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ABSTRACT

COMPACT AND FLEXIBLE NTRU IMPLEMENTATION ON FPGA

KORKMAZ, Sinan Emir
M.S., Department of Cyber Security

Supervisor: Assoc. Prof. Dr. Cihangir TEZCAN

August 2022, 78 pages

At the dawn of quantum computing, our most trusted cryptosystems are at significant
risk. All vastly used and standardized public-key algorithms such as RSA and ECC
were designed to withstand the attacks from classical computers by using integer
factorization and discrete logarithm problems. However, quantum computers can
generate the whole solution space for these problems that contains all the possible
keys and reduce it to the correct key in polynomial time. Therefore, we need to
start using a new public key encryption algorithm before the first full-scale quantum
computer starts to work. To select this new algorithm, NIST organized a competition
in 2016. They received 59 submissions in the field of encryption. With the passing
rounds, algorithms are heavily investigated according to security and performance
metrics by researchers all around the globe.

In this thesis work, we focused on the NTRU, one of the third-round candidate al-
gorithms. This lattice-based algorithm uses Shortest Vector Problem as the encryp-
tion function and has the ability to provide secrecy against quantum computers. We
worked on the hardware implementation of the NTRU. By implementing an algorithm
on FPGA, we can benefit from gate-level parallelism and design algorithm-specific
logical blocks. We implemented encryption, decryption, and data processing modules
with our proposed improvements. The key generation module is not implemented be-
cause generated keys can be loaded manually and have a long life of usage. Our
design focuses on resource optimization and flexibility. These properties enabled us
to provide a suitable solution for low-power embedded network devices.

Keywords: NTRU, FPGA, Post Quantum Cryptography, Public Key Cryptography,
Cryptography
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ÖZ

NTRU ALGORİTMASININ FPGA ÜZERİNDE GERÇEKLENMESİ

KORKMAZ, Sinan Emir
Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi: Doç. Dr. Cihangir TEZCAN

Ağustos 2022 , 78 sayfa

Kuantum bilgisayarların artan bir ivme ile geliştiği günümüzde, güvenli iletişimimizi
sağlayan açık anatarlı şifreleme algoritmaları tehdit altındadır. Şu an kullandığımız,
güvenirliğini ispat ederek standartlaşmış RSA ve ECC gibi algoritmaların klasik bil-
gisayar yapıları tarafından yapılan saldırılara karşı dayanımı yüksektir. Bu yetenek-
lerini çarpanlara ayırma ve ayrık logaritma problemleri sayesinde kazanmaktadırlar.
Fakat, sahip oldukları eşsiz paralel işlem yeteneği ile kuantum bilgisayarlar bu al-
goritmalara ait bütün çözüm olasılıklarını aynı anda oluşturup doğru olana polinom
zamanda indirgeyebilirler. Bu sebeple yeni bir açık anahtarlı şifreleme algoritma-
sına geçiş yapmamız gerekmektedir. Bu geçişi standardize edebilmek için American
Standartlar ve Teknoloji Enstitüsü (NIST) bir yarışma düzenlemektedir. 2016 yılında
başlayan ve 59 algoritmanın şifreleme alanında katıldığı bu yarışmanın her turunda
katılımcı algoritmalarin güvenlik ve performans yetenekleri dünyanın her yerindeki
bağımsız araştırmacılar tarafından incelenmektedir.

Bu tez çalışmasında 3. tur katılımcısı NTRU algoritması incelenmiş olup, alanda
programlanabilir kapı dizisi (FPGA) üzerinde gerçeklenmiştir. NTRU algoritması
çok boyutlu kafes yapısına sahiptir ve en kısa vektör sorusunu şifreleme fonksiyonu
olarak kullanır. Bu sayede kuantum bilgisayarlara karşı güvenlik sağlayabilmekte-
dir. Donanım üzerinde yapılan tasarımlar kapı seviyesinde paralelleştirme ve özel
tasarlanmış mantıksal yapılardan faydalanabilirler. Şifreleme, şifrenin çözülmesi ve
bilgilerin paketlenmesi işlemleri önerilen iyileştirmelerle gerçeklenmiştir. Şifre üre-
timi, üretilen şifrelerin uzun ömürleri ve elle yüklenebilecek olmaları sebebiyle tasa-
rıma dahil edilmemiştir. Tasarım düşük kaynak tüketimi ve esneklik kriterlerine göre
yapılmıştır. Bu kriterlere uyum sağlayarak ağ üzerinde çalışan düşük güçlü gömülü
cihazlar için uygun bir çözüm oluşturulmuştur.
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CHAPTER 1

INTRODUCTION

At the dawn of quantum computing, our most trusted cryptosystems are at significant
risk. The level of secrecy reduction has to be addressed separately for different types
of algorithms. Because while the effect of quantum computers on private key encryp-
tion algorithms may be ignored or easily overcome, it is catastrophic for the public
key encryption algorithms.

Firstly, private key encryption algorithms such as Triple-DES and AES will lose their
security level by half. An AES256 key attacked by a quantum computer can provide
the same secrecy as an AES128 key attacked by a conventional computer (Bonnetain
et al., 2019). By just increasing the key size, one can safely continue to use the current
standard algorithms like AES. However, these algorithms need secret keys that have
to be determined on a secure channel before communicating freely. In many real-life
scenarios, having access to a medium that prevents eavesdropping or tampering is
impossible.

Using a secret algorithm might come up to mind. Because even if the adversaries
know the key, they will have no idea about how to use it. From a layman’s perspec-
tive, we can ensure security by using a confidential algorithm. However, this security
by obscurity approach is not accepted in many fields. According to the security as-
sessments, the secret key has to be the only element that ensures secrecy in an open
and well-known system. Using the security by obscurity approach keeps the attacker
in the dark, but it will also keep the defenders in similar conditions. Without an open-
source algorithm and open discussion platform like academia, the defenders cannot
determine their algorithm’s strengths and weaknesses. The current general practice
for security is to use well-tested and standardized algorithms according to the secrecy
needs. This practice is formalized by NIST by stating, "System security should not
depend on the secrecy of the implementation or its components." (Scarfone et al.,
2008)

Public key encryption algorithms are designed to communicate in an open world with-
out any shared secret. Public key encryption algorithms use two different keys. One
is shared with the world, and it can be used by anyone who wants to send a message
to the key’s owner. If this message is received by an adversary who knows the public
key, there will not be a security breach because there is no practically possible way to
extract the information from the encrypted message. This process can only be done
by someone who knows the private key by using the trap function of the algorithm.

Increasing the key size to increase the security approach is impractical in the public

1



key cryptography algorithms while working against quantum computational devices.
Because, in public key algorithms, we can change the time complexity of searching
for the correct key by using quantum computers. However, in private key algorithms,
the usage of quantum computers only enables us to make a reduction.

The underlying mechanism of quantum computers is storing many possibilities in
their smallest units, which are named qbits, unlike the classical computers that can
hold two possibilities in their bits. Quantum computers do not need to try the pos-
sible keys one by one while attacking an algorithm because they have the capability
of working with multiple possibilities at the same time. By using Shor’s Algorithm,
quantum computers can generate a solution space containing all the possible keys and
reduce it to the correct key in polynomial time for the problems of integer factoriza-
tion and discrete logarithm. The polynomial time solution to our most used public
key algorithms is the dead of the secrecy in today’s communication practices. There-
fore, we need to start using a new public key encryption algorithm before the first
full-scale quantum computer is deployed.

1.1 NIST Post Quantum Cryptography Challenge

To select this new algorithm for standardization, NIST is organizing a competition.
NIST Post Quantum Cryptography Competition was formally called for the proposals
on January 03, 2017, and the deadline for round 1 submissions ended on November
30, 2017. You can see the complete timetable of the challenge in Table 1.1. The table
was adapted from
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline

Table 1.1: NIST PQC Timeline

April 2-3, 2015 NIST held a Cybersecurity in a Post-Quantum
World workshop

Feb 24-26, 2016 NIST calls for submissions in PQCrypto 2016
April 28, 2016 NISTIR 8105 report was released
Dec 20, 2016 Formal call for Round 1 submissions
Nov 30, 2017 Deadline for Round 1 submissions
Dec 4, 2017 The Ship Has Sailed: The NIST Post-Quantum

Crypto "Competition" presentation at Asi-
aCrypt 2017

Dec 21, 2017 Round 1 contestants are announced
Apr 11, 2018 Let’s Get Ready to Rumble - The NIST PQC

"Competition" presentation at PQCrypto 2018
April 11-13, 2018 1. PQC Standardization Conference
January 30, 2019 Round 2 contestants are announced
March 15, 2019 2. Round’s submission packages deadline
May 8-10, 2019 Round 2 of the NIST PQC "Competition" -

What was NIST Thinking? presentation at
PQCrypto 2019

2
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Table 1.1 (continued).

August 22-24, 2019 2. PQC Standardization Conference
July 22, 2020 Round 3 contestants are announced
October 1, 2020 3. Round’s submission packages deadline
June 7-9, 2021 3. PQC Standardization Conference
July 5, 2022 Announcing which PQC candidates to be stan-

dardized and the fourth round candidates
2022/2024 Draft Standards Available

The competition was categorized into three security levels according to an exhaustive
key search method and scaled to the AES algorithm with key sizes of 128, 192, and
256 bits. A total of 59 encryption/KEM (Key Exchange Mechanism) and 23 digital
signature algorithms are submitted (Moody, 2017). You can see submitted encryption
algorithms in Table 1.2.

Table 1.2: NIST PQC Round 1 Submissions

Name Type Result Source
BIG QUAKE Code-based Eliminated Bardet et al., 2017
BIKE Code-based Passed Aragon, Barreto, et al.,

2017
CFPKM Multivariate Eliminated Chakraborty et al.,

2017
Classic McEliece Code-based Passed Bernstein, Chou, et al.,

2017
Compact-LWE Lattice Eliminated D. Liu et al., 2017
CRYSTALS-
KYBER

Lattice Passed Bos et al., 2018

DAGS Code-based Eliminated Banegas et al., 2018
Ding Key Ex-
change

Lattice Eliminated Ding et al., 2017

DME Multivariate Eliminated Luengo et al., 2017
Edon-K Code-based Withdrawn Gligoroski and Gjøs-

teen, 2017
EMBLEM &
R.EMBLEM

Lattice Eliminated Seo et al., 2017

FrodoKEM Lattice Passed Naehrig et al., 2017
Giophantus Multivariate Eliminated Akiyama et al., 2017
Guess Again Other Eliminated Shpilrain et al., 2017
HILA5 Lattice Merged to

Round5
Saarinen, 2017

HK17 Other Withdrawn Hetch and Kamlofsky,
2017

3



Table 1.2 (continued).

HQC Code-based Passed Melchor, Aragon, Bet-
taieb, Bidoux, Blazy,
Deneuville, Gaborit,
Persichetti, et al., 2017

KCL Lattice Eliminated Zhao et al., 2017
KINDI Lattice Eliminated El Bansarkhani, 2017
LAC Lattice Passed Lu et al., 2018
LAKE Code-based Merged to

ROLLO
Aragon, Blazy, et al.,
2017b

LEDAkem Code-based Merged to
LEDAcrypt

Baldi et al., 2018

LEDApkc Code-based Merged to
LEDAcrypt

Baldi et al., 2017

Lepton Code-based Eliminated Y. Yu and Zhang, 2017
LIMA Lattice Eliminated Albrecht, Lindell, et al.,

2017
Lizard Lattice Eliminated Cheon et al., 2018
LOCKER Code-based Merged to

ROLLO
Aragon, Blazy, et al.,
2017a

LOTUS Lattice Eliminated Le Trieu Phong et al.,
2017

McNie Code-based Eliminated J.-L. Kim et al., 2018
Mersenne-
756839

Other Eliminated Aggarwal et al., 2017

NewHope Lattice Passed Alkim et al., 2016
NTRUEncrypt Lattice Merged to

NTRU
Hoffstein et al., 2017

NTRU-HRSS-
KEM

Lattice Merged to
NTRU

Hülsing et al., 2017

NTRU Prime Lattice Passed Bernstein et al., 2016
NTS-KEM Code-based Passed Albrecht, Cid, et al.,

2017
Odd Manhattan Lattice Eliminated Plantard, 2017
Ouroboros-R Code-based Merged to

ROLLO
Melchor, Aragon, Bet-
taieb, Bidoux, Blazy,
Deneuville, Gaborit,
Hauteville, et al., 2017

PQ RSA-
Encryption

RSA Eliminated Bernstein, Heninger, et
al., 2017

QC-MDPC KEM Code-based Eliminated Yamada et al., 2017
Ramstake Code-based Eliminated Szepieniec, 2017
RLCE-KEM Code-based Eliminated Wang, 2017
Round2 Lattice Merged to

Round5
Baan et al., 2017
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Table 1.2 (continued).

RQC Code-based Passed Melchor, Aragon, Bet-
taieb, Bidoux, Blazy,
Deneuville, Gaborit,
and Zémor, 2017

RVB Other Withdrawn Brands and Roellgen,
2015

SABER Lattice Passed D’Anvers et al., 2018
SIKE Elliptic Curve Passed Azarderakhsh et al.,

2017
SRTPI Multivariate Eliminated Peretz and Granot,

2017
Three Bears Lattice Passed Hamburg, 2017
Titanium Lattice Eliminated Steinfeld et al., 2017

Submissions can be categorized into the following algorithms according to their cryp-
tographic primitives:

• Lattice-Based: One of the most popular algorithms for the NIST challenge’s
first round and have complete dominance in the third round. In these algo-
rithms, the lattices are used as the encryption primitive or to prove the security
of the underlining algorithm.

• Code Based: In these types of algorithms, we are using the error correcting
codes (ECC) as cryptographic elements. Error Correcting Codes are designed
to maintain a communication channel in a highly noisy environment. They
carry out their missions by generating redundant information and adding it to
the original messages. The most known examples are LDPC (Low-Density
Parity-Check) and RS (Reed Solomon) codes. Because of their massive key
sizes, they were not very popular in the field of cryptography. However, their
immunity against quantum computers is making them popular now.

• Multivariate: These algorithms are based on the polynomials constructed by
more than one variable. For example : P (x, y, z) = x3 ∗ z+3∗x2 ∗y3 ∗ z−x∗
z2 + 1. Introduced by (Matsumoto & Imai, 1988). They show presence in the
first stage of the challenge. However, all three multivariate-based algorithms
are eliminated in this stage.

• RSA: Original integer factorization-based RSA algorithm participates with in-
creased key sizes. It provides security by using a key that is big enough to resist
a search attack carried out in polynomial time. Because of the massive keys,
this method is impractical and eliminated in the first stage.

• Elliptic Curve: SIKE (Supersingular Isogeny Diffie–Hellman Key Exchange)
algorithm’s used elliptic curves as their primitives. Security against quantum
computers comes with generating isogeny from the elliptic curves.

Second-stage submissions and their results are listed in Table 1.3.
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Table 1.3: NIST PQC Round 2 Submissions

Name Type Result
BIKE Code-based Alternate

Candidate
Classic McEliece Code-based Passed
CRYSTALS-
KYBER

Lattice Passed

FrodoKEM Lattice Alternate
Candidate

HQC Code-based Alternate
Candidate

LAC Lattice Eleminated
LEDAcrypt Code-based Eleminated
NewHope Lattice Eleminated
NTRU Lattice Passed
NTRU Prime Lattice Alternate

Candidate
NTS-KEM Code-based Passed
ROLLO Code-based Eleminated
Round5 Lattice Eleminated
RQC Code-based Eleminated
SABER Lattice Passed
SIKE Elliptic Curve Alternate

Candidat
Three Bears Lattice Eleminated

While this thesis was in progress, the NIST announced CRYSTALS-KYBER as the
first algorithm to be standardized at the end of round 3. You can see the submit-
ted algorithms and their result in Table 1.4. Also, for digital signature purposes,
CRYSTALS-DILITHIUM, FALCON, and SPHINCS+ algorithms will be standard-
ized. While NIST decided on the first algorithm to standardize, the competition still
continues, and it is in its fourth round with the reaming algorithms. These algorithms
can be seen in Table 1.4

Table 1.4: NIST PQC Round 3 Submissions

Name Type Result
BIKE Code-based Passed
Classic McEliece Code-based Passed
CRYSTALS-
KYBER

Lattice Standardized

FrodoKEM Lattice Eleminated
HQC Code-based Passed
NTRU Lattice Eleminated
NTRU Prime Lattice Eleminated
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Table 1.4 (continued).

NTS-KEM Code-based Eleminated
SABER Lattice Eleminated
SIKE Elliptic Curve Passed

Most of the participant algorithms are mathematically secure from the beginning of
the first stages of the competition. However, their performance metrics are open to
improvements. Also, the hardware implementation of these algorithms is highly im-
portant because many network-capable devices have to adapt to the new algorithm.
With the increasing number of user devices, using specific logic blocks makes more
sense than the CPU for server-like devices. Also, many embedded devices have to
adopt the new standard algorithm to connect to a network. As this thesis work started
long before the round 4 announcement, we chose the NTRU algorithm for develop-
ment.

1.2 NTRU

NTRU was designed as a property algorithm by Jeffrey Hoffstein, Jill Pipher, and
Joseph H. Silverman. In 2013, it was released under GNU License. The algorithm
uses latices and has the shortest vector problem as the underlying security primitive.
The algorithm was a third-round participant in the NIST PQC Competition.

This algorithm has only three parameters named N, q, p. The parameter N defines the
length of the polynomials. q, p parameters are used to determine the Galois Fields.
Therefore, modulo operations are calculated according to these parameters.

1.3 Effects of Quantum Computers on Cryptography

As mentioned, quantum computers are the new era of computing devices. Up to
them, we do not have a new method of computing. The improvements have come
from increasing the clock speed, utilizing parallelism, or optimizing the algorithms.
However, quantum computers let us use the superposition of physical systems. While
classical computation devices can hold two possibilities in their smallest building
blocks named bits, a quantum computer can hold all the possible states of their qbits.
This will let us calculate all the possible results at the same time. The problem of
handling everything at the same time is eliminating the wrong solutions from this
superposition state. For this purpose, we have special algorithms and quantum circuits
designed for these specific algorithms.

For cryptographic purposes, we are interested in two quantum algorithms: Grover’s
Search algorithm and Shor’s algorithm. Grover’s algorithm is an unconstructed search
algorithm. This algorithm is important for us. Because by using that, a quantum
computer can halve the security of any private key encryption algorithms. By over-
simplifying the working mechanisms, Grover’s algorithm does not try to generate the
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solution. It tries to check every possible solution’s correctness in a superposition.
While generating a correct solution for a problem is hard, checking a solution’s cor-
rectness might be easy. For example, solving a maze might require many trials and
returns to the previous states. However, checking a list of orders and deciding if they
are a solution to this maze is easy.

We use Shor’s algorithm while factorizing integers. The integer factorization problem
is the underlying security mechanism of the RSA. To briefly explain Shor’s algorithm,
we start with a random guess and check if it is a factor of the number N . When we
fail, we do not select a new test number; the following test number is derived from the
previous one with a rule. A quantum computer can generate all the numbers that will
be generated by following this rule in a superposition. We can calculate the result of
every generated number under modulo by N. After that, we collapse the superposition
to a single result. However, the result contains periodic signals that generate the same
output. If we feed this state to a Quantum Fourier Transform (QFT) module, we can
find this period. The period and the selected random number then be used to factor
the big integer (N ).

Grover’s and Shor’s algorithms are resource hungry in terms of qbits and gates, and
we will not see a quantum computer that can risk our current public key encryption
algorithms in the near future. However, the general practice for states is to keep the
secrets for 25 or 50 years. Even if we do not have the technology today, we might
gather the encrypted data at the moment and break them when quantum computers
are ready to make the necessary calculations. With that limitations, we are required to
mitigate a new quantum-safe algorithm as soon as possible. You can see this scenario
in Figure 1.1. In this figure; x represents the time passed before mitigation, y is the
required time before the information becomes public, and z is the time passed before
the first full-scale quantum computer started to work.

Figure 1.1: Unwanted information reveal
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1.4 Reasons to work on FPGA

We selected our computational units as FPGAs (Field-Programmable Gate Array).
Because they are the irreplaceable component of the military, aerospace, and com-
munication areas, even if they are sometimes backed up by processors for the time-
independent computational workloads, many designs from these fields do not include
an onboard processor because of the restrictions and security concerns. FPGAs have
more resilience against temperature and radiation. They might generate countless
high-speed communication ports as long as their IO (Input Output) port numbers let
them. The FPGAs might have hundreds of IO ports. They can support high-speed par-
allel synchronized IO operations. This process is essential for reading the ADCs and
feeding DACs used in communication and digital signal processing. Their incredible
power in parallel architecture makes them a perfect fit for working with high computa-
tional loads in real-time systems. While normal processors have interrupt controllers
to respond to the changing situation and support RTOSes (Real-Time Operating Sys-
tem) for time-bounded calculations, we can control everything in the FPGA within
a one-clock beat precision. This response time beats everything that a processor can
offer.

1.5 Other NTRU Implementations

(Bailey et al., 2001) is probably the first hardware implementation of the NTRU algo-
rithm. The purpose of that paper is to investigate four aspects. Firstly, they compared
Karatsuba-Ofman polynomial multiplication (Karatsuba & Ofman, 1962) and their
first algorithm. According to their results, algorithm 1 outperforms the Karatsuba-
Ofman algorithm. Secondly, the paper provides results for three different micropro-
cessors, which are MC68EX328 Dragonball, Intel 80386, and 37MHz ARM7 perfor-
mance comparisons. Thirdly, they provided closed source FPGA implantations that
build on a fixed parameter and can only perform encryption. They used the parame-
ters of (N, p, q) = (251, X + 2, 128). In that implementation, they defined the p as a
polynomial. Because x+ 2 and 128 are co-prime, this selection is valid.

(O’Rourke, 2002) only focuses on the polynomial multiplication process of the NTRU.
Starting with software designs and comparison, they went forward to hardware and
provided a scalable polynomial multiplier core design on FPGA. Their design uses
the number of gates between 1483 and 19270 according to the selected parameters.

(Kaps, 2006) in that doctoral thesis, they focused on the different algorithms’ power
efficiencies and analyzed Rabin’s Scheme (Rabin, 1979), NtruEncrypt, and ECC. The
NTRU algorithm is implemented only for encryption, while the decryption part is
discarded. The implementation for encryption uses 523 combinational elements and
2327 storage elements in their base design. But it might be increased up to 7000 and
9200, respectively, if the parallelization degree is increased. However, the parameters
used are insufficient to provide reliable secrecy with a maximum of 61 bits of security
against exhaustive search.

(Atici et al., 2008) is designed to be used in RFIDs and in the nodes of the sensor
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networks. This purpose forced the implementation to be highly power efficient. The
implementation is for ASICs and is focused on power consumption. But the evolution
of the NTRU algorithm makes this design’s parameters obsolete. The used parameters
are N=167, q=128, and p=3. The design spends 1651 combinational and 8848 non-
combinational elements for encryption and decryption.

(Kamal & Youssef, 2009) proposed a new approach by utilizing the statistical prop-
erties of the distance between the non-zero elements in the polynomials. Also, they
provided speed improvements for encryption and decryption processes. They man-
aged to increase the calculation speed by approximately 160%; furthermore, if the
parallelization is increased, it can reach up to 216%. They used the parameters up to
N= 251, q=128, p=3, which are insecure as general purpose cases. Their implemen-
tation spends 4838 FFs and 21654 LUTs.

(B. Liu & Wu, 2015) implemented a hardware multiplier for truncated polynomial
rings using LFSRs (Linear feedback shift registers) and claimed the design has the
best area-delay product. Their implementation uses 7294 logic elements, 3768 com-
binational elements, and 3526 registers.

(Farahmand et al., 2019) worked on a hardware and software co-design and compared
the different approaches (RTL vs. HLs) to the full software implementation. The main
goal of this design was speed. This design’s encryption parameters have to be decided
before the synthesis process. They used a minimum of 44257 LUTs and 29655 FFs,
and for increased security, 76972 LUTs and 49674 FFs were spent.

(Wera, 2020) focuses on IoT devices. Therefore one of the design criteria is compact-
ness. That design supports big polynomials for security, but changing the parameters
in runtime is not possible.

(Keersmaekers, 2021) replaces costly polynomial multiplications with NTT (Number
Theoretic Transform). This improves the time complexity. However, it doubles the
polynomial sizes. Because NTRU was not designed according to this transformation.

(H. Yu et al., 2021) focuses on the performance comparison between FPGA and GPU
architectures. As expected, FPGAs can perform better with increasing parallelism.
To get the best performance, they increased the resource utilization and spent half of
the resources of a high-end FPGA (Stratix V).

(Dang et al., 2021) compares CRYSTALS-Kyber, NTRU, and Saber according to
their performances. To do that, they implemented these algorithms on hardware.

(Hoffstein et al., 2017) investigates the security promises of the algorithm with dif-
ferent parameters and messages. You can see the simplified results in Table 1.5

1.6 Our Contribution

In this thesis work, we targeted FPGA-based embedded network devices. As these
devices’ resources are utilized for their own missions, our implementation needs to be
minimal. To succeed, we stored data in RAMs. Contrary to many implementations,
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Table 1.5: NTRUEncrypt security estimation according to Hoffstein in his 2017 arti-

cle

N q Original Security Estimate search cost

401 2048 112 145

439 2048 128 147

593 2048 192 193

743 2048 256 256

we make the polynomial multiplication in serial. With that method, we were able to
decrease the needed data at every cycle and did not have to store the coefficients in
FFs. This helps us to develop a flexible architecture to support different parameters.
One word of memory can hold our four coefficients. As we can reach four coeffi-
cients at the same time, we are able to speed up the serial calculation with a small
shifter and adder module. Also, by compressing the data, we stored different keys
in RAM without spending additional resources. That technique decreases the costly
flash operations before communicating with other devices that have different capa-
bilities or are using different parameters. As we are targeting network devices, we
have to be ready for fragmented packets. In this scenario, we can partially process the
data, contrary to waiting for the remaining part. Lastly, we implemented a serializer
and deserializer module for packing the NTRU’s word size information to bytes to
increase the efficiency of the communication channel.
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CHAPTER 2

QUANTUM COMPUTING

The first computation devices were analog. They made calculations by generally ro-
tating disks, roads, shafts, and gears. One of the well-known early analog computers
is the "Antikythera mechanism". By using this hand-powered solar system model,
the Ancient Greeks were able to calculate astronomical events years in advance (Efs-
tathiou & Efstathiou, 2018). With the evolution of technology, the paradigm shifted
to electronic devices. In these devices, the decisions are given by the voltage levels,
not by the gear positions. From their emergence, they have been improved drastically,
starting from vacuum tubes; now we have a few atoms wide transistors. The compu-
tation power that we have today might be enough to sustain a modern world’s needs.
However, tomorrow’s world requires new techniques. Quantum computing is the new
horizon.

Quantum computers use quantum superposition and quantum entanglement to work.
These properties let a quantum computer hold every possible state of the qbits and
make calculations on every possibility at the same time. While quantum comput-
ers will bring new horizons, they will not replace classical computational devices.
The classical computers were designed as self-sufficient systems. However, a quan-
tum computer needs many other complex systems to operate; even one of the helper
systems is a classical computer. You can see an example diagram of the quantum
computer in Figure 2.1. To control the qbits, we are using microwave signals. The
signals are generated and read by analog components with the help of FPGAs. FP-
GAs in the systems are connected to a classical computer for the calculations. Also,
the classical computer works as an interface module. (Sanders, 2017)

Many research centers and companies around the world are currently trying to in-
crease the qbit numbers of quantum computers. While we have many quantum com-
puters with small qbits, making a quantum computer with many more qbits is still
a serious challenge. We cannot combine qbits like we have combined the classical
processor cores in a CPU. Combining quantum computers like combining processors
in a server or cloud does not work either. All of the qbits in the system have to be a
part of a single circuit.

We stated that quantum computers could store multiple possibilities on their qbits.
Storing the data is meaningless on its own. Because when we need to receive the
results from the quantum computers, it will give out one of the random states. In
an unprocessed quantum system, all the probabilities of the states are equal. To get
meaningful results from quantum computers, we need to manipulate the possibilities.
This manipulation process requires additional qbits and gates. In (Orman, 2021), they
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Figure 2.1: Basic diagram of a quantum Computer

investigated the qbit requirements to break the standardized public key encryption
algorithms and provide time comparisons between classical computers and quantum
computers. The classical computer selected for that study was Intel’s Xeon Gold
6130. This processor has 16 physical cores that operate at 2100 MHz. The result of
that study can be summarized in Table 2.1 for RSA. Also, they provided calculations
for ECC. You can see the results in Table 2.2

Maintaining the entangled quantum states is named quantum coherence. Also, we
can define quantum coherence as the evaluation of how much the system obeys the
pure coherent states, not the probability distributions of the states. As quantum co-
herence is highly difficult to maintain, the researchers developed different methods
like using ion traps, optical traps, superconductive circuits, or using semiconductors
as carriers to maintain the coherence. However, quantum decoherence can still occur
with interference from outside. Quantum computers generally work in isolation with
near 0-kelvin temperatures to avoid the spontaneous self-decoherence effect. While it
can happen destructively, we also need quantum decoherence to get the result of the
calculations. After the possibilities are arranged to collapse the superposition to the
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Table 2.1: Quantum computer vs. classical computer comparison for breaking RSA

and required resources according to Orman

bit size
qbits

logical

qbits

physical

Toff

gates

Quantum

device

time (h)

Classical

device

time (h)

RSA 240 797 2406 8M 150M 1 8.766 ∗ 106

RSA 1024 1024 3092 10M 400M 1.5 7.305 ∗ 108

RSA 2048 2048 6189 20M 2700M 7 5, 264 ∗ 1018

RSA 3072 3072 9287 40M 9900M 13 1, 930 ∗ 1025

RSA 4096 4096 12386 50M 23000M 20 4, 387 ∗ 1030

Table 2.2: Required time for a quantum computer to break ECDLP and required

resources according to Orman

bit size
qbits

logical

qbits

physical

Toff

gates

Quantum

device

time (h)

224 2042 6M 84.3 B 288

256 2330 7M 126 B 432

384 3484 10M 452 B 1440

521 4719 14M 1140 B 3840

correct solution, we need to break the entanglement of the system. Before making an-
other calculation, we need to establish the quantum coherence again. The time spent
while doing that is also a critical criterion while evaluating quantum computers.

You can see the maximum number of qbits in one system according to years in Figure
2.2. The exponential increasing trend might indicate they will be ready for full-scale
computations in the not far future. IBM is expecting to active Osprey with 433 qbits
in 2022, Condor with 1,221+ qbits in 2023, and Kookaburra with 4,158+ qbits in
2025, according to their roadmap (Gambetta, 2022). While many research centers
and private companies are trying to increase the qubit numbers in the system, there
are active researches to optimize the quantum algorithms to decrease the qbit require-
ments. (Roetteler et al., 2017) in that article, they optimized Shor’s algorithm for
working on the discrete logarithm. The results of that article are used in (Orman,
2021).
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Figure 2.2: Maximum utilized qbits in single system vs. years

Quantum computers can be epoch-making in the following areas:

Cryptography: With the help of Shor’s and Grover’s algorithms, quantum comput-
ers have significant effects on all the well-known encryption algorithms. The
result can be ignored in the private key encryption algorithms because dou-
bling the key size can restore the previous security level. However, currently,
standardized public key encryption algorithms will not be able to provide secu-
rity. Because from classical computers’ perspective, their underlying problem
is non-polynomial. On the contrary, a functional quantum computer can solve
these problems in polynomial time.

Search Problems: There is no way to optimize unstructured search problems while
using classical computers. The time complexity of this process is O(N). But,
using Grover’s algorithm on a quantum computer, the time complexity will be
dropped to O(

√
N).

Quantum Systems Simulation: As the behavior of the atomic and molecular parti-
cles are tough to predict. Classical computers use massive resources to do the
calculations; however, a quantum computer might be able to achieve this task
effectively.

Computer-aided Chemistry and Biology: Processes like genome sequencing and
designing job-specific proteins are taking too much time. Because these sys-
tems are not constructed with basic rules and resemblance in the construction
of the blocks does not guarantee similarity of the functionality. In the future,
quantum computers might replace supercomputers in this area.
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2.1 Grover’s Search Algorithm

Grover’s algorithm works in unstructured search spaces. For classical computers, this
job has a time complexity of O(N). Because there is no way to optimize this process,
and the only way to guarantee success is to try every possibility. However, quantum
computers can do this job with O(

√
N) time complexity by using Grover’s Search

Algorithm. This algorithm was developed by Lov Grover in 1996 (Grover, 1996).
Because Grover’s Algorithm does not use any internal structure of the dataset, it can
be used in most search problems and can improve the performance quadratically. In
this section, we will explain Grover’s Search Algorithm without getting deep into the
quantum circuits.

In this algorithm, we have a black box module named Oracle. We show the possibil-
ities as quantum states like |0⟩, |1⟩, |2⟩, |3⟩, ..., |7⟩. For this example, we have eight
different states. The oracle adds a negative phase to the correct solution state. We can
represent our oracle in a matrix form.

oracle =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


At this point, we generated a correct solution pattern. We still do not know the solu-
tion. But, now we can check whether a solution is correct or not. After we feed our
oracle with the solutions, the correct one still has the same possibility of the wrong
states. But, the correct solution has a phase difference. The generated solution space
is fed into the amplification unit. The amplification unit will increase the possibility
of the correct state while decreasing the possibilities of the wrong states. We need to
repeat this process several times to increase the possibility of the correct state before
collapsing the superposition. The Grover’s algorithm’s visual representation is pro-
vided in Figure 2.3.

Figure 2.3: Visual Representation of the Grover’s Search Algorithm
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2.2 Shor’s Algorithm

Peter Shor developed this algorithm in 1994 (Shor, 1994). For classical computing
devices, our best way to factorize a number is General Number Field Sieve with
O(e1.9(logN)1/3(log logN)2/3) time complexity (Pomerance, 1996). This complexity is
big enough to accept that RSA is secure for practical key sizes like 3072 bits. While
running on a quantum computer, Shor’s algorithm has a time complexity of O(logN).
This reduction makes today’s trustworthy RSA encryption completely insecure for a
future with quantum computers.

In Shor’s algorithm, we are transforming the problem of integer factorization to fre-
quency determining. Assumed, we are trying to factorize the number N . Firstly, we
need to pick a random number g; it should be less than N . If we are not extremely
lucky, gcd(N, g) will be equal to 1. After that, we can take our unsuccessful guess
and convert it to a better one by calculating the new guess by gnew = gp/2 + 1. If we
try all the p values, we will find a common factor with a 37.5% chance. For classical
computers, following this algorithm does not make any performance improvements.
In contrast, quantum computers can make miracles with the following steps.

A quantum computer can calculate every exponent of a number at the same time with
a gate. However, the resultant information is not functional yet. Because all these
values are in a superposition, and if we want a result, the superposition will collapse
to a random state. You can see this process in Equation 2.1. After that, we will
feed this superposition to another gate that can calculate the difference between each
state and m ∗ N . You can see the result of this gate in Equation 2.2. There will be
periodically repeating numbers in the results.

|1⟩+ |2⟩+ |3⟩+ |4⟩+ .... ⇒ |1, g⟩+ |2, g2⟩+ |3, g3⟩+ |4, g4⟩+ .... (2.1)

|1, g⟩+ |2, g2⟩+ |3, g3⟩+ |4, g4⟩+ .... ⇒ |1, a⟩+ |2, b⟩+ |3, c⟩+ ...+

|8, a⟩+ |15, a⟩+ ...+ |22, a⟩+ ... (2.2)

After that, we collapse the result to a random state and feed it to the QFT module
Equation 2.3. This module will find the periodicity of the input. The result will be
equal to 1/p. If the p is even we can calculate the gp/2 + 1. If the calculated value is
not a multiple of N, it will share a factor with it, and we can calculate the GCD with
EEA.

|1, g⟩ + |8, a⟩ + |15, a⟩ + ... + |22, a⟩ + .... ⇒ |1/7⟩ (2.3)

In the above example, we showed the quantum states of Shor’s algorithm while fac-
torizing a number that satisfies gcd(N, 7) ̸= 1.
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CHAPTER 3

NTRU

NTRU (Nth degree-Truncated Polynomial Ring Units) algorithm was developed in
1996 by three mathematicians, Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silver-
man (Hoffstein et al., 1998). Firstly, it was a proprietary algorithm owned by Security
Innovation and distributed under paid licenses. In 2013, NTRU was released under
GNU Public License (GPL) and became open source. Daniel Bernstein, Chitchanok
Chuengsatiansup, Tanja Lange, and Christine van Vredendaal released a changed ver-
sion of NTRU which named NTRUPrime. They changed the algebraic structure of the
original NTRU algorithm with worries about security vulnerabilities in 2006. How-
ever, through the NIST PQC challenge, no attack was found to exploit these worries.
In the third round, the NTRU was a finalist, and NTRUPrime was an alternate candi-
date. However, they both could not see round four. An NTRU-based digital signature
algorithm, Falcon, will be standardized.

NTRU algorithm has three parameters, and they are (N, p, q). The parameter N de-
fines the length of polynomials used in the encryption. p and q values are used in the
modulo calculations. Even though these parameters can be selected freely, some pa-
rameters are optimized for efficiency and investigated more heavily for their security
promises. For example, establishing q as a power of 2 converts the modulo process
to binary "and" gates. If we take p as a small prime number, we can quickly write a
hardware accelerator for the modulo. Some of the most used ones are listed in Table
3.1. The usage of the parameters is explained in the following sections with numeric
examples.

NTRU algorithm uses Shortest Vector Problem (SVP) for cryptographic functions.
SVP is lattice-based, unlike RSA’s integer factorization or ECC’s discrete logarithm.

Table 3.1: Some of the recommended parameters

Security Margin N p q

128 bit 509 3 2048

192 bit 677 3 2048

256 bit 821 3 4096

256 bit 701 3 8192
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Figure 3.1: NTRU options security comparison

3.1 Lattice

Lattice is the space of possible vectors that can be generated from the given basis
vectors using only integer coefficients. The more mathematical definition can be
provided with L ⊂ Rn, b1, . . . ,bn ∈ Rn, L =

{∑
aibi : ai ∈ Z

}
. For example,

for (7,4) and (3,5) basis vectors, our lattice includes (17,13), (4,-1), but (3,7) cannot
be a part of our lattice.
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(a) SVP (b) CVP

Figure 3.2: Lattice Problems

3.2 Shortest Vector Problem

With a provided lattice basis vectors, the Shortest Vector Problem is trying to find
the non-zero u⃗ that minimizes the |u⃗|. SVP is a sub-problem of the Closest Vector
Problem (CVP). In CVP, a random w⃗ is also provided with basis vectors and trying
to find the u⃗ that minimizes the |u⃗ − w⃗|. So, CVP can be transformed to SVP by
selecting w⃗ = 0⃗. You can see the visual representations of SVP and CVP in Figure
3.2.

For example, if basis vectors are given as b⃗1 = (66, 216, 131), b⃗2 = (73, 207, 113),
and b⃗3 = (28,−48,−84) the shortest vector in this lattice should be u⃗ = (−2, 0, 1)
with |u⃗| = 2.08. To get u⃗ , we should select a1 = 1219, a2 = −1208, a3 = 276. With
that coefficients we can satisfy the equation u⃗ = b⃗1 ∗ a1 + b⃗2 ∗ a2 + b⃗3 ∗ a3.

3.3 Galois Field

The name was given in honor of French mathematician Évariste Galois. The Galois
Fields have finite number of elements in them. The elements in this kind of field
should satisfy the following field axioms.

1. Associativity of "+" and "*":
∀ a, b, c ∃ F
(a+ b) + c = a+ (b+ c)
(a ∗ b) ∗ c = a ∗ (b ∗ c)

2. Commutativity of "+" and "*":
∀ a, b ∃ F
a+ b = b+ a
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a ∗ b = b ∗ a

3. Identity of "+" and "*":
∀ a ∃ F
a+ 0 = a
a ∗ 1 = a

4. Inverse of "+" and "*":
∀ a ∃ F
a+ (−a) = 0
a ∗ (a−1) = 1 if a ̸= 0

5. Distributivity of "*" over "+" and "+" over "*":
∀ a, b, c ∃ F
a ∗ (b+ c) = a ∗ b+ a ∗ c
(a+ b) ∗ c = a ∗ c+ b ∗ c

In Figure 3.1, you can see the effect of the different parameters. This graph is taken
from the supplementary materials of the NTRU’s NIST PQC round 3 submission
package.

The following sections will provide numeric examples of how the NTRU algorithm
work. The parameters are selected as N = 17, p = 3, q = 64. These parameters are
too weak for real-life data security purposes; they are selected to be used in demo
calculations. The calculations are provided to help the users to familiarize themself
with the NTRU and provide a better understanding by showing the numeric examples.
Before starting the key generation process, we will explain the Extended Euclidean
Algorithm because it will be used while generating the keys.

3.4 Extended Euclidean Algorithm

The Euclidean Algorithm calculates the greatest common divisor (GCD) of two num-
bers with an iterative approach. With the Extended Euclidean Algorithm, we can
calculate the GCD with x and y coefficients that satisfies the equation a ∗ x+ b ∗ y =
GCD(a, b). EEA is an iterative algorithm. We start by dividing the bigger integer by
the smaller integer. In iterative cycles, we divide the divisor by the remainder until
we find a constant value as a quotient. The algorithm is expressed in Algorithm 1:
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Algorithm 1: Extended Euclidean Algorithm
Initialization:

a = num1
b = num2
s2 = 1
t2 = 0
s1 = 0
t1 = 1

1 while r ̸= 0 do
2 q = int(a/b)
3 r = a− b ∗ q
4 s = s2− q ∗ s1
5 t = t2− q ∗ t1
6 a, b = b, r
7 s2, t2, s1, t1 = s1, t1, s, t
8 end
9 gcd(num1, num2) = a

In a numeric example, we will take the inverse of polynomial x4 + x3 + x2 + 1 with
respect to x3 + 1 in the GF (7). To solve this problem with EEA, we need to convert
the equation to a ∗ (x4 + x3 + x2 + 1) + b ∗ (x3 + 1) = 1 mod 7. Some polynomials
are underlined to flag them for the next steps. They will be regarded as variables in
the backtracking algorithms.

(x4 + x3 + x2 + 1) = (x3 + 1) ∗ (x+ 1) + (x2 − x) (3.1)

(x3 + 1) = (x2 − x) ∗ (x+ 1) + (x+ 1) (3.2)

(x2 − x) = (x+ 1) ∗ (x− 2) + 2 (3.3)

We calculated the GCD(x4 + x3 + x2 + 1, x3 + 1) = 2. To find the inverses, GCD
should be equal to 1. Therefore, we need to multiply both sides of the equation by
4 before finalizing the calculations. To get 4 ∗ 2 = 1 mod 7 . Before proceeding we
need to rewrite these equations (3.1) to (3.4), (3.2) to (3.5) and (3.3) to (3.6).

(x4 + x3 + x2 + 1)− (x3 + 1) ∗ (x+ 1) = (x2 − x) (3.4)

(x3 + 1)− (x2 − x) ∗ (x+ 1) = (x+ 1) (3.5)

(x2 − x)− (x+ 1) ∗ (x− 2) = 2 (3.6)

We substitute the x+ 1 in the (3.6) with the (3.5).

(x2 − x)− ((x3 + 1)− (x2 − x) ∗ (x+ 1)) ∗ (x− 2) = 2 (3.7)

(x2 − x) ∗ (x2 − x− 1)− (x3 + 1) ∗ (x− 2) = 2 (3.8)

Now, we need to write the equation (3.4) into (3.10).

((x4 + x3 + x2 + 1)−(x3 + 1)∗(x+1))∗(x2−x−1)−(x3 + 1)∗(x−2) = 2 (3.9)

(x4 + x3 + x2 + 1) ∗ (x2 − x− 1) + (x3 + 1) ∗ (−x3 + x+ 3) = 2 (3.10)
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The last step is to make it compatible with the defined Galois Field.

(x4 + x3 + x2 + 1) ∗ (x2 − x− 1) + (x3 + 1) ∗ (−x3 + x+ 3) = 2 mod 7 (3.11)

We will multiply the two sides of the equation by 4.

(x4 + x3 + x2 + 1)∗ (4∗x2−4∗x−4)+(x3 + 1)∗ (−4∗x3+4∗x+12) = 8 mod 7
(3.12)

With taking the modulo.

(x4 + x3 + x2 + 1)∗(4∗x2+3∗x+3)+(x3 + 1)∗(3∗x3+4∗x+5) = 1 mod 7 (3.13)

The inverse of the (x4+x3+x2+1) is equal to (4∗x2+3∗x+3) under (3∗x3+4∗x+5)
on GF (7).

3.5 Key Generation

Like all public key algorithms, there are two sets of keys, public and private. To
generate these keys, two parties have to agree on the parameters. These parameters are
named (N,p,q) and can be shared on an unsecured channel or used as fixed numbers
for the implementations. After parameters are selected, we need to generate two
polynomials called (f,g) as our key generators. The key generation steps are listed
below.

• We need to randomly select f polynomial. The degree of the polynomial should
be equal to or smaller than N-1, and its coefficients should be one of these inte-
gers (-1,0,1). Also, the selected f polynomial should have inverses under both
p and q. We will name the inverse polynomials as fp, fq. The inverses can be
formulated as

fp ∗ f = 1(mod p)

fq ∗ f = 1(mod q)

If the inverses do not exist, we need to generate a new f polynomial and calcu-
late the inverses again.

As mentioned above, we will be using the NTRU(N = 17, p = 3, q = 64)
parameters to generate our public and private keys. We started by randomly
selecting the f and g functions.

f(x) = −x16 − x15 + x12 + x11 + x9 + x8 − x5 − x3 + x2

g(x) = x15+x14−x13−x12−x11+x10−x9+x8−x7−x6+x5+x4−x3−x2+x+1

Before we continue with inverse function calculations, we might check if the
function’s coefficients are balanced. f(x) has 5 ones and 4 negative ones, g(x)
has 8 ones and 8 negative ones. To calculate the inverse functions, we can use
the Extended Euclidean Algorithm. The numeric calculations can be carried
out in subsection Extended Euclidean Algorithm.
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f ′
p(x) = −x15 − x14 − x13 − x12 − x11 − x10 − x8 − x7 − x5 + x

f ′
q(x) = −28 ∗ x16 − 23 ∗ x15 + 22 ∗ x14 − 14 ∗ x13 + 16 ∗ x12

− 23 ∗ x11 + 8 ∗ x10 + 32 ∗ x9 − 26 ∗ x8 − 27 ∗ x7 − 29 ∗ x6 − 22 ∗ x5

+ 5 ∗ x4 + 11 ∗ x3 − 18 ∗ x2 − 25 ∗ x+ 14

We can calculate the preliminary h(x) with multiplying p, f ′
q(x), g(x)

hpre(x) = −20 ∗ x31 − 25 ∗ x30 + 17 ∗ x29 − 15 ∗ x28 + 29 ∗ x27

+ 4 ∗ x26 + 26 ∗ x25 − 22 ∗ x24 − 14 ∗ x23 − 29 ∗ x22 − 2 ∗ x21 + 2 ∗ x20

+ 17 ∗ x19 + 10 ∗ x18 − 12 ∗ x17 − x16 − 31 ∗ x15 + 8 ∗ x14 + 20 ∗ x13

+ 6 ∗ x12 − 18 ∗ x11 + 13 ∗ x10 − 25 ∗ x9 + 21 ∗ x8 + 23 ∗ x7 + 12 ∗ x6

+ x5 + 27 ∗ x4 + 12 ∗ x3 + 21 ∗ x2 + 31 ∗ x− 22

The last step to finish the key generation is taking the modulo of hpre(x) under
x17 − 1.

h(x) = −x16−31∗x15−12∗x14−5∗x13+23∗x12+31∗x11−22∗x10−21∗x9

− 17 ∗ x8 + x7 − 2 ∗ x6 − 28 ∗ x5 +25 ∗ x4 +14 ∗ x3 − 26 ∗ x2 − 23 ∗ x+30

• After fq is calculated, we can generate our public key and finish the key gener-
ation process. h = p ∗ fq ∗ g

• Private keys : f, fp, g
Public key: h

3.6 Encryption

NTRU algorithm works on the polynomials. Therefore, our secret message has to
be converted into a polynomial, and our coefficient rule above is still effective. With
these constraints, it is convenient to take the binary value of the message as the poly-
nomial. Also, on the encryption side, we need to generate the random polynomial r.
This random polynomial prevents attackers from finding the secret message. We have
to change the random polynomial at every encryption.

e = (((r ∗ h+m)mod(xN − 1)) (mod q))

Anybody, who knows the r, can calculate the secret message with m = e − r ∗ h.
Therefore, the r polynomial should be generated randomly, and after usage, it should
be destroyed.

In this example, we will encrypt the data "SE". Firstly, the ASCII message should
be converted to binary. ”SE” = 16′b0101001101000101. After the data is dig-
italized, we need to generate the message polynomial. Also, we need to use the
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R = xN − 1 = x17 − 1 and a random generated polynomial.

m = x15 + x13 + x9 + x7 + x6 + x3 + x

r = x15+x14−x13−x12−x11+x10−x9+x8−x7−x6+x5+x4−x3−x2+x+1

We will use the h(x) polynomial generated in subsection Key Generation.

h(x) = −x16−31∗x15−12∗x14−5∗x13+23∗x12+31∗x11−22∗x10−21∗x9

− 17 ∗ x8 + x7 − 2 ∗ x6 − 28 ∗ x5 + 25 ∗ x4 + 14 ∗ x3 − 26 ∗ x2 − 23 ∗ x+ 30

r(x) ∗ h(x) = −x31 +32 ∗ x30 +22 ∗ x29 +15 ∗ x28 − 2 ∗ x27 − 27 ∗ x26 − 27 ∗ x25

− 10 ∗ x24 − 29 ∗ x23 − 20 ∗ x22 − 24 ∗ x21 + 26 ∗ x20 − 13 ∗ x19 + 11 ∗ x18

− 23 ∗ x17 + 2 ∗ x16 + 19 ∗ x15 + 18 ∗ x14 + 16 ∗ x13 + 25 ∗ x12 − 28 ∗ x11

−5∗x10−17∗x9+4∗x8−17∗x7−20∗x6+16∗x5−10∗x4−19∗x3−15∗x2+7∗x+30

We can add the message polynomial.

r(x) ∗ h(x) +m(x) = −x31 + 32 ∗ x30 + 22 ∗ x29 + 15 ∗ x28 − 2 ∗ x27 − 27 ∗ x26

− 27 ∗ x25 − 10 ∗ x24 − 29 ∗ x23 − 20 ∗ x22 − 24 ∗ x21 + 26 ∗ x20 − 13 ∗ x19

+11 ∗ x18 − 23 ∗ x17 +2 ∗ x16 +20 ∗ x15 +18 ∗ x14 +17 ∗ x13 +25 ∗ x12 − 28 ∗ x11

− 5 ∗ x10 − 16 ∗ x9 + 4 ∗ x8 − 16 ∗ x7 − 19 ∗ x6 + 16 ∗ x5 − 10 ∗ x4

− 18 ∗ x3 − 15 ∗ x2 + 8 ∗ x+ 30

We need to take the mod under R(x).

(r(x) ∗ h(x) +m(x)) mod R(x) = e = 2 ∗ x16 + 20 ∗ x15 + 17 ∗ x14 − 15 ∗ x13

− 17 ∗ x12 − 13 ∗ x11 − 7 ∗ x10 + 21 ∗ x9 − 23 ∗ x8 − 26 ∗ x7 + 16 ∗ x6 − 4 ∗ x5

+ 30 ∗ x4 + 8 ∗ x3 − 28 ∗ x2 + 19 ∗ x+ 7

We can convert the encrypted polynomial to an array.

e = [7, 19,−28, 8, 30,−4, 16,−26,−23, 21,−7,−13,−17,−15, 17, 20, 2]

Finally, we can pack the array’s elements into binary format. Every element can be
represented with 6 bits. Because q = 64 = 26.

e = 102′b000111_010011_100100_001000_011110_

111100_010000_100110_101001_010101_111001_

110011_101111_110001_010001_010100_000010

e = 102′h74E421EF109A9579CEFC51502

To demonstrate the dangers of using the same random polynomial twice, we will pro-
vide an example. If we wanted to encrypt the message "SM". Converting ASCII to
binary we get m2 = ”SM” = 16′b0101001101001101. After encrypting this data,

26



we found the e polynomial coefficients as

e2 = [7, 19,−28, 8, 30,−4, 16,−26,−23, 21,−7,−13,−16,−15, 17, 20, 2]

e2 = 102′h74E421EF109A9579CF0C51502

To analyze the results, we take e⊕ e2.

102′h74E421EF109A9579CEFC51502⊕102′h74E421EF109A9579CF0C51502

= 1F000000

If we convert the binary information to the polynomials, we can see only one co-
efficient is changed. Every coefficient is represented with 6 bits in the encrypted
message. The change starts at the 25th bit and keeps 5 bits. From this, an adversary
can deduce only the fourth bit is changed in the message.

3.7 Decryption

To decrypt the encrypted message, we need to spend more computational power com-
pared to encrypting the secret message.

a = (((e ∗ f)mod(xN − 1)) (mod q))

b = a(mod p)

m = (((b ∗ fp)mod(xN − 1)) (mod p))

We will decrypt the message that encrypted the previous part. Also the f(x) and f
′
p

polynomials will be used.

e = 2 ∗ x16 + 20 ∗ x15 + 17 ∗ x14 − 15 ∗ x13 − 17 ∗ x12 − 13 ∗ x11 − 7 ∗ x10

+ 21 ∗ x9 − 23 ∗ x8 − 26 ∗ x7 + 16 ∗ x6 − 4 ∗ x5 + 30 ∗ x4

+ 8 ∗ x3 − 28 ∗ x2 + 19 ∗ x+ 7

f = −x16 − x15 + x12 + x11 + x9 + x8 − x5 − x3 + x2

f
′

p = −x15 − x14 − x13 − x12 − x11 − x10 − x8 − x7 − x5 + x

The process starts with multiplying e and f polynomials.

e(x)∗f(x) = −2∗x32−22∗x31−37∗x30−2∗x29+34∗x28+52∗x27+57∗x26

− 10 ∗ x25 − 8 ∗ x24 +56 ∗ x23 − 8 ∗ x22 − 32 ∗ x21 − 78 ∗ x20 − 126 ∗ x19 +21 ∗ x18

+39∗x17−4∗x16+30∗x15−33∗x14+34∗x13+62∗x12+15∗x11−2∗x10−46∗x9

+ 19 ∗ x8 − 6 ∗ x7 + 3 ∗ x6 + 29 ∗ x5 − 47 ∗ x4 + 12 ∗ x3 + 7 ∗ x2
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apre = e(x) ∗ f(x) mod R(x) = −4 ∗ x16 + 28 ∗ x15 − 55 ∗ x14 − 3 ∗ x13

+ 60 ∗ x12 + 49 ∗ x11 + 50 ∗ x10 + 11 ∗ x9 + 9 ∗ x8 − 14 ∗ x7 + 59 ∗ x6

+ 21 ∗ x5 − 79 ∗ x4 − 66 ∗ x3 − 119 ∗ x2 + 21 ∗ x+ 39

a = apre mod q = −4 ∗ x16 + 28 ∗ x15 + 9 ∗ x14 − 3 ∗ x13 − 4 ∗ x12 − 15 ∗ x11

−14∗x10+11∗x9+9∗x8−14∗x7−5∗x6+21∗x5−15∗x4−2∗x3+9∗x2+21∗x−25

b = a mod p = −x16 + x15 − x12 + x10 − x9 + x7 + x6 + x3 − 1

b ∗ f ′

p = x31 + x27 + x26 − x25 + 2 ∗ x24 + x23 − x22 − x21 − 2 ∗ x20

− 4 ∗ x18 − 3 ∗ x17 − 2 ∗ x15 − x14 − 2 ∗ x13 − x10 + x8 + 2 ∗ x7 + x5 + x4 − x

mpre = −2 ∗ x15 − 2 ∗ x13 + x9 + 4 ∗ x7 + x6 − 2 ∗ x3 − 5x − 3

m = mpre mod p = x15 + x13 + x9 + x7 + x6 + x3 + x

Decryption computations are completed. After that, we need to convert this data to
binary form.

m = 01010011_01000101

Converting binary data to ASCII, we can recover the secret text.

m = ”SE”
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CHAPTER 4

FIELD-PROGRAMMABLE GATE ARRAY

FPGA is a reconfigurable integrated circuit. The user can design the inner structure of
the IC using FPGAs. To do that, the user has to use one of the Hardware Description
Language (HDL) like Verilog or VHDL. FPGAs behave like Application-Specific
Integrated Circuits (ASIC). However, it can be updated or completely redesigned, un-
like ASICs. An FPGA contains look-up tables (LUT), flip-flops (FF), block memory
(BRAM), and interconnections. With these primitive blocks, FPGAs can mimic logic
gates like "Not", "And", "Or" and create complex logic functions. Also, some FPGAs
can include hard coded multicore ARM processors, Digital Signal Processing (DSP)
blocks, and specific high-speed digital communication lines like JESD or artificial
intelligence cores. You can see an FPGA model in Figure 4.1.

Figure 4.1: FPGA model representation

The CLBs are the core component of the desired logical functions. They are the
decision units. They can change their outputs according to the inputs. Also, they
have the ability to store the previously generated output results by using the internal
flip-flop (FF). A basic model of CLB is provided in Figure 4.2.

Our model CLB has a LUT4 primitive; with that block, we can hold 16 scenarios and
generate two possible outputs. With the FF block, we can store this result under the
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Figure 4.2: Simple model of CLB

control of the other logical blocks. It can save a new value whenever it requires to
do that. The FF block is made from SR-latch. By connecting the reset pin to the set
pin through a "NOT" gate, we can make a Data Flip Flop (DFF). In DFFs, the signal
applied to the D pin can be saved when Enable signal is provided. We can model
it with a 5 NAND gate like in Figure 4.3. Lastly, the CLB block has a multiplexer
(MUX). The multiplexer in the circuit can be used to select which data we want to
see in the output. It can output the stored data or directly bypass the logical function’s
result.

Figure 4.3: Inside of the Data Flip Flop

To generate complex and meaningful logical functions, we need to connect many
CLBs to each other. To do that, we need to carry the output signals in the FPGA
fabric. This job can be accomplished by the Switch Matrix elements. They can
generate physical lines between CLBs. The length of these lines is generally the
limiting factor of the maximum clock speed that the design can operate.

The IO ports of the FPGA devices are more complicated than the microprocessors’.
They support single-ended or differential signals, can change the drive strength and
slew rate, can activate termination resistors, and are able to support different standards
like LVDS, HSTL, SSTL, and HSUL. You can see a basic representation of an FPGA
IO port in Figure 4.4 without the differential signaling support. The pull-up and
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pull-down controller allows us to change the input characteristics of the pin. This
characteristic determines the value of the input while a driving signal does not exist.
The enable signal lets us make the buffer’s output floating (high impedance) while
the pin is in input mode. Also, from that buffer, we can adjust the output parameters
like driving strength and slew rate.

Figure 4.4: Basic electronic design of the FPGA IO port

Combining the CLBs, switch matrices, and IO ports, we can create every logical func-
tion we need. However, to improve the functionality, we need to add BRAM (Block
RAM), DSP, and PLL (Phase Locked Loop) blocks. Also, the new trend is to include
internal RISC-based CPUs. The BRAM blocks increase the data storage capabilities
of our design without needing to keep the necessary data in the FFs. DSP blocks
contain specialized functions like multiplication and accumulation. These blocks are
hard coded to the FPGA fabric to increase the performance. The last mention-worthy
block is the PLLs. By using PLL blocks, we can change the frequencies of the clock
signals.

As mentioned before, FPGA architecture is defined by the user and does not dictate
number formats like processors. In the provided examples, "N" represents the bit
number of the system, and "n" represents the order of the specific bit starting from 0.
The most used data formats are listed below:

• Unsigned: Without any special rule, every nth bit represents the 2n component
of the number.
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• Signed Magnitude: Despite the unsigned numbers, the most significant bit rep-
resents the sign of the number. For example, 4′b0111 is equal to 7 and 4′b1111
is equal to -7.

• Two’s Compliment: In this mode, the most significant bit has a value of −2N−1,
and other bits have their normal value of 2n. If we use the previous exam-
ples, 4′b0111 will be equal to 7. However, 4′b1111 will be equal to -1. In
2’s complement system we can represent the numbers −(2N−1),−(2N−1 −
1), ...,−1, 0, 1, ...,
(2N−1−2), (2N−1−1). For a four-bit number system, we can represent numbers
from -8 to 7.

• One’s Compliment: Like the two’s complement system, the most significant bit
has a special value; in 1s complement, this value is 2N−1−1. This will generate
the representable numbers −(2N−1−1),−(2N−1−2), ...,−1,−0, 0, 1, ..., (2N−1−
2), (2N−1 − 1).

The most important feature of this format is the negative zero. In 2’s comple-
ment mode, we have uneven rounding errors around 0. Because every positive
number that is smaller than 1 will be rounded to 0, every negative number that
is bigger than -1 will be rounded to -1. However, by using 1’s complement
method, we can round numbers bigger than -1 to -0. This will create symmetry
in rounding with negative and positive numbers.

The steps to deploy a code on an FPGA can be different from vendor to vendor.
However, we can inspect the steps from one vendor, for example, Xilinx, and develop
a general understanding of the process. Xilinx generates FPGA binary files in the
following four steps.

• Synthesis: In this step, the HDL code is converted to the logical functions, and
the netlist code is generated. Even if the structural block is changing between
different FPGA classes, this process is independent for all of them.

• opt_design: This is the first FPGA-dependent step. The netlist is optimized
to the characteristics of the FPGA. From the netlist, the logical functions are
converted to the FPGA’s structural elements (LUT2, LUT3, LUT4, LUT5, and
LUT6 primitives).

• place_design: In this step, the decided primitives are selected from the fabric of
the chip. The more successful results in place design step can make the routing
easier.

• route_design: Because of the physical limitations of the three-dimensional real
world, we cannot connect all the logic blocks in the perfect way with zero
distances to the other blocks. Therefore, we need to find an optimum solution
for the connection paths. In this step, the implementation tool decides which
block connection can handle how much time delay and try to generate a data
path with switch matrices that satisfies these requirements. This step generally
takes most of the time in the implementation step.
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• write_bitstream: In this step, the design is converted to the FPGA programming
files. These files can be written to the SD Memory Card or EEPROM flash, or
they can be directly used with a JTAG connection.

There are three different technologies for FPGA logical structures. The most com-
monly used one is SRAM. In SRAM-based FPGA, bit data is stored with transistors.
These kinds of FPGAs are easy to produce and can gain advantages from the de-
velopments in the CPU and GPU design. Because they use the same architecture.
However, they are more vulnerable to outside disturbers like power fluctuations or
radiation. Therefore, even if they are perfect for general purpose use cases, it needs
extra protective precaution for a space mission. Their most important advantage is
this class of FPGA can be programmed infinitely many times.

The second type of FPGAs is Antifuse FPGAs. A normal fuse is a circuit protector.
Suppose we draw a high current from a fuse. It will break, and the circuit becomes
open. However, the process is reversed in anti-fuse designs. If we apply high volt-
age to an anti-fuse, the nonconducting part of the circuits are welded together, and
the circuit becomes closed. Activating the anti-fuses is done at one time while pro-
gramming the FPGA. The problem is we only program this class of FPGAs one time.
However, their resistance to power problems and radiation makes them more suitable
for aerospace industries. Also, their routing performance is generally better because
of the fixed circuits. They have lower power requirements. Thus, they produce less
heat. An example of an anti-fuse is provided in Figure 4.5.

Figure 4.5: Anti fuse example

Every switch is open at the beginning of programming because of the dielectric insu-
lator. With applying a high voltage while programming, the insulator deforms, and
a silicon-based link forms between the fuse caps. Because forming conductive links
takes time and is done one by one, programming an anti-fuse FPGA is a slow process
compared to others.

The last type of FPGAs is Flash-based ones. These type of FPGAs can be pro-
grammed several times, similar to the SRAM-based ones, and has fixed circuit prop-
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erties like anti-fuse-based ones. They are the new players on the field.

The parallelism capability and highly configurable architecture come with develop-
mental difficulties. In microprocessors, there is only a couple of registers and some
basic interrupts. Their architecture is generally RISC-based and does not include
highly complex runtime optimization tools. The computation blocks are not special-
ized. Because of this, we need to combine the basic operations to get the required
calculations. They are mostly used in embedded devices. The microprocessors are
generally required to communicate with other chips, read data from measurement
tools, or drive actuators. To do these jobs, they have many communication ports
like UART, SPI, or I2C. Generally, microprocessors carry their own RAM and ROM
blocks on them to increase their usability.

The CPU is the workhorse of computational devices and can be seen as an art piece. It
is so flexible that it can process every computational work of the user. Generally, they
read a single instruction and execute them on single data. The architecture is named
SISD. They lack parallelism to the rest of the list. However, they generally have faster
clocks because of the optimization efforts put into them. To get the best performance,
processors have powerful runtime optimization tools like adaptive branch predictors,
out-of-order executors, and virtual cores. The conventional design principle of the
CPU is taking steps to increase the computational power in the expanse of area usage.
Therefore they have many specialized computational blocks for complex calculations.
Their main architecture is CISC-based. CPUs do not have standalone applications and
have to communicate with the other parts of the computers; this requires high-speed
communication. To enable that, it implements PCI and SATA protocols.

Figure 4.6: Sample CPU architecture

You can see a simplified multicore CPU design in Figure 4.6. We have a single dram
block and combined L2 cache for most used or recently accessed data. A simplified
core contains a controller that reads the instructions and arranges the control signals,
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an L1 cache that exclusively belongs to the controller, and ALU that makes the cal-
culations.

GPUs are developed to manage the visual data to put on the screen. Because of the
timing requirements to generate video signals and the requirements of manipulating
many pixels at the same time, this is not a CPU-friendly process. To handle a prob-
lem like that, we need many processing units. These units can be small and have to
calculate only basic operations for that time. Generally, we need to make the same
calculations on many pixels. This problem can be solved by architectures similar
to the SIMD. However, in their evolution throughout time, they became much more
capable; they are specialized to handle computationally intense parallel works like
image manipulation, video processing, gaming, and simulations. With the current
trend of popularity in Artificial Intelligence and crypto-currency mining, they gained
new computational capabilities for their core units and increased numbers of these
units. A simple GPU with three cores is provided in Figure 4.7. In reality, the core
numbers are much higher. The main difference between GPU and CPU is the num-
ber of ALUs connecting to one controller. In GPU architecture, a single controller is
connected to multiple ALUs to increase the parallelism.

Figure 4.7: Sample GPU architecture

FPGA is like the Swiss knife of computation devices. It can simultaneously read
practically infinite peripheral devices, can run huge neural networks, demodulate ra-
dio signals, encrypt data streams and write to disks, and drive other units like GPUs
at the same time. Contrary to the CPUs’ approach of allocating time slots for the
required computations, every functionality is implemented in different parts of the
fabric. The limiting factor is the number of logical elements in the FPGA. It is an
empty canvas for digital circuits. Every need of the user can be implemented on this
canvas.
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ASICs are miniaturized circuit blocks that can include both analog and digital func-
tionalities. These circuits are hard coded on the silicone. From the digital design
perspective, it came after FPGA prototyping. FPGAs have multiple layers of funda-
mental blocks. However, the control of the layers’ placement is in the hands of the
manufacturer. While designing the chip, one can include analog components, im-
prove the layer placements, and optimize critical parts. Most importantly, after the
initial cost of development, the ASICs are highly cost-efficient for mass production.

In Figure 4.8, we provided a general rule of parallelism versus development speed.
There can be outliers, like writing a program with a high-level programming language
for CPU might be easier than developing a micro-processor program with assembly
language.

Figure 4.8: Parallelism vs. development Speed

The explained architecture styles require different development strategies and opti-
mization techniques. We have to consider the hardware accelerators deployed with
our target device, memory response time, cache size, core count, clock frequency,
and inner behaviors of the system. Generally, the slowest part of a computational de-
vice is the memory because we can increase the computational power by increasing
the frequency or using more computational cores. However, using a brute-force-like
technique does not solve the memory response time. We need to adapt our program-
ming approach to go around this bottleneck. In (Tezcan, 2021), they prevented the
bank conflicts in shared memory accesses. In this way, they broke the speed record of
AES operations on GPU, with 878.6 Gbps throughput using RTX 2070 Super. That
result can beat the AES hardware core in the processors or FPGA implementations
like COPACOBANA and RIVYERA.

As stated before, FPGA and ASIC-based devices can work efficiently on the calcu-
lation that requires bit manipulation. However, CPUs and GPUs have fixed word
sizes that their ALUs can process. Therefore, using an algorithm designed for em-
bedded devices might be inefficient for more complex computational devices. How-
ever, in (Tezcan, 2022), they changed the bitwise operations in the DES, 3DES, and
Present algorithms to table-based operations. That way, they provided an optimiza-
tion method that can be used to search 3.87 billion keys per second for DES and 1.89
billion keys for Present on an RTX 3070. These results show that the 80-bit key size
is too short for an acceptable secrecy level.

Because of their user-designed hardware architectures, FPGA is immune to hardware-
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based attacks like Meltdown, Spectra (Kocher et al., 2019), or Row hammer (Y. Kim
et al., 2014). Also, because everything is restrained by the application-specific hard-
ware, there is no way to use a bug to exploit the whole system. They have specific
vulnerabilities like securing the code. This problem is mitigated by writing encrypted
bitstream to the flash memory. This problem does not occur in the anti-fuse FPGAs
because the code is converted into the fixed circuit while programming.

4.1 Side-Channel Attack

The side-channel attacks are carried out from outside the cryptographic device with-
out gaining access to the internal mechanisms. In these attack methods, adversaries
observe the cryptographic device while working and try to gather useful informa-
tion about how the encryption or decryption processes keep going. The information
gathered might be the time needed to encrypt the data, the power spent to make the
necessary calculation, and the thermal images of the processing units. These types
of attacks generally require specific measurement tools and controlled access to the
interested devices. The inner mechanism of side-channel attacks and some methods
to prevent them is investigated in (Standaert, 2010).

Timing Attack: In these types of attacks, the adversaries can measure the time spent
to encrypt the data. By analyzing the timings, the number of calculations can
be guessed. The elapsed time can be determined from another application that
measures the processor usage or spying on the IO activities like ethernet port
or serial terminals. After that, the adversaries can deduce the distribution of the
bits. The implementation should not take conditional computational shortcuts
and spend the same amount of time for every encryption or decryption pro-
cess to mitigate the timing attacks. Generally, the civil systems are optimized
for speed to keep up with countless requests with fewer resources. Therefore,
many systems we use daily can be open to this type of attack. For example, in
(Brumley & Boneh, 2005), they showed the OpenSSL is vulnerable, and they
extracted private keys from a web server.

Power-Analysis Attack: Doing complex calculations requires more energy than
keeping the device idle. If the adversaries have access to the power line of the
cryptographic device, they can use a sensitive oscilloscope to profile the time
versus energy usage. This information can be used to determine the device’s
state and periodic processes. With the developments in the artificial intelligence
field, the data captured from the power lines can be interpreted more accurately
(Lerman et al., 2014).

In Figure 4.9, you can see the power consumption while doing RSA encryption
steps. The figure is adapted from https://commons.wikimedia.org/wiki/File:
Power_attack.png.

Environment Monitoring: We gather the highly specific side channels and try to
find ways to exploit them in this category. For a hypothetical cryptographic
device, these attacks might be observing the Electromagnetic Interfaces (EMI)
with an antenna and spectrum analyzer, capturing the coil whining noise from
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Figure 4.9: Current drawn while processing

the power supply with a microphone, and measuring the voltage surges in the
whole power system. The adversaries can be highly creative for specific devices
under specific environments. An out-of-topic interesting example might be the
transcribing of a conversation by only using a high-speed camera that records a
foil bag of potato chips in the room.
https://news.mit.edu/2014/algorithm-recovers-speech-from-vibrations-0804
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CHAPTER 5

IMPLEMENTATION

We choose to implement the algorithm on FPGA because many communication de-
vices that use Software Radio Techniques do not include a processor, specifically in
military or aerospace areas. Because FPGAs are irreplaceable for SDR-based projects
for the required IO bandwidth and can do every calculation a CPU does. Because of
this reason, while a device is equipped with an FPGA, the designers might not add
additional processors. Also, traditionally FPGAs are more resistant to harsh environ-
ments like temperature changes and radiation.

The main idea behind our implementation is to provide a secure communication chan-
nel for remote embedded devices. More specifically, we targeted small ad-hoc and
mesh network capable embedded devices. From a node’s perspective, the connected
devices and the communication routes to the unseen devices can be changed in sec-
onds in this type of network. A mesh network representation is provided in Figure
5.1. Also, we might need to generate clearance levels in the network. Furthermore,
some of the devices can be captured by adversaries after the network is established.
The symmetric key encryption algorithms are inadequate to deal with these kinds of
scenarios. However, because of their efficiency in both speed and hardware require-
ments, they are still indispensable. We need to use public key encryption algorithms
to overcome the shortness of the symmetric key encryption algorithms. We have been
using the RSA and ECC algorithms to communicate on insecure channels. But due
to the recent developments in quantum computers, today’s standard PKE algorithms
are risky to use in devices that will be supported for a long time.

After we have defined the use case of the implementation, we can determine the
restrictions. First of all, the targeted devices have different main roles other than
encrypting and decrypting PKE messages. These different roles might need to be
performed with various kinds of hardware. In some of the used hardware and main
role combinations, most of the resources might be utilized. Therefore our implemen-
tation has to be highly area efficient. Most of the other implementations make the
multiplications in parallel and store the data in registers between operations. Unfor-
tunately, this approach requires so many resources that an embedded device might be
unable to spare. Therefore, we will shift the workload to the BRAM modules from
logical gates at the expense of calculation time. To provide freedom in parameter
selection, we do not restrict the bit sizes of the coefficients. N and q parameters of
the NTRU can be changed on the fly with the help of the ram-based design.

As we are targeting to optimize the area usage of the device, we are choosing to make
the calculations serially. However, parallelization and pipelining optimizations can be
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Figure 5.1: Representation of Mesh Network

implemented with little to no hardware cost. For example, the read requests from the
RAMs are executed in parallel, and the new requests are issued before the previous
one is even completed. Without parallelism and pipelining, when we issue a read
command, we need to wait to get the response and have to gather all the necessary
data before calculations.

In this design, we wanted to generate an optimum solution for embedded devices
with low processing power on a network. Our optimization proposals are generated
for these devices.

In our algorithm, we used the same processing architecture for both encryption and
decryption. Because in the NTRU algorithm, the encryption calculations can be done
with the first part of the decryption module. The implementation utilizes three block
ram modules to store all the necessary information to make the cryptographic calcu-
lations. In most of the FPGA architectures, to reach data stored in the Bram takes two
cycles without output registering. You can see the timetable of issued commands and
spend time executing them in Figure 5.2 with a serial non-pipelined architecture. For
every step of the polynomial multiplication and summation, the device spends eight
cycles.

We took two optimization steps for the data storing part. Firstly, we parallelized the
commands. As we are working on the FPGA, Bram interfaces are independent of
each other. So, we can issue all the commands at the same time. Also, even if the
BRAMs have a latency value of 1, their throughput is one too. This means we can
issue new commands before the previous one is finished and retrieve the results in
the issued order. You can see the parallel and pipelined read and write architecture in
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Figure 5.2: Serial and blocking operations

Figure 5.3.

Figure 5.3: Parallel and pipelined operations

Most popular FPGA manufacturers design their BRAM modules dual ported. The
first port does not have writing ability; it can only read the memory. On the con-
trary, the second port can execute write operations without reading what is stored in
the memory. In Xilinx FPGAs, these modules are selected with "Dual port RAM".
Xilinx also offers a "true dual port ram" that can write and read from both of the
ports. However, this option will double the resource usage. As we do not require it,
we selected to continue with "dual port ram". This feature enables us to simultane-
ously execute read and write operations. However, as shown in Figure 5.3, we also
combined the calculation and write steps. This is done by only using combinational
logic without registering the data before writing it to the RAM. While polynomial
multiplexing requires two values, we do not need to read two of them from memory
at every cycle. One of the variables can be stored in a register and used repetitively.

5.1 Memory Scheme

We designed our memory scheme to maximize memory utilization without decreasing
the flexibility of our design. We wanted to change the NTRU parameters on the fly.
Therefore, the implementation should handle the changing numbers of coefficients
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and numbers of bits in them.

Figure 5.4: Data plan in the first RAM

In both encryption and decryption, we need three memories to store the required data,
inter-products, and the results. The first RAM is designed to be less volatile than the
other ones. It holds the random numbers for the encryption and the private keys for
the decryption. Because we predetermined the q value as 3, everything we store in
this memory block will be 2 bits long. In Xilinx FPGAs, the main memory has 18
bits width and 1024 address depth. Therefore we can combine multiple data into a
single ram word. We utilized 16 bits of the memory width. The proposed method to
store data can be seen in Figure 5.4.

The lower quarter of the ram is allocated for the random data. For deterministic sys-
tems, random number generation is a challenging process because of the required
entropy. However, our target devices have radio communication units and can con-
stantly read noise from their ADCs. The noise readings can be fed into hashing
modules or feedback systems to ensure randomness. Even if we work on a real-time
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system, true random generating can still be slow. Therefore, having a complete set
of random data makes us ready to start the encryption immediately. Also, using ran-
dom data that was generated an unknown time ago can increase the resistance against
side-channel attacks.

Our 2-bit random variables are stored in 4 bits of words to use the same logic with
the decryption. Therefore, we can store one additional random data set in the same
memory region. If the random number generation is slow, we can do consecutive
encryptions with that method. However, we need to select which data set we want to
use when we read the word. To do that, we can deploy a basic 2-bit multiplexer.

The other three quarters are reserved for the private keys. We have two polynomials
as our private keys. We can combine the f and fp coefficient into one 4-bit word as
we can store four combined words in a single memory location. As we can reach 4 of
them, we will use the 4-step multiplier and adder in Figure 5.7. We will select the f
or fp polynomial by using a multiplexer according to the steps of decryption.

In a centralized network, we do not need to use different keys to communicate with
different nodes. However, we assume our target devices are on a mesh network. In
these types of systems, we might not be in charge of all the nodes and cannot control
which device supports which parameters. Therefore, we are storing multiple private
keys in the memory.

The second memory stores the public key in encryption calculations. We assumed we
would not send multiple messages to the same node one after another. Therefore, we
will not store the public keys of other nodes in the memory. It might be provided at the
beginning of the communication or can be stored in flash memory. While decrypting,
this memory starts with the encrypted message.

While encrypting, the third memory starts with the secret message and directly forms
the encrypted message. In decryption, we do not need to load any data to this memory
before starting.

The last 2 bits of the first RAMs address are used to select which region we want to
reach. We assumed the maximum of the N parameter would be 1024 in this imple-
mentation, considering the suggested parameters. However, it can be easily increased
in the future.

5.2 Standalone Encryption

Firstly, we implemented the encryption and decryption parts independently. Also, this

version does not compress the data and stores all the coefficients in different memory

locations. We provided the rams’ contents through the encryption in Figure 5.5.
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(a) Start of the encryption (b) After the polynomial multiplication

(c) Finalization

Figure 5.5: Contents of the memory while encrypting

To start the encryption, we assumed that we had enough random data, received the
public key, and generated the secret message. We start with setting the memory ad-
dresses for all three of them. The first one and the second one will be set to N .
However, the third memory will be set to 2 ∗ N as it is the sum of two addresses
because the polynomial multiplication will increase the order of the polynomials.

When we set the address registers, the BRAM module starts the read operation. In
FPGA architecture, this read operation takes two cycles. However, we can issue new
read orders before the first one ends. Therefore we will decrease the read address of
the second and third memories.

Two clocks after the start, the data can be read in the output port of the memories.
We can start the polynomial multiplication by using these coefficients. In our archi-
tecture, we do not need to read the first polynomial’s coefficients at every turn. So
we can cache this value and use it directly. We will multiply the outputs of the first
and second RAMs and add them to the output of the third RAM. We will write the
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calculated value to the third RAM. The write address should be read address minus 2
by considering the latency of the memory modules.

We are not changing the read address of the first memory. However, the other ad-
dresses will be decreased by one at every clock until we reach the 0 in the second and
third read addresses. After that, we will continue calculations for two more cycles
because of the latency.

Now, we will decrease the first memory’s read address by one. Set the second one to
N and third one to address1 + address2. By repeating the previous and this step up
until the first memory read address extends 0.

After we calculated the polynomial multiplexing, we can continue with calculating
mod(xN − 1). To do that, we need to read the content of the x +N and x addresses
in the third memory. After that, we will calculate the bram3[x] + bram3[x+N ] and
write back to the third memory’s x location. In this process, x starts from N − 1 and
goes to 0.

The last step should be taking mod q of the results. This step is done while reading
the data from memory with the help of the "mode_by_q" module. The decryption
method is provided in the Algorithm 2. This module spends 344 LUT, 115 FF, and 4
BRAM (18K).

Algorithm 2: NTRU encryption algorithm on FPGA
Initialization:

i = N ; j = N cache bram0[i] into vara
1 while i >= 0 do
2 while j >= 0 do
3 read bram1[j] ;read bram2[i+j]
4 write vara ∗ bram1_output+ bram2_output into bram2[i+ j − 2]
5 j = j − 1
6 end
7 i = i− 1; j = N
8 cache bram0[i] into vara
9 end

10 j = N − 1
11 while j >= 0 do
12 temp= bram2[j+N]
13 read bram2[j]
14 load bram2_output+ temp into bram2[j − 2]
15 j = j − 1
16 end
17 We will get the results through the mod_by_q module
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5.3 Standalone Decryption

The beginning of the decryption is the same as the encryption processes. We used

the same polynomial multiplication algorithm. Therefore, the algorithm will not be

repeated in this subsection. We assumed the multiplication of the f polynomial and

the secret message is calculated in the same way in Section 5.2. You can see the

information stored in the memories in Figure 5.6a.

(a) Start of the decryption (b) After the polynomial multiplication

(c) After the modulo calculation (d) Final polynomial multiplication

Figure 5.6: Contents of the memory while decrypting

After the polynomial multiplication, we need to calculate the mod(xN − 1). The
difference between the encryption and decryption in this step is the target memory of
the process. While encrypting, we are writing the calculated values to BRAM2. In
contrast, we store the result in BRAM1 when we decrypt a message. We will read the
values in address a+N , a in the BRAM2 and write the result to BRAM1’s a address.
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However, we need to use an intermediate step before writing. As stated before, we
stored the information in GF (216) for unifying the calculations. The next step in
the calculations requires changing the field from GF (q) to GF (p). To get ready for
this process, we fed the results to the "mode_by_q" module, and the output will be
written to the BRAM1. The a value should start with N and goes to 0. With that,
we destroyed the encrypted message by writing the inter-product on it. You can see
values stored in the RAMs in Figure 5.6b. In this figure, the polynomial b is equal to
(amod(xN − 1))modq).

The next calculation is the polynomial multiplication of the fp and b. However, b
is still in the GF (q). We connected the "mode_by_3" module’s input to the output
of the BRAM1. And use the output of this module. As we stored fp in GF (p) and
b polynomial is converted to GF (p) while reading the value. We can calculate the
multiplication. The process is the same as before. We calculated the results with two
while loop serially and wrote the results to BRAM2.

The last step is to calculate the result of (fp ∗ b)mod(xN − 1) and write it to BRAM2
with the same method explained before. The components should be read from BRAM2,
and the result will be written to the same memory. Because our registers are designed
to work in GF (216), the calculations made in GF (p) can be easily made and stored
in the same logic. Now, we have the pre-decoded message ready in the BRAM2. We
will use the same "mode_by_3" module to convert the results while reading the pre-
decoded message; the output of the module gives us the decoded message. We added
multiplexers to the input of the "mode_by_3" module to decrease resource utilization
by using the same module for different parts of the calculations.

The algorithm is provided in Algorithm 3. This implementation uses 623 LUTs, 152
FFs, and 4(18K) BRAMs.
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Algorithm 3: NTRU decryption algorithm on FPGA
Initialization:

i = N ; j = N cache bram0[i]’s first 2 bits into vara
1 while i >= 0 do
2 while j >= 0 do
3 read bram1[j] ;read bram2[i+j]
4 write vara ∗ bram1_output+ bram2_output into bram2[i+ j − 2]
5 j = j − 1
6 end
7 i = i− 1; j = N
8 cache bram0[i]’s first 2 bits into into vara
9 end

10 j = N − 1
11 while j >= 0 do
12 temp= bram2[j+N]
13 read bram2[j]
14 load bram2_output+ temp into bram1[j − 2] through the mod_by_q

module
15 j = j − 1
16 end
17 i = N ; j = N cache bram0[i] into vara while i >= 0 do
18 while j >= 0 do
19 read bram0[j] ;read bram1[i+j] through the mod_by_3 module
20 write vara ∗mod_by_3_output+ bram2_output into

bram2[i+ j − 2]
21 j = j − 1
22 end
23 i = i− 1; j = N
24 cache bram0[i]’s second 2 bits into into vara
25 end
26 j = N − 1
27 while j >= 0 do
28 temp= bram2[j+N]
29 read bram2[j]
30 load bram2_output+ temp into bram2[j − 2]
31 j = j − 1
32 end
33 We will get the results through the mod_by_3 module

5.4 Combined Encryption and Decryption

In this module, we combined the architectures of encryption and decryption because
we can use the decryption module’s first polynomial multiplication part for encryp-
tion. Also, in this module, we realized our improvements. The first improvement is in
memory management. We actualized the method mentioned in Section 5.1. With that
method, we increased the memory efficiency and were able to store multiple keys at
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the same time. Without using this method, we would have needed to read flash mem-
ory more frequently. Flash memory operations are generally avoided because they
are very slow compared to BRAMs. For example, a general-purpose flash memory
Infineon S25fl256’s read speed is 6.25 MBps in normal mode.

By implementing the proposed memory improvements, we can reach eight polyno-
mial coefficients in one clock. However, in our design, only four of them will be
useful for each step of the calculations. The desired coefficients are selected through
four 2-bit multiplexers. The outputs of these multiplexers are routed to the multi-stage
processing unit. You can see this process in Figure 5.7. The calculations are carried
out with four multipliers and four adders connected to four 16-bit registers.

Figure 5.7: Polynomial calculation architecture

In the design provided in Figure 5.7, we assumed we were using the least significant
bits of the coefficient words. To do that we select, ax_4, ax_5, ax_6, ax_7 with
using the multiplexers. The selected coefficients will be multiplied with the selected
coefficient coming from the BRAM1 in parallel. The calculated result should be
accumulated before being written to the memory. The right-most register does not
have an accumulator and directly takes the multiplication result. For others, we will
load the summation of the right neighbor’s result and the result of the multiplication.
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The left-most register will feed results to the memory module. A symbolic example
is provided in Figure 5.8. This example shows the contents of the registers for three
clocks.

Figure 5.8: Shifter and adder module’s contents with respect to time

In this symbolic example, the registers should be cleared when the address of the
first RAM changes. Therefore we started with 0 in the registers. The multiplication
results will be added to the contents of the registers. For the next clock, we will shift
the results to the left while rewriting the register.
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We spend some resources on multiplying four coefficients at the same time. To in-
crease the calculation speed four times, we spent 64 FFs to store the inter-products.
While we are reaching four coefficients from the first polynomial, we only can read
one coefficient from the second one without increasing the BRAM usage. Because
the coefficients in the BRAM1 are bigger.

Another optimization was done by changing the mod(xN − 1) operation. In normal
calculations, this operation takes 2 ∗ N time. Because we need to issue two read
operations from the same memory. mod(xN − 1) operation matches the a and a+N
addresses and adds the value inside the a + N address to the value in address a.
To optimize this operation, we can calculate mod(xN − 1) while doing polynomial
multiplications. As we know the N value before starting the calculations, we do not
need to write the results to addresses bigger than N . If the result should be written
to the a + N address, we can directly add the result to the content of the a address.
This method lets us reduce memory utilization significantly. In the split encryption
and decryption architecture, we need to use two 18K RAM modules for BRAM2.
However, by matching the addresses in the multiplication process, we can decrease
the memory utilization to one 18K RAM. In total, our consumption is dropped from
four to three BRAMs.

In a network, we cannot control the incoming packets and their lengths. Therefore,
in encryption, the public key might come in multiple packets at different times. The
standard architecture requires all the data to be ready before starting the polynomial
multiplication. However, by adding two variables and keeping track of the valid data
parts, we were able to work on partial data. The content of the BRAM0 is not volatile.
We kept track of the last available data address in the BRAM1. Normally, our imple-
mentation reads every data in the BRAM1 and then decreases one address in BRAM0.
If we do not have the complete data, we will save the last address that contains valid
data. We multiplied the polynomial coefficients up to that memory address. After
that, we decreased the BRAM0’s address and repeated the process until we reached 0
in the address of the BRAM0. At his point, we partially multiplied two polynomials.
For the rest of the data, we can wait for the next packet if we did not receive it yet.
After the packet is received, we reset the address of the BRAM0 and continue to the
polynomial multiplication from that point. If a packet is received while we are mul-
tiplying the polynomials, the incoming data can still be written to the RAM because
we use two ports RAMs in our implementation.

5.5 Modulo by 3 Module

In (Atici et al., 2008), they used a state machine-based mod-3 calculation module. It
is a highly area-efficient method. However, it will spend the clock period times the bit
width of the variables. For the suggested parameters, this algorithm needs to spend
14 clocks just to take one number mod by 3. At that point, by spending 21 LUT, we
can generate the results in 1 clock cycle. Also, our method can deal with negative
numbers.

In binary representation, every bit has fixed values. When we take modulo by 3, the
least significant bit of the number is one. 20 = 1 = 1mod3. Every bit after the first
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one, we can easily calculate the modulo by multiplying the result with 2. Therefore,
the modulo result of the bits in the number will be ..., 1, 2, 1, 2, 1. By using these,
we can sum the multiplication of the precalculated modulo and bits’ actual value.
However, for a 14-bit number, this value can reach up to 21. To ease up the decision
process, we added another calculation step (Step 2 in Figure 5.9). With that step, the
summation of the bits can be up to 7. This result is small enough to be used directly.
However, we also consider the negative numbers. If the number is negative, we add
2 to the number and put it directly into the decision tree. You can see the calculation
process in Figure 5.9. In the figure, the straight lines represent multiplication by 1,
and dashed lines represent multiplication by -1.

Figure 5.9: Mod3 module architecture

5.6 Modulo by 5 Module

This module is implemented to give a user a chance to change the p parameter of
the NTRU. We used a similar algorithm to Section 5.5. However, in there, we have
the ability to represent every bit with a 1 or -1. In this scenario, our numbers have
to be in the range of 1 to 4. Zero is omitted because any power of 2 cannot be a
multiple of 3. Because the multipliers are bigger, we need to increase the bit size of
step 2. It might reach up to 40. After that step, we added another block to sum the
bits and decrease the value up to 13 in step 3. The value might be big for going to the
decision process. However, adding another layer will decrease the maximum value to
10, and implementing this step might be wasteful according to resource management.
The module spends 30 LUTs. The increase is 42% compared to the "modulo by 3"
module.
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Figure 5.10: Mod5 module architecture

5.7 Modulo by q

Because we restrained the q value as a power of 2. Taking modulo does not require
any division or value-specific binary coding. We can execute the modulo by a simple
mask operation of desired bit size. If we need signed numbers, we can make the
most significant bit of the signed value and extend it to the right. This architecture is
provided in Figure 5.11.

Figure 5.11: Mod q architecture

5.8 Serialization and Deserialization Module

As we designed our implementation to work on changing parameters of the algo-
rithm, we cannot optimize the word length of the calculations. Also, as we assumed
our devices are on a network, encryption word length probably will not be equal to
communication word length; we can choose to use zero-padding the data to fit them
into communication channels. However, this method will decrease the efficiency of
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the communication channel. To avoid this problem, we implemented a serializer
module.

This module reshapes the incoming stream of changing size inputs to the byte-sized
output stream. The module truncates the input data and reshapes it according to the
new data length. By using this module, we can increase the efficiency up to 33% if
the minimum suggested q is used. Also, the system can support increased q for future
security needs. The architecture can be seen in Figure 5.12.

Figure 5.12: Combined Serialization and Deserialization Architecture

5.8.1 Switch Matrix

This module is used in Section 5.8. The switch matrix is used to make a combinational
shift register that can change the shifting amount. The interconnections between the
source and target bits make the shifting operation possible. You can see a switch
matrix representation in Figure 5.13. In this method, only one of the switches in both
rows and columns should be closed at the same time. If we assume wxyz bits are
input and abcd bits are output with the same order. If we close the "xa", "yb", and
"zc" switches, the matrix will perform the one-bit shift left operation.

Also, we can perform signed shift operations on this same module. In this mode, we
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Figure 5.13: Switch matrix design to make adjustable shifters

need to make a sign extension. The sign extension is an exception to the rule stated
in the first paragraph. Multiple switches in one column should be closed at the same
time. For example, if we closed the "wa", "wb", "xc", and "yd" switches, we can
divide a signed 2’s complement number by 2.

5.8.2 Serialization

The minimum suggestion for the q parameter is 2048. That will generate coefficients
with a length of 10 bits and can be reached to 12 bits for today’s security needs and
can be increased in the future. The nonstandard bit size will cause inefficiencies while
communicating. To solve that issues, we need to combine the coefficients and parse
them into bytes. In this process, the data’s bit locations in the memory and the stream
have to change. To solve that issue, we are using shift registers. We also need to use
shift registers in the deserialization module, and they will be the most resource-hungry
part of this design; we will combine the serialization and deserialization modules.
You can see the combined architecture in Figure 5.12.

While encrypting, the encrypted message will be generated in the last memory mod-
ule. Also, in decryption, the decrypted message will be formed in the same memory.
Therefore, we connected the BRAM3’s output to this module. While serializing, we
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execute the following steps.

• In normal operations, our data is aligned to the right. Because with that method,
we can operate the computational modules without changing anything despite
the changing bit sizes. However, to prepare the data, we need to make it aligned
to the left side of the register. This means the most significant bit affected by
the modq operation (ex. if q=2048, the 10. bit from the LSB) will be the most
significant bit in the buffer register named "Data1" in the reference design. To
succeed, we need to use a switch matrix module (Switch Matrix 2) that works
as an adjustable shifter. The shifting amount will be fixed for every q value, and
we only need to change it if we change the NTRU parameters.

• After the data is aligned, we need to transfer it to the data buffer register "Data1"
by selecting the multiplexer on the way. This is our new data coming directly
from memory, and it is ready to be written on the buffer. However, before
that, the buffer needs to not contain any useful information in it. Therefore,
information inside the buffer has to be transferred into the Data_out register.
Before forming the Data_out and sending it, we have two possibilities.

• The first one is that we have enough more than eight meaningful bits in the
buffer (16 bits). In this scenario, we can transfer one byte directly to the
Data_out by using the Switch Matrix 1. This module might need to change the
shifting amount of every usage according to the remaining bits in the buffer. To
compile with the other parts, we need to split the output of this module’s output
and feed the Data1 and Data_out from different paths.

• The second possibility is that we have less than 8 bits in the buffer. In that
scenario, firstly, we need to read the remaining meaningful x bits from the
buffer to Data_send registers. To do that, we will use the Switch Matrix 1
to shift x bits of data and load it to the Data_out, Data1 combination. After
that, we can load the available data that comes from the memory into the Data1
buffer. Finally, we need to use the Switch Matrix 1 to one more time for shifting
8− x bits. At this point, Data_out is ready to send outside.

• Whenever we have meaningful 8 bits in the Data_out register, we can make the
valid flag 1. After that, we can continue with the previous steps.

You can see the algorithm in Algorithm 4.
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Algorithm 4: Serialization algorithm
Initialization:

rd_address = N
if Q == 1024 then

bits_total = 10
end
else if Q == 2048 then

bits_total = 11
end
else if Q == 4096 then

bits_total = 12
end
else if Q == 8192 then

bits_total = 13
end

1 while read_address >= −1 do
2 if bits_in_out < 8 & bits_in_buffer >= (8− bits_in_out) then
3 set SM1 shift amount to 8− bits_in_out
4 bits_in_buffer = bits_in_buffer + bits_in_out− 8
5 bits_in_out <= 8
6 end
7 else if bits_in_out < 8 & bits_in_buffer < (8− bits_in_out) then
8 set SM1 shift amount to bits_in_buffer
9 bits_in_buffer = 0

10 bits_in_out = bits_in_out+ bits_in_buffer
11 end
12 else
13 set SM1 shift amount to 0
14 end
15 load SM1’s output to Data_out,Data1
16 if bits_in_out == 8 then
17 data_out_valid = 1
18 bits_in_out <= 0
19 end
20 data_out_valid = 0
21 if bits_buffer == 0 then
22 load SM2’s output to Data1
23 read_address = read_address− 1
24 bits_in_buffer = bits_total
25 end
26 end

An example of the serialization process is provided in Table 5.1. In this example, the
RAM outputs a fixed value for convenience. The output value is 10 bits and equal to
10′h30f . The SM1 module aligns this data to the left by converting it to 10′hc3c0.
The red colored bits represent the output of the memory module. The blue-colored
bits are the output of the module.
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Command Buffer Valid flag Output value

Initialize 00000000_00000000_00000000 0

load 00000000_11000011_11000000 0

shift 8 11000011_11000000_00000000 1 c3

shift 2 00001111_00000000_00000000 0

load 00001111_11000011_11000000 0

shift 6 11110000_11110000_00000000 1 f0

shift 4 00001111_00000000_00000000 0

load 00001111_11000011_11000000 0

shift 4 11111100_00111100_00000000 1 fc

shift 6 00001111_00000000_00000000 0

load 00001111_11110000_11000000 0

shift 2 00111111_11000011_00000000 1 3f

Table 5.1: Serialization example

5.8.3 Deserialization

Assuming we have matched with our module or an efficient one like ours in the net-
work, the data will come as serialized into bytes. Therefore, we need to unpack the
data into NTRU polynomials’ word size. As the serialization part contains the re-
quired shifters, we can combine two architectures to decrease resource utilization.
With the following steps, we can convert the incoming data stream to the coefficients
of the NTRU polynomials. We will use the same architecture in Figure 5.12. In this
mode, data will be provided from outside of the module, and deserialized information
will be formed in the Data_out and the most significant 8 bits of the Data1.

• Firstly the incoming byte will be loaded to the least significant 8 bits of the
buffer register Data1. To comply with the serialization architecture, we will
load the Data1 register in a single step. To do that, we will cascade the Data1’s
bits upper half and Data_in and load it to Data1. With this method, we can
easily store the remaining information in the buffer because the most significant
8-bit is not changed.

• After the new data is loaded, we should shift it to the most significant 8 bits of
the buffer. This task will be completed by the Switch Matrix 1. As the least
significant 8-bit is empty, we can load new data with the same method in the
first step.

• Now, we have 16 bits in our buffer and can generate one coefficient of the
polynomial. To do that, we need to shift the data by x − 8 bits by using the
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Switch Matrix 1. We assumed x is the bit size of the polynomials’ coefficients.
We have the coefficient in the Data_out and Data1’s most significant 8-bit. We
will load that to BRAM1. Because in our architecture, the encrypted message
is stored in the second RAM module.

• We have 16− x bits in the Data1 register’ lower byte as aligned to the left. We
need to carry this into the upper byte with Switch Matrix 1 to load a new value
into the lower byte. This step will align the remaining data to the right side of
the upper byte in the Data1.

• We can repeat these steps up until all the information is unpacked into the co-
efficients.

The numerical example for deserialization is provided in Table 5.2. In this
example, the red values come from the input stream. The blue ones are ready
to be written to the RAM.

Incoming

byte
Command Buffer Valid flag Output

c3 Initialize 00000000_00000000_00000000 0 -

c3 load 00000000_00000000_11000011 0 -

f0 shift 8 00000000_11000011_00000000 0 -

f0 load 00000000_11000011_11110000 0 -

fc shift 2 00000011_00001111_11000000 1 30f

fc shift 6 11000011_11110000_00000000 0 -

fc load 11000011_11110000_11111100 0 -

3f shift 4 00111111_00001111_11000000 1 30f

3f shift 4 11110000_11111100_00000000 0 -

3f load 11110000_11111100_00111111 0 -

3f shift 6 00111111_00001111_11000000 1 30f

Table 5.2: Deserialization example

The deserialization algorithm is provided in Algorithm 5.
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Algorithm 5: Deserialization algorithm
Initialization:

wr_address = N
bits_total <= (q == 1024)?10 :
(q == 2048)?11 :
(q == 4096)?12 :
(q == 8192)?13 :
14

1 if data_in_valid then
2 data_temp[15 : 0] = data_in_temp[15 : 8], data_in
3 bits_in_buffer = 8
4 bits_in_out = 0
5 end
6 while wr_address >= 0 do
7 if bits_in_out < (bits_total − 8) then
8 set SM1 shift amount to 8
9 data_in_temp = SM1output

10 bits_in_out <= 8;
11 end
12 else
13 set SM1 shift amount to bits_total − bits_in_out
14 load SM1’s output to Data_out,Data1
15 write to RAM
16 wr_address = wr_address− 1
17 set SM1 shift amount to bits_in_buffer − bits_total + bits_in_out
18 load SM1’s output to Data_out,Data1
19 bits_in_buffer = 0
20 bits_in_out = bits_in_buffer − bits_total + bits_in_out
21 end
22 if data_in_valid then
23 data_in_temp[15 : 0] = data_in_temp[15 : 8], data_in
24 bits_in_buffer = 8
25 bits_in_out = 0
26 end
27 end
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CHAPTER 6

RESULTS

In this thesis work, we implemented different architectures for NTRU. We have en-
cryption, decryption, and combined implementation. Even if the encryption and de-
cryption modules are designed to be lightweight, they are capable of working with
changing parameters. However, they lack some of the improvements mentioned in
the combined architecture. In our design, we fixed the p parameter and used a restric-
tion on q as it should be a power of 2. N can be anything the user wants. We provided
the flexibility of changing parameters in between calculations.

6.1 Limitations

Some of the general use low-cost FPGAs from different vendors are given in Table
6.1 and Table 6.2 to provide a perspective for the reader. For Xilinx FPGAs, every
slice has four LUTs with six inputs, and in Intel Cyclone5 FPGAs, the ALM blocks
contain two LUTS with four inputs. These tables show that our implementation is
suitable for the general-purpose low-power FPGAs.

Table 6.1: Possible target FPGAs from Xilinx and their resources

Logic Cells Slices CLB FF BRAM (Kb) DSP

XC7A15T 16,640 2,600 20,800 900 45

XC7A35T 33,280 5,200 41,600 1,800 90

XC7A50T 52,160 8,150 65,200 2,700 120

XC7A100T 101,440 15,850 126,800 4,860 240

Many FPGA models have more resources than those given in the tables. These models
are more expensive, power-hungry, and require more complex circuit designs. They
are not very popular with the embedded systems because of the power requirements
and the costs.
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Table 6.2: Possible target FPGAs from Intel and their resources

Logic Elements ALM ALM Registers RAM DSP

5CEA2 25,000 9,434 37,736 1.956 Mb 25

5CEA4 49,000 18,480 73,920 3.383 Gb 66

5CEA5 77,000 29,080 116,320 4.884 Gb 150

5CEA7 149,500 56,480 225,920 7.696 Mb 156

6.2 Implementation Results

We started with standalone encryption and decryption modules with a more standard-
ized approach. After that, we combined the encryption and decryption modules into
a single combined module to decrease resource utilization. Also, a combined module
is more suitable for a network without a controller node. If one node can be a master
in one communication and a slave in the other, it must deploy both encryption and
decryption features.

We designed serialization and deserialization modules with a combined shift register-
based architecture. However, for use with standalone operations, only serializa-
tion and deserialization modules can be generated by deactivating the other part.
This module is designed to effectively use the communication line by arranging the
NTRU’s word size into bytes. To keep resource utilization low, we make the oper-
ations sequentially. Therefore, this module cannot generate new data at every clock
cycle. While making serialization, the module requires three cycles in the worst case
to generate a new output value. While deserializing the data, required clock cycles at
the worst case increase to 4.

Table 6.3: Resource utilizations of our modules

LUT FF BRAM

our encryption 344 115 4 (18K)

our decryption 623 152 4 (18K)

our combined and improved architecture 984 385 3 (18K)

our serialization architecture 90 51 0

our deserialization architecture 105 54 0

our ser-des architecture 178 73 0

The characteristics of the implementation are defined by the use cases. We focused
on the embedded devices on a mesh network. The features we implemented are listed
below:
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• Low resource usage: To decrease resource utilization, we stored data in the
RAMs. Also, the combined architecture lets us use shared logic between dif-
ferent operations.

• RAM optimization: With packing the data and rearranging the intermediate
products, we successfully stored several keys in the memory and kept the re-
quired RAM module number low.

• On-the-fly parameter change: This feature lets the user communicate with dif-
ferent devices with different capabilities or change the security level to balance
the needs of secrecy and speed. We can support N numbers up to 1024, q can
be 1024, 2048, 4096, 8192, 16384, 32768, 65536. The p value should be 3.

• One clock Galois Field operations: We can easily calculate the mod q and
mod p using hardware accelerators in a single clock.

• Serialization and deserialization of different size words: With changing param-
eters, our bit sizes in the calculations are changing too. This situation requires
a solution to efficiently pack and unpack the data into bytes. This module uses
additional 178 LUTs and 73 FFs.

You can see the resource utilization of our modules and compare it to others in Table
6.4. While making a comparison, one should remember all these designs has different
goals and features.

Table 6.4: Resource comparison between different implementations

Implementation LUT FF BRAM Features
(Farahmand et
al., 2019)

76972 49674 1 (36K) • Supports
NTRU(743,3,2048)
and NTRU(443,3,2048)
• Uses a co-processor and
only makes polynomial
multiplication in hardware

(B. Liu & Wu,
2015)

3768 3526 x •Results are for
NTRU(251,3,128)
•For different parameters
the design has to change
•That design is LFSR-
based

(Kamal &
Youssef, 2009)

4838 21654 x •Results are for (251, 3,
128)
•Has options with differ-
ent level of parallelism.

(Atici et al.,
2008)

1651 8848 x •Fixed parameters
NTRU(167,3,128)
•Designed for power
efficiency
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Table 6.4 (continued).

(Kaps, 2006) 523 2327 x •Supports NTRU(167, 3,
128)
•That design is used
to compared different
algorithms’ hardware
efficiency

(Wera, 2020) 2354 2068 4(36K) •Uses additional 103 DSP
units
•Supports ntru-
hps4096821
•Also, their SW/HW
interface uses additional
1499 slices

(Keersmaekers,
2021)

1764 1553 6(36K) •Uses NTT method
•Supports different pa-
rameter sets
•Interface module uses
additional 3980 LUTs and
4750 FFs

Our architecture 984 385 3 (18K) Our design features are
listed above.

6.3 Timing Results

For both encryption and decryption processes, the runtime does not change according
to the changing q. This result can be seen in Figure 6.1; it is only dependent on the
N parameter. The time complexity of the algorithm is dependent on the N2 because
of the polynomial multiplication. You can see the results in Figure 6.2. The tests are
made with a 100 MHz clock.

Our combined encryption and decryption module can work approximately four times
faster than standalone modules. These improvements mainly come from the shifter
and adder architecture. Also, doing the last modulo calculations while multiplying
the polynomials decreases the time we spend by 2 ∗N clock periods. You can see the
result in Figure 6.3.

We assumed we were directly converting the plaintext’s bits to polynomial coeffi-
cients. Therefore, if we select N as 821, we can encrypt 821 bits of data at every
round of encryption. N bit input will generate N ∗ log2q bit output while encrypting.
The decryption process reverses this operation. The throughput of plaintext input be-
fore encrypting and recovered message output after decrypting is provided in Figure
6.4. While getting these results, we used a clock speed of 100 MHz.
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Figure 6.1: Visualization of time spent while encrypting and decrypting messages

with respect to Q with a 100 MHz clock

Figure 6.2: Visualization of time spent while encrypting and decrypting messages

with respect to N with a 100 MHz clock
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Figure 6.3: Visualization of time spent while encrypting and decrypting on combined

architecture with respect to N with a 100 MHz clock

Figure 6.4: Throughput of encryption and decryption with respect to N with a 100

MHz clock
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CHAPTER 7

CONCLUSION

With the development in the quantum computing field, some of our most trusted al-
gorithms will not be functioning in the near future. To prepare for this scenario, NIST
organized the Post-Quantum Cryptography Challenge. While the work of this thesis
work completed, NIST decided that NTRU would not be standardized.

In this thesis, we implemented one of the contestant algorithms on FPGA. The im-
plementation specifically targeted embedded devices with low computational powers.
One of the general use cases for this type of device might be ad-hoc mesh network
nodes. This was assumed because of the public key cryptographic needs. As we
are not planning to work on servers that require high-speed solutions, we traded the
speed with low area in our design. Also, we proposed and actualized some methods
to increase the efficiency of our design.

In this implementation, we tried to use the FPGA’s potential by pipelining and par-
allelism. The user can change the encryption and decryption parameters on the fly.
We shifted the data storage from registers to BRAMs. A data storing scheme was
developed to let the user store multiple decryption keys and/or multiple random num-
bers for encryption. We do not store the encryption keys long-term. Because it is
assumed that we will not use the same key repeatedly after the private key is estab-
lished or the command is sent. However, the random data is saved for performing
encryption immediately and eliminate the waiting period. The intermediate products
of the calculations are written on the no longer needed data. We designed a selec-
tive data filter to overcome the overhead of memory cleaning operations both before
starting the process and while cleaning the ram between intermediate cycles. As we
are trying to maximize efficiency, we pack multiple data into a single ram slot. This
method lets us reach multiple data in a single clock. A shift register-based algorithm
was implemented to decrease the time required for encryption or decryption. Finally,
we proposed a control algorithm that can work on incomplete data. On a network be-
tween distant devices, this will enable us to calculate preliminary results with every
coming packet. With that method, the encryption can be finalized shortly after the
last packet has arrived.

Using the mentioned methods, we provided a compact and flexible public key crypto-
graphic system for FPGA-based embedded network devices. This design is lightweight
enough to be used by already deployed systems in the field without needing to change
the hardware for more resources.
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7.1 Future Work

To decrease resource utilization, we defined some restrictions on the parameters. The
restrictions can be loosened up to increase flexibility. However, this process will in-
crease resource utilization. If a full autonomous design is required, the key generation
part can be implemented. Also, the security characteristics of the implementation can
be investigated for side-channel attacks.
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