METHODOLOGIES FOR PREDICTION OF TRANSCRIPTION FACTORS IN

 TRANSCRIPTIONAL REGULATORY MECHANISMS IN BIOCATALYSIS OF REACTIONS IN YEAST CENTRAL PATHWAYS
A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OĞUZ ULAŞ YAMAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CHEMICAL ENGINEERING

METHODOLOGIES FOR PREDICTION OF TRANSCRIPTION FACTORS IN TRANSCRIPTIONAL REGULATORY MECHANISMS IN BIOCATALYSIS OF REACTIONS IN YEAST CENTRAL PATHWAYS

submitted by OĞUZ ULAŞ YAMAN in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçıar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Pınar Çalık
Head of Department, Chemical Engineering
Prof. Dr. Pınar Çalık
Supervisor, Chemical Engineering, METU

Examining Committee Members:

Prof. Dr. Tunçer H. Özdamar
Chemical Engineering, Ankara University
Prof. Dr. Pınar Çalık
Chemical Engineering, METU
Assoc. Prof. Dr. Harun Koku
Chemical Engineering, METU
Assist. Prof. Dr. Gökhan Çelik
Chemical Engineering, METU
Assist. Prof. Dr. Aybar Can Acar
Bioinformatics, METU

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Surname: Oğuz Ulaş Yaman

Signature

ABSTRACT
METHODOLOGIES FOR PREDICTION OF TRANSCRIPTION FACTORS IN TRANSCRIPTIONAL REGULATORY MECHANISMS IN BIOCATALYSIS OF REACTIONS IN YEAST CENTRAL PATHWAYS
Yaman, Oğuz Ulaş
M.S., Department of Chemical Engineering
Supervisor: Prof. Dr. Pınar Çalık

August 2022, 143 pages

In this MSc thesis, the aim is to propose methodologies for predicting transcription factor binding sites in yeast cells. This aim is achieved, first, by modeling P. pastoris central carbon metabolism genes using phylogenetic footprinting; and next, by modelling S. cerevisiae transcription factors' affinity towards 8 -mers using the Machine Learning algorithmic models, i.e., Random Forest, XGBoost, and Deep Learning.

In the first part of the thesis, a novel phylogenetic footprinting algorithm is introduced, which requires any number of orthologous promoter pairs with their DNA sequences, and a database that contains the transcription factor binding motifs as input. The model first scans the reference promoter for TF binding sites, and then using pairwise alignment, determines the conserved transcription factor binding sites in the target promoter. The algorithm was used to compare 58 S. cerevisiae promoters of the genes in the central carbon metabolism with the predicted 52 orthologous P. pastoris promoters. The presented phylogenetic footprinting predictions of transcription factor binding sites enabled annotation of 116 P. pastoris transcription factors in the central pathways.

In the second part of the thesis, seven Machine Learning algorithmic models (five based on Neural Networks, one based on XGBoost, and one based on Random Forest) were trained to predict high affinity 8 -mers for S. cerevisiae transcription factors. The 8 -mers were represented embedded into numerical arrays with using the predetermined five features that can represent sequence specificities of the transcription factor binding sites. Since different transcription factors may recognize different features, A greedy approach was designed, which selectively picks the best pool of features and makes the model combination for each transcription factor that gives the best Matthews Correlation Coefficient (MCC) score on test data. The presented novel approach yielded an average MCC score of 0.873 in predicting high-affinity binding sites for all the transcription factors.

Keywords: Transcription Factor, Transcription Factor Binding Site Prediction, Yeast, Phylogenetic Footprinting, Machine Learning

öZ

MAYALARIN MERKEZİ TEPKİME YOLİZLERİNDEKİ REAKSİYONLARIN BIYOKATALIZİNDE TRANSKRİPSIYONEL REGÜLASYON MEKANİZMALARINDAKİ TRANSKRİPSİYON FAKTÖRLERİNIN TAHMİNLENMESİ İÇIN METODOLOJILER

Yaman, Oğuz Ulaş
Yüksek Lisans, Kimya Mühendisliği Bölümü
Tez Yöneticisi: Prof. Dr. Pınar Çalık

Ağustos 2022, 143 sayfa

Bu tezde amaç, maya hücrelerindeki transkripsiyon faktörü bağlanma konumlarını tahmin etmek için metodolojiler önermektir. Bu amaca ulaşmak için, ilk olarak P. pastoris merkezi karbon metabolizmasındaki reaksiyonları katalizleyen enzimlerin genlerinin promotorlar üzerindeki bağlanma bölgeleri filogenetik ayakizi kullanarak modellenmiştir. İkinci olarak, S. cerevisiae transkripsiyon faktörlerinin 8-merlere bağlanma afinitesi çeşitli makine öğrenme algoritmaları, Rastgele Orman, XGBoost ve Derin Öğrenme, kullanarak modellenmiştir.

Tezde önce, DNA dizileriyle birlikte herhangi bir sayıda ortolog promotor çifti ve transkripsiyon faktörü bağlanma motiflerini içeren veri tabanını girdi olarak gerektiren bir filogenetik ayakizi algoritması betimlenmiştir. Model ilk önce referans promotoru bağlanma bölgeleri için tarama yapar, ardından ikili dizi hizalamayı kullanarak hedef promotorda korunmuş transkripsiyon faktörü bağlanma bölgelerini belirler. Algoritma merkezi karbon metabolizması üzerindeki tepkimeleri katalizleyen enzim-
lerin genleri için 58 S. cerevisiae ve onlara karşılık belirlenen 52 ortolog P. pastoris promotorlarının karşlaştırmasını yapmıştır. Transkripsiyon faktörleri bağlanma konumlarının filogenetik ayakizi tahminleri, P. pastoris merkezi yolizlerindeki transkripsiyon faktörlerini tahminlenmesine olanak vermiştir.

Tezin ikinci bölümünde, yedi makine öğrenme algoritmik modeli (beş Yapay Sinir Ağları, bir XGBoost ve bir Rastgele Orman), S. cerevisiae transkripsiyon faktörleri için yüksek afiniteli (ilk \%1) 8-merleri tahminlemek için eğitilmiştir. 8-merler, belirlenen 5 özellik ile sayısal dizilere gömülü temsil edilmiştir. Farklı transkripsiyon faktörleri farklı özellikleri tanıyabileceğinden, en iyi Matthews Korelasyon Katsayısını (MCC) veren, her bir transkripsiyon faktörü için en iyi özellik havuzu, model kombinasyonunu seçecek açgözlü bir yaklaşım benimsenmiştir. Böylece, tüm transkripsiyon faktörleri üzerinde yüksek afiniteli bağlanma bölgeleri ortalama 0.873 MCC skoruyla tahminlenmiştir.

Anahtar Kelimeler: Transkripsiyon Faktörü, Transkripsiyon Faktörü Bağlanma Bölgesi Tahminleme, Maya, Filogenetik Ayakizi, Makine Öğrenmesi

To my mother and sisters; Nazlı, İpek and İrem

ACKNOWLEDGMENTS

I am eternally grateful to my supervisor, Professor Dr. Pınar Çalık, who enlightened my academic path with endless support, wise advice, and great encouragement that remarkably influenced my academic and social life. I shall never forget the things I have learned from her.

I thank Assist. Professor Dr. Aybar C. Acar for giving me the opportunity to use Bioinformatics servers. I also thank Professor Halit Oğuztüzün and Dr. Özgür Kaya for giving me the opportunity to use the METU Computer Engineering Department server.

I would like to thank my labmates, Beste Avcı and Beste Avcı in Industrial Biotechnology and Bioinformatics Laboratory, Ahmet Samet Özdilek and Arda Eskin from Bioinformatics Department, and Toprak Çağlar and Öznur Doğan of Chemical Engineering Department for their companionship and supportive behavior. Especially, I would like to express my gratitude to Ahmet Samet Özdilek, İdil Dayankaç, and Öznur Doğan, whose endless support in various aspects was essential for my progress. I also shall thank Rümeysa Üstüncan for her outstanding support. I am also grateful to all academic, administrative, and technical staff of the chemical engineering department for providing a convenient atmosphere for conducting this research.

Scientific and Technical Research Council of Turkey (TÜBİTAK-119Z435), is greatly acknowledged.

I would like to express my eternal gratitude to is my mother, Nazlı Yaman, whose endless support has allowed me to push through the challenges to become the person I am today. Finally, I would like to thank my dearest sisters, İpek and İrem, whose support, not only during the span of this study but my whole life, was, is, and always will be the primary motivation behind any success I shall ever achieve.

TABLE OF CONTENTS

ABSTRACT v
ÖZ vii
ACKNOWLEDGMENTS. x
TABLE OF CONTENTS xi
LIST OF TABLES xv
LIST OF FIGURES xix
LIST OF ALGORITHMS xxi
LIST OF ABBREVIATIONS xxii
CHAPTERS
1 INTRODUCTION 1
2 BIOLOGICAL BACKGROUND 5
2.1 Transcription Factors 5
2.2 Cell Lines 7
2.2.1 Saccharomyces cerevisiae 7
2.2.2 Pichia pastoris 10
3 THEORETICAL BACKGROUND 11
3.1 Phylogenetic Footprinting 11
3.1.1 Position Weight Matrices and Motif Searching 11
3.1.2 Introduction to Phylogenetic Footprinting 14
3.1.3 Determination of Homologous Sequences 15
3.1.4 TFBS Conservation Criterion 16
3.2 Machine Learning 17
3.2.1 Transition to Machine Learning 17
3.2.2 Random Forest 18
3.2.3 Extreme Gradient Boosting 20
3.2.4 Deep Learning 24
3.2.4.1 Multilayer Perceptrons 24
3.2.4.2 Stochastic Gradient Descent. 25
3.2.4.3 ADAM and ADAMax 27
3.2.4.4 Binary Cross-Entropy 30
3.2.4.5 Rectified Linear Unit 31
3.2.5 Data Features 32
3.2.5.1 k-mer Dinucleotide Frequency 32
3.2.5.2 k-Spaced Nucleotide Pair Frequency 33
3.2.5.3 Nucleotide Chemical Property 33
3.2.5.4 Pseudo-k-tuple Nucleotide Composition 34
3.2.5.5 Electron-Ion Interaction Pseudopotentials of Trinucleotide 34
4 PHYLOGENETIC FOOTPRINTING METHOD FOR PREDICTING CIS-
ACTING DNA ELEMENTS 37
4.1 Introduction 37
4.2 Methods 37
4.2.1 Identification of S. cerevisiae and P. pastoris Promoters 37
4.2.2 Motif Scanning and Pairwise Alignment using Biopython 38
4.2.3 Performance Analysis 40
4.3 Results 40
4.3.1 Homologous Proteins of S. cerevisiae and P. pastoris 40
4.3.2 Annotation of TFBSs in S. cerevisiae Promoters 41
4.3.3 Annotation of TFBSs on P. pastoris Promoters 42
4.3.4 Computation of P. pastoris PWMs 44
4.3.5 Scanning P. pastoris promoters for unidentified TFBSs 44
4.3.6 Comparison with the Literature 45
5 NOVEL STRATEGY DESIGNED WITH MACHINE LEARNING ALGO- RITHMIC MODELS FOR PREDICTING CIS-ACTING DNA SITES 49
5.1 Introduction 49
5.2 Methods 49
5.2.1 Machine Learning Method 49
5.2.1.1 Dataset 49
5.2.1.2 Embedding 49
5.2.1.3 Model Training 51
5.2.1.4 Statistical Analysis of Models 52
5.3 Results 54
5.3.1 Neural Network Optimization 54
5.3.1.1 Optimizer Selection 54
5.3.1.2 Activation Function Selection 55
5.3.2 Training Results 55
5.3.3 Feature Selection 58
5.3.3.1 1st-Order Feature Elimination 58
5.3.3.2 $\quad N$ th-Order Feature Elimination 61
5.3.3.3 Model Stability 64
5.3.4 Word2Vec Supported Models 64
6 CONCLUSIONS 67
REFERENCES 69
APPENDICES
A PROTEIN-PROTEIN BLAST RESULTS 85
B TFBS SEQUENCE LOGOS FOR S. CEREVISIAE AND P. PASTORIS TFS 93
C ANNOTATED TFBSS ON S. CEREVISIAE AND P. PASTORIS PROMOT- ERS 105
D EFFECT OF REMOVING FEATURES ON MODEL PERFORMANCES 123

LIST OF TABLES

TABLES

Table 3.1 Chemical properties of nucleotides [1] 34
Table 3.2 Contributions of the nucleotide pairs to physical, structural properties [2]35

Table 3.3 Electron-ion interaction pseudopotential contributions for the nu-
\qquad cleotides [3]36

Table 4.1 NCBI BLAST Results of S. cerevisiae ADH2 enzyme against P. pastoris GS115 database [4] . 42

Table 4.2 Information of Cat8 hits on $\mathrm{P}_{A D H 2}$ promoter 42

Table 4.3 TFBSs counts annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes in the Glycolysis Pathway46

Table 5.1 Optimizer Performances upon training models for 28 TFs using
ReLU activation Function . 55

Table 5.2 Activation Function Performances upon training models for 28 TFs
using ReLU activation Function . 56

Table 5.3 Performance Metrics achieved by three Machine Learning Methods
over 274 TFs . 56

Table 5.4 Performance Metrics of the three subgroups of TFs. 57

Table 5.5 Change of Performance Metrics with respect to removed features . . 59
Table 5.6 Performance Metrics of the three subgroups of TFs when Feature
Pool size is reduced to four . 61

Table 5.7 Performance Metrics of the three subgroups of TFs when Feature Pool is varied to include best performing features 63

Table 5.8 MCC Scores of Word2Vec included models with changing training \quad hyperparameters . 65

Table 5.9 ELU 3-depth Deep Learning Models performance metrics on 150 TFs 66

Table A. 1 Protein-protein BLASTs of the glycolysis enzymes of S. cerevisiae
S288c against non-redundant proteins database of P. pastoris GS115 . . . 85

Table A. 2 Protein-protein BLASTs of the gluconeogenesis enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115 86

Table A. 3 Protein-protein BLASTs of the Pentose Phosphate Pathway enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pas-
toris GS115 . 87

Table A. 4 Protein-protein BLASTs of the Alcoholic Fermentation enzymes of \square
S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115 . 88

Table A. 5 Protein-protein BLASTs of the TCA Cycle enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115 . . . 88

Table A. 6 Protein-protein BLASTs of the Glyoxylate Cycle enzymes of S.
cerevisiae S288c against non-redundant proteins database of P. pastoris
GS115 . 90
Table A. 7 Protein-protein BLASTs of the Ethanol Utilization Pathway en-
zymes of S. cerevisiae S288c against non-redundant proteins database of
P. pastoris GS115 . 90

Table A. 8 Protein-protein BLASTs of the Glycerol Utilization Pathway enzymes of S. cerevisiae S288c against non-redundant proteins database of
\qquad

Table A. 9 Protein-protein BLASTs of the Anaplerotic reaction enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS11591

Table B. 1 WebLogo Sequence Logos [5] of S. cerevisiae S288c PWMs that are extracted from TransFac [6], and computed P. pastoris GS115 PWMs . 93

Table C. 1 Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Glycolysis and Gluconeogenesis Pathways.

Table C. 2 Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Pentose Phosphate Pathway.

109

Table C. 3 Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on TCA and Glyoxylate Cycles.111

Table C. 4 Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Ethanol Utilization and Alcoholic Fermentation Pathways.117

Table C. 5 Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Glycerol Utilization Pathway.120

Table C. 6 Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Anaplerotic Reactions. 121

Table D. 1 Changes of MCC Scores of the models as number of features is decreased 124

LIST OF FIGURES

FIGURES

Figure $2.1 \quad$ A graphical representation of working principle of TFs. 6
Figure 2.2 Transcriptional Network of formed by all TFs S. cerevisiae [7] 8
Figure 2.3 A Metabolic Model for the Central Carbon Metabolism of S.
cerevisiae [8] 9
Figure 3.1 Sequence motif, PWM [9] and calculated PSSM for Abf2 TF of
S. cerevisiae 13
Figure 3.2 Graphical Comparison of Single Decision Tree and RandomForest Algorithms18
Figure 3.3 Graphical Comparison of a Simple Neural Network and a Deep
Neural Network. 24
Figure $4.1 \quad$ A flowchart representation of Footprinting Algorithm 38
Figure $4.2 \quad$ Graphical showcase of Cat8 hits on $P_{A D H 2}$ promoter. 43
Figure 4.3 (a) A segment from pairwise alignment of $P_{A D H 2}$ (top) and$P_{\text {PAS_chr2-1_0472 (bottom) promoters. Msn2 TFBS annotated on } P_{A D H 2} \text {, }}^{\text {, }}$and the region its aligned against is highlighted in yellow. (b) Align-ment of highlighted regions. Final Annotated sequence on P. pastorisis highlighted in green.44

Figure $4.4 \quad$ Comparison of S. cerevisiae and P. pastoris sequence Abf2 TFBS

motifs (Generated by WebLogo [5]) and their PWMs (S. cerevisiae PWM was accessed from TransFac [6] $]$45
Figure 5.1 A Flowchart of Training and Scanning Algorithms 53
Figure 5.2 Dependency of the Model MCCs to Thresholds 57
Figure 5.3 Number of Best Models Benefited from Features elimination 60
Figure 5.4 Impact of Eliminating Features on Superior Models 61
Figure 5.5 Dependency of the Model MCCs to Thresholds when Feature62Figure 5.6 Number of superior models for specific TFs with respect to Fea-
ture set size 62
Figure 5.7 Dependency of the Model MCCs to Thresholds when Feature
Pool is varied to include best performing features 63
Figure 5.8 PCA Projection of 4-mer aminoacid vectors plotted with Ten-64
Figure 5.9 PCA Projection of protein vectors plotted with TensorFlow Pro-jector tool65
Figure 5.10 Change of Validation Loss during training 3-depth ELU modelover 1000 Epochs66

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Needleman-Wunsch Algorithm [10] 16
Algorithm 2 Gradient Descent Algorithm [11,12] 26
Algorithm 3 ADAM Algorithm [13] 28
Algorithm 4 ADAMax Algorithm [13] 29
Algorithm 5 Phylogenetic Footprinting Algorithm 39
Algorithm 6 PWM Motif Scanning 40
Algorithm 7 ScanAlgo Algorithm 41
Algorithm 8 Greedy Algorithm used to model TF interactions 52

LIST OF ABBREVIATIONS

ADAM	Adaptive Moment Estimation
ADH2	Alcohol Dehydrogenase 2
BLAST	Basic Local Alignment Search Tool
ChIP	Chromatin Immunoprecipitation
CNN	Convolutional Neural Network
DWM	Dinucleotide Weight Matrix
ELU	Exponential Linear Unit
FN	False Negative
FP	False Positive
PseKNC	Electron-Ion Interaction Pseudopotential
PseEIIP	Hidden Markov Model
HMM	Mathews' Correlation Coefficient
MCC	Multilayer Perceptron
MLP	Protein Binding Microarray
PBM	Position-Specific Scoring Matrix
PSSM	Position Weight Marix
PWM	Rectified Linear Unit
ReLU	Stochastic Gradient Descent
SGD	Transcription Factor
TF	Transcription Factor Binding Site
TFBS	Tremative
TP	XGBoost

CHAPTER 1

INTRODUCTION

Yeasts are a popular topic of microbial research, as they have been used successfully to express a multitude of proteins, and they have many advantages such as short doubling time, a readily manipulated genome, improved protein folding, and most posttranslational modifications [14 [15]. Saccharomyces cerevisiae was the first yeast to be used for recombinant protein production [16]. Despite this, over-time Pichia pastoris became the premier choice for yeast expression systems, due to its tightly regulated, efficient promoters and its strong tendency for respiratory growth as opposed to fermentative growth [15, 17]. Another appealing feature of P. pastoris is its ability of reaching high cell densities under appropriate culture conditions, being able to reach $120 \mathrm{~g} / \mathrm{l}$ dry cell weight density using inexpensive medium [14, 18].

Cells live in complex environments, and fluctuations on physical parameters (e.g. pH , temperature, or osmotic pressure) or internal state of the cell (e.g. concentration of key metabolites or DNA damage) may occur. To represent these complex environmental states, cells use special proteins called "Transcription factors" (TFs) [19]. TFs respond to these conditions by switching between their active and inactive states, and each active TF can bind to DNA to regulate the rate of expression of its target gene [19]. Activation of signalling pathway(s) in the cell that alters crosstalk involves activation of $\mathrm{TF}(\mathrm{s})$ coordinated with specific cis-acting DNA sequences (cADSs) in the upstream regions of the promoter(s) [20].

Metabolic engineering is a discipline that aims to increase the productivity of a cell, by optimizing the metabolism of the organism and purposeful modification of its gene regulatory networks [21]. In traditional metabolic engineering, foreign enzymes are expressed at constant levels from inducible or constitutive promoters. However, this
way of engineering corresponds to an open-loop strategy, and the engineered system cannot respond to fluctuations that may occur in the cellular environment [22]. Knowledge of regulatory regions such as TF binding sites (TFBSs) is imperative for metabolic engineering as it allows manipulations on regulatory system of the cell. As such, identifying TFBSs is compelling, therefore popular subject of study. As experimental identification of all binding sites of a TF for every cell type and operation condition remains infeasible, using computational tools to predict experimentally unidentified TFBSs is gaining momentum. Among these tools, the most widely used are position weight matrix, dinucleotide weight matrix, TF flexible model, pairwise interaction model and machine learning models [23].

Engineering of promoter architectures with de novo synthetic biology tools for tailoring de novo production strategies in heterologous protein production has conferred breakthrough success in yeast [24, 25]. The design of synthetic promoter architectures [26,27] hinges on genomic and functional annotation. Saccharomyces cerevisiae is the first model yeast. Its databases host genomic and functional annotation information [28,29]. The widely used, creatively engineered but relatively less studied yeast Pichia pastoris (syn. Komagataella phaffii) has advantages in recombinant protein (r-protein) production. The advantages are high production capacity, stress tolerance, robustness, genetic accessibility, simple nutritional requirements, and reaching high cell densities [15, 18, 30-32]. In contrast to S. cerevisiae, P. pastoris lacks extensive functional annotation studies. However, it is ideally placed taxonomically to make annotation propagation from S. cerevisiae highly informative [33].

In this Thesis, three computational methods, Phylogenetic Footprinting, Machine Learning, and Machine Learning with Word2Vec, are presented to predict the TFBSs in yeast promoters. As S. cerevisiae has the most significant number of transcription factor binding specificity datasets, its datasets were used to prepare the models. For Phylogenetic Footprinting, S. cerevisiae promoters has been scanned for TFBSs using datasets available for S. cerevisiae TFs. The results were compared against homologous P. pastoris promoters, and the conserved TFBSs are determined. Using conserved TFBSs, PWMs of P. pastoris TFs has been predicted. For Machine Learning methods, five features were employed to encode the data as an input vector to train the models to recognize 8 -mer TFBSs: k-mer dinucleotide frequency, k-spaced
nucleotide pair frequency, and nucleotide chemical property pseudo nucleotide composition, and electron-ion interaction pseudo-potentials of trinucleotide, similar to Wang et al. [34]. For regular Machine Learning, for all TFs of S. cerevisiae an individual model was developed. For Machine Learning with Word2Vec [35], TFs have been represented as vectors using Word2Vec and a single model that can predict the TF-TFBS interaction was developed. For both Machine Learning models, various Machine Learning algorithms were used and the best-case algorithms were compiled into a library, which was then used to design a scanning algorithm that can determine the putative TFBSs in yeast promoters. Further, a module that can be utilized by the users to develop their own models is also presented.

CHAPTER 2

BIOLOGICAL BACKGROUND

2.1 Transcription Factors

Transcription Factors (TFs) are regulatory proteins that bind to specific DNA sequences called Transcription Factor Binding Sites (TFBSs) to control gene expression rates [36]. RNA Polymerase, responsible for mRNA production, binds to specific sequences that are directly adjacent to the gene that is to be transcribed, which are called promoters [37]. TFBSs reside in these promoter regions of the DNA, which TFs bind to, either to help activate or to repress this transcription process that leads to increased or decreased protein synthesis, respectively [37].

TFs can affect expression positively or negatively, depending on interaction with other elements of transcription such as mRNA or other TFs [36]. A TF can upregulate expression by forming stable transcriptional complexes with another already bound factor; or repress the expression by simply occupying a binding region, preventing a transcriptional element that is required to start transcription from binding [36].

To control gene expression in a meaningful way, there are some means exist to modulate the activity of specific TFs [36]. TFs bind to DNA when activated, which may be caused by various external signals that carry information about the environment, specific to the TF [19, 37]. A graphical demonstration of TFs general working principle is presented in Figure 2.1.

Understanding working mechanisms of TFs, determining TFBSs, and understanding their interactions with the genes is very important for disciplines such as Biochemical or Metabolic Engineering, as this information can be used to engineer cells for

Figure 2.1: A graphical representation of working principle of TFs.
overexpressing certain genes to achieve improved production of certain biochemicals. To identify TFBS sequences, there are a number of experimental methodologies developed, such as ChIP-seq or PBMs. Chromatin Immunoprecipitation (ChIP), is a method that has been proposed in 1988 by Solomon et al. [38], to study protein interactions with DNA. Working mechanism of the ChIP can be summarized in 3 stages [39]:

1. Formation of covalent cross-links between the protein of interest and DNA ,
2. Formation of covalent cross-links between the protein of interest and a specific antibody that can be used to coimmunoprecipitate,
3. Immunoprecipitation of protein-DNA pairs that were formed in stage 1 , which can then be reversed to recover the DNA sequences bound by the protein.

Ren et al. [40] has proposed ChIP-chip in 2000, improving the methodology by using
a mock sample that does not have antibodies added in 2nd step. This addition allows for filtering of non-specific DNA that might be produced by the ChIP procedure due to random DNA-protein binding, which is a significant advantage [39].

One other variation of ChIP is ChIP-seq, where ChIP technology is used in conjunction with the DNA sequencing technologies, such as Solexa [41], which provides short, ideal DNA sequences for ChIP-sequencing [39]. This variation of the ChIP was found advantageous to ChIP-chip, as it required much less hand-on processing, was cheaper and required less input and replicates to process [39]. Robertson et al. [42] showed that ChIP-seq while has these advantages, does provide highly similar results compared to ChIP-chip for Stat1 binding sites for human HeLa3 cells.

While ChIP, ChIP-chip, and ChIP-seq are powerful in-vivo tools for TFBS determination, they are low throughput, as they check for only nucleotide subsequences within a given DNA sequence. Protein Binding Microarrays (PBMs), on the other hand, is a tool that can be used to determine a TFs in-vitro interactions to all possible $4^{k} \mathrm{k}$-mer sequences, where k stands for the length of the sequence [43]. Main limitations of the PBMs is the sequence length, since as k increases number of sequences that need to be checked increases exponentially, and possibility of in-vitro results disagreeing with in-vivo results [43]. PBMs construct universal microarrays where signalling frequencies can be used to measure and score the binding affinities of TFs to k-mer sequences simultaneously, which is the biggest advantage of PBMs [43].

There are a number of public databases available to reach TFBS data for both types of methodologies, such as Jaspar [9], Transfac [6] or Yeastract [44] (only S. cerevisiae) for ChIP-chip data, and UniProbe [45] for PBM data, which were utilized in the scope of this study.

2.2 Cell Lines

2.2.1 Saccharomyces cerevisiae

S. cerevisiae, also known as the baker's yeast, is the traditional biotechnological organism, and the first eukaryote ever to receive a complete genome sequencing [15 46].

Figure 2.2: Transcriptional Network of formed by all TFs S. cerevisiae [7]
S. cerevisiae is a Crabtree-positive yeast, which means it prefers to ferment even in the presence of sufficient oxygen and glucose [47]. S. cerevisiae has been the model organism in understanding biological pathways and regulatory networks for nearly 30 years, and numerous studies with high-throughput experiments has been done on understand its transcriptional network [48,49]. The transcriptional network of S. cerevisiae is shown in Figure 2.2 [7].

Availability of extensive and public knowledge for S. cerevisiae makes it an incredible reference organism when used for modelling purposes. Important databases exist such as KEGG [50], Yeastract [44], JASPAR [9], TransFac [6], UniProbe [45], UniProt [51], and NCBI [52] which can be used to access information about S. cerevisiae's genome, TFBSs, protein sequences or enzyme duties.
S. cerevisiae, as an expression system has most of the advantages that are attributed

Figure 2.3: A Metabolic Model for the Central Carbon Metabolism of S. cerevisiae [8]
to yeasts, such as the ability to grow in cheap media or ability to do post-translational modifications, while having some further benefits such as having high tolerance for environmental conditions or the highest glycosylation capacity over all yeasts [15]. These benefits cause it to be recognized as a generally regarded as safe (GRAS) type of expression system [15]. The central carbon metabolism reactions of S. cerevisiae is presented Figure 2.3.

2.2.2 Pichia pastoris

As an expression system P. pastoris holds significant advantages over S. cerevisiae, being a Crabtree negative yeast, which causes it to reach much higher cell concentrations, as products of fermentation such as acetic acid or ethanol do not accumulate in the environment [53]. Another advantage that P. pastoris has over S. cerevisiae is its tendency to secrete its proteins, even those that has high molecular weight, instead of keeping them in the periplasm [15].
P. pastoris's whole genome sequence was not available until 2009 [54], while S. cerevisiae was sequenced in 1996 [46]. Thus, despite P. pastoris having significant advantages compared to S. cerevisiae the difference in knowledge between two species is vast. Thus, while studying P. pastoris, using S. cerevisiae as a model organism is common [24,25].

CHAPTER 3

THEORETICAL BACKGROUND

3.1 Phylogenetic Footprinting

Phylogenetic footprinting is a method for finding putative cADSs by comparing the upstream regulatory region of the gene with its orthologues from different species through sequence alignment. It is based on the hypothesis that the functional elements in the non-coding DNA regions are conserved as their evolution is under selective pressure. Thereby, they evolve slower than their non-functional surrounding [55]. Through the curation pipelines to be established, the flow of the extensive cellular knowledge that belongs to S . cerevisiae enables predictions to fill the functional annotation gap in other yeasts in the short term.

3.1.1 Position Weight Matrices and Motif Searching

Most TFs recognize a set of short DNA sequences between 5-20 bp. The recognized DNA sequences for a specific TF are bound to have common specific features. Consensus sequence, is a concept that has been widely used to represent the specificity of TFs [56]. Defining a consensus sequence for a set of sequences tends to be arbitrary, as there is a trade-off between allowed mismatches and ambiguity of the consensus [56]. When trying to predict new TFBSs, if a consensus sequence is too strict, an important chunk of functional TFBSs will be missed; similarly, if a consensus sequence is too ambiguous, the number of false-positive results will be large [56]. As such, while it is easy to represent the set of recognized sequences of a TF using consensus sequences, they are not as useful when trying to predict new ones [56].

Representing known TFBSs for a TF utilizing a Position Weight Matrix (PWM) allows for a quantitative description of consensus sequence [56, 57]. By assuming each position of the TFBS sequence contributes independently to the binding energy, these weight matrices can be used to create Positions-Specific Scoring Matrices (PSSMs), which assign scoring values for each position within the TF motif that judges the contribution made by a given nucleotide in that position [56, 57]. Conversion between a PWM to a PSSM can be done by dividing the observed nucleotide probabilities to expected background probabilities and converting it to log-scale as shown in Equation 3.1 [56-58]:

$$
\begin{equation*}
W(b, i)=\log _{2} \frac{p(b, i)}{p(b)} \tag{3.1}
\end{equation*}
$$

where $W(b, i)$ is the score assigned to nucleotide b in position i, and $p(b)$ is the background probability of observing nucleotide b.

As known TFBSs may not represent the precise nature of the consensus motif, a sampling correction must be done utilizing by adding pseudocounts, as shown in Equation 3.2 [57]:

$$
\begin{equation*}
p(b, i)=\frac{f_{b, i}+s(b)}{N+\sum s(b)} \tag{3.2}
\end{equation*}
$$

where i is the position, $p(b, i)$ is the corrected probability of observing nucleotide b in position $i, f_{b, i}$ is the number of nucleotide b has been observed in position i, N is the number of experiments, and $s(b)$ is the correction factor, also known as the pseudocount.

PWMs also allow for easy visualizations for the consensus sequences, by the use of "sequence logos", by stacking letters on top of each other while their height is proportional to their observed frequency [59]. Total heights in columns in the sequence logos gives the information content of the sequence at that position [59], which can also be calculated with the help of Equation 3.3 [56,60]:

(a) Sequence Motif
$\overline{1}$
$\overline{2}$
$\overline{3}$
A
C
C
$T$$\left(\begin{array}{cccccc}18 & 9 & 0 & \overline{4} & \overline{5} & \overline{6} \\ \overline{7} \\ 39 & 9 & 100 & 0 & 100 & 0 \\ 25 & 2 & 0 & 0 & 0 & 0 \\ 18 & 80 & 0 & 100 & 0 & 0 \\ 2\end{array}\right)$
(b) PWM

$$
\begin{gathered}
\overline{1} \\
\overline{2} \\
A \\
C \\
G \\
T
\end{gathered}\left(\begin{array}{ccccccc}
-0.322 & -0.881 & -1.807 & -1.807 & 1.652 & -1.807 & 1.585 \\
0.485 & -0.881 & 1.652 & -1.807 & -1.807 & -1.807 & -1.544 \\
0.000 & -1.544 & -1.807 & -1.807 & -1.807 & 1.652 & -1.544 \\
-0.322 & 1.514 & -1.807 & 1.652 & -1.807 & -1.807 & -1.544
\end{array}\right)
$$

(c) PSSM

Figure 3.1: Sequence motif, PWM [9] and calculated PSSM for Abf2 TF of S. cerevisiae

$$
\begin{equation*}
I_{i}=2+\sum_{b=A}^{T} f_{b, i} \log _{2} f_{b, i} \tag{3.3}
\end{equation*}
$$

where i refers to the position, I_{i} is information content at a given position, b is for base, and $f_{b, i}$ is the observed frequency of a given base at a given position.

An example sequence motif, PWM and PSSM is provided for Abf2 TF of S. cerevisiae in Figure 3.1. Uniform background probabilities were assumed while calculating the PSSM.

After knowing the PSSM for a TF, information content of any sequence A can be determined by taking the dot product of the sequence against the PSSM [56], which can be used as a scoring mechanism when trying to find new TFBSs. Equation 3.4 showcases the formula used to calculate the information content of a sequence [56, 57]:

$$
\begin{equation*}
I_{A}=\sum_{i=1}^{l_{A}} W_{A_{i}, i} \tag{3.4}
\end{equation*}
$$

where I_{A} is information content of A, i is the position, l_{S} is the length of A, and $W_{S_{i}, i}$ is the PSSM score of base of A at i th position in i th column.

Calculating a relative information content is also useful when using PWMs, formula of which is given in Equation 3.5, which allows to judge a sequence based on how close it is to having maximum information content [9]:

$$
\begin{equation*}
S=\frac{\sum_{i=0}^{i=L_{A}} W\left(b_{A, i}, i\right)-\sum_{i=0}^{i=L_{A}} W_{\text {min }}(i)}{\sum_{i=0}^{i=L_{A}} W_{\text {max }}(i)-\sum_{i=0}^{i=L_{A}} W_{\text {min }}(i)} \tag{3.5}
\end{equation*}
$$

where S is the relative score, L_{A} is the length of sequence $A, b_{A, i}$ is the nucleotide observed in position $i, W_{\min }(i)$ is the minimum score observed in PSSM in position i and $W_{\max }(i)$ is the maximum score observed in PSSM in position i.

The PWMs still carry some amount of ambiguity when searching for new sites, as how high information content needs to be accepted as a TFBS still is up to personal interpretation. Since, in natural genomic context, exon ≥ 2 sequences do not contain any regulatory regions [61], a good rule of thumb is to set thresholds such that negligible amount of matches will be found when scanning these sequences [62]. Another good rule of thumb is to define core regions, by determining nucleotides that are undisputed in their respective at their respective positions, and eliminate any matches that does not share these core regions, no matter how high their scores are [62].

3.1.2 Introduction to Phylogenetic Footprinting

Although PWMs can and do predict most of the known functional TFBSs, they are not very trustworthy upon analyzing large scale uncharacterized sequences, as they lack the mechanism to filter out the false-positive predictions, as a result of the nature of binding sites [63]. As such, combining them with other tools that can filter out the false-positive predictions is vital. One such approach is to draw comparison of orthologous sequences from multiple species, termed as "Phylogenetic footprint-
ing" [64]. Underlying idea behind phylogenetic footprinting is that selective pressure causes more relevant set of sequences will evolve in a slower rate, compared to nonfunctional surrounding sequence [65,66]. Selection of species that are to be compared are essential for accurate results in phylogenetic footprinting, as too closely related species would result in high number of false positives, while too distant species would be impossible to find conserved motifs [67]. The sequence similarity in DNA regions, that are not subject to selective pressure, between two species that have diverged 300 million years ago have been estimated to be about 30%, approximately same as two unrelated species [67]. Thus, this can be a strong indication of functionality for conserved DNA elements between two such species [67]. The divergence between S. cerevisiae and P. pastoris dates back 250 million years [68], making them plausible phylogenetic footprinting candidates.

Phylogenetic footprinting is to be a contrast to a what used to be a much more common approach of considering a group of related genes for a single species and creating multi-sequence alignments [69]. The multi-gene approach has an inherent limitation, which is that they will only find regulatory elements that are common to a number of genes. While multi-species approach is capable of identifying regulatory elements that are specific to a single gene, as long as they are conserved across several species [69], which makes it more advantageous.

3.1.3 Determination of Homologous Sequences

Phylogenetic footprinting requires homology knowledge between sequences to implement. Basic Local Alignment Search Tool (BLAST), is a rapid, robust and a simple tool that allows the detection of biologically significant sequence similarities [70]. BLAST algorithm starts by taking an input query, a database of sequences that will be searched against, a scoring matrix and a threshold (T) [70]. BLAST quickly identifies the sequences that have lower chances of exceeding T by checking whether or not it shares a word of length w that can pair with the query, and minimizes time spent with these sequences [70]. After a shrinking the range of search, it produces alignment scores against only a handful sequence pair, employing the Needleman-Wunsch algorithm (Algorithm (1) [10], and an expectancy value, formula of which is provided

Input 1: Two sequences, A and B, to be aligned
Input 2: A scoring matrix
Step 1: Start by creating a $(m+1) \mathbf{x}(n+1)$ matrix H where m and n are the lengths of the sequences that are to be aligned.

Step 2: Set $H_{0,0}$ to 0 ; and $H_{i, 0}$ and $H_{i, 0}$ to $i * W$ and $j * W$ for all values of i and j, respectively, where W is the gap penalty.
Step 3: For all values of i and j, calculate:

$$
H(i, j)=\max \left\{\begin{array}{l}
H(i-1, j)+W \\
H(i, j-1)+W \\
H(i-1, j-1)+S_{A_{i}, B_{j}}
\end{array}\right\}
$$

where, $S_{A_{i}, B_{j}}$ is the reward/penalty for association of characters A_{i} and B_{j}, read from the scoring matrix.

Output: $H_{m+1, n+1}$ as the alignment score.
Algorithm 1: Needleman-Wunsch Algorithm [10]
in Equation 3.6 [70]:

$$
\begin{equation*}
e=K m n * \exp (-\lambda * S) \tag{3.6}
\end{equation*}
$$

where, S is the alignment score, m and n are the sequence lengths, K and λ are parameters tuned based on the database size and distribution of similarity scores of unrelated sequences [71], and e is the number of expected sequences that would achieve score S or higher, for the given sequence lengths and database size.

3.1.4 TFBS Conservation Criterion

When applying phylogenetic footprinting between two homologous sequences, there might be TFBSs that align to significantly similar regions, but with point mutations that changed them during the evolutionary cycle. While not all TFs have the same specificity when selecting binding sites, a binding probability that is higher than $2 / 3$ (66\%) can indicate a strong affinity against that site [72].

3.2 Machine Learning

3.2.1 Transition to Machine Learning

As explored in Section 3.1.1, PWMs work under the assumption of each position of a sequence contributes to the binding energy independently, which does not agree to experimental results [73-75]. Dinucleotide Weight Matrix (DWM) is the first method to be introduced to deal with this issue [76]. DWMs showcase the probabilities of observing any nucleotide pair at any position which allows them to perform significantly better than PWMs for most TFs [76]. While this gives some hints about the contribution of the nucleotide groupings, it still does not explore neither the contribution made by longer nucleotide groupings, nor the contributions of nucleotide pairings that are apart from each other. Transcription Factor Flexible Model (TFFM) was built on the concept of DWMs, which is a Hidden Markov Model (HMM) based prediction model [77]. While TFFMs did not address the issue of contribution of longer nucleotide groupings, the HMM-based framework was flexible, supported contribution of dinucleotide pairings and variable lengths of TFBS motifs, and did perform significantly better than its predecessors [77]. The contributions of nucleotide pairings were first investigated by Pairwise Interaction Model (PIM), a model that uses the bruteforce approach to enumerate and compute the binding energy of all possible k-mers, where k is the sequence length of the TFBS of concern [78]. While this technique allowed them to bypass several simplifying assumptions, it demands a much heavier computational-power [78].

As high-throughput techniques for measuring in vitro protein-DNA binding, such as PBMs, kept advancing, more robust options with less simplifying assumptions were required, as biological data are very susceptible to noise and bias, which has led to an increase using Machine Learning and Deep Learning algorithms for TFBS predictions [23]. Predicting TFBSs involves taking an input k -mer sequence and mapping it to a 1 (is a TFBS) or a 0 (not a TFBS). Machine Learning procedures where the machine takes a set of example input-output pairs, and learns a function that maps them into each other, such as the case of predicting TFBSs, is called supervised learning [79]. The most common form of Machine Learning (deep or not) is supervised learning

(a) Single Decision Tree Algorithm

(b) Random Forest Algorithm

Figure 3.2: Graphical Comparison of Single Decision Tree and Random Forest Algorithms
[80].

3.2.2 Random Forest

Random Forest is a classifier that consists of a set of tree-structured classifiers, each voting for the answer [81]. Random Forests follow the strong law of large numbers, which states that as the number of independent and identical experiments increase, there is a probability of 100% that the mean of the results will converge to a constant value, as formulated by Equation 3.7 [81, 82]:

$$
\begin{equation*}
P\left[\lim _{n \rightarrow \infty}\left|\bar{S}_{n}-\mu_{x}\right| \leq \varepsilon\right]=1 \tag{3.7}
\end{equation*}
$$

where, P is the probability, \bar{S}_{n} is the mean of results for n experiments, μ_{x} is the true probability of occurrence of x, and ε is an infinitesimal margin.

Strong law of large numbers dictates that as number of decision trees increase, a limiting value on the generalization error, the measure of how accurately unseen data can be predicted by the algorithm [83], is reached, which means they are prone to overfitting much-less than most single decision tree algorithms [81]. A graphical comparison of a single decision tree algorithm and a Random Forest algorithm is given in Figure 3.2.

Random Forests uses an out-of-bag error estimation model, where a sample is drawn,
with replacement, from the dataset and each tree is grown with a bag of training set using random feature selection to create bagged predictors [81]. After the bagged predictors is grown, for each data/label pair in the dataset, only the votes of predictors that did not had access to that pair gets aggregated to estimate the generalization error [81]. Out-of-bag error estimation was shown to be as accurate as a train-test splitting method, which eliminates the need to set aside a test set [81].

Random Forest algorithms allow for additional random elements can be introduced, such as column subsampling, which is a method of limiting the splitting candidates to a small, randomly selected subset of features for each split in the trees [81,84]. While growing classification and regression trees, the split points are found by maximizing the decrease of the impurity function [84-86]. For classification trees, the impurity is usually measured by Gini Impurity, shown in Equation 3.8 [84,86]:

$$
\begin{equation*}
\widehat{\Gamma}(t)=\sum_{j=1}^{J} \widehat{\phi}_{j}(t)\left(1-\widehat{\phi}_{j}(t)\right) \tag{3.8}
\end{equation*}
$$

where, $\widehat{\Gamma}(t)$ is the impurity of node t, and $\widehat{\phi}_{j}(t)$ is the class frequency for class j for node t.

Random Forests has been used in recent years to predict TFBSs [87--89], for their advantages being:

- consideration of many decision trees, which reduces the chance of overfitting and misclassification [88],
- ability to achieve high model complexity and is able to process large genetic data sets obtained with high-throughput methods [89],
- being faster and simpler to work with compared to other Machine Learning methods,
- eliminating the need for a test data [81],
which allow them to be useful tools when working with genetic data. However, usage of many decision trees instead of just one results in a much more complex model, resulting in a harder environment for interpreting feature importance.

3.2.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a scalable Machine Learning system that is based on gradient boosting method [90]. Just like Random Forests, boosting is a method that aims to combine weak classifiers to form a strong ensemble [91]. While a single classifier system aims to find a function $F(x)$ that minimizes a specified objective function $\Psi(y, F(x))$ over a training set, boosting approaches the problem on an additive manner (Equations 3.9 and 3.10) [92]:

$$
\begin{gather*}
F(x)=\arg \min _{F(x)} \Psi(y, F(x)) \tag{3.9}\\
F_{M}(x)=\sum_{m=0}^{M} \beta_{m} h_{m}(x) \tag{3.10}
\end{gather*}
$$

where, $h_{m}(x)$ is a weak classifier that is a simple function of x (e.g. a Decision Tree) that has the index m, β_{m} is the weight given to the m th weak classifier, $F(x)$ is the resulting model for a single classifier system, and $F_{M}(x)$ is the resulting model for a boosting system after M iterations [92].

While regular tree generation is an additive process and traditional methods of optimization cannot be used, boosting is an iterative procedure, where the objective is to finding the next weight, weak classifier pair that minimizes the objective function, which is the sum of loss functions f for all N trees as shown in Equations 3.11 and 3.12 [90, 92, 93]:

$$
\begin{gather*}
\left(\beta_{m}, h_{m}(x)\right)=\arg \min _{\left(\beta_{m}, h_{m}(x)\right)} \Psi\left(\beta_{m}, h_{m}(x)\right) \tag{3.11}\\
\Psi\left(\beta_{m}, h_{m}(x)\right)=\sum_{m=1}^{N} l\left(y,\left(F_{m-1}(x)+\beta_{m} h_{m}(x)\right)\right) \tag{3.12}
\end{gather*}
$$

Gradient boosting [93] uses a two-step procedure to find an approximate solution pair $h_{m}(x), \beta_{m}$ (Equation 3.12) [92, 93]. First, the weak classifier $h_{m}(x)$ that fits to pseudo-residuals the best is determined using the least square method (Equations
3.13 and 3.14, which is then assigned an optimal weight β_{m}, that minimizes the loss function l (Equation 3.15) [92, 93]:

$$
\begin{gather*}
\widetilde{y}_{i, m}=-\left[\frac{\delta\left(l\left(y_{i}, F\left(x_{i}\right)\right)\right.}{\delta\left(F\left(x_{i}\right)\right)}\right] \tag{3.13}\\
h_{m}(x)=\arg \min _{h_{m}(x), \rho} \sum_{i=1}^{N}\left[\widetilde{y}_{i, m}-\rho h_{m}(x)\right]^{2} \tag{3.14}\\
\beta_{m}=\arg \min _{\left(\beta_{m}\right)} \sum_{m=1}^{N} l\left(y,\left(F_{m-1}(x)+\beta_{m} h_{m}(x)\right)\right) \tag{3.15}
\end{gather*}
$$

where, $\widetilde{y}_{i, m}$ is for pseudo-residuals.
In Gradient Tree Boosting, the weak classifier $h_{m}(x)$ is a tree with L terminal nodes, that divides the data to L categories which are all assigned with a separate constant $\bar{y}_{l, m}$, based on the mean of pseudo-residuals ($\widetilde{y}_{i, m}$) of the data that fall into those categories [92, 93]. Thus, the weighing factor is eliminated, and Equations 3.11 and 3.12 becomes:

$$
\begin{gather*}
h_{m}(x)=\arg \min _{\left.h_{m}(x)\right)} \Psi\left(h_{m}(x)\right) \tag{3.16}\\
\Psi\left(h_{m}(x)\right)=\sum_{m=1}^{N} l\left(y,\left(F_{m-1}(x)+h_{m}(x)\right)\right) \tag{3.17}
\end{gather*}
$$

where $h_{m, l}(x)$ is a tree of L terminal nodes generated in m th iteration [92, 93].

XGBoost is a gradient tree boosting system that introduces several novelties [90]. Firstly, a penalty for the model complexity is introduced (Equation 3.18), which pushes the algorithm to select simpler functions [90]. With the introduction of this term, Equation 3.17 takes the form of 3.19 [90]:

$$
\begin{equation*}
\Omega\left(h_{m, L}(x)\right)=\gamma L+\frac{1}{2} \lambda \sum_{l=1}^{L} \bar{y}_{l, m}^{2} \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
\Psi\left(h_{m, L}(x)\right)=\sum_{m=1}^{N} l\left(y,\left(F_{m-1}(x)+h_{m, L}(x)\right)\right)+\Omega\left(h_{m, L}(x)\right) \tag{3.19}
\end{equation*}
$$

where Ω is the penalty for model complexity and γ and λ are user selected constants. XGBoost uses a second-order Taylor expansion to approximate first term in Equation 3.19, which results in Equation 3.22 [90]:

$$
\begin{align*}
& g_{i}=-\left[\frac{\delta\left(l\left(y_{i}, F\left(x_{i}\right)\right)\right.}{\delta\left(F\left(x_{i}\right)\right)}\right] \tag{3.20}\\
& h_{i}=-\left[\frac{\delta^{2}\left(l\left(y_{i}, F\left(x_{i}\right)\right)\right.}{\delta\left(F\left(x_{i}\right)\right)^{2}}\right] \tag{3.21}
\end{align*}
$$

$$
\begin{equation*}
\Psi\left(h_{m, L}(x)\right)=\sum_{m=1}^{N}\left[l\left(y, F_{m-1}(x)\right)+g_{i} h_{m, L}(x)+\frac{1}{2} h_{i} h_{m, L}(x)^{2}\right]+\Omega\left(h_{m, L}(x)\right) \tag{3.22}
\end{equation*}
$$

The first term in the brackets is independent of the current iteration, hence it can be dropped safely to get Equation 3.23 [90]:

$$
\begin{equation*}
\Psi\left(h_{m, L}(x)\right)=\sum_{m=1}^{N}\left[g_{i} h_{m, L}(x)+\frac{1}{2} h_{i} h_{m, L}(x)^{2}\right]+\Omega\left(h_{m, L}(x)\right) \tag{3.23}
\end{equation*}
$$

If the instance set of leaf l is defined as I_{l} (Equation 3.24), Equation 3.23 can be rewritten as Equation 3.25 [90]:

$$
\begin{align*}
\Psi\left(h_{m, L}(x)\right) & =\sum_{m=1}^{N}\left[g_{i} h_{m, L}(x)+\frac{1}{2} h_{i} h_{m, L}(x)^{2}\right]+\gamma L+\frac{1}{2} \lambda \sum_{l=1}^{L} \bar{y}_{l, m}^{2} \\
& =\sum_{m=1}^{N}\left[\left(\sum_{i \in I_{l}} g_{i}\right) \bar{y}_{l, m}+\frac{1}{2}\left(\sum_{i \in I_{l}} h_{i}+\lambda\right) \bar{y}_{l, m}^{2}\right]+\gamma L \tag{3.25}
\end{align*}
$$

For a fixed tree structure $h_{L}\left(x_{i}\right)$, one can compute the optimal weight $\bar{y} *_{l, m}$ of a leaf which minimizes the function in brackets by taking derivative with respect to leaf weight $\bar{y}_{l, m}$ which will result in Equation 3.26 [90]:

$$
\begin{equation*}
\bar{y} *_{l, m}=-\frac{\sum_{i \in I_{l}} g_{i}}{\sum_{i \in I_{l}} h_{i}+\lambda} \tag{3.26}
\end{equation*}
$$

which then can be plucked to the loss function to achieve Equation 3.27 [90]:

$$
\begin{equation*}
\Psi\left(h_{m, L}(x)\right)=-\frac{1}{2} \sum_{m=1}^{N} \frac{\left(\sum_{i \in I_{l}} g_{i}\right)^{2}}{\sum_{i \in I_{l}} h_{i}+\lambda}+\gamma L \tag{3.27}
\end{equation*}
$$

Equation 3.27 allows one to measure the quality of any decision tree, which can then be used to grow trees using a greedy algorithm [90]. However, since it is not possible to evaluate every possible tree, starting with a single tree and adding branches to it by selecting splitting candidates from finite number of features is used instead [90]. This is done so by modifying the Equation 3.27 such that the loss prior to split is compared to loss after the split, and a gain function is written accordingly (Equation 3.28) [90]:

$$
\begin{equation*}
\text { Gain }=\frac{1}{2}\left[\frac{\left(\sum_{i \in I_{\text {left }}} g_{i}\right)^{2}}{\sum_{i \in I_{\text {left }}} h_{i}+\lambda}+\frac{\left(\sum_{i \in I_{\text {right }}} g_{i}\right)^{2}}{\sum_{i \in I_{\text {right }}} h_{i}+\lambda}-\frac{\left(\sum_{i \in I} g_{i}\right)^{2}}{\sum_{i \in I} h_{i}+\lambda}\right]-\gamma \tag{3.28}
\end{equation*}
$$

where $I_{\text {left }}$ and $I_{\text {right }}$ are the instances that are split to left and right child nodes after the split, respectively.

When growing trees, XGBoost aims to determine the best splitting candidate that maximizes the gain function [90]. XGBoost also utilizes column subsampling and shrinkage, the method of scaling each generated tree with a learning rate factor, to combat overfitting [90].

XGBoost was proven to be an excellent tool that has been used with success in various fields, including classifying genetic data, achieving a 79.72% accuracy when used to classify 8-mer DNA sequences into TF families [34].

Figure 3.3: Graphical Comparison of a Simple Neural Network and a Deep Neural Network.

3.2.4 Deep Learning

Representation learning is a set of methods, which the machine is fed with raw data and extract the features required for classification automatically [80]. Deep Learning is an approach that is inspired from biological learning [12], which is a representation learning method that represents the data in multiple layers of representation, which all transform the data at one level [80], that was first investigated in 1980s with the discovery of backpropagation by various groups [94-97]. However, Deep Learning methods were initially written off by Machine Learning communities as it was considered to be infeasible to learn anything useful without already having extensive existing knowledge [80]. Deep Learning gained its momentum back in 2006, with several research groups determined that it was possible to pre-train and initialize the models with sensible weights and then fine-tuned the original backpropagation method to obtain models that perform remarkably well, even under sparse data conditions [80, 98-103].

3.2.4.1 Multilayer Perceptrons

There are many different techniques of Deep Learning applications, due to availability of different kinds of sampling, feature extracting techniques. Consider an example case where it aims to build a Deep Learning model that tries to classify vehicles from
images as either cars, planes or ships, which will be the labels. As the first step, a large dataset of car, plane and ship pictures should be compiled [80]. Upon showing the machine one of these pictures, by simply performing linear algebra, it forms a prediction vector, containing one probability score for each label, and the label that has the highest probability, will be the models prediction [80]. Aim is to use an objective function to calculate the error between the desired pattern scores. Depending on the error, models weights are tuned, and this procedure is continued until the training is completed [80]. This type of models are called feed-forward models, meaning the outputs of the model are not fed back to the model [12]. Feed-forward models are one of the most common types of models in Deep Learning applications [80].

One of most basic and quintessential Deep Learning models are the Multilayer Perceptrons (MLPs) [12] (Figure 3.3b). MLPs form the basis for many other applications of Deep Learning, such as Convolutional Neural Network (CNN) [104], which has wide applications ranging from image or speech recognition to bioinformatics [23]. MLPs require many design choices to deploy, such as width, the number of nodes used in a hidden layer, depth, the number of hidden layers used, optimizer, an iterative algorithm that aims to minimize the cost function; and activation function, the functions that are used to calculate the output of a node [12].

3.2.4.2 Stochastic Gradient Descent

Gradient Descent Method [11], forms the basis for all Gradient-Based Optimizers [12]. Gradient descent method obtains a solution for finding the minimum point of the loss function $\Psi(x)$ problem, by making changes to x while trying to minimize the absolute value of the derivative of the loss function $\Psi^{\prime}(x)$ (Algorithm 2] [12]. Gradient descent may find any type of critical points and not just minimum points. This issue can be addressed however by simply identifying the type of critical point by comparing it to its surroundings and changing the initial estimate if the predicted value is not a minimum.

Almost all Deep Learning optimizers use an extension of the gradient descent method, which is Stochastic Gradient Descent (SGD) [12]. Most loss functions that are associated with Machine Learning are additive, determined by taking sum over an entire

Input 1: $f(x)$, the function that we are trying to minimize
Input 2: ϵ, the learning rate hyperparameter
Step 1: Compute $\mathrm{f}^{\prime}(\mathrm{x})$,
Step 2: Adjust x such that $x_{\text {New }}=x+\epsilon * \operatorname{sign}\left(f^{\prime}(x)\right)$,
Step 3: Repeat steps 1 and 2 until $f^{\prime}(x)$ becomes 0 .
Output: A critical point (local minimum, local maximum, saddle point, global minimum or global maximum) of function $f(x)$

Algorithm 2: Gradient Descent Algorithm [11,12]
training dataset (Equation 3.29) [12]:

$$
\begin{equation*}
\Psi(\theta)=\frac{1}{m} \sum_{i=1}^{m} l\left(x_{i}, y_{i}, \theta\right) \tag{3.29}
\end{equation*}
$$

where $\Psi(\theta)$ is the loss function, calculated for model θ, m is the dataset size, and $l\left(x_{i}, y_{i}, \theta\right)$ is the loss associated with each data pair x_{i}, y_{i} for model θ.

Gradient dataset requires application of Equation 3.30 to every single data point, which becomes infeasible as datasets get larger [12]:

$$
\begin{equation*}
\nabla_{\theta} \Psi(\theta)=\frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} l\left(x_{i}, y_{i}, \theta\right) \tag{3.30}
\end{equation*}
$$

For this reason, taking uniform mini-batches of data, and estimating expectation based on these mini-batches is much more efficient [12]. Expectation is formed using Equation 3.31, and then used to adjust the model using Equation 3.32 [12]:

$$
\begin{equation*}
g=\frac{1}{m^{\prime}} \nabla_{\theta} \sum_{i=1}^{m^{\prime}} l\left(x_{i}, y_{i}, \theta\right) \tag{3.31}
\end{equation*}
$$

$$
\begin{equation*}
\theta \longleftarrow \theta-\epsilon g \tag{3.32}
\end{equation*}
$$

where g is the expected gradient, m^{\prime} is the mini-batch size and ϵ is the learning rate.

While SGD is popular, learning using SGD without any modifiers can be slow [12]. Momentum terms, acting as a step-size adjustor, can be introduced to speed up this process (Equations 3.33 and 3.34) [12, 105]:

$$
\begin{gather*}
v \longleftarrow \alpha v-\epsilon g \tag{3.33}\\
\theta \longleftarrow \theta+v \tag{3.34}
\end{gather*}
$$

where α is a hyperparameter that determines the rate of decay of contributions of previous iterations and takes a value between 0 and 1 .

3.2.4.3 ADAM and ADAMax

In almost all cases, some parameters have very high impact on labels while some parameters have almost none, and using the same learning rate ϵ hyperparameter for all parameters consequently leads it having a significant impact on models performance, which results in learning rate a very hard hyperparameter to tune [12]. Usage of momentum introduces a way of vary the step-size, however it also introduces another hyperparameter α to be tuned, while doing so [12]. Adaptive Moment Estimation (ADAM), is an SGD-based optimization algorithm that computes adaptive learning rates for various parameters from estimates of first and second moments of the gradients [13]. The algorithm of ADAM is given in Algorithm 3. Recent studies have shown that ADAM is one the state-of-art optimizers and can perform well for variety of classification problems [106].

ADAM operates by scaling gradients of individual weights inversely proportional to a scaled L^{2} norm of their prior and current gradients [13]. This L^{2} norm can be generalized as L^{p} (Equations 3.35] and 3.36) [13]:

$$
\begin{align*}
v_{t} & =\beta_{2}^{p} v_{t-1}+\left(1-\beta_{2}^{p}\right)\left|g_{t}\right|^{p} \\
& =\left(1-\beta_{2}^{p}\right) \sum_{i=1}^{t} \beta_{2}^{p(t-i)}\left|g_{i}\right|^{p} \tag{3.35}
\end{align*}
$$

$$
\begin{equation*}
\theta_{t}=\theta_{t-1}-\alpha \cdot \widehat{m}_{t} /\left(\widehat{v}_{t}^{(1 / p)}+\epsilon\right) \tag{3.36}
\end{equation*}
$$

However, for higher values of p such variants tend to be unstable. As an exception to this case, when $p \rightarrow \infty$ (Equations 3.37), a stable algorithm emerges (Algorithm 4), called ADAMax [13]:

Input 1: $f(x)$, the function that we are trying to minimize
Input 2: ϵ, initial learning rate hyperparameter
Input 3: β_{1} and β_{2}, the exponential decay rate hyperparameters
Step 1: Initialize first moment m, second moment v, and timestep t :
$m_{0} \longleftarrow 0, v_{0} \longleftarrow 0, t \longleftarrow 0$
Step 2: Apply the following algorithm:
while θ_{t} is not converged do
$t \longleftarrow t+1 ;$
$g_{t} \longleftarrow \nabla_{\theta} f_{t}\left(\theta_{t-1}\right) ;$
$m_{t} \longleftarrow \beta_{1} \cdot m_{t-1}+\left(1-\beta_{1}\right) \cdot g_{t} ;$
$v_{t} \longleftarrow \beta_{2} \cdot v_{t-1}+\left(1-\beta_{2}\right) \cdot g_{t}^{2} ;$
$\widehat{m}_{t} \longleftarrow m_{t} /\left(1-\beta_{1}^{t}\right) ;$
$\widehat{v}_{t} \longleftarrow v_{t} /\left(1-\beta_{2}^{t}\right) ;$
$\theta_{t} \longleftarrow \theta_{t-1}-\alpha \cdot \widehat{m}_{t} /\left(\sqrt{\widehat{v}_{t}}+\epsilon\right) ;$
end
return θ_{t}
Output: Resulting model θ_{t}
Algorithm 3: ADAM Algorithm [13]

Input 1: $f(x)$, the function that we are trying to minimize
Input 2: ϵ, initial learning rate hyperparameter
Input 3: β_{1} and β_{2}, the exponential decay rate hyperparameters
Step 1: Initialize first moment m, infinity norm u, and timestep t :
$m_{0} \longleftarrow 0, u_{0} \longleftarrow 0, t \longleftarrow 0$
Step 2: Apply the following algorithm:
while θ_{t} is not converged do
$t \longleftarrow t+1 ;$
$g_{t} \longleftarrow \nabla_{\theta} f_{t}\left(\theta_{t-1}\right) ;$
$m_{t} \longleftarrow \beta_{1} \cdot m_{t-1}+\left(1-\beta_{1}\right) \cdot g_{t} ;$
$u_{t} \longleftarrow \max \left(\beta_{2} \cdot u_{t-1},\left|g_{t}\right|\right) ;$
$\theta_{t} \longleftarrow \theta_{t-1}-\left(\alpha /\left(1-\beta_{1}^{t}\right)\right) \cdot m_{t} / u_{t} ;$
end
return θ_{t}
Output: Resulting model θ_{t}
Algorithm 4: ADAMax Algorithm [13]

$$
\begin{align*}
u_{t}=\lim _{p \rightarrow \infty}\left(v_{t}\right)^{(1 / p)} & =\lim _{p \rightarrow \infty}\left(\left(1-\beta_{2}^{p}\right) \sum_{i=1}^{t} \beta_{2}^{p(t-i)}\left|g_{i}\right|^{p}\right)^{(1 / p)} \\
& =\lim _{p \rightarrow \infty}\left(1-\beta_{2}^{p}\right)^{(1 / p)}\left(\sum_{i=1}^{t} \beta_{2}^{p(t-i)}\left|g_{i}\right|^{p}\right)^{(1 / p)} \tag{3.37}\\
& =\lim _{p \rightarrow \infty}\left(\sum_{i=1}^{t}\left(\beta_{2}^{(t-i)}\left|g_{i}\right|\right)^{p}\right)^{(1 / p)} \\
& =\max \left(\beta_{2}^{t-1}\left|g_{1}\right|, \beta_{2}^{t-2}\left|g_{2}\right|, \ldots, \beta_{2}\left|g_{t-1}\right|,\left|g_{t}\right|\right)
\end{align*}
$$

Result of formula in Equation 3.37 is equivalent to the recursive formula shown in Equation 3.38[13]:

$$
\begin{equation*}
u_{t}=\max \left(\beta_{2} \cdot u_{t-1},\left|g_{t}\right|\right) \tag{3.38}
\end{equation*}
$$

3.2.4.4 Binary Cross-Entropy

By reducing its gradient to 0 , optimizers aim to minimize an objective function, which is selected based on the nature of the task. While trying to predict TFBSs, task is a binary classification problem, where input sequence is classified as either "True" or "False". Cross-Entropy, which measures the difference between two different probability distributions, is a widely used Machine Learning loss function (Equation 3.39] [79]:

$$
\begin{equation*}
H(x, \theta)=-\sum_{c=1}^{C} p(x \in c) \times \ln (q(x \in c)) \tag{3.39}
\end{equation*}
$$

where $H(x, \theta)$ is the loss function with parameters of a single data point x and a given model θ. While $p\left(x_{c}\right)$ is expected probability of x in class \mathbf{c}, is 1 for its label and 0 for all other labels, and $q\left(x_{c}\right)$ is the probability of x being in class c predicted by the model.

For binary classification, Equation 3.39 can be expanded to get the Equation 3.40 [79]:

$$
\begin{equation*}
H(x, \theta)=-p(x \in 0) \times \ln (q(x \in 0))-p(x \in 1) \times \ln (q(x \in 1)) \tag{3.40}
\end{equation*}
$$

where $p(x \in i)$ is the true probability of class i containing x (either 1 or a 0), and the $q(x \in i)$ is the predicted probability of class i containing x by the model.

For binary classification problems, logistic regression can be used to fit a line to the data that can separate the two classes in the best way possible [107]. Logistic regression tries to fit the data to a sigmoid function (Equation 3.41), which produces a value between 0 and 1 , which can be interpreted as the probability of a data point belonging to class 1 [79]:

$$
\begin{equation*}
S(x)=\frac{1}{1+e^{-\theta \cdot x}}=q\left(x_{1}\right) \tag{3.41}
\end{equation*}
$$

Once the probability of the data having a "True" label is determined with the sigmoid
function, the probability of a "False" can be determined by Equation 3.42 [79]:

$$
\begin{equation*}
q\left(x_{0}\right)=1-q\left(x_{1}\right) \tag{3.42}
\end{equation*}
$$

Plugging these values in Equation 3.40, and summing the entropy over an entire training dataset gives us Equation 3.43, which is a loss function that we can apply gradient descent to solve for an optimal model:

$$
\begin{equation*}
H(X, \theta)=\sum_{i=1}^{X}\left(-p(x \in 0) \times \ln \left(1-\frac{1}{1+e^{-\theta \cdot x_{i}}}\right)-p(x \in 1) \times \ln \left(\frac{1}{1+e^{-\theta \cdot x_{i}}}\right)\right) \tag{3.43}
\end{equation*}
$$

3.2.4.5 Rectified Linear Unit

In a MLP, all nodes in a hidden layer have some number of inlet links, which feed results of the previous layer to the current layer, each having different weights [79]. Input of a node is the weighted sum of this inlet links (Equation 3.44) [79]:

$$
\begin{equation*}
i n_{j}=\sum_{i=0}^{n} w_{i, j} a_{i} \tag{3.44}
\end{equation*}
$$

where a_{i} is the result of the node i , and $w_{i, j}$ is the weight of the link connecting nodes i and j .

Result of this sum is then fed to an activation function g (Equation 3.45), which determines the output of the current node:

$$
\begin{align*}
a_{j} & =g\left(i n_{j}\right) \\
& =g\left(\sum_{i=0}^{n} w_{i, j} a_{i}\right) \tag{3.45}
\end{align*}
$$

In modern neural networks, default activation function suggestion is to use Rectified Linear Unit (ReLU) [108-110], definition of which is shown in Equation 3.46 [12]:

$$
g\left(i n_{j}\right)= \begin{cases}i n_{j} & \text { if } x>0 \tag{3.46}\\ 0 & \text { else }\end{cases}
$$

There are a number of other activation functions based on ReLU, such as Leaky ReLU, a variant of ReLU that allows for a small leakage when input is negative (Equation 3.47] [111], and Exponential Linear Unit (ELU), a variant which centers mean around 0 to get better and faster results (Equation 3.48) [112]:

$$
\begin{gather*}
g\left(i n_{j}\right)= \begin{cases}i n_{j} & \text { if } x>0 \\
0.01 i n_{j} & \text { else }\end{cases} \tag{3.47}\\
g\left(i n_{j}\right)= \begin{cases}i n_{j} & \text { if } x>0 \\
\alpha\left(e^{-i n_{j}}-1\right) & \text { else }\end{cases} \tag{3.48}
\end{gather*}
$$

where α is a hyperparameter to be tuned.

3.2.5 Data Features

When training Machine Learning algorithms, feature extraction must be performed to encode raw data into usable inputs. Due to this, when working with TF binding specificity data, features that can represent sequence specifics of the TFBS needs to be considered.

3.2.5.1 k-mer Dinucleotide Frequency

The effects higher-order k-mers on TFBS binding was a case of interest since the introduction of DWMs (Section 3.2.1). Mordelet et al. [113] has shown that utilizing k -mer dinucleotide frequency feature, more complex and accurate Machine Learning models can be developed. Using this feature, the frequencies of all possible k-length sequence combinations within a given sequence are computed using Equation 3.49, which is then used to form an input array [113]:

$$
\begin{equation*}
f_{K}\left(X_{i}, X_{j}, X_{k}, \ldots\right)=\frac{N\left(X_{i}, X_{j}, X_{k} \ldots\right)}{L} \tag{3.49}
\end{equation*}
$$

where, $X_{i, j, k \ldots \ldots} \in\{A, C, G, T\}, f_{K}$ is the frequency of the K-mer, N is the number of occurrences of the subsequence within the 8 -mer sequence, and L is the length of the represented sequence.

3.2.5.2 k-Spaced Nucleotide Pair Frequency

Originally proposed and successfully used as a protein sequence encoding tool [114, [115], using k-spaced nucleotide pair frequency to encode DNA sequences has significantly improved model performance when trying to predict N^{6}-methyladenine sites [116]. Recent studies also showed that it can be used as a tool to classify TFBSs [34], k-spaced nucleotide pair frequency is a measure of the frequency of nucleotides that are distanced k from each other (Equation 3.50) [116]:

$$
\begin{equation*}
f\left(X_{i}, X_{j}, K\right)=N\left(X_{i}, X_{j}, K\right) /(L-K-1) \tag{3.50}
\end{equation*}
$$

where, $X_{i, j} \in\{A, C, G, T\}, f\left(X_{i}, X_{j}, K\right)$ and the $N\left(X_{i}, X_{j}, K\right)$ is the frequency and the number of observations for the case of the two nucleotides X_{i} and X_{j} seperated by K nucleotides, while L is the sequence length.

3.2.5.3 Nucleotide Chemical Property

Bari et al. [1] has proposed that the chemical properties of the nucleotides, hydrogen bond strengths (weak or strong), functional groups (amino or keto), and ring structure properties (purine or pyrimidine) can be utilized to encode and classify DNA sequences. Chen et al. [117] has applied this concept to determine N^{4}-methylcytosine sites successfully. Wang et al. [34] has applied this concept to their highest affinity TFBS predictor with success, which has showed the promise of the feature when trying to classify TFBSs. A nucleotide chemical property matrix is generated by the use of Table 3.1, where an encoding column is shown for each nucleotide. The se-

Table 3.1: Chemical properties of nucleotides [1]

Nucleotide	Hydrogen Bond	Functional Group	Ring Structure	Encoding
A	Weak (1)	Amino (1)	Purine (1)	$(1,1,1)$
C	Strong (0)	Amino (1)	Pyrimidine (0)	$(0,1,0)$
T	Weak (1)	Keto (0)	Pyrimidine (0)	$(1,0,0)$
G	Strong (0)	Keto (0)	Purine (0)	$(0,0,0)$

quence is encoded by taking the encoding vectors of each nucleotide and putting them together [1].

3.2.5.4 Pseudo-k-tuple Nucleotide Composition

Pseudo-k-tuple nucleotide composition (PseKNC) is a feature that was first developed to compute DNA methylation sites [118]. Structural properties of the DNA has a huge impact on regulatory sites, and usage of PseKNC allows one to account for these properties [118]. Wang et al. [34] has also showed in their study that this feature can be used as an excellent tool for TFBS classification. PseKNC is employed by the usage of Equation 3.51 .

$$
\begin{equation*}
P_{i, \lambda}=\sum_{n=1}^{L-\lambda-1}\left(p_{i}(n)-\bar{p}_{i}\right)\left(p_{i}(n+\lambda)-\bar{p}_{i}\right) \tag{3.51}
\end{equation*}
$$

where i is the index of the physical structural parameter, n is the index of the nucleotide pair in consideration, λ is the pseudo-composition, $p_{i}(n)$ is the contribution of the nth nucleotide pair to the physical structural parameter in Table 3.2, and \bar{p}_{i} the mean for all elements in the i th physical structural parameter.

3.2.5.5 Electron-Ion Interaction Pseudopotentials of Trinucleotide

Electron-ion interaction pseudopotentials of trinucleotide (PseEIIP) feature was proposed by Nair and Sreenadhan [3], which has proven to be an efficient DNA encoding tool [119]. Due to being easy to use/understand, and being highly computa-

Table 3.2: Contributions of the nucleotide pairs to physical, structural properties [2]

Step	Twist	Tilt	Roll	Shift	Slide	Rise
AA	0.026	0.038	0.02	1.69	2.26	7.65
AC	0.036	0.038	0.023	1.32	3.03	8.93
AG	0.031	0.037	0.019	1.46	2.03	7.08
AT	0.033	0.036	0.022	1.03	3.83	9.07
CA	0.016	0.025	0.017	1.07	1.78	6.38
CC	0.026	0.042	0.019	1.43	1.65	8.04
CG	0.014	0.026	0.016	1.08	2.00	6.23
GA	0.025	0.038	0.020	1.32	1.93	8.56
GC	0.025	0.036	0.026	1.20	2.61	9.53
TA	0.017	0.018	0.016	0.72	1.20	6.23

tionally efficient, this feature was utilized in many different tasks on trying to predict regulatory regions such as enhancers [120], nucleosomes [121] or even protein hot-spots [122, 123]. PseEIIP is used by computing the 3-mer frequencies in a sequence and taking Hadamard product (\odot), by multiplying each frequency with its corresponding electron-ion potential and using resulting elements to form a vector (Equations 3.52 and 3.53) [3]:

$$
\begin{gather*}
\left.\left.E I I P_{X_{i}, X_{j}, X_{k}}=E I I P_{(} X_{i}\right)+E I I P\left(X_{j}\right)+E I I P_{(} X_{k}\right) \tag{3.52}\\
V_{X_{i}, X_{j}, X_{k}}=f_{X_{i}, X_{j}, X_{k}} \odot E I I P_{X_{i}, X_{j}, X_{k}} \tag{3.53}
\end{gather*}
$$

where, $X_{i, j, k} \in\{A, C, G, T\}$, EIIP is the electron-ion interaction pseudopotential, $f_{X_{i}, X_{j}, X_{k}}$ is the occurrence frequency of the 3-mer combinations within the sequence, and $V_{X_{i}, X_{j}, X_{k}}$ is the value assigned to the feature vector for 3-mer $X_{i} X_{j} X_{k}$.

The values of EIIP for single nucleotides are given in Table 3.3.

Table 3.3: Electron-ion interaction pseudopotential contributions for the nucleotides [3]

Nucleotide	A	C	G	T
EIIP	0.1260	0.1340	0.0806	0.1335

CHAPTER 4

PHYLOGENETIC FOOTPRINTING METHOD FOR PREDICTING CIS-ACTING DNA ELEMENTS

4.1 Introduction

The aim of this work is, first, to establish the S. cerevisiae cADSs curation pipeline (Sc-cADSs-CP). Next is to predict the conserved cADSs in P. pastoris by the information flow from Sc-cADSs-CP through pairing cross-species alignments and identify the master TFs that regulate the expressions of the structural genes of central metabolic pathways in P. pastoris (Figure 4.1).

In this chapter, a phylogenetic footprinting algorithm (Algorithm 5) aiming to predict P. pastoris TFBSs is introduced, and the PWMs for each predicted TFBSs using S. cerevisiae as model yeast, are presented.

4.2 Methods

4.2.1 Identification of S. cerevisiae and P. pastoris Promoters

In the first two steps of the Algorithm 55, S. cerevisiae and P. pastoris promoters are identified. For the reference host S. cerevisiae, UniProt [51] and NCBI [52] databases were used to determine the genes encoding the enzymes and isoenzymes and their subunits involved in the central pathways. The enzymes of P. pastoris, which are orthologous to the enzymes of S. cerevisiae were determined by proteinprotein BLAST protocol provided by NCBI [124]. To calculate the alignment scores, BLOSUM62 scoring matrix was used. The e-value (Equation 3.6), is defined as the

Identification of the master transcription factors regulating the structural genes in the central metabolic pathways in P. pastoris

Figure 4.1: A flowchart representation of Footprinting Algorithm
alignment counts that would achieve a score equal or better than the given alignment in a database of same size that has no homologous proteins. For the case of this study, to consider a protein pair homologous, the alignment between them is expected to achieve $10^{-10} e$-score or lower.

The promoters of the genes of interest of both yeasts were retrieved from the genome sequences as follows: if the distance between the transcription start site of the transcribed gene to the upstream gene is (a) longer than 1500 bp , the promoter length was considered as 1500 bp ; (b) shorter than 1000 bp , the promoter length was considered as 1000 bp ; (c) between $1000-1500 \mathrm{bp}$, the promoter length was considered as it is.

4.2.2 Motif Scanning and Pairwise Alignment using Biopython

To annotate the TFBS regions on reference promoter, PWM scan algorithm was used, which is showcased in Algorithm 6(Section 3.1.1). For S. cerevisiae, the TF frequency matrices were gathered from the Transfac® database [6]. If there were more than one frequency matrix for a TF the longest one is used for the calculations. For the PSSM calculations, the background probabilities for C and G are taken as 19% as GC content of S. cerevisiae is 38%.

Input: ID of the targeted gene
Step 1: Determine protein sequence and promoter sequence
Step 2: Find the homologous S. cerevisiae gene of the target gene by applying protein-protein blast to be used as reference

Step 3: Annotate the TFBS locations on the reference gene's promoter sequence.

Step 4: By comparing the target genes promoter sequence with reference genes promoter sequence, determine conserved regions
Step 5: Annotate the TFBS locations on the target gene's promoter sequence by determining the conserved regions that are annotated in reference gene's promoter sequence.

Output: Annotated TFBS locations over target gene and reference gene.

Algorithm 5: Phylogenetic Footprinting Algorithm

We processed all the frequency matrices of the TFs with the following procedure. For each TF, cut-off values were determined by scanning for hits in exon ≥ 2 sequences of S. cerevisiae and allowing a maximum of 3 hits per $10,000 \mathrm{bp}$ when the sequences that achieve a lower relative score than the set cut-off value are discarded (Section 3.1.1). Promoters of S. cerevisiae and P. pastoris were scanned for TFBS motifs with the Biopython's motifs submodule [125].

In the final step in Phylogenetic Footprinting approach, ScanAlgo, a divide and conquer type algorithm to scan DNA motifs for pairing cross-species alignments, was developed, which is detailed in Algorithm 7. ScanAlgo conceptually was adapted from the Needleman-Wunsch algorithm [10]. ScanAlgo takes homologous promoter sequences for two species as input and produces the putative binding sites predicted using the scan and pairwise alignment functions of the Biopython module [125]. Match score and mismatch penalty were assigned using the EDNAFULL scoring matrix. Affine gap penalty function was utilized, with ten open gap penalties and 1 extend gap penalty.

4.2.3 Performance Analysis

From annotated binding sites of each TF, their P. pastoris frequency matrices were developed. These matrices were used to prepare another set of PSSMs, which were then used to scan for TFBSs in P. pastoris promoters. The results were compared with the experimental data available in the literature to assess the performance of the model.

4.3 Results

4.3.1 Homologous Proteins of S. cerevisiae and P. pastoris

After determining the S. cerevisiae enzymes that contribute to the central metabolism from NCBI database, using BLAST Protocol, I have identified the homologous P.

Input 1: Promoter Sequence

Input 2: PSSM Motif

```
Score \(=0\) Score \(_{\text {MAX }}=0\) Score \(_{\text {MIN }}=0\)
for \(i=0\) to promoterLength - motif Length +1 do
    checkedSequence \(\leftarrow\) promoterSequence \([i: i+\) motif Length \(]\)
    for \(j=0\) to checkedSequenceLength do
        Score \(=\) Score + PSSM \((j\), checkedSequence \([j])\)
        Score \(_{\text {MIN }}=\) Score \(_{\text {MIN }}+\min (\operatorname{PSSM}(j))\)
        Score \(_{\text {MAX }}=\) Score \(_{\text {MAX }}+\max (\operatorname{PSSM}(j))\)
    end
    // Apply equation 4 to find the relative score.
        Score \(_{\text {REL }}=\frac{\text { Score-Score }_{\text {MIN }}}{\text { Sore }_{\text {MAX }}-\text { Score }_{M I N}}\)
    if Score \(_{R E L} \geq\) Threshold then
        annotatedRegionLocations \(\leftarrow i\)
    end
end
```

Output: annotatedRegionLocations

> Algorithm 6: PWM Motif Scanning

Input 1: Reference Promoter Sequence
Input 2: Target Promoter Sequence
Input 3: Annotated TFBS locations list for Reference Promoter Sequence

Step 1: Use Needleman-Wunsch pairwise alignment algorithm to align the sequences
Step 2: For each annotated TFBS on reference sequence, find aligned counterpart over the target sequence
Step 3: Check to see if 66% of the TFBS sequence is conserved, if so, annotate on target sequence.

Algorithm 7: ScanAlgo Algorithm
pastoris and S. cerevisiae enzymes. Table 4.1 shows an example BLAST for the alcohol dehydrogenase 2 (ADH2) enzyme.

As can be seen in Table 4.1, there are five proteins that can be considered homologous to ADH2, one of which is XP_002491382.1, described as the Mitochondrial alcohol dehydrogenase isozyme III in NCBI database [52], shows an improbable level of similarity and achieved an e-Score value of $3 \mathrm{e}-165$. As such, it was considered as the main homologous counterpart of ADH2 protein of P. pastoris. XP_002491382.1 is synthesized by PAS_chr2-1_0472 gene in P. pastoris. From this, one can deduce that PAS_chr2-1_0472 gene in P. pastoris and ADH2 gene in S. cerevisiae are homologous.

The results obtained by repeating this procedure for all the proteins that take part in the central metabolism of S. cerevisiae are presented in Appendix A.

4.3.2 Annotation of TFBSs in S. cerevisiae Promoters

After determining the homologous genes, the promoters of the predicted homologous genes are extracted. The 3rd step of Algorithm 5 is the annotation of TFBS locations on the reference genes' promoter sequences. S. cerevisiae genes' promoters were scanned utilizing PWM data of Transfac. A sample result, where $P_{A D H 2}$, promoter

Table 4.1: NCBI BLAST Results of S. cerevisiae ADH2 enzyme against P. pastoris GS115 database [4]

Locus ID	Score	Covery	Identity\%	E-Score
XP_002491382.1	463	99%	73.78%	$3 \mathrm{e}-165$
XP_002492217.1	103	90%	28.83%	$8 \mathrm{e}-26$
AOA70192.1	99	90%	28.22%	$6 \mathrm{e}-24$
XP_002490014.1	92.8	98%	28.25%	$1 \mathrm{e}-21$
XP_002494014.1	65.5	98%	27.52%	$2 \mathrm{e}-12$

Table 4.2: Information of Cat8 hits on $\mathrm{P}_{A D H 2}$ promoter

TF	Location	Strand 1	Score	Rel. Score	Sequence
Cat8	-479	-	11.065	0.838	TCCGTCTCTCCG
Cat8	-308	-	6.237	0.728	GCCGGAACACCG
Cat8	-306	+	8.253	0.774	CGGAACACCGGG

1 " + " stands for main sequence, while " - " is for reverse complement.
of ADH2, is scanned for the TF Cat8 motif is shown in Table 4.2 and Figure 4.2.

4.3.3 Annotation of TFBSs on P. pastoris Promoters

After scanning S. cerevisiae promoters, S. cerevisiae and P. pastoris promoters were aligned via Needleman-Wunsch pairwise alignment procedure. Next, the annotated regions on S. cerevisiae and their aligned counterparts were checked one-by-one to predict and annotate conserved TFBSs on P. pastoris promoters. In Figure 4.3, a sample case of TFBS annotation using pairwise alignment is displayed. The two promoter sequences were aligned; and, the Msn2 TFBS and the region aligned were inspected. Since there was one nucleotide deleted in position 3, one nucleotide from both sides were considered to be possible new aligned region candidates. For the second pairwise alignment, the region between 564th and 572th nucleotides of P. pastoris has 6 out of 9 conserved nucleotides, which satisfies the conservation criterion of 66%.

Hence, Msn2 TFBS can be considered as conserved on $P_{P A S_{-} c h r 2-1 _0472}$ and was annotated.
1 AATGGCAAACTGAGCACAACAATACCAGTCCGGATCAACT 40
41 GGCACCATCTCTCCCGTAGTCTCATCTAATTTTTCTTCCG 80
81 GATGAGGTTCCAGATATACCGCAACACCTTTATTATGGTT 120
121 TCCCTGAGGGAATAATAGAATGTCCCATTCGAAATCACCA 160
161 ATTCTAAACCTGGGCGAATTGTATTTCGGGTTTGTTAACT 200
201 CGTTCCAGTCAGGAATGTTCCACGTGAAGCTATCTTCCAG 240
241 CAAAGTCTCCACTTCTTCATCAAATTGTGGGAGAATACTC 280
281 CCAATGCTCTTATCTATGGGACTTCCGGGAAACACAGTAC 320
321 CGATACTTCCCAATTCGTCTTCAGAGCTCATTGTTTGTTT 360
361 GAAGAGACTAATCAAAGAATCGTTTTCTCAAAAAAATTAA 400
401 TATCTTAACTGATAGTTTGATCAAAGGGGCAAAACGTAGG 440
441 GGCAAACAAACGGAAAAATCGTTTCTCAAATTTTCTGATG 480
481 CCAAGAACTCTAACCAGTCTTATCTAAAAATTGCCTTATG 520
521 ATCCGTCTCTCCGGTTACAGCCTGTGTAACTGATTAATCC 560
561 TGCCTTTCTAATCACCATTCTAATGTTTTAATTAAGGGAT 600
601 TTTGTCTTCATTAACGGCTTTCGCTCATAAAAATGTTATG 640
641 ACGTTTTGCCCGCAGGCGGGAAACCATCCACTTCACGAGA 680
681 CTGATCTCCTCTGCCGGAACACCGGGCATCTCCAACTTAT 720
721 AAGTTGGAGAAATAAGAGAATTTCAGATTGAGAGAATGAA 760
761 AAAAAAAAAAAAAAAAAAGGCAGAGGAGAGCATAGAAAT 799
800 GGGGTTCACTTTTTGGTAAAGCTATAGCATGCCTATCACAT 840
841 ATAAATAGAGTGCCAGTAGCGACTTTTTTCACACTCGAAA 880
881 TACTCTTACTACTGCTCTCTTGTTGTTTTTATCACTTCTT 920
921 GTTTCTTCTTGGTAAATAGAATATCAAGCTACAAAAAGCA 960
961 TACAATCAACTATCAACTATTAACTATATCGTAATACACA 1000

Figure 4.2: Graphical showcase of Cat8 hits on $P_{A D H 2}$ promoter.

403 TCTT-AACTGATAGTTTGATCAAAGGGGCA--AAACGTA 438
 .||| .||...|. ||||..|||| .|||| .|.|.|.
 544 CCTTGCACCCCTC-TTTGGACAAA-TGGCAGTTAGCATT 580

(a)

424 AAGGGGCAA-- 432
\|।..||||.
564 AAATGGCAGTT 574
(b)

Figure 4.3: (a) A segment from pairwise alignment of $P_{A D H 2}$ (top) and $P_{P A S _c h r 2-1 _0472}$ (bottom) promoters. Msn2 TFBS annotated on $P_{A D H 2}$, and the region its aligned against is highlighted in yellow. (b) Alignment of highlighted regions. Final Annotated sequence on P. pastoris is highlighted in green.

4.3.4 Computation of P. pastoris PWMs

Following the annotation of TFBSs on P. pastoris promoters, PWMs of each TF were computed. In Figure 4.4, a comparison of Abf2 TFBS consensus motifs is presented. In Appendix B, logos for all TFs of P. pastoris are showcased.

4.3.5 Scanning P. pastoris promoters for unidentified TFBSs

While Phylogenetic Footprinting allows for the prediction of conserved TFBSs, it cannot predict the TFBSs on target species that formed after the separation, even if they have exactly the same sequence with another annotated TFBS. For this reason, after computing P. pastoris PWMs, the promoters of the P. pastoris were scanned using these motifs. In Table 4.3, a sample result is provided where annotated TFBSs counts for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7, and Gcr1 TFs for the glycolysis pathway enzymes are showcased.

4.3.6 Comparison with the Literature

After annotating the TFs, the S. cerevisiae TFBSs were compared with the literature using Yeastract [44]. Yeastract database provides the evidences of binding and expression, which were marked on the TFs, by using asterisk $\left({ }^{*}\right)$ or degrees $\left({ }^{\circ}\right)$ to denote that TF has binding or expression evidence for the given promoter, respectively. The results for all the pathways are presented in Appendix C. For most of the promoters, the results agree with the literature based on the experimental evidence available. However, a significant number of sites that the model predicted in some of the promoters need expression or binding proof experiments, as expected.

(a) S. cerevisiae Motif

(c) P. pastoris Motif

$\overline{1}$
$\overline{1}$
$\overline{2}$
$\overline{3}$
$\overline{4}$
$\overline{5}$
A
C
G
T

0.39 \& 0.09 \& 1.0 \& 0.0 \& 0.0 \& 0.0

0.05

0.25 \& 0.02 \& 0.0 \& 0.0 \& 0.0 \& 1.0

0.18 \& 0.8 \& 0.0 \& 1.0 \& 0.0 \& 0.0

0.02\end{array}\right)\).
(b) S. cerevisiae PWM
$\overline{1}$
$\overline{2}$
$\overline{3}$
A
C
C
$C$$\left(\begin{array}{cccccc}\overline{4} & \overline{5} & \overline{6} & \overline{7} \\ 4 & 2 & 3 & 1 & 12 & 5 \\ 4 & 3 & 12 & 1 & 3 & 1 \\ 7 & 3 & 1 & 1 & 0 & 11 \\ 5 & 12 & 4 & 17 & 5 & 3 \\ 2\end{array}\right)$
(d) P. pastoris PWM

Figure 4.4: Comparison of S. cerevisiae and P. pastoris sequence Abf2 TFBS motifs (Generated by WebLogo [5]) and their PWMs (S. cerevisiae PWM was accessed from TransFac [6])

Table 4.3: TFBSs counts annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes in the Glycolysis Pathway

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Sip} 4(3), \\ \operatorname{Ert} 1(4), \operatorname{Mig} 1(2)^{\circ *} \end{gathered}$	$\begin{gathered} \operatorname{Adr} 1(3), \operatorname{Cat} 8(4), \\ \operatorname{Ert1} 1(1), \operatorname{Stb} 5(3), \\ \operatorname{Msn} 2(7), \operatorname{Msn} 4(2), \\ \operatorname{Mig} 1(2) \end{gathered}$	-
	$\begin{gathered} \operatorname{Sip} 4(1)^{\circ}, \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Stb5}(2)^{\circ}, \operatorname{Mig} 1(1), \\ \operatorname{Gcr} 1(2)^{\circ} * \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(2), \operatorname{Ert1}(2), \\ \operatorname{Stb5}(1), \operatorname{Msn} 2(3), \\ \operatorname{Msn} 4(2), \operatorname{Mig} 1(1) \end{gathered}$	-
	$\begin{aligned} & \operatorname{Cat} 8(1), \operatorname{Sip} 4(3), \\ & \operatorname{Ert} 1(1), \operatorname{Gcr} 1(2)^{\circ} \end{aligned}$	Ert1(4), Stb5(1), $\operatorname{Msn} 2(1), \operatorname{Mig} 1(1)$	-
	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Sip} 4(4), \\ \operatorname{Hap} 2 / 3 / 4 / 5(1), \operatorname{Ert1}(2), \\ \operatorname{Stb5(2)}, \operatorname{Msn} 2(2)^{\circ}, \\ \operatorname{Msn} 4(2)^{*}, \operatorname{Mig} 1(1), \\ \operatorname{Gcr1}(3)^{\circ} \end{gathered}$	$\begin{aligned} & \operatorname{Stb5}(1), \operatorname{Msn} 2(1), \\ & \operatorname{Msn} 4(1), \operatorname{Mig} 1(1) \end{aligned}$	Msn4(1)
Continued on next page			

Table 4.3 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Adr} 1(1)^{\circ} * \\ \operatorname{Sip} 4(2), \operatorname{Rds} 2(1), \\ \operatorname{Stb} 5(3), \operatorname{Gcr} 1(3)^{\circ} \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(2), \operatorname{Ert1}(2), \operatorname{Stb} 5(5), \\ \operatorname{Msn2(8)}, \operatorname{Msn} 4(6) \end{gathered}$	Adr 1(1)
	$\begin{gathered} \operatorname{Hap} 2 / 3 / 4 / 5(1), \operatorname{Rds} 2(1)^{\circ}, \\ \operatorname{Msn} 2(2)^{\circ} *, \operatorname{Msn} 4(2)^{*}, \\ \operatorname{Mig} 1(2), \operatorname{Gcr} 1(3)^{\circ} \end{gathered}$	Cat8(2), Hap2/3/4/5(1), Ert1(3), Msn2(3),	Hap2/3/4/5(1)
	$\begin{gathered} \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Msn} 2(3)^{*}, \operatorname{Msn} 4(3)^{*}, \\ \operatorname{Mig} 1(3)^{\circ}, \operatorname{Gcr} 1(2)^{*} \end{gathered}$	Msn4(2), $\operatorname{Mig} 1$ (4)	
	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Sip} 4(1), \\ \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Msn} 2(1)^{*}, \operatorname{Msn} 4(1), \\ \operatorname{Grr} 1(2)^{\circ *} \end{gathered}$	$\begin{aligned} & \operatorname{Adr} 1(1), \operatorname{Cat} 8(3), \\ & \operatorname{Stb5} 5), \operatorname{Msn} 2(7), \\ & \operatorname{Msn} 4(3), \operatorname{Mig} 1(3) \end{aligned}$	Cat8 (1)
	$\begin{gathered} \operatorname{Cat} 8(1)^{\circ}, \operatorname{Sip} 4(2), \\ \operatorname{Msn} 2(1)^{\circ}, \operatorname{Msn} 4(1)^{*}, \\ \operatorname{Gcr} 1(2)^{\circ} * \end{gathered}$	$\begin{aligned} & \operatorname{Adr1} 1(1), \operatorname{Cat} 8(2), \\ & \operatorname{Ert1} 1(4), \operatorname{Msn} 2(1) \end{aligned}$	-
Continued on next page			

Table 4.3 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)

${ }^{\circ}$ Expression evidence was found in literature.

* Binding evidence was found in literature.

CHAPTER 5

NOVEL STRATEGY DESIGNED WITH MACHINE LEARNING ALGORITHMIC MODELS FOR PREDICTING CIS-ACTING DNA SITES

5.1 Introduction

In this chapter, a Greedy Machine Learning Algorithm (Algorithm 8) is presented which aims to model affinities of S. cerevisiae TFs towards 8 -mers in the best possible way. Performances of the models, and their comparison with the literature are presented.

5.2 Methods

5.2.1 Machine Learning Method

5.2.1.1 Dataset

A database of 274 high-resolution PBM data for 150 for S. cerevisiae transcription factors was assembled [45, 48]. E-scores were extracted from PBM data and 8-mer DNA sequences that are recognized by the TFs were determined by setting a threshold value of 99% quantile is recognized, and the rest are discarded.

5.2.1.2 Embedding

8-mer DNA sequences were embedded into arrays by utilizing k-mer dinucleotide frequency, k-spaced nucleotide pair frequency, nucleotide chemical property, PseKNC,
and PseEIIP as feature representation methods, like Wang et al. [34]. Since different TFs may recognize different features, a pool of the best features for modelling were determined for all TFs. This was achieved by training the models first using an array that utilizes all the five features. Then, training procedure was repeated five more times, removing one feature each time. The feature that improved the results the greatest, if dropped (if there are any) is discarded. This procedure is repeated until either removing none of the remaining features improves the results, or there is only one feature left.

Each of the following feature representation methods generates a vector, which were then all concatenated to get the final vector.

1. \mathbf{k}-mer dinucleotide frequency

The k-mer dinucleotide frequency feature, representing the frequencies of all k length sequence combinations within a given sequence, was given by measuring the frequencies of all 1 to 4 length subsequences of a given 8 -mer. Measured frequencies were then converted into an array with dimensions $340\left(4^{1}+4^{2}+\right.$ $\left.4^{3}+4^{4}\right) * 1$.

2. k-spaced nucleotide pair frequency

k was changed from 0 to 4 , the frequencies of all possible nucleotide pairs that has a distance 0 to 4 were measured, resulting in an array of shape 80 $(4 * 4 * 5) * 1$.

3. Nucleotide chemical property

Feature representation of each nucleotide were added to the input array by transforming them all into 3×1 vectors. The vectors were concatenated into a $24(3 * 8) * 1$ array.

4. Pseudo nucleotide composition

Six physical, structural properties of the DNA (Twist, Tilt, Shift, Slide, Rise, and Roll) were computed by considering adjacent nucleotide pairs within a given sequence to represent the data, which in turn results in a $42(7 * 6) * 1$ array.

5. Electron-ion interaction pseudopotentials of trinucleotide

A $64\left(4^{3}\right) * 1$ array of zeros was prepared, that has a column for every possible 3-mer combination. All 3-mer subsequences within a given 8 -mer were considered. Their Electron-ion interaction pseudopotentials were calculated, which were then plugged into the input array.

Upon using all the five features, a data array with $(274 * 65536 * 551 * 1)$ was generated, where 274 is the TF count, 65536 is all possible 8 -mer combinations, 551 is width of the array and 1 is the depth of the array. The width of the array was then varied as feature(s) discarded (Section 3.2.5).

5.2.1.3 Model Training

While training the models, each TF was approached as a separate problem, and a greedy approach was used while modelling each individual TF to get the best overall performance.

First, a data array utilizing all the five features is generated. This array was then divided into three, such that $76.5,8.5$, and 15% of the data were used to train, validate, and test the models, respectively. The train dataset was then used to train models using three Machine Learning systems, which are Random Forest, XGBoost, and Neural Networks. Random Forests were implemented using Sci-Kit Learn library for Python, and default hyperparameters were used [126]. XGBoost was implemented using XGBoost Library for Python, and default parameters suggested was used [90]. Finally, Neural Networks were generated using TensorFlow library for Python [127]. For MLPs, for layer count, while it is theoretically possible to achieve any desired non-zero error with just one hidden layer, empirically increasing the number of hidden layers results in improved accuracy, provided that there are enough hidden units for the various tasks [12]. For this reason, one simple Neural Network with one hidden layer, and four MLPs, which range two to five in depth, were generated to find the most optimal depth. While training the Neural Networks, three different optimizers were tested, base SGD trainer, Adam, and Adamax. Also two different activation functions, ReLU and ELU, were checked. During the training of Neural Networks,

for All TFs do

Step 1: Obtain binding True/False classification training and testing data.
Step 2: Train MLPs, XGBoost, Random Forest models on training data.
Step 3: Validate the models on testing data.
Step 4: Pick the one that performs the best on testing data.
end
Step 5: Create a library of models using the best models picked.
Algorithm 8: Greedy Algorithm used to model TF interactions
maximum epoch counter was set to 500 , and an early stopping condition was installed, where if the loss does not decrease for 20 Epochs (50 for SGD) training procedure is stopped and the model is rolled back to the best iteration. A hardware with 200 GB SSD memory, 32 GB RAM and 6 core chip was used for training.

After training one set of models using all five features, five more models were trained using the four features, removing each feature once. If one (or more) of the 4 -feature models performed better than the 5 -features model, the best performing 4 -features were picked and four more models were trained, using three feature combinations, removing each feature once. This procedure is repeated until the best feature combination for each TF is achieved. In figure 5.1, a flowchart representation of the algorithm 8 , combined with the scanning procedure is given.

5.2.1.4 Statistical Analysis of Models

All the seven models were trained and tested with the same datasets, for all the TFs. Due to the biased nature of the problem, if a model answers 0 ("This TF does not bind to this sequence") to all 8-mers, it would achieve 99.0% accuracy. Due to this, to evaluate model performance, recall, precision, and Mathews' Correlation Coefficient (MCC) metrics were used instead of accuracy:

$$
\begin{equation*}
\text { Recall }=\frac{T P}{T P+F N} \tag{5.1}
\end{equation*}
$$

Figure 5.1: A Flowchart of Training and Scanning Algorithms

$$
\begin{equation*}
\text { Precision }=\frac{T P}{T P+F P} \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
M C C=\frac{(T P * T N)-(F P * F N)}{\sqrt{(T P+F P) *(T P+F N) *(T N+F P) *(T N+F N)}} \tag{5.3}
\end{equation*}
$$

MCC ranges from -1 , achieved when true positive and true negative is 0 which indicates a model that predicts all inputs wrongly, to 1 , achieved when false positive and false negative is 0 which indicates a model that predicts all inputs correctly. Thus, an increasing MCC indicate a better predicting performance for the models.

5.3 Results

5.3.1 Neural Network Optimization

The optimal hyperparameteres were determined by testing them on a randomly selected 28 TF PBM data from the dataset, which amounts to a subset that is 10% of the original dataset. The results were compared with respect to performance metrics, in addition to other factors such as amount of epochs required and training time.

5.3.1.1 Optimizer Selection

Three optimizers were tested on 28 TFs by training the five models of varying depths, observing the change of average of best MCC scores for each TF, and the average number of epochs required for the training. During the optimizer selection tests, ReLU activation function was used. The results showed that all optimizers achieved close to same MCCs, around 0.66 , with ADAMAX being slightly higher compared to the rest (Table 5.1). However, upon checking required epoch counts to converge, it can be clearly observed that SGD requires too many epochs to be feasible with large scale processes, and the optimizers with adaptive learning rates are more advantageous in this regard. While not as bad as SGD, ADAMAX's convergence rate is slower compared to ADAM's, which converges within 13 epochs on average, almost $1 / 3$ of the number of epochs required with ADAMAX. On the basis of these results, I conclude that, considering 1 epoch takes 1 second approximately on average, for

Table 5.1: Optimizer Performances upon training models for 28 TFs using ReLU activation Function

Optimizer	Avg. Best MCCs	Avg. \# of Epochs
SGD	0.662	424.86
ADAM	0.662	12.99
ADAMax	0.665	35.74

8220 models (30 for all 274 TFs), using ADAM can save up to 45 hours. Therefore, ADAM was selected as the main optimizer.

5.3.1.2 Activation Function Selection

For activation function selection, ADAM was used with the activation functions ReLU, ELU and Leaky ReLU. The test results (Table 5.2) shows clearly that ReLU is the inferior option, with being the slowest and most inaccurate. ReLUs performance can be due to the lack of negative values, unlike ELU and Leaky ReLU. The evidence indicates that, TFs binding affinity may be affected negatively from some certain features of the DNA sequence. These interactions are disregarded with ReLU, which may be the reasoning behind poor performances experimented using ReLU, compared to other activation functions. The superior activation functions are ELU and Leaky ReLU, and their performances are similar to each other with an 0.0028 average MCC difference between their best performing models. The convergence time difference between the two is 1.5 epochs, that corresponds to 3 hours in large scale. Therefore, I conclude that, 0.0028 MCC difference is not as significant as the time difference that would occur in larger scale tests; and consequently, ELU was selected as the main activation function.

5.3.2 Training Results

After determination of superior Deep Learning optimizer (ADAM) and the activation functions (ELU and Leaky ReLU), for each TF PBM data, five feedforward

Table 5.2: Activation Function Performances upon training models for 28 TFs using ReLU activation Function

Function	Avg. Best MCCs	Avg. \# of Epochs
ReLU	0.662	12.99
ELU	0.667	7.87
Leaky ReLU	0.670	9.36

Table 5.3: Performance Metrics achieved by three Machine Learning Methods over 274 TFs

Method	Precision	Recall	MCC
XGB	0.896	0.666	0.765
DL	0.626	0.770	0.682
RF	0.871	0.424	0.588
Greedy	0.884	0.679	0.766

neural networks (one single layer perceptron and four MLPs with depths varying between two to five) alongside one XGBoost model and one Random Forest model were trained. The results showcased a clear domination of XGBoost, which remarkably turned out to be the best model for over 254 TFs , averaging 0.765 MCC over all the TFs. Deep Learning is the superior model for only the 24 TFs , but is significantly behind XGBoost on average, achieving 0.682. Random Forest predictions were not satisfactory and could not outperform neither Deep Learning nor XGBoost for any of the TFs with low MCC scores of 0.588 . The detailed performance metrics of each Machine Learning method is given in Table 5.3 .

The results also showed that the tree-based Machine Learning system, XGBoost, successfully predicts with higher than 0.85 precision. Tree-based Machine Learning Algorithm XGBoost enable high MCC scores despite achieving less TPs compared to the Deep Learning method. The designed greedy approach for selecting the best performing model improves predictions slightly, with an average MCC score of 0.766 over all 274 TFs.

Figure 5.2: Dependency of the Model MCCs to Thresholds

Table 5.4: Performance Metrics of the three subgroups of TFs.

TF Group	Precision	Recall	MCC	\# of TFs
HSTF	0.869	0.427	0.599	47
MSTF	0.875	0.682	0.766	124
LSTF	0.903	0.791	0.842	103

High specificity TFs require more complex conditions to bind, which only a sparse group of 8-mers satisfies. Thus, they require more complex models to predict precisely, compared to lower specificty TFs. The phenomena is observed in the results, while good performing models showed a clear bias towards TFs with lower binding specificities (Figure 5.2).

Dividing PBM datasets to three arbitrary categories as high, medium and low specificity TFs (HSTF, MSTF, LSTF), by grouping TFs with thresholds 0.4 or higher as LSTFs, with thresholds 0.3 or lower as HSTFs, with thresholds in between them as MSTFs, performance drop of the models can be further illustrated as shown in Table 5.4

5.3.3 Feature Selection

In order to increase the prediction performance of the models, the significance and impact of the five features were investigated for each Algorithmic model with a systematic program by eliminating each feature: first i) single-handedly, ii) two features at a time, iii) three features at a time, and iv) four features at a time. If elimination of any one the remaining features did not improve on the results from the previous iteration, the iteration is stopped and, the results and the feature set from the previous iteration is recorded.

5.3.3.1 1st-Order Feature Elimination

After achieving an average 0.766 MCC score with the five features (as indicated with "Reference" line in Figure 5.4, feature elimination procedure was introduced by training five more models per TF, to observe the importance of the feature representation methods. In Table 5.5, change of performance metrics for each Machine Learning method with respect to each eliminated feature, which are coded as "", 0, 1, 2, 3, 4 for "None", "k-mer Dinucleotide Frequency", "k-spaced Nucleotide Pair Frequency", "Nucleotide Chemical Property", "PseKNC" and "PseEIIP", respectively. Consequently, best case models and best case feature combinations were selected greedily to observe how the changes affect the overall prediction performance.

Some of the models were performed better by elimination of some features. The TFs whose best model has experienced an improvement after a elimination of a specific feature is showcased in Figure 5.3, where a reference line is also provided for number of TFs whose best model did not experience improvements upon elimination of any of the features. A graphical comparison of average MCC scores of superior models with respect to eliminating some of feature(s) is also showcased, in Figure 5.4

XGBoost predicted with higher MCC scores when either of k-mer Dinucleotide Frequency or Nucleotide Chemical Property is omitted, while eliminating PseKNC significantly reduced the XGBoost performance. Deep Learning models were stable to changing feature dimensions except for eliminating PseKNC, which resulted in a significant loss of performance. In contrast to XGBoost and Deep Learning, Random

Table 5.5: Change of Performance Metrics with respect to removed features

Method	Removed Ft.	Precision	Recall	MCC
XGB	-	0.896	0.666	0.765
	0	0.914	0.676	0.779
	1	0.889	0.650	0.752
	2	0.900	0.674	0.771
	3	0.777	0.594	0.671
	4	0.896	0.666	0.765
DL	-	0.626	0.770	0.682
	0	0.627	0.764	0.682
	1	0.613	0.757	0.666
	2	0.626	0.771	0.682
	3	0.593	0.762	0.657
	4	0.631	0.767	0.683
RF	-	0.871	0.424	0.588
	0	0.905	0.385	0.570
	1	0.873	0.389	0.561
	2	0.865	0.424	0.587
	3	0.842	0.465	0.608
	4	0.878	0.411	0.581
GREEDY	-	0.884	0.679	0.766
	0	0.904	0.688	0.781
	1	0.878	0.666	0.755
	2	0.892	0.684	0.773
	3	0.735	0.667	0.683
	4	0.890	0.674	0.766
GREEDY	GREEDY	0.910	0.707	0.795

Forests experienced the loss of performance by eliminating any of the features except for PseKNC, which improved Random Forest predictions significantly.

For finite sized datasets, Hughes Phenomenon [128] and Curse of Dimensionality
[129] dictate that increasing the number of dimensions after a certain point decline or stabilize the training performances of Machine Learning Algorithms. This phenomenon can be used to explain the behaviour of XGBoost and Deep Learning models when removing k-mer Dinucleotide Frequency, Nucleotide Chemical Property, both of which improved XGBoost prediction performance upon elimination. Consequently, I conclude that these features do not provide enough information on the dataset, that would justify the training performance decline caused by increasing dimension size. k-spaced Nucleotide Pair Frequency improved some of the models performances upon elimination, however, it was rarely the best option, and for most models of XGBoost and Deep Learning, resulted in a decline. PseKNC did improve almost no models, and instead was devastating for performance metrics. One can conclude from these results that PseKNC and k-spaced Nucleotide Pair Frequency features are much more important compared to others, especially PseKNC, which feeds information about the DNAs shape for the 8-mers.

Selecting the best 4-feature set combination improved the prediction performances for HSTFs drastically, reducing the models dependency on high threshold values, as showcased in Figure 5.5 and Table 5.6.

Figure 5.3: Number of Best Models Benefited from Features elimination

Figure 5.4: Impact of Eliminating Features on Superior Models

Table 5.6: Performance Metrics of the three subgroups of TFs when Feature Pool size is reduced to four

TF Group	Precision	Recall	MCC	\# of TFs
HSTF	0.912	0.482	0.654	47
MSTF	0.900	0.704	0.791	124
LSTF	0.921	0.813	0.863	103

Overall, the best performing models for 103 LSTFs performed with a remarkable MCC score of 0.863 , while 124 MSTFs performed with an MCC score of 0.791 . HSTFs were modeled with an MCC score of 0.654 .

5.3.3.2 N th-Order Feature Elimination

After eliminating features once from all the TFs, for 230 TFs , prediction performances for the superior models improved, while for 44 TFs did not experienced an improvement in performance. TFs that did not achive improved results were retired, and the remaining 230 TFs were trained four more times, with 3-feature combina-

Figure 5.5: Dependency of the Model MCCs to Thresholds when Feature Pool size is reduced to four

Figure 5.6: Number of superior models for specific TFs with respect to Feature set size
tions. This procedure was repeated until either there are no models that improve the current best model, or feature set size was reduced to 1 . A graphical comparison of TFs that were retired in each iteration is given in Figure 5.6

The performance of HSTFs especially increased as number of features decreased,

Figure 5.7: Dependency of the Model MCCs to Thresholds when Feature Pool is varied to include best performing features

Table 5.7: Performance Metrics of the three subgroups of TFs when Feature Pool is varied to include best performing features

TF Group	Precision	Recall	MCC	\# of TFs
HSTF	0.959	0.782	0.858	47
MSTF	0.933	0.794	0.861	124
LSTF	0.943	0.854	0.896	103

reaching a final average MCC Score of 0.861 . Average MCC Score for LSTFs rose to 0.896 , and overall average rose to 0.873 . The thresholds effect on MCC with best feature sets selected for all TFs also diminished, with slope of Affinity Threshold versus MCC trendline reducing to 0.31 , as shown in 5.7. In Appendix D, the effect of eliminating features on the model performances were given in detail for each TF.

The results of this MSc Thesis demonstrated that it is possible to classify high-affinity 8-mers for each TF as an individual problem and the greedily selecting feature pools and modelling tools allows MCC scores of 0.896 for LSTFs, while achieving MCC scores of 0.873 on average, without requiring to filter out the low-affinity binding sites. In the literature, for yeast transcription factor binding site prediction, Wang et al. [34] showed that using XGBoost as a feature selection tool and a classifier
algorithm, manually classified the selected high affinity 8-mers to TF families, using the same five features.

5.3.3.3 Model Stability

The stability of the models was tested by taking training models on randomly selected 28 TFs 10 times each under exactly same conditions. XGBoost and Random Forest were the stable models, returning same results after every iteration. While not as stable, Deep Learning models returns the results with an MCC error margin within ± 1.5, which was considered acceptable.

5.3.4 Word2Vec Supported Models

To develop a single model that can predict any TF-TFBS relation based on protein sequences and the 8 -mer inputs, amino acid sequences of all proteins of S. cerevisiae were also extracted from UniProt [51]. The protein sequences were then divided into 4-mer amino acid sequences, which were then embedded into vectors with using Word2Vec Algorithm [35], using the TensorFlow library. Visualization of resulting 153623 unique 4-mer vectors is presented in Figure 5.8.

Each 4-mer vector has 128-dimensions, and the ones closest to 4-mers that they have commonly appear right next to in S. cerevisiae proteins (e.g. QYWQ's closes neighbour is QYWW). After determining 4-mer vectors, protein vectors were determined

Figure 5.8: PCA Projection of 4-mer aminoacid vectors plotted with TensorFlow Projector tool

Figure 5.9: PCA Projection of protein vectors plotted with TensorFlow Projector tool

Table 5.8: MCC Scores of Word2Vec included models with changing training hyperparameters

	Model Depth				
Act. Func.	1	2	3	4	5
ReLU	0.491	0.612	0.558	0.563	0.460
ELU	0.615	0.638	0.678	0.671	0.658

by summing the vectors of all 4-mers that they contain, which were then normalized. The resulting all of S. cerevisiae 6062 proteins vectors is shown in Figure 5.9.

In protein vectors, proteins that share large quantities of closely related amino acid sequences appear closer. Since the protein vectors are the sum of 4-mer vectors, they also have 128-dimensions each.

After developing protein vectors, the resulting vectors were combined into 551 dimension TFBS vectors, which resulted in 679-dimension TF-TFBS interaction vectors. Since TF-TFBS interaction vectors no longer require individual models, all PBM datasets available for 150 unique TFs were merged into a single set with 9830400 data points.

10 Deep Learning models were trained with Adam optimizers for small-scale 110 TFs to determine the optimal depth (1 to 5) and activation function (ReLU or ELU). Results showed that ELU with 3-depth is superior to other models (Table 5.8). Thus, was 3 -depth was selected to be used in large scale models.

The 3-depth ELU model was then scaled up to larger scale, with 150 TFs. The model

Precision	Recall	MCC
0.727	0.602	0.659

Table 5.9: ELU 3-depth Deep Learning Models performance metrics on 150 TFs
was trained such that the stopping condition was either not achieving any decrease in validation loss for 100 epochs, or reaching the achieving maximum number of epochs, which was set to be 1000. Change of the loss function over epochs is given in Figure 5.10, while achieved models performance metrics is given in Table 5.9 .

Word2Vec integrated models performed close to (but slightly worse than) regular Deep Learing models with no feature elimination, which is to be expected, as the model not only tries to predict whether a TF has high affinity to a 8-mer or not, but also tries to predict the TF. While the disadvantage is slightly lower accuracy, the advantage of this approach is the use of one model instead of many, which results in significantly higher disk usage efficiency, reducing the 1.5 GBs occupied of 250 models to just 5 MB . Yet, further improvements are necessary, such as trial of Machine Learning systems other than Deep Learning, to approach the best performances achieved, which is near 0.85 MCC .

Figure 5.10: Change of Validation Loss during training 3-depth ELU model over 1000 Epochs

CHAPTER 6

CONCLUSIONS

In this thesis, the aim was to develop methodologies for predicting transcription factor binding sites in yeast cells with high accuracy. To this end, two methods were developed. The first, based on the traditional phylogenetic footprinting approach; and, the second is the novel strategy designed with machine learning algorithmic models.

First, the phylogenetic footprinting algorithm was developed and tested, which aims to transform experimentally determined S. cerevisiae PWM motifs to predict PWM motifs for P. pastoris. This was done by annotating TFBSs on S. cerevisiae promoter sequences, and then using pairwise alignment algorithm to observe conserved motifs. Conserved motifs were then recorded, to form new PWMs. Using this methodology, given 58 S. cerevisiae and 52 . pastoris promoters, in addition to a database of S. cerevisiae TFs that has 182 TFs as inputs, 116 TFs were annotated on P. pastoris promoters, PWMs of which were reported.

Next, 5 Neural Networks, 1 XGBoost, and 1 Random Forest model were trained, aiming to predict the high-affinity 8 -mers of S. cerevisiae TFs. All possible 8 character long DNA sequences were embedded into a 550x1 numerical array, using 5 feature representation methods. After training the models, best training method for each case was selected greedily, as all TFs prioritize different features, and hence, best model might be subject to change depending on the TFs. The results conclusively demonstrated that XGBoost is the superior algorithmic model with MCC scores of 0.765 , while with the designed Greedy method the MCC score was 0.766 . The results also showed that models predict LSTFs with significantly higher accuracy, compared to HSTFs, where 103 LSTFs were predicted with a MCC scores of 0.842 , while 47 HSTFs were predicted with just a MCC scores of 0.599 . To observe the importance
of each feature, a second training session was run by omitting removing each feature once. Removal of either k-mer Dinucleotide Frequency or Nucleotide Chemical Property features boosted the model performances significantly, especially for XGBoost models. Upon greedy selection of best features for each TF, overall performance was increased to 0.873 , while performance for HSTFs was increased to 0.861 . Final models were able to predict LSTFs with 0.896 MCC.

Finally, a single Word2Vec-integrated model that tries to predict any TF-TFBS interaction was also proposed, as exploration of such methodology would allow for significanty reduced disk-space usage, improving the efficiency of the program.

REFERENCES

[1] A. T. M. G. Bari, M. R. Reaz, H.-J. Choi, and B.-S. Jeong, "DNA Encoding for Splice Site Prediction in Large DNA Sequence," in Database Systems for Advanced Applications (B. Hong, X. Meng, L. Chen, W. Winiwarter, and W. Song, eds.), (Berlin, Heidelberg), pp. 46-58, Springer Berlin Heidelberg, 2013.
[2] J. R. Goñi, A. Pérez, D. Torrents, and M. Orozco, "Determining promoter location based on DNA structure first-principles calculations," Genome Biology, vol. 8, pp. 1-10, dec 2007.
[3] A. S. Nair and S. P. Sreenadhan, "A coding measure scheme employing electron-ion interaction pseudopotential (EIIP)," Bioinformation, vol. 1, p. 197, oct 2006.
[4] D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, "Genome-wide mapping of in vivo protein-DNA interactions," Science, vol. 316, pp. 1497-1502, jun 2007.
[5] G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner, "WebLogo: a sequence logo generator.," Genome research, vol. 14, pp. 1188-1190, jun 2004.
[6] E. Wingender, X. Chen, E. Fricke, R. Geffers, R. Hehl, I. Liebich, M. Krull, V. Matys, H. Michael, R. Ohnhäuser, M. Prüß, F. Schacherer, S. Thiele, and S. Urbach, "The TRANSFAC system on gene expression regulation," Nucleic Acids Research, vol. 29, pp. 281-283, jan 2001.
[7] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J.-B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young, "Transcriptional Regulatory Networks in Saccharomyces cerevisiae," Science, vol. 298, pp. 799-804, oct 2002.
[8] P. Jouhten, E. Vartiainen, A. Huuskonen, A. Tamminen, M. Toivari, M. Wiebe, L. Ruohonen, M. Penttilä, and H. Maaheimo, "Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A," BMC systems biology, vol. 2, p. 60, aug 2008.
[9] O. Fornes, J. A. Castro-Mondragon, A. Khan, R. Van Der Lee, X. Zhang, P. A. Richmond, B. P. Modi, S. Correard, M. Gheorghe, D. Baranašić, W. SantanaGarcia, G. Tan, J. Chèneby, B. Ballester, F. Parcy, A. Sandelin, B. Lenhard, W. W. Wasserman, and A. Mathelier, "JASPAR 2020: Update of the openAccess database of transcription factor binding profiles," Nucleic Acids Research, vol. 48, no. D1, pp. D87-D92, 2020.
[10] S. B. Needleman and C. D. Wunsch, "A general method applicable to the search for similarities in the amino acid sequence of two proteins," Journal of Molecular Biology, vol. 48, pp. 443-453, mar 1970.
[11] L. A. Cauchy, "Methode generale pour la resolution des systemes d'equations simultanees," C.R. Acad. Sci. Paris, vol. 25, pp. 536-538, 1847.
[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[13] D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimization," 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, dec 2014.
[14] W. H. Brondyk, "Chapter 11 Selecting an Appropriate Method for Expressing a Recombinant Protein," in Methods in Enzymology, vol. 463, pp. 131-147, Academic Press Inc., jan 2009.
[15] E. Çelik and P. Çalık, "Production of recombinant proteins by yeast cells," Biotechnology Advances, vol. 30, pp. 1108-1118, sep 2012.
[16] R. L. Strausberg and S. L. Strausberg, "Overview of Protein Expression in Saccharomyces cerevisiae," Current Protocols in Protein Science, vol. 2, pp. 5.6.1-5.6.7, may 1995.
[17] J. M. Cregg, I. Tolstorukov, A. Kusari, J. Sunga, K. Madden, and T. Chappell, "Chapter 13 Expression in the Yeast Pichia pastoris," in Methods in Enzymology, vol. 463, pp. 169-189, Academic Press Inc., jan 2009.
[18] P. Çalık, Ö. Ata, H. Güneş, A. Massahi, E. Boy, A. Keskin, S. Öztürk, G. H. Zerze, and T. H. Özdamar, "Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters," Biochemical Engineering Journal, vol. 95, pp. 20-36, 2015.
[19] U. Alon, An introduction to systems biology: Design principles of biological circuits. 2006.
[20] Ö. Kalender and P. Çalık, "Transcriptional regulatory proteins in central carbon metabolism of Pichia pastoris and Saccharomyces cerevisiae," Applied Microbiology and Biotechnology, vol. 104, pp. 7273-7311, sep 2020.
[21] J. W. Lee, M. S. Han, S. Choi, J. Yi, T. W. Lee, and S. Y. Lee, "Organic Acids: Succinic and Malic Acids," in Comprehensive Biotechnology, Second Edition, vol. 3, pp. 149-161, Elsevier Inc., sep 2011.
[22] I. Otero-Muras, A. A. Mannan, J. R. Banga, and D. A. Oyarzún, "Multiobjective optimization of gene circuits for metabolic engineering," in IFACPapersOnLine, vol. 52, pp. 13-16, Elsevier B.V., jan 2019.
[23] Y. Zeng, M. Gong, M. Lin, D. Gao, and Y. Zhang, "A Review about Transcription Factor Binding Sites Prediction Based on Deep Learning," IEEE Access, 2020.
[24] B. G. Ergün, B. Gasser, D. Mattanovich, and P. Çalık, "Engineering of alcohol dehydrogenase 2 hybrid-promoter architectures in Pichia pastoris to enhance recombinant protein expression on ethanol," Biotechnology and Bioengineering, vol. 116, pp. 2674-2686, oct 2019.
[25] B. G. Ergün, Demir, T. H. Özdamar, B. Gasser, D. Mattanovich, and P. Çalık, "Engineered Deregulation of Expression in Yeast with Designed HybridPromoter Architectures in Coordination with Discovered Master Regulator Transcription Factor," Advanced Biosystems, vol. 4, p. 1900172, apr 2020.
[26] B. G. Ergün and P. Çalık, "Hybrid-architectured promoter design to deregulate expression in yeast.," Methods in enzymology, vol. 660, pp. 105-125, 2021.
[27] B. G. Ergün and P. Çalık, "Chapter Four - Hybrid-architectured promoter design to engineer expression in yeast," in Recombinant Protein Expression: Eukaryotic Hosts (W. B. O'Dell and Z. Kelman, eds.), vol. 660 of Methods in Enzymology, pp. 81-104, Academic Press, 2021.
[28] A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S. G. Oliver, "Life with 6000 genes.," Science (New York, N.Y.), vol. 274, pp. 546,563-567, oct 1996.
[29] S. G. Oliver, A. Lock, M. A. Harris, P. Nurse, and V. Wood, "Model organism databases: essential resources that need the support of both funders and users," BMC Biology, vol. 14, no. 1, p. 49, 2016.
[30] D. A. Peña, B. Gasser, J. Zanghellini, M. G. Steiger, and D. Mattanovich, "Metabolic engineering of Pichia pastoris," nov 2018.
[31] Z. Yang and Z. Zhang, "Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review.," Biotechnology advances, vol. 36, no. 1, pp. 182-195, 2018.
[32] M. A. Nieto-Taype, X. Garcia-Ortega, J. Albiol, J. L. Montesinos-Seguí, and F. Valero, "Continuous Cultivation as a Tool Toward the Rational Bioprocess Development With Pichia Pastoris Cell Factory.," Frontiers in bioengineering and biotechnology, vol. 8, p. 632, 2020.
[33] D. Dikicioglu, V. Wood, K. M. Rutherford, M. D. McDowall, and S. G. Oliver, "Improving functional annotation for industrial microbes: a case study with Pichia pastoris," Trends in Biotechnology, vol. 32, no. 8, pp. 396-399, 2014.
[34] Z. Wang, W. He, J. Tang, and F. Guo, "Identification of Highest-Affinity Binding Sites of Yeast Transcription Factor Families," Journal of Chemical Information and Modeling, vol. 60, pp. 1876-1883, mar 2020.
[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient Estimation of Word Representations in Vector Space," 2013.
[36] D. S. Latchman, "Transcription factors: An overview," The International Journal of Biochemistry \& Cell Biology, vol. 29, no. 12, pp. 1305-1312, 1997.
[37] D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry 5th Ed. New York: W. H. Freeman and Company, 5 ed., 2008.
[38] M. J. Solomon, P. L. Larsen, and A. Varshavsky, "Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H 4 is retained on a highly transcribed gene.," Cell, vol. 53, pp. 937-947, jun 1988.
[39] E. R. Mardis, "ChIP-seq: welcome to the new frontier," Nature Methods, vol. 4, no. 8, pp. 613-614, 2007.
[40] B. Ren, F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, I. Simon, J. Zeitlinger, J. Schreiber, N. Hannett, E. Kanin, T. L. Volkert, C. J. Wilson, S. P. Bell, and R. A. Young, "Genome-wide location and function of DNA binding proteins.," Science (New York, N.Y.), vol. 290, pp. 2306-2309, dec 2000.
[41] D. R. Bentley, "Whole-genome re-sequencing," Current Opinion in Genetics \& Development, vol. 16, no. 6, pp. 545-552, 2006.
[42] G. Robertson, M. Hirst, M. Bainbridge, M. Bilenky, Y. Zhao, T. Zeng, G. Euskirchen, B. Bernier, R. Varhol, A. Delaney, N. Thiessen, O. L. Griffith, A. He, M. Marra, M. Snyder, and S. Jones, "Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing," Nature Methods, vol. 4, no. 8, pp. 651-657, 2007.
[43] M. F. Berger and M. L. Bulyk, "Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors," Nature Protocols, vol. 4, no. 3, pp. 393-411, 2009.
[44] P. T. Monteiro, J. Oliveira, P. Pais, M. Antunes, M. Palma, M. Cavalheiro, M. Galocha, C. P. Godinho, L. C. Martins, N. Bourbon, M. N. Mota, R. A. Ribeiro, R. Viana, I. Sá-Correia, and M. C. Teixeira, "YEASTRACT+: A portal for cross-species comparative genomics of transcription regulation in yeasts," Nucleic Acids Research, vol. 48, no. D1, pp. D642-D649, 2020.
[45] M. A. Hume, L. A. Barrera, S. S. Gisselbrecht, and M. L. Bulyk, "UniPROBE, update 2015: new tools and content for the online database of protein-
binding microarray data on protein-DNA interactions," Nucleic Acids Research, vol. 43, pp. D117-D122, jan 2015.
[46] B. Dujon, "The yeast genome project: what did we learn?," Trends in Genetics, vol. 12, no. 7, pp. 263-270, 1996.
[47] T. Pfeiffer and A. Morley, "An evolutionary perspective on the Crabtree effect.," Frontiers in molecular biosciences, vol. 1, p. 17, 2014.
[48] C. Zhu, K. J. Byers, R. P. McCord, Z. Shi, M. F. Berger, D. E. Newburger, K. Saulrieta, Z. Smith, M. V. Shah, M. Radhakrishnan, A. A. Philippakis, Y. Hu, F. De Masi, M. Pacek, A. Rolfs, T. Murthy, J. Labaer, and M. L. Bulyk, "High-resolution DNA-binding specificity analysis of yeast transcription factors," Genome research, vol. 19, pp. 556-566, apr 2009.
[49] K. D. MacIsaac, T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo, and E. Fraenkel, "An improved map of conserved regulatory sites for Saccharomyces cerevisiae," BMC Bioinformatics, vol. 7, pp. 1-14, mar 2006.
[50] J. Heringa, Post-genome Informatics. Oxford University Press, jul 2000.
[51] A. Bateman, M. J. Martin, S. Orchard, M. Magrane, R. Agivetova, S. Ahmad, E. Alpi, E. H. Bowler-Barnett, R. Britto, B. Bursteinas, H. Bye-A-Jee, R. Coetzee, A. Cukura, A. D. Silva, P. Denny, T. Dogan, T. G. Ebenezer, J. Fan, L. G. Castro, P. Garmiri, G. Georghiou, L. Gonzales, E. Hatton-Ellis, A. Hussein, A. Ignatchenko, G. Insana, R. Ishtiaq, P. Jokinen, V. Joshi, D. Jyothi, A. Lock, R. Lopez, A. Luciani, J. Luo, Y. Lussi, A. MacDougall, F. Madeira, M. Mahmoudy, M. Menchi, A. Mishra, K. Moulang, A. Nightingale, C. S. Oliveira, S. Pundir, G. Qi, S. Raj, D. Rice, M. R. Lopez, R. Saidi, J. Sampson, T. Sawford, E. Speretta, E. Turner, N. Tyagi, P. Vasudev, V. Volynkin, K. Warner, X. Watkins, R. Zaru, H. Zellner, A. Bridge, S. Poux, N. Redaschi, L. Aimo, G. Argoud-Puy, A. Auchincloss, K. Axelsen, P. Bansal, D. Baratin, M. C. Blatter, J. Bolleman, E. Boutet, L. Breuza, C. Casals-Casas, E. de Castro, K. C. Echioukh, E. Coudert, B. Cuche, M. Doche, D. Dornevil, A. Estreicher, M. L. Famiglietti, M. Feuermann, E. Gasteiger, S. Gehant, V. Gerritsen, A. Gos, N. Gruaz-Gumowski, U. Hinz, C. Hulo, N. Hyka-Nouspikel, F. Jungo,
G. Keller, A. Kerhornou, V. Lara, P. Le Mercier, D. Lieberherr, T. Lombardot, X. Martin, P. Masson, A. Morgat, T. B. Neto, S. Paesano, I. Pedruzzi, S. Pilbout, L. Pourcel, M. Pozzato, M. Pruess, C. Rivoire, C. Sigrist, K. Sonesson, A. Stutz, S. Sundaram, M. Tognolli, L. Verbregue, C. H. Wu, C. N. Arighi, L. Arminski, C. Chen, Y. Chen, J. S. Garavelli, H. Huang, K. Laiho, P. McGarvey, D. A. Natale, K. Ross, C. R. Vinayaka, Q. Wang, Y. Wang, L. S. Yeh, and J. Zhang, "UniProt: the universal protein knowledgebase in 2021," Nucleic Acids Research, vol. 49, pp. D480-D489, jan 2021.
[52] E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R. Connor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lathrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenko, T. Tse, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt, and S. T. Sherry, "Database resources of the national center for biotechnology information.," Nucleic acids research, vol. 50, pp. D20-D26, jan 2022.
[53] G. P. Cereghino, J. L. Cereghino, C. Ilgen, and J. M. Cregg, "Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris," Current Opinion in Biotechnology, vol. 13, no. 4, pp. 329-332, 2002.
[54] D. Mattanovich, A. Graf, J. Stadlmann, M. Dragosits, A. Redl, M. Maurer, M. Kleinheinz, M. Sauer, F. Altmann, and B. Gasser, "Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris.," Microbial cell factories, vol. 8, p. 29, jun 2009.
[55] P. Katara, A. Grover, and V. Sharma, "Phylogenetic footprinting: a boost for microbial regulatory genomics," Protoplasma, vol. 249, no. 4, pp. 901-907, 2012.
[56] G. D. Stormo, "DNA binding sites: representation and discovery," Bioinformatics, vol. 16, pp. 16-23, jan 2000.
[57] W. W. Wasserman and A. Sandelin, "Applied bioinformatics for the identification of regulatory elements," Nature Reviews Genetics, vol. 5, no. 4, pp. 276287, 2004.
[58] J. M. Heumann, A. S. Lapedes, and G. D. Stormo, "Neural networks for determining protein specificity and multiple alignment of binding sites," in Intelligent Systems for Molecular Biology, pp. 188-194, 1994.
[59] T. D. Schneider and R. M. Stephens, "Sequence logos: A new way to display consensus sequences," Nucleic Acids Research, vol. 18, pp. 6097-6100, oct 1990.
[60] T. D. Schneider, G. D. Stormo, L. Gold, and A. Ehrenfeucht, "Information content of binding sites on nucleotide sequences," Journal of Molecular Biology, vol. 188, pp. 415-431, apr 1986.
[61] L. Pickert, I. Reuter, F. Klawonn, and E. Wingender, "Transcription regulatory region analysis using signal detection and fuzzy clustering.," Bioinformatics, vol. 14, pp. 244-251, jan 1998.
[62] K. Cartharius, K. Frech, K. Grote, B. Klocke, M. Haltmeier, A. Klingenhoff, M. Frisch, M. Bayerlein, and T. Werner, "MatInspector and beyond: promoter analysis based on transcription factor binding sites," Bioinformatics, vol. 21, pp. 2933-2942, jul 2005.
[63] E. Berezikov, V. Guryev, R. H. Plasterk, and E. Cuppen, "CONREAL: Conserved Regulatory Elements Anchored Alignment Algorithm for Identification of Transcription Factor Binding Sites by Phylogenetic Footprinting," Genome Research, vol. 14, p. 170, jan 2004.
[64] D. A. Tagle, B. F. Koop, M. Goodman, J. L. Slightom, D. L. Hess, and R. T. Jones, "Embryonic ϵ and γ globin genes of a prosimian primate (Galago crassicaudatus): Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints," Journal of Molecular Biology, vol. 203, pp. 439455, sep 1988.
[65] M. Blanchette and M. Tompa, "Discovery of Regulatory Elements by a Computational Method for Phylogenetic Footprinting," Genome Research, vol. 12, no. 5, p. 739, 2002.
[66] S. Neph and M. Tompa, "MicroFootPrinter: a tool for phylogenetic footprint-
ing in prokaryotic genomes," Nucleic Acids Research, vol. 34, pp. W366W368, jul 2006.
[67] L. Duret and P. Bucher, "Searching for regulatory elements in human noncoding sequences," Current Opinion in Structural Biology, vol. 7, pp. 399-406, jun 1997.
[68] L. Bernauer, A. Radkohl, L. G. K. Lehmayer, and A. Emmerstorfer-Augustin, "Komagataella phaffii as Emerging Model Organism in Fundamental Research," Frontiers in Microbiology, vol. 11, p. 3462, jan 2021.
[69] M. Blanchette, B. Schwikowski, and M. Tompa, "Algorithms for phylogenetic footprinting," Journal of computational biology : a journal of computational molecular cell biology, vol. 9, no. 2, pp. 211-223, 2002.
[70] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," Journal of Molecular Biology, vol. 215, pp. 403-410, oct 1990.
[71] W. R. Pearson, "Empirical statistical estimates for sequence similarity searches," Journal of Molecular Biology, vol. 276, pp. 71-84, feb 1998.
[72] M. Tuğrul, T. Paixão, N. H. Barton, and G. Tkačik, "Dynamics of Transcription Factor Binding Site Evolution," PLOS Genetics, vol. 11, p. e1005639, nov 2015.
[73] T. K. Man and G. D. Stormo, "Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay," Nucleic Acids Research, vol. 29, pp. 2471-2478, jun 2001.
[74] M. L. Bulyk, P. L. Johnson, and G. M. Church, "Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors," Nucleic acids research, vol. 30, pp. 1255-1261, mar 2002.
[75] S. J. Maerkl and S. R. Quake, "A systems approach to measuring the binding energy landscapes of transcription factors," Science, vol. 315, pp. 233-237, jan 2007.
[76] R. Siddharthan, "Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing the Position Weight Matrix," PLOS ONE, vol. 5, no. 3, p. e9722, 2010.
[77] A. Mathelier and W. W. Wasserman, "The Next Generation of Transcription Factor Binding Site Prediction," PLOS Computational Biology, vol. 9, p. e1003214, sep 2013.
[78] M. Santolini, T. Mora, and V. Hakim, "A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites," PLOS ONE, vol. 9, p. e99015, jun 2014.
[79] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall, 3 ed., 2010.
[80] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
[81] L. Breiman, "Random Forests," Machine Learning 2001 45:1, vol. 45, pp. 532 , oct 2001.
[82] O. C. Ibe, "Functions of Random Variables," in Fundamentals of Applied Probability and Random Processes, pp. 185-223, Academic Press, jan 2014.
[83] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning, vol. 60. MITPress, 2 ed., 2018.
[84] S. Nembrini, I. R. König, and M. N. Wright, "The revival of the Gini importance?," Bioinformatics, vol. 34, p. 3711, nov 2018.
[85] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees. New York: Chapman \& Hall, jan 1984.
[86] H. Ishwaran, "The effect of splitting on random forests," Machine Learning, vol. 99, pp. 75-118, apr 2015.
[87] B. Hooghe, S. Broos, F. Van Roy, and P. De Bleser, "A flexible integrative approach based on random forest improves prediction of transcription factor binding sites," Nucleic acids research, vol. 40, aug 2012.
[88] C. S. Smitha and R. Saritha, "Computational transcription factor binding prediction using random forests," 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies, ICCICCT 2014, pp. 577-583, dec 2014.
[89] A. A. Antikainen, M. Heinonen, and H. Lähdesmäki, "Modeling binding specificities of transcription factor pairs with random forests," BMC Bioinformatics 2022 23:1, vol. 23, pp. 1-17, jun 2022.
[90] T. Chen and C. Guestrin, "XGBoost: A scalable tree boosting system," Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 13-17-Augu, pp. 785-794, 2016.
[91] J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)," The Annals of Statistics, vol. 28, no. 2, pp. 337-407, 2000.
[92] J. H. Friedman, "Stochastic gradient boosting," Computational Statistics \& Data Analysis, vol. 38, pp. 367-378, feb 2002.
[93] J. H. Friedman, "Greedy function approximation: A gradient boosting machine.," The Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.
[94] P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974.
[95] S. Linnainmaa, "Taylor expansion of the accumulated rounding error," BIT Numerical Mathematics 1976 16:2, vol. 16, no. 2, pp. 146-160, 1976.
[96] Y. Lecun, "Une procedure d'apprentissage pour reseau a seuil asymmetrique (A learning scheme for asymmetric threshold networks)," in Proceedings of Cognitiva 85, Paris, France, pp. 599-604, 1985.
[97] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Internal Representations by Error Propagation," in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, \{V\}olume 1: \{F\}oundations (D. E. Rumelhart and J. L. Mcclelland, eds.), pp. 318-362, Cambridge, MA: MIT Press, 1986.
[98] G. E. Hinton, "What Kind of a Graphical Model is the Brain?," in Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI'05, (San Francisco, CA, USA), pp. 1765-1775, Morgan Kaufmann Publishers Inc., 2005.
[99] G. E. Hinton and R. R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, vol. 313, pp. 504-507, jul 2006.
[100] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets.," Neural computation, vol. 18, pp. 1527-1554, jul 2006.
[101] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy Layer-Wise Training of Deep Networks," in Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS'06, (Cambridge, MA, USA), pp. 153-160, MIT Press, 2006.
[102] B. Schölkopf, J. Platt, and T. Hofmann, Efficient Learning of Sparse Representations with an Energy-Based Model, pp. 1137-1144. 2007.
[103] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun, "Pedestrian Detection with Unsupervised Multi-Stage Feature Learning," CoRR, vol. abs/1212.0, 2012.
[104] Y. Lecun, Generalization and network design strategies. Elsevier, 1989.
[105] B. T. Polyak, "Some methods of speeding up the convergence of iteration methods," USSR Computational Mathematics and Mathematical Physics, vol. 4, pp. 1-17, jan 1964.
[106] R. Zaheer and H. Shaziya, "A Study of the Optimization Algorithms in Deep Learning," in 2019 Third International Conference on Inventive Systems and Control (ICISC), pp. 536-539, 2019.
[107] J. Brownlee, Probability for Machine Learning: Discover How To Harness Uncertainty With Python. Machine Learning Mastery, 2019.
[108] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, "What is the best multi-stage architecture for object recognition?," in 2009 IEEE 12th International Conference on Computer Vision, pp. 2146-2153, 2009.
[109] V. Nair and G. E. Hinton, "Rectified Linear Units Improve Restricted Boltzmann Machines," in Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML' 10, (Madison, WI, USA), pp. 807-814, Omnipress, 2010.
[110] X. Glorot, A. Bordes, and Y. Bengio, "Deep Sparse Rectifier Neural Networks," in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (G. Gordon, D. Dunson, and M. Dudík, eds.), vol. 15 of Proceedings of Machine Learning Research, (Fort Lauderdale, FL, USA), pp. 315-323, PMLR, 2011.
[111] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural network acoustic models," in ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.
[112] D. A. Clevert, T. Unterthiner, and S. Hochreiter, "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)," in 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, International Conference on Learning Representations, ICLR, nov 2015.
[113] F. Mordelet, J. Horton, A. J. Hartemink, B. E. Engelhardt, and R. Gordâ, "Stability selection for regression-based models of transcription factor-DNA binding specificity," Bioinformatics, vol. 29, pp. 117-125, 2013.
[114] Y. Z. Chen, Y. R. Tang, Z. Y. Sheng, and Z. Zhang, "Prediction of mucintype O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs.," BMC bioinformatics, vol. 9, p. 101, feb 2008.
[115] X. Wang, R. Yan, and J. Song, "DephosSite: a machine learning approach for discovering phosphotase-specific dephosphorylation sites," Scientific Reports 2016 6:1, vol. 6, pp. 1-11, mar 2016.
[116] X. Wang and R. Yan, "RFAthM6A: a new tool for predicting m 6 A sites in Arabidopsis thaliana," Plant Molecular Biology, vol. 96, pp. 327-337, 2018.
[117] W. Chen, H. Yang, P. Feng, H. Ding, and H. Lin, "iDNA4mC: identifying DNA N 4-methylcytosine sites based on nucleotide chemical properties," Bioinformatics, 2017.
[118] G. Pan, Id, L. Jiang, J. Tang, and F. Guo, "A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties," International Journal of Molecular Sciences Article, 2018.
[119] W. He, C. Jia, and Q. Zou, "4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction," Bioinformatics, vol. 35, pp. 593-601, feb 2019.
[120] W. He and C. Jia, "EnhancerPred2.0: predicting enhancers and their strength based on position-specific trinucleotide propensity and electron-ion interaction potential feature selection," Molecular BioSystems, vol. 13, pp. 767-774, mar 2017.
[121] C. Jia, Q. Yang, and Q. Zou, "NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC," Journal of theoretical biology, vol. 450, pp. 15-21, aug 2018.
[122] S. S. Sahu and G. Panda, "Efficient localization of hot spots in proteins using a novel S-transform based filtering approach," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 5, pp. 1235-1246, 2011.
[123] Z. Ur-Rehman and A. Khan, "G-protein-coupled receptor prediction using pseudo-amino-acid composition and multiscale energy representation of different physiochemical properties," Analytical Biochemistry, vol. 412, pp. 173182, may 2011.
[124] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and T. L. Madden, "NCBI BLAST: a better web interface.," Nucleic acids research, vol. 36, no. Web Server issue, pp. 5-9, 2008.
[125] P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. De Hoon, "Biopython: Freely available Python tools for computational molecular biology and bioinformatics," Bioinformatics, vol. 25, no. 11, pp. 1422-1423, 2009.
[126] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Doubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825-2830, 2011.
[127] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, and G. Research, "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems," oct 2015.
[128] G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Transactions on Information Theory, vol. 14, no. 1, pp. 55-63, 1968.
[129] R. E. Bellman, Dynamic Programming. Rand Corporation research study, Princeton University Press, 1957.

APPENDIX A

PROTEIN-PROTEIN BLAST RESULTS

Table A.1: Protein-protein BLASTs of the glycolysis enzymes of S. cerevisiae $S 288$ c against non-redundant proteins database of P. pastoris GS115

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
$\begin{aligned} & \text { HXK2 } \\ & 852639 \end{aligned}$	$\begin{aligned} & \text { PAS_chr1-4_0561 } \\ & 8197692 \end{aligned}$	543	95	0	58
$\begin{aligned} & \text { PGI1 } \\ & 852495 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0456 } \\ & 8199584 \end{aligned}$	888	98	0	77
$\begin{aligned} & \text { PFK1 } \\ & 853155 \end{aligned}$	$\begin{aligned} & \text { PAS_chr2-1_0402 } \\ & 8198870 \end{aligned}$	1129	98	0	57
$\begin{aligned} & \text { PFK2 } \\ & 855245 \end{aligned}$	$\begin{aligned} & \text { PAS_chr1-4_0047 } \\ & 8196884 \end{aligned}$	1130	98	0	58
FBA1 853805	$\begin{aligned} & \text { PAS_chr1-1_0072 } \\ & 8197200 \end{aligned}$	590	98	0	78
$\begin{aligned} & \text { TPI1 } \\ & 851620 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0951 } \\ & 8200302 \end{aligned}$	366	100	$4 \mathrm{e}-130$	72
TDH2 853465	$\begin{aligned} & \text { PAS_chr2-1_0437 } \\ & 8198905 \end{aligned}$	557	99	0	80
$\begin{aligned} & \text { TDH3 } \\ & 853106 \end{aligned}$	$\begin{aligned} & \text { PAS_chr2-1_0437 } \\ & 8198905 \end{aligned}$	560	99	0	81
Continued on next page					

Table A. 1 - continued from previous page

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
$\begin{aligned} & \text { PGK1 } \\ & 850370 \end{aligned}$	$\begin{aligned} & \text { PAS_chr1-4_0292 } \\ & 8197742 \end{aligned}$	635	99	0	75
$\begin{aligned} & \text { GPM1 } \\ & 853705 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0826 } \\ & 8200319 \end{aligned}$	395	100	1e-141	78
$\begin{aligned} & \text { ENO2 } \\ & 856579 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0082 } \\ & 8199366 \end{aligned}$	685	98	0	78
$\begin{aligned} & \text { CDC19 } \\ & 851193 \end{aligned}$	$\begin{aligned} & \text { PAS_chr2-1_0769 } \\ & 8198046 \end{aligned}$	758	99	0	72

Table A.2: Protein-protein BLASTs of the gluconeogenesis enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
PCK1 853972	$\begin{aligned} & \text { PAS_FragB_0061 } \\ & 8197501 \end{aligned}$	827	99	0	69
$\begin{aligned} & \text { ENO1 } \\ & 853169 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0082 } \\ & 8199366 \end{aligned}$	694	98	0	80
$\begin{aligned} & \text { GPM1 } \\ & 853705 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0826 } \\ & 8200319 \end{aligned}$	395	100	1e-141	78
$\begin{aligned} & \text { PGK1 } \\ & 850370 \end{aligned}$	$\begin{aligned} & \text { PAS_chr1-4_0292 } \\ & 8197742 \end{aligned}$	635	99	0	75
$\begin{aligned} & \text { TDH2 } \\ & 853465 \end{aligned}$	$\begin{aligned} & \text { PAS_chr2-1_0437 } \\ & 8198905 \end{aligned}$	557	99	0	80
$\begin{aligned} & \text { TDH3 } \\ & 853106 \end{aligned}$	$\begin{aligned} & \text { PAS_chr2-1_0437 } \\ & 8198905 \end{aligned}$	560	99	0	81
Continued on next page					

Table A. 2 - continued from previous page

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
$\begin{aligned} & \text { FBA1 } \\ & 853805 \end{aligned}$	$\begin{aligned} & \text { PAS_chr1-1_0072 } \\ & 8197200 \end{aligned}$	590	98	0	78
$\begin{aligned} & \text { FBP1 } \\ & 851092 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0868 } \\ & 8199670 \end{aligned}$	484	95	$2 \mathrm{e}-173$	67
$\begin{aligned} & \text { PGI1 } \\ & 852495 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0456 } \\ & 8199584 \end{aligned}$	888	98	0	77

Table A.3: Protein-protein BLASTs of the Pentose Phosphate Pathway enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
SOL3 856568	PAS_chr3_1126 8200158	210	99	$1 \mathrm{e}-68$	43
SOL4 853163	PAS_chr3_1126 8200158	168	96	$3 \mathrm{e}-52$	36
GND1 856589	PAS_chr3_0277 8200105	796	99	0	79
RKI1 854262	PAS_chr4_0213 8200884	290	93	$5 \mathrm{e}-100$	59
RPE1 853322	AT250_GQ6803479	347	100	$3 \mathrm{e}-123$	70
TKL1 856188	PAS_chr1-4_0150 8197134	952	98	0	69
TAL1 851068	PAS_chr2-2_0337 8198237	487	96	$3 \mathrm{e}-175$	73

Table A.4: Protein-protein BLASTs of the Alcoholic Fermentation enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
$\begin{aligned} & \text { PDC1 } \\ & 850733 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0188 } \\ & 8200158 \end{aligned}$	754	99	0	64
ADH1 854068	$\begin{aligned} & \text { PAS_chr2-1_0472 } \\ & 8200158 \end{aligned}$	497	99	1e-178	73

Table A.5: Protein-protein BLASTs of the TCA Cycle enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115

S. cerevisiae	P. pastoris	Protein BLAST			
$\begin{array}{l}\text { Gene Symbol } \\ \text { Gene ID }\end{array}$	Gene Symbol				
Gene ID					

Table A. 5 - continued from previous page

S. cerevisiae	P.pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
IDH2 854303	PAS_chr2-1_0120 8198516	513	98	0	68
KGD1 854681	PAS_chr2-1_0089 8198485	1492	98	0	70
KGD2 851726	PAS_chr1-3_0094 8196826	496	86	$5 \mathrm{e}-175$	64
LSC1 854310	PAS_chr3_0831 8200321	330	92	$9 \mathrm{e}-114$	63
LSC2 853159	PAS_chr2-2_0407 8199113	518	93	0	60
SDH1 853709	PAS_chr4_0733 8200628	1031	100	0	78
SDH2 850685	PAS_chr3_1111 8200068	444	99	$2 \mathrm{e}-160$	78
SDH3 853716	PAS_chr1-4_0487 8197074	127	75	$4 \mathrm{e}-38$	47
SDH4 851758	PAS_chr2-2_0283 8198288	138	71	$7 \mathrm{e}-43$	52
FUM1 855866	PAS_chr3_0647 8199846	747	100	0	74
PAS_chr2-1_0238 853777	475	99	$1 \mathrm{e}-170$	69	
8198787					

Table A.6: Protein-protein BLASTs of the Glyoxylate Cycle enzymes of S. cerevisiae $S 288$ c against non-redundant proteins database of P. pastoris GS115

S. cerevisiae	P. pastoris	Protein BLAST			
$\begin{array}{l}\text { Gene Symbol } \\ \text { Gene ID }\end{array}$	Gene Symbol				
Gene ID					

Table A.7: Protein-protein BLASTs of the Ethanol Utilization Pathway enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
$\begin{aligned} & \text { ADH2 } \\ & 858349 \end{aligned}$	$\begin{aligned} & \text { PAS_chr2-1_0472 } \\ & 8200158 \end{aligned}$	503	99	0	74
$\begin{aligned} & \text { ALD4 } \\ & 854556 \end{aligned}$	$\begin{aligned} & \text { PAS_chr4_0043 } \\ & 8200158 \end{aligned}$	653	93	0	61
$\begin{aligned} & \text { ALD6 } \\ & 856044 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0987 } \\ & 8200105 \end{aligned}$	542	98	0	53
$\begin{aligned} & \text { ACS1 } \\ & 851245 \end{aligned}$	$\begin{aligned} & \text { PAS_chr2-1_0767 } \\ & 8200884 \end{aligned}$	890	93	0	67
Continued on next page					

Table A. 7 - continued from previous page

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
$\begin{aligned} & \text { ACS2 } \\ & 850846 \end{aligned}$	PAS_chr3_0403	1009	89	0	69

Table A.8: Protein-protein BLASTs of the Glycerol Utilization Pathway enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
$\begin{aligned} & \text { GUT1 } \\ & 856353 \end{aligned}$	$\begin{aligned} & \text { PAS_chr4_0783 } \\ & 8200561 \end{aligned}$	660	92	0	53
$\begin{aligned} & \text { GUT2 } \\ & 854651 \end{aligned}$	$\begin{aligned} & \text { PAS_chr3_0579 } \\ & 8199784 \end{aligned}$	642	98	0	50

Table A.9: Protein-protein BLASTs of the Anaplerotic reaction enzymes of S. cerevisiae S288c against non-redundant proteins database of P. pastoris GS115

S. cerevisiae	P. pastoris	Protein BLAST			
Gene Symbol Gene ID	Gene Symbol Gene ID	Score	Covery (\%)	E-value	Identity (\%)
MAE1 853839	$\begin{aligned} & \text { PAS_chr3_0181 } \\ & 8199455 \end{aligned}$	837	89	0	68
$\begin{aligned} & \text { PYC1 } \\ & 852818 \end{aligned}$	$\begin{aligned} & \text { PAS_chr2-2_0024 } \\ & 8198982 \end{aligned}$	1838	98	0	77
$\begin{aligned} & \text { PYC2 } \\ & 852519 \end{aligned}$	$\begin{aligned} & \text { PAS_chr2-2_0024 } \\ & 8198982 \end{aligned}$	1843	98	0	77

APPENDIX B

TFBS SEQUENCE LOGOS FOR S. CEREVISIAE AND P. PASTORIS TFS

Table B.1: WebLogo Sequence Logos [5] of S. cerevisiae S288c PWMs that are extracted from TransFac [6], and computed P. pastoris GS115 PWMs

$\stackrel{\text { L }}{ }$	S. cerevisiae	P. pastoris	$\stackrel{\text { H }}{\square}$	S. cerevisiae	P. pastoris
	Ma Cox	${ }^{3}$ algataringaragigacecco	$\begin{aligned} & \stackrel{y}{\pi} \\ & \underset{\sim}{<} \end{aligned}$		
$\begin{aligned} & \tilde{O} \\ & \underset{\sim}{2} \end{aligned}$			$\underset{Z}{\square}$		
\mathbb{E}			品		
Continued on next page					

Table B. 1 - continued from previous page

$\stackrel{\text { H }}{ }$	S. cerevisiae	P. pastoris	比	S. cerevisiae	P. pastoris
$\begin{aligned} & \text { : } E_{0} \\ & \text { 最 } \end{aligned}$			$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	${ }^{4}$ amomar.cocemyanad.	
\bar{Z}			$\frac{\overline{3}}{\frac{\pi}{4}}$	CCGATCSCO	$\frac{20}{\frac{20}{20}}$
$\underset{\mathbb{N}}{\mathbb{N}}$			$\overline{\widetilde{\approx}}$		
$\begin{aligned} & \stackrel{\infty}{\tilde{\pi}} \\ & \hline \end{aligned}$	CCH	S_{2}			
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$			$\begin{gathered} \pm \\ \tilde{U} \end{gathered}$		
\mathfrak{B}			\bar{N}		
Continued on next page					

Table B． 1 －continued from previous page

$\stackrel{L}{H}$	S．cerevisiae	P．pastoris	$\stackrel{H}{\square}$	S．cerevisiae	P．pastoris
$\begin{aligned} & 0 \\ & v \\ & 0 \end{aligned}$			$\begin{aligned} & \tilde{Z} \\ & \underset{Z}{2} \end{aligned}$	为	
$\frac{\circ}{\frac{0}{5}}$	$\underset{0.0}{\frac{20}{5}, 0.0}$		$\begin{aligned} & \infty \\ & \frac{\infty}{\tilde{I}} \\ & \hline \end{aligned}$		
$\begin{aligned} & \text { N } \\ & \text { त्र } \\ & \text { In } \end{aligned}$		${ }^{2}$	$\begin{aligned} & \bar{y} \\ & \text { y } \end{aligned}$		
$\frac{\overline{5}}{\sqrt[y]{\mid}}$		antergataracich	$\begin{aligned} & \frac{N}{\sqrt{I}} \\ & \hline \end{aligned}$	4）	an
N			$$		
$\begin{aligned} & \overline{\widetilde{u}} \\ & \text { In } \end{aligned}$		$\frac{m_{0}}{20} 10=$ 	$\begin{aligned} & \text { 帚 } \\ & \text { 俭 } \end{aligned}$	Tccamanamescoge	？
Continued on next page					

Table B． 1 －continued from previous page

$\stackrel{H}{H}$	S．cerevisiae	P．pastoris	汇	S．cerevisiae	P．pastoris
㨌	$\cos ^{2}$		$\begin{aligned} & \text { サ } \\ & \text { I } \\ & \text { ®u } \end{aligned}$	NCHATAS	
E			$\begin{aligned} & \overline{0} \\ & \text { 的 } \end{aligned}$	${ }_{5}^{20}$	x^{20}
馬		$\frac{9}{5} 1.0=$ ${ }_{5}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { 首 } \end{aligned}$		
茳	$\operatorname{sen}_{5}^{2}$	y^{20}	喜	an	x^{2}
ت	achaic	$\frac{2}{2} 1.0$	No		$\frac{2}{3} 10^{\circ}$
$\begin{aligned} & \text { I } \\ & \vdots \end{aligned}$			可	an	$\sin ^{20}$
Continued on next page					

Table B. 1 - continued from previous page

Table B． 1 －continued from previous page

$\stackrel{H}{H}$	S．cerevisiae	P．pastoris	殅	S．cerevisiae	P．pastoris
$\begin{aligned} & 0 \\ & \frac{0}{7} \end{aligned}$			$\begin{aligned} & \tilde{\circ} \\ & \text { ⿳亠二口卄 } \end{aligned}$	2．	
$\begin{aligned} & \text { B0 } \\ & \frac{1}{2} \end{aligned}$	2		$\stackrel{F}{0}$		
\bar{z}	4．		荨	2．${ }^{2}=C_{C G C G G}$	$\frac{n}{0} 1.0$ ${ }_{\mathrm{P}}^{\mathrm{c}} \mathrm{C} \mathrm{C} \mathrm{C}_{\mathrm{a}} \mathrm{a}$ TA ${ }_{5}^{5}$
$\stackrel{\infty}{0}$	$\underset{\frac{0}{2} \cdot 0.0 \text { CGGAGAI }}{\frac{20}{20}}$		$\underset{\pi}{2}$		
$\stackrel{0}{2}$	4．tasazarcccocoen araway	and		3	
$\begin{aligned} & \overline{\tilde{0}} \\ & \underset{\sim}{x} \end{aligned}$			新	Aheagroccardatay	
Continued on next page					

Table B. 1 - continued from previous page

$\stackrel{\text { L }}{ }$	S. cerevisiae	P. pastoris	号	S. cerevisiae	P. pastoris
$\stackrel{\overline{0}}{0}$			$\stackrel{\text { F }}{\sim}$		
$$	ACCOCCO	x_{2}^{2}	$\begin{aligned} & \bar{z}_{0} \\ & \underset{\sim}{0} \end{aligned}$	$\overbrace{0.0}^{2.0}$	
$\frac{\bar{n}}{2}$		- Hacicirachicacaicalag	$\begin{gathered} \tilde{y} \\ \end{gathered}$		
$\begin{aligned} & \text { O} \\ & \text { O} \\ & \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \underset{\sim}{c} \end{aligned}$	2.	alangacolgccray ariag
$\bar{\sim}$			$\begin{gathered} \overrightarrow{4} \\ 0 \\ 0 \end{gathered}$		
Continued on next page					

Table B. 1 - continued from previous page

$\stackrel{y}{\square}$	S. cerevisiae	P. pastoris	$\stackrel{\mu}{\square}$	S. cerevisiae	P. pastoris
$\stackrel{t}{2}$			$\begin{aligned} & \frac{N}{0} \\ & i n \\ & i n \end{aligned}$		
$\stackrel{N}{n}$		$\frac{9}{0} 10 \cdot$ 	$\begin{gathered} n \\ \tilde{y} \\ \tilde{n} \end{gathered}$		
$\underset{\hbar}{\stackrel{\rightharpoonup}{\hbar}}$			$\begin{aligned} & n \\ & \stackrel{n}{5} \end{aligned}$		
$\frac{\mathbb{N}}{\stackrel{N}{\#}}$			$\begin{aligned} & \text { N } \\ & \stackrel{y}{む} \end{aligned}$	x_{0}^{20}	$\sin _{20}^{20} A A C G A G A G A G A G G$
$\overline{3}$			$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{5} \end{aligned}$		
$\stackrel{\tilde{2}}{\stackrel{2}{2}}$			$\begin{aligned} & t \\ & \stackrel{\rightharpoonup}{2} \\ & \hline \end{aligned}$	2	
Continued on next page					

Table B． 1 －continued from previous page

$\stackrel{y}{\square}$	S．cerevisiae	P．pastoris	$\stackrel{\text { 号 }}{ }$	S．cerevisiae	P．pastoris
$\stackrel{y}{b}$			$\begin{gathered} \text { 彩 } \\ \stackrel{5}{2} \end{gathered}$	${ }_{5}^{20} \cos _{5}^{20} \operatorname{CCCG}_{5}^{2}$	
E			$\bar{\Xi}$		
$\frac{\sqrt{3}}{3}$	$\frac{2}{5} 10=$ 		$\begin{aligned} & n \\ & \sqrt[n]{3} \\ & n \end{aligned}$		
第		CGCTGGAGGIGAAA	م	4．	
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\bullet} \\ & \end{aligned}$			$\begin{aligned} & \dddot{50} \\ & 0.00 \end{aligned}$		$\underset{0_{5}}{\frac{20}{20} \cdot 0^{2}}$
$$			$\begin{aligned} & \overrightarrow{3} \\ & \stackrel{y}{5} \end{aligned}$	边	${ }^{2}$ creacicacigatagic
Continued on next page					

Table B. 1 - continued from previous page

$\stackrel{y}{H}$	S. cerevisiae	P. pastoris	${ }^{\text {I }}$	S. cerevisiae	P. pastoris
			$\begin{aligned} & \stackrel{0}{\tilde{N}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		
$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{y y} \\ & \hline \end{aligned}$	4.			${ }^{20}$	$\underset{y^{2}}{\frac{20}{20} \cdot \mathrm{CCGG}_{2}}$
$\begin{aligned} & 0 \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{0} \\ & \lambda \end{aligned}$		*asicalarama	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{y}{6} \\ & \vdots \end{aligned}$	arymand	
$\begin{aligned} & \dot{\infty} \\ & \stackrel{y}{y} \\ & \stackrel{y}{\lambda} \end{aligned}$			$\begin{array}{\|l} \frac{3}{\infty} \\ \infty \\ \vdots \\ E \end{array}$		
$\begin{aligned} & 3 \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{Z} \\ & \end{aligned}$		3.		47enacrimicamer	
$\begin{aligned} & \text { ત્તે } \\ & \text { ¿̀ } \end{aligned}$			亳		
Continued on next page					

Table B. 1 - continued from previous page

$\stackrel{\text { L }}{\sim}$	S. cerevisiae	P. pastoris	$\stackrel{\text { L }}{\text { L }}$	S. cerevisiae	P. pastoris
E			$\begin{aligned} & \bar{u} \\ & \stackrel{y}{N} \end{aligned}$	y_{5}^{20}	

APPENDIX C

ANNOTATED TFBSS ON S. CEREVISIAE AND P. PASTORIS PROMOTERS

For all tables ${ }^{\circ}$ indicate expression evidence in literature, while $*$ indicates binding evidence in literature. Color codings indicate enzymes pathway.

Table C.1: Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Glycolysis and Gluconeogenesis Pathways.

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Sip} 4(3), \\ \operatorname{Ert} 1(4), \operatorname{Mig} 1(2)^{\circ *} \end{gathered}$	$\begin{gathered} \operatorname{Adr} 1(3), \operatorname{Cat} 8(4), \\ \operatorname{Ert1} 1(1), \operatorname{Stb} 5(3), \\ \operatorname{Msn} 2(7), \operatorname{Msn} 4(2), \\ \operatorname{Mig} 1(2) \end{gathered}$	-
	$\begin{gathered} \operatorname{Sip} 4(1)^{\circ}, \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Stb5}(2)^{\circ}, \operatorname{Mig} 1(1), \\ \operatorname{Gcr} 1(2)^{\circ *} \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(2), \operatorname{Ert1}(2), \\ \operatorname{Stb5}(1), \operatorname{Msn} 2(3), \\ \operatorname{Msn} 4(2), \operatorname{Mig} 1(1) \end{gathered}$	-
Continued on next page			

Table C. 1 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
Cat8(1), Sip4(3),	Ert1(4), Stb5(1),		

Table C. 1 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Sip} 4(1), \\ \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Msn} 2(1)^{*}, \operatorname{Msn} 4(1), \\ \operatorname{Gcr} 1(2)^{\circ} * \end{gathered}$	$\begin{aligned} & \operatorname{Adr} 1(1), \operatorname{Cat} 8(3), \\ & \operatorname{Stb5} 5), \operatorname{Msn} 2(7), \\ & \operatorname{Msn} 4(3), \operatorname{Mig} 1(3) \end{aligned}$	Cat8 (1)
	$\begin{gathered} \operatorname{Hap} 2 / 3 / 4 / 5(1), \operatorname{Rds} 2(1)^{\circ}, \\ \operatorname{Msn} 2(2)^{\circ *}, \operatorname{Msn} 4(2)^{*}, \\ \operatorname{Mig} 1(2), \operatorname{Gcr} 1(3)^{\circ} \\ \\ \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Msn} 2(3)^{*}, \operatorname{Msn} 4(3)^{*}, \\ \operatorname{Mig} 1(3)^{\circ}, \operatorname{Gcr} 1(2)^{\circ} * \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(2), \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Ert1} 13), \operatorname{Msn} 2(3), \\ \operatorname{Msn} 4(2), \operatorname{Mig} 1(4) \end{gathered}$	Hap2/3/4/5(1)
	$\begin{gathered} \operatorname{Cat} 8(1)^{\circ}, \operatorname{Sip} 4(2), \\ \operatorname{Msn} 2(1)^{\circ} *, \operatorname{Msn} 4(1)^{*}, \\ \operatorname{Gcr} 1(2)^{\circ} * \end{gathered}$	$\begin{aligned} & \operatorname{Adr1} 1(1), \operatorname{Cat} 8(2), \\ & \operatorname{Ert1} 1(4), \operatorname{Msn} 2(1) \end{aligned}$	-
	Adr1(1), $\operatorname{Gcr1}$ (2) ${ }^{\circ}$	$\begin{gathered} \operatorname{Adr} 1(1), \operatorname{Cat} 8(2), \\ \operatorname{Ert1}(4), \operatorname{Stb5}(1), \\ \operatorname{Msn} 2(3), \operatorname{Msn} 4(3) \end{gathered}$	Adr1(1)
Continued on next page			

Table C. 1 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Sip} 4(1), \operatorname{Stb5}(1)^{\circ}, \\ \operatorname{Mig} 1(2)^{*}, \operatorname{Gcr} 1(2)^{\circ} \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(3), \operatorname{Sip} 4(2), \operatorname{Ert} 1(1), \\ \operatorname{Stb5}(2), \operatorname{Msn} 2(6), \\ \operatorname{Msn} 4(4), \operatorname{Mig} 1(2) \end{gathered}$	Msn2(1), Msn4(1), Mig1(1)
	$\begin{gathered} \operatorname{Sip} 4(1), \operatorname{Stb} 5(1)^{\circ}, \\ \operatorname{Mig} 1(2)^{*}, \operatorname{Gcr} 1(2)^{\circ} * \end{gathered}$		
	$\begin{gathered} \operatorname{Adr} 1(1)^{\circ}, \operatorname{Cat} 8(2), \\ \operatorname{Sip} 4(6), \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Rds} 2(2), \operatorname{Ert1}(5), \\ \operatorname{Stb5}(2), \operatorname{Msn} 2(3)^{\circ *}, \\ \operatorname{Msn} 4(3)^{\circ *}, \operatorname{Mig} 1(3)^{\circ}, \\ \operatorname{Gcr} 1(3)^{\circ} * \end{gathered}$	$\begin{aligned} & \operatorname{Cat} 8(2), \operatorname{Sip} 4(2), \\ & \operatorname{Stb5}(1), \operatorname{Msn} 2(5), \\ & \operatorname{Msn} 4(2), \operatorname{Mig} 1(1) \end{aligned}$	$\begin{gathered} \operatorname{Sip} 4(2), \operatorname{Ert} 1(1), \\ \operatorname{Stb} 5(1) \end{gathered}$
	$\begin{gathered} \operatorname{Cat} 8(4)^{\circ}, \operatorname{Sip} 4(3)^{\circ} *, \\ \operatorname{Hap} 2 / 3 / 4 / 5(1)^{\circ}, \\ \operatorname{Rds} 2(1)^{\circ}, \operatorname{Ert1}(3)^{*}, \\ \operatorname{Msn} 2(1)^{*}, \operatorname{Msn} 4(1)^{\circ}, \\ \operatorname{Mig} 1(3), \operatorname{Gcr} 1(3)^{\circ} \end{gathered}$	Adr1(1), Cat8(4), Ert1(3), Stb5(2), Msn2(2), Msn4(2), Mig1(5)	-

Color Codings: Light blue for Glycolysis exclusive genes, Deep blue for Gluconeogenesis exclusive genes, Violet if common genes for both pathways

Table C.2: Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Pentose Phosphate Pathway.

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)

Table C. 2 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Adr} 1(1), \operatorname{Cat} 8(1), \\ \operatorname{Hap} 2 / 3 / 4 / 5(1), \operatorname{Rds} 2(2), \\ \operatorname{Stb} 5(3)^{\circ}, \operatorname{Msn} 2(1)^{\circ}, \\ \operatorname{Msn} 4(1)^{*}, \operatorname{Mig} 1(1) \end{gathered}$	$\begin{gathered} \operatorname{Adr} 1(1), \operatorname{Cat} 8(2), \\ \operatorname{Stb} 5(1), \operatorname{Msn} 2(1), \\ \operatorname{Msn} 4(2) \end{gathered}$	-
$\begin{array}{r} m \\ \vdots \\ \bar{\delta} \\ \bar{y} \\ \square \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}$	$\begin{gathered} \operatorname{Cat} 8(2)^{\circ}, \operatorname{Sip} 4(2)^{*}, \\ \operatorname{Ert1}(3), \operatorname{Stb} 5(3)^{*}, \\ \operatorname{Msn} 2(2)^{\circ}, \operatorname{Msn} 4(2)^{\circ}, \\ \operatorname{Mig} 1(3)^{\circ} \end{gathered}$	Adr1(2), Cat8(1), Stb5(1), Msn2(3), Msn4(1), Mig1(1)	Msn2(1)
	$\begin{gathered} \operatorname{Sip} 4(2), \operatorname{Hap} 2 / 3 / 4 / 5(2), \\ \operatorname{Ert} 1(2), \operatorname{Mig} 1(2) \end{gathered}$	$\begin{gathered} \operatorname{Adr} 1(1), \operatorname{Ert1} 1(3), \\ \operatorname{Stb} 5(1), \operatorname{Msn} 2(2), \\ \operatorname{Mig} 1(1) \end{gathered}$	-
	$\begin{gathered} \operatorname{Sip} 4(2), \operatorname{Rds} 2(1)^{*}, \\ \operatorname{Ert1}(3)^{*}, \operatorname{Stb5}(3)^{\circ *}, \\ \operatorname{Msn} 2(1)^{*}, \operatorname{Msn} 4(1)^{*}, \\ \operatorname{Mig} 1(1) \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(2), \operatorname{Sip} 4(2), \\ \operatorname{Msn} 2(3), \operatorname{Msn} 4(1), \\ \operatorname{Mig} 1(1) \end{gathered}$	Msn4(1)
Continued on next page			

Table C. 2 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Stb5}(2)^{\circ}, \operatorname{Msn} 2(1)^{*}, \\ \operatorname{Msn} 4(1)^{*}, \operatorname{Mig} 1(1), \\ \operatorname{GCR} 1(6) \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Ert1}(1), \operatorname{Stb} 5(1), \\ \operatorname{Msn2(2)}, \operatorname{Msn} 4(1) \end{gathered}$	Msn4(1)

Color Codings: Light green for Pentose Phosphate Pathway

Table C.3: Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on TCA and Glyoxylate Cycles.

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Adr} 1(1), \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Stb} 5(2)^{\circ}, \operatorname{Msn} 2(2), \\ \operatorname{Msn} 4(2) \end{gathered}$	$\begin{aligned} & \operatorname{Cat8(5),} \operatorname{Ert1} 1(1), \\ & \operatorname{Stb5}(1), \operatorname{Msn} 2(5), \\ & \operatorname{Msn} 4(4), \operatorname{Mig} 1(3) \end{aligned}$	Msn2(2), Msn4(1)
	$\begin{gathered} \operatorname{Sip} 4(2), \operatorname{Ert1}(2), \\ \operatorname{Stb5(2)^{\circ },\operatorname {Msn2(2)},} \\ \operatorname{Msn} 4(2) \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Ert1} 1(1), \\ \operatorname{Stb5}(1), \operatorname{Msn} 2(3), \\ \operatorname{Msn} 4(1), \operatorname{Mig} 1(1) \end{gathered}$	-
Continued on next page			

Table C. 3 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)

Table C. 3 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Sip} 4(2), \\ \operatorname{Hap} 2 / 3 / 4 / 5(1)^{\circ *}, \\ \operatorname{Rds} 2(1)^{*}, \operatorname{Ert1}(5), \\ \operatorname{Msn} 2(3)^{\circ}, \operatorname{Msn} 4(3)^{\circ *}, \\ \operatorname{Mig} 1(2), \operatorname{GCR} 1(1)^{*} \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(4), \operatorname{Ert1} 1(3), \\ \operatorname{Stb5}(2), \operatorname{Msn} 2(2), \\ \operatorname{Msn} 4(2), \operatorname{Mig} 1(3) \end{gathered}$	Ert1(2), Msn2(1), Msn4(1)
	$\begin{gathered} \operatorname{Adr} 1(1), \operatorname{Cat} 8(1)^{\circ *}, \\ \operatorname{Sip} 4(1), \operatorname{Hap} 2 / 3 / 4 / 5(2), \\ \operatorname{Stb5}(1), \operatorname{Msn} 2(2)^{\circ}, \\ \operatorname{Msn} 4(2)^{\circ}, \\ \text { GCR1 }(2)^{\circ} \end{gathered}$		
	$\begin{gathered} \operatorname{Cat} 8(1)^{\circ *}, \\ \operatorname{Hap} 2 / 3 / 4 / 5(1)^{\circ *}, \\ \operatorname{Rds} 2(1), \operatorname{Ert1} 1(1), \\ \operatorname{GCR} 1(2) \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(4), \operatorname{Stb5}(3), \\ \operatorname{Msn} 2(3), \operatorname{Msn} 4(1), \\ \operatorname{Mig} 1(1) \end{gathered}$	-
$\begin{gathered} \\ \\ \bar{\sigma} \\ \bar{\sigma} \\ \bar{j} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{gathered}$	$\begin{gathered} \operatorname{Adr1}(1)^{\circ *}, \operatorname{Cat} 8(6)^{\circ *}, \\ \operatorname{Sip} 4(5)^{\circ}, \\ \operatorname{Hap} 2 / 3 / 4 / 5(1)^{\circ}, \operatorname{Ert1}(4), \\ \operatorname{Stb5}(6), \operatorname{Msn} 2(3)^{\circ}, \\ \operatorname{Msn} 4(3)^{\circ}, \\ \text { GCR1(1) } \end{gathered}$	$\begin{gathered} \operatorname{Adr} 1(1), \operatorname{Cat} 8(5), \\ \operatorname{Ert1} 1(5), \operatorname{Stb5}(2), \\ \operatorname{Msn} 2(4), \operatorname{Msn} 4(2), \\ \operatorname{Mig} 1(1) \end{gathered}$	$\begin{gathered} \text { Cat8(1), } \\ \text { Msn2(1), } \\ \operatorname{Msn4(1)} \end{gathered}$
Continued on next page			

Table C. 3 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)

Table C. 3 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)

Table C. 3 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	Hap2/3/4/5(2) ${ }^{\circ}$, $\operatorname{Mig} 1(1)$, $\operatorname{GCR1}(1)^{\circ}$	Ert1(1), Msn2(3), Msn4(2)	-
	$\begin{gathered} \operatorname{Sip} 4(1), \operatorname{Hap} 2 / 3 / 4 / 5(1)^{\circ}, \\ \operatorname{Ert1}(2), \operatorname{Msn} 2(1), \\ \operatorname{Msn} 4(1), \operatorname{Mig} 1(1) \end{gathered}$	$\begin{gathered} \operatorname{Adr1} 1(2), \operatorname{Stb} 5(1), \\ \operatorname{Msn} 2(1), \operatorname{Msn} 4(1), \\ \operatorname{Mig} 1(2) \end{gathered}$	-
	$\begin{gathered} \operatorname{Adr} 1(1), \operatorname{Cat} 8(2)^{\circ}, \\ \operatorname{Sip} 4(4), \operatorname{Hap} 2 / 3 / 4 / 5(2), \\ \operatorname{Rds} 2(1), \operatorname{Ert1}(3), \\ \operatorname{Msn} 2(2)^{\circ}, \operatorname{Msn} 4(2)^{\circ}, \\ \operatorname{Mig} 1(1), \operatorname{GCR} 1(1)^{\circ} \end{gathered}$	$\begin{aligned} & \operatorname{Adr} 1(3), \operatorname{Ert1}(2), \\ & \operatorname{Stb5}(1), \operatorname{Msn} 2(1), \\ & \operatorname{Msn} 4(1), \operatorname{Mig} 1(3) \end{aligned}$	Adr1(1), Msn2(1), Msn4(1)
	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Sip} 4(4), \\ \operatorname{Hap} 2 / 3 / 4 / 5(1)^{\circ}, \\ \operatorname{Ert} 1(3)^{*}, \operatorname{Stb} 5(2), \\ \operatorname{Msn} 2(2)^{\circ}, \operatorname{Msn} 4(2)^{\circ}, \\ \operatorname{Mig} 1(7), \operatorname{GCR} 1(1)^{\circ} \end{gathered}$	$\begin{gathered} \operatorname{Adr} 1(2), \operatorname{Cat} 8(1), \\ \operatorname{Sip} 4(2), \operatorname{Ert1}(1), \operatorname{Stb5}(1), \\ \operatorname{Msn} 2(2), \operatorname{Msn} 4(1) \end{gathered}$	Msn2(1)
Continued on next page			

Table C. 3 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Adr} 1(1)^{\circ}, \operatorname{Cat} 8(4)^{\circ}, \\ \operatorname{Sip} 4(2)^{*}, \\ \operatorname{Hap} 2 / 3 / 4 / 5(1)^{\circ}, \\ \operatorname{Rds} 2(1)^{\circ}, \operatorname{Ert} 1(6), \\ \operatorname{Stb5}(2)^{\circ}, \operatorname{Msn} 2(4)^{\circ}, \\ \operatorname{Msn} 4(4)^{\circ}, \operatorname{GCR} 1(1)^{\circ} \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Ert1} 1(1), \\ \operatorname{Msn} 2(5), \operatorname{Msn} 4(3), \\ \operatorname{Mig} 1(1) \end{gathered}$	$\begin{gathered} \operatorname{Msn} 2(1), \\ \operatorname{Msn} 4(2) \end{gathered}$

Color Codings: Red for TCA cycle exclusive genes, Pink for Glyoxylate cycle exclusive genes, Purple for common genes for both pathways.

Table C.4: Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Ethanol Utilization and Alcoholic Fermentation Pathways.

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Sip} 4(4), \\ \operatorname{Ert1} 1(2)^{*}, \operatorname{Msn} 2(1)^{*}, \\ \operatorname{Msn} 4(1)^{\circ}, \operatorname{Mig} 1(2)^{*}, \\ \operatorname{GCR} 1(2)^{*} * \end{gathered}$	$\begin{gathered} \operatorname{Ert1}(1), \operatorname{Stb5}(2), \\ \operatorname{Msn} 2(1), \operatorname{Msn} 4(1), \\ \operatorname{Mig} 1(1), \end{gathered}$	-
Continued on next page			

Table C. 4 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Sip} 4(1), \\ \operatorname{Hap} 2 / 3 / 4 / 5(1)^{\circ *}, \\ \operatorname{Rds} 2(1)^{\circ}, \operatorname{Msn} 2(3)^{*}, \\ \operatorname{Msn} 4(4)^{*}, \operatorname{Mig} 1(5)^{\circ}, \\ \operatorname{GCR} 1(4)^{\circ} * \end{gathered}$	$\begin{gathered} \operatorname{Adr} 1(2), \operatorname{Cat} 8(5), \\ \operatorname{Ert1} 1(4), \operatorname{Stb5}(2), \\ \operatorname{Msn} 2(18), \operatorname{Msn} 4(13), \end{gathered}$	Msn2(5), Msn4(5), $\operatorname{Mig} 1(1)$,
	$\begin{gathered} \operatorname{Adr} 1(2)^{\circ}, \operatorname{Cat} 8(3)^{\circ}, \\ \operatorname{Sip} 4(8)^{\circ}, \operatorname{Rds} 2(1)^{\circ}, \\ \operatorname{Ert1}(7), \operatorname{Msn} 2(2)^{*}, \\ \operatorname{Msn} 4(2)^{*}, \end{gathered}$	Mig1(8)	
	$\begin{gathered} \operatorname{Adr} 1(2)^{\circ}, \operatorname{Cat} 8(2)^{\circ}, \\ \operatorname{Hap} 2 / 3 / 4 / 5(3)^{\circ}, \operatorname{Ert1}(1), \\ \operatorname{Stb} 5(1)^{*}, \operatorname{Msn} 2(3)^{\circ}, \\ \operatorname{Msn} 4(3)^{\circ}, \operatorname{Mig} 1(6), \\ \operatorname{GCR} 1(3)^{\circ} \end{gathered}$	Adr1(2), Cat8(3), Stb5(1), Msn2(2),	Adr1(1), Msn4(2)
	$\begin{aligned} & \operatorname{Cat} 8(3)^{\circ}, \operatorname{Stb} 5(4)^{\circ} *, \\ & \operatorname{Msn} 2(4)^{\circ}, \operatorname{Msn} 4(4)^{\circ}, \\ & \operatorname{Mig} 1(6)^{\circ}, \operatorname{GCR} 1(1)^{\circ} \end{aligned}$	Adr1(1), Cat8(18), Sip4(2), Ert1(2), Stb5(1), Msn2(5), Msn4(5), Mig1(2)	-
Continued on next page			

Table C. 4 - continued from previous page

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Cat} 8(3)^{\circ}, \operatorname{Sip} 4(2)^{\circ}, \\ \operatorname{Rds} 2(1), \operatorname{Stb} 5(2), \\ \operatorname{Msn} 2(3)^{*}, \operatorname{Msn} 4(3)^{*}, \\ \operatorname{Mig} 1(5) \end{gathered}$	$\begin{aligned} & \text { Cat8(3), } \operatorname{Ert1(1),} \\ & \operatorname{Msn2(6),} \text { Msn4(4) } \end{aligned}$	$\begin{gathered} \operatorname{Cat} 8(1), \\ \operatorname{Msn} 2(2), \end{gathered}$
	$\begin{gathered} \operatorname{Sip} 4(2), \operatorname{Hap} 2 / 3 / 4 / 5(2), \\ \operatorname{Ert} 1(1), \operatorname{Stb} 5(1), \\ \operatorname{Msn} 2(1)^{\circ}, \operatorname{Msn} 4(1), \\ \operatorname{Mig} 1(1), \operatorname{GCR} 1(3)^{\circ} \end{gathered}$	$\begin{aligned} & \text { Cat8(3), Stb5(1), } \\ & \operatorname{Msn2(4),~} \operatorname{Mig} 1(2) \end{aligned}$	-

Color Codings: Gray for Alcoholic Fermentation Pathway genes, White for Ethanol Utilization Pathway genes.

Table C.5: Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Glycerol Utilization Pathway.

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
	$\begin{gathered} \operatorname{Adr} 1(1)^{\circ *}, \operatorname{Sip} 4(1), \\ \operatorname{Hap} 2 / 3 / 4 / 5(2), \operatorname{Ert} 1(2), \\ \operatorname{Stb5}(1), \operatorname{Msn} 2(3), \\ \operatorname{Msn} 4(3), \operatorname{Mig} 1(3)^{\circ}, \\ \operatorname{GCR} 1(2) \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(7), \operatorname{Ert1} 13), \\ \operatorname{Msn} 2(6), \operatorname{Msn} 4(6), \\ \operatorname{Mig} 1(4) \end{gathered}$	$\begin{aligned} & \text { Msn2(2), } \\ & \text { Msn4(1) } \end{aligned}$
	$\begin{gathered} \operatorname{Cat} 8(1), \operatorname{Sip} 4(1), \\ \operatorname{Rds} 2(1), \operatorname{Stb} 5(1)^{\circ}, \\ \operatorname{Msn} 2(1)^{\circ}, \operatorname{Msn} 4(1)^{\circ}, \\ \operatorname{Mig} 1(1)^{\circ} \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(4), \operatorname{Sip} 4(2), \\ \operatorname{Ert} 1(2), \operatorname{Msn} 2(10), \\ \operatorname{Msn} 4(9), \operatorname{Mig} 1(6) \end{gathered}$	Msn4(1)

Color Codings: Yellow for Glycerol Utilization Pathways

Table C.6: Number of TFBSs annotated for Adr1, Cat8, Sip4, Hap2/3/4/5, Rds2, Ert1, Stb5, Msn2, Msn4, Mig1, Tye7 and Gcr1 TFs on S. cerevisiae and P. pastoris promoters that regulate expression of enzymes that act on Anaplerotic Reactions.

Gene ID	S. cerevisiae (Scan)	P. pastoris (Scan)	P. pastoris (Footprinting)
\bar{x}	$\begin{gathered} \operatorname{Cat} 8(2), \operatorname{Sip} 4(2), \\ \operatorname{Ert1}(1)^{\circ *}, \operatorname{Msn} 2(5)^{\circ *}, \\ \operatorname{Msn} 4(4)^{\circ *} \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(2), \operatorname{Sip} 4(2), \operatorname{Ert} 1(1), \\ \operatorname{Msn2(5)}, \operatorname{Msn} 4(4) \end{gathered}$	-
	$\begin{gathered} \operatorname{Cat} 8(2), \operatorname{Sip} 4(5)^{\circ}, \\ \operatorname{Rds} 2(1)^{*}, \operatorname{Ert1}(2)^{*}, \\ \operatorname{Stb} 5(2)^{\circ}, \operatorname{Msn} 2(1)^{\circ}, \\ \operatorname{Msn} 4(1)^{\circ}, \operatorname{Mig} 1(3), \\ \operatorname{GCR} 1(1)^{\circ} \end{gathered}$	$\begin{gathered} \operatorname{Cat} 8(3), \operatorname{Ert} 1(5), \\ \operatorname{Stb5(1)}, \operatorname{Msn} 2(4), \\ \operatorname{Msn} 4(4), \operatorname{Mig} 1(3), \end{gathered}$	Cat8(1), Msn2(1), Msn4(1),
	$\begin{gathered} \operatorname{Sip} 4(1), \operatorname{Hap} 2 / 3 / 4 / 5(1), \\ \operatorname{Rds} 2(2), \operatorname{Stb} 5(2), \\ \operatorname{Msn} 2(3)^{*}, \operatorname{Msn} 4(3)^{*}, \\ \operatorname{Mig} 1(1), \operatorname{GCR} 1(2) \end{gathered}$		

Color Codings: Bronze for Anaplerotic Reactions

APPENDIX D

EFFECT OF REMOVING FEATURES ON MODEL PERFORMANCES
Table D.1: Changes of MCC Scores of the models as number of features is decreased

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
BAD08_Tea1	-	0.751	4	0.749	-	-	-	-	-	-
BAD08_Ace2	-	0.829	0	0.858	2	0.881	4	0.880	-	-
BAD08_Ynr063w	-	0.764	4	0.764	-	-	-	-	-	-
BAD08_Yap3	-	0.686	2	0.721	0	0.743	1	0.821	4	0.886
BAD08_Rgt1	-	0.779	0	0.773	-	-	-	-	-	-
BAD08_Xbp1	-	0.969	1	0.974	4	0.974	-	-	-	-
BAD08_Rgm1	-	0.858	0	0.903	4	0.897	-	-	-	-
BAD08_Rph1	-	0.889	0	0.904	1	0.947	2	0.942	-	-
BAD08_Phd1	-	0.757	2	0.783	4	0.783	-	-	-	-
BAD08_Sum1	-	0.857	0	0.874	4	0.904	1	0.910	2	0.932
BAD08_Rfx1	-	0.661	0	0.720	4	0.734	1	0.794	2	0.886
BAD08_Stb4	-	0.795	2	0.813	4	0.813	-	-	-	-
BAD08_Pho4	-	0.855	0	0.926	4	0.937	2	0.942	1	0.931
Continued on next page										

Table D. 1 - continued from previous page

	Number of Features Removed									
	0		1		2		3		4	
TFID	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
BAD08_Uga3	-	0.804	2	0.827	4	0.827	-	-	-	-
BAD08_Ygr067c	-	0.864	1	0.886	0	0.892	4	0.903	2	0.910
BAD08_Mig1	-	0.882	4	0.882	-	-	-	-	-	-
BAD08_Sip4	-	0.721	4	0.721	-	-	-	-	-	-
BAD08_Hac1	-	0.673	2	0.713	0	0.716	4	0.789	1	0.914
BAD08_Mbp1	-	0.936	2	0.936	4	0.936	-	-	-	-
BAD08_Dal80	-	0.621	0	0.669	4	0.761	1	0.903	2	0.925
BAD08_Rds2	-	0.823	4	0.823	-	-	-	-	-	-
BAD08_Skn7	-	0.852	4	0.852	-	-	-	-	-	-
BAD08_Yjl103c	-	0.768	0	0.789	4	0.887	1	0.908	2	0.925
BAD08_Yrm1	-	0.708	1	0.745	2	0.725	-	-	-	-
BAD08_Rei1	-	0.840	0	0.864	4	0.926	2	0.920	-	-
BAD08_Gat4	-	0.748	2	0.749	0	0.767	4	0.859	1	0.893
BAD08_Yer130c	-	0.920	1	0.921	0	0.931	2	0.936	4	0.969
Continued on next page										

Table D. 1 - continued from previous page

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
BAD08_Cst6	-	0.644	2	0.674	0	0.736	1	0.809	4	0.897
BAD08_Nhp10	-	0.554	0	0.602	4	0.618	1	0.702	2	0.875
BAD08_Sig1	-	0.881	0	0.904	2	0.910	1	0.937	4	0.944
BAD08_Cin5	-	0.707	0	0.794	4	0.844	1	0.891	2	0.925
BAD08_Fkh2	-	0.614	1	0.664	0	0.713	4	0.801	2	0.903
BAD08_Ydr520c	-	0.777	1	0.813	4	0.813	-	-	-	-
BAD08_Rpn4	-	0.657	0	0.684	4	0.706	1	0.857	2	0.880
BAD08_Pho2	-	0.810	2	0.827	0	0.852	4	0.881	1	0.909
BAD08_Azf1	-	0.698	2	0.727	4	0.727	-	-	-	-
BAD08_Sok2	-	0.587	0	0.629	1	0.720	2	0.813	4	0.891
BAD08_Tbs1	-	0.780	0	0.807	4	0.837	1	0.891	2	0.881
BAD08_Stp3	-	0.821	4	0.821	-	-	-	-	-	-
BAD08_Dal82	-	0.818	0	0.821	4	0.852	1	0.880	2	0.881
BAD08_Abf2	-	0.689	2	0.719	4	0.719	-	-	-	-

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
BAD08_Stp4	-	0.809	0	0.826	4	0.903	1	0.942	2	0.943
BAD08_Mig3	-	0.820	1	0.860	4	0.860	-	-	-	-
BAD08_Rim101	-	0.618	0	0.669	4	0.677	1	0.874	2	0.914
BAD08_Cha4	-	0.577	0	0.626	4	0.670	1	0.886	2	0.914
BAD08_Yrr1	-	0.840	4	0.840	-	-	-	-	-	-
BAD08_Hcm1	-	0.753	4	0.753	-	-	-	-	-	-
BAD08_Rsc30	-	0.793	0	0.813	2	0.841	4	0.863	1	0.947
BAD08_Pdr8	-	0.764	0	0.785	4	0.869	1	0.888	2	0.880
BAD08_Cep3	-	0.855	0	0.859	4	0.926	2	0.942	1	0.942
BAD08_Aft2	-	0.791	3	0.801	2	0.819	4	0.819	-	-
BAD08_Hsf1	-	0.726	4	0.745	0	0.802	2	0.814	1	0.898
BAD08_Pdr1	-	0.773	2	0.809	4	0.809	-	-	-	-
BAD08_Msn4	-	0.835	1	0.870	4	0.870	-	-	-	-
BAD08_Ypr022c	-	0.838	2	0.844	0	0.850	4	0.840	-	-
Continued on next page										

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
BAD08_Ypr013c	-	0.852	1	0.862	2	0.868	4	0.868	-	-
BAD08_Swi5	-	0.540	0	0.604	4	0.685	1	0.845	2	0.880
BAD08_Gzf3	-	0.781	0	0.840	4	0.851	1	0.931	2	0.936
BAD08_Srd1	-	0.845	0	0.880	4	0.909	1	0.947	2	0.958
BAD08_Rox1	-	0.871	1	0.893	2	0.900	4	0.900	-	-
BAD08_Yer184c	-	0.595	2	0.614	0	0.616	4	0.749	1	0.862
BAD08_Crz1	-	0.797	4	0.797	-	-	-	-	-	-
BAD08_Cat8	-	0.880	2	0.891	0	0.898	1	0.892	-	-
BAD08_Asg1	-	0.828	1	0.841	4	0.841	-	-	-	-
BAD08_Rdr1	-	0.776	2	0.798	1	0.804	4	0.782	-	-
BAD08_Yml081w	-	0.767	3	0.800	0	0.790	-	-	-	-
BAD08_Tec1	-	0.715	0	0.768	4	0.814	1	0.863	2	0.892
BAD08_Ypr196w	-	0.737	1	0.820	4	0.820	-	-	-	-
BAD08_Hap1	-	0.610	2	0.622	4	0.621	-	-	-	-
Continued on next page										

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
BAD08_Msn2	-	0.840	0	0.857	4	0.886	1	0.887	2	0.943
BAD08_Eds1	-	0.701	1	0.713	0	0.734	4	0.862	2	0.886
BAD08_Reb1	-	0.493	2	0.600	1	0.656	0	0.807	4	0.869
BAD08_Yk1222c	-	0.672	4	0.732	0	0.796	1	0.908	2	0.903
BAD08_Fzf1	-	0.714	0	0.775	1	0.832	4	0.868	2	0.931
BAD08_Gis1	-	0.893	2	0.915	4	0.915	-	-	-	-
BAD08_Gln3	-	0.887	0	0.903	4	0.915	1	0.932	2	0.948
BAD08_Yox1	-	0.932	2	0.942	4	0.942	-	-	-	-
BAD08_Mig2	-	0.770	2	0.771	0	0.777	4	0.804	1	0.893
BAD08_Ybr239c	-	0.852	2	0.875	4	0.875	-	-	-	-
BAD08_Rds1	-	0.778	0	0.803	4	0.876		0.909	2	0.958
BAD08_Met31	-	0.785	0	0.821	1	0.828	4	0.898	2	0.898
BAD08_Tye7	-	0.579	2	0.613	0	0.684	1	0.775	4	0.891
BAD08_Zms1	-	0.534	0	0.586	1	0.680	4	0.834	2	0.875
Continued on next page										

Table D. 1 - continued from previous page

				Numb	of Fe	tures Re	moved			
		0		1		2		3		
TFID	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
BAD08_Cup9	-	0.817	0	0.847	2	0.865	4	0.855	-	-
BAD08_Ybl054w	-	0.525	0	0.707	2	0.794	1	0.850	4	0.891
BAD08_Ypl230w	-	0.871	0	0.904	4	0.937	2	0.931	-	-
BAD08_Adr1	-	0.829	2	0.843	4	0.843	-	-	-	-
BAD08_Ste 12	-	0.523	0	0.645	2	0.706	1	0.807	4	0.891
BAD08_Oaf1	-	0.661	0	0.676	4	0.880	1	0.881	2	0.908
BAD08_Fhl1	-	0.803	0	0.815	4	0.840	1	0.898	2	0.914
BAD08_Swi4	-	0.896	0	0.943	2	0.958	4	0.953	-	-
BAD08_Hal9	-	0.838	4	0.838	-	-	-	-	-	-
BAD08_Gat1	-	0.789	0	0.864	4	0.875	1	0.953	2	0.953
BAD08_Y11054c	-	0.518	2	0.518	0	0.552	4	0.713	1	0.868
NBT06_Ceh-22	-	0.844	4	0.844	-	-	-	-	-	-
NBT06_Oct-1	-	0.869	2	0.869	-	-	-	-	-	-
NBT06_Cbf1	-	0.864	0	0.886	4	0.931	2	0.926	-	-
Continued on next page										

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
NBT06_Zif268	-	0.854	1	0.860	0	0.866	4	0.931	2	0.931
NBT06_Rap1	-	0.626	2	0.638	0	0.644	1	0.786	4	0.886
NAR10_Gcn4	-	0.858	0	0.884	4	0.932	2	0.933	1	0.918
NAR10_Junfos	-	0.410	0	0.535	4	0.597	1	0.734	2	0.868
ZHU09_Rds2-9	-	0.820	0	0.849	4	0.926	2	0.915	-	-
ZHU09_Leu3	-	0.948	0	0.958	2	0.969	1	0.974	4	0.953
ZHU09_Sfp1-9	-	0.865	2	0.899	4	0.899	-	-	-	-
ZHU09_Sip4-9	-	0.749	2	0.761	4	0.761	-	-	-	-
ZHU09_Gzf3-9	-	0.822	0	0.883	4	0.902	2	0.933	1	0.936
ZHU09_Ume6-9	-	0.909	4	0.909	-	-	-	-	-	-
ZHU09_Sum1-9	-	0.840	0	0.874	4	0.886		0.910	2	0.958
ZHU09_Tec1	-	0.860	2	0.878	4	0.878	-	-	-	-
ZHU09_Pho4-9	-	0.877	0	0.942	2	0.948	4	0.948	-	-
ZHU09_Bas1	-	0.613	0	0.727	1	0.794	4	0.856	2	0.908
Continued on next page										

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
ZHU09_Ygr067c	-	0.744	1	0.752	0	0.752	-	-	-	-
ZHU09_Yer130c-11	-	0.721	2	0.755	0	0.769	4	0.814	1	0.870
ZHU09_Rds1	-	0.798	2	0.810	4	0.810	-	-	-	-
ZHU09_Gcn4-9	-	0.871	0	0.897	4	0.958	2	0.958	-	-
ZHU09_Mig2	-	0.898	4	0.898	-	-	-	-	-	-
ZHU09_Yox1	-	0.927	2	0.943	4	0.943	-	-	-	-
ZHU09_Matalpha2-9	-	0.916	1	0.917	4	0.917	-	-	-	-
ZHU09_Gln3	-	0.835	0	0.886	4	0.925	1	0.963	2	0.963
ZHU09_Gat1-11	-	0.870	0	0.910	4	0.969	1	0.958	-	-
ZHU09_Ypr013c-9	-	0.832	4	0.832	-	-	-	-	-	-
ZHU09_Sip4-11	-	0.722	4	0.722	-	-	-	-	-	-
ZHU09_Ndt80-9	-	0.570	4	0.570	-	-	-	-	-	-
ZHU09_Put3-11	-	0.806	1	0.832	4	0.832	-	-	-	-
ZHU09_Nhp6b-9	-	0.898	4	0.898	-	-	-	-	-	-
Continued on next page										

Table D. 1 - continued from previous page

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
ZHU09_Met32-9	-	0.793	0	0.816	4	0.845	1	0.892	2	0.920
ZHU09_Gzf3-11	-	0.875	0	0.903	4	0.920	1	0.953	2	0.953
ZHU09_Rds2-11	-	0.861	4	0.861	-	-	-	-	-	-
ZHU09_Nhp6a-9	-	0.806	2	0.835	0	0.842	1	0.859	4	0.890
ZHU09_Pbf2-11	-	0.821	0	0.848	4	0.915	2	0.937	1	0.926
ZHU09_Ydr520c	-	0.593	1	0.669	0	0.748	4	0.862	2	0.886
ZHU09_Pdr1	-	0.529	2	0.555	4	0.555	-	-	-	-
ZHU09_Pbf2-9	-	0.834	0	0.843	4	0.908	2	0.925	1	0.904
ZHU09_Fkh2-11	-	0.723	0	0.757	1	0.755	-	-	-	-
ZHU09_Cep3	-	0.743	0	0.774	4	0.887		0.887	-	-
ZHU09_Put3-9	-	0.705	0	0.724	4	0.851		0.851	-	-
ZHU09_Fhl1-11	-	0.800	0	0.900	4	0.905	1	0.927	2	0.937
ZHU09_Mga1	-	0.752	2	0.751	-	-	-	-	-	-
ZHU09_Nrg1-11	-	0.832	0	0.870	4	0.887	1	0.926	2	0.942
Continued on next page										

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
ZHU09_Rpn4-9	-	0.545	0	0.659	1	0.743	2	0.839	4	0.880
ZHU09_Nhp6b-11	-	0.859	2	0.885	0	0.902	1	0.918	4	0.934
ZHU09_Fhl1-9	-	0.776	0	0.781	1	0.851	4	0.898	2	0.915
ZHU09_Rsc30	-	0.886	2	0.898	4	0.898	-	-	-	-
ZHU09_Gat1-9	-	0.844	0	0.898	4	0.942	2	0.963	1	0.942
ZHU09_Rtg3	-	0.596	0	0.604	1	0.661	2	0.850	4	0.897
ZHU09_Asg1	-	0.780	1	0.805	2	0.821	4	0.821	-	-
ZHU09_Yap6	-	0.604	0	0.741	4	0.782	1	0.815	2	0.898
ZHU09_Sum1-11	-	0.899	0	0.916	2	0.918	4	0.933	1	0.958
ZHU09_Tye7-9	-	0.814	0	0.880	4	0.920	2	0.903	-	-
ZHU09_Rgt1-9	-	0.769	3	0.777	4	0.777	-	-	-	-
ZHU09_Yap1	-	0.798	0	0.862	4	0.880	2	0.880	1	0.892
ZHU09_Ume6-11	-	0.864	4	0.864	-	-	-	-	-	-
ZHU09_Rsc3	-	0.922	1	0.932	2	0.933	4	0.933	-	-
Continued on next page										

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
ZHU09_Gat3	-	0.931	4	0.931	-	-	-	-	-	-
ZHU09_Sut2-9	-	0.790	0	0.818	4	0.863	1	0.886	2	0.909
ZHU09_Fkh1-9	-	0.646	1	0.654	2	0.659	4	0.659	-	-
ZHU09_Yrm1	-	0.576	2	0.610	0	0.618	1	0.721	4	0.863
ZHU09_Yml081w	-	0.834	4	0.834	-	-	-	-	-	-
ZHU09_Aro80	-	0.766	2	0.817	4	0.795	-	-	-	-
ZHU09_Ndt80-11	-	0.534	1	0.576	0	0.606	4	0.816	2	0.859
ZHU09_Rap1-11	-	0.605	4	0.605	-	-	-	-	-	-
ZHU09_Tbf1	-	0.817	0	0.840	4	0.868	1	0.937	2	0.937
ZHU09_Cbf1-9	-	0.844	0	0.904	4	0.925	2	0.914	-	-
ZHU09_Nhp6a-11	-	0.837	2	0.859	0	0.882	4	0.878	-	-
ZHU09_Rph1-11	-	0.703	0	0.769	1	0.829	2	0.881	4	0.903
ZHU09_Y11054c-11	-	0.668	0	0.685	4	0.801	1	0.838	2	0.868
ZHU09_Stp2-9	-	0.782	0	0.859	4	0.883	2	0.894	1	0.909
Continued on next page										

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
ZHU09_Yrr1-9	-	0.670	2	0.701	4	0.701	-	-	-	-
ZHU09_Usv1	-	0.834	0	0.863	4	0.903	2	0.920	1	0.903
ZHU09_Rph1-9	-	0.858	0	0.881	1	0.915	4	0.931	2	0.942
ZHU09_Yrr1-11	-	0.738	0	0.747	4	0.838	1	0.886	2	0.875
ZHU09_Fkh1-11	-	0.672	2	0.692	4	0.692	-	-	-	-
ZHU09_Oaf1-11	-	0.437	2	0.454	0	0.498	4	0.662	1	0.885
ZHU09_Lys14	-	0.752	3	0.751	-	-	-	-	-	-
ZHU09_Gat4-11	-	0.791	2	0.816	4	0.816	-	-	-	-
ZHU09_Mcm1-11	-	0.713	0	0.741	1	0.814	4	0.852	2	0.886
ZHU09_Sfp1-11	-	0.822	0	0.868	1	0.882	4	0.898	2	0.915
ZHU09_Met32-11	-	0.828	4	0.828	-	-	-	-	-	-
ZHU09_Pbf1-11	-	0.875	2	0.893	4	0.893	-	-	-	-
ZHU09_Pho2	-	0.886	4	0.886	-	-	-	-	-	-
ZHU09_Aft1	-	0.527	1	0.566	4	0.566	-	-	-	-
Continued on next page										

Table D. 1 - continued from previous page

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
ZHU09_Rdr1-11	-	0.800	4	0.800	-	-	-	-	-	-
ZHU09_Tbs1-9	-	0.776	2	0.793	4	0.793	-	-	-	-
ZHU09_Gcn4-11	-	0.853	0	0.893	4	0.909	2	0.914	1	0.897
ZHU09_Yer130c-9	-	0.703	1	0.744	0	0.782	4	0.852	2	0.903
ZHU09_Phd1	-	0.909	1	0.920	4	0.920	-	-	-	-
ZHU09_Tye7-11	-	0.685	0	0.742	4	0.807	1	0.863	2	0.874
ZHU09_Stb3	-	0.823	4	0.823	-	-	-	-	-	-
ZHU09_Ypr196w-11	-	0.645	1	0.691	2	0.747	4	0.747	-	-
ZHU09_Nrg1-9	-	0.852	0	0.903	2	0.914	1	0.914	-	-
ZHU09_Sut2-11	-	0.852	4	0.852	-	-	-	-	-	-
ZHU09_Fkh2-9	-	0.771	4	0.771	-	-	-	-	-	-
ZHU09_Ykl222c-9	-	0.764	2	0.791	0	0.820	4	0.891	1	0.920
ZHU09_Rgt1-11	-	0.715	0	0.751	4	0.789	1	0.898	2	0.903
ZHU09_Ybr239c	-	0.886	2	0.891	0	0.928	4	0.932	1	0.914
Continued on next page										

Table D. 1 - continued from previous page

	Number of Features Removed									
	0		1		2		3		4	
TFID	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
ZHU09_Srd1-9	-	0.758	0	0.769	4	0.809	1	0.891	2	0.891
ZHU09_Ecm22	-	0.811	2	0.824	4	0.824	-	-	-	-
ZHU09_Skn7	-	0.654	0	0.708	4	0.786	1	0.848	2	0.859
ZHU09_Gal4-9	-	0.731	2	0.758	0	0.765	4	0.840	1	0.920
ZHU09_Ypr196w-9	-	0.620	1	0.679	0	0.763	2	0.797	4	0.880
ZHU09_Mbp1	-	0.936	0	0.974	2	0.969	-	-	-	-
ZHU09_Tbs1-11	-	0.817	0	0.843	4	0.903	1	0.920	2	0.925
ZHU09_Rap1-9	-	0.473	0	0.542	2	0.645	4	0.720	1	0.903
ZHU09_Spt15	-	0.863	1	0.880	2	0.915	0	0.927	4	0.942
ZHU09_Mig1	-	0.850	2	0.862	0	0.868	4	0.888	1	0.909
GB11_Hap1	-	0.730	0	0.744	4	0.834	1	0.875	2	0.904
GB11_Upc2	-	0.881	4	0.881	-	-	-	-	-	-
GB11_Vhr1	-	0.743	0	0.826	4	0.851	1	0.909	2	0.915
GB11_Ste12	-	0.668	0	0.686	4	0.741	1	0.862	2	0.898
Continued on next page										

Table D. 1 - continued from previous page

TFID	Number of Features Removed									
	0		1		2		3		4	
	REM	MCC	REM	MCC	REM	MCC	REM	MCC	REM	MCC
GB11_Cad1	-	0.571	2	0.645	0	0.645	1	0.782	4	0.862
GB11_Ybr033w	-	0.633	1	0.691	0	0.741	2	0.819	4	0.914
GB11_Mot3	-	0.833	0	0.857	2	0.851	-	-	-	-
GB11_Hmlalpha2	-	0.832	0	0.856	4	0.868	2	0.891	1	0.881
GB11_Ylr278c	-	0.756	2	0.787	4	0.787	-	-	-	-
GB11_Nrg2	-	0.504	0	0.524	4	0.596	1	0.794	3	0.174
GB11_Zap1	-	0.753	1	0.799	0	0.809	4	0.898	-	-
GB11_Stb5	-	0.740	0	0.789	4	0.782	-	-	-	-
GB11_Yer184c	-	0.667	2	0.689	0	0.750	4	0.826	-	-
GB11_Abf1	-	0.589	0	0.616	4	0.694	1	0.800	-	-
GB11_Cin5	-	0.661	0	0.691	1	0.775	2	0.857	-	-
GB11_Gcr1	-	0.777	0	0.783	4	0.809	1	0.914	-	-
GB11_Cst6	-	0.838	4	0.838	-	-	-	-	-	-
GB11_Stb4	-	0.809	2	0.809	-	-	-	-	-	-
Continued on next page										

Table D. 1 - continued from previous page

REM: Feature that impoved the model performance the most when removed in
current iteration.

