
DATA-DRIVEN MODEL DISCOVERY AND CONTROL OF
LATERAL-DIRECTIONAL FIGHTER AIRCRAFT DYNAMICS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CAN ÖZNURLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

SCIENTIFIC COMPUTING

AUGUST 2022





Approval of the thesis:

DATA-DRIVEN MODEL DISCOVERY AND CONTROL OF
LATERAL-DIRECTIONAL FIGHTER AIRCRAFT DYNAMICS

submitted by CAN ÖZNURLU in partial fulfillment of the requirements for the degree
of Master of Science in Scientific Computing Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Önder Türk
Head of Department, Scientific Computing

Prof. Dr. Ömür Uğur
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ABSTRACT

DATA-DRIVEN MODEL DISCOVERY AND CONTROL OF
LATERAL-DIRECTIONAL FIGHTER AIRCRAFT DYNAMICS

Öznurlu, Can
M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Assoc. Prof. Dr. Tayfun Çimen

August 2022, 83 pages

The focus of this thesis is to control the lateral-directional motion of the fighter air-
craft by using integral action based Model Predictive Control (MPC) where the model
is obtained by data-driven model discovery method. Dynamic Mode Decomposition
with Control (DMDc) is used as a model discovery technique based only on measure-
ment data with no modeling assumptions. The model created using this technique
is used for MPC and tested against noisy conditions. In addition, performance com-
parison of MPC with Classical Controller is carried out. Finally, Speedgoat Unit
Real-Time Target Machine®, which offers a real-time testing is used to verify the
generated DMDc-MPC algorithm and understand the computational cost.

The results show that the DMDc model discovery method performs very well in noise-
free situations and meets the evaluation criteria together with MPC. However, its per-
formance decreases in the presence of measurement noise. Finally, real-time test
results on Speedgoat® equipment have shown that the generated DMDc-MPC algo-
rithm has low computational cost and can be used in systems with low computational
power.

Keywords: DMDc, Modelling, System Identification, Data-Driven Control, Model
Predictive Control, Fighter Aircraft Dynamics
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ÖZ

YANAL VE YÖNLÜ SAVAŞ UÇAĞI DİNAMİKLERİNİN VERİ TABANLI
YÖNTEMLER İLE MODEL KEŞFİ VE KONTROLÜ

Öznurlu, Can
Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Doç. Dr. Tayfun Çimen

Ağustos 2022, 83 sayfa

Bu çalışma, veri tabanlı model keşfedimi teknikleri kullanılarak oluşturulan uçak
modelinin, model öngörülü kontrol (MPC) ile integral aksiyonu için kullanılarak sa-
vaş uçağının yanal ve yönlü hareketinin kontrolüne odaklanmaktadır. Sadece zamana
bağlı ölçümlere dayalı model keşfi için DMDc regresyon tekniği kullanılmıştır. Bu
teknik kullanılarak oluşturulan model, MPC için kullanılmış ve gürültülü durumlara
karşı test edilmiştir. Ayrıca MPC’nin Klasik Kontrolör ile performans karşılaştırması
yapılmıştır. Son olarak, gerçek zamanlı test imkanı sunan Speedgoat Unit Real-Time
Target Machine®, üretilen DMDc-MPC algoritmasını doğrulamak ve hesaplama ma-
liyetini anlamak için kullanıldı.

Sonuçlar, DMDc model keşif yönteminin gürültüsüz durumlarda çok iyi performans
gösterdiğini ve MPC ile birlikte değerlendirme kriterlerini karşıladığını göstermekte-
dir. Fakat ölçüm gürültüsü varlığında performansında düşüş göstermektedir. Son ola-
rak, Speedgoat® ekipmanı üzerindeki gerçek zamanlı test sonuçları üretilen DMDc-
MPC algoritmasının hesaplama maliyetinin düşük olduğunu ve hesaplama gücü dü-
şük olan sistemlerde kullanılabileceğini göstermiştir.

Anahtar Kelimeler: DMDc, Modelleme, Sistem Tanımlaması, Veri Tabanlı Kontrol,
Model Öngörülü Kontrol, Savaş Uçağı Dinamikleri
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CHAPTER 1

INTRODUCTION

For many systems, the main goal is to actively manipulate the behavior of the system

in line with a given engineering objective. Manipulating the behavior of a system

to achieve a desired goal is commonly known as control theory and is one of the

most successful areas at the intersection of applied mathematics and engineering.

Control theory is highly related to data science, as it uses sensor measurements (data)

to achieve the given goal.

Control system consists of two main parts, the controlled object and the controller.

Control theory can be divided into two main headings, namely model-based control

(MBC) theory and data-driven control (DDC) theory. Real-world controllable objects

can be studied in four classes:

• Those for which precise mathematical models based on the identification or

first principles are accessible.

• Those for which mathematical models based on identification or first principles

are roughly correct with modest uncertainty.

• Those for which first principles or identification-based mathematical models

are complicated with too high order and too much nonlinearity, etc.

• Those for which it is difficult or impossible to build first principles or identification-

based mathematical models.

These classes and their relations with each other is shown in Figure 1.1 [18].
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Figure 1.1: Controlled objects and control methodologies [18].
Reprinted from "From model-based control to data-driven control: Survey,

classification and perspective" by Hou and Wang, 2013, Information Sciences, 235,
3-35, Copyright by Elsevier

Only in the presence of a solid mathematical model MBC theory can provide solutions

to issues. In addition, the uncertainties in this mathematical model must be within a

certain limit. As is observed in Figure 1.1, we can deduce that only C1 and C2

classes are engaged in MBC. Naturally, the first question that comes to mind is what

a solution to the problems in the C3 and C4 classes can be. DDC methods are the

inevitable choice for these classes. Based on observation, the best control method

should be able to provide solutions to all four classes of controlled objects.

1.1 Motivation

The most challenging, time-consuming and demanding task for modeling, simulation

and control engineers in control projects is to write a mathematical model of the

object to be controlled. This challenge can be overcomed by using data-driven model

discovery methods such as many modern technniques in machine learning (e.g. neural

networks (NN) [11]), sparse identification of nonlinear dynamics (SINDy) [42] and

the autoregressive models [2] (e.g. ARX, ARMA, NARX, and NARMAX) that build

models based entirely on the data collected. Later, control engineers can use this

discovered model for control. However, the hard part is to come up with a simple but

reliable model that reflects the dynamics of the system. In addition, if this system is
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to work in real time, the model discovery and control algorithm presented should not

be computationally expensive because systems with weak computational power may

not handle such a load.

Therefore, the main motivation in this thesis is to come up with a simple but reliable

model discovery and control working structure that can be applied in real time.

1.2 Literature Survey

Modern control theory has grown and made significant progress since the late 1960s.

System identification, linear control, adaptive control, robust control and optimal con-

trol, which are branches of modern control theory, are frequently used in industrial

processes, especially in the field of aerospace.

Modern control theory, often known as MBC, was born with the introduction of the

parametric state space model by Kalman [24]. There are many successful applica-

tions in the aerospace industry where there are models with high precision (e.g. the

flight control system of F-16 aircraft [39]). Top-down physics-based methodologies

are used in traditional aircraft design and control procedures. However, construc-

tion of physics-based models or identification of corresponding parameters within

the model (e.g. fighter aircraft dynamics at high angle of attack) may be problematic

due to complicated, uncertain, and noisy working conditions [10].

One of the assumptions of MBC theory is the certainty equivalence principle. If

there is a significant mismatch between the plant model and the established model,

MBC design might not perform properly. Therefore, if the controller is designed with

an unrealistic model, it will result in either poor performance or an unstable system

in its closed loop. Minor modeling errors can lead to poor closed loop controller per-

formance [50].

Practical operations in the chemical industry, metallurgy, machinery, electronics, power,

transportation, and logistics have all changed dramatically as a result of the advance-

ment of information science and technology. Manufacturing technologies and equip-
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ment are used on a wide scale in these industries, and production processes have

gotten increasingly sophisticated. It has gotten more difficult to model processes us-

ing first principles or identification. As a result, standard MBC theory is no longer

applicable to control challenges in these types of business. Furthermore, many indus-

trial processes generate and store massive volumes of processed data at all times of

the day, containing all of the important state information about process operations and

equipments. Using these data to directly build controllers, anticipate and assess sys-

tem states, evaluate performance, make decisions, or even detect errors, both on-line

and off-line, would be extremely beneficial, especially given the lack of precise pro-

cess models. Therefore, both in theory and in practice, the establishment and growth

of DDC are critical challenges.

It was computer science that first coined the phrase ‘data-driven”. The term is named

by Johns (1936-2009) who pioneered data-driven learning. Initially, it was in an arti-

cle, “Should you be persuaded: Two examples of data-driven learning (1991)” [22].

It began to appear in the control community’s vocabulary since the mid-90s [21]. Up

until now, there have been a number of DDC techniques, but they go by a variety of

names. Data-based control, MFAC (model-free adaptive control) [17], IFT (iterative

feedback tuning) [16], VRFT (virtual reference feedback tuning) [15], and ILC (iter-

ative learning control) [55] are some of the DDC methods that have been developed

thus far.

Although DDC-based studies are still considered as new, they have received great at-

tention from the control community. Among the DDC approaches, machine learning

methods, especially neural network-based ones, are quite common. Model discov-

ery and control of an aerobatic helicopter [44], quadcopter [58] and aircrafts [9] are

studied using neural networks (NNs). Despite the undeniably successful applications

of NN, its need for huge datasets for the training process and the lack of guarantee

that it can work outside the area where the data were collected makes its usefulness

questionable. The difficulties in data-driven discovery for real-time control of non-

linear, high-dimensional, high-scale systems limit the use of NNs. Since it cannot

respond quickly to sudden changes, it is difficult to use in online practical applica-

tions [23]. As a result, the solution is typically computationally heavy because of

4



information-rich nature of NN implementation. This requires the use of more power-

ful computational devices (e.g., a GPU) [10].

One of the MBC method, model predictive control (MPC) is a cornerstone of ad-

vanced process control, and is well-positioned to take advantage of the data-driven

revolution. MPC is ubiquitous, especially in industrial applications, as it enables the

highly nonlinear systems with constraints that are difficult to handle using traditional

linear control approaches [12, 32, 29, 35, 54]. Also, MPC’s easy-to-understand tun-

ing process gives user the ability to control systems with complex phenomena such as

non-minimum phase dynamics, delays and instabilities. One of the most successful

applications of MPC today is Atlas, which is known as a backflipping robot developed

by Boston Dynamics, Inc [33].

More recently, linear and nonlinear representations of aerial vehicle using dynamic

mode decomposition with control (DMDc) and sparse identification of nonlinear dy-

namics (SINDy) have been successfully paired with MPC [23, 34, 31]. The real-time

application of the algorithm on cost-effective platforms is left as future work [34].

SINDy may produce models that are more accurate, however they have greater com-

putational complexity. DMDc is less computationally complex and its model is suit-

able for linear MPC, which is significantly faster than non-linear MPC [31]. This is

desirable for practical applications where built-in computational power is limited.

For high-dimensional, complex systems, DMDc provides a lot of benefits [43]. It is

founded on the dynamic mode decomposition (DMD) method, a data-driven, equation-

free architecture that only uses snapshot measurements to reconstruct the system’s un-

derlying dynamics [48, 49]. The use of DMD in domains like fluid dynamics, where it

has previously been challenging to analyze and build controllers due to the vast num-

ber of spatial states necessary for simulation, has seen significant success [14]. DMD

has acquired popularity as a method for systems with nonlinear dynamics, due to a

strong connection between DMD and Koopman operator theory [26, 46]. DMD can

be modified in complex systems with sparse and limited measurements [5]. Sparse

measurements have recently been used in a variety of complex systems for con-

trol [30]. Due to the limited numbers of sensors; such a situation occurs in many
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physical, biological, and engineering systems. Such advantages make DMDc the

most applicable alternative as an equation-free control method of complex systems.

1.3 Research Objective

In this thesis, DMDc-MPC framework is designed and presented as a data-driven

model discovery and control technique. One focus of the thesis is to discover the

unknown dynamics of lateral-directional fighter aircraft dynamics using DMDc algo-

rithm and then using that discovered model for MPC to control the sideslip angle and

roll rate of the fighter aircraft. The problem is specially complex since the process is

multiple-input and multiple-output (MIMO) system, nonlinear and use noisy sensors.

Also, data collection process is tough since the process is open-loop unstable in some

regimes.

Another focus of the thesis is to test the designed algorithm in real time, understand

the computational cost and how suitable it is for practical applications.

There are six chapters in this thesis. In Chapter 2, the details of data-driven model

discovery process and the method used is explained. We describe the theory of model

predictive control in Chapter 3. The fighter aircraft model is provided in Chapter 4.

The simulation and results are presented in Chapter 5. The thesis is concluded in the

final chapter by going over the findings and outlining potential future research.
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CHAPTER 2

DATA-DRIVEN MODEL DISCOVERY

Engineering, biology, and physical sciences have a lot to gain from the fast develop-

ing discipline of data-driven modeling and control of complex systems [28]. Reliable

data from historical records, computer simulations, and experimental data are easily

accessible today. Although data is abundant, models are difficult to find. Some of the

systems that are the focus of attention today such as robots, DNA structure, aircraft

dynamics, stock market or pandemic can be described as a high-dimensional non-

linear systems that occur in time. Although these systems are complex, they can be

expressed and modeled in a lower dimensional and understandable way.

DMDc, a robust new method for the identification of dynamical systems from mea-

surement data, will be introduced in this chapter as the data-driven model discovery

method used in this thesis. Using the measurements of the input and output data of

the high-dimensional nonlinear system, DMDc creates an equation-free linear model

of the underlying input and output relationship of the system [43]. DMDc works

with instantaneous data (snapshots) and effectively processes measurement data for

the analysis of nonlinear dynamical system.
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2.1 Dynamic Mode Decomposition with Control

Data driven model discovery method DMDc is introduced and formulated in this

section. For the controller design, it is very important to understand the changes in

the internal dynamics of the system and how the inputs affect the system. The DMDc

algorithm discovers the underlying dynamics of the system and the effect of the inputs

on the system separately.

The discovered system model in which the underlying dynamics are revealed and

the input and output data collection process are defined in Section 2.1.1. The next

section 2.1.2 describes how to manipulate the collected data for system discovery.

2.1.1 Dynamical System with Control

The fundamental assumption that connects the current state xk and the current control

uk of a linear dynamical system to the future state xk+1 can be described as a discrete-

time state-space model given by the following:

xk+1 = Axk +Buk (2.1)

where xj ∈ Rn, uj ∈ Rl, A ∈ Rn×n, and B ∈ Rn×l. System states and inputs

measured over time at regular intervals are used to create data matrices. The measured

system state snapshots X and X ′ are collected in the following form:

X =


| | |
x1 x2 · · · xm−1

| | |

 ∈ Rn×(m−1) (2.2)

X ′ =


| | |
x2 x3 · · · xm

| | |

 ∈ Rn×(m−1) (2.3)
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Control input snapshots collected are in the following matrix:

Υ =


| | |
u1 u2 · · · um−1

| | |

 ∈ Rl×(m−1) (2.4)

Hence, (2.1) can be rewritten with the new data matrices:

X ′ = AX +BΥ (2.5)

By using these three data matrices which are given in (2.2), (2.3) and (2.4), approxi-

mations of the linear mappings A and B can be found. It is also good to mention that

the matrices A and B are called the system and control matrix, respectively.

Figure 2.1 illustrates the data collection process of DMDc for the fighter aircraft

which is used as a controlled object in this thesis. To explain the process briefly,

various pre-defined control surface inputs are given to enable the aircraft to move.

The movements of the aircraft are considered as output and measured and recorded

with the help of sensors which are accelerometer, gyroscope, and air-data system. In

addition, it is assumed that the control surface inputs given to the aircraft are also

collected by actuator control electronics (ACE).

Figure 2.1: Data Collection process of DMDc

In the following Section 2.1.2, how to discover the system matrix A and control

matrix B from the collected data matrices is described.
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2.1.2 Discovery of System and Control Matrices

This section demonstrates that approximations of the matrices A and B can both be

found from state and control snapshots.

The discrete-time state space system in (2.5) can be manipulated giving the following

representation:

G =
[
A B

]
∈ Rn×(n+l) , Ω =

X
Υ

 ∈ R(n+l)×(m−1)

X ′ =
[
A B

]X
Υ

 = GΩ (2.6)

where Ω contains both the state and control snapshot information. So, we seek a

best-fit solution of the operator G which consists of the system matrix A and control

matrix B.

The singular value decomposition (SVD) provides a numerically stable matrix de-

composition that can be used for a variety of purposes and is guaranteed to exist. We

will use the SVD to find pseudo-inverses of non-square matrices [4].

As singular value decomposition exists for every, generally speaking, complex-valued

rectangular matrix, the result of applying SVD towards snapshots matrix Ω defined

in (2.6) will give us the following:

Ω(n+l)×(m−1) = U (n+l)×(n+l)Σ(n+l)×(m−1)V
∗
(m−1)×(m−1) (2.7)

Here U ∈ C(n+l)×(n+l), and V ∈ C(m−1)×(m−1) are unitary matrices, and Σ ∈
R(n+l)×(m−1) is a diagonal matrix with real, nonnegative entries on the diagonal. ∗

denotes the complex conjugate transpose.

When (n + l) ≤ (m− 1), the matrix Σ has at most (n + l) nonzero elements on the

diagonal, hence we can write it as:

Σ =
[
Σ̂(n+l)×(n+l) 0̂(n+l)×((m−1)−(n+l))

]
(2.8)

Therefore, it is possible to exactly represent Ω using economy SVD [4]:

Ω = U
[
Σ̂ 0̂

] [
V̂ V̂

⊥
]∗

(2.9)
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where V̂ ∈ R(m−1)×(n+l) and V̂
⊥
∈ R(m−1)×((m−1)−(n+l)).

The full SVD and economy SVD are shown in Figure 2.2. The columns of V̂
⊥

span

a vector space that is complementary and orthogonal to that spanned by V̂ . The

columns of U are called left-singular vectors of Ω and the columns of V are right-

singular vectors. The diagonal elements of Σ̂ ∈ C are called singular values and they

are ordered from largest to smallest. The rank of Ω is equal to the number of nonzero

singular values. So, we may re-write the SVD as follows:

Ω = UΣ̂V̂
∗

(2.10)

Figure 2.2: Schematic of matrices in the full and economy SVD

Now, by combining (2.10) with the over-constrained equality in (2.6), the least-

squared solution G can be found with:

G = X ′V̂ Σ̂
−1
U ∗ (2.11)

Since G = [A B], the discrete state-space model approximation is complete.
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The procedure above can be written algorithmically as follows [43].

1. Collection of measured snapshot system states and inputs to construct data

matrices:

By collecting the measured system states and inputs, X , X ′ and Υ data ma-

trices should be created as defined in (2.2), (2.3) and (2.4). Ω matrix can be

formed after that by combining the X and Υ data matrices into a single matrix.

2. Calculation of the economy-size SVD of the Ω matrix:

The economy-size SVD of the Ω matrix should be calculated as defined in (2.10)

and as a result Ω = UΣ̂V̂
∗

should be obtained.

3. Calculation of system matrix A and control matrix B:

As defined in (2.11), least-squared solution G can be calculated so that G =

X ′V̂ Σ̂
−1
U ∗ is obtained. G can be decomposed into system matrix A and

control matrix B or they can be calculated in the following way:

A = X ′V̂ Σ̂
−1
U∗

1 (2.12)

B = X ′V̂ Σ̂
−1
U∗

2 (2.13)

where U1 and U2 are the first n and the last l rows of the left-singular matrix

U , respectively.

12



CHAPTER 3

MODEL PREDICTIVE CONTROL

In this chapter, a powerful optimization strategy for feedback control called model

predictive control also known as MPC is discussed. This optimal feedback control

technique determines the effective control action by using a model to estimate future

outputs of a process and solving an optimization problem.

There are some specific reasons to use MPC. First of all, it is capable of handling

MIMO systems with interactions between their inputs and outputs. Using conven-

tional controllers like PID, it might be difficult to design MIMO systems because of

these interactions [3]. MPC, on the other hand, can concurrently regulate every output

while accounting for input-output interactions. Additionally, MPC can manage con-

straints. Constraints are crucial since violating them may have unfavorable results.

With the use of MPC’s preview features, reference input changes may be foreseen

and the controller’s performance can be improved.

Since the 1980s, engineers have employed MPC controllers in process industries.

Today, the usage area of MPC has expanded to robotics and aerospace fields thanks

to the increasing computing power of processors [54].

3.1 MPC Strategy

The working principle of MPC is summarized in Figure 3.1. To briefly summarize the

strategy, the future outputs of the system (ŷ(k + i) for i = 1, . . . , P ) along a horizon

(P ) at time k is predicted using the model at hand. By knowing the past inputs and
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outputs information of the system up to the moment k, the future response of the

system is shaped by optimizing the future inputs (u(k), u(k + 1), ..., u(k +M − 1))

along the control horizon M in order to achieve the desired response. The past inputs

of the system (u(k − i)) are represented by solid line and the future inputs (u(k + i)

for i = 0, . . . ,M − 1) are represented by dashed line in Figure 3.1. The control

inputs along the control horizon M are optimized to get the desired system outputs.

Although the inputs along the control horizon are optimized, only the first element

of the optimized inputs can be used at time k, and a new input optimization process

starts at the next new time step k.

Figure 3.1: MPC Strategy

The basic elements of MPC are shown in Figure 3.2. An error is created by calculating

the difference between reference trajectory which is represented by dashed red line

in Figure 3.1 and the estimated output. This error is then fed to the optimizer, and

future inputs are calculated considering the cost function and constraints. As said

before, only the first element of these optimal inputs u(k) is used and the same process

continues in the next new time step.

All MPC algorithms have common elements, and different choices for these elements

can lead to different algorithms. Basically, the MPC elements are:

• prediction model,

• optimization problem (cost function, constraints and the control law)
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Figure 3.2: Basic Structure of MPC

The most critical and cornerstone element of MPC is the prediction model. In order

to achieve a good control performance, all necessary mechanisms should be used to

obtain the best possible prediction model. In other words, the prediction model to be

created must be capable of fully reflecting the dynamics of the process and allowing

the calculation of high precision predictions. It should also be intuitive and allow for

theoretical analysis. So in summary, the need to use the prediction model arises from

the calculation of the predicted outputs ŷk+1|P and the changes in the future control

inputs ∆uk|M−1 vectors at future instants which can be defined as:

ŷk+1|P :=



ŷ1(t+ 1)

ŷ2(t+ 1)

|
ŷny(t+ 1)

...

ŷ1(t+ P )

ŷ2(t+ P )

|
ŷny(t+ P )



∈ RPny ,∆uk|M−1 :=



∆u1(t)

∆u2(t)

|
∆unu(t)

...

∆u1(t+M − 1)

∆u2(t+M − 1)

|
∆unu(t+M − 1)



∈ RMnu

(3.1)

where ny and nu are the number of output and input variables, respectively.
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3.2 Optimization Problem

It is crucial to make sure that the optimization problem in MPC can be handled in the

limited amount of time. The optimization problem is therefore often expressed in one

of two basic types:

• Linear programming (LP) problems, where the constraints and objective func-

tion are linear functions of the decision variables.

• Quadratic programming (QP) problems, where the objective function is quadratic

function of decision variables, whereas the constraints are linear functions of

decision variables. In addition, to ensure that there exists a unique optimal

solution the QP problem must be convex [19].

LP formulation can be advantageous as it offers the opportunity to find solutions

quickly for very high dimensional optimization problems. However, the QP for-

mulation offers the opportunity to make easy to understand choices when adjusting

weighting matrix parameters in cost function. [19]. It also results in smoother control

actions. Therefore, in the following sections we will concentrate on a QP formulation

and go into more detail on how a QP optimization problem can be expressed in MPC.

The QP problem mainly consists of the following elements:

• The cost function to be minimized, which determines the control performance.

• Constraints on the system input variables that the solution must provide.

• Decision that gives the input that minimizes the cost function while satisfying

the constraints.

A typical cost function is defined as

Jk = (ŷk+1|P − rk+1|P )
TQ(ŷk+1|P − rk+1|P ) + (∆uk|M−1)

TR(∆uk|M−1). (3.2)

The first part of (3.2) is the sum of the square of the difference between the predicted

outputs ŷk+1|P and the reference inputs rk+1|P through the prediction horizon. In the
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second part, there is the sum of the square of the change of the control inputs ∆uk|M−1

given to the system through the control horizon. The positive semi-definite diagonal

weighting matrices Q ∈ R(Pny)×(Pny) and R ∈ R(Mnu)×(Mnu) penalize the output

error and control effort.

In general, the quadratic program (QP) for MPC can be expressed in the form:

min
∆uk|M−1

1
2
∆uT

k|M−1H∆uk|M−1 + fT∆uk|M−1,

s.t. A∆uk|M−1 ≤ b,

where

• ∆uk|M−1 is the decision variable which is the solution vector;

• H is the positive semi-definite Hessian matrix which is unchanging when the

prediction model and weighting matrices are constant while MPC is running;

• A and b are vector of linear constraint coefficients which are constant when the

constraints do not change at run time;

• f is a constant vector when the prediction model and output weighting matrix

Q do not change at run time.

At the beginning of the control phase, H , f, A, and b are calculated once and used for

the entire control period. The constraint vector A and vector b are defined in Section

3.2.1 and the derivations of the Hessian matrix H and the vector f in cost function

will be presented in Section 3.2.2.

3.2.1 Constraints

Limit values defined for variables during a process control are known as constraints.

These constraints are defined by considering the physical limits of the system and it is

aimed that the system will work reliably by preventing the formation of absurd inputs

that may occur. MPC has become one of the most important control strategies thanks

to its ability to handle constraints. The most common types of constraints used for

MPC are input, input rates, and output constraints.
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3.2.1.1 Input amplitude constraint

The constraints on the magnitude of the input signal can be written as a box-constraint,

umin
k|M−1 ≤ uk|M−1 ≤ umax

k|M−1. (3.3)

Using the relationship between uk|M−1 and ∆uk|M−1,

uk|M−1 = ∆uk|M−1 + uk−1, (3.4)

we convert the box-constraint into two inequality constraints as

∆uk|M−1 ≤ umax
k|M−1 − uk−1,

− ∆uk|M−1 ≤ −umin
k|M−1 + uk−1.

(3.5)

3.2.1.2 Input rate constraint

The restrictions on the rate of change of the inputs given to the system are the input

rate constraints and defined by

∆umin
k|M−1 ≤ ∆uk|M−1 ≤ ∆umax

k|M−1, (3.6)

which is equivalent to

∆uk|M−1 ≤ ∆umax
k|M−1,

− ∆uk|M−1 ≤ −∆umin
k|M−1.

(3.7)

Inequalities in (3.7) can be written in linear inequality form with the combination of

(3.5) in order to get A and b as follows:

A =


I

−I

I

−I

 , b =


umax
k|M−1 − cuk−1

−umin
k|M−1 + cuk−1

∆umax
k|M−1

−∆umin
k|M−1.

 (3.8)

3.2.2 Decision

A deterministic linear dynamic system can be written as a discrete state space model

as

xk+1 = Axk +Buk, (2.1)
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or equivalently,

xk+1 = Axk +B(uk−1 +∆uk). (3.9)

Using this state space model, the prediction model can be formulated for instance for

P = 3, just for showing the iterations: for k = k + 1, we write

ŷk+1 = Cxk+1, (3.10)

where C ∈ R(ny)×(ny) is called output matrix and it is selected as identity matrix in

this work.

Substituting the equation (3.9) into (3.10), gives

ŷk+1 = C(Axk +B(uk−1 +∆uk)), (3.11)

or equivalently

ŷk+1 = CAxk +CBuk−1 +CB∆uk. (3.12)

For k = k + 2 we calculate

ŷk+2 = C(Axk+1 +Buk+1)

= CA2xk +CAB(uk−1 +∆uk) +CB(uk−1 +∆uk +∆uk+1)
(3.13)

For k = k + 3;

ŷk+3 = C(Axk+2 +Buk+2)

= CA3xk +CA2B(uk−1 +∆uk) +CAB(uk−1 +∆uk +∆uk+1)

+CB(uk−1 +∆uk +∆uk+1 +∆uk+2))

(3.14)
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By combining equations, (3.12), (3.13) and (3.14), prediction model can be written

in matrix form when the prediction and control horizons are equal to P and M as,

ŷk+1

ŷk+2

ŷk+3

...

ŷk+P


︸ ︷︷ ︸
ŷk+1|P

=



CA

CA2

CA3

...

CAP


︸ ︷︷ ︸

Sx

xk +



CB

CB+CAB

CB+CAB+CA2B
...∑p−1

h=0 CAhB


︸ ︷︷ ︸

Su1

uk−1

+



CB 0 · · · 0

CB+CAB CB · · · 0

CB+CAB+CA2B CB+CAB
. . . 0

...
...

...
...∑P−1

h=0 CAhB
∑P−2

h=0 CAhB . . .
∑P−M

h=0 CAhB


︸ ︷︷ ︸

Su



∆uk

∆uk+1

∆uk+2

...

∆uk+M−1


︸ ︷︷ ︸

∆uk|M−1

(3.15)

where ŷk+1|P is trajectory matrix of predicted future variables, ∆uk|M−1 is data matrix

of input rate variables, Sx ∈ R(Pny)×ny is observability matrix for the pair (C,A),

Su1 ∈ R(Pny)×nu is latest input matrix for the pair (C,A,B) and Su ∈ R(Pny)×(Mnu)

is a lower block triangular Toeplitz matrix for (C,A,B) matrices. We may re-write

(3.15) simply as,

ŷk+1|P = Sxxk + Su1uk−1 + Su∆uk|M−1 (3.16)

and this resulting (3.16) formulation will be the model that MPC will use as a basis

for predicting future outputs. Since the output matrix C is selected as identity in the

above equation, it only depends on the current state, xk. The resulting MPC in this

case will be a state feedback type algorithm.

Substituting prediction model, ŷk+1|P of (3.16) into the cost function in (3.2), we ob-

tain the Hessian matrix H ∈ R(Mnu)×(Mnu) and vector f ∈ R(Mnu) as in the following

form:
Jk = ∆uT

k|M−1 (Su
TQSu + R)︸ ︷︷ ︸

H

∆uk|M−1

+ (Kr
T rk+1|P +Ku

T uk−1 +Kx
T yk)

T︸ ︷︷ ︸
f

∆uk|M−1

(3.17)

20



where

Kr = −QSu (3.18)

Ku = ST
u1QSu (3.19)

Kx = ST
xQSu (3.20)

Algorithm that is used to calculate Hessian matrix H and related matrices, Kr,Ku

and Kx is given in Appendix A.1. Minimizing the cost function given in (3.17) with

respect to ∆uk|M−1, the first order optimality condition

∇Jk =
−→
0 , (3.21)

yields [40]

∆u∗
k|M−1 = −H−1f (3.22)

for the unconstrained optimal solution candidate ∆u∗
k|M−1.

To solve the constrained QP problem, active-set solver which uses the QPKWIK al-

gorithm [47] that is based on [13] is selected since it can provide rapid and robust

performance for small to medium-size optimization problems.

We note that only the first nu elements of changes in future control inputs vector

∆u∗
k|M−1 is used for control purpose and control input signal uk is then calculated as

uk = ∆uk + uk−1.

3.3 Tuning the MPC

The tuning parameters for MPC are the sample time Ts, prediction horizon P , control

horizon M , and weighting matrices for predicted errors Q and control moves R.

Below, we investigate these separately.

3.3.1 Sample Time

Qualitatively, as Ts decreases, rejection performance of unknown disturbances typi-

cally gets better. The dynamic properties of the plant determine the best Ts value at

which performance peaks.
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However, the need for computational power rapidly rises as Ts decreases. The best

option therefore is a balance between computational effort and performance.

However, the prediction horizon P is an important quantity to consider in MPC. P

must vary inversely with Ts if one intends to keep the prediction horizon duration

(the product PTs) constant. As it can be seen from prediction model in the matrix

form (3.15), the size of matrices are proportional to P . Therefore, as P increases, the

controller memory (RAM) requirements and QP solution time also increase.

Therefore, we consider the following when choosing Ts:

• As a general recommendation, the Ts value should be between 10-15% of the

desired minimum closed system response.

• Depending on the improvement of disturbance rejection performance, different

Ts values can be used and simulated. Ts value can be reshaped according to the

result.

• When the Ts is for more than one second for long duration processes is common

in areas such as the chemical industries, the Ts is for less than a second may be

required in areas that require rapid response, such as aerospace applications.

3.3.2 Prediction Horizon

At the present time k, the number of future outputs that MPC must evaluate in order

to optimize its inputs is known as the prediction horizon, or P .

We have the following observations:

• It is recommended that the P value be determined at the beginning of the MPC

design and should not be changed. In other words, the P value should be kept

constant while other tuning parameters such as weighting matrices are changed.

The prediction horizon P should be chosen large enough so that the MPC can

provide internal stability and satisfy constraints.

• If the desired steady state duration is T and sampling time is Ts, the P value

should be selected as T ≈ PTs.
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• Because of the small value selection for P , it may cause undesired plant re-

sponse by generating unstable controller. If P is already large, followings

should be considered:

– Ts value can be increased.

– The cost function weights on input rates can be increased.

– Control horizon can be modified.

3.3.3 Control Horizon

The control inputs time interval to be optimized at each time step k is known as the

control horizon, or M . After the control horizon M , the control input moves are kept

constant and there is no control movement up to prediction horizon P . The prediction

horizon extends the control horizon to predict the final future outputs but without any

movement.

The control horizon falls between 1 and the prediction horizon P . Regardless of the

optimized control input movements along the control horizon, only the first element

of the optimized input sets, that is the input at step k, is used when the MPC starts up

and the other values are discarded.

Generally it is recommended to keep M ≪ P . The reason is the following:

• A small value of M is recommended to reduce the computational cost, as there

will be fewer variables to be calculated in the QP resolved in each step.

3.3.4 Output Weighting Matrix

The output weighting matrix Q given in (3.2) is used to penalize the difference be-

tween the estimated output and the reference input. The elements in the diagonal of

the Q matrix are weighted separately, and the most critical error parameter takes the

largest value. The diagonal matrix Q with its diagonal elements wy
i,j which are tuning

weight for j-th output at i-th prediction horizon step is defined as:

Q = diag(wy
1,1, w

y
1,2, . . . w

y
1,ny

, . . . , wy
P,1, w

y
P,2, . . . , w

y
P,ny

). (3.23)
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3.3.5 Input Rate Weighting Matrix

The input rate weighting matrix R given in (3.2) is used to penalize the input rate to

be used. The elements in the diagonal of the R matrix are weighted separately and

the input which is not desired to be used much is weighted with largest value. The

diagonal matrix R with its diagonal elements w∆u
i,j which are tuning weight for j-th

output at i-th prediction horizon step is defined as:

R = diag(w∆u
0,1 , w

∆u
0,2 , . . . w

∆u
0,nu

, . . . , w∆u
M−1,1, w

∆u
M−1,2, . . . , w

∆u
M−1,nu

). (3.24)

3.4 MPC with Integral Action

When the prediction model used for MPC is not good enough, small steady state

errors may occur in response to the given reference input. Therefore, the inclusion of

integral action for MPC is an efficient way to eliminate steady state errors that may

occur. It also eliminates the unknown slowly changing dynamics and measurement

errors [37]. The integral action included in the MPC control strategy to remove the

offset is shown in Figure 3.3. The steady state error e that is the difference between

the reference input and the measured output is calculated and fed to an integration

function which uses Forward Euler method.

For a given step n > 0 with time t(n), Forward Euler method calculates the integral

output uint as follows:

uint(n) = uint(n− 1) +KI [t(n)− t(n− 1)]e(n), (3.25)

where KI is the input gain value. When choosing the KI , the control matrix B

discovered by DMDc, should be taken into account. The sign of the KI will be

determined by the sign of the element of the B matrix, which corresponds to the

output whose steady state error is to be removed and the input to be used. In addition,

the absolute value of KI should be chosen small considering robustness issues.
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Figure 3.3: MPC with Integral Action

3.5 DMDc and MPC Framework

The proposed DMDc and MPC framework is given in Figure 3.4. The inputs and

outputs are collected by giving the predefined inputs to the plant. The collected input

and output data are then used for the DMDc model discovery process. Later, the

discovered model is transferred to the MPC and used to control the plant. Therefore,

after the model discovery, incoming reference commands are switched to commands

from the MPC algorithm instead of predefined inputs.

Figure 3.4: Schematic of DMDc and MPC framework
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CHAPTER 4

FIGHTER AIRCRAFT MODEL

In this chapter the mathematical model of the fighter aircraft is presented which will

be used for model discovery and control. The model represents the hypothetical

rudder-aileron controlled fighter aircraft travelling with a speed of 150 m/sec at an

altitude of 10,000 m. The model is created in MATLAB’s Simulink® environment

and, input-output structure is shown in Figure 4.1.

Figure 4.1: Fighter Aircraft Simulation Model

The aircraft model consists of five principal subsystems which are actuators, atmo-

sphere, aerodynamics, equations of motions and sensor models. In the next sections,

these subsystem are explained in detail.

4.1 Actuator Models

The actuators are critical component of the flight control system, providing the motive

power needed to move the flight control surfaces. Both the aileron and rudder control

surfaces must be able to be moved. The deflections of aileron and rudder control
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surfaces namely, δa and δr are shown in Figure 4.2. Since actuators have their own

dynamics, they can have a significant impact on the performance of the aircraft and

must be considered in the design of a flight control system [41].

Figure 4.2: Control Surface Deflections

In this section, modelling procedure of actuators for fighter aircraft is presented. The

actuator model used by the F-18 aircraft, shared in the literature [6], is used in this

work. The actuator mathematical models used for the rudder and aileron surfaces are

modeled as a second order transfer function. These transfer functions for aileron and

rudder are given as

δa(s)

δacom(s)
=

752

s2 + 2(0.6)(75)s+ 752
(4.1)

δr(s)

δrcom(s)
=

722

s2 + 2(0.7)(72)s+ 722
(4.2)

In these transfer functions, δacom and δrcom represents the reference commands sent

for related actuator to achieve. Finally, the position and rate limits are implemented

according to the values given in Table 4.1.

Table 4.1: Actuator model parameters

Control Position Limit Rate Limit Natural Frequency (ω) Damping (ζ)
δa ±25◦ ±80◦/sec 75 rad/sec 0.6
δr ±30◦ ±120◦/sec 72 rad/sec 0.7
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4.2 Atmospheric Model

The situation where the forces and moments on an aircraft may vary with the flow-

field parameters must be mathematically modeled. It is shown in textbooks on aero-

dynamics [27] that, for a body of given shape with a given orientation to the free-

stream flow, the forces and moments are proportional to the product of free-stream

mass density ρ, the square of the free-stream airspeed VT , and a characteristic area for

the body. Therefore, for this purpose, Atmospheric model is designed to calculate air

temperature, air density and dynamic pressure according to the International Standard

Atmosphere (ISA) model [38]. First of all, the temperature is calculated with respect

to altitude change as

T = T0 − Lh, (4.3)

where T0 is the air temperature at sea level, L is the lapse rate, and h is the height

from sea level. Air density equation is

ρ = ρ0

(
T

T0

)(g/LR)−1

e
(htro−h)g

RT , (4.4)

where htro is the height of the troposphere from sea level, R is the characteristic gas

constant for air and ρ0 is the air density at sea level. Finally, the dynamic pressure, q̄

is calculated as

q̄ =
1

2
ρV 2

T . (4.5)

4.3 Aerodynamic Model

The forces and moments on the aircraft are calculated using the dimensionless aerody-

namic coefficients obtained as a result of wind tunnel test or CFD analysis. Therefore,

a suitable model to provide values for the body-axis dimensionless aerodynamic co-

efficients of the fighter aircraft is required. The body-axis coordinate system is fixed

on the aircraft and rotates with the aircraft. The subscript “B” is used to denote this

coordinate system. The origin of the body-axis coordinate system is taken to be the

center of gravity (c.g.) of the aircraft. The XB and YB axes are taken towards the nose

and right side of the aircraft, respectively, while the ZB axis is taken perpendicular to

the XB and YB axes using the right hand rule in body-axis coordinate system. These
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axes are illustrated in Figure 4.3. XB, YB and ZB are the roll, pitch and yaw axes of

the aircraft [52]. Aerodynamic coefficient sign conventions are also depicted in Fig-

ure 4.3. The roll and yaw aerodynamic moment coefficients, Cl and Cn are defined

about XB and ZB, respectively. The side force coefficients Cy is defined as positive

along the YB axis.

Figure 4.3: Body frame and aerodynamic coefficients

The orientation of the aircraft with respect to the airflow affects the forces and mo-

ments that will occur on it. Therefore, the orientation angles which are angle of attack

α and the angle of sideslip β are used to determine aerodynamic forces and moments.

The angle of attack α defines the orientation of the stability-axes coordinate system

which is denoted by the subscript “S” and it is used for analyzing the effect of per-

turbations from steady-state flight. As can be seen from the Figure 4.3, it is obtained

from the body-axis system by a right-handed rotation, through α, around the body

y-axis. The wind-axes system, is denoted by the subscript “W ” and is obtained from

the stability-axes system by a right-handed rotation, through β, around the z-axis that

aligns the wind x-axis, XW , directly into the relative wind and it can be seen from

Figure 4.4.

The equations used to calculate total side force, roll and yaw moment aerodynamic
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Figure 4.4: Stability frame and related angles

coefficients are

Cy = Cyβ3
β3 + Cyβ2

β2 + Cyββ + Cyrr
b

2VT

+ Cypp
b

2VT

+ Cyδaδa + Cyδrδr (4.6)

Cl = Clβ3
β3 + Clβ2

β2 + Clββ + Clrr
b

2VT

+ Clpp
b

2VT

+ Clδaδa + Clδrδr (4.7)

Cn = Cnβ3
β3 + Cnβ2

β2 + Cnβ
β + Cnrr

b

2VT

+ Cnpp
b

2VT

+ Cnδa
δa + Cnδr

δr

(4.8)

The subscripts of these coefficients indicate the quantity with respect to which the

derivative is taken. The quantities p and r are roll and yaw rates and b is the span of

the aircraft.

The polynomial coefficients used in the above equations are given in Table 4.2. Some

similar aircrafts are reviewed while selecting these coefficients and these are pretty

typical values for this kind of aircraft [39, 7]. Note that all coefficients are unitless,

thus all angles are in radians.

4.4 Sensor Models

Due to the dynamics of the sensor itself, the filters used in it, calculation delays and

analog to digital converters, it can add a phase delay to the controlled system, which

must be considered. Therefore, a mathematical modeling of the sensors is required. In
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Table 4.2: Aerodynamic Polynomial Coefficients

Side Force Roll Moment Yaw Moment
Cyβ3

= 5.083 C lβ3
= −1.904 Cnβ3

= −3.386

Cyβ2
= 0.009 C lβ2

= −0.0024 Cnβ2
= −0.009

Cyβ = −0.315 C lβ = −0.0463 Cnβ
= 0.112

Cyp = 0.1 C lp = −0.25 Cnp = −0.035

Cyr = 0.4 C lr = 0.065 Cnr = −0.3

Cyδa = 0.0213 C lδa = −0.073 Cnδa
= −0.0063

Cyδr = 0.254 C lδr = 0.02 Cnδr
= −0.09

the literature, there are sensor models that can be used in the initial design stages [53]

and these models are used in this work.

The following sensor information are used:

• Body axis angular rates, p and r;

• Angle of sideslip β;

• Body axis roll angle ϕ.

The sensors are modeled as a second order transfer function and they are implemented

as given
pm(s)

p(s)
=

0.00019s2 − 0.0173s+ 1

0.000704s2 + 0.0401s+ 1
(4.9)

rm(s)

r(s)
=

0.00019s2 − 0.0173s+ 1

0.000704s2 + 0.0401s+ 1
(4.10)

βm(s)

β(s)
=

0.116s2 − 14.437s+ 905.92

s2 + 29.573s+ 908.77
(4.11)

ϕm(s)

ϕ(s)
=

0.3417s2 − 82.317s+ 7161.8

s2 + 190.85s+ 7162.3
(4.12)

The subscript m represents the measured value.

Lastly, it is assumed that deflections, δa and δr, are measured directly so that δam = δa

and δrm = δr.
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4.5 Equations of Motion Model

In this work, it is assumed that there are no pitch rate and no cross product of inertia

terms on the aircraft. It has constant mass of 30, 000 kg (no fuel burning), angle of

attack of 20◦ and total velocity of 150 m/sec. Under these assumptions, the lateral-

directional nonlinear equations of motion for a rigid aircraft reduce to one force, two

moment and one kinematic equations. Firstly, we need to define the aerodynamic

force and moment equations to get these force, moment and kinematic equations. FY

is the aerodynamic body force on the YB axis about the center of gravity, ML and MN

are the rolling and yawing moment on the aircraft in the XB and ZB axis and their

pictorial representations are given in Figure 4.5. Furthermore, the side force, rolling

and yawing moment are defined as:

FY = q̄SCy (4.13)

ML = q̄SbCl (4.14)

MN = q̄SbCn (4.15)

where S is the wing area of the aircraft respectively. The physical characteristics of

the aircraft are given in Table 4.3.

Table 4.3: Fighter Aircraft Physical Characteristics

Symbol Name Value
m Mass 30000 kg

Ixx Rolling Inertia 50000 kg −m2

Izz Yawing Inertia 450000 kg −m2

S Wing Area 72 m2

b Wing Span 12 m

g Gravity 9.81 m/sec2

So, after defining aerodynamic force and moment equations in (4.13)-(4.15), force,

moment and kinematic equations that represents the three degrees of freedom (3-
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Figure 4.5: Aircraft reference frames

DOF) equations of motion of the aircraft can be defined as in [52, 51, 8]:

v̇ =
FY

m
− rVT cos(α) + pVT sin(α) + g cos(α) sin(ϕ) (4.16)

ṗ =
ML

Ixx
(4.17)

ṙ =
MN

Izz
(4.18)

ϕ̇ = p+ r tan(α) cos(ϕ) (4.19)

where m is the mass, Ixx and Izz are the roll and yaw moment of inertia respectively,

VT is the total velocity (same as free-stream airspeed), v is the body frame velocity in

y direction, ϕ is the roll angle, p and r are the roll and yaw rate respectively, g is the

gravitational acceleration on the aircraft.

The outputs that are measured in this study are determined as β, p, r and ϕ in Sec-

tion 4.4. Therefore, conversion from v to β is required. This can be accomplished by

using small angle assumption for angle of sideslip β smaller than 15 degrees, we may

use [57]

β = sin−1 v

VT

≈ v

VT

(4.20)

and hence, under the assumption of constant total velocity VT , we have

β̇ =
v̇

VT

. (4.21)

Finally, the equations (4.17)-(4.19) and (4.21) take the form:
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for nonlinear aircraft model,

β̇ =
q̄S

mVT

(Cyβ3
β3 + Cyβ2

β2 + Cyββ + Cyrr
b

2VT

+ Cypp
b

2VT

+ Cyδaδa + Cyδrδr)

− r cos(α) + p sin(α) +
g cos(α) sin(ϕ)

VT

,

(4.22)

ṗ =
q̄Sb

Ixx
(Clβ3

β3 + Clβ2
β2 + Clββ + Clrr

b

2VT

+ Clpp
b

2VT

+ Clδaδa + Clδrδr),

(4.23)

ṙ =
q̄Sb

Izz
(Cnβ3

β3 + Cnβ2
β2 + Cnβ

β + Cnrr
b

2VT

+ Cnpp
b

2VT

+ Cnδa
δa + Cnδr

δr),

(4.24)

ϕ̇ = p+ r tan(α) cos(ϕ). (4.25)

These given equations are nonlinear dynamics that the model discovery algorithm

DMDc will try to discover in the next sections. For the studied highly nonlinear

aircraft model, all the aerodynamic coefficients in equations (4.22)-(4.24) are non-

zero. The coefficients of the nonlinear terms are set to zero for the linear aircraft

model. Linear aircraft model for constant α of 20◦ or 0.349 rad, may be considered

as

β̇ =
q̄S

mVT

(Cyββ + Cyrr
b

2VT

+ Cypp
b

2VT

+ Cyδaδa + Cyδrδr)

− r cos(0.349) + p sin(0.349) +
g cos(0.349)ϕ

VT

,

(4.26)

ṗ =
q̄Sb

Ixx
(Clββ + Clrr

b

2VT

+ Clpp
b

2VT

+ Clδaδa + Clδrδr), (4.27)

ṙ =
q̄Sb

Izz
(Cnβ

β + Cnrr
b

2VT

+ Cnpp
b

2VT

+ Cnδa
δa + Cnδr

δr), (4.28)

ϕ̇ = p+ r tan(0.349). (4.29)

True linear state-space model to be used for a comparison in DMDc model discovery

process are now written for constant values which are VT of 150 m/sec, ρ of 0.4127

kg/m3 (density at 10, 000m) and aerodynamic coefficients given in Table 4.2. The
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linear state space model describing the body motion become
β̇

ṗ

ṙ

ϕ̇

 =


−0.023 0.342 −0.938 0.064

−3.77 −0.802 0.208 0

0.98 −0.012 −0.107 0

0 1 0.364 0




β

p

r

ϕ

+


0.001 0.019

−5.87 1.58

−0.056 −0.796

0 0


δa
δr

 .

(4.30)

Lateral/Directional dynamic stability modes can be determined from the eigenvalues

of the system matrix in (4.30). The calculated eigenvalues and corresponding sys-

tem characteristics are given in Table 4.4 for comparison purposes in DMDc model

discovery process.

Table 4.4: Fighter Aircraft Dynamic Modes

Eigenvalue Damping Ratio (ζ) Natural Frequency (ω) Mode
-0.21 ±1.44i 0.145 1.45 Dutch-roll

-0.517 1 0.517 Roll
0.0063 N/A N/A Spiral

4.6 Control Law Model

The control law (CLAW) model is used for comparison purposes only and is an ad-

ditional model. The control architecture used in this study is similar to that designed

for the F/A-18 aircraft [7]. Figure 4.6 shows the architecture of the fighter aircraft

flight CLAW.

It should be noted that while determining the gain values, no design method was used,

and the selection is made based on the gain values used by past similar aircraft [7].

If enough time is spent, more optimized gains can be selected, resulting in a better-

performing CLAW. The main purpose here is to see what can be achieved with the

design of similar aircraft without any model dependent design in accordance with the

model-free concept.

The objective of the flight CLAW is to provide the necessary stability and handling

quality characteristics of the fighter aircraft.

36



Figure 4.6: Aircraft Flight CLAW

4.6.1 Lateral Control

The roll motion of the aircraft is controlled in the lateral axis. The commanded signal

which is denoted as pcom is the roll rate command in this channel. To achieve this,

the error between the measurement data from the roll gyro sensor and the reference

command is multiplied by a gain, improving the aircraft’s roll dumping characteristics

and handling quality. Since there is high roll damping in aircraft at high speeds, the

feedback gain is kept low in this regime, while high feedback gains are used at low

speeds. The range of gains used for roll rate feedback is typically 0.8 for low speeds

and 0.08 for high speeds [7]. Since the flight condition considered in this study is

relatively low speed, -0.8 is used as the proportional feedback gain kp value to provide

necessary roll damping. In addition integrator is added to the roll rate feedback to

achieve tighter control of roll rate. The integrator gain kpint
is selected as -0.8.
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4.6.2 Directional Control

Basically, the Dutch-roll mode characteristic of the aircraft is tried to be improved

on the directional axis. For these purposes, the yaw rate r and angle of sideslip β

measurement values from the yaw gyro and air data system are fed to the rudder

actuator after multiplying with a determined gain. A feedback gain kr of -0.5 is used

to provide yaw damping. The sideslip feedback plays a key role in increasing the

lateral stability in the high angle of attack range. Therefore, damping the sideslip

motion is critical. Proportional feedback is implemented in this channel. The value

of the proportional gain is selected as kβ = 0.8. The purpose of δacom is to provide

the component of yaw rate necessary to achieve a stability-axis roll. This cross-

connection, known as the aileron-rudder interconnect (ARI). Normally, this ARI gain

must be determined as a function of angle of attack and Mach number, however since

it is assumed that there are constant angle of attack and Mach number, this gain, kARI

is selected as -0.8 and kept as constant. In addition, integrator is added to the sideslip

feedback to achieve tighter control of sideslip which is also used in reported NASA

study for X-31 aircraft [20]. Lastly, commanded signal which is denoted as βcom is

the angle of sideslip command in this channel.
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CHAPTER 5

SIMULATION AND RESULTS

The simulation results of the control architecture, namely MPC-DMDc is presented

in this section. The programming languages, MATLAB® and Simulink®, are used

to carry out these simulations.

The simulation consists of three phases in total. These phases are called training,

validation, and control. For the first two phases of the simulation, the aircraft was

moved laterally and directionally by giving various control surface inputs. The avail-

able dataset is split into two sets, training dataset and validation dataset. The collected

training dataset is used for DMDc model discovery process. Afterwards, the discov-

ered model is tested with the validation data which is not used in the identification

phase to give information about the precision of the discovered model. Finally, after

the training and validation phases are completed, the control phase is started.

It is worth noting that data-driven model discovery process takes place in the air, and

only data from the limited flight time is used for training. As a result, the model is

not reliant on the past dynamics observed or future dynamics that will be observed.

DMDc model discovery algorithm could be used iteratively in the future works to

update the model over time, which resulting in Adaptive DMDc-MPC.

The performance of the DMDc depends on the cleanness of the data collected for

training, and the noise on the collected data can affect the accuracy of the discovered

model. Therefore, Gaussian white noise is added to the sensor measurements and

results are analyzed to understand the performance variation with noisy data.

After the training and validation processes completed, the DMDc model is used for
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MPC in the control phase, and the control performance is analyzed. Finally, the

results are compared with the responses of the traditional CLAW model presented in

Section 4.6.

5.1 Training and Validation

The amount of data required to train and validate an accurate model is obtained by

running the fighter aircraft model at an 10, 000m altitude with an approximate speed

of 150/s by giving predefined actuation puts, rudder deflection δr, and aileron deflec-

tion δa. Different actuation inputs are used during the training and validation phases

to assess the models’ ability to generalize.

Frequency sweeps for each control deflection inputs are common type of system iden-

tification maneuvers [45]. They allow the evaluation of a complete frequency re-

sponse of the system to the input signal. Usually this type of input signals is applied

to one control surface at time. Therefore frequency sweep inputs for one surface at

time is used in training phase.

The prediction results of discovered model with the training dataset may be signifi-

cant, however the final performance of the model should be tested with the validation

dataset which is not used in the training phase. Therefore, pulse input are given for

δr, and δa. The inputs used in training and validation phases are shown in Figure 5.1a.

A total of 50 seconds is devoted to the training and validation phases. The input and

output data in the first 25 seconds are kept as training dataset, and the data in the next

25 seconds are kept as validation dataset. The output dataset is shown in Figure 5.1b.
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(a) Input Dataset

(b) Output Dataset

Figure 5.1: Dataset

The footage from the flight test data collection process visualized using the open

software FlightGear Flight Simulator program is shown in the Figure 5.2.

The model configuration parameters used in the simulation as follows;

Model Sample Time 0.001 sec (1000Hz)

Model Solver Heun
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Figure 5.2: Footage from FlightGear

Adding many variables may cause over-fitting, thus it may decrease the accuracy

in validation phase which is not the desired case [36]. In order to find the correct

sampling rate for data collection process for the DMDc model discovery algorithm,

offline analyzes are performed. In these analyzes, the mean of the absolute difference

of the eigenvalues of the discovered and true model in clean and noisy measurement

conditions is taken into account. These results are given in the Appendix A. The result

shows that a data collection rate ∆TDMDc of 0.1 sec or 10 Hz is a suitable choice as

given in Figure A.1. This data collection rate is more accessible and practical for

sensors.

Since the discovered model will be a discrete linear state-space model, the true linear

continuous time state space model in equation (4.30) needs to be discretized so that

reasonable comparison can be made. The continuous model is given in the following

form:

ẋ = Axk +Buk (5.1)

Zero-order hold (ZOH) approximation can be made to obtain the true discrete model

as such [52]:

xk+1 = eATd︸︷︷︸
Ad

xk +A−1(eATd − I)B︸ ︷︷ ︸
Bd

uk (5.2)

where the matrix exponential eAT is called the discrete-time transition matrix, Td is
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the discrete sample time, A and B are the continous state-space matrices and Ad

and Bd are the discretized state-space matrices. The linear discrete state-space model

describing the body motion becomes:
βk+1

pk+1

rk+1

ϕk+1

 =


0.991 0.033 −0.093 0.004

−0.360 0.917 0.037 −0.001

0.097 0.001 0.985 0

−0.016 0.096 0.038 1


︸ ︷︷ ︸

AdTrue


βk

pk

rk

ϕk

+


−0.009 0.008

−0.563 0.15

−0.005 −0.079

−0.029 0.006


︸ ︷︷ ︸

BdTrue

δa
δr



(5.3)

where discrete sample time Td = 0.1 sec, since the sample time of the discovered

model ∆TDMDc = 0.1 sec.

In order to understand how the aircraft behaves during the training and validation

phases, linear and nonlinear model responses are compared and shown in the Fig-

ure 5.3. It can be said that the true linear model represents actual system quite well in

this operational regime. Also it is good to mention that we have additional dynamics

which are ignored in our linearization process but they are faster enough so they do

not really create significant problem.

In the following sections, the model given in (5.3) will be used as the basis for com-

parison and the percentage error between the discovered model and the discrete true

model will be presented. The time response prediction of the discovered DMDc

models which are obtained from clean and noisy measurements are also presented.

Finally, the eigenvalues of the true linear continuous time state space model in the Ta-

ble 4.4 and the eigenvalues of the DMDc model which is converted to the continuous

domain are compared.

5.1.1 Clean Data

Using the data from clean measurements for the model discovery process is described

in this case. As stated earlier, the discovered model should be tested for the training

dataset and the validation dataset which the model has never seen before. Therefore,

the results of the true data and the discovered DMDc model are shown for training

and validation phases in Figure 5.4. The blue dashed curves show the DMDc results,
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Figure 5.3: Linear vs Nonlinear Model

and the red solid curves the actual airplane responses. The curves for the actual and

predicted responses in the Figure 5.4 are almost coincident. It can be interpreted that

the parameters of the discovered model are quite close to the actual model parameters.

The discrete linear model that DMDc discovered is given as


βk+1

pk+1

rk+1

ϕk+1

 =


0.985 0.033 −0.092 0.006

−0.421 0.915 0.034 −0.001

0.085 −0.001 0.985 0

−0.027 0.094 0.037 1


︸ ︷︷ ︸

AdDMDc


βk

pk

rk

ϕk

+

−0.011 0.009

−0.576 0.159

−0.009 −0.077

−0.041 0.009


︸ ︷︷ ︸

BdDMDc

δa
δr



(5.4)

In order to understand the closeness of the discovered model to the real model, the
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Figure 5.4: Training and validation results from clean data

error difference between the two models is examined and the error percentage is cal-

culated for each element of the matrices Ad and Bd. So, assuming that Xd ∈ Rn is

a vector that contains all the individual elements of matrices Ad and Bd separately,

starting with the rows, the following formulas are used to calculate the model error.

E(i) =
|XdDMDc

(i)−Xdtrue(i)|
|XdDMDc

(i)|
100% (5.5)

the mean of the error of the matrix elements is calculated as

ME =
E(i)

n
(5.6)

The error results for each elements of matrices Ad and Bd are shown as a bar graph

and the mean of the errors is represented by a red line in Figure 5.5. The mean errors

are calculated as 25% and 17% for matrices AdDMDc
and BdDMDc

, respectively.

Although it makes sense to look at the percentage error of each element to find

out which element in the matrix is causing the problem, some of these elements in
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Figure 5.5: Error percentage for each matrix element in the clean data case

AdDMDc
and BdDMDc

may be really insignificant and they may show a very large per-

centage error even though it does not really mean much. The contribution of a single

element in the matrix to represent the dynamic may be very small indeed, and so the

large percentage error may not really mean much. Therefore, eigenvalues comparison

is a much better way of telling whether the identified DMDc model is close enough

to the true model or not. The eigenvalues of the DMDc model which is converted

into the continuous domain are given in the Figure 5.6 along with that of the true

linear model. The error percentages between true and DMDc model are also given in

Table 5.1. While small error values 2% and 1% are obtained for Dutch roll and Roll

modes, respectively, 28% error value is calculated for Spiral mode and unstable root

is found for this mode as in the true linear model. Basically, Spiral mode develops

slowly and it effects long-term bank angle response. Since the predictions for MPC

will be made for a short period of time, the eigenvalue error values in Dutch-roll and

Roll modes, which are rapidly developing and affect the transient response, are of

greater importance.
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Figure 5.6: Eigenvalue comparison for clean data case

Table 5.1: Eigenvalue comparison in the clean data case

True Linear Model DMDc Percent error Mode
-0.21+1.436i -0.22+1.46i 2.08% Dutch-roll
-0.21-1.436i -0.22-1.46i 2.08% Dutch-roll

-0.517 -0.513 0.82% Roll
0.0063 0.008 28.22% Spiral

So in general, because of small eigenvalue error and the time response of the dis-

covered DMDc model is very close to the real response in the training and validation

phases, these can be interpreted as the DMDc performing well for clean measurement

cases.

5.1.2 Noisy Data

A clean measurement data may not be obtained by the sensors due to structural or

environmental vibrations on the aircraft. Although the sensors’ noise can be filtered

out, just to understand how noisy measurements affect the model discovery process,

different noise levels are added to the clean sensor measurements and their effects are

examined in this section. Noise level is calculated as the ratio of root mean square
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(RMS) of the noise to that of the clean data and given by

Noise Level(%) =
RMS(xnoisy − xclean)

RMS(xclean)
100% (5.7)

Two different noise levels namely, medium and high, are defined in Table 5.2.

Table 5.2: Noise Levels

Noise Level (%)
Medium 7

High 15

The measurement noise is generated by Gaussian white noise N (0, σ) and added to

the clean measurements. Noises are added for angular rates p, r and angle of side-slip

β signals and it is assumed that the roll angle ϕ signal is relatively noise free [53].

The standard deviations corresponding to each noise level are given in Table 5.3

Table 5.3: Standard Deviations

β p r

Medium 0.0025 0.01 0.0032
High 0.0056 0.02 0.071

In order to understand how the added noise affects on measurements, the clean,

medium and high noise sensor measurement results during the first 50 seconds of

training and validation are depicted in Figure 5.7.

5.1.2.1 Medium Noisy Data

The scenario in which moderate noise sensor measurements are used for the model

discovery process is explained in this section. As it is done in the previous section,

the actual and predicted results are compared to understand the model accuracy in the

training and validation phases. These results are given in Figure 5.8.

Although the curves do not overlap in Figure 5.8 as it is in clean case, it cannot be

said that the discovered model makes a bad prediction. While the difference is quite

small for β and p, the difference is widening for r and ϕ.

48



Figure 5.7: Noise Levels

The discrete linear model that the DMDc discovered is given by
βk+1

pk+1

rk+1

ϕk+1

 =


0.977 0.027 −0.111 0.008

−0.450 0.896 −0.025 0.007

0.075 −0.008 0.961 0.003

−0.029 0.093 0.029 1


︸ ︷︷ ︸

AdDMDc


βk

pk

rk

ϕk

+


−0.018 0.007

−0.600 0.152

−0.018 −0.079

−0.042 0.008


︸ ︷︷ ︸

BdDMDc

δa
δr



(5.8)

The error results for each elements of matrices are shown as a bar graph and the mean

of the errors is represented by a red line in Figure 5.9. By looking at the mean error

values, it can be said that the error is increased by 50% compared to the clean case.
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Figure 5.8: Training and validation results for medium noise

As in the clean case, the eigenvalues of the DMDc model which is converted into

the continuous domain are given in the Figure 5.10 along with that of the true linear

model. The error percentages between true and DMDc model are also given in Ta-

ble 5.4. Although the error value for the Dutch-roll mode is decreased to 1.26%, the

values are increased for Roll and Spiral modes comparing to clean measurement case.

Table 5.4: Eigenvalue comparison in the medium noise case

True Linear Model DMDc Percent error Mode
-0.21+1.436i -0.21+1.45i 1.26% Dutch-roll
-0.21-1.436i -0.21-1.45i 1.26% Dutch-roll

-0.517 -1.128 118.04% Roll
0.0063 0.032 408.52% Spiral
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Figure 5.9: Error percentage for each matrix element for medium noise case

Figure 5.10: Eigenvalue comparison for medium noise case

5.1.2.2 High Noisy Data

Finally, the model discovery results based on high noise measurements are shared in

this section. The actual and predicted results are shown in Figure 5.11 for the training

and validation phases. It can be observed that the difference between the curves is

started to widen considerably. However, it is also observed that the predictions made
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by the discovered model can still follow the real trend.

Figure 5.11: Training and validation results for high noise

The discovered discrete linear model that DMDc generated is given by


βk+1

pk+1

rk+1

ϕk+1

 =


0.951 0.011 −0.167 0.014

−0.525 0.850 −0.178 0.026

0.040 −0.029 0.885 0.011

−0.036 0.088 0.008 1.001


︸ ︷︷ ︸

AdDMDc


βk

pk

rk

ϕk

+


−0.041 0.002

−0.665 0.138

−0.049 −0.086

−0.050 0.007


︸ ︷︷ ︸

BdDMDc

δa
δr



(5.9)

The error results for each elements of matrices are shown as a bar graph and the mean

of the errors is represented by a red line in Figure 5.12. Looking at the results, it can

be concluded that the value of mean error is doubled compared to the medium noise

level case.
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Figure 5.12: Error percentage for each matrix element for high noise case

The eigenvalues of the DMDc model are given in the Figure 5.13 along with that

of the true linear model. The error percentages between true and DMDc model are

also given in Table 5.5. Although the error value for the Dutch-roll mode is still low

as 2.57%, the values are increased for Roll and Spiral modes comparing to medium

noise case. It can be concluded that DMDc model discovery process is significantly

affected by high noise.

Figure 5.13: Eigenvalue comparison for high noise case
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Table 5.5: Eigenvalue comparison in the high noise case

True Linear Model DMDc Percent error Mode
-0.21+1.436i -0.19+1.47i 2.57% Dutch-roll
-0.21-1.436i -0.19-1.47i 2.57% Dutch-roll

-0.517 -2.98 477.62% Roll
0.0063 0.046 634.45% Spiral

5.2 Control Performance Results

After 50 seconds of training and validation phases, 20 seconds of control phase be-

gins. Normally, the reference control inputs given to the aircraft are given by the pilot

with the help of the stick and pedal in the cockpit. The lateral stick input commands

the reference roll command, and the pedal input controls the sideslip angle. In the

control phase, these reference inputs are predefined and given. The responses of the

MPC and the classical controller are presented in this section and some evaluation

criteria are defined to understand how good the responses are for each controller.

5.2.1 Evaluation criteria

The designed controller should meet some requirements. For the purposes of verify-

ing this, this subsection sets out a set of specific evaluation criteria against which the

design should be measured. These requirements are based on MIL-Specification [56]

and GARTEUR [53] documents. The criteria are divided into two subclasses which

are:

• Robustness,

• Performance.

5.2.1.1 Robustness requirements

The closed loop system should be able to withstand the application of independent

gain and delay offsets at the input of each one of the actuators as shown in Figure 5.14
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without becoming unstable. The gain margin (GM) and delay margin (DM) that the

system must withstand are defined in terms of dB and seconds. This analysis is carried

out for only noise free scenario.

Figure 5.14: Closed loop system showing point for analysis

5.2.1.2 Performance requirements

There are some performance requirements that the aircraft must meet while perform-

ing a roll maneuver. Followings are the requirements:

• The maximum roll rate pmax should be at least 30◦/sec.

• The roll time constant τr should not exceed 1 sec. How the τr value should be

calculated is explained in the Figure 5.15.

• The coupling in sideslip due to roll should be minimised and not exceed ±2◦.

All robustness and performance requirements that the aircraft must meet during the

control phase are summarized in the Table 5.6.

Table 5.6: Lateral-Directional Design Criteria

Requirement Name Requirement
Single Loop GM [dB] GM ≥ 6

Single Loop DM [sec] DM ≥ 0.1

Effective Roll Mode Time Constant [sec] τr≤ 1

Maximum Roll Rate [◦/sec] |pmax|≥ 30

Sideslip due to Roll [◦] |β|≤ 2
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Figure 5.15: Roll mode time constant calculation

5.2.1.3 Actuator usage comparison

The frequent use of the actuator is not desirable in terms of both practical and en-

ergy consumption. In order to understand the usage of the actuator, some metrics

are determined and these are defined as Control Expenditure (CE) and Control Rate

Expenditure (CRE)

CE =

∫ T70

T50

|δ| (5.10)

CRE =

∫ T70

T50

|δ̇| (5.11)

The T50 and T70 represents the control phase time interval. There are no specific val-

ues defined for these metrics, CE and CRE. These values will be used for comparison

purposes only for the MPC and Classic Controller.

In order to test these criteria in Table 5.6, the 30◦/sec roll rate command pcom and

the 0◦ sideslip command βcom are given to the controllers as reference inputs and the

MPC parameters are chosen accordingly. While weighting the outputs for MPC, only

the outputs of sideslip and roll rate are penalized in the Q matrix. There is no penalty

for yaw rate and bank angle, so that the diagonal elements of the Q matrix which is

represented as wy
i,(1−4), is chosen as [10, 1, 0, 0] at each i-th predicton horizon step

by considering the units and possible magnitudes of the outputs.

On the other hand, the elements in the diagonal of the R matrix is represented as
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w∆u
i,(1−2) and the weights of inputs rate, namely the rudder and aileron input rate, δ̇r

and δ̇a are chosen as equal: [0.2, 0.2] at each i-th predicton horizon step.

The sampling time Ts of the MPC is taken to be the same as the sampling time of

the discovered model, ∆TDMDc. The input and input rate constraints are chosen by

considering the actuator position and rate limits which are given in Table 4.1.

Finally, the integral action is used to eliminate steady state errors in β and p. δr input is

used to remove the error in β and δa input is used to remove the error in p. Therefore,

when choosing the sign of the integral input gains, the elements corresponding to

β − δr and p− δa in the BdDMDc
matrix are taken into account.

All the design parameters used for MPC are given in the Table 5.7.

Table 5.7: MPC Design Parameters

MPC Design Parameters Values
Sample Time (Ts) 0.1

Prediction Horizon (P) 40
Control Horizon (M) 10

Output Weight ( wy
i,(1−4)) [10, 1, 0, 0]

Input Rate Weight (w∆u
i,(1−2)) [0.2, 0.2]

Input Constraints [±25◦, ±30◦]

Input Rate Constraints [±80◦/sec, ±120◦/sec]

Integral p Error Gain KIp−δa
-0.25

Integral β Error Gain KIβ−δr
0.25

5.2.2 Clean Data

The discrete model discovered from clean measurements, as in (5.4), is used in the

MPC after the training and validation phases. A total of 70 seconds, showing all

phases including the control phase, is shown in Figure 5.16. The reference input

given in the control phase is shown with blue curves, and the actual response of the

aircraft is shown with red curves.

In order to take a closer look at the responses in the control phase and to compare

the responses of the classical controller and MPC, the results including only this 50-
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Figure 5.16: Output response for all phases for clean data

70 sec time interval are shown in Figure 5.17. In addition, in order to understand

whether the sideslip due to roll and the roll mode time constant requirements given in

Table 5.6 is met, the ±2◦ interval of β is shown with the green zone as the acceptable

area and the time constant values of both controllers are written.

Control input position and rate graphs are shown in Figure 5.18 to understand the

actuator activity. The reference control input values δcom produced by MPC is shown

with blue dashed curves. It can be observed from Figure 5.18 that the reference

inputs δcom produced by the MPC remain within the given constraints. In addition,

the fact that the maximum position and rate values are not frequently reached can be

interpreted as soft actuator usage for the MPC case.

The same graphs are drawn in Figure 5.19 for the Classic Controller case, and the blue

dashed curves show the reference commands produced by the Classic Controller. It

can be said that the results are very similar to the MPC case and the excessive actuator

usage is not observed.
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Figure 5.17: Output response for control phase for clean data

Figure 5.18: Actuator activity at control stage for MPC for clean data
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Figure 5.19: Actuator activity at control stage for Classic Controller for clean data

Robustness analyses are performed by adding additional gain and delays separately

for each of the points specified in Figure 5.14 till the system becomes unstable. The

GM and DM values obtained for each input channel are given in the Table 5.6. The

results of the system becoming unstable with the added gain and delays are given in

the Figure 5.20.

Actuator usage metrics are also calculated to compare the results numerically (see

Table 5.8). The results show that the actuator usage of MPC and conventional con-

trollers is quite different. In terms of rudder input δr CE and CRE values, the MPC

is 10% and 95% higher than the Classic Controller, respectively. In terms of aileron

input δa it is observed that MPC is 17% less for CE value and 68% higher for CRE

value. It can be said that the MPC exhibited a more aggressive actuator usage for the

clean measurement condition.

According to the results, the compatibility of the values obtained for the MPC and the

classical controller cases with the given evaluation criteria are presented in Table 5.9

to understand whether they meet the requirements.
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Figure 5.20: Responses for additional gain and delays

Table 5.8: Actuator usage metrics for the MPC and Classic Controller in the clean
data case

Metric Name MPC Classic
CE for δr 82.9 74.39

CRE for δr 221.18 113.79
CE for δa 60.58 73.08

CRE for δa 183.50 109.67

Table 5.9: Design requirements compliance matrix for clean case

Requirement Name Requirement MPC Classic
Single Loop GM at Aileron [dB] GM ≥ 6 [-∞, 8.13] [-∞, 8.13]

Single Loop GM at Rudder [dB] GM ≥ 6 [-∞, 8.76] [-∞, 9.54]

Single Loop DM at Aileron [sec] DM ≥ 0.1 0.2 0.16
Single Loop DM at Rudder [sec] DM ≥ 0.1 0.15 0.35

Effective Roll Mode Time Constant [sec] τr≤ 1 0.451 0.59
Maximum Roll Rate [◦/sec] |pmax|≥ 30 ≥ 30 ≥ 30

Sideslip due to Roll [◦] |β|≤ 2 ≤ 2 ≤ 5

It can be concluded that the MPC meets all the criteria, while the Classic Controller

does not meet the sideslip due to roll requirement only.
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5.2.3 Noisy Data

The control performance of MPC in noisy measurement situations is described in this

section together with the classical control results.

5.2.3.1 Medium Noisy Data

The discrete model discovered from medium noisy measurements given in equation

(5.8) is used in the MPC after the training and validation phases. A total of 70 sec

showing all phases including the control phase is shown in Figure 5.21. The reference

input given in the control phase is shown with blue curves, and the actual response

of the aircraft is shown with red curves. The results in the 50-70 sec control phase

window are shared in Figure 5.22. The obtained roll mode time constant values are

indicated on the figure and the desired range for β is shown with the green area.

Figure 5.21: Output response for all Stages for medium noise
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Figure 5.22: Output response for control stage for medium noise

Actuator activity during the control phase is shown in Figure 5.23. The reference

control input values δcom produced by MPC is shown with blue dashed curves. It can

be observed from the Figure 5.23 that the reference inputs δcom produced by the MPC

remain within the given constraints. As can be seen from the figure, the control input

is heavily affected by noise and the control input rates are very high.

In order to understand the actuator activity for the classical controller case, the actua-

tor outputs are shown in Figure 5.24. The effect of medium noise on actuator activity

also appears to be the same for the classical controller.

Actuator usage metrics are also calculated to compare the results numerically and

given in Table 5.10. The results show that the CRE value is nearly doubled compared

to the previous clean case for both MPC and classical controllers. It is observed that

the MPC and classical controller results are close to each other in terms of CE values

for both inputs. From the results, it can be said that medium noisy measurement

greatly affects the actuator usage.
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Figure 5.23: Actuator activity at control stage for MPC for medium noise

Table 5.10: Actuator usage metrics for the MPC and Classic Controller in the medium
noise case

Metric Name MPC Classic
CE for δr 79.51 74.45

CRE for δr 298.48 217.21
CE for δa 65.40 73.15

CRE for δa 360.56 304.74

According to the results, the compatibility of the values obtained for the MPC and

the classical controller with the given evaluation criteria and whether they meet the

requirements are presented in Table 5.11.

Table 5.11: Design requirements compliance matrix for medium noise case

Requirement Name Requirement MPC Classic
Effective Roll Mode Time Constant [sec] τr≤ 1 0.457 0.592

Maximum Roll Rate [◦/sec] |pmax|≥ 30 ≥ 30 ≥ 30

Sideslip due to Roll [◦] |β|≤ 2 ≤ 2.5 ≤ 5

64



Figure 5.24: Actuator activity at control stage for classical controller for medium
noise

Looking at the results, it can be concluded that the performance values of the Classic

Controller are almost unchanged, but MPC cannot meet some requirements at this

time.

5.2.3.2 High Noisy Data

The discrete model discovered from high noisy measurements given in equation (5.9)

is used in the MPC after the training and validation phases. A total of 70 sec showing

all phases including the control phase is shown in Figure 5.25. The reference input

given in the control phase is shown with blue curves, and the actual response of the

aircraft is shown with red curves.The results in the 50-70 sec control phase window

are shared in Figure 5.26. The obtained roll mode time constant values are indicated

on the figure and the desired range for β is shown with the green area.
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Figure 5.25: Output response for all stages for high noise

Figure 5.26: Output response for control stage high noise
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Actuator activity during the control phase is shown in Figure 5.27. The reference

control input values δcom produced by MPC is shown with blue dashed curves. It can

be observed from Figure 5.27 that the reference inputs δcom produced by the MPC

remain within the given constraints. As can be seen from the figure, the control input

is heavily affected by high noise and the control input rates are higher than medium

noise case.

Figure 5.27: Actuator activity at control stage for MPC for high noise

In order to understand the actuator activity for the classical controller case, the actua-

tor outputs are shown in the Figure 5.28. The effect of high noise on actuator activity

also appears to be the same for the classical controller.

Actuator usage metrics are also calculated to compare the results numerically and

given in Table 5.12. The results show that the CRE and CE values are increased

compared to the medium noise situation for both MPC and Classical Controller. It is

observed that the MPC and classical controller results are close to each other in terms

of CE values for both inputs. From the results, it can be said that high noise affects

the actuator usage more than the medium noise measurement situation.
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Figure 5.28: Actuator activity at control stage for classical controller for high noise

Table 5.12: Actuator usage metrics for the MPC and Classic Controller in the high
noise case

Metric Name MPC Classic
CE for δr 78.89 74.72

CRE for δr 233.81 362.03
CE for δa 78.06 73.62

CRE for δa 471.2 485.65

According to the results, the compatibility of the values obtained for the MPC and

the classical controller with the given evaluation criteria and whether they meet the

requirements are presented in Table 5.13.

Table 5.13: Design requirements compliance matrix for high noise case

Requirement Name Requirement MPC Classic
Effective Roll Mode Time Constant [sec] τr≤ 1 0.463 0.594

Maximum Roll Rate [◦/sec] |pmax|≥ 30 ≥ 30 ≥ 30

Sideslip due to Roll [◦] |β|≤ 2 ≤ 5 ≤ 5

Looking at the results, it can be concluded that the performance values of the Classic
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Controller are almost unchanged, but MPC cannot meet some requirements at this

time. In general, there is a decrease in MPC performance compared to the medium

noise measurement case.

5.3 Real-time Computational Capability Validation Test

When the designed code will be used in a real application, it will run on a target

hardware that does not contain Matlab/Simulink, unlike our desktop computer where

the results of the previous sections are taken. The DMDc-MPC algorithm designed

in Matlab/Simulink environment on the desktop computer is needed to be translated

into C/C++ source code. Thanks to the Simulink Real-Time™ feature, the created

Simulink model is converted to C/C++ code and automatically embedded in the target

machine. The resulting C/C++ code is compiled with a specific target compiler for

the processor and tested in the target hardware.

This test has two main purposes. The first main purpose is to check whether the

compiled code also runs on the target processor. By comparing desktop and target

processor simulation results, it can be tested that the numerical equivalence of Mat-

lab/Simulink model and the generated code is achieved. The second main purpose

is to analyze the computational cost of the DMDc-MPC algorithm. Since our daily

used desktop computers do a lot of work in the background, this analysis is done in

the most accurate way on a target hardware dedicated to this task.

Speedgoat unit real-time target machine is the ideal equipment for this test due to

its fast testing and application capability. This equipment has a real time operating

system from Mathworks which supports C/C++ source code compiler. The picture

and specifications of the Speedgoat equipment used for this test are given in Fig-

ure 5.29 [1] and Table 5.14, respectively.

The real-time computational capability is validated in the following. Exploiting paral-

lel computing using a multicore processor can increase the computational capabilities

of our system [25]. For this reason, the option to execute tasks concurrently is selected

and multicore architecture is used in the hardware configuration tab. In this experi-

ment, the plant model is executed in core 1, while the MPC and DMDc algorithms
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Figure 5.29: Speedgoat Unit Real-Time Target Machine [1]

Table 5.14: System Specifications

Manufacturer Speedgoat®
CPU Intel® Atom® 1.6 GHz quad-core

Main drive 120 GB SSD
Memory 4 GB DDR3
Software Simulink Real-Time

are executed in cores 2 and 3. Both plant model, MPC and DMDc algorithms are syn-

chronized by making the necessary rate transitions. Rate transition handling is done

manually on the signals one by one. The sampling frequency of each core are given

in Table 5.15. The multicore structure of the overall process is shown in Figure 5.30.

The outputs of core 1 will be the command or reference for cores 2 and 3.

Table 5.15: Sampling Frequencies of Each Core

Cores Sampling Frequency
Core-1 (Plant) 1000Hz(0.001s)
Core-2 (MPC) 100Hz (0.01s)

Core-3 (DMDc) 10Hz (0.1s)

5.3.1 Results

A real-time simulation is performed on Speedgoat to evaluate the real-time perfor-

mance of DMDc-MPC algorithm. The signals to be logged are selected on the

Simulink model and stored on the Speedgoat. These logs can then be accessed via

Matlab with "slrtexplorer" and pulled into the workspace. The normal and target
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Figure 5.30: Multicore structure of Speedgoat.

hardware simulation results are compared to understand the consistency of the gen-

erated C/C++ code embedded in the target hardware with the desktop computer re-

sult. The comparison of the simulation results obtained on Speedgoat and the desktop

computer is shown in Figure 5.31. In order to avoid a crowd of figures, only the com-

parative result of the roll rate response is shared. Results from Speedgoat are shown

with blue dashed curves, and results from a desktop computer are shown with red

curves.

Figure 5.31: Normal vs Speedgoat Simulaton

The sampling frequency of the cores specified in Table 5.15 indicates how long it
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will take to complete each iteration of the task to be performed. However, how long it

takes for the task to actually be completed may differ from these values. For example,

the task may have completed in a shorter time and the processor may have waited in

sleep for this period without taking any action. The time it takes for the task to be

completed is called the task execution time (TET). The variation of TET values for

each core during the all simulation is given in Figure 5.32. Since DMDc creates

the model at the end of the 25th second training period, we see a spike in the TET

response given for core 3. On the other hand, we see a high increase in the TET

response for core 2 since the control phase starts after the 50th second.

Figure 5.32: Target execution times for each cores during simulation

Defined sampling time for each core with the maximum and average values obtained

from TET results are summarized in Figure 5.33. It can be understood that the task

execution times are quite low compared to the sampling frequency defined for the

cores. In summary, these results can be interpreted as the low computational cost of

the DMDc-MPC algorithm.
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Figure 5.33: Summarized TET results
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CHAPTER 6

CONCLUSION

It has been shown that the DMDc-MPC framework for control of lateral/directional

fighter aircraft dynamics which is MIMO system, whose controller design is difficult

using classical methods, is more successful than the Classical Controller in clean

measurement situations. Although the better results can be obtained by optimizing

the Classical Controller gains, the DMDc-MPC framework seems promising. It is

observed that DMDc model discovery process is not robust against noisy situations

but it has shown better results in control phase by meeting most of the evaluation

criteria even in noisy measurement situations.

One of the main contributions of this study to the literature is to test the DMDc-MPC

structure created on a MIMO system and obtain successful results. Another contri-

bution is demonstrating the robustness of the DMDc-MPC structure against added

delays and gains. The last and perhaps the most important contribution is to show the

computational cost by testing the generated algorithm on the target hardware running

in real time.

The efforts made in total can be summarized as follows: formulating the model dis-

covery method and the QP problem for the control process properly, determining the

QPKWIK algorithm to be used for solving the optimization problem efficiently, es-

tablishing a mathematical model of a fighter aircraft with its subsystems to test the

resulting structure and lastly implementing the resulting algorithm in target hardware

to show the real time computational capability.

In the future work, it can be studied that the generalization of the proposed algorithm
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for other potential applications such as controlling robot motions can be studied.

This study also motivates several future investigations and extensions such as:

• If there are known terms in the dynamic, this information can be used to im-

prove the DMDc model discovery accuracy.

• The precision of model discovery method DMDc can be tested with real flight

test data.

• By testing the DMDc-MPC algorithm on an aircraft model with 6 degrees of

freedom, it can be shown that successful results can also be obtained for high

dimensional systems.

• Guaranteeing stability and robustness for MPC can be checked.

• In this study, it is assumed that the necessary measurements are available. But

in reality, for example, the angle of sideslip signal may not be measured prop-

erly. Therefore, the DMDc-MPC structure can be matured by developing state

estimation algorithms.

• It may be possible to develop an adaptive DMDc-MPC algorithm that will cover

the entire flight regime by rapidly making new model discoveries according to

flight conditions changes such as altitude and speed.

• Comparison can be made using different QP solver types to achieve a better

computational cost.

• The computational cost can be shown by testing the algorithm on other units

such as the GPUs.

• By changing the prediction horizon and control horizon values of the MPC, the

increase in the computational cost and RAM requirement analysis can be made.

• Integral action was included in the MPC strategy to remove the steady state

errors. The inclusion of integral gain in the optimization process can be con-

sidered instead of choosing fixed small values.

• The success of the DMDc-MPC algorithm can be proven by testing it on a real

small scaled aircraft with a sufficient hardware.
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APPENDIX A

In order to understand the effect of different data sampling times on model discovery,

the mean errors between the eigenvalues of the discovered and real model are plotted

in A.1 by performing offline analyzes. Algorithm that is used to calculate Hessian

matrix H and related matrices, Kr, Ku and Kx for cost function formulation is given

in Listing A.1.

Figure A.1: MEE vs Sample rate ∆DMDc
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1 function [H,Ku1,Kx,Kr] = Hessian(A,B,C,Wy,Wdu,p,m)

2 % Calculate Hessian and related terms for controller initialization

3 % Author: Can Öznurlu

4 % Inputs: A, B, C: prediction model

5 % Wy/Wdu are weight vectors

6 % p/m are prediction and control horizon

7 ny = size(C,1); % number of OV

8 nu = size(B,2); % number of MV

9 pny1 = (p-1)*ny;

10 mnu = (m)*nu;

11 mnu1 = (m-1)*nu;

12

13 % Initialization and pre-allocation

14 CA = C*A;

15 Sum = C*B;

16 Sx = [CA; zeros(pny1,ny)];

17 Su1 = [Sum; zeros(pny1,nu)];

18 Su = [Sum, zeros(ny,mnu1); zeros(pny1,mnu)];

19 Q = [Wy';zeros(pny1,1)];

20 R = [Wdu';zeros(mnu1,1)];

21

22 % Loop through horizon

23 for i=2:p

24 rows = (i-1)*4+(1:4);

25 rows_u = (i-1)*2+(1:2);

26 Sum = Sum + CA*Br;

27 Su1(rows,:) = Sum;

28 CA = CA*Ar;

29 Sx(rows,:) = CA;

30 Q(rows,1) = Wy';

31 % Loop through control horizon

32 if i <=m

33 R(rows_u,1) = Wdu';

34 Su(rows,:) = [Sum, Su(rows-ny,1:(m-1)*nu)];

35 else

36 end

37 end

38

39 % Compute cost function Hessian and linear terms

40 H = Su'*diag(Q)*Su + diag(R) ;

41 Kr = -diag(Q)*Su;

42 Ku1 = Su1'*diag(Q)*Su ;

43 Kx = Sx'*diag(Q)*Su;

Listing A.1: Calculation of Hessian and related terms
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