
PROBABILISTIC FORECASTING OF MULTIPLE TIME SERIES WITH SINGLE
RECURRENT NEURAL NETWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SARP TUĞBERK TOPALLAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

SCIENTIFIC COMPUTING

SEPTEMBER 2022

Approval of the thesis:

PROBABILISTIC FORECASTING OF MULTIPLE TIME SERIES WITH SINGLE
RECURRENT NEURAL NETWORK

submitted by SARP TUĞBERK TOPALLAR in partial fulfillment of the requirements for the
degree of Master of Science in Scientific Computing Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Selçuk Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Önder Türk
Head of Department, Scientific Computing

Prof. Dr. Ceylan Yozgatlıgil
Supervisor, Statistics, METU

Examining Committee Members:

Prof. Dr. Ömür Uğur
Scientific Computing, METU

Prof. Dr. Ceylan Yozgatlıgil
Statistics, METU

Prof. Dr. Seher Nur Sülkü
Econometrics, Hacı Bayram Veli University

Date:

iv

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: SARP TUĞBERK TOPALLAR

Signature :

v

vi

ABSTRACT

PROBABILISTIC FORECASTING OF MULTIPLE TIME SERIES WITH SINGLE
RECURRENT NEURAL NETWORK

TOPALLAR, SARP TUĞBERK

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Ceylan Yozgatlıgil

September 2022, 71 pages

Time series forecasting can be summarized as predicting the future values of a sequence in-
dexed by timestamps based on the past records of that sequence. Optimal or near-optimal
resource allocation requires accurate predictions into the future. The study presents investiga-
tion performed on both classical methods and more contemporary methods from the literature.
The classical methods studied are Autoregressive Integrated Moving Average (ARIMA), Ex-
ponential Smoothing (ETS) and Seasonal-Trend decomposition using LOESS (STL). One of
the more contemporary time series models is a deep learning method called DeepAR, which
is a Recurrent Neural Network (RNN) comprised of Long Short Term Memory (LSTM) cells.
Both novel and classical approaches pose challenges unique to their own methodologies.
Classical methods for example require the data to satisfy restricting modeling assumptions
and each series to be preprocessed and modeled one by one. On the other hand, machine
learning methods require a great amount of quality data for training, where it would be a chal-
lenge where the abundance of data may not be available. The proposed solution is to model
many similar series with a single common model at the same time. The similarity in the con-
text of this research refers to the fact that each series has the same recorded metric. The data
set investigated in the study holds records of demand for many physical stores throughout
Türkiye, where each individual series corresponds to a single physical location. There are a
total of 120 individual series spanning between 2018 and 2022.

The probabilistic forecasts are obtained by training the DeepAR model in order to learn a

vii

probability distribution and producing the point forecasts from sampling the learned proba-
bilistic function. The probabilistic forecasts of different quantiles provide practicality such as
forecasting in different quantiles for each series individually and can be tuned for different
sensitivity to forecasting errors per series.

At the end of the study, the provided error metrics for accuracy measurement are MAE (Mean
Absolute Error) in order to show the actual value of the forecasted demand and MAPE (Mean
Absolute Percentage Error) in order to compare the results with other models independent of
the scale. The DeepAR model provided more accurate results compared to ETS and ARIMA
on average for the whole data set in terms of both accuracy metrics.

Keywords: Time series, Demand forecasting, Deep neural networks, Long short-term mem-
ory neurons, Recurrent neural networks, Autoregressive recurrent networks

viii

ÖZ

BİR ÖZYİNELİ SİNİR HÜCRESİ AĞI İLE ÇOKLU ZAMAN SERİLERİNİN
OLASILIKSAL TAHMİNLENMESİ

TOPALLAR, SARP TUĞBERK

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Ceylan Yozgatlıgil

Eylül 2022, 71 sayfa

Zaman serisi tahminleme zaman ile endekslenmiş bir dizi değerin geçmişte almış olduğu
değerlere bakılarak gelecekteki değerlerin tahminlenmesi olarak özetlenebilir. Optimal veya
optimale en yakın kaynak planlanması geleceğe dair yüksek doğruluklu tahminlimeler gerek-
tirir. Bu çalışma, literatürden hem klasik yöntemler hem de daha çağdaş yöntemler üzerinde
yapılan incelemeleri sunmaktadır. İncelenen klasik yöntemler, Otoregresif Entegre Hareketli
Ortalama (ARIMA), Üstel Düzeltme (ETS) ve LOESS kullanılarak Mevsimsel-Trend (STL)
ayrıştırmasıdır. Öte yandan daha çağdaş zaman serisi modellerinden biri, Uzun Kısa Süreli
Bellek (LSTM) hücrelerinden oluşan bir Tekrarlayan Sinir Ağı (RNN) olan DeepAR adlı
bir derin öğrenme yöntemidir. Hem çağdaş hem de klasik yaklaşımlar, kendi metodolojile-
rine özgü zorluklar ortaya çıkarır. Örneğin klasik yöntemler, verilerin kısıtlayıcı modelleme
varsayımlarını karşılamasını ve her serinin birer birer ön işleme tabi tutulmasını ve model-
lenmesini gerektirir. Diğer yandan, makine öğrenimi yöntemleri, eğitim için büyük miktarda
kaliteli veri gereksinimi duyarlar veri bolluğunun mevcut olmayabileceği durumlarda bu du-
rum büyük bir zorluk yaratır. Bu araştırmada önerilen çözüm, birçok benzer seriyi aynı anda
tek bir ortak modelle modellemektir. Bu araştırma bağlamındaki benzerlik, aynı metriğin öl-
çüldüğü bir çok ayrık serinin bir arada incelenmesini ifade eder. Araştırma için incelenen veri
seti, Türkiye genelinde her bir serinin tek bir konuma karşılık geldiği birçok fiziksel mağa-
zaya olan talep kayıtlarından oluşmaktadır. 2018 ile 2022 yıllarını kapsayan toplam 120 ayrı
seri bulunmaktadır.

ix

Araştırmada kullanılan DeepAR modeli veri setinden ortak bir olasılık dağılımını öğrenir.
Öğrenilen bu olasılık dağılımından yapılan farklı çeyrekliklerdeki örneklemler ile olasılıksal
tahminler elde edilir. Seçilen farklı çeyreklikler, farklı hata hassasiyetlerine sahip olan her bir
ayrık seri için yapılan tahminler için özel olarak ayarlanabilir ve her seri için farklı bir değere
sahip olabilir.

Çalışmanın sonunda, doğruluk ölçümü için sağlanan hata metrikleri, öngörülen talebin ger-
çek değerini gösterirken Mutlak Ortalama Hata (MAE) ve sonuçları ölçekten bağımsız olarak
diğer modellerle karşılaştırırken Mutlak Ortalama Yüzdesel Hata (MAPE) metrikleridir. De-
epAR modeli, her iki doğruluk metriği açısından da tüm veri seti için ortalama olarak ETS ve
ARIMA modellerine kıyasla daha doğru sonuçlar üretmiştir.

Anahtar Kelimeler: Zaman serileri, Talep tahminleme, Derin sinir ağları, Uzun kısa-süreli
bellek sinir hücreleri, Özyineli sinir ağları, Özbağlanımlı özyineli ağlar

x

To my family

xi

xii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my thesis supervisor Prof. Dr. Ceylan Yoz-
gatlıgil for her support and patient guidance throughout my studies. The time she spared to
share her experiences and give advice to make this study possible is truly appreciated and will
remain an inspiration to me.

I would also like to thank the members of my thesis defense committee for their insightful
comments and discussions.

Last but not least, I would like to thank my family for their continual support for me through-
out my life.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xix

LIST OF FIGURES . xx

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Research Question 2

1.2 Thesis Structure . 4

2 LITERATURE SURVEY . 5

2.1 Methods For Time Series Analysis 6

2.1.1 Exponential Smoothing (ETS) 6

2.1.2 Auto Regressive Integrated Moving Average (ARIMA) . . 7

2.1.3 Seasonal-Trend decomposition using LOESS (STL) 8

xv

2.1.4 Prophet . 8

2.2 Deep Learning Methods For Time Series Analysis 8

2.2.1 Hybrid Approach . 9

2.2.2 Convolutional Neural Network (CNN) Approach 9

2.2.3 Transformers Approach 9

2.2.4 Generative Adversarial Networks (GAN) Approach 9

2.2.5 Recurrent Neural Network (RNN) Approach 10

2.3 Deep Learning Methods For Demand Forecasting 10

3 METHODOLOGIES USED . 13

3.1 Preliminaries For The Subject . 13

3.1.1 Representational Power of Neural Networks 14

3.1.2 Recurrent Neural Network (RNN) 14

3.1.3 Back Propagation Through Time (BPTT) 15

3.1.4 Vanishing or Exploding Gradient Problem 16

3.1.5 Cold Start Problem . 17

3.2 Algorithms used . 17

3.2.1 Dynamic Time Warping (DTW) 18

3.2.2 Silhouette Score . 20

3.2.3 Exponential Smoothing (ETS) 20

3.2.4 DeepAR . 21

4 DATA ANALYSIS . 25

4.1 Exploratory Data Analysis . 26

xvi

4.1.1 Descriptive Statistics . 26

4.1.2 Clustering Analysis . 27

4.1.3 Seasonality Analysis . 31

4.2 Outlier Detection and Cleaning . 33

4.3 Missing Data Imputation . 35

4.4 Final Form and Example Data . 37

5 RESULTS AND FUTURE WORK . 41

5.1 Results . 42

5.1.1 Error Metrics . 42

5.1.2 Model Evaluation . 42

5.2 Future Work . 44

6 CONCLUSION . 47

REFERENCES . 49

APPENDICES

A DTW CLUSTERING . 61

A.1 Example Code . 61

A.2 Algorithm of DTW . 62

B EXAMPLE IMPLEMENTATIONS OF DEEPAR 63

B.1 Example Code of GluonTS . 63

B.2 Example Code of PyTorchForecasting 64

C FOURIER ANALYSIS . 67

xvii

C.1 Example Code . 67

D ERROR METRIC CALCULATION . 69

D.1 Example Code . 69

E BENCHMARK . 71

E.1 Benchmark Data Set . 71

xviii

LIST OF TABLES

Table 4.1 Number of series collected from 5 most populated provinces in Türkiye . . 37

Table 4.2 Example rows of the training data set . 38

Table 4.3 Explanations of the columns in the data set 38

Table 5.1 Hyperparameter values used to select the best 42

Table 5.2 Formulae of the error metrics . 42

Table 5.3 Complete error metrics of the model . 43

Table 5.4 Predictor error measurement for different quantiles 44

Table E.1 Details of electricity and retail data set and training values 72

xix

LIST OF FIGURES

Figure 3.1 Comparison of different types of neurons [26] 14

Figure 3.2 Unrolled representation of a recurrent neuron [82] 15

Figure 3.3 Different internal cell architectures with point-wise addition, multiplication
and sigmoid (red), tanh (blue) activations [18] 17

Figure 3.4 Architecture of DeepAR [91] . 23

Figure 4.1 Effect of the outlier presence on the histograms 26

Figure 4.2 Box plot of randomly selected thirty series 27

Figure 4.3 Inertia and Silhouette score with different values of K 28

Figure 4.4 Series clustered when K = 1 . 29

Figure 4.5 Series clustered when K = 2 . 30

Figure 4.6 Series clustered when K = 2, barycenter (red) 31

Figure 4.7 ACF PACF correlograms for different series 32

Figure 4.8 Different rolling windows for capturing the movement of the series 34

Figure 4.9 green: contextual outlier threshold, red: detected outlier 34

Figure 4.10 Prophet model fitted (blue) on an example series (black dots) 35

Figure 4.11 Example ETS(AAM) fit . 36

Figure 4.12 Multiple consecutive imputation with ETS(AAM) 37

Figure 4.13 Provinces of Türkiye Included in the Study According to the Number of
Series (Locations) . 39

Figure 5.1 Probabilistic quantiles [3] . 41

Figure 5.2 Forecasts from different quantiles . 43

xx

LIST OF ABBREVIATIONS

ACF Auto Correlation Function

ADF Augmented Dickey-Fuller

AIC Akaike Information Criterion

ANN Artificial Neural Network

ARIMA Auto Regressive Integrated Moving Average

ARMA Auto Regressive Moving Average

BIC Bayesian Information Criterion

BPTT Back Propagation Through Time

CNN Convolutional Neural Network

DBA DTW Barycenter Averaging

DNN Deep Neural Network

DTW Dynamic Time Warping

ECG Electrocardiogram

ETS Exponential Smoothing

EWM Exponentially Weighted Mean

FFT Fast Fourier Transform

GAM Generalized Additive Models

GAN Generative Adversarial Networks

GRU Gated Recurrent Unit

IQR Interquartile Range

KPSS The Kwiatkowski–Phillips–Schmidt–Shin Test

L-BFGS Limited Memory Broyden–Fletcher–Goldfarb–Shanno

LOESS Locally Estimated Scatter-plot Smoothing

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MSE Mean Squared Error

xxi

N-BEATS Neural Basis Expansion Analysis for Interpretable Time Series Forecasting

NLP Natural Language Processing

PACF Partial Auto correlation Function

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SSE Sum of Squared Error

STL Seasonal-Trend decomposition using LOESS

TBATS Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and
Seasonal components

xxii

CHAPTER 1

INTRODUCTION

Time series data is a collection of regularly collected data where each data point is indexed by
a time stamp. Stock market data in finance, temperature records in climatology or electrocar-
diogram (ECG) records in medicine are all examples of time series data. Aim of forecasting is
to predict the future values of a given series with high accuracy by analyzing the data collected
in the past. Predicting a single value into the future is called as one step ahead forecasting
and predicting N values into the future is called N-step ahead forecasting. For both cases,
the forecasts can be generated for a single value which is called univariate forecasting (e.g.,
temperature records for a location) or the prediction task can be performed for multiple vari-
ables changing simultaneously over time, in this case, such a process is called multivariate
forecasting (e.g., each axis of a vector in Rn).

Improving the forecast accuracy enables more optimal resource provisioning which in turn
brings efficiency to any kind of planning effort. In order to have more accurate forecasts,
there have been numerous approaches studied with different advantages and disadvantages. It
is possible to examine the available forecasting methods in two main categories, such as clas-
sical methods and more contemporary methods. Classical methods include Autoregressive
Integrated Moving Average (ARIMA), Exponential Smoothing (ETS) and Seasonal-Trend
decomposition using LOESS (STL). In univariate or low dimensional datasets the classical
methods proved their applicability but as time progressed, the volume of recorded information
grew rapidly as well as the complexity of the recorded information. The advent of technology,
more specifically the increase of computational power, allowed much more complex analy-
sis methodologies to be utilized. This increase in computational power has been especially
beneficial for machine learning algorithms to be created for analysis of time series data to ob-
tain even more accurate forecasts. Mainstream adoption of machine learning methods, most
notably deep learning methods, have shown their applicability for modeling both large and
high dimensional datasets [42]. Deep learning is the study of Deep Neural Networks (DNNs)
which are multi layer Artificial Neural Network (ANN) architectures. Even though the idea
of a neural network is coined more than sixty years ago [78], research activity in the deep
learning field reached historical peaks in the recent years [114].

Neural networks can have different names depending on their architecture or the specific
types of neurons comprising the network. Recurrent connections in the network architecture

1

allow the cells of the network to pass the current hidden state to itself as an input for the
next step during both training and inference. These types of neurons are called recurrent
neurons, and long-short-term memory (LSTM) [45] cells and Gated Recurrent Unit (GRU)
[20] cells are examples of recurrent neurons. Networks that include recurrent neurons are
called Recurrent Neural Networks (RNNs). RNNs showed their applicability in sequence
to sequence modeling especially in the Natural Language Processing (NLP) domain [16].
RNNs learn the training data as an ordered sequence and this enables the ability to learn
the past behavior of any sequence of data (e.g., time series data, sentences in a text) for the
model. Since the network learns the behavior of the series sequentially, during inference
time the predictions made by the model are also generated as an ordered sequence for multi
step forecasting. On the other hand there are networks passing the hidden states only to
the downstream layers and these are called as feed forward neural networks. Named after
their convolutional layers, the Convolutional Neural Networks (CNNs) are examples of feed
forward neural networks and they have shown success for learning the spatial properties of the
data which makes them very successful for tasks like image classification or object detection.

In addition to the required computational complexity, deep learning methods require huge
amounts of data in order to generate highly accurate predictions. When increasing the size
of the training data regularly is not straightforward or not feasible, it is possible to increase
the size of the training data set artificially by introducing various modifications to the training
samples and this approach is called data augmentation. In the image classification setting,
some examples for data augmentation methods are obfuscation, translation, color modifica-
tion, cropping, rotation and noise injection. Data augmentation, in addition to the increase
in the number of training samples, has also shown [97] regularizing effects to remedy the
overfitting problem.

In time series forecasting settings, augmenting the data is not as straightforward or as diversi-
fied as in the image setting. Some studied methods [53, 54, 57, 108, 27] to augment time series
data require the usage of very complex and resource intensive methods such as training deep
neural networks for augmentation. Although there are findings [58] suggesting to increase the
size (number of parameters) of the model in order to increase the capacity of the model, this
suggestion should be taken with a grain of salt since there are also findings [46] that suggests
without increasing the size of the training data, increasing the number of parameters in the
model can result with under-trained models. This thesis suggests an approach to obtain an
accurate forecasting model without the need for synthetic data generation for training if there
are many similar series present in the training data set by creating a global model for all series
together instead of training a separate model per each individual series in the training set.

1.1 Motivation and Research Question

In order to obtain accurate time series forecasts with neural networks, the required training
data size is very large. Accurate forecasts are still needed when the sufficiently large training

2

data set is not available. One solution to this requirement is to augment the training data in
order to have a more accurate model. This study proposes an alternative method to need for
synthetic data generation by computational resource intensive data augmentation methods. In
settings where there are many series measuring the same type of metric, instead of creating
a single model for each of the recorded series like ARIMA, STL or ETS models, proposed
solution is to train a common global model featuring all off the available series in the training
set. Aim of this approach is to saturate the neural network model with enough training data
without needing synthetically generated data and obtain all of the forecasts for different series
in the data set from the same model. By not needing complex data augmentation methods
and decreasing the model count to exactly one, even if the abundance of training data is not
present, this approach aims to optimize sample efficiency. Experiments are conducted on
algorithms that allow the training of a universal common model and generate forecasts for
many different series from the same model. The specific data set selected for this study is
the proprietary physical demand records for a retail chain from different locations throughout
Türkiye. Detailed descriptions of the data set and the model implemented will be thoroughly
discussed in the following chapters.

The data set used is collected via physical sensors that do image processing so sensor error
is a factor that is worthy of consideration in this setting. Because each sensor or lens have
different amount of intrinsic imperfections, error distribution of different series is presumed
to be distinct per series (sensor) basis. On top of that, the demand profile for each differ-
ent location is expected to be unique according to their own characteristic. These factors
dictated the decision for performing the preprocessing step for each series to be completed
individually. In order to increase the data quality for the model, the pre-processing step which
includes both the imputation method for missing values and cleaning method for detecting
and then correcting the outliers is developed during this study for this research specifically.
The preprocessing methods developed for this research are introduced and explained in detail
in Chapter 4. The idea of expanding the training set horizontally by using multiple similar
series to train one common model required a strategy for determining which series are ap-
propriate to be clustered together or confirm that clustering is possible or not. This decision
is confirmed by using the elbow curve method and silhouette score [88] with Dynamic Time
Warping (DTW) [89] is used as the distance metric. This step is done to confirm that the
selected series are inherently suitable for to be clustered together after pre-processing is com-
plete and before modeling started. Performance of the pre-processing and the actual model
are both presented in the Chapter 5 as results. This study aims to create a forecasting system
capable of pre-processing and modeling many series at once with accurate predictions and
presents the mathematical background for the used methods.

This study lays out a holistic approach from exploratory data analysis, data preprocessing,
to modeling and evaluation of the generated model. Preprocessing steps are discussed with
detail including the numerical calculation methods as well as the algorithms subject to ex-
periment. In addition, the reasoning behind the selection of the algorithms used is explained.
The evaluation of the model is presented with selected error metrics for performance as well

3

as the durability (i.e. degradation after training) and the potential for generalization of the
model are all discussed. The practical applicability of the model and ways to improve the pre-
sented work is described at the conclusion part of the study. Since the selected data set covers
the demand for physical shops it is important to acknowledge the effects of the COVID-19
pandemic. In order to isolate the study from the effects of the pandemic the data set spans
from January of 2018 to January of 2020. This scope is used for both training and testing the
produced model in the calculation of the accuracy metrics. In general, time series forecasting
methods assume that the training data and the test data come from the same distribution but
in real world there are trend shifts or sudden behavior-altering events can occur. These exter-
nal factors can be modeled to some degree with additional features accompanying the actual
series during the modeling stage but a world changing event like COVID-19 pandemic is a
near unprecedented occasion. Thus, the effects of it are completely left out of this research,
instead of experiments on modeling the effects of the pandemic.

1.2 Thesis Structure

Structure of the thesis is outlined and presented with brief information about each chapter as
follows.

Chapter 1 - Introduction is the current chapter, presents the introduction, the research ques-
tion and motivation as well as the structure of the thesis.

Chapter 2 - Literature Survey related research and methods to problem definition and dif-
ferent approaches.

Chapter 3 - Methodologies Used description and detailed explanation of the methods used
in this investigation.

Chapter 4 - Data Analysis exploratory data analysis, data preprocessing, cluster analysis,
model training hyperparameter tuning and performance benchmark of each step.

Chapter 5 - Results And Future Work summary of achieved results and the possible ap-
proaches to be considered in order to increase the achieved performance even more.

Chapter 6 - Conclusion the final discussion about the study and whether the findings of the
experiments are consistent with the theorized framework.

4

CHAPTER 2

LITERATURE SURVEY

In this chapter the relevant research is presented, the presented material covers both the well
known research as well as the more contemporary work published regarding the subject. Main
aspects of the literature review is to present the methodologies about time series forecasting in
general, available methodologies for demand forecasting specifically, deep learning method-
ologies and available data sets. Time series forecasting is an active area of research and deep
learning methods utilized by this field are evolving as more research is published on the mat-
ter. Some of the work focus on the architecture of the network as a whole and the mechanism
implemented between each layer. Examples of research on the network architecture between
layers are presented in Section 2.2. On the other hand, there is also research conducted on
how changes in internal architecture of each of the neurons can be beneficial to improve over-
all accuracy, which is explained in detail in Section 3.1.4. More specific research aimed at
demand forecasting is explained in Section 2.3 with examples from different areas, especially
from the retail domain.

There are many methods which does not incorporate deep learning methods such as Auto
Regressive Moving Average (ARIMA) [8], Exponential Smoothing (ETS) [12, 47, 110], Sea-
sonal and Trend decomposition using Loess (STL) [21], Trigonometric seasonality, Box-Cox
transformation, ARMA errors, Trend and Seasonal components (TBATS) [72], Neural ba-
sis expansion analysis for interpretable time series forecasting (N-BEATS) [83] and a multi
component additive regression model called Prophet [103]. Some of these algorithms are in-
herently unusable for the prediction task at hand because of the failed modeling assumptions,
as explained in the Section 2.1, and some of them cannot process the external information ex-
cept the measurements in the series and lastly many of them does not support the idea of one
common model for multiple series and requires each series to be modeled separately which
contradicts the core motivation of this research so not all of the methods mentioned here were
subjected to the experiments for this study.

There are multiple deep learning methods introduced in the Section 2.2 including the well
known LSTM type networks and more novel research in order to explain the area of deep
learning applied to time series data is headed to. The LSTM type networks are very crucial
for this research since the core component of the main algorithm examined in this thesis is an
LSTM network. Depending on the difference in the layer architecture some RNN networks

5

can be named as Elman Networks, Jordan Networks of Hopefield Networks furthermore de-
pending on their cell architecture they can be called as LSTM or GRU networks as well
depending on the cells comprising the network.

2.1 Methods For Time Series Analysis

The methods well known in time series forecasting domain well before deep learning methods
have gained ground. The main drawback of these models is that they are all univariate models,
which cannot be utilized for the common model scheme of this research in the forecasting
aspect but their performance is measured for the imputation studies where the pre-processing
step is done individually per series. The Python implementation in the statsmodels package
[94] is used for the experiments of the methods presented in this chapter. These algorithms
are not able to obtain a global model from many series but require each series to be modeled
individually thus the applicability of these are considered for the imputation study and the
actual forecasting is not done on these models.

2.1.1 Exponential Smoothing (ETS)

Forecasts produced using exponential smoothing methods are weighted averages of past ob-
servations, with the weights decaying exponentially as the observations age toward the be-
ginning of the series [12, 47, 110]. This mechanism allows the more recent data to be more
prominent when generating forecasts which would allow recent changes of behaviour of the
data to be captured. The components of the method are (E, T, S) which are error, trend and
seasonality respectively. Either of these can be one of additive, multiplicative or none (i.e. not
going to be included in the model). This model does not require the removal of seasonality or
trend from the input data, since it models those components in particular. It is a well studied
[35] approach and aims to estimate its parameters by minimizing the sum of squared errors
(SSE) for each et = yt − ŷt|t−1 in the series where t ∈ [1, T] and y is the actual value and ŷ

is the predicted value in a series of length T , minimization is carried out one step at a time of
which the error can be formulated as follows

SSE =

T∑
t=1

(yt − ŷt|t−1)
2 =

T∑
t=1

e2t . (2.1)

This minimization is non straightforward since it includes a non linear optimization scheme
and implementation in the statsmodels package [94] uses numerical methods such as complex-
step differentiation for calculating the covariance matrix which is used for maximum likeli-
hood estimation. Another implementation of ETS is present in the R language and is one of
the most well studied forecasting algorithms [50]. The performance of the ETS algorithm will
be compared in more detail in the following chapters with other candidate algorithms in the
imputation phase.

6

2.1.2 Auto Regressive Integrated Moving Average (ARIMA)

Auto Regressive Moving Average (ARIMA) model is a very well known time series model in
the family of Box-Jenkins models but it works under certain conditions [8]. These conditions
can be summarized as the modeling assumptions and the ARIMA model requires a stationary
time series, a stationary time series is defined as follows

• mean of the series, µ, is constant and does not change depending on the time

• variance of the series, σ, is constant and does not change depending on the time

• no seasonality observed in the series

• the autocovariance function (i.e. COV(Zt, Zt+h)) of the process Zt depends only on h

and not t

stationarity examination can be done visually by using the plot of the series itself combined
with auto correlation and partial auto correlation plots of the series [51]. These are special
plots called correlograms. These correlograms are used to determine the parameters AR(p)
and MA(q) of the ARIMA model for a stationary series. In addition to graphical perusal
of correlograms and the series plot itself, there are formal statistical methods for confirming
that if a series is stationary or not such as The Kwiatkowski–Phillips–Schmidt–Shin Test
(KPSS) and Augmented Dickey-Fuller (ADF) tests. ADF test has the null hypothesis that
a unit root is present in an autoregressive model of a given time series which means the
inspected series is not stationary [31]. Similarly, the KPSS test has the null hypothesis which
given series is stationary around a deterministic trend [61]. In case of non stationary data it
is possible to achieve stationarity by detrending or differencing methods depending on the
data and procedures may be repeated until stationarity is achieved (if it can be achieved) for
more than one time. Since the remedy for non stationarity will change depending on the
series itself, and the number of applications, achieving seasonality requires that each series
should be inspected separately even sourced from similar measurements. In addition, seasonal
behavior can be present in the data which can be modeled with SARIMA model or can be
removed by deseasoning since ARIMA does not model the seasonality. After the proper
modeling preparations, ARIMA methods should have the process of diagnostic checking. In
order to confirm that no correlation is observed in the final model’s data which can be done
by statistical tests like Ljung-Box [73] or Box-Pierce [9]. Auto-correlation of the residuals
(errors) should also be investigated for the model which can be done with the help of the
Breusch-Godfrey [10, 37] test and in a healthy model there should not be a strong indication
of auto-correlation of residuals. The very complex nature of this approach diminished the
practicality of this solution for imputation stage since parameters of the model should be
adjusted for each series in order to maximize the accuracy.

7

2.1.3 Seasonal-Trend decomposition using LOESS (STL)

Seasonal and Trend decomposition using LOESS (STL) [21] approach aims to obtain the de-
composed components of the series as seasonal component, trend component and the resid-
uals. This model does not require the removal of seasonality or trend from the input data
and optimizes the model parameters according to the given data without any preventing as-
sumptions. Seasonal component is obtained by using locally estimated scatterplot smooth-
ing (LOESS) as a smoothing method. This is done by applying locally weighted polyno-
mial regressions at each point in the data set in order to build the additive regression model
xi = ti + si + ei where xi is a measurement from the series, ti is trend, si is seasonality and
ei is the error or residuals of that measurement. The goal is to obtain the best fitting curve
to the presented data using regressions. The periodicity of the seasonality of the data like
daily, weekly or yearly is given as a required parameter and window size (lag count) for the
seasonal smoother and trend smoother can be provided as parameters can be used to fine tune
the results better which requires special attention per series in order to use this algorithm as
the imputation method of choice. The main attraction of this algorithm is that it is robust to
outliers.

2.1.4 Prophet

The Prophet algorithm [103] is an additive regression model y(t) = g(t) + s(t) + h(t) + ϵt

where g denotes the trend function, s denotes the periodic changes (seasonality), h represents
special days like holidays and ϵt error terms assumed to be normally distributed. The fit of
the model is performed similar to Generalized Additive Models (GAM) [44] by using the
L-BFGS [14] algorithm. The fit for the trend is performed with a saturating growth model
or a piecewise linear model, the seasonality is modeled with Fourier series and multiple sea-
sonalities can be modeled automatically and the special days or holidays must be provided
to the algorithm by the user of the algorithm. There is another implementation called neural
prophet which is a hybrid approach that combines the original prophet and a covariate module
which can be trained as a neural network [104]. The algorithm is also experimented on in the
imputation phase and results are presented in Section 4.3.

2.2 Deep Learning Methods For Time Series Analysis

This section is mainly interested in the architecture of deep learning methods and how they
are utilized to increase the accuracy of forecasting. The different approaches presented here
are brief and prepared in order to convey the core idea of the different approaches rather than
to provide an in-depth analysis of each different approach.

8

2.2.1 Hybrid Approach

Hybrid approach is referred to as combining a classical algorithm like ARIMA with a ma-
chine learning algorithm like gradient boosting [33] with the help of libraries like XGBoost
or LightGBM, extensive research is available [41, 115] on comparisons of different combina-
tions with different variations of component methods. The core idea about these approaches is
to detect where each type of algorithm is best at and combine it to have a result which would
potentially have the best of both worlds by combining the advantageous aspects of each.

2.2.2 Convolutional Neural Network (CNN) Approach

The convolutional Neural Networks which are known to be successful for the image process-
ing domain also have their applications in time series forecasting as temporal convolutional
networks [107] or combined with recurrent structure [109]. There are comparative studies
that inspect the potential of CNNs for image and sequence modeling such as time series and
speech [66]. Similarly, for the classification problem for images CNNs are also proposed
[116] for time series as well.

2.2.3 Transformers Approach

Transformers are the types of networks that make use of the encoder decoder architecture
[105]. In the natural language processing domain, especially in the machine translation prob-
lem which is a very active area of research for sequence to sequence modeling, the attention
mechanism applied by the transformers have shown great success [29, 13] and are capable of
generating very large language models successfully [19] as well as smaller ones [46]. Atten-
tion is the mechanism applied in the transformer networks to mimic the cognitive attention
of humans when they are reading or translating text. It has some applications in time se-
ries forecasting [87, 70, 117, 111] but compared to NLP the applications are very limited in
number.

2.2.4 Generative Adversarial Networks (GAN) Approach

Generative Adversarial Networks (GANs) [39] feature two main components a generator and
a discriminator. The generator network is the network that generates the output and it is
presented to the discriminator which is already capable network. In the context of the image
generation discriminator can correctly classifies images and the task of the generator is to
create new images that are good enough to convince the discriminator that the generated
images are real. GANs are very successful for tasks like image generation or style transfer
and in the time series domain there are data generation [113, 55], time series classification
[28] and outlier detection [68, 36]. Although forecasting implementations exist [60] this is

9

another novel approach and compared to RNN based solutions not yet widely adopted.

2.2.5 Recurrent Neural Network (RNN) Approach

Most of the literature presented in this survey is either using the LSTM or GRU cells in the
RNN architecture or combining the formerly mentioned approaches on top of the RNNs. By
the volume of the published research it is possible to say that this is the most dominantly used
type of neural network for time series forecasting. The core model (DeepAR) is also another
example of this architecture, and details of this architecture are presented in more detail in
Section 3.1.2. There are many versions of recurrent architecture with different variations
applied to the time series forecasting problem this is a well studied area of research with
extensive surveys available [43, 7].

2.3 Deep Learning Methods For Demand Forecasting

Focus of this chapter is narrowed down to the more similar research with similar data and
underlying algorithms instead of more generally available algorithms. There are well known
datasets where research is continuing like CIF2016 [100], M5 data set [75] and Online Retail
I, Online Retail II datasets provided by UCI ML Repository [32] which are publicly available.
On the other hand, there are proprietary datasets that are not publicly available as the one
used for this thesis. Studies of this type provides a research opportunity that would allow the
time series forecasting methods to be experimented on data sets not generally available. On
the literature there are similar research conducted specifically in the retail domain which are
introduced in this chapter.

The initial procedure for the data analysis is the collection of the data itself and methods
in the retail domain focuses on two main aspects of data collection. The first aspect is the
potential demand which can be measured by the number of visitors in actual physical loca-
tions or virtual stores online which can be named as the footfall. The second aspect is the
realized demand which is the number of people actually committed a transaction like a pur-
chase which can be generally called as sales data. Collection of sales data is straightforward,
since transactions are recorded electronically in both physical and online stores. On the other
hand the measurement of the number of people which have the potential to convert to a sales
transaction requires additional infrastructure for measurements. This is especially prominent
in physical locations where logging the web requests in order to keep track of the visitor is
not possible like online stores. The infrastructure requirement in the retail domain can be
addressed with vision based solutions processing information from camera sensors. This is a
common practice [96, 81, 79] in order to achieve automatic and accurate record for the foot-
fall measurements and the data collected for this thesis is generated with a similar strategy.
Although there have been previous research [59] done on the retail market in Türkiye the fo-
cus of the aforementioned studies were directed towards to the sales perspective rather than

10

the demand perspective. In addition, globally there are many research done about forecasting
the demand in different industries like transportation [118, 62], tourism [65, 56] as well as
retail [90, 69, 52] which is the main research domain for this study. In this domain, there are
findings that show that LSTM networks can produce very accurate results and compared to
CNN more accurate results [63, 119]. The probabilistic approach of forecasting in retail were
already adopted in order to have more optimal inventory management, better staff scheduling
or efficient supply chain operations [64].

There is no inherit limitation for the methodologies mentioned in Section 2.2 for the retail
domain specifically but it is necessary for the implemented method to have the capability
to process or model all of the given series together in order to scale the available training
data horizontally and make data abundant for each model respectively. Even though method-
ologies mentioned in the Chapter 2 as literature survey are all viable time series forecasting
strategies, in order to realize the horizontal scaling approach the work reviewed here cannot
be all candidates for the continuation of the research because of the underlying modeling re-
strictions. In Chapter 3 the methodologies determined are appropriate for this research are
introduced with detailed descriptions and their working principles are discussed as well as the
reasoning behind the decision to be used.

11

12

CHAPTER 3

METHODOLOGIES USED

The used methodologies are explained in detail in this chapter. In order to provide more
clarity, the preliminaries to the subject are presented in Section 3.1 which would provide the
foundation of the methods used in this research and some possible problems which can occur
and possible ways to prevent them. Not all of the methods from the literature can be applied
to the given problem since some of them failed to fulfill the assumptions of the model. The
application of the modeling is completed at two folds. The first step is to individual model-
ing for the imputation and outlier cleaning. For this first stage the Exponential Smoothing
approach is used and details of the approach are presented in Section 3.2.3 and the actual
forecasting is performed with DeepAR, which is presented in Section 3.2.4 in detail which is
the core model of this research.

3.1 Preliminaries For The Subject

This chapter is dedicated to present some preliminary notions in order to make reasoning
behind trade-offs and the points made in the following chapters more clear. Some historic
information, variations of the used components and generic formulae about the networks are
discussed. The equations described here are generic equations for exemplary purposes, actual
derivations can be different with different activation functions or cell architectures. For ex-
ample, the gradient needs to be calculated for the optimization in order to minimize the error
function or train the network through back propagation. In order to calculate this gradient the
partial derivatives of the following are chained together; the equations of the cell architecture,
activation functions and the loss function. It is impractical to calculate and present each of
the different calculation from the numerous combinations but this is a well studied topic and
there are abundant resources with derivations of backpropagation for different activation/loss
functions and for different architectures. The main aspect of this research is focused on the
implementation of the derived methods, in order to make that implementation built on solid
foundations, minimal amount of equations for related subjects are presented here accompa-
nied by visual explanations as supplementary materials.

13

3.1.1 Representational Power of Neural Networks

The Universal Approximation Theorem for neural networks means that there exists a network
that can approximately represent a function f independent from the definition of the func-
tion itself hence the universality. In the context of the universal approximation theorem, the
term width is used for the number of the neurons layer wise and the term depth is used to
denote the number of layers in the network. It is shown [23] that for the sigmoid function
the arbitrary width can be a universal approximator. This result is further extended [67] since
any non-polynomial activation function still preserves the approximation capability. Instead
of a specific activation function, it is shown [48] that the representational power of the net-
work still exists as long as the multilayer forward structure is maintained. On the assumption
that there exists a function representing the future values of a series, universal approximation
theorem shows that neural networks can learn (approximate) the function by learning from
the data and will be able to generate accurate forecasts to some degree. This is shown for
recurrent neural networks [93] as well as the feed forward neural networks.

3.1.2 Recurrent Neural Network (RNN)

Recurrent neurons pass the current output (i.e. hidden state) to themselves as another input
combined with the output of the previous layer for the next step. This approach enables them
to remember the encoded information from the previous steps thus it can be considered as a
"memory" mechanism. Whereas in the feedforward neural networks, each neuron’s calculated
result (i.e. hidden state) is passed only onto the downstream layers and the new hidden state
is calculated without combining the output of the same neuron in the previous step but using
only the output from the previous layer in the current step. Figure 3.1, visualizes the difference
between these two types of networks. The left side of both diagrams represents the fully
connected inputs to each neuron from a fully connected layer and single arrows on the right
side of each neuron represents the individual output of that neuron.

Figure 3.1: Comparison of different types of neurons [26]

The difference in the network architecture introduces a difference in the network behaviour
as well. During training the weights in each neuron is determined with back propagation in
feed forward neural networks. On the other hand, recurrent networks apply the same principle

14

through time and this is called Back Propagation Through Time (BPTT) which is explained
further in Section 3.1.3. Back propagation aims to optimize weight parameters of each neuron
in order to minimize the error function or cost function which is the core idea of training a
network. Although the principle is the same for both types of networks, BPTT has its own
unique problems such as exploding or vanishing gradients because how the gradients are
calculated this is explored in detail in Section 3.1.4.

Figure 3.2: Unrolled representation of a recurrent neuron [82]

Figure 3.2, is the unrolled representation of a recurrent neuron. In the loop notation (left) xt
denotes the tth input from the input sequence and ht denotes the tth hidden state which will
be multiplied with Wh, which is the weights to multiply the hidden state before using it as an
input for the next time step. yt is output from the neuron A that presumably will be passed
to the next layer. Since the input is a sequence with length t the unrolled notation helps to
visualize how the sequence is consumed by the neuron A and the intermediate steps. All of
these steps can have a bias term as well in addition to the weights but for the visual simplicity
they are omitted in this diagram.

3.1.3 Back Propagation Through Time (BPTT)

BPTT calculation is needed for changing the weights according to the gradient of the error
term in order to minimize the error (i.e. value of the error function). For a sequence with
length T the total error can be denoted as follows where E is the error function that calculates
the difference between the actual value y and the predicted value ŷ. W is the weight matrix.
If optimization is performed with the gradient descent algorithm, the right side will be used
to update the weights with learning rate α which is a scalar hyper-parameter.

∂E

∂W
=

T∑
n=1

∂En

∂W
, W ←W − α

∂E

∂W
. (3.1)

For the neuron in Figure 3.2, for each time step t, the hidden state can be represented like
ht = f(ht−1, xt). For example, f can be a nonlinear activation function such as tanh,
Wh would represent the weights of the hidden state input from the previous time step, Wx

would represent the weights for the input sequence and bh would represent the bias for the
hidden state. Putting those together, the hidden state at the time step t can be written as
ht = tanh(Whht−1 +Wxxt + bh). Details like these depend on the internal architecture of
each individual cell and different applications of each of these will yield a different equation
for the back propagation calculation. Similarly for the output to the next layer is represented

15

by yt = f(ht), in this case f can be a different nonlinear activation function like softmax

which will yield yt = softmax(Wyht + by), where Wy represents weights for the output
and by is the bias for the output. In order to train the network (minimize the total error) by
adjusting the weights of the network, it is required to "learn" the direction which the weights
will be updated. This direction information can be obtained by using the gradient matrix.
This gradient is calculated from the output layer to the input layer throughout the network
hence the name back propagation. In the given example, the gradient between layers can be
calculated with the following generic equation at the kth step with the help of the chain rule
as follows,

∂Ek

∂W
=

∂Ek

∂yk

∂yk
∂hk

. . .
∂h2
∂h1

∂h1
∂W

(3.2)

as k grows larger the multiplicative operation gets more terms and gradient calculation is
going to have the potential to vanish (converge to zero) since the derivative of tanh is always
smaller than the value 1.

y =
d

dx
tanh(x) = 1− tanh2(x), y ∈ [0, 1]. (3.3)

On the other hand, a more subtle problem can also arise, and the Wh can potentially overpower
the derivative of the tanh which is always bounded. This problem is named as the exploding
gradient problem. Possible solutions to the vanishing or exploding gradient problems are
explored in the Section 3.1.4.

3.1.4 Vanishing or Exploding Gradient Problem

When the calculation requires multiplications even for a scalar x, the following number will
grow rapidly xn when x > 1 as n gets larger and larger conversely the same number will get
close to 0 when |x| < 1. This is also true for individual scalars in the matrices used in the
optimization (training) of the neural networks like weight matrices and gradient matrices. It
is shown [6] that exploding and vanishing gradients pose a serious problem for RNNs. There
are solution methods proposed in order to remedy the problem. For the exploding gradient
problem, clipping and limiting the maximum allowed gradient magnitude to a constant, can
be a straightforward solution [84]. Another approach is to apply the BPTT algorithm to a
subset of time steps instead of all the time steps which is called as truncated back propagation
through time and there are findings [80] suggesting that the truncated version is also capable
of performing as accurately.

For the problem of vanishing gradients, proposed solutions are to use the Long Short Term
Memory (LSTM) [45] cells or Gated Recurrent Unit (GRU) [20] cells in the recurrent net-
work. Changing the cell architecture allows the partial derivatives in the gradient matrices
to be calculated additively instead of multiplicatively. In addition, both of these specific cell
architectures allow to remember the previous cell state or forget it with specific gates (inter-
nal connections) and these connections are the mechanism allowing to remember long term

16

dependencies or forget the changing (no longer valid) trends in the context of the sequential
input. Either type of cell has shown usability for time series forecasting [34]. In addition,
there are different variants of LSTM cells like Time Aware LSTM [5] or Bidirectional LSTM
[4]. Variants of the GRU cell are also available [30, 112].

Figure 3.3: Different internal cell architectures with point-wise addition, multiplication and
sigmoid (red), tanh (blue) activations [18]

Another approach is to modify the optimization steps instead of the architecture of the network
by introducing hessian-free approach and there are findings [76, 77] showing this approach
is also capable of producing accurate results. Optimization problems for neural networks are
not straightforward and in addition to the problems described in this section there are still
additional research requiring to improve the optimization stage such as handling the local
optimal points which require high amounts of computational resources [22].

3.1.5 Cold Start Problem

Cold start problem in the context of this research is that the generated model is expected to
generalize for newly obtained data without retraining. This generalization requires that when
similar series are clustered and modeled together when another unseen series is added to the
inference set without introducing it in the training set, the monolithic model should be able to
generate fairly accurate forecasts for that series as well. Performance here can be measured
by leave one out validation method that is if the number of training series is n, train the series
with n − 1 series and obtain forecasts for the one left out and repeat this as many times as
required in order to determine the network’s performance for the cold start problem. This
study aims to show results that information sharing between multiple series during training
will alleviate the cold start problem as further series is added to the data set when working on
the forecasts which would create a great practicality for this approach to be adopted.

3.2 Algorithms used

The progression of the study required the adoption of different modeling approaches for dif-
ferent stages of the research. For example for imputation the more classical methods are
experimented on like ARIMA, ETS and STL. This is because compared to neural networks

17

the required computational power is significantly lower. More explainable and parsimonious
models are preferred for this stage, it is expected that modeling the series individually will
capture the behaviour of each series better since each series can have different average magni-
tudes and different seasonal behaviour. Capturing the original for imputation is critical overall
quality of the generated model will be directly impacted by the training data set and the im-
putation step aims to improve the quality of the training data. In addition classical models are
well understood and well studied in the literature and results obtained from them are more in-
terpretable. For the actual forecasting the deep learning methods are utilized and introduction
of all of the methods from data preparation to modeling experiments are introduced in this
chapter with necessary computational background.

3.2.1 Dynamic Time Warping (DTW)

Dynamic time warping is a distance metric between two series x = (x0, . . . , xn−1) and y =

(y0, . . . , ym−1). In order to calculate the DTW score the first step is to align (warp) the series.
Aim of this warping is to match the similar behavior between two series and calculate the
similarity accordingly. The naive approach to calculate the difference between two series can
be achieved by the Euclidean distance between two series. This can be formulated as follows

ED(x, y) =

√∑
(xi − yj)2 (3.4)

where ED denotes the Euclidean distance between two series x and y where 0 ≤ i < n

and 0 ≤ j < m. In case of the Euclidean distance metric the two series are aligned by their
timestamps and the score of dissimilarity E is calculated accordingly. This distance metric
can work very well if the compared series are behaving synchronously. This assumption may
not hold even if the series come from similar origins like both are the records of demand for
retail stores in the physical world of the same brand. Even though both series would have some
periodic peaks, these peaks might not occur at the same time in the both series simultaneously.
In order to have a more robust distance metric that accounts for these differences, instead
of alignment of the time stamps it is possible to align the behaviour of the series before the
distance between two series is computed. DTW as a distance metric solves this exact problem
with two stages, first the correct alignment is found by solving the optimization problem [89]
as follows

DTW (x, y) = min
π

√ ∑
(i,j)∈π

ED(xi, yj)2 (3.5)

the minimum value or the optimal warping path can be found with the following simple steps
to find the optimal warping path π

18

1. calculate the Euclidean distance between x0 and all points y0, . . . , ym and obtain the
minimum

2. repeat 1 for each point remaining in the series x (each xi where i ∈ [1, n])

3. repeat 1 and 2 for the series y

4. the path π is generated by selecting the minimum error generated in 1 froam each
possible i and j indices between of two series x and y

the steps described above would require exponentially growing number of calculations when
the number of the values in the series increases, in order to make the search for the optimal
solution there are some constraints introduced for limiting the search space. Calculation of
the DTW becomes solution of equation 3.5 such that each path π = [π0, . . . , πK] satisfies
the following constraints:

• πk = (ik, jk) where 0 ≤ ik < n and 0 ≤ ij < m

• π0 = (0, 0) and πK = (n− 1,m− 1)

• πk = (ik, jk) and πk−1 = (ik−1, jk−1) follows for all k > 0

∗ ik−1 ≤ ik ≤ ik+1

∗ jk−1 ≤ jk ≤ jk+1

the reason behind the constraints for the optimization is as follows:

• ik−1 ≤ ik and jk−1 ≤ jk : guarantees the monotonicity by restricting the alignment
path to not to go back in time stamps or the redo the calculation the previously visited
items again

• ik ≤ ik+1+1 and jk ≤ jk+1+1 : guarantees the continuity by restricting the alignment
path to not to skip elements in order to not to save the important characteristics of the
series

• π0 = (0, 0) and πK = (n− 1,m− 1) : guarantees that all of the both series is included
in the calculation by setting the boundary conditions of each series

• although omitted in this study another constraint can be defined as the warping window
(Sakoe-Chiba band) as |ik − jk| < r where r > 0 and r denotes the window length in
order to make sure that the warping does not wander off and match two points of the
series with too much time index difference between them. There are different variants
of this same strategy such as the Itakura parallelogram.

19

Combining all the information presented, the DTW is calculated as a similarity value between
two series that are temporally aligned. Temporal alignment tries to align the movement (be-
haviour) of the series, this can be considered of minimizing the Euclidean distance between
resampled series for a given pair of time series with cross-similarity matrix. Implementation
is available in the tslearn package [102] in Python and this implementation is used for this
research. Additionally, there are different computational variations [1, 98] of the DTW algo-
rithm to make computations faster, further decreasing the time complexity of the computations
even in sub-quadratic time [38].

3.2.2 Silhouette Score

The silhouette score [88] is used to measure the fitness of the clusters for a clustering work
setting. It is formulated by Equation 3.6 for a single sample s and for samples in the same
cluster it can be calculated as the mean value of each member of the cluster. The value is
bounded between −1 for unsuccessful clustering and +1 for ideal clustering. The silhouette
score around 0 means that the clusters created are not sufficiently distinct and there is a great
amount of overlap between the clusters.

s =
b− a

max(a, b)
(3.6)

where

a: The mean distance between a sample and all other points in the same class.

b: The mean distance between a sample and all other points in the next nearest cluster.

Silhouette score is applicable when the ground truth labels for each sample and class is not
known and there are different algorithms applicable for the similar cases such as Calinski-
Harabasz Index [15], Davies-Bouldin Index [25] for evaluating the performance of the clus-
tering.

3.2.3 Exponential Smoothing (ETS)

The method of exponential smoothing aims to model the series by using the weighted averages
of the past values in order to determine next values. The weights in this averaging process
decay exponentially in order to give the least importance to the oldest observation whereas
the most recent observation has the most amount of weight [47, 110]. The same idea can also
be implemented as a state space method [50] in order to generate forecasts. The state space
method includes all of the components (i.e. Error, Trend, Seasonality) together [51]. It can be
formulated by two different parameterizations as follows:

20

For additive seasonality ETS(A,A,A)

yt = ℓt−1 + bt−1 + st−m + εt

ℓt = ℓt−1 + bt−1 + αεt

bt = bt−1 + βεt

st = st−m + γεt,

and for multiplicative seasonality ETS(A,A,M)

yt = (ℓt−1 + bt−1)st−m + εt

ℓt = ℓt−1 + bt−1 + αεt/st−m

bt = bt−1 + βεt/st−m

st = st−m + γεt/(ℓt−1 + bt−1)

where

• ℓt : denotes the level component and α its smoothing parameter

• bt : denotes the trend component and β its smoothing parameter

• st : denotes the seasonal component and γ its smoothing parameter

• m : is the frequency (e.g. 4 for quarter data, 12 for monthly data)

• εt ∼ NID(0, σ2): denotes the errors are normally and independently distributed with
mean 0 and variance σ2

The ETS model family is experimented on with the available data set in order to determine the
best fitting model components for error, trend and seasonal components and the summary of
the fitted models the Bayesian Information Criterion (BIC) and Akaike Information Criterion
(AIC) are used as well as the visual examination of the plots and best performing method is
observed to be the one that includes all of the terms. Among all parameters included models,
the one with multiplicative seasonality by the measure of AIC and BIC. Additive seasonality
for this method means that seasonality is fairly constant throughout the series, but the mul-
tiplicative seasonal component is able to capture seasonal behaviour changing together with
the magnitudes of the values in the series. In this study all of the measurements are strictly
positive integers since they denote the number of people thus multiplicative seasonality does
not cause a computational problem.

3.2.4 DeepAR

Unlike conventional methods, the DeepAR [91] algorithm does not require the modelled data
to uphold certain assumptions such as stationarity of the series, residuals to have Gaussian

21

distribution or homoscedasticity. Moreover, the model is capable of generating probabilis-
tic forecasts which would provide another layer of practicality. This is because even though
generated from the same measurements each individual series can have their differences in
magnitude or different sensitivity to errors in prediction. If the demand is going to be pre-
dicted for a location where possibility of being under-stocked or understaffed is not affordable
by the business then the predictions created for that series should accommodate this need for
real life applications. This requirement can be addressed by the probabilistic forecasts gen-
erated by DeepAR. Upon completion of the model training, the model can generate different
probabilistic predictions from different quantiles called PX where X denotes the probabilis-
tic quantile. For example, P90 predictions obtained from the model imply that 90% of the
time the actual value will be less than the forecasted value. By using different quantile values
it is possible to obtain different forecasts with varying levels of sensitivity depending on the
application. In addition to the actual measurements recorded in the series which are called as
target data set, this algorithm is also capable of ingesting information from related and meta-
data data when provided for each individual series in the data set. The target data set holds
the records for the actual time series with unique identifier for the series, the time stamp and
the actual measurement value to be learnt and forcasted. The metadata data set describes the
additional features for the uniquely identified series for example if the training set contains
demand records throughout Türkiye, which province that the specific series is collected from
can be provided to the model via this data set. The related data set holds the information
about the time period for the uniquely identified series in the set, for example special days or
holidays, a series in the data set can have different holidays depending on the location. The
three data sets used for this study are further detailed in Section 4.4 with actual examples
from the data set used. The GluonTS package [2] of Python provides the implementation of
DeepAR.

Different from vanilla LSTM networks that produces point forecasts for the given time series
instead what DeepAR does is for given inputs of the series the network outputs the parame-
ters of the probability distribution. For example, the Gaussian function in this application is
parameterized by its mean µ and its standard deviation σ as follows

ℓG(z|µ, σ) = (2πσ2)−
1
2 exp (−(z − µ)2/(2σ2))

µ(hi,t) = wT
µhi,t + bµ

σ(hi,t) = log (1 + exp (wT
σ hi,t + bσ))

where mean is calculated with an affine function using the output of the network and the
standard deviation is obtained by applying an affine transformation followed by a softplus

activation on the calculation of the σ(hi,t). The function is defined as softplus(x) = log(1 +

ex) in order to ensure σ > 0. The parameters used are the output hi,t, the weights to be learnt
for the mean and standard deviation wµ and wσ respectively. Similarly, the biases bµ and bσ

are the biases for the mean and standard deviation respectively.

Additionally another example is the negative binomial distribution which is a popular choice
when the forecasted measure is positive integers [99, 17] similar to this research. The discrete

22

random variables such as the number of people are best predicted with a negative binomial
distribution. This distribution is parameterized by its mean µ ∈ R+ and a shape parameter
α ∈ R+ as follows

ℓNB(z|µ, σ) =
Γ(z + 1

α)

Γ(z + 1)Γ(1α)

(
1

1 + αµ

) 1
α
(

αµ

1 + αµ

)z

(3.7)

µ(hi,t) = log (1 + exp (wT
µhi,t + bµ))

α(hi,t) = log (1 + exp (wT
αhi,t + bα))

in order to ensure that both parameters are greater than zero, the outputs from the network’s
fully connected layer are passed to the softplus function. Here α is called as the shape pa-
rameter for negative binomial distribution and it adjusts the variance relative to the mean as
follows Var[z] = µ + µ2α. In this research, the negative binomial distribution is used as the
probability distribution for the likelihood estimation since all of the series in this study are
from a distribution where each measurement is a positive integer. These likelihood functions
are shown in Figure 3.4 between hi,t−1 and zi,t−1 on the left side during training and similarly
at the same level for the inference shown on the right.

Figure 3.4: Architecture of DeepAR [91]

In Figure 3.4 the left side represents the training part of the model. At each time step t, the
covariates xi,t, the value of interest of the series of previous step zi,t−1 and the output from the
network at the previous time step hi,t−1 are provided to the network as inputs (bottom line of
the left part). From these inputs the network creates the output hi,t = h(hi,t−1, zi,t−1, xi,t,Θ)

and this output is used to compute the parameters θi,t = θ(hi,t,Θ) of the likelihood ℓ(z|θ)
which is used for training the model parameters. In this architecture h is a function imple-
mented by a multi-layer recurrent neural network with LSTM cells, i is the index or the unique
identifier of the series, z is the actual measurements we want to predict, x is the covariates (a
matrix with all of the supplementary data to the series i.e. related and metadata data),
the likelihood is the negative binomial for this research denoted in Equation 3.7 and the pa-
rameters of this likelihood is given by the function θ and lastly Θ is the model parameters.
DeepAR follows the autoregressive recurrent network architecture [40, 101] in order to model
the conditional probability of P (zi,t0:T |zi,1:t0−1, xi,1:T). This is a sequence to sequence model
left side representing the encoder and the right side representing the decoder in the Figure 3.4.
The features of the model include the standardized covariates with zero mean and unit vari-
ance and it is possible to include the day-of-the-week feature by adding an additional feature

23

with values ranging from 1 to 7 for each of the weekdays. This is expected to help the model
to capture the weekly seasonality in the daily data provided for this research and it is possible
to increase the number of features like week-of-the-year or day-of-the-month for different
expected seasonality periods.

Training of the model, optimization of the model parameters Θ which consists of h and θ,
is achieved by maximizing the log-likelihood in the Equation 3.8 as follows for N different
time series and T time steps

L =
N∑
i=1

T∑
t=t0

log ℓ(zi,t|θ(hi,t)) (3.8)

and in order to handle the different of magnitude problem between different series the model
uses a scale factor vi for each individual series as follows

vi = 1 +
1

t0

t0∑
1

zi,t (3.9)

this scaling factor is utilised in the training of the network since the activation functions used
in the network have a finite range and values with different magnitudes would reach the possi-
ble maximum or the minimum of that range depending on their magnitude in order to prevent
such a case model uses the following

µ = vi log (1 + exp(oµ))

α = log (1 + exp(oα))/
√
vi

where oµ and oα are the outputs from the network for the mean and variance for each in-
dividual series and vi is the average value of the series i. For the specific data set used in
this research excluding the outliers had gained special importance because of this scale fac-
tor since the data set is discovered to have outliers causing very heavy skew problems as
described in Section 4.1.1

For prediction, the decoder part on the right side of Figure 3.4 the dashed line represents the
generated sample z̃i,t−1 to be passed as an input for the next step in order to obtain z̃i,t by
generating one step forecasts many times creating a sequential output of the desired length
immediately starting from the end of the training data set. The samples z̃i,t are obtained
from the θ distribution which in this case is a negative binomial distribution thus z̃ ∼ ℓ(·|θ)
and the mechanism providing the PX predictor mentioned early in this chapter is realized
via this mechanism since each z̃i,t can be sampled form the distribution multiple times. So
the z values are the actual measurements existing in the training data set whereas z̃ values are
sampled from the likelihood function ℓ learnt by the network and used as one step information
for multi step forecasting scenarios hence the auto-regression aspect of this model.

24

CHAPTER 4

DATA ANALYSIS

The data contains individually recorded series for different locations of an apparel brand
throughout Türkiye where each individual series correspond to a specific store. There are
122 different stores in the data set and outlier analysis and imputation studies are performed
for each series individually. The collected data does contain possible sensor errors and over-
counts (outliers) as realized in the exploratory data analysis step. Since the data set required
to be cleaned from the outliers and there is no indicator for each sample is a correct measure-
ment or an outlier an unsupervised cleaning algorithm is required. Besides from detecting
the possible outliers this cleaning algorithm is expected to replace the possible outlier sample
with a normal sample. Performance of the algorithm is measured by a control data set. In
this control data set some values are replaced with artificially generated outliers and these
are filtered by the algorithm. After that filtered result is compared with the clean version of
the control data set and similarity of these two series is used to measure the success of the
cleaning algorithm and presented in the relevant chapter. Another requirement for the clean-
ing algorithm is to identify and replace values in the series considering that different series
behave differently. The difference in behaviour of the series can be the magnitude of the
recorded values, seasonal repetition patterns or different tendencies in the level. The intended
result is to develop a common cleaning algorithm to clean the entire data set without requiring
the effort of individually fine-tuning the cleaning per series.

Besides from the erroneous measurements the data set is also observed to have missing values.
The reason for the missing values can be the sensor fault, communication fault or the actual
physical location not to be accessible in the time of the measurement. These missing values
are imputed in order to increase the model performance and to have a data set with as many
samples as possible. Performance of the imputation is measured by a control data set by
deleting random data points in the series for imputation and calculating the difference between
the imputed value and the actual value. This step is completed for both single point imputation
and consecutive imputation and results are presented. Confirmation of the model performance
improvement is also presented by comparing a model with imputation and without imputation.

Cleaning and imputation operations complete the preprocessing step for this study and in
order not to introduce too much artificially generated data trickle into the modeling stage, the
amount of cleaned/imputed data allowed per series is limited to 25% of the series.

25

4.1 Exploratory Data Analysis

The exploration of the training data set is explained in this chapter. The importance of clus-
tering and the need for treatments for outliers and missing data is detected via the analysis
performed here and the next chapter presents the methodology for those steps. The aim of
this analysis is to detect where the quality of the data can be improved in order to achieve
better overall accuracy for the forecasting system. The descriptive statistics of the set are
very helpful in understanding the values in the series such as the magnitude of the different
series, the clustering analysis is performed in Section 4.1.2 to observe that the nature of the
series in the set can be clustered together appropriately and finally the seasonality analysis is
performed in order to see that a repetitive nature in the series is present and common for the
training data set.

4.1.1 Descriptive Statistics

The descriptive statistics of the series are inspected for each of the series in order to obtain a
better idea about the data before modeling. The distribution of the values in the series have
a slight skew with fairly amount of clean data can be seen in the left side of the Figure 4.1
the presence of an outlier even with one sample can dramatically change that and prevents the
observation of the values in the series. Observations like this example should be eliminated
by data cleaning which is explained in detail in Section 4.2.

(a) Without an outlier (b) With an outlier

Figure 4.1: Effect of the outlier presence on the histograms

After outliers are cleaned from the data set using the method in the Section 4.2 in order to
observe the magnitude difference among different series in the data set the box-plot is used
a random subset of the training set is shown in Figure 4.2. It can be clearly seen that the
series in the data set varies a great deal in terms of magnitude for the recorded values and this
observation is key when the series are compared by their movement in Section 4.1.2 and this
comparison is made after the values are normalized. Additionally the scale factor explained
in the Section 3.2.4 for DeepAR algorithm show suitability for a set containing many series

26

with different magnitudes and pre-processing steps did not include a normalization step for
the values to be passed on to the model before training because of this.

Figure 4.2: Box plot of randomly selected thirty series

4.1.2 Clustering Analysis

To remove the magnitude difference between different series, all the values of the series are
normalized to zero mean and unit variance first, this step is especially important in order to
measure the similarity of behaviour between series, the clustering step is performed with the
TimeSeriesKMeans [102] algorithm with Dynamic Time Warping (DTW) Section 3.2.1
as distance metric. Different numbers of clusters are tried and in order to find the optimum
cluster number the inertia of the series (calculated again with DTW) and silhouette score of the
different number of clusters are examined. Available in Python, TimeSeriesKMeans [102]
algorithm is used in this research and implementation follows the idea of Majorize-Minimize
Mean Algorithm [92]. This implementation can also work with missing values by putting
NaN values as placeholders during calculation which makes the algorithm very convenient to
use before any imputation is performed. The principle of the algorithm is as follows

LetD be a set of sequences, in order to find the barycenter (Fréchet mean), µ, DTW Barycen-
ter Averaging (DBA) algorithm tries to solve the following optimization problem

min
µ

∑
x∈D

DTW (µ, x)2. (4.1)

27

Figure 4.3: Inertia and Silhouette score with different values of K

After the barycenter is calculated by Equation 4.1 [86] method minimizes sum of squared
DTW distance between the barycenter (the average of the cluster) and the other series in
the cluster. This is achieved iteratively, an arbitrary average series is calculated and in each
iteration, algorithm computes the DTW between each individual series and the temporarily
averaged series and improving the performance of the clusters by calculating and selecting
the minimum DTW for the given alternative clusters for the series [24]. DBA is a costly
algorithm, in terms of iteration number (number of input series) it has linear time complexity
but time complexity is quadratic in terms of the length of the each sequence [24]. It is shown
[71] that the average sequence generated by DBA does not depend on the order of the input
series, the initial selection at the beginning of the clustering is dependent on the selected
sequence to be clustered on.

Number of clusters, which is K, is determined by examination of the inertia and silhouette
score metrics displayed on Figure 4.4. The elbow method is generally used in the examination
of the inertia plot, this method requires a significant change of slope but that is not present in
the inertia score and the decrease of the score is near linear as can be seen in Figure 4.3. As
per the silhouette score, higher is preferable but it is maximized at the minimum allowed K,
which is 2, and the silhouette score decreases as the number of clusters grows this means a
lower amount of clusters is preferable.

In addition to examination of inertia and silhouette score a visual analysis can be performed
on the normalized series in order to observe how much of the behaviour of the series are
overlapping. In Figure 4.4 the series are plotted on top of each other with a gradient colouring
scheme so the darker colour means a higher overlap between different series.

Further examination of Figure 4.5 shows that when the series is attempted to be clustered into
two groups the resulting clustered groups are very similar in nature but divided on the premise
that K is selected as two.

28

Figure 4.4: Series clustered when K = 1

Analysis made in this section is to confirm the assumption of generating a common model by
providing the series together can increase the accuracy of the forecasting model because the
movement of the series is similar in nature. The findings described in this chapter provide
a solid ground for this assumption since they show that the series is extremely prone to be
clustered as a singular group and dividing the number of clusters more does not improve the
inertia or silhouette score and this is one of the key observations confirming that the data are
appropriately grouped together for the global model from which the forecasts will be obtained.
The result of this examination is that there is no need to cluster the given data set with more
than one group.

Additionally the averaged series is considered as a good candidate as the imputation source
for the missing values in the series. This would be achieved by filling in the missing values
with the averaged series from the result of the barycenter of the cluster. Further exploration
of this idea is determined to be not applicable and the reason can be seen in Figure 4.6,
especially from the x75 to x100 indices in the series. It can be seen that there are sudden
constant sections in the barycenter, this plateau type of points are result of the noise around
the darker points of the series. These noisy points are result of slight phase shifts between
different series and average of this phase shifted signals converges to their middle. This
is similar to the destructive interference of sine and cosine waves when they are summed.
This observation showed that idea of imputation from the barycenter would not be a well
generalizing application for the data set of this research and alternative imputation methods
are investigated for the study and presented in Section 4.3.

To conclude, the behavioural resemblance of the series assigned to a single cluster can be
verified with the silhouette scores for different cluster sizes. The silhouette scores of different

29

Figure 4.5: Series clustered when K = 2

30

Figure 4.6: Series clustered when K = 2, barycenter (red)

clusters are near zero as can be seen in Figure 4.3 indicated that when the given data set is
clustered the generated clusters have significant overlap. This suggests that in data sets where
silhouette score is near zero may not benefit from multiple clusters. The silhouette score
obtained from the experiment with different cluster sizes yielded near 0 values between 0.03

and 0.06 thus the study is continued with a single cluster for the modeling phase.

4.1.3 Seasonality Analysis

The seasonal behaviour of the series is a very important factor in order to determine the
future values for the series when forecasting is performed also one of the hyperparameters
for the DeepAR model is context_length which should be selected as a multiple of a
seasonal period in the series. When the series are expected to have seasonal behaviour this
can be observed by the examination of the ACF/PACF plots as well as the plot of the series
themselves. This proposition can be further confirmed by Fourier’s series analysis which is
explained in this chapter as well.

Figure 4.7 shows examples from the cleaned series and their ACF/PACF plots. It can be ob-
served that some series have indications of very strong seasonality (a) there exists also series
that a clear seasonality cannot be observed (b) it can be concluded that the series observed
here is not stationary. The conclusion is that the series in the data set are not homogeneous in
terms of magnitude of the data, skewness of the data and seasonal behaviour and the model is
expected to learn this and produce the forecasts accordingly.

The STL decomposition statsmodels package [94] is used to obtain the seasonal component
of each of the series, and these seasonal components are passed through to the scipy package’s

31

(a) Weekly seasonality observed

(b) Seasonality cannot be observed

Figure 4.7: ACF PACF correlograms for different series

32

[106] implementation of Fast Fourier Transform (FFT) [11] in order to obtain decomposition
of the temporal frequency of the series individually. The most dominant frequencies is in-
spected for each of the series and the observed frequencies is converted to days by applying
1/freq and the obtained results were in the neighbourhood of the 7, 3.5, 2.3 which are roughly
equal to the 7/1, 7/2, 7/3 respectively. This observation combined with the correlograms of
the series suggests that there is a weekly seasonality present in the series.

4.2 Outlier Detection and Cleaning

What is considered normal for a specific series may be an outlier for a different location
and the developed methods are expected to adjust accordingly when per series pre-processing
is performed. In particular for outlier detection, treating the measurements in the series as a
random sample and trying to find the outliers by only inspecting the magnitude of the recorded
values is not a correct strategy because whether a data point is an outlier depends also on the
position of the data point in the series. A contextual outlier means the position of the outlier
is as important as the magnitude of the data point within the series. An example for this
case is that a data point with magnitude X can be detected as an outlier depending on the
location in the series. For a series with an increasing trend X can be an outlier towards the
beginning of the series and it may not be flagged as an outlier towards the end of the series.
So instead of checking the values of the series as a random bag of samples the movement of
the series is tried to be captured here and the idea is to determine a measurement is an outlier
or not using this information. The methods shown in Figure 4.8 are rolling window for mean,
median and exponentially weighted mean where the window size is set to 14 or double the
seasonal period of the series. Clearly closest matching method to the original series is clearly
the exponentially weighted mean.

This information is combined with the assumption that values that deviated enormously from
the exponentially weighted mean are potential outliers. The threshold selected for data points
are allowed to deviate from this mean is determined with the Interquartile Range (IQR) of the
rolling window. If a data point deviates above the 3*IQR, then that sample is deemed to be an
outlier. When outliers are detected, the treatment has to be performed in such a way that there
should not be a disturbance with the movement of the series. In order to address this concern,
the outliers and the missing data are imputed together with the ETS modeling explained in
the following chapter.

In Figure 4.9 it can be clearly observed that since the outliers in the sets are unbounded above
there is a potential that the existence of the outlier skews the exponentially weighted moving
average too much. This problem is prevented by calculating the IQR in a rolling window of
14 samples and the detected outlier is imputed with other missing values after the cleaning
procedure is completed. 14 samples are selected in order to include at least two seasonal
periods of the series. Weekly seasonality is observed in Section 4.1.3.

33

Figure 4.8: Different rolling windows for capturing the movement of the series

Figure 4.9: green: contextual outlier threshold, red: detected outlier

34

Figure 4.10: Prophet model fitted (blue) on an example series (black dots)

4.3 Missing Data Imputation

This imputation strategy is developed specifically for this study. The challenge with this spe-
cific data set is that simple imputation strategies cannot be used with this data set. The reason
is that simple imputation strategies like interpolation, backfilling (last observation carried for-
ward) or frontfilling (next observation carried backward) are most accurate when the series is
fairly stationary around a trend (ups and downs are small in magnitude) and the missing values
are points where immediate neighbours are available. In this data set there are multiple con-
secutive missing values present for multiple days and the simple imputation algorithms fail
to capture the up and down movement of the series. For this reason, the special imputation
method is developed for this study and is described in detail.

Since the imputation is going to be performed on each series individually the classical fore-
casting methodologies are candidates for this imputation except ARIMA since the series in the
data set does not satisfy the modeling assumptions. On the other hand, Exponential Smooth-
ing and Seasonal-Trend decomposition (STL) methods are the candidates for this imputation
and Prophet model is also experimented on. Among these three models the best performer
was the Exponential Smoothing method, in Figure 4.10 the Prophet model is fitted to the data
and it can be observed that the model fails the capture the exact movement of the data for the
majority of the series, and a similar lack of performance is observed with STL model as well.
Additionally, after modeling is done with STL the errors (residuals) are tested for normality
with the Shapiro-Wilk [95] test and the assumption of normality of the residuals is observed
to be not fulfilled.

The exponential smoothing method applicable to the series is determined as the ETS(A,A,M)

35

Figure 4.11: Example ETS(AAM) fit

model as explained in Section 3.2.3. An example ETS fit is presented in Figure 4.11 which
shows that the model can capture the movement of the series successfully.

the imputation presented in Figure 4.12 is obtained with an iterative approach. The first two
seasonal periods of the series (first fourteen days) are imputed with seasonal averages. The
seasonal average is calculated with the non-missing measurements in the series and seven
different averages are calculated with each week-of-day. This step is provided for the ETS
method to capture the seasonal behaviour. After the initial step is completed the iterative
approach is applied for each missing value where the previous data up to the missing value
index is used to model the series and the missing values are imputed with the forecasts of the
ETS model until the end of the series is reached.

In order to quantitatively measure the performance of the imputation method the data set
is subjected to the controlled imputation experiment. The setup of the experiment is simple,
randomly deleting 25% of the data from the series in the data set and imputeing the values with
the ETS algorithm and calculating the error metrics. In this setting the proposed imputation
method have yielded 30% Mean Absolute Percentage Error (MAPE) on average throughout
all series in the data set. The magnitude difference amongst the series is to be considered
when evaluating this metric. Another metric to be considered for this evaluation is the mean
absolute error (MAE), which on average was 13 actual people for the entire data set.

36

Figure 4.12: Multiple consecutive imputation with ETS(AAM)

4.4 Final Form and Example Data

Data preprocessing is concluded at this point of the research. From the entire data set there
are only 122 series that fulfilled the visual inspection and 25% modification rule determined
previously which states that no series is allowed if the amount of missing data and outliers is
greater than 25% of the whole series which spans two full years would not be allowed into
the modeling or the forecasting stage. These 122 series are distributed among Türkiye and
collected from more than 30 provinces. The number of series per province for the five most
crowded provinces of Türkiye is tabulated below in Table 4.1.

Table 4.1: Number of series collected from 5 most populated provinces in Türkiye
Istanbul 27
Ankara 12
Izmir 9
Bursa 7
Adana 3

The final format of the series is exemplified in the following table, the data is considered as
three main groups which are called target, related and metadata but for the DeepAR model
the data is leaned with all of them in the same line as columns of covariates just as presented.
The naming scheme for these three main data groups are to increase the human readability
and presented as is from the original paper of the DeepAR algorithm [91].

37

Table 4.2: Example rows of the training data set
Target Related Metadata

series_id timestamp target_value is_weekend is_holiday is_mall city avg_demand
0 2018-01-01 101 0 1 1 Istanbul 136
0 2018-01-02 142 0 0 1 Istanbul 136

...
121 2019-12-31 109 0 0 0 Izmir 96

It is possible to extend these features even more for even wider practical applications. For
example this data set consists of just one brand’s stores from different location throughout
Türkiye but if the brand has multiple different types of stores like clothing stores or utility
stores that can be a new feature in the Metadata category. Features named as Metadata are
the features specific to the series to be forecasted on in this case they are the properties of
the physical store. Related series is used to denote the properties of the time weather the
measurement is collected in a holiday date or during the weekend or not it can also be extended
with the weather forecast for that time if weather information is available for that date. Lastly,
the main data is in the target data set, on which the forecasts will be generated. Further
explanations of the example data provided in Table 4.2.

Table 4.3: Explanations of the columns in the data set
name definition range type

series_id the unique identifier for the series [0, 121] integer
timestamp date in the format YYYY-MM-DD [2018, 2020) date

target_value the demand value to be forecasted on [0,∞) integer
is_weekend a flag denoting the day is at the weekend or not 0, 1 bool
is_holiday a flag denoting the day is at a holiday or not 0, 1 bool

is_mall a flag denoting the store is inside a mall or not 0, 1 bool
city the city where the store is located in – string

avg_demand average demand for the specific store [0,∞) integer

38

Figure 4.13: Provinces of Türkiye Included in the Study According to the Number of Series
(Locations)

39

40

CHAPTER 5

RESULTS AND FUTURE WORK

The obtained results and proposals to improve the study in the future are presented in this
chapter with the discussion of the obtained results. Different algorithms and their perfor-
mance are also presented to show that information sharing among series via a singular model
indeed contributed to the improved accuracy for the given data set. The comparison with the
results of the original DeepAR study can be found in the Appendix E. DeepAR algorithm
is capable of producing probabilistic forecasts such as P10, P50, P90 and these three proba-
bilistic forecasts are obtained from the model. Through optimization, the DeepAR algorithm
learns a probabilistic function and the PX type of probabilistic forecasts determine where the
point forecast will be sampled from this probabilistic function as shown in Figure 5.1.

Figure 5.1: Probabilistic quantiles [3]

The point forecasts used for hyperparameter optimization and MAPE calculation is the P50
predictor which implies that 50% of the time the actual value will be less than the predicted
value. Although the P50 is used to determine the model parameters, the other predictors are
obtained from the model and inspected and presented. The hyperparameters of the model
are tuned with trial and error in an iterative search manner where the search values and the
increments are presented in Table 5.1. These values are selected through the test set and the
error metric to be optimized is selected as MAPE.

41

Table 5.1: Hyperparameter values used to select the best
hyperparameter name lower bound upper bound increment size best value

LSTM layers 2 4 1 2
LSTM cells 20 50 10 40

Epoch 100 1000 100 500
learning rate 1e-4 1e-1 1e-1 1e-3

5.1 Results

The obtained results are presented together with the conclusion derived from the research is
discussed in this chapter. The aim of this research is to show that in the presence of many
similar series a global forecasting model can be trained in order to obtain accurate forecasts.
The accuracy of the proposed system would benefit from the information sharing between se-
ries and this scheme would successfully train a neural network without the need for synthetic
data generation in order to increase the amount of the training samples. Additionally instead
of generating (training and optimizing) a model per series where the number of series is large
would pose a challenge for the practical ability. The proposed method has shown that it is pos-
sible to train a global model for all of the series at the same time generate forecasts from the
single model for all series with different probabilistic quantiles. This would allow even more
configurable inference even from the same model and it is shown that the produced model
is durable provided with the assumption that the behaviour of the series does not drastically
change for the test data compared to the training data.

5.1.1 Error Metrics

Table 5.2: Formulae of the error metrics

mean absolute error MAE =
1

n

n∑
t=1

|yt − ŷt|

mean absolute percentage error MAPE =
100%

n

n∑
t=1

∣∣∣∣yt − ŷt
ŷt

∣∣∣∣
In Table 5.2 the actual value of the series at time t is denoted by yt and the respective forecast
value is denoted by ŷt and the results presented are the average of these metrics for all series
in the data set.

5.1.2 Model Evaluation

The accuracy of the model is presented in Figure 5.2. here it can be clearly seen that the
model fulfills the promise of different predictors and their sensitivity compared to the result.

42

The plot which starts from 2019-12-04 and ends at 2020-01-23 is produced with four con-
secutive inference iterations of 14 days which is the forecast horizon and there are 56 total
test samples presented in order to cover 8 consecutive seasonal windows since the series has
weekly seasonality. Average daily value for the presented series is 156 and on average the
P50 predictor forecasts has the error of 26 people for the example series.

Figure 5.2: Forecasts from different quantiles

On the other hand, the average error metrics for the model for all series in the same testing
window are presented as follows in Table 5.3 with different models. Average target value
which is the potential demand for all series is around 85 people per day. Multiple algorithms
are tried and presented in Table 5.3, and it is possible to conclude that DeepAR outperforms
the ARIMA and ETS models with the same data set.

Table 5.3: Complete error metrics of the model
model name MAE (avg) MAPE (avg) MAPE (min) MAPE (max)

DeepAR 19 0.26 0.13 0.37
ARIMA 44 0.39 0.26 0.49

ETS 46 0.40 0.28 0.56

This method provides practical applicability for a very large data set and this is more promi-
nent if the data set is expected to grew larger in time when new series are added to this set.
The implications of this problem is explained in the Section 3.1.5 and with 5 series which are
completely withheld from the training similar accuracy results are obtained from the same
model. The error metrics for the cold start data set are for MAE of 22 and for MAPE of 0.29.

The P10 predictor can be considered as a consistent underestimator, and P90 can be consid-

43

ered as a consistent overestimator. In a situation where demand has to be met against all costs,
for example, for an electrical grid the higher the probabilistic quantile the safer the produced
forecasts are to meet the demand. Similarly for non-critical series, P10 can be a candidate for
cost saving measures. Depending on the application it is possible to produce a vale for the
probabilistic quantile in the interval [1, 99] with DeepAR [91]. This probabilistic assumption
is also tested with the testing set and the exceed amounts for each predictor is tabulated in
the Table 5.4 where it can be observed that the probabilistic assumptions hold with a margin
of error and the closest performer for the probabilistic aspect is the P90 which is convenient
since that predictor is a candidate for more critical practical use cases.

Table 5.4: Predictor error measurement for different quantiles
Probabilistic quantile Forecasted value greater than test value (%) Expected value(%)

p90 11.37 10
p50 40.13 50
p10 82.40 90

The robustness of the model is tested via observation of the error metrics when the forecast
horizon is largely extended. The produced forecasts are recorded for four times the forecast
horizon which is 56 days and each forecast horizon’s (forecasted values of 14 consecutive
days) error metrics are compared. As time progressed, the accuracy of the model remained
similar; thus, it is observed that the performance of the model does not degrade frequently.
This observation is critical for the model monitoring aspect of this research. The recurrent ar-
chitecture of the model allows that using the generated forecast as the consecutive observation
the forecasts can be generated very far into the future. On the other hand, as time progresses,
the actual observations will be recorded too. The decision for the retraining of the model can
be made upon observing this degradation periodically and the new training set can have the
same with shifting the start and end timestamps of the data into the future or adding the new
observations in the end which would increase the training time.

5.2 Future Work

In the future there may be further improvements to the model with a new weather feature.
Special calendar days are added to the training set based on the findings of a research show-
ing that specific dates have effects on retail demand [49] and similarly, there are published
research on the effects of weather on retail demand [74]. This idea can be tested by compar-
ing two different models with weather data included and excluded side by side and comparing
the accuracy results in order to observe whether a significant improvement in the performance
is observed or not.

Another practical application can be suggested for the findings of this research is that ob-
taining forecasts for a long horizon into the pandemic era and comparing the results with the
actual recorded data during the pandemic. This analysis can present a snapshot of the world

44

in order to provide an estimate for a world that pandemic has never happened and the differ-
ence between can provide some idea to the world and how much demand is lost during the
pandemic in the retail sector in a very narrow scope that is the results may not generalize.

45

46

CHAPTER 6

CONCLUSION

This research presented the models used and their place in the literature, as well as the back-
ground needed to convey the idea of time series modeling. The data set and the preparation
steps before the modelling stage are explained in detail, and the results of each step are dis-
cussed with the introduced metrics. The completion of the research showed that if there are
many similar series are recorded instead of modeling the series one by one with multiple
different models, a model that can process all the series together by allowing information
sharing between the series performs better compared to the conventional methods like ETS
and ARIMA for the selected data set. The DeepAR model used for this research showed that
with Autoregressive Recurrent Neural Networks it is possible for the model to learn long-term
dependencies and obtain accurate forecasts for time series data similar to the original article
in which the model is presented [91]. The produced model shows practical usability for mod-
eling and forecasting multiple series at once thus in a setting where there are already many
series and the number of the series is expected to grow continually this practical advantage is
expected to bring further improvements in the performance of the model.

The proposed practical usage envisioned by this research is to predict the possible maximum
demand for a series instead of creating the exact point forecasts for the retail applications. The
motivation for the suggestion is as follows, for example let the demand in the physical store
be a 100 people and on average the P50 predictor of this research has the average MAPE of
0.26 thus the predictions for that time point is expected to be in the interval of [74, 126] when
determining the stock amount for a clothing store the demand needs to be met but overstock-
ing by a small margin would be very affordable when compared to being understocked which
would result in potential revenue loss since clothes can be sold in a later day or week. On the
other hand consumables with narrow expiration dates like food or medicine the retailer would
prefer to sell all of the stock before the product becomes unusable and this case can be more
suited for predictors smaller than the 50% quantile (e.g. P10 - P50) on the other hand clothing
retailer would prefer a higher quantile upper limit. The selection of the preferred quantile
would entirely depend upon the beneficiary of this model and how sensitive the specific ap-
plication is to being overstocked or understocked if the predictions of the possible maximum
demand are obtained for stock management.

Study is concluded by confirmation of the idea when there are many similar series present

47

in a data set which are confirmed to be similar enough to be modeled together, allowing
information sharing by globally modeling each series in a single model instead of a model per
series can result in accurate forecasts without requiring synthetic data augmentation for the
training data. The sensitivity of the quantile can be determined per specific application, and
the model produced with DeepAR produced robust forecast even for the series completely out
of sample (i.e. cold started series) could find practical applications for planning efforts. The
exploratory data analysis was a critical part of this study in order to shed light to the data in
order to make the necessary imputation and cleaning efforts in order to improve the quality of
the forecasts produced by the model.

48

REFERENCES

[1] G. Al-Naymat, S. Chawla, and J. Taheri, Sparsedtw: A novel approach to speed up
dynamic time warping, in Proceedings of the Eighth Australasian Data Mining Con-
ference - Volume 101, AusDM ’09, p. 117–127, Australian Computer Society, Inc.,
AUS, 2009, ISBN 9781920682828.

[2] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus,
T. Januschowski, D. C. Maddix, S. S. Rangapuram, D. Salinas, J. Schulz, et al., Glu-
onts: Probabilistic and neural time series modeling in python., J. Mach. Learn. Res.,
21(116), pp. 1–6, 2020.

[3] Amazon, Developer guide for aws forecast deepar, https://docs.aws.amazon.
com/forecast/latest/dg/metrics.html, 2020. Accessed on 1st of April,
2022.

[4] M. Basaldella, E. Antolli, G. Serra, and C. Tasso, Bidirectional LSTM Recurrent Neural
Network for Keyphrase Extraction, Springer International Publishing, December 2017.

[5] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou, Patient subtyping via
time-aware LSTM networks, in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, August 2017.

[6] Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient
descent is difficult, IEEE Transactions on Neural Networks, 5(2), pp. 157–166, 1994.

[7] K. Benidis, S. S. Rangapuram, V. Flunkert, B. Wang, D. Maddix, C. Turk-
men, J. Gasthaus, M. Bohlke-Schneider, D. Salinas, L. Stella, L. Callot, and
T. Januschowski, Neural forecasting: Introduction and literature overview, 2020.

[8] G. E. P. Box and G. M. G. M. Jenkins, Time series analysis; forecasting and control,
Time series analysis; forecasting and control., 1970.

[9] G. E. P. Box and D. A. Pierce, Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models, Journal of the Ameri-
can Statistical Association, 65(332), pp. 1509–1526, 1970.

[10] T. S. Breusch, Testing for autocorrelation in dynamic linear models, Australian Eco-
nomic Papers, 17(31), pp. 334–355, December 1978.

[11] E. O. Brigham, The fast Fourier transform and its applications, Prentice-Hall, Inc.,
1988.

49

https://docs.aws.amazon.com/forecast/latest/dg/metrics.html
https://docs.aws.amazon.com/forecast/latest/dg/metrics.html

[12] R. G. Brown, Statistical forecasting for inventory control, McGraw/Hill, 1959.

[13] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, Language models are few-shot learners, in H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 1877–1901, Curran Associates, Inc., 2020.

[14] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound
constrained optimization, SIAM Journal on Scientific Computing, 16(5), pp. 1190–
1208, 1995.

[15] T. Caliński and J. Harabasz, A dendrite method for cluster analysis, Communications
in Statistics, 3(1), pp. 1–27, 1974.

[16] J. Chai and A. Li, Deep learning in natural language processing: A state-of-the-
art survey, in 2019 International Conference on Machine Learning and Cybernetics
(ICMLC), pp. 1–6, 2019.

[17] N. Chapados, Effective bayesian modeling of groups of related count time series, in
E. P. Xing and T. Jebara, editors, Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp.
1395–1403, PMLR, Bejing, China, 22–24 Jun 2014.

[18] Y.-Y. Chiang, Recurrent neural networks i, https://yaoyichi.github.io/
spatial-ai.html, 2022. Accessed on 1st of May, 2022.

[19] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez,
A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson,
R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya,
S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus,
D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan,
S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Mor-
eira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat,
M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel,
Palm: Scaling language modeling with pathways, 2022.

[20] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of gated recurrent
neural networks on sequence modeling, in NIPS 2014 Workshop on Deep Learning,
December 2014, 2014.

[21] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, Stl: A seasonal-
trend decomposition procedure based on loess (with discussion), Journal of Official
Statistics, 6, pp. 3–73, 1990.

50

https://yaoyichi.github.io/spatial-ai.html
https://yaoyichi.github.io/spatial-ai.html

[22] M. Cuéllar, M. Delgado, and M. Pegalajar, An application of non-linear programming
to train recurrent neural networks in time series prediction problems, in C.-S. Chen,
J. Filipe, I. Seruca, and J. Cordeiro, editors, Enterprise Information Systems VII, pp.
95–102, Springer Netherlands, Dordrecht, 2006, ISBN 978-1-4020-5347-4.

[23] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics
of Control, Signals, and Systems, 2(4), pp. 303–314, December 1989.

[24] S. Datta, C. K. Karmakar, and M. Palaniswami, Averaging methods using dynamic
time warping for time series classification, in 2020 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pp. 2794–2798, 2020.

[25] D. L. Davies and D. W. Bouldin, A cluster separation measure, IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-1(2), pp. 224–227, 1979.

[26] W. De Mulder, S. Bethard, and M.-F. Moens, A survey on the application of recurrent
neural networks to statistical language modeling, Computer Speech & Language, 30,
01 2014.

[27] S. Demir, K. Mincev, K. Kok, and N. G. Paterakis, Data augmentation for time se-
ries regression: Applying transformations, autoencoders and adversarial networks to
electricity price forecasting, Applied Energy, 304, p. 117695, December 2021.

[28] G. Deng, C. Han, T. Dreossi, C. Lee, and D. S. Matteson, IB-GAN: A Unified Ap-
proach for Multivariate Time Series Classification under Class Imbalance, pp. 217–
225, SIAM, 2022.

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidi-
rectional transformers for language understanding, in Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Association for Computational Linguistics, Minneapolis, Minnesota, June 2019.

[30] R. Dey and F. M. Salem, Gate-variants of gated recurrent unit (gru) neural networks,
in 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWS-
CAS), pp. 1597–1600, 2017.

[31] D. A. Dickey and W. A. Fuller, Distribution of the estimators for autoregressive time
series with a unit root, Journal of the American Statistical Association, 74(366), p. 427,
June 1979.

[32] D. Dua and C. Graff, UCI machine learning repository, http://archive.ics.uci.edu/ml,
2017. Accessed on 3rd of June, 2022.

[33] J. H. Friedman, Stochastic gradient boosting, Computational Statistics & Data Analy-
sis, 38(4), pp. 367–378, 2002, nonlinear Methods and Data Mining.

51

[34] R. Fu, Z. Zhang, and L. Li, Using lstm and gru neural network methods for traffic flow
prediction, in 2016 31st Youth Academic Annual Conference of Chinese Association of
Automation (YAC), pp. 324–328, 2016.

[35] E. S. Gardner, Exponential smoothing: The state of the art—part ii, International Jour-
nal of Forecasting, 22(4), pp. 637–666, 2006.

[36] A. Geiger, D. Liu, S. Alnegheimish, A. Cuesta-Infante, and K. Veeramachaneni,
Tadgan: Time series anomaly detection using generative adversarial networks, in 2020
IEEE International Conference on Big Data (Big Data), pp. 33–43, 2020.

[37] L. G. Godfrey, Testing against general autoregressive and moving average error models
when the regressors include lagged dependent variables, Econometrica, 46(6), p. 1293,
November 1978.

[38] O. Gold and M. Sharir, Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier, ACM Trans. Algorithms, 14(4), aug 2018.

[39] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets, in Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in Neu-
ral Information Processing Systems, volume 27, Curran Associates, Inc., 2014.

[40] A. Graves, Generating sequences with recurrent neural networks, CoRR,
abs/1308.0850, 2013.

[41] Z. Hajirahimi and M. Khashei, Hybrid structures in time series modeling and fore-
casting: A review, Engineering Applications of Artificial Intelligence, 86, pp. 83–106,
2019.

[42] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential equations
using deep learning, Proceedings of the National Academy of Sciences, 115(34), pp.
8505–8510, 2018.

[43] Z. Han, J. Zhao, H. Leung, K. F. Ma, and W. Wang, A review of deep learning models
for time series prediction, IEEE Sensors Journal, 21(6), pp. 7833–7848, 2021.

[44] T. Hastie and R. Tibshirani, Generalized additive models: Some applications, Journal
of the American Statistical Association, 82(398), pp. 371–386, June 1987.

[45] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation,
9(8), pp. 1735–1780, November 1997.

[46] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L.
Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican,
G. v. d. Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W.
Rae, O. Vinyals, and L. Sifre, Training compute-optimal large language models, 2022.

52

[47] C. C. Holt, Forecasting seasonals and trends by exponentially weighted moving aver-
ages, International Journal of Forecasting, 20(1), pp. 5–10, January 2004.

[48] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural
Networks, 4(2), pp. 251–257, 1991.

[49] J. Huber and H. Stuckenschmidt, Daily retail demand forecasting using machine learn-
ing with emphasis on calendric special days, International Journal of Forecasting,
36(4), pp. 1420–1438, 2020.

[50] R. J. Hyndman, Forecasting with exponential smoothing The State Space Approach,
Springer series in statistics, Springer, Berlin, Germany, December 2008.

[51] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice, OTexts,
2018.

[52] C. Ingle, D. Bakliwal, J. Jain, P. Singh, P. Kale, and V. Chhajed, Demand forecasting :
Literature review on various methodologies, in 2021 12th International Conference on
Computing Communication and Networking Technologies (ICCCNT), pp. 1–7, 2021.

[53] B. K. Iwana and S. Uchida, An empirical survey of data augmentation for time series
classification with neural networks, PLOS ONE, 16(7), July 2021.

[54] B. K. Iwana and S. Uchida, Time series data augmentation for neural networks by
time warping with a discriminative teacher, in 2020 25th International Conference on
Pattern Recognition (ICPR), IEEE, January 2021.

[55] P. Jeha, M. Bohlke-Schneider, P. Mercado, S. Kapoor, R. S. Nirwan, V. Flunkert,
J. Gasthaus, and T. Januschowski, PSA-GAN: Progressive self attention GANs for
synthetic time series, in International Conference on Learning Representations, 2022.

[56] V. Joshi, K. Jha, M. Jain, and S. Kulkarni, Tourism footfall forecasting and recommen-
dation system, in 2021 International Conference on Communication information and
Computing Technology (ICCICT), pp. 1–5, 2021.

[57] K. Kamycki, T. Kapuscinski, and M. Oszust, Data augmentation with suboptimal warp-
ing for time-series classification, Sensors, 20(1), p. 98, December 2019.

[58] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei, Scaling laws for neural language models, 2020.

[59] Z. H. Kilimci, A. O. Akyuz, M. Uysal, S. Akyokus, M. O. Uysal, B. A. Bulbul, and
M. A. Ekmis, An improved demand forecasting model using deep learning approach
and proposed decision integration strategy for supply chain, Complexity, 2019, pp.
1–15, March 2019.

[60] A. Koochali, A. Dengel, and S. Ahmed, If you like it, gan it—probabilistic multivariate
times series forecast with gan, Engineering Proceedings, 5(1), 2021.

53

[61] D. Kwiatkowski, P. C. Phillips, P. Schmidt, and Y. Shin, Testing the null hypothesis of
stationarity against the alternative of a unit root: How sure are we that economic time
series have a unit root?, Journal of Econometrics, 54(1), pp. 159–178, 1992.

[62] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, Time-series extreme event forecasting
with neural networks at uber, in International conference on machine learning, vol-
ume 34, pp. 1–5, sn, 2017.

[63] P. Lara-Benítez, M. Carranza-García, and J. C. Riquelme, An experimental review on
deep learning architectures for time series forecasting, CoRR, abs/2103.12057, 2021.

[64] P. D. Larson, D. Simchi-Levi, P. Kaminsky, and E. Simchi-Levi, Designing and man-
aging the supply chain: Concepts, strategies, and case studies, Journal of Business
Logistics, 22(1), pp. 259–261, March 2001.

[65] R. Law, G. Li, D. K. C. Fong, and X. Han, Tourism demand forecasting: A deep
learning approach, Annals of Tourism Research, 75, pp. 410–423, 2019.

[66] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time
series, The handbook of brain theory and neural networks, 3361(10), p. 1995, 1995.

[67] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function, Neural Net-
works, 6(6), pp. 861–867, 1993.

[68] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, Mad-gan: Multivariate anomaly
detection for time series data with generative adversarial networks, in I. V. Tetko,
V. Kůrková, P. Karpov, and F. Theis, editors, Artificial Neural Networks and Machine
Learning – ICANN 2019: Text and Time Series, pp. 703–716, Springer International
Publishing, Cham, 2019, ISBN 978-3-030-30490-4.

[69] S. Liao, J. Yin, and W. Rao, Towards accurate retail demand forecasting using deep
neural networks, in Y. Nah, B. Cui, S.-W. Lee, J. X. Yu, Y.-S. Moon, and S. E. Whang,
editors, Database Systems for Advanced Applications, pp. 711–723, Springer Interna-
tional Publishing, Cham, 2020, ISBN 978-3-030-59419-0.

[70] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister, Temporal fusion transformers for in-
terpretable multi-horizon time series forecasting, International Journal of Forecasting,
37(4), pp. 1748–1764, 2021.

[71] Y.-T. Liu, Y.-A. Zhang, and M. Zeng, Adaptive global time sequence averaging method
using dynamic time warping, IEEE Transactions on Signal Processing, 67(8), pp.
2129–2142, 2019.

[72] A. M. D. Livera, R. J. Hyndman, and R. D. Snyder, Forecasting time series with com-
plex seasonal patterns using exponential smoothing, Journal of the American Statistical
Association, 106(496), pp. 1513–1527, 2011.

54

[73] G. M. LJUNG and G. E. P. BOX, On a measure of lack of fit in time series models,
Biometrika, 65(2), pp. 297–303, 08 1978.

[74] G. Makkar, Real-time footfall prediction using weather data: A case on retail analytics,
in N. Sharma, A. Chakrabarti, and V. E. Balas, editors, Data Management, Analytics
and Innovation, pp. 529–542, Springer Singapore, Singapore, 2020, ISBN 978-981-
32-9949-8.

[75] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, The m5 competition: Background,
organization, and implementation, International Journal of Forecasting, 2021.

[76] J. Martens, Deep learning via hessian-free optimization, in Proceedings of the 27th
International Conference on International Conference on Machine Learning, ICML10,
p. 735–742, Omnipress, Madison, WI, USA, 2010, ISBN 9781605589077.

[77] J. Martens and I. Sutskever, Learning recurrent neural networks with hessian-free op-
timization, in ICML, pp. 1033–1040, 2011.

[78] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous
activity, The Bulletin of Mathematical Biophysics, 5(4), pp. 115–133, December 1943.

[79] Y. Miao, J. Han, Y. Gao, and B. Zhang, St-cnn: Spatial-temporal convolutional neural
network for crowd counting in videos, Pattern Recognition Letters, 125, pp. 113–118,
2019.

[80] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur, Extensions of
recurrent neural network language model, in 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5528–5531, 2011.

[81] V. Nogueira, H. Oliveira, J. Augusto Silva, T. Vieira, and K. Oliveira, Retailnet: A
deep learning approach for people counting and hot spots detection in retail stores, in
2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.
155–162, 2019.

[82] C. Olah, Understanding lstm networks, https://colah.github.io/posts/
2015-08-Understanding-LSTMs/, Aug 2015. Accessed on 20th of June, 2022.

[83] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, N-beats: Neural basis expan-
sion analysis for interpretable time series forecasting, in International Conference on
Learning Representations, 2020.

[84] R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural
networks, in S. Dasgupta and D. McAllester, editors, Proceedings of the 30th Interna-
tional Conference on Machine Learning, Proceedings of Machine Learning Research,
pp. 1310–1318, PMLR, Atlanta, Georgia, USA, 17–19 Jun 2013.

[85] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

55

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An
imperative style, high-performance deep learning library, in Advances in Neural Infor-
mation Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[86] F. Petitjean, A. Ketterlin, and P. Gançarski, A global averaging method for dynamic
time warping, with applications to clustering, Pattern Recognition, 44(3), pp. 678–693,
2011.

[87] Y. Qin, D. Song, H. Cheng, W. Cheng, G. Jiang, and G. W. Cottrell, A dual-stage
attention-based recurrent neural network for time series prediction, in Proceedings
of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, p.
2627–2633, AAAI Press, 2017, ISBN 9780999241103.

[88] P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis, Journal of Computational and Applied Mathematics, 20, pp. 53–65,
1987.

[89] H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word
recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1),
pp. 43–49, 1978.

[90] H. Salehinejad and S. Rahnamayan, Customer shopping pattern prediction: A recur-
rent neural network approach, in 2016 IEEE symposium series on computational intel-
ligence (SSCI), pp. 1–6, IEEE, 2016.

[91] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, Deepar: Probabilistic fore-
casting with autoregressive recurrent networks, International Journal of Forecasting,
36(3), pp. 1181–1191, 2020.

[92] D. Schultz and B. J. Jain, Nonsmooth analysis and subgradient methods for averaging
in dynamic time warping spaces, CoRR, abs/1701.06393, 2017.

[93] A. M. Schäfer and H. G. Zimmermann, Recurrent neural networks are universal ap-
proximators, International Journal of Neural Systems, 17(04), pp. 253–263, August
2007.

[94] S. Seabold and J. Perktold, Statsmodels: Econometric and statistical modeling with
python, in Proceedings of the 9th Python in Science Conference, volume 57, p. 61,
Austin, TX, 2010.

[95] S. S. SHAPIRO and M. B. WILK, An analysis of variance test for normality (complete
samples)†, Biometrika, 52(3-4), pp. 591–611, 12 1965.

[96] Z. Shi, L. Zhang, Y. Liu, X. Cao, Y. Ye, M.-M. Cheng, and G. Zheng, Crowd counting
with deep negative correlation learning, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[97] C. Shorten and T. M. Khoshgoftaar, A survey on image data augmentation for deep
learning, Journal of Big Data, 6(1), p. 60, Jul 2019.

56

[98] D. F. Silva and G. E. A. P. A. Batista, Speeding Up All-Pairwise Dynamic Time Warping
Matrix Calculation, SIAM, 2016.

[99] R. D. Snyder, J. K. Ord, and A. Beaumont, Forecasting the intermittent demand for
slow-moving inventories: A modelling approach, International Journal of Forecasting,
28(2), pp. 485–496, 2012.

[100] M. Stepnicka and M. Burda, Computational intelligence in forecasting - the results
of the time series forecasting competition, in 2015 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), IEEE, August 2015.

[101] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural
networks, CoRR, abs/1409.3215, 2014.

[102] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M. Payne, R. Yur-
chak, M. Rußwurm, K. Kolar, and E. Woods, Tslearn, a machine learning toolkit for
time series data, Journal of Machine Learning Research, 21(118), pp. 1–6, 2020.

[103] S. J. Taylor and B. Letham, Forecasting at scale, The American Statistician, 72(1), pp.
37–45, 2018.

[104] O. Triebe, H. Hewamalage, P. Pilyugina, N. Laptev, C. Bergmeir, and R. Rajagopal,
Neuralprophet: Explainable forecasting at scale, CoRR, abs/2111.15397, 2021.

[105] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin, Attention is all you need, in I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30, Curran Associates, Inc., 2017.

[106] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cim-
rman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A. P. Bardelli, A. Rothberg, A. Hilboll,
A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Mas-
son, C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik,
E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A.
Price, G.-L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Sil-
terra, J. T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger,
J. V. de Miranda Cardoso, J. Reimer, J. Harrington, J. L. C. Rodríguez, J. Nunez-
Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Boling-
broke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. A.
Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vi-
gna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura,
T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, and

57

Y. V.-B. and, SciPy 1.0: fundamental algorithms for scientific computing in python,
Nature Methods, 17(3), pp. 261–272, February 2020.

[107] R. Wan, S. Mei, J. Wang, M. Liu, and F. Yang, Multivariate temporal convolutional
network: A deep neural networks approach for multivariate time series forecasting,
Electronics, 8(8), p. 876, 2019.

[108] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu, Time series data
augmentation for deep learning: A survey, in Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence (IJCAI), International Joint Conferences on
Artificial Intelligence Organization, August 2021.

[109] R. Wen, K. Torkkola, B. Narayanaswamy, and D. Madeka, A multi-horizon quantile
recurrent forecaster, in 31st Conference on Neural Information Processing Systems
(NIPS 2017), Time Series Workshop. Long Beach, CA, USA, 2017.

[110] P. R. Winters, Forecasting sales by exponentially weighted moving averages, Manage-
ment Science, 6(3), pp. 324–342, April 1960.

[111] h. wu, J. Xu, J. Wang, and M. Long, Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting, in M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pp. 22419–22430, Curran Associates, Inc., 2021.

[112] G. Yiğit and M. F. Amasyali, Simple but effective gru variants, in 2021 International
Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–6,
2021.

[113] J. Yoon, D. Jarrett, and M. van der Schaar, Time-series generative adversarial networks,
in H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32, Curran As-
sociates, Inc., 2019.

[114] D. Zhang, N. Maslej, E. Brynjolfsson, J. Etchemendy, T. Lyons, J. Manyika, H. Ngo,
J. C. Niebles, M. Sellitto, E. Sakhaee, Y. Shoham, J. Clark, and R. Perrault, The ai
index 2022 annual report, AI Index Steering Committee, Stanford Institute for Human-
Centered AI, Stanford University, p. 123, March 2022.

[115] G. Zhang, Time series forecasting using a hybrid arima and neural network model,
Neurocomputing, 50, pp. 159–175, 2003.

[116] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, Convolutional neural networks for time
series classification, Journal of Systems Engineering and Electronics, 28(1), pp. 162–
169, 2017.

[117] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, Informer: Beyond
efficient transformer for long sequence time-series forecasting, in Proceedings of AAAI,
2021.

58

[118] L. Zhu and N. Laptev, Deep and confident prediction for time series at uber, in 2017
IEEE International Conference on Data Mining Workshops (ICDMW), pp. 103–110,
IEEE, 2017.

[119] E. Zunic, K. Korjenic, S. Delalic, and Z. Subara, Comparison analysis of facebook’s
prophet, amazon’s deepar+ and CNN-QR algorithms for successful real-world sales
forecasting, CoRR, abs/2105.00694, 2021.

59

60

APPENDIX A

DTW CLUSTERING

A.1 Example Code

1 # example data inpput.csv format for a daily data with one year

2 # StoreCode, YYYY-01-01, YYYY-01-02, ... , YYYY-12-31

3 # <StoreCode>, t_1, t_2, ... , t_365

4 import pandas as pd

5 from tslearn.utils import to_time_series_dataset

6 from tslearn.preprocessing import TimeSeriesScalerMeanVariance

7 from tslearn.clustering import TimeSeriesKMeans, silhouette_score

8

9 cluster_count = # number of clusters to be experimented

10

11 # prepare data to laod to tslearn time_series_dataset object

12 df_pivoted = pd.read_csv('input.csv')

13 df_pivoted.set_index('StoreCode', inplace=True)

14

15 # convert dataframe to time_series_dataset

16 X = to_time_series_dataset(df_pivoted.values)

17

18 # normalize time series to zero mean and unit variance

19 X_train = TimeSeriesScalerMeanVariance().fit_transform(X)

20

21 model = TimeSeriesKMeans(cluster_count, 'dtw')

22 y_pred = model.fit_predict(X_train)

23

24 # Sum of distances of samples to their closest cluster center.

25 print('inertia', cluster_count, model.inertia_)

26

27 # silhouette_score

28 score = silhouette_score(X_train, y_pred, 'dtw')

29 print('silhouette', cluster_count, score)

30

31 # DBA center (frechet mean) of each cluster

32 for yi in range(N_CLUSTERS):

33 print(model.cluster_centers_[yi])

61

A.2 Algorithm of DTW

1 def dtw(x, y):

2 # Initialization

3 for i = 1..n

4 for j = 1..m

5 C[i, j] = inf

6

7 C[0, 0] = 0.

8

9 # Main loop

10 for i = 1..n

11 for j = 1..m

12 dist = d(x_i, y_j) ** 2

13 C[i, j] = dist + min(C[i-1, j], C[i, j-1], C[i-1, j-1])

14

15 return sqrt(C[n, m])

62

APPENDIX B

EXAMPLE IMPLEMENTATIONS OF DEEPAR

Example use of DeepAR from the GluonTS documentation [2].

B.1 Example Code of GluonTS

1 %#!pip install gluonts

2 %#!pip install --upgrade mxnet==1.6.0

3

4 from gluonts.dataset import common

5 from gluonts.model import deepar

6 from gluonts.mx.trainer import Trainer

7 # from gluonts.trainer import Trainer

8

9 import pandas as pd

10

11 url = "https://raw.githubusercontent.com/numenta/

12 NAB/master/data/realTweets/Twitter_volume_AMZN.csv"

13

14 df = pd.read_csv(url, header=0, index_col=0)

15 data = common.ListDataset([{

16 "start": df.index[0],

17 "target": df.value[:"2015-04-05 00:00:00"]

18 }],

19 freq="5min"

20)

21

22 trainer = Trainer(epochs=10)

23 estimator = deepar.DeepAREstimator(

24 freq="5min",

25 prediction_length=12,

26 trainer=trainer

27)

28 predictor = estimator.train(training_data=data)

29

30 prediction = next(predictor.predict(data))

31 print(prediction.mean)

63

32 prediction.plot(output_file='graph.png')

B.2 Example Code of PyTorchForecasting

Example use of DeepAR from the PyTorchForecasting documentation which is based on Py-
Torch [85]

1 from pathlib import Path

2 import pickle

3 import warnings

4

5 import numpy as np

6 import pandas as pd

7 from pandas.core.common import SettingWithCopyWarning

8 import pytorch_lightning as pl

9 from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor

10 from pytorch_lightning.loggers import TensorBoardLogger

11 import torch

12

13 from pytorch_forecasting import EncoderNormalizer, GroupNormalizer, TimeSeriesDataSet

14 from pytorch_forecasting.data import NaNLabelEncoder

15 from pytorch_forecasting.data.examples import generate_ar_data

16 from pytorch_forecasting.metrics import NormalDistributionLoss

17 from pytorch_forecasting.models.deepar import DeepAR

18 from pytorch_forecasting.utils import profile

19

20 warnings.simplefilter("error", category=SettingWithCopyWarning)

21

22

23 data = generate_ar_data(seasonality=10.0, timesteps=400, n_series=100)

24 data["static"] = "2"

25 data["date"] = pd.Timestamp("2020-01-01") + pd.to_timedelta(data.time_idx, "D")

26 validation = data.series.sample(20)

27

28 max_encoder_length = 60

29 max_prediction_length = 20

30

31 training_cutoff = data["time_idx"].max() - max_prediction_length

32

33 training = TimeSeriesDataSet(

34 data[lambda x: ~x.series.isin(validation)],

35 time_idx="time_idx",

36 target="value",

37 categorical_encoders={"series": NaNLabelEncoder().fit(data.series)},

38 group_ids=["series"],

39 static_categoricals=["static"],

40 min_encoder_length=max_encoder_length,

64

41 max_encoder_length=max_encoder_length,

42 min_prediction_length=max_prediction_length,

43 max_prediction_length=max_prediction_length,

44 time_varying_unknown_reals=["value"],

45 time_varying_known_reals=["time_idx"],

46 target_normalizer=GroupNormalizer(groups=["series"]),

47 add_relative_time_idx=False,

48 add_target_scales=True,

49 randomize_length=None,

50)

51

52 validation = TimeSeriesDataSet.from_dataset(

53 training,

54 data[lambda x: x.series.isin(validation)],

55 # predict=True,

56 stop_randomization=True,

57)

58 batch_size = 64

59 train_dataloader = training.to_dataloader(

60 train=True,

61 batch_size=batch_size,

62 num_workers=0

63)

64

65 val_dataloader = validation.to_dataloader(

66 train=False,

67 batch_size=batch_size,

68 num_workers=0

69)

70

71 # save datasets

72 training.save("training.pkl")

73 validation.save("validation.pkl")

74

75 early_stop_callback = EarlyStopping(

76 monitor="val_loss",

77 min_delta=1e-4,

78 patience=5,

79 verbose=False,

80 mode="min"

81)

82

83

84 lr_logger = LearningRateMonitor()

85

86 trainer = pl.Trainer(

87 max_epochs=10,

88 gpus=-1,

89 gradient_clip_val=0.1,

90 limit_train_batches=30,

65

91 limit_val_batches=3,

92 # fast_dev_run=True,

93 # logger=logger,

94 # profiler=True,

95 callbacks=[lr_logger, early_stop_callback],

96)

97

98

99 deepar = DeepAR.from_dataset(

100 training,

101 learning_rate=0.1,

102 hidden_size=32,

103 dropout=0.1,

104 loss=NormalDistributionLoss(),

105 log_interval=10,

106 log_val_interval=3,

107 # reduce_on_plateau_patience=3,

108)

109 print(f"Number of parameters in network: {deepar.size()/1e3:.1f}k")

110

111 # # find optimal learning rate

112 # deepar.hparams.log_interval = -1

113 # deepar.hparams.log_val_interval = -1

114 # trainer.limit_train_batches = 1.0

115 # res = trainer.tuner.lr_find(

116 # deepar,

117 # train_dataloaders=train_dataloader,

118 # val_dataloaders=val_dataloader, min_lr=1e-5, max_lr=1e2

119 #)

120 # print(f"suggested learning rate: {res.suggestion()}")

121 # fig = res.plot(show=True, suggest=True)

122 # fig.show()

123 # deepar.hparams.learning_rate = res.suggestion()

124

125 torch.set_num_threads(10)

126 trainer.fit(

127 deepar,

128 train_dataloaders=train_dataloader,

129 val_dataloaders=val_dataloader,

130)

131

132 # calcualte mean absolute error on validation set

133 actuals = torch.cat([y for x, (y, weight) in iter(val_dataloader)])

134 predictions = deepar.predict(val_dataloader)

135 print(f"Mean absolute error of model: {(actuals - predictions).abs().mean()}")

136

137 # # plot actual vs. predictions

138 # raw_predictions, x = deepar.predict(val_dataloader, mode="raw", return_x=True)

139 # for idx in range(10): # plot 10 examples

140 # deepar.plot_prediction(x, raw_predictions, idx=idx, add_loss_to_title=True)

66

APPENDIX C

FOURIER ANALYSIS

C.1 Example Code

1 # example dataframe format for a daily data with

2 # one year contained in variable called data

3 # 2018-01-01 149.0

4 # 2018-01-02 130.0

5

6 from scipy.fftpack import rfft, rfftfreq

7 from statsmodels.tsa.seasonal import STL

8 from statsmodels.tsa.stattools import adfuller

9

10 #STL decomposition

11 stl = STL(data, robust=True)

12 res = stl.fit()

13 fourier = res.seasonal.values

14

15 #dickey fuller test

16 adf_res = adf_test(data)

17 print(adf_res['p-value'] < 0.05)

18

19 #fast fourier transform

20 nobs = len(fourier)

21 data_ft = np.abs(rfft(fourier))

22 data_freq = rfftfreq(nobs)

23 # this prints the period as unit of days since the data was daily

24 print(1 / data_freq[2:])

67

68

APPENDIX D

ERROR METRIC CALCULATION

D.1 Example Code

1 def calculate_mape(y_test, y_predicted):

2 y_test, y_predicted = np.array(y_test), np.array(y_predicted)

3 mape = np.mean(np.abs((y_test - y_predicted) / y_test))

4 return mape

5

6

7 def calculate_mae(y_test, y_predicted):

8 y_test, y_predicted = np.array(y_test), np.array(y_predicted)

9 mae = np.mean(np.abs(y_test - y_predicted))

10 return mae

11

12

13 def calculate_rmse(y_test, y_predicted):

14 y_test, y_predicted = np.array(y_test), np.array(y_predicted)

15 return math.sqrt(np.square(np.subtract(y_test, y_predicted)).mean())

69

70

APPENDIX E

BENCHMARK

E.1 Benchmark Data Set

The electricity data set which is a publicly available dataset provided by UCI ML
Repository [32] contains hourly time series of the electricity consumption of 370 customers
and used for performance bench marking in the original study of DeepAR [91] with training
window sert as 2014-01-01 and 2014-09-01. The retail data set is the proprietary data set
used for this research and it spans from 2018-01-01 to 2019-12-31 and details of the datasets
are shown at Table E.1

where MAPE is formulated as

MAPE =
1

n

n∑
t=1

|At − Ft

At
| (E.1)

A lower value indicates a more accurate model. At : actual observation at time t, Ft : fore-
casted value for time t and n number of observations forecasted in the series. Running time is
measured on a hardware with four CPU cores and a single GPU.

71

Table E.1: Details of electricity and retail data set and training values
electricity retail

num. of series 370 122
granularity hourly daily

domain R+ N
num. of training samples 500K 100k

learning rate 1e-3 1e-3
Num. of LSTM layers 3 2
Num. of LSTM nodes 40 40

running time 7h 2h
epochs 500 500

context_length 24 7
likelihood gaussian negative binomial

MAPE(avg) 0.30 0.26

72

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Research Question
	Thesis Structure

	Literature Survey
	Methods For Time Series Analysis
	Exponential Smoothing (ETS)
	Auto Regressive Integrated Moving Average (ARIMA)
	Seasonal-Trend decomposition using LOESS (STL)
	Prophet

	Deep Learning Methods For Time Series Analysis
	Hybrid Approach
	Convolutional Neural Network (CNN) Approach
	Transformers Approach
	Generative Adversarial Networks (GAN) Approach
	Recurrent Neural Network (RNN) Approach

	Deep Learning Methods For Demand Forecasting

	Methodologies Used
	Preliminaries For The Subject
	Representational Power of Neural Networks
	Recurrent Neural Network (RNN)
	Back Propagation Through Time (BPTT)
	Vanishing or Exploding Gradient Problem
	Cold Start Problem

	Algorithms used
	Dynamic Time Warping (DTW)
	Silhouette Score
	Exponential Smoothing (ETS)
	DeepAR

	Data Analysis
	Exploratory Data Analysis
	Descriptive Statistics
	Clustering Analysis
	Seasonality Analysis

	Outlier Detection and Cleaning
	Missing Data Imputation
	Final Form and Example Data

	Results And Future Work
	Results
	Error Metrics
	Model Evaluation

	Future Work

	Conclusion
	REFERENCES
	APPENDICES
	DTW clustering
	Example Code
	Algorithm of DTW

	Example implementations of DEEPAR
	Example Code of GluonTS
	Example Code of PyTorchForecasting

	Fourier Analysis
	Example Code

	Error Metric Calculation
	Example Code

	Benchmark
	Benchmark Data Set

