the mean activation of ith
layer. Also, after the update of the UAP in each iteration, the L∞ perturbation values
are clipped to ϵ, which makes this attack norm bounded. The attack is also white-box.
FFF underperforms when compared to other UAPs in terms of fooling rate; however,
it is a proof of concept of the ability to learn UAPs in a data-free fashion.
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Loss = − log

(
K∏
i=1

l̄i(v)

)
such that ||v||∞ < ϵ (9)

2.3.6 Double Targeted Attack

Double targeted attacks (DTA) solve a different problem than the standard UAP prob-
lem; the main goal is to learn a UAP that will only change the prediction of a single
class [21]. This way, a potential attack will be less suspicious, as only a single class is
forced to be misclassified. The formal definition of this problem is given in Equation
10, where the sample belonging to the class desired to be misclassified is xt (referred
to as targeted source class), and ysink is the sink class which xt should be turned into.

F̃ (xt + v) = ysink subject to ||v||p ≤ ϵ (10)

The UAP is trained using a particular loss function that is constituted of two com-
ponents; target and non-target losses. The target loss is also composed of two parts,
where the first one aims to decrease the logit value of the targeted source class of the
sample, and the second one is to maximize the logit value of the sink class. These
functions are based on the adversarial loss function proposed in C&W attack6. The
non-target loss is to maintain the standard accuracy of all classes but the targeted
source class, which is achieved using cross-entropy loss. During each iteration of
the mini-batch training phase, a batch of samples, half of which is from the targeted
source class and the other half from the sink class, is used; thanks to the hybrid loss
function, the UAP learns to fool the network via only the targeted source class.
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CHAPTER 3

METHODOLOGY

The standard UAP learning problem is defined as given in Equation 8, whose con-
straint is the maximum Lp norm of the vector. This definition is given to maximize
the fooling rate as long as the norm is smaller than some ϵ; therefore, it does not
allow parameterization of the fooling rate. In this thesis, the UAP training problem is
reformulated to be able to set a target fooling rate. Equation 11 presents the formal
definition of the problem where δ is the target fooling rate.

minimize ||v||p s.t. Px∼µ(f(x+ v) = t) ≈ δ (11)

With this formulation, the optimization target is to find the smallest perturbation v
which can fool the target network P with a probability of δ, in conjunction with a
benign example x, sampled from some distribution µ.

Many solutions can be generated to the problem of achieving a desired fooling rate
over a dataset. AL scheme can be used to adjust the learning procedure of the UAP;
in that, altering the loss function based on the current performance of the UAP is
a possible choice. The AL strategy was already used to generate image-dependent
adversarial perturbations; however, it was not used for the generation of UAPs. The
primary motivation behind using AL is that it is a greedy approach that aims to pri-
oritize the weakness of the optimized entity in each step, and in this case, the UAP.
Since, in this context, the weakness can be easily detected by only estimating the
fooling rate performance of the UAP over the dataset, the altering conditions can be
defined easily as well. In this section, the 3 UAP generation algorithms that take
advantage of the AL scheme will be introduced by defining different loss-altering
conditions. Each subsequent attack will address the shortcomings faced in the previ-
ous one; hence multiple attacks were introduced until reaching an optimal solution to
the problem of stabilizing the fooling rate of the UAP. Furthermore, based on some
empirical quantitative and visual results, the train-time filtering operations were de-
veloped, and their methodologies will be further explained in the next section. The
proposed UAP generation algorithm is presented as a pipeline in Figure 1.

15



Algorithm 1 Batch Alternating Loss Training(B-AL)
Input: Dataset µ, target class t, target fooling rate δ, epoch k, model f , norm p
Variables: Counter i, fooling rate fr, prediction out, adversarial loss function adv,
loss L
Output: Universal adversarial perturbation v

1: v ← 0
2: i← 0
3: while i < k do
4: for x ∼ µ do
5: out← f (x+ v)
6: fr← # of incorrect predictions / batch size
7: if fr < δ then
8: L← adv(out, t)
9: else

10: L← ||v||p
11: end if
12: backpropagate L
13: update v
14: i← i+ 1
15: end for
16: end while
17: return v

3.1 Batch Alternating Loss Training

The pseudocode of B-AL training can be seen in Algorithm 1. During B-AL training,
the loss function is altered based on the fooling rate performance of the current batch.
When the combination of the UAP and the current batch achieves the desired fooling
rate, the loss function of that particular iteration is selected to be the Lp norm; oth-
erwise, the loss function becomes adversarial. This method of integration is simple;
however, it comes with several potential drawbacks. Firstly, it assumes that the batch
size is large enough (at least 32) that the performance against a random sample from
the dataset can be approximated as the fooling rate over the whole distribution, which
can be costly in terms of GPU memory usage, since each image within a batch results
in multiplication the number of tensors that needs to be held in memory. On the other
hand, it is possible that the norm loss can bring the adversarial energy of the UAP
down to a point where the fooling rate can never reach the desired level.

3.2 Epoch-Batch Alternating Loss Training

EB-AL (given in Algorithm 2) training is similar to B-AL training; however, instead
of solely looking at the performance of each batch, the adversarial performance over
the whole dataset is also considered. Unless the desired fooling rate was reached dur-
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ing the previous epoch, the norm could not be optimized; therefore, the loss function
stays adversarial throughout the whole epoch. If the target fooling rate was achieved
at the end of the previous epoch, then the loss function alteration condition becomes
the same as B-AL. This method hypothetically solves the unsuccessful fooling rate
convergence problem of B-AL training. However, it may cause the fooling rate to
largely oscillate over and under the target level, which is undesirable regarding the
defined problem. Besides, EB-AL also suffers from the high memory consumption
problem since when the alteration condition becomes the same as B-AL, the batch
size must be large enough.

3.3 Progressive Alternating Loss Training

P-AL (given in Algorithm 3) takes a different approach to the loss function alteration
condition; in order to take the performance over the whole dataset into account, P-
AL calculates the cumulative fooling rate of the current batch if it is higher than
the target level, the norm loss is selected; otherwise, the adversarial loss is applied.
This method solves the problem of large oscillation around the target fooling rate
and reduces the GPU memory overhead. Also, as this algorithm utilizes the global
cumulative fooling rate, the effect of the batch size becomes very minimal compared
to the other two proposed attacks.

3.4 Masked Training

It was visually found that the image-like features tend to mitigate towards the edges
of the UAPs. Also, relatively smaller magnitude perturbations were formed around
the center of the UAP. However, these perturbations are mostly visually incoherent,
which contradicts the idea that UAPs contain image-like features. Therefore their
contribution to the fooling performance against the network is weaker than the ones
forming around the edges of the UAP. Furthermore, as these perturbations are near
the center of the image, it is likely that they modify the pixels of the actual object
in the image since the objects are located in the middle of the frame with a higher
probability. Hence, these perturbations are likely to draw more attention from a hu-
man observer while having a negligible impact on the adversarial performance of the
UAP. Thus, to alleviate the emergence of these perturbations, different kinds of masks
were incorporated into the training procedure, producing UAPs containing dominant
perturbations around the edges. Four different types of filters were chosen for this
masking operation.

3.4.1 Circular Filter

With a circular filter, the pixels that are farther from the center of the image more
than by a value r, are set to 1, and the rest is set to 0 (Equation 12). Visualization
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of the filter with three different radius sizes is given in Figure 2. Note that Figure 2c
does not show a perfect circle since the diameter of the circle (248) is higher than the
length of the edges of the image (224).

f(x) =

{
1, if

√
(w
2
− x)2 + (h

2
− y)2 ≥ r

0, otherwise
(12)

3.4.2 Gaussian Filter

Gaussian filter is a filter where the norm of a weight is valued between 0 and 1,
inversely proportional to its distance from the center. However, in this case, each
value is subtracted from 1 to strengthen the pixels that are farther from the center of
the mask, as shown in Equation 13, where x and y are the positions of the pixels, and
σ is the variance of the Gaussian distribution. Also, the visualization of the filter for
3 different σ values are shown in Figure 3.

G(x) = 1− 1

2πσ2
e−

x2+y2

2σ2 (13)

3.4.3 Butterworth Filter

High pass Butterworth filter [25] also contains smooth passage between passed and
filtered frequencies, with the introduction of the variable n, which manipulates the
clearness of the filter response; the transitions are faster than the Gaussian filter but
slower and smoother than the circular filter. The formulation of the filter is given in
Equation 14, where D0 is the center coordinate of the image, (x, y) are the coordinates
of the input pixel, and n is a parameter that affects the smoothness of the transition.
The Butterworth filter is visualized in Figure 4 with different parameters.

B(x, y) =
1

1 + [D0/D(x, y)]2n
(14)

3.4.4 Rectangular Filter

The rectangular filter is a filter where the pixels that are less distant from the edges by
a value nx (distance from left and right edges) and ny (distance from top and bottom
edges) are 1 and the rest is 0. The visualization and the equation of the filter are given
in Figure 5 and Equation 15 respectively; x and y are the coordinates of the pixel, Lx

and Ly are the horizontal and vertical lengths of the filter, nx and ny are the offsets
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from the edges where the filter value is 1(note that the origin is taken as the top left
corner).

R(x, y) =

{
0, if nx < x < Lx − nx and ny < y < Ly − ny

1, otherwise
(15)
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Figure 1: Alternating loss UAP training pipeline
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Algorithm 2 Epoch-Batch Alternating Loss Training (EB-AL)
Input: Dataset µ, target class t, fooling rate δ, epoch k, model f , norm p
Variables: Counter i, fooling rate fr, prediction out, adversarial loss function adv,
loss L, optimization mode m, number of correct predictions correct, image number
counter imcount, fooling rate over the epoch epochfr
Output: Universal adversarial perturbation v

1: v ← 0
2: i← 0
3: m← ’epoch’
4: while i < k do
5: correct← 0
6: imcount← 0
7: for x ∼ µ do
8: out← f (x+ v)
9: correct← correct+ # of correct predictions

10: imcount← imcount+ batch size
11: fr← # of incorrect predictions / batch size
12: if (m == ’epoch’) or

(m == ’batch’ and fr < δ) then
13: L← adv(out, t)
14: else
15: L← ||v||p
16: end if
17: backpropagate L
18: update v
19: i← i+ 1
20: end for
21: epochfr ← 1− correct/imcount
22: if epochfr < δ then
23: m← ’epoch’
24: else
25: m← ’batch’
26: end if
27: end while
28: return v

(a) r = 100 (b) r = 112 (c) r = 124

Figure 2: Circular filters with different r values
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Algorithm 3 Filtered Progressive Alternating Loss Training (FP-AL)
Input: Dataset µ, target class t, fooling rate δ, epoch k, model f , norm p, mask
radius D
Variables: Counter i, fooling rate fr, prediction out, adversarial loss function adv,
loss L, number of correct predictions correct, image number counter imcount,
circular filter filter
Output: Universal adversarial perturbation v

1: v ← 0
2: i← 0
3: filter ← any of the filters
4: while i < k do
5: correct← 0
6: imcount← 0
7: for x ∼ µ do
8: out← f (x+ v)
9: correct← correct + # of correct predictions

10: imcount← imcount + batch size
11: fr ← (imcount− length of correct) / imcount
12: if fr < δ then
13: L← adv(out, t)
14: else
15: L← ||v||p
16: end if
17: backpropagate L
18: update v
19: v ← filter(v)
20: i← i+ 1
21: end for
22: end while
23: return v

(a) σ = 100 (b) σ = 112 (c) σ = 124

Figure 3: Gaussian filters with different σ values
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(a) D0 = 100 (b) D0 = 112 (c) D0 = 124

Figure 4: Butterworth filters with n = 30 and different D0 values

(a) nx = ny = 100 (b) nx = ny = 112 (c) nx = ny = 124

Figure 5: Rectangular filters with Lx = Ly = 224 and different nx, ny values
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CHAPTER 4

RESULTS

This section gives the results of the experiments done using multiple parameters. It
presents the settings where the experiments were done in detail, which includes the
explanation of the target dataset, chosen attack parameters, comparison methods, and
the computation environment.

4.1 Experimental Settings

The dataset used in this work is ImageNet, whose training and validation subsets
contain around 1.2 million and 50000 images of 1000 classes [26]. However, since,
in this case, the trained parameter set is not a model but a small noise vector, the
training set was sampled in a way that only 10 images were randomly selected from
each class, thus significantly shortening the training times of the UAPs. As a result,
the UAPs were not trained on the whole ImageNet data; instead, they were trained
using 10000 images from 1000 classes. Note that the validation set was not sampled,
and the whole set was used for network evaluation. The same methodology is also
adopted in the compared papers.

As the attacks are strictly targeted in this case, the target class was chosen to be "pea-
cock", and the attacks were applied under L2 and L∞ settings. Note that the attacks
are more suitable for optimization under L2 boundaries since small updates on the
noise vector are likely to be more effective under these settings. Also, the target fool-
ing rate was set to be 95% throughout the experiments. It was empirically found that
if a UAP can reach a 95% fooling rate, in the absence of regulations, it tends to reach
100% in several iterations, which is normally considered to be a successful attack;
however, under the problem defined in this thesis, diverging from the target fooling
rate is considered unsuccessful. It is highly possible that a UAP cannot reach 95% at
all, as it is a relatively high fooling rate, and in such a case, the UAP is also consid-
ered unsuccessful. Therefore, 95% was found to be a reliable level that shows both
the adversarial capacity and the controllability of a UAP generation method. Each
UAP was trained for 20 epochs using Adam optimizer (with an initial learning rate of
0.01), with the sampled training set, and tested using the standard validation set. The
target networks were selected to be DenseNet121 [27], ResNet50 [28], GoogLeNet
[29], VGG16 with batch normalization [30] and ViT [31], which adapts a transformer
architecture instead of a convolutional neural network architecture.
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The proposed attacks were compared with two widespread universal attacks, vanilla
UAP and Feature UAP. Similar to the proposed attacks, vanilla UAP can take a pa-
rameter where the training will be stopped if the fooling rate reaches the parameter
value; however, this parameter does not directly impact the actual optimization. Note
that the proposed attacks fix the fooling rate and try to minimize the Lp norm; how-
ever, the other universal attacks fix the Lp norm and maximize the fooling rate. This
makes it rather difficult to compare the performance of the UAPs. To make a con-
trolled experiment, first, the UAPs obtained from the proposed attacks are obtained
with fixed fooling rates and varying Lp norms; then, the compared UAPs were trained
by fixing the Lp norms as obtained from the corresponding proposed UAP.

In the filtered training phase, each type of filter was used with three different param-
eters. The radius parameter D of the circular filter, the variance (σ) of the Gaussian
filter, and D0 of the Butterworth filter were set to be 100, 112, and 124. As the But-
terworth filter also has the parameter n, it was strictly set to 30, based on several
empirical studies for simplicity. The rectangular filter was used with parameters nx

and ny, which take values as either 10, 20, or 30. The filtering operation was not
applied to the vanilla UAP and F-UAP attacks, as it requires changing these attacks
substantially.

The code for this thesis was written in Python programming language, which has
become the norm for deep learning practices in recent years, thanks to its higher
level syntax and interpretation, but most importantly, thanks to the supported GPU
acceleration libraries. PyTorch, being one of the most popular GPU accelerated deep
learning frameworks, was used in this thesis. Furthermore, the experiments were
done in a workstation containing two NVIDIA RTX 3080 GPUs.

4.2 L2 Attack Results

The results of the L2 attacks are presented in Table 2; the first three rows show the
results of the proposed attacks, whereas the last two rows give the results of the com-
pared attacks whose L2 norm constraints were set to be equal to the value obtained
from P-AL as it was crafted to be the most optimal algorithm out of the three proposed
attacks. Note that all the proposed attacks were set to converge to a 95% fooling rate
during the optimization.

In this context, B-AL has failed to achieve the target fooling rate against each network
while consistently yielding the smallest L2 norms compared to the EB-AL and P-AL
(except against VGG16, where the attack is successful) by respectively 49.60% and
21.24%. However, since the proposed attacks’ primary objective is to stabilize around
the desired fooling rate, these results cannot be evaluated as successful, despite the
marginal fooling rate deviation and small norm values.

On the other hand, EB-AL yields result in the opposite way, where in each case, the
attack surpasses the desired fooling rate while yielding considerably higher L2 norms
than the other attacks’ norms. Although achieving higher fooling rates is considered
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to be better in the standard case, for the problem defined in this work, getting farther
from the desired fooling rate cannot be evaluated to be better.

The results of L2 P-AL attacks resemble a combination of the results of the other
two attacks; in each case, the attack reaches and converges around the desired 95%
fooling rate while yielding norm values that are consistently less than EB-AL but
slightly higher than B-AL attacks. Therefore, this attack can be considered successful
against any of the networks for the given problem. Also, both the vanilla UAP and
the F-UAP attacks fall short in terms of the fooling rate under the same L2 norm
constraints compared to P-AL. Surprisingly, despite still yielding high fooling rates
against DenseNet121, ResNet50, and GoogLeNet, F-UAP achieves 70% and 50%
fooling rates against VGG16 and ViT. Figure 6 shows visual examples of the output
of this attack.

Table 2: The results of the proposed and compared L2 attacks. The results of the
proposed attacks that did not at least reach the target fooling rate were italicized, and
the attack result with the least norm value was given as bold.

Method DenseNet121 ResNet50 GoogLeNet VGG16 ViT
L2 FR L2 FR L2 FR L2 FR L2 FR

B-AL 9.14 0.93 9.08 0.93 9.56 0.91 7.10 0.95 10.44 0.91
EB-AL 14.11 0.98 14.36 0.98 15.73 0.98 7.39 0.95 17.63 0.98
P-AL 11.16 0.95 11.66 0.95 13.01 0.95 5.52 0.95 11.84 0.95
UAP 11.16 0.33 11.66 0.34 13.01 0.43 5.52 0.30 11.84 0.50
F-UAP 11.16 0.90 11.66 0.93 13.01 0.91 5.52 0.70 11.84 0.50

4.3 L∞ Attack Results

Table 5 shows the results of the L∞ attacks. In this case, B-AL and EB-AL attacks
yield similar fooling rate and norm results, in the that against each network, the fool-
ing rates diverge to 100% which is an undesirable situation for this particular problem;
besides, the L∞ norms tend to get considerably large.

The results of P-AL attacks are better in terms of the deviation from the target fooling
rate, which is at most 1 percentage point against the CNNs, however, it also fails
against ViT; although it can be seen that the L∞ norm is 42.11% and 47.39% less
than those of B-AL and EB-AL respectively. Several examples outputs from different
networks are given in Figure 7.

4.4 Perturbation Accumulation Results

As mentioned earlier, UAPs tend to contain image-like features, unlike image-dependent
adversarial perturbations, which are mostly perceived as noise by themselves. This
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Table 3: The results of the proposed and compared L∞ attacks. The results of the
proposed attacks that did not at least reach the target fooling rate were italicized, and
the attack result with the least norm value was given as bold.

Method DenseNet121 ResNet50 GoogLeNet VGG16 ViT
L∞ FR L∞ FR L∞ FR L∞ FR L∞ FR

B-AL 0.17 1.00 0.17 1.00 0.20 1.00 0.16 1.00 0.27 1.00
EB-AL 0.16 1.00 0.18 1.00 0.22 1.00 0.17 1.00 0.28 1.00
P-AL 0.11 0.96 0.13 0.96 0.16 0.96 0.11 0.95 0.19 1.00
UAP 0.11 0.52 0.13 0.60 0.16 0.79 0.11 0.75 0.19 1.00
F-UAP 0.11 0.99 0.13 0.99 0.16 0.99 0.11 0.99 0.19 1.00

property of UAPs creates an illusion over the network such that it perceives the be-
nign image as noise and the perturbation as the actual image [9]. However, UAPs
also contain noisy visible features such as blobs which go against the main feature of
the UAPs. It was empirically found that the image-like features tend to accumulate
around the edges of the perturbation vector, whereas the noisy features appear around
the center; not only are these features perceived easily by the human eye because of
their locations, but also they do not contribute to the fooling performance of the UAP.
Figure 8 shows the average gradient values of perturbations and their distances to the
center of the image. It can be seen that after several UAP optimization iterations,
the perturbations which are far from the center tend to generate gradients with higher
norms, where the gradients are the partial derivatives of the loss function with respect
to each pixel perturbation.

4.5 Filtered L2 Attack Results

Following the previous findings, the perturbations around the center were masked
during the UAP training to reduce the amount of perturbation visually and quantita-
tively. The masked training results of the L2 attacks are presented in Table 4. There
are four types of filters, and each filter is experimented with three parameter values;
for the sake of simplicity, only the best performing(the ones that at least reached the
target fooling rate and gave the smallest norm) filter-parameter pairs were given for
each attack.

Like the unfiltered results, Filtered B-AL (FB-AL) struggles to reach the target fool-
ing rate regardless of the filter type. However, unlike circular and rectangular filters,
Gaussian and Butterworth filters considerably reduce the fooling rates. On the other
hand, a rectangular filter consistently reduces the L2 norms while maintaining the
fooling rate performance from the original attack.

In the Filtered EB-AL (FEB-AL) results, each filtered attack except the Gaussian
at least stays over the target fooling rate while consistently reducing the L2 norms.
It is also possible to see small reductions in the fooling rates, which in this case is
beneficial; the original EB-AL attack consistently yields fooling rates higher than the
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desired level; thanks to the filters, the difference between the achieved and desired
fooling rates get smaller. Example outputs of the attack are given in Figure 9

Filtered P-AL (FP-AL) attack not only consistently (except for the Gaussian filter)
holds the already successful fooling rates but also considerably reduces the L2 norms
against almost any target network. Therefore the filtering operation gives even more
optimal results than the unfiltered P-AL attack. Outputs of this attack can be found in
Figure 10.

4.6 Filtered L∞ Attack Results

The stabilization problem of the L∞ attack persists in the filtered training paradigm
as well, in that the fooling rates tend to converge to 100%. Unlike the success of
the filtering operation applied to the L2 attacks, the filtering operations increase the
norm values while not significantly affecting the fooling rate. As an exception, the
Butterworth filter reduced the average fooling rate to 95.2%, which is only marginally
different from the target fooling rate; however, the average L∞ norm has increased
by 58.7%, which is an unacceptably high deviation from the unfiltered variant of
the attack. On the other hand, the results obtained from FEB-AL(whose example
outputs can be found in Figure 12) are very close to FB-AL; in fact, most of the norm
and fooling rate values only fractionally differ from their counterparts. Note that the
unfiltered L∞ attacks also yielded similar values.

Filtering the L∞ P-AL attack increases the norm values drastically in most cases
while having a minimal impact on the fooling rate. Even though, based on the pre-
vious results, this situation can be expected, it still makes the attack inferior to the
unfiltered one. Visual outputs of this attack are given in Figure 11.
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(a) Original image (b) DenseNet121

(c) GoogLeNet (d) ResNet50

(e) VGG16 BN (f) ViT

Figure 6: Attack results obtained by attacking the indicated network using L2 P-AL.
The original class of the image is "Chesapeake Bay retriever".
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(a) Original image (b) DenseNet121

(c) GoogLeNet (d) ResNet50

(e) VGG16 BN (f) ViT

Figure 7: Attack results obtained by attacking the indicated network using L∞ P-AL.
The original class of the image is "Chesapeake Bay retriever".
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(a) Iteration 1 (b) Iteration 30

(c) Iteration 150 (d) Iteration 300

Figure 8: Vertical axes show the mean gradient value, horizontal axes show the dis-
tance between the pixel containing the corresponding mean gradient, and the center
of the image. The scatter plots are extracted from UAP states after iteration number
1, 30, 150 and 300.
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(a) Original image (b) Identity

(c) Circular (d) Gaussian

(e) Butterworth (f) Rectangular

Figure 9: Attack results obtained by L2 FEB-AL and indicated filter, against
ResNet50. The original class of the image is "Great Pyrenees".
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(a) Original image (b) Identity

(c) Circular (d) Gaussian

(e) Butterworth (f) Rectangular

Figure 10: Attack results obtained by L2 FP-AL and indicated filter, against
ResNet50. The original class of the image is "Great Pyrenees".
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(a) Original image (b) Identity

(c) Circular (d) Gaussian

(e) Butterworth (f) Rectangular

Figure 11: Attack results obtained by L∞ FP-AL and indicated filter, against
ResNet50. The original class of the image is "Great Pyrenees".

37



(a) Original image (b) Identity

(c) Circular (d) Gaussian

(e) Butterworth (f) Rectangular

Figure 12: Attack results obtained by L∞ FEB-AL and indicated filter, against
ResNet50. The original class of the image is "Great Pyrenees".
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CHAPTER 5

DISCUSSION

The results given in the previous section are discussed in this section. As there are
many results from several experiments, it is valuable that the quantitative data is in-
terpreted in multiple ways, in order to extract conclusive information. The section
starts by discussing the results of the standard unfiltered attacks, which includes com-
parisons between the results of both the same attack and other attacks, furthermore,
the filtered attacks are discussed in the same manner. Finally, the visual interpretation
of different attack results is given, as the visual aspect of the adversarial examples
covers a crucial part of their usability.

5.1 Standard Attacks

L2 P-AL attack shows significantly better results than any other attack under the given
constraints. This attack consistently converges to the desired fooling rate, while B-AL
never reaches and EB-AL oscillates around that level. A reason for these behaviors
is that both B-AL and EB-AL are highly dependent on the batch size hyperparameter
since both algorithms assume that a sufficiently large batch size can be a good ap-
proximation of the performance of the UAP against the actual population. Although
a batch size of 32 was selected in the experimental settings, not all GPUs can handle
such computational load, making these algorithms mostly unusable in practice. On
the other hand, P-AL is not affected by the batch size, thanks to its altering condi-
tion that is only dependent on the cumulative performance against the dataset itself.
Thanks to this altering scheme, the optimization becomes much more stable, and the
convergence is achieved around the desired fooling rate while also yielding notice-
ably lower L2 norms. Also, although the problems differ, P-AL outperforms UAP
and F-UAP regarding the fooling rate with the same fixed norm.

It should be noted that the proposed attacks are more suitable for the L2 norm coun-
terpart, as optimizations done over L∞ norms tend to be very unstable as the slightest
deviation on L∞ value creates a significant difference in the overall amount of pertur-
bation. For instance, when the L∞ norm is increased by 0.01, for a perturbation vector
with a resolution of 224 × 224 × 3, the total amount of perturbation (L1 norm) can
increase by 1,491.87, which can have considerable effects over the fooling rate. L∞
P-AL attack is also the most optimal choice among the proposed algorithms since the
fooling rates are controlled around the desired level while also yielding considerably
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smaller L∞ norms. However, P-AL falls short under standard UAP attack settings
against F-UAP, as this attack reaches higher fooling rates with a norm bound equal to
that P-AL achieved during its minimization optimization. Overall, P-AL is not only
the best choice as an attack whose fooling rate can be predefined but also can be a vi-
able option under standard adversarial settings. Furthermore, EB-AL can be a better
option to maximize the fooling rate, as seen in Table 2 and 3, it reaches higher fooling
rates while also optimizing the norm. In the case of P-AL, when the target fooling
rate is set to 100%, the loss will be adversarial in most iterations, maximizing the
norm indefinitely. To be exact, if the attack is unsuccessful against a single image,
for the rest of the optimization, the loss will strictly be altered to adversarial since
the fooling rate will never reach 100% until the end of the epoch. Therefore, under
standard adversarial settings, EB-AL is the more viable option.

5.2 Perturbation Features

Figure 13 shows UAPs trained with the proposed algorithms and the corresponding
adversarial examples. It can be seen that more image-like features are accumulated
around the edges, while the noisy features are generated around the center. It is
hypothesised that the partial derivative of the cross-entropy loss with respect to the
edge pixels becomes relatively high compared to the central pixels since the features
of the target class are less likely to be found around the center; therefore, the central
pixels contribute much less than the edge pixels which do not usually contain features
of the original class. The correlation between the magnitude of the gradients and their
distance from the center can be seen in Figure 8. This also implies that the image-
like features accumulate around the edges because of the attacks being targeted rather
than their usages of alternating loss schemes. This also supports the findings given
in [9] that the UAPs fool the networks thanks to their image-like features, which are
perceived by the networks as real images.

5.3 Filtering Operation

Incorporating different filtering operations into the UAP training was proven to be
successful under L2 attack settings. Furthermore, while P-AL was objectively the
best performer amongst the proposed attacks, FP-AL consistently improved the re-
sults even further. Although there are several cases where the filtering operation in-
creases the norm or marginally decreases the fooling rate, it can be argued that it is an
effective addition to the alternating loss training procedure. Besides, the rectangular
and circular filters are the best performing filters in terms of their consistent effects
over the norm values. On the other hand, while the Butterworth filter has also been
shown to be effective in preserving the fooling rate, it consistently increased the norm
values; conversely, the Gaussian filter decreased the L2 norm substantially while de-
creasing the fooling rates drastically up to the point that renders the UAP unusable.
The commonality between these filters is that their values start from the middle as 0,
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and progressively increase up to 1, which makes the large portion of the filter have
fractional values. It was mentioned that UAPs benefit from the image-like features of
the perturbations. However, the fractional filter values damage the visual quality of
the images as they fade away in those parts. This argument also explains the perfor-
mance gap between the Butterworth filter and the Gaussian filter, as the Butterwork
filter has a sharper transition from values closer to 0 to 1; the Gaussian filter is rel-
atively smoother. Therefore, it can be argued that if the filtering operation is to be
applied during AL UAP training, the circular and rectangular filters should be used.

L∞ attack results are highly different from the L2 counterpart in that the filtering oper-
ation never improves the norm value while not changing the fooling rate performance
either, which is expected as most of the attacks already reach 100% in the unfiltered
settings. This situation is not surprising, as the filtering operation was originally pro-
posed to eliminate the smaller artifacts around the center of the image; such filtering
can decrease L1 and L2 norms but hypothetically cannot decrease L∞ norm substan-
tially, as it is highly probable that most of the high-value perturbations are generated
around the edges. On the other hand, limiting the optimization to be done inside
a smaller search space is likely to result in the occurence of perturbations that are
higher in magnitude; it can also be argued that the filtering operation clears not only
the central area but also mitigates those perturbations around the edges. Therefore
the perturbation with the highest L∞ norm contains adversarial energy from pertur-
bations from both the center and edges. Hence, it can be concluded that the filtering
operation is unsuitable for L∞ norm AL-based UAP training.

5.4 Visual Interpretation

In this section, the visual properties of the generated UAPs will be discussed, as this
plays a crucial role in the effectiveness of adversarial attacks in real-world applica-
tions. Ideally, an adversarial attack should be as imperceptible to the human eye as
possible, which is mostly achieved with image-dependent attacks; however, as UAPs
need to carry more visual information, their imperceptibility is a different and possi-
bly harder goal to achieve. In the case of the proposed attacks, imperceptibility is not
guaranteed, although mitigating the perturbations to the edges may positively affect
their noticeability. When looking at Figure 6, each perturbation contains a similar
structure in that the more image-like features are accumulated around the corners.
However, all of them also contain small artifacts around the center, where the head of
the dog is placed. The L∞ counterpart of the previous figure is Figure 7, where a sim-
ilar situation is observed. At this point, it is worth mentioning that the results of ViT
are slightly different from the others in that the artifacts tend to form in small rectan-
gular shapes. This is likely to happen because of the network’s structure, where the
input image is divided into 16-by-16 patches in the first layer, and these patches then
go through a series of linear projections and attention mechanisms. The pixels inside
a block may receive similar gradient values, which eventually makes the blocks’ per-
turbations very similar. ViT is the only example where apparent image-like features
generate around the center of the image.
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Figure 10 shows the results of the L2 FP-AL attack, where it can be seen that the
density of the perturbations increases as the filters get more restrictive. The difference
between the Butterworth filter and the identity filter can be spotted by looking at the
top left corners of the images. This phenomenon supports the proposition in the
previous section about mitigating perturbations. Regardless of the argument, it can
be seen that the green accumulations around the center of the standard P-AL attack
are cleared in the filtered attacks, which can arguably decrease the noticeability of the
perturbations. Figures 9 and 10 also show that circular and rectangular filters give
different outputs in terms of the locations to where the perturbations are mitigated;
the dense perturbations are accumulated around the corners when the circular filter is
used, on the other hand, the accumulations occur around the edges when the filter of
choice is rectangular. Although it is difficult to argue about the superiority of either of
the filters, the fact that different filters mitigate the perturbations to different locations
can be a factor when a choice needs to be made for the type of filtering operation to
be applied on an attack.
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(a) B-AL image (b) B-AL UAP

(c) EB-AL image (d) EB-AL UAP

(e) P-AL image (f) P-AL UAP

Figure 13: UAPs trained with B-AL, EB-AL and P-AL as DenseNet121 being the
target network, "peacock" being the target class, and the obtained adversarial exam-
ples whose original labels are "hamster".
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CHAPTER 6

CONCLUSION

This thesis introduced the problem of parametrizing the fooling rate for UAPs and
proposed 3 new UAP training algorithms that take advantage of the alternating loss
scheme, where the loss function is changed during each iteration depending on the
current state of the UAP. These algorithms were B-AL, where the performance against
each batch is assumed to be a reasonable projection of the performance against the
dataset; therefore, the norm loss is selected if the target fooling rate is reached; other-
wise, the adversarial loss is backpropagated. This attack tends to converge to a fooling
rate just below the target; to fix this issue, EB-AL solely selects the adversarial loss
until the target fooling rate is achieved at the end of the epoch. Then, the same altering
condition as B-AL is applied. Different from B-AL, this attack oscillates around the
target fooling rate, with uncontrollably large changes. To overcome these drawbacks,
P-AL alters the loss function based on the cumulative fooling rate up to each opti-
mization point. It was also found that image-like features were accumulated around
the edges of the UAP; therefore, a filtering operation that eliminates the perturbations
around the center was proposed, using four well-known masks. The filtering opera-
tion was found to be only effective against L2 attacks, and the best performing filter
type was circular.

As future work, several methods that improve the visual quality of image-dependent
adversarial attacks [32, 33] can be adapted to AL UAP training. Also, an effective
scaling method can be developed to decrease the scaling problem between the adver-
sarial and norm losses; when training a UAP using any of the L2 attacks, the adversar-
ial loss, which is cross-entropy, gets close to a very small value such as 0.1 in several
epochs. On the other hand, the norm loss stays around 10 (as can be seen in Tables 2
and 4 ), which is 100 times higher than the adversarial loss. This creates a situation
where the gradient descent step taken using the norm loss high enough to prevent the
optimization to find a local minimum in the loss curve. Several scaling methods were
tried in this thesis but a reliable method could not be found, therefore they were not
included in the methodology section. These methods were annealed scale variables
for the altered losses and varying learning rates. Furthermore, the filtering operation
can also be improved and applied to other UAP training and generation algorithms,
whether they are minimization or norm bounded attacks; this may improve the real-
life usability of UAPs in AI model validation systems such as CAPTCHAs [12].
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