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Assoc. Prof. Dr. Ceren Vardar Acar
Statistics Department, METU

Assist. Prof. Dr. Kamil Demirberk Ünlü
Industrial Engineering Department, Atılım University

Date:



iv



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MERVAN AKSU

Signature :

v



vi



ABSTRACT

OPTIMAL LIQUIDATION WITH CONDITIONS ON MINIMUM PRICE

Aksu, Mervan
Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ali Devin Sezer

September 2022, 80 pages

The classical optimal trading problem is the closure of an initial position q0 in a
financial asset over a time interval [0T ]; the trader tries to maximize an expected
utility under the constraint qT = 0, which is the liquidation constraint. Given that
the trading takes place in a stochastic environment, the constraint qT = 0 may be
too restrictive; the trader may want to relax this constraint or slow down/stop trading
depending on price behavior. The goal of this thesis is the formulation and a study of
these types of modified liquidation orders. We introduce two new parameters to the
stochastic optimal control formulation of this problem: a process I taking values in
{0, 1} and a measurable set S. The set S prescribes when full liquidation is required
and I prescribes when trading takes place. We give four examples for S and I which
are all based on a lower bound specified for the price process. We show that the
minimal supersolution of a related backward stochastic differential equation (BSDE)
with a singular terminal value and with a convex driver term gives both the value
function and the optimal control of the modified stochastic optimal control problem.
The novelties of the BSDE arising from the modified control problem are as follows:
the relaxation of the constraint qT = 0 implies that the terminal value of the BSDE
can take negative values; this and the convexity of the driver imply that the driver
is no longer monotone and results from the currently available literature giving the
minimal supersolution of this type of BSDE are not directly applicable. The same
aspects of the problem imply that the BSDE can explode to −∞ backward in time.
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To tackle these we introduce an assumption that balances the market volume process
and the permanent price impact in the model over the trading horizon. The BSDEs
reduce to PDE for Markovian price processes; we also present an analysis of these
PDE for a Markovian price process involving stochastic volatility.

We quantify the financial performance of our models by the percantage difference
between the initial stock price and the average price at which the position is (partially)
closed in the time interval [0, T ]. We note that this difference can be divided into
three pieces: one corresponding to permanent price impact (A1), one corresponding
to random fluctuations in the price (A2) and one corresponding to transaction/bid-ask
spread costs (A3). A1 turns out to be a linear function of 1 − qT/q0, the portion of
the portfolio that is closed; therefore, its distribution is fully determined by that of
qT/q0. We provide a numerical study of the distribution of qT/q0 and the conditional
distributions of A2 and A3 given qT/q0 under the assumption that the price process is
Brownian for a range of choices of I and S.

Keywords: Optimal Liquidation, BSDE, Minimum Price

viii



ÖZ

MİNİMUM FİYAT KISITI ALTINDA OPTİMAL LİKİDİTASYON

Aksu, Mervan
Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ali Devin Sezer

Eylül 2022, 80 sayfa

Optimal likidasyon veya pozisyon kapatma, belirli bir [0, T ] zaman aralığında finansal
bir varlıkta bulunan bir q0 pozisyonunun kapatılması sorusudur. Yatırımcının amacı
bu zaman aralığında pozisyonu tam kapatarak işlemden gerçekleşecek kazancın bek-
lenen faydasını maksimize etmektir. Likidasyon işlemleri stokastik ortamlarda ger-
çekleştiği için pozisyonu tam kapatma kısıtı çok bağlayıcı olabilir. Yatırımcı fiyattaki
değişimleri baz alarak tam likidasyon kısıtını gevşetmek veya alım satım işlemlerini
yavaşlatmak/durdurmak isteyebilir. Bu tezin amacı bu esnekliklere sahip optimal po-
zisyon kapatma emirlerinin formülasyonu ve bunların matematiksel olarak çalışılma-
sıdır. Bu esneklikte emirler üretmek için ilgili stokastik optimal kontrol problemine
iki yeni parametre eklenmiştir: {0, 1} değerlerini alan bir I süreci ve ölçülebilir bir S
olayı. I ne zaman işlem yapılabildiğini belirlerken S kümesi tam pozisyon kapatma
işleminin koşullarını belirler. Fiyat süreci için yatırımcının belirleyeceği bir alt limiti
baz alan dört farklı S ve I örneği verilmiştir. Önerilen yeni stokastik optimal kont-
rol sorusuna karşılık gelen geriye dönük stokastik denklemi (BSDE) belirlenmiş; bu
denklemin minimal üstçözümlerinin stokastik optimal kontrol probleminin hem değer
fonksiyonunu hem de optimal kontrolunu verdiği gösterilmiştir. Fiyat sürecini Mar-
kov olduğunda BSDE’ler kısmı differansiyel denklemlere dönüşmektedirler (PDE).
Stokastik volatiliteli Markovian fiyat süreçleri için bu PDE’lerin analizleri de veril-
miştir.
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Önerilen algoritmanın finansal performansı, pozisyonun (kısmen) kapatıldığı orta-
lama fiyatın varlığın başlangıç fiyatından yüzde sapması ile ölçülmüştür. Bu sapma
üç parçaya ayrılabilir: kalıcı fiyat etkisine bağlı bir parça (A1), fiyattaki stokastik dal-
galanmalarla ilgili bir parça (A2) ve alış-satış fiyat farkı maliyeti ve işlem ücretleri
ile ilgili bir parça (A3). A1, 1 − qT/q0’nin doğrusal bir fonksiyonu olduğu ve bu se-
beple dağılımının tamamen qT/q0 (pozisyonun kapatılmayan kısmının başlangıçtaki
büyüklüğüne oranı)’ın dağılımı tarafından belirlendiği gözlenmiştir. Fiyat sürecinin
Brownian olduğu varsayımı altında I ve S’nin dört farklı değeri için qT/q0’ın dağı-
lımı ve A2 ve A3’ün qT/q0’a göre şartlı dağılımları numerik olarak hesaplanmış ve
bunların model parametreleriyle nasıl değiştiği numerik olarak gösterilmiştir.

Anahtar Kelimeler: Optimal Likiditasyon, BSDE, Minimum Fiyat
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CHAPTER 1

INTRODUCTION

There is a range of order types available to an investor to construct or liquidate a

position on an asset; the book [14] presents the following: implementation shortfall

(IS), target close (TC) and volume weighted average price (VWAP). Given a trading

horizon [0, T ], all of these order types are constrained to attain a target position at

terminal time T . Mathematically this is expressed as the constraint qT = 0, where

qt denotes the position of the investor at time t (we’ll always assume q0 > 0, i.e., an

initial long position, for a more brief presentation; everything below applies to a short

position q0 < 0 by multiplying the relevant quantities by −1). Given that the order

is being executed in a stochastic environment, this constraint can be too restrictive.

For example, in IS orders the goal is to close an initial position near the initial price

S0; it may happen that the price drops substantially during the trading interval and

the investor holding the position may no longer wish to be strict about closing the

position. The goal of the present work is to offer algorithms that offer this type of

flexibility in execution. We focus on the IS type orders targeting the initial price

S0 but similar ideas can be considered for other types of orders. Firstly we gave a

brief summary of literature Chapter 2. Later we review the stochastic optimal control

formulation of the standard IS order in Chapter 3.

The value function of this control problem has a backward stochastic differential

equation (BSDE) representation where the constraint qT = 0 is represented by the

singular terminal condition YT = ∞; this connection was first observed in [4] for

a filtration generated by a Brownian motion and a quadratic driver function; it was

generalized to more general filtration and driver terms in [17] and other works (see

1



the references in Chapter 2). The BSDE representation will be our primary tool for

the analysis of the control problems we propose. Chapter 4 reviews the BSDE formu-

lation of the stochastic optimal control problem for the standard IS order. In section

3.1 we propose two ways the IS order can be modified to delay/stop liquidation de-

pending on price behavior 1) by relaxing the full liquidation constraint if the price

is too low 2) stopping/pausing trade if the price is too low. The first modification is

represented as a terminal cost for the stochastic optimal control problem while the

second modification is represented by setting market volume to 0 when the price is

too low (see (3.10), (3.11) and (3.12)). These two modifications are parameterized

by a measurable set S and a process I taking values {0, 1}. The set S prescribes

when full liquidation is required and I prescribes when trading takes place. We give

four examples for S and I in section 3.1 which are all based on a lower bound L

specified for the price process. It is explained in the same section that both of these

modifications have natural representations in the BSDE framework: the first mod-

ification corresponds using S to modify the terminal value of the BSDE while the

second modification corresponds to multiplying the driver of the BSDE by I . The

resulting BSDE is given in (3.18) and (3.13). The analysis of this BSDE is presented

in Chapter 4. The main results of this chapter are: Proposition 4.2 and Proposition

4.3; the first of these proves the existence of the minimal super solution to the BSDE

(3.18) and the second proves that this minimal super solution gives us the value func-

tion and optimal control of the modified stochastic optimal control problem (3.12).

When the price process is assumed Markovian these BSDE also have PDE represen-

tations, which are also useful in the actual calculation of the value function and the

optimal control. The PDE aspect is explored in Chapter 5. A popular choice for price

dynamics in finance applications is the stochastic volatility model. To the best of our

knowledge, it is rarely treated in the context of optimal liquidation; in Chapter 5 we

assume the price dynamics to follow this model and explore its treatment in the PDE

analysis of the problem.

The main novelty of the BSDE (3.18) is the following: relaxing the constraint qT =

0 implies that the terminal condition (3.13) can be negative. But the driver of the

BSDE (3.18) is not monotone in y ∈ R. This means that prior results from [16, 17]

establishing the existence of the minimal supersolution for singular terminal valued
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BSDE (which assume monotone generators) are not directly applicable. Secondly, the

same aspects of the problem (a terminal condition that can take negative values and a

generator that is superlinear in y) imply that the minimal supersolution of the BSDE

can explode to −∞ backwards in time. The set of terminal conditions ξ that arise

from modified IS orders have bounded negative parts, i.e., they satisfy ξ− < K <∞
for some constant K > 0. For such terminal conditions a simply way to deal with the

nonmonotonicity of the driver is to replace it by a monotone generator over (−K,∞);

this is what we do in Chapter 4. Once this is done results on BSDE with monotone

generators can be applied to the problem. To deal with the possibility of explosion to

−∞ backward in time we derive an apriori lower bound process on any supersolution

of the BSDE with a terminal condition whose negative part is bounded by K. We

introduce an assumption on the permanent price impact parameter and market volume

that guarantees the existence and boundedness of the lowerbound process over the

interval [0, T ].

The main output of the standard IS order is the cash position XT at time T generated

by the trading algorithm, under the assumption that the price process is a Brownian

motion, XT turns out to be normally distributed whose mean and variance have sim-

ple formulas in terms of the model parameters. When we relax the IS order so that full

liquidation is no longer required at terminal time, the output of the IS order consists

of the pair of real random variables (qT , XT ) where XT is, as before, the total cash

generated by the trading process and qT is the remaining position at terminal time in

the asset being traded. For the relaxed/modified IS orders, XT is not normally dis-

tributed even when the price process is taken to be Brownian and the joint distribution

of (XT , qT ) doesn’t have an explicit form. Define

A =
XT − (q0 − qT )S0

(q0 − qT )S0

(1.1)

A is the percentage deviation from the target price S0 of the average price at which

the position is (partially) closed in the time interval [0, T ]. In Chapter 6 we study the

joint distribution of (qT/q0, A). We note that A can be divided into three pieces: one

corresponding to permanent price impact (A1), one corresponding to random fluctua-

tions in the price (A2) and one corresponding to transaction/bid-ask spread costs (A3).

A1 turns out to be a linear function of 1− qT/q0; therefore, its distribution is fully de-

termined by that of qT/q0. We provide a numerical study of the distribution of qT/q0
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and the conditional distributions of A2 and A3 given qT/q0 under the assumption that

S̄t = σWt for the cases (3.14),(3.15),(3.16) and (3.17) The same Chapter also pro-

vides numerical examples of the sample path behavior of the optimal controls of these

four modified IS orders. Chapter 7 comments further on the models presented in this

work and on possible future research.
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CHAPTER 2

LITERATURE REVİEW

After the liquidity crisis in 2007-2008 the optimal liquidation problem become really

popular among researchers.The first paper on optimal execution of portfolio is Bertsi-

mas and Lo 1998 [8]. They modeled a dynamic optimal trading strategies which min-

imize the expected cost of trading a large portfolio. The model proposed that the best

way to trade will be simply breaking down the total portfolio into equal waves and

trade them in equal time horizons. Optimality means the minimization of expected

execution cost. The main weakness of the model was that it did not consider price

movement risk while trading which effects the expected cost of trading immensely.

That is the main reason why their model frequently suggests splitting the large order

equally into small orders to be executed at constant speed.

In 1999 Almgren and Chriss proposed a model which takes into account both the

expected cost of execution and the price risk during execution [2],[3]. The proposed

model gives a closed form formula for the optimal execution strategy which is deter-

ministic and can be computed before the execution starts.

In the literature there are two main impact functions which are used to model optimal

execution problems. The first one is deterministic impact functions which were com-

mon in early research. This model is easily solved with calculus of variation methods.

The second is stochastic impact models. The resulting stochastic control problem can

be solved via dynamic programming or by stochastic maximum principle. Both cases

induce to solution of a singular terminal condition of the Hamilton-Jacobi-Bellman

(HJB) equation or the adjoint equation in the stochastic maximum principle [25].
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Ankirchener et al [5] showed that the value function of stochastic optimal control

problem of optimal liquidation can be represented as the solution of singular BSDE.

Ankirchener and Kruse [6] solve an stochastic price impact in liquidation problem

and verified the optimality of their results with penalization method. Additionally

they derive optimal trading strategies for closing financial asset positions in markets

with stochastic price impact and non-zero returns.

Kruse and Popier [17] extend the model suggested by Ankirchener et al [5] allow-

ing general filtration, driver and terminal cost, show the existence of the minimal

supersolution of the associated BSDE with singular terminal values and prove that

the value function and the optimal control can be expressed in terms of this minimal

supersolution.

Grawe et all [13] extend the optimal liquidation problem to allow price-dependent

impact function and passive orders sent to a “dark pool.” They characterize the value

function in terms of the unique smooth solution to a PDE with singular terminal value

and provide a study of its asymptotic behavior at terminal time.

Horst et all [15] set up an optimal liquidation control problem with possibly degener-

ate coefficients under market impact. They describe the value function by a degener-

ate backward stochastic partial differential equation with singular terminal value.

Grawe et all [12] extend their work [13] to a non markovian case and establish exis-

tence, uniqueness, and regularity of solution results for a class of backward stochastic

partial differential equations with singular terminal condition.

Popier and Zhou [23] consider the optimal liquidation problem in a setting where the

underlying probability measure is not completely known and focus on the worst case

expected transition costs. They provide a solution to this problem by a second order

BSDE.
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CHAPTER 3

DEFINITIONS

We adopt the price and trading dynamics of the Almgren Chriss framework as pre-

sented [14, Chapter 3]. Everything is assumed to be defined on a probability space

(Ω,F ,P) equipped with a quasi left continuous and right continuous filtration F =

{Ft, t ∈ [0,∞)} (see [24]). The market volume at time t is denoted by Volt, which is

a nonnegative process adapted to the filtration F. The position of the investor at time

t is qt. The process q is assumed to be absolutely continuous in the time variable,

let v denote its derivative: vt = q′t; q and v are adapted to F. The midprice process

satisfies:

St = S0 + S̄t +

∫ t

0

κ(vs)ds, (3.1)

where S̄ is a martingale adapted to F. and v 7→ κ(s) is the permanent price impact

function. The standard choice for κ is a linear function, i.e., κ(v) = kv for some

constant k > 0, see [14, Chapter 3]. We will be primarily working with a linear

price impact. The actual trading price at time t is St + gt(vt/Volt) where gt models

transaction costs and the bid-ask spread (g depends on t, ω and vt/Volt). The process

g is often specified via the so-called execution cost function Lt: Lt(ρ) = ρg(ρ). The

simplest and classical choice for Lt is a quadratic function of ρ = vt/Volt: Lt(ρ) =

ηtρ
2, ηt > 0, where η > 0 is an adapted process; see [14, 4]. In this thesis we focus

on this choice of L The actual trading price at time t, expressed in terms of L is

St +
Volt
vt

Lt(vt/Volt).

The cash position that q generates is

X ′
T = −

∫ T

0

(
St +

Volt
vt

Lt

(
vt

Volt

))
vtdt = −

∫ T

0

Stvtdt−
∫ T

0

VoltLt

(
vt

Volt

)
vtdt

(3.2)
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(vt = q′t < 0 corresponds to selling, hence an increase in X , and vt > 0 corresponds

to buying, a decrease in X). Integrating the first term by parts gives:∫ T

0

Stvtdt = ST qT − S0q0 −
∫ T

0

qtdSt

= ST qT − S0q0 −
∫ T

0

qtdS̄t −
∫ T

0

kvtqtdt

= ST qT − S0q0 −
∫ T

0

qtdS̄t −
k

2
(q2T − q20)

Then

X ′
T = q0S0 − qTST +

k

2

(
q2T − q20

)
+

∫ T

0

qtdS̄t −
∫ T

0

VoltLt

(
vt

Volt

)
dt.

In the classical formulation of the problem the position is required to be closed fully

at terminal time, i.e., qT = 0. Then the terminal cash position is

XT = q0S0 −
k

2
q20 +

∫ T

0

qtdS̄t −
∫ T

0

VoltL
(

vt
Volt

)
dt; (3.3)

to identify the optimal liquidation strategy q one solves

max
q∈A

E[U(XT )], (3.4)

where

A0 = {q : q is progressively measurable, absolutely continuous , qT = 0}

and U is the utility function of the trader. A standard choice for the utility function

is U(x) = −e−γx, where γ is the risk aversion and parameter of the investor. In the

current work we will be focusing on the case γ → 0, for which (3.5) reduces to

max
q∈A0

E[XT ]. (3.5)

Assuming that the local martingale
∫ t

0
qtdS̄t is a martingale and taking the expectation

of XT in (3.3) we see that the above control problem is equivalent to

min
q∈A

E
[∫ T

0

VoltL
(

vt
Volt

)
dt

]
(3.6)

This is the standard version of the stochastic optimal control formulation of the IS

order in the Almgrenn Chriss framework for γ = 0. Our goal is to formulate mod-

ifications of this control problem; the modifications are proposed and discussed in

section 3.1 below.
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Let V denote the value function of the control problem (3.6)

V (q, t) = min
q∈At

E
[∫ T

t

VoltL
(

vt
Volt

)
dt

]
.

For p > 1, let p̂ be the Holder conjugate of q, i.e., 1/p+ 1/p̂ = 1. For p > 1 let Y be

the solution of the BSDE:

dYt = (p− 1)
Volp̂−1

t

ηt
Y p̂
t dt+ ZtdWt, YT = ∞. (3.7)

For Lt(ρ) = ηtρ
p, [4] derive the following BSDE representation for the value function

V :

V (0, q) = qpY0.

Note that the terminal condition of the BSDE in (3.7) is ∞. This type of terminal

condition is called “singular”. This terminal condition corresponds to the constraint

qT = 0 of the stochastic optimal control problem. The work [17] extend these results

to general driver, filtration and terminal conditions. We refer to further related work

in Chapter 2.

3.1 Modifications

When full liquidation is no longer required, i.e., when we don’t have the constraint

qT = 0, the output of the trading process at time T will be (X ′
T , qT ) where X ′

T is

the cash generated by the trading process and qT is the position remaining in the asset

being traded. To formulate a utility maximization problem similar to (3.5) the qT term

must be represented in monetary terms, i.e., a money value must be assigned to the

position qT . In the present work we mainly focus on the following simple choice:

the market value of the position at terminal time T ignoring trading costs, i.e., qTST .

With this choice, the monetary value of the position (X ′
T , qT ) is

XT = X ′
T + qTST = q0S0−

k

2
q20 +

k

2
q2T +

∫ T

0

qtdS̄t−
∫ T

0

VoltLt

(
vt

Volt

)
dt. (3.8)

Recall that our goal is to modify the IS order to not liquidate depending on price

behavior in two ways 1) by relaxing the full liquidation constraint if the price is too

low 2) stopping/pausing trade if the price is too low. The following formulation allows
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both of these possibilities. Let It be an adapted process taking values in {0, 1}. Let

S ∈ FT be a measurable set. Define

AI,S = {q : q′progressively measurable , q′tdt absolutely continuous with respect to

Itdt, qT (ω) = 0 if ω ∈ S}. (3.9)

We modify (3.5) to

max
q∈AI,S

E[XT ]. (3.10)

The formula (3.8) implies that this control problem is equivalent to:

min
q∈AI,S

E
[∫ T

0

ηt
v2t

Volt
dt− k

2
q2T

]
(3.11)

If we adopt the conventions

∞ · 0 = 0,

∫ T

0

ηt
v2t

ItVolt
dt = ∞ if v is not absolutely continuous with respect to I,

(3.11) can be formulated as

min
q∈A0

E
[∫ T

0

ηt
v2t

volt
dt+ ξq2T

]
(3.12)

where

volt = VoltIt,

ξ =

(
−k
2
1Sc +∞ · 1S

)
. (3.13)

Note that the I process controls when trading takes place and the event S controls

when full liquidation is required.

The midprice process S consists of two components: S̄t and k(qt − q0). The first

component, S̄, is the random component of the change in the midprice; any large

and unpredictable drop in price that the investor may fear can arise from this com-

ponent. Given this observation one possible formulation is that the investor puts a

lowerbound L on this component and requires that the liquidation process take into

account whether S̄ goes below L. This is the point of view we take in this work.

Define

τL = inf{s > 0 : S̄s ≤ L}

τt,L = inf{s > t : S̄s ≤ L}.
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Given a lowerbound L on S̄, here are some possible choices for I and S:

It = I
(1)
t

.
= 1,S = S(1) .= {S̄T > L} : (3.14)

trading is allowed at all times, full liquidation is forced only when the terminal price

S̄T is above L

It = I
(2)
t

.
= 1{t≤τL},S = S(2) .= {τL > T} : (3.15)

trading stops once S̄ hits the lower bound L; full liquidation takes place if S̄ remains

above L throughout [0, T ].

It = I
(3)
t

.
= 1[L,∞)(S̄t),S = S(3) = {τL,T−δ ≥ T} : (3.16)

trading pauses when the price S̄ is below L, full liquidation takes place if the price

process S̄ remains above L in the time interval [T − δ, T ] for a given time length

δ > 0.

Let us comment on the δ > 0 parameter in this formulation: essentially we would like

to continue with the liquidation when the price is not too below our target price S0

and close the position fully if the terminal price is also near our target price. However,

allowing trading (re)start arbitrarily close to T and forcing a full liquidation implies

high transaction costs (in fact, ∞ transaction costs under the current model and not

realistic in practice). This is the reason for the δ > 0 parameter: full liquidation is

forced only if the price remains above L in the time interval [T − δ, T ].

In the last formulation trading pauses once S̄ hits L; if S̄ is a continuous diffusion

process , once it hits L, it will hit L infinitely often and the trading process will

switch on and off infinitely often as S̄ crosses L. One can get a discrete sequence of

on and off trading intervals by putting a buffer of size b > 0 above L between trading

and no trading; once trading pauses, it is turned back on once S̄ goes above b + L.

The corresponding I and S are expressed through the following sequence of hitting
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times:

τL,0 = τL,

τb,0 = inf{t : t > τL,0, S̄t ≥ b+ L},

τL,k = inf{t : t > τb,k−1, S̄t ≤ L},

τb,k = inf{t : t > τL,k, S̄t ≥ b+ L}.

τ̄b,k =

τb,k if τb,k + δ < T

T otherwise.

Adding a buffer of size b > 0 between no-trading and trading in (3.16) amounts to

the following definitions:

It = I
(4)
t

.
=

∞∑
k=−1

1[τb,k≤t≤τL,k+1], S = S(4) .= {IT = 1}. (3.17)

The BSDE corresponding to the modified stochastic optimal control problem (3.12)

is again of the form (3.7):

dYt = Volt
1

ηt
Y 2
t ds+ dMt, (3.18)

with terminal condition

YT = ξ, (3.19)

where

ξ = −k
2
1Sc +∞ · 1S. (3.20)

Parallel to (3.7), the singular term ∞· 1S in the terminal condition corresponds to the

constraint qT = 0 over the event S of the stochastic optimal control problem. A pair

(Y,M) is said to be a supersolution of this BSDE if it satisfies (3.18) and

lim inf
t→T

Yt ≥ ξ (3.21)

holds. It is said to be minimal if Y ′
t ≥ Yt for any other supersolution (Y ′,M ′). Two of

our main aims in the rest of the paper are the following: 1) prove that the BSDE (3.18,

3.19) have a minimal supersolution (Y min,Mmin) and 2) this minimal supersolution

gives us the value function of (3.12). We tackle these problems in the next chapter.

To ease notation we will assume ηt = 1; otherwise we can modify the Vol process to

Ṽolt = Volt/ηt.

and base all of our arguments on this modified volume process.
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CHAPTER 4

BSDE ANALYSIS

The goal of this Chapter is the prove the existence of the minimal supersolution to

the BSDE (3.18), (3.19) and to show that this minimal supersolution gives us both

the value function and the optimal control for the modified stochastic optimal control

problem (3.12). We will be working with a general terminal condition ξ that also

cover the cases listed in (3.13) that arise from the stochastic optimal control formu-

lation of the modified IS order. The key issue in the solution the BSDE (3.18,3.19)

is the following: the terminal conditions that are of interest to us (given in (3.13))

can take negative values, this combined with the driver t 7→ voltY 2
t means that the

solution of (3.18,3.19) can explode to −∞ backwards in time. The negative part of

the terminal conditions (3.13) is bounded by k/2; for this reason, it suffices, for our

purposes to focus on terminal conditions with bounded negative real part, i.e., we

assume

ξ− ≤ K,

for some K > 0. We would like our BSDE to have solutions in the time interval

[0, T ]. To ensure that the solution of the BSDE doesn’t explode to −∞ before time 0,

the K term and the driver of the BSDE have to balance each other; we express this in

the following assumption:

Assumption 1. Vol is non-negative and deterministic and satisfies

K

∫ T

0

Voltdt < 1, (4.1)

or it is bounded by a constant vol > 0 such that

KT vol < 1. (4.2)
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We will assume throughout that either (4.1) or (4.2) holds. Note that when Vol satis-

fies one of these, vol = I Vol also does because I ∈ {0, 1}. Under Assumption 1 the

lowerbound process z is defined as follows:

zt = − 1

K−1 −
∫ T

t
volsds

, (4.3)

if (4.1) holds; and

zt = − 1

K−1 − vol(T − t)
(4.4)

if (4.2) holds.

Lemma 1. z of (4.3) satisfies

dz

dt
− voltz

2 = 0, (4.5)

and z of (4.4) satisfies
dz

dt
− vol z2 = 0. (4.6)

Both z satisfy zT = −K. Under Assumption 1 z is increasing on [0, T ] and satisfies

for any t, −∞ < z0 ≤ zt ≤ −K.

Proof. Assumption 1 implies

K−1 −
∫ T

t

volsds > 0 or K−1 − vol(T − t) > 0, (4.7)

for t ∈ [0, T ]. Therefore, zt < 0 on [0, T ]. Nonnegativity of vol and vol imply that z

is increasing. One can check by differentiation that z of (4.3) satisfies (4.5) and z of

(4.4) satisfies (4.6).

The terminal condition ξ of (3.20) is singular, i.e., it can take the value ∞. The

standard way to obtain the minimal supersolution of a BSDE with a singular terminal

condition (a terminal condition that can take the value ∞) is approximation below,

i.e., we truncate the terminal condition ξ to ξ ∧ L, solve the resulting BSDE and let

L ↗ ∞. Therefore, the treatment of singular terminal values requires the solution

of the same BSDE with bounded/integrable terminal values. The next Proposition

adressses integrable terminal values:

Proposition 4.1. Suppose Assumption 1 holds and assume:
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• ξ+ ∈ Lϱ(Ω) for some ϱ > 1,

• ξ− is bounded by K for some K > 0.

Then BSDE (3.18) has a unique solution (Y, Z) such that Y − is bounded and

E

[
sup

t∈[0,T ]

|Y +
t |ϱ + ⟨M⟩ϱ/2T

]
< +∞.

Moreover if ξ+ is bounded, Y is also bounded.

Proof. Recall the lack of monotonicity for the generator y 7→ −volty2. However if

the negative part Y − of the solution is bounded by some constant κ > 0, that is Y is

bounded from below by −κ, then we can replace the generator (t, y) 7→ −volty2 by

a monotone continuous generator

f̃−κ(s, y) = −volty21y≥−κ + voltκ(2y + κ)1y<−κ. (4.8)

Indeed for any t, y, y′

(y − y′)(f̃−κ(t, y)− f̃−κ(t, y
′)) ≤ 2voltκ(y − y′)2.

And since Y ≥ −κ,

Yt = ξ +

∫ T

t

f(s, Ys)ds−
∫ T

t

dMs = ξ +

∫ T

t

f̃−κ(s, Ys)ds−
∫ T

t

dMs.

We can use uniqueness result for BSDEs driven by monotone generator. See [19,

Proposition 5.24], our setting implying that a.s. vol belongs to L1(0, T ).Therefore, if

the solution exists and if the negative part is bounded, the solution of (3.18) is unique.

By Lemma 1, process z is bounded from below by z0 < 0. Now we define the

generator f̃z0 and the BSDE

Yt = ξ +

∫ T

t

f̃z0(s, Ys)ds−
∫ T

t

dMs. (4.9)

Since f̃z0 is monotone w.r.t. y and since vol ∈ L1(0, T ), BSDE (4.9) has a unique

solution (Y, Z) (see again [19, Proposition 5.24]). Remark that for ξ = −K, the

solution is (z, 0). Since ξ ≥ −K, the comparison principle ([19, Proposition 5.33])

states that a.s. for any t, Yt ≥ zt ≥ z0. In other words (Y,M) is a solution of the

BSDE (3.18), and this achieves the proof of the proposition.
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Remark 1 (On the negative part of Y ). Applying Itô-Tanaka formula implies that the

negative part of Y is a subsolution of the BSDE

Ut = ξ− +

∫ T

t

f̃(s, Us)ds−
∫ T

t

dVs, (4.10)

with f̃(t, y) = volty21y≥0. Generator f̃ is not monotone. However it is increasing

and positive. From Lemma 1, (U∗, V ∗) = (−z, 0) is a bounded supersolution of this

BSDE.

Following [11], we deduce the existence of a minimal bounded supersolution (U, V )

which is also bounded and non-negative (see [11, Theorems 3.3 and 4.1]). Using

again f̃−κ, we deduce easily that (U, V ) in fact is the unique solution of the BSDE

(4.10).

As a by-product, we obtain a better bound: a.s. for any t, 0 ≤ Y −
t ≤ Ut ≤ −zt.

Remark 2 (On the positive part of Y ). Consider the BSDE

Υt = ξ+ +

∫ T

t

vols
[
−(Υs − Us)

2 + (Us)
2
]
1Υs≥0ds−

∫ T

t

dMs

= ξ+ +

∫ T

t

f̂(s,Υs)ds−
∫ T

t

dMs

where U is the solution of (4.10). Since U is bounded by κ,

∂yf̂(s, y) ≤ 2volsκ,

thus driver f̂ is monotone:

(y − y′)(f̂(t, y)− f̂(t, y′)) ≤ 2voltκ(y − y′)2.

Hence existence and uniqueness of the solution holds, if ξ+ belongs to some space

Lϱ(Ω). Define Y = Υ− U and M = M− V :

Yt = Υt − Ut = ξ+ − ξ− +

∫ T

t

(f̂(s,Υs)− f̃(s, Us))ds−
∫ T

t

dMs

= ξ −
∫ T

t

vols(Υs − Us)
pds−

∫ T

t

dMs.

Hence (Y,M) solves BSDE (3.18). And a.s. for any t, 0 ≤ Y +
t ≤ Υt.

Finally, we treat the case when ξ is singular: either P(ξ = +∞) > 0 or ξ+ does not

belong to some Lϱ(Ω). To guarantee the existence of a minimal supersolution in this

case we need the following assumption on vol and S:
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Assumption 2. There exists some ℓ > 1 and some ϵ > 0 such that

E
[
1S

∫ T

T−ϵ

1

(vols)ℓ
ds

]
< +∞. (4.11)

Recall that {ξ = ∞} = S corresponds to the constraint qT = 0, i.e., the position

is to be fully closed at time T . Assumption 2 can be interpreted as the availability

of liquidity (both through Vol and I) at terminal time if full closure constraint is

imposed. Our main result on singular terminal conditions is the following:

Proposition 4.2. Suppose ξ− ≤ K and Assumptions 1 and 2 hold. Then there exists

a minimal supersolution (Y min,Mmin) to the BSDE (3.18) with terminal condition

YT = ξ such that Y min has a left-limit at time T and the negative part of this minimal

supersolution is bounded.

Proof. The proof follows the same arguments as [17, Proposition 3]. Let us consider

for any L ≥ 0

ξL = ξ ∧ L.

Note that the related solution (Y L,ML) of

Y L
t = ξL −

∫ T

t

vols(Y L
s )2ds−

∫ T

t

dML
s ,

has the same upper bound U = −z for the negative part (Y L)− for any L. And by

comparison principle for monotone BSDEs, arguing as in [17] leads to:

Y L ↗ Y.

From Remark 2, Y L ≤ ΥL with

ΥL
t = (ξ+ ∧ L)−

∫ T

t

vols(Υ
L
s )

21ΥL
s ≥0ds−

∫ T

t

dML
s

From [17, Lemma 1], we have a.s. for any t ∈ [T − ϵ, T ]

ΥL
t ≤ 1

(T − t)2
E
[∫ T

t

1

vols
ds

∣∣∣∣Ft

]
.

Therefore from (4.11), Y L
t , T − ϵ ≤ t ≤ T , is finite and bounded in Lℓ(Ω) uniformly

w.r.t. L. In particular for any η < ϵ, there exists a constant C such that for any L,

E(Y L
T−η)

ℓ ≤ C.
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Standard estimates for BSDEs show that (Y L,ML) converges to (Y,M) in the space

Sℓ(0, T − η) × Hℓ(0, T − η), for any η > 0, that is (Y,M) solves (3.18) for any

0 ≤ t ≤ r < T

Yt = Yr −
∫ r

t

vols(Ys)2ds−
∫ r

t

dMs.

Moreover Y − ≤ U . And since we assume the filtration to be quasi left-continuous,

we obtain that a.s.

lim inf
t→T

Yt ≥ ξ.

Finally minimality can be obtained as in the proof of [17, Proposition 4]. If (Ỹ , Z̃)

is another supersolution, we add to both solutions Ỹ and Y L the quantity −z and the

same arguments on Ỹ − z and Y L − z lead to a.s. Ỹ − z ≥ Y L − z.

The only remaining problem concerns the existence of a limit at time T . Compared

to [21, Theorem 2.1], we only have to deal with the negative part of Y min or of Y L,

which approximates Y min. However we can apply the arguments of the proof of [21,

Theorem 2.1] with the function Θ(y) = π
2
− arctan(y) for example:

Θ(Yt) = E [Θ(ξ)|Ft] + ψ+
t − ψ−

t

where ψ+ and ψ− are two non-negative supermartingales such that ψ+ converges a.s.

to zero. To obtain this result, we use that the negative part of Y L is bounded uniformly

with respect to L and also that ZL1Y L≤0 is bounded in H2(0, T ) (consequence of the

Itô-Tanaka formula for (Y L)−). This achieves the proof.

Our next task is to relate the solution/minimal supersolution of the BSDE to the solu-

tion of the stochastic optimal control problem (3.12).

4.1 Solution of the stochastic optimal control problem

For ease of reference let us restate our stochastic optimal control problem:

min
q∈A0

E
[∫ T

0

v2t
volt

dt+ ξq2T

]
; (4.12)

as in the analysis of the BSDE, we will work with an arbitrary ξ ≥ −K.

18



Our goal is to prove the following result:

Proposition 4.3. Suppose Assumptions 1 and 2 hold, suppose ξ− ≤ K and let

(Y min,Mmin) be the minimal supersolution of (3.18), (3.19). Then

q∗t = q0 exp

(
−
∫ t

0

Y min
s volsds

)
, t ∈ [0, T ), (4.13)

(equivalently, v∗t = −Y min
t voltq∗t ) is the optimal state process for the stochastic opti-

mal control problem (4.12). Moreover the value function of (4.12) at time t is given

by

V (t, q) = q2Y min
t .

The proof directly follows from the next three lemmas and is given at the end of this

section. Let’s call J the expression inside the min in (4.12):

J(v) =

∫ T

0

v2t
volt

dt+ ξq2T =

∫ T

0

v2t
volt

dt+ ξ

(
q0 +

∫ T

0

vtdt

)2

, v ∈ A0.

We start with the following observation:

Lemma 2. If

ξ−
∫ T

0

voltdt < 1 (4.14)

almost surely, then the functional v 7→ J(v) is strictly convex. The Gâteaux derivative

of J at point v in direction w, is given by

⟨DJ(v), w⟩ = 2

∫ T

0

vtwt

volt
dt+ 2ξ

(
q0 +

∫ T

0

vtdt

)(∫ T

0

wtdt

)
.

Proof. Taking v and ṽ in A0, and θ ∈ [0, 1], we have

J(θv + (1− θ)ṽ)− θJ(v)− (1− θ)J(ṽ)

= −θ(1− θ)

[∫ T

0

(vt − ṽt)
2

volt
dt+ ξ

(∫ T

0

(vt − ṽt)dt

)2
]

≤ −θ(1− θ)

[∫ T

0

(vt − ṽt)
2

volt
dt− ξ−

(∫ T

0

(vt − ṽt)dt

)2
]

≤ θ(1− θ)

[
−1 + ξ−

∫ T

0

voltdt

] ∫ T

0

(vt − ṽt)
2

volt
dt ≤ 0.

19



We use the Cauchy-Schwarz inequality for the inequality. Now for any ϵ > 0 and v

and w in A0,

1

ϵ
(J(v + ϵw)− J(v))

= 2

∫ T

0

vtwt

volt
dt+ ϵ

∫ T

0

w2
t

volt
dt

+ 2ξ

(
q0 +

∫ T

0

vtdt

)(∫ T

0

wtdt

)
− ϵξ

(∫ T

0

wtdt

)2

.

Letting ϵ to zero gives the desired formula.

We will use the following process to relate Y min and q∗ to the stochastic optimal

control problem (4.12):

Nt
.
= 2Y min

t q∗t .

By its definition q∗ satisfies

dq∗

dt
= −Y min

t voltq∗t .

This and integration by parts give:

Nt = 2

∫ t

0

qsvols(Ys)2ds−
∫ t

0

2YsYsvolsqsds+ 2

∫ t

0

qsdMs = 2

∫ t

0

qsdMs.

Hence N is a local martingale. To prove that q∗ is the optimal control and Y min

determines the value function of the stochastic optimal control problem, it suffices to

prove that N is a true martingale:

Lemma 3. Suppose N is a true martingale. Then q∗ is the optimal control of (4.12)

and

Y min
t q2t = E

[∫ T

t

(v∗s)
2

vols
ds+ ξq2T

∣∣∣∣Ft

]
.

Proof. For w ∈ A0 define q̂t =
∫ t

0
wsds. Integration by parts implies:∫ T

0

wt
2v∗t
volt

dt =

∫ T

0

q̂tdNt −NT q̂T =

∫ T

0

q̂tdNt − 2ξqT q̂T .

This and Lemma 2 give

⟨DJ(v∗), w⟩ =
∫ T

0

q̂tdNt.

This, the convexity of J and the assumption that N is martingale imply

E(J(v∗)− J(v)) ≤ E⟨DJ(v∗), v∗ − v⟩ = 0.
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Therefore, v∗ is the optimal control (unique from the strict convexity of J). Itô’s

formula applied to Yt(qt)2 gives

d(Yt(qt)
2) = (qt)

2volt(Yt)2dt+ (qt)
2dMt + 2Ytqt(−Ytvoltqt)dt

= −volt(qtYt)2dt+ (qt)
2dMt = −(v∗t )

2

volt
dt+ (qt)

2dMt.

Therefore, again if the local martingale is a martingale,

Ytq
2
t = E

[∫ T

t

(v∗s)
2

vols
ds+ ξq2T

∣∣∣∣Ft

]
.

In other words Ytq2t = V (t, qt) is the value function of the control problem.

The last intermediate result we need is a version of Proposition 4.3 where ξ is inte-

grable:

Lemma 4. Suppose ξ is integrable. If (Y,M) is the solution of (3.18) with terminal

condition YT = ξ, then the optimal state process q∗ (resp. optimal control v∗) is given

by

q∗t = q0 −
∫ t

0

(Ysvols)q
∗
sds (resp. − Ysvolsq

∗
s).

Moreover Y0(q0)2 is the value function of the control problem.

Proof. By Lemma 3 we only have to prove that the local martingales are martingales.

Indeed since ξ is bounded, from Proposition 4.1, Y is bounded and for any ℓ > 1

E
(
[M ]

ℓ/2
T

)
< +∞.

Since

q∗t = q0 exp

(
−
∫ t

0

Ysvolsds
)

is also bounded,
∫
(q∗)2dM is a martingale and for w ∈ A0,∫ T

0

(q̂sq
∗
s)

2d[M ]s ≤ C sup
t∈[0,T ]

(q̂s)
2[M ]T ,

and thus

E
∫ T

0

(q̂sq
∗
s)d[M ]s ≤ C

[
E sup

t∈[0,T ]

(q̂s)
2ℓ

] 1
ℓ [

E [M ]
ℓ

ℓ−1

T

] ℓ−1
ℓ

< +∞.

In other words
∫
q̂q∗dM is also a martingale.
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We now give

Proof of Proposition 4.3. That N = 2Y minq∗, is a martingale on [0, T ) follows from

the product rule and the definitions of Y min and q∗. Since (Y min)− is bounded (by κ),

note that

exp

(
−
∫ t

0

Y min
s volsds

)
≤ exp

(∫ t

0

(Y min)−s volsds
)

≤ exp

(
κ

∫ t

0

volsds
)
.

This and Assumption 1 imply that q∗ is also bounded. Since (Y min)− is also bounded,

the martingale N is bounded from above. Therefore, the limit at time T of N exists

in R and

q∗t =
Nt

2Y min
t

tends to zero a.s. on the set S = {ξ = +∞}, since limt→T Y
min
t 1S(T ) = +∞.

Now we apply Itô’s formula on Y min(q∗)2: for any 0 ≤ t ≤ r < T

Y min
t (q∗t )

2 = Y min
r (q∗r)

2 −
∫ r

t

(q∗s)
2vols(Y min

s )2ds

−
∫ r

t

Y min
s 2(q∗s)(−Y min

s volsq∗s)ds−
∫ r

t

(q∗s)
2dMmin

s

= Y min
r (q∗r)

2 +

∫ r

t

(v∗s)
2

vols
ds−

∫ r

t

(q∗s)
2dMmin

s

with v∗s = −Y min
s q∗svols. Taking the conditional expectation we get

Y min
t (q∗t )

2 = E
[
Y min
r (q∗r)

2 +

∫ r

t

(v∗s)
2

vols
ds

∣∣∣∣Ft

]
.

By monotone convergence theorem

lim inf
r→T

E
[∫ r

t

(v∗s)
2

vols
ds

∣∣∣∣Ft

]
= E

[∫ T

t

(v∗s)
2

vols
ds

∣∣∣∣Ft

]
.

And by Fatou’s lemma ((Y min)− is bounded)

lim inf
r→T

E
[
Y min
r (q∗r)

2

∣∣∣∣Ft

]
≥ E

[
lim inf
r→T

(Y min
r (q∗r)

2)

∣∣∣∣Ft

]
.

Recall the definition of N = 2Y minq∗ and that the limit of N at time T exists in

R. Moreover limr→T q
∗
r = 0 = q∗T , when limr→T Y

min
r = +∞. Therefore, if

limr→T Y
min
r = +∞, then

lim inf
r→T

(Y min
r (q∗r)

2) = lim inf
r→T

(Nr) lim
r→T

q∗r = 0 = ξ(q∗T )
2
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(with the convention ∞ · 0 = 0). If lim infr→T Y
min
r < +∞, then

lim inf
r→T

(Y min
r (q∗r)

2) ≥ ξ(q∗T )
2.

In any case, we obtain

Y min
t (q∗t )

2 ≥ E
[∫ T

t

(v∗s)
2

vols
ds+ ξ(q∗T )

2

∣∣∣∣Ft

]
.

Thus Y minq2 dominates the value function V (·, q) of the constrained control problem.

Now if v is in A1, it is in A0. Therefore, the value function V dominates the value

function of the unconstrained control problem with terminal penalty ξ ∧ K, for any

K. Denote by Y K the solution of the BSDE (3.18) with bounded terminal value

Y K
T = ξ ∧ K. From Lemma (4), Y Kq2 is the value function of the unconstrained

control problem. We deduce that for any K

Y K
t q2 ≤ V (t, q) ≤ Y min

t q2.

Since Y K converges to Y min, we obtain that Y minq2 is the value function of the con-

strained control problem and that q∗ is the optimal state process.

Note that the proof implies that the value function is finite at time 0, that is

E
[∫ T

0

(v∗s)
2

vols
ds+ ξ(q∗T )

2

]
< +∞.

Using (4.11), we can also deduce that

E

[(∫ T

0

(v∗s)
2

vols
ds+ ξ(q∗T )

2

)ℓ
]
< +∞.

4.2 Reduction to time interval [0, τL ∧ L] for It = 1{t<τL}

For I = I(2) = 1{t≤τL}, by the definition (3.9) of AI,S we have qt = qτL , vt = 0 for

t > τL. Therefore, the stochastic optimal control problem (3.12) can also be expressed

as

min
q∈A0

E
[∫ τL∧T

0

ηt
v2t

Volt
dt+

(
−k
2
1{τL<T} +∞ · 1{τl>T}

)
q2T

]
. (4.15)

for I = 1{t≤τL}. The corresponding BSDE is again (3.18) but with terminal condition

YτL∧T = ξ(2) = −k
2
1{τL<T} +∞ · 1{τl>T}. (4.16)
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The next proposition states that the BSDE (3.18) has a minimal supersolution for

terminal conditions of the form

Yτ∧T = ξ = ζ1{τ≥T} + ψτ1{τ<T}, (4.17)

where τ is a stopping time and ζ , ψ are bounded from below by −K and ψ is also

bounded from above; (4.16) is a special case of (4.17). The reduction of the problem

to the time interval [0, T ∧ τL] is also useful for the PDE analysis of the problem

(section 5.2).

Proposition 4.4. Let ξ be as in (4.17). If

E
∫ T

0

vols(E[ζ|Fs])
2ds < +∞,

then the BSDE (3.18) with terminal condition (4.17) has a unique solution (Y, Z).

Without any integrability condition on ζ , but with (4.11), there exists a minimal su-

persolution (Y min, Zmin) for the BSDE.

Proof. For L sufficiently large:

ξ ∧ L = (ζ ∧ L)1τ≥T + ψτ1τ<T .

Again we construct a sequence of solutions (Y L, ZL), such that (Y L) is non-decreasing.

It only remains to control Y L, uniformly in L.

We define (Û , V̂ ) as the solution with terminal condition ψτ1τ<T − ζ−1τ≥T . Remark

that Û is bounded. Now for any t ≤ s ≤ T we have

Y L
t∧τ − Ût∧τ = Y L

s∧τ − Ûs∧τ −
∫ s∧τ

t∧τ
volρ

[
(Y L

ρ − Ûρ + Ûρ)
2 − Û2

ρ

]
dρ

−
∫ s∧τ

t∧τ
(ZL

ρ − V̂ρ)dρ.

Hence ΥL = Y L − Û solves the BSDE with terminal condition (ζ+ ∧ L)1τ≥T and

generator

g(s, y) = −vols
[
(y + Ûs)

2 − Û2
s

]
.

The map y 7→ g(s, y) is not monotone on R. But since the negative part of the data

is bounded, we can modify g on (−∞,−κ), such that g becomes monotone (see

Equation (4.8)). And again by the comparison principle, ΥL is non-negative.
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To control ΥL, we again follow the arguments of [17, Lemma 1]. Young’s inequality

implies that for any y ≥ 0 and c ≥ 0

(y + Ûs)
2 ≥ 2(y + Ûs)− c2.

Thus with c = 1/(vols(T − s))

g(s, y) ≤ − 2

T − s
y +

1

vols

(
1

T − s

)2

− 2

T − s
Ûs + vols(Ûs)

2.

Since ΥL
T∧τ = 0 if τ < T , explicit solution for linear BSDE and comparison principle

imply that for t < T

ΥL
τ∧t ≤

1

(T − τ ∧ t)2
E
[∫ T∧τ

t∧τ

1

vols
ds

∣∣∣∣Fτ∧t

]
+

1

(T − τ ∧ t)2
E
[∫ T∧τ

t∧τ
(T − s)[vols(T − s)(Ûs)

2 − 2Ûs]ds

∣∣∣∣Fτ∧t

]
.

This uniform bound on ΥL, thus on Y L, allows us to define the solution of the BSDE

with terminal time τ ∧ T and a singular terminal condition.

The next proposition connects the value function of (4.15) to the minimal supersolu-

tion whose existence was derived above. The proof is parallel to that of Proposition

4.3 and is omitted.

Proposition 4.5. Let (Y min,Mmin) be the minimal supersolution of (3.18) and (4.16).

For any t ∈ [0, T ),

q∗t = q0 exp

(
−
∫ t

0

Y min
s volsds

)
,

(equivalently, v∗t = −Y min
t voltq∗t ) is the optimal control for the stochastic optimal

control problem the control problem (4.15). Moreover the value function of the same

control problem at time t equals q2t Y
min
t .

4.3 Reduction to time interval [0, T − δ] for (I, S) = (I(3), S(3)) and (I, S) =

(I(4), S(4))

Both (I,S) = (I(3),S(3)) and (I,S) = (I(4),S(4)) consist of two phases: before and

after time T − δ, the reason for this was explained in the paragraph following (3.16).

Both of these choices of I imply that the trading process for I(3) and I(4) proceeds
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exactly as in I(2) after time T−δ: if the algorithm is in trading mode at time T−δ, the

position is fully closed only when the price remains above L throughout the interval

[T − δ, T ]; trading stops (and doesn’t restart) if the price hits L. This implies that the

stochastic optimal control problem (4.12) can be reduced to the following

min
q∈A0

E
[∫ T−δ

0

v2t
volt

dt+ ξq2T

]
; (4.18)

with terminal cost

ξ = I
(j)
T−δY

min,1
T−δ − (1− I(j))k/2. (4.19)

where Y min,1 is the minimal supersolution of the BSDE (3.18) and the terminal condi-

tion (3.13) with (I,S) = (1,S(1)). Corresponding to the reduction (4.18) the BSDE

(3.18) and the terminal condition (3.13) for the cases (I,S) = (I(j),S(j)) j ∈ {3, 4}
reduce to the same BSDE but solved over time interval [0, T − δ] with terminal con-

dition

YT−δ = ξ (4.20)

where ξ is as in (4.19).
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CHAPTER 5

PDE ANALYSIS

In this Chapter, we will assume the price process to be Markovian and the cost struc-

ture to be a function of the price process;under these assumptions, our goal is to relate

the value function of the stochastic optimal control problem (3.12) to a PDE version

of the BSDE for the four choices of I and S given in (3.14)-(3.17). For a direct PDE

representation (i.e., identifying the value function as a solution of a related PDE), the

process I and the measurable set S must also be functions of the price process. Of

the four possible choices for I and S given in (3.14)-(3.17), only (I(1),S(1)) is given

as a function of the price process. In section 5.1 we present the PDE representation

of this case. In section 5.2 we present a PDE representation of the value function cor-

responding to (I(2),S(2)) by reducing the stochastic optimal control problem (3.12)

to the time interval [0, τL∧T ]. A PDE treatment of the case (I(3),S(3)) is possible by

treating the time intervals [0, T−δ] and [T−δ, T ] separately. We do this in section 5.3.

The PDE representation of (I(4),S4) begins also with a reduction to the time interval

[0, T − δ]; we then write the value function as a limit of a sequence of value functions

Vn where n is the number of switches allowed between trading and no trading, each

Vn is written as the solution of the PDE; this is treated in section 5.4.

As noted in the introduction, we assume the price process S̄ to be driven by a stochas-

tic volatility model:

S̄t =

∫ t

0

√
νtdW

(1)
t ,

where νt is the stochastic volatility process:

dνt = κ(θ − νt)dt+ c
√
νtdW

(2)
t ; (5.1)

(W (1),W (2)) is a standard Brownian motion in R2 (independent components, W (i)
1 ,
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i = 1, 2, have unit variance). Let L denote the second-order differential operator

corresponding to these dynamics:

Lu =
1

2
ν∂2ssu+

1

2
νc2∂2ννu+ κ(θ − ν)∂νu+ cνρ∂2sνu. (5.2)

To get a PDE representation we take η and Vol processes to be functions of (S̄, ν).

With a slight abuse of notation, we assume the market volume process to be t 7→
Vol(t, S̄t, νt) where Vol : [0, T ]×D → R is a nonnegative valued function; similarly

the transaction cost process is t 7→ η(t, S̄t, νt) where η : [0, T ]×D → R+ is a strictly

positive valued function. In this section we will use the assumption (4.2) on Vol:

0 ≤ Vol(t, s, ν) ≤ vol, kvol < 2. (5.3)

5.1 PDE representation for I = 1, S = {S̄T > L}

In this section we assume I = 1, i.e., volt = Volt. Let us now consider terminal

values of the form

ξ = Φ(S̄T , νT ); (5.4)

where

Φ : D = (0,+∞)× R → (−K,∞] (5.5)

is a measurable function. By (3.13), the choice S = {S̄T > L} corresponds to the Φ

function

Φ = Φ(1)(s̄) = −k
2
1(−∞,L)(s̄) +∞ · 1[L,∞)(s̄).

Under the Markovian assumptions of the present section, and for I = 1 the BSDE

(3.18) and the terminal condition (5.4) corresponds to the following PDE: for any

(ν, s) ∈ D and t ∈ [0, T )

∂tu+ Lu− Voltu
2 = 0. (5.6)

with the terminal constraint

u(T, ·, ·) = Φ. (5.7)

Our goal, under the Markovian assumptions of the present section, is to prove that

the value function of the stochastic optimal control problem (3.12) with I = 1 and

S = S(1) can be expressed as a multiple of the unique solution of this PDE with
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terminal condition Φ = Φ(1). The terminal condition Φ(1) is singular, i.e., takes the

values ∞ with positive probability. As in Chapter 4, we will start with a general

terminal condition Φ that is more regular; the result for Φ(1) will be obtained as a

limiting case of regular terminal values. To express the value function as a solution to

the above PDE, we first extend the stochastic optimal control problem (3.12) to allow

it to start from any time point t. Accordingly, we define

S̄t,ν,s
r = s+

∫ r

t

√
νt,ν,sρ dW (1)

ρ ,

νt,ν,sr = ν +

∫ r

t

κ(θ − νt,ν,sρ )dρ+

∫ r

t

c

√
νt,ν,sρ dW (2)

ρ ,

ξ = Φ(S̄t,ν,s
T , νt,ν,sT ), volt,ν,sρ = vol(t, S̄t,ν,s

ρ , νt,ν,sρ ).

Under our assumptions on Vol and Φ, Proposition 4.2 implies that the following

BSDE has a unique minimal supersolution:

Y t,ν,s
r = ξ −

∫ T

r

volt,ν,sρ (Y t,ν,s
ρ )pds−

∫ T

r

Zt,ν,s
ρ dWρ;

set

uΦ(t, ν, s) := Y t,ν,s
t ; (5.8)

by Proposition 4.3, uΦ(t, ν, s)qp is the value function of the extended version of the

stochastic optimal control problem. With a slight abuse of language, we will refer to

uΦ simply as the value function of the extended stochastic optimal control problem

with terminal cost ΦqpT . Our goal in this section is to prove that uΦ is the minimal

supersolution (or the unique solution if Φ is finite) of the PDE (5.6) for any Φ of

the form (5.5) (and in particular for Φ = Φ(1)). Our first step in this direction is the

following:

Lemma 5. If Φ is continuous and with polynomial growth on D and if Vol is also

continuous on [0, T ]×D, then uΦ is a continuous function of (t, ν, s) ∈ D and is the

unique viscosity solution of the PDE (5.6) with polynomial growth on D.

Proof. See [19, Theorem 5.37] or [7, Theorems 3.4 and 3.5] (see also [22]). If Φ

is bounded, the solution Y t,ν,s and thus u are also bounded. Hence our generator is

Lipschitz continuous.

If Φ satisfies −k/2 ≤ Φ(s, ν) ≤ K(1 + |ν|ϱ + |s|ϱ), then ξ+ satisfies the condition

imposed in Proposition 4.1. Thus Y t,ν,s and thus u are bounded from below, and we
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can modify our generator such that it becomes monotone (see the proof of Proposition

4.1). Then existence and uniqueness follows from [19, Theorem 5.37] (this result is

stated for (ν, s) ∈ R2 in [19] but all arguments continue to work when (ν, s) ∈
D).

Now suppose that Φ is a continuous function from D to [−k/2,+∞]. We use the

proof of Proposition 4.2. For any L ≥ 0, we consider the bounded function ΦL =

Φ∧L. By the previous lemma there exists a unique bounded viscosity solution uΦ∧L

and by comparison principle,

uΦ(t, ν, s) = lim
L→+∞

uΦ∧L(t, ν, s)

is well-defined with a bounded negative part. Suppose now that for some ϱ ≥ 1 and

some ϵ > 0:

∀(t, ν, s) ∈ [T − ϵ, T ]×D,
1

vol(t, ν, s)
≤ C(1 + |ν|ϱ + |s|ϱ).

Then Condition (4.11) holds and we have on [T − ϵ, T ]×D,

uL(t, ν, s) ≤ 1

(T − t)2
E
[∫ T

t

1

volt,ν,su

du

]
≤ C

(T − t)
(1 + |ν|ϱ + |s|ϱ) (5.9)

On the rest of the interval [0, T ], the bound of the solution uL is controlled by the

previous estimate with t = T − ϵ. In other words we have a bound on uL which does

not depend on L. Hence u is lower semi-continuous on [0, T ] × D and finite (even

locally bounded) on [0, T )×D. These considerations give us the following result:

Lemma 6. Suppose Φ is a continuous function from D to [−k/2,+∞]; then uΦ is

the minimal viscosity solution of the PDE (5.6) on [0, T ) × D (among all viscosity

solutions with bounded negative part).

Proof. See [22, Theorem 1].

The concept of a viscosity solution allows even a discontinuous solution and doesn’t

address the issue of smoothness/regularity of the solution; therefore the previous re-

sult doesn’t say anything about the regularity of uΦ. The properties of the operator L
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(and smoothness assumptions on Vol and η) allows us to establish the smoothness of

uΦ, with a regularization bootstrap argument for parabolic PDE:

Lemma 7. Suppose that Vol and η are continuously differentiable with respect to all

of their arguments. Assume that Φn is a sequence of continuous functions, converging

to Φ, such that the related (viscosity) solutions un of the PDE (5.6) converge pointwise

to u. Then u belongs to C1,2([0, T )×D) and is a classical solution of the PDE (5.6).

Proof. Fix some ϵ > 0 and K a compact subset of D. First note that from (5.9), the

bound of un on [0, T − ϵ]×K does not depend on the terminal value, that is on n, but

only on ϵ and K.

Moreover the operator L can be written as follows:

Lu =
1

2
ν∂2ssu+

1

2
νc2∂2ννu+ κ(θ − ν)∂νu+ cνρ∂2sνu

=
1

2
div (a(ν, s)∇u) + b(ν, s)∇u,

with

∇u(ν, s) =

 ∂su

∂νu


and

a(ν, s) = ν

 1 cρ

cρ c2

 , b(ν, s) =

 1

2
+
cρ

2

κ(θ − ν) +
c2

2
+
cρ

2

 .

Our coefficients a and b are bounded on K, and a is uniformly elliptic on K. Since

vol is also continuously differentiable with respect to all of their arguments, then

we can easily check that all conditions called a)-c) of [18, Theorem VI.4.4] hold

(with m = 2). And from this theorem, if there exists a function ψ continuous on

[0, T − ϵ]×K and of class H1+β/2,2+β(]0, T − ϵ[×
◦
K) for some β > 01 then the PDE

∂tv + Lv − voltv2 = 0

with the boundary condition u = ψ, has a unique solution v with the same regularity

as ψ.

Now our viscosity solutions un are continuous and bounded on [0, T − ϵ] × K. Let

us consider a sequence of smooth mollifiers ζm and define ψm = un ⋆ ζm (where ⋆
1 For the spaces used in this argument see [22, 1]
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denotes the convolution operation). There exists a classical smooth solution un,m of

the PDE (5.6) with boundary condition ψm and pointwise un,m converges to un as m

goes to +∞.

Note that Conditions (1.2) and (7.1) of [18, Chapter 3] are satisfied. Suppose that v is

a smooth solution of the PDE (5.6) on [0, T )×D: for any (t, ν, s) ∈ [0, T )×D

∂tv + Lv − voltv2 = 0,

such that for any ϵ > 0 and any compact subsetK ofD , v is bounded on [0, T−ϵ]×K.

Thus v solves on [0, T − ϵ]×K the PDE

∂tv + Lv = voltv2 = f,

where f is a bounded function. We can apply [18, Theorem III.10.1]. Hence v is in

Hα,α/2([0, T − ϵ] ×K) (space of functions which α-Hölder continuous in the space

variable x and α/2-Hölder continuous in the times variable t). The value of α > 0

and the Hölder norm of v depend on ϵ, K and the bound on v. In other words α does

not depend on the terminal value. Therefore, un,m belongs to Hα,α/2([0, T − ϵ]×K)

and solves the PDE

∂tv + Lv = volt(un,m)2 = fn,m.

Assume that vol is also in Hα(D). Then from [18, Theorem IV.10.1], un,m is in

H2+α,1+α/2([0, T − ϵ′]×K ′) for any ϵ′ > ϵ and K ′ ⊂ K, and the norm depends only

on the Hα-norm of fn,m. Therefore, un, and thus u, belong to the same space2, that is

on any subset [0, T − ϵ]×K, un and u are in C1,2.

The proof also shows that the regularity of any solution does not depend on the ter-

minal value. In other words, far from t = T and ν = 0, the solutions are smooth and

classical solutions.

Let us summarize the foregoing results:

Proposition 5.1. Suppose that vol is continuously differentiable on [0, T ] × D and

that Φ is bounded from below by −k/2. If one of the next conditions holds:

• Φ is continuous and with polynomial growth on D,
2 The Arzela-Ascoli theorem implies that un,m (up to a subsequence) converges to some function ũn ∈

Hα,α/2([η, L− η]× [0, T − ϵ]). Here ũn = un since pointwise convergence has been proved before.
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• Φ is continuous from D to [−k/2,+∞] and for some ϱ ≥ 1 and ϵ > 0

∀(t, ν, s) ∈ [T − ϵ, T ]×D,
1

vol(t, ν, s)
≤ C(1 + |ν|ϱ + |s|ϱ),

then there exists a viscosity solution u of the PDE (5.6) with terminal value Φ(·, ·).
Moreover u is of class C1,2([0, T )×D) and is the minimal viscosity solution (among

all viscosity solutions with bounded negative part).

Let us next comment on the smoothness of u on the boundary ν = 0, called the

hyperbolic part of the boundary. Recall that our operator L is defined by (5.2) and

that the dynamics of ν is given by (5.1). The Feller condition ensuring a positive

process ν is 2κθ > c2. Under this condition, the Fichera function

b(ν) = κ(θ − ν)− 1

2
c2

is positive when ν goes to zero. Hence no boundary condition has to be supplied on

ν = 0 (see for example [9]).

In the Markovian setting, that is if vol is also a function of (t, ν, s), then the value

function VL is of the form

VL(t, q, ν, s) = q2uL(t, ν, s). (5.10)

The function uL is a solution of the PDE (5.6) with p = 2 and with the terminal

condition

uL(T, ν, ·) = ∞ · 1(L,∞)(·)−
k

2
1(−∞,L](·) = Φ(·).

Note that we cannot directly apply Proposition 5.1, since Φ is not continuous. Nonethe-

less

Lemma 8. There exists a minimal viscosity solution uL, which is of class C1,2 on

[0, T )×D.

Proof. Indeed let us define

ΦK(·) = K · 1(L,∞)(·)−
k

2
1(−∞,L](·)
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and

ΦK,n(·) = K · 1(L+1/n,∞)(·)−
k

2
1(−∞,L](·)

+

[
(K + k/2)

(·+ k/2)

K + k/2
− k/2

]
1(L,L+1/n](·).

ΦK,n is continuous and non-decreasing w.r.t. n and converges to ΦK . Therefore, the

related continuous viscosity solutions uK,n converge to uK . Arguing as in the proof

of Proposition 5.1, we obtain a uniform norm of uK in the space H1+α,2+α([0, T −
ϵ] × K), for any compact subset K of D. Then we pass on the limit on K to obtain

the desired result. Minimality can be obtained as for Proposition 5.1.

These give us the main result of this section:

Proposition 5.2. Suppose (5.3) holds. Then the value function uΦ
(1)

is the minimal

supersolution of the PDE (5.6) with boundary condition (5.7) with Φ = Φ(1) and the

optimal control is given by

q∗t = q0 exp

(
−
∫ t

0

uΦ
(1)

(S̄t, νt, t)volsds
)
. (5.11)

5.2 PDE representation for I = 1{t<τL} and S = {τL > T}

To get a PDE representation of the BSDE (3.18), (3.19) for It = I
(2)
t = 1{t≤τL};

we consider the problem in the interval [0, τL ∧ T ]. As discussed in section 4.2, the

corresponding BSDE is again (3.18) but with terminal condition (4.16). This reduced

formulation of the problem is indeed Markovian. The PDE is the same as before (5.6)

but solved over the domain D = (0,∞)× [L,∞) and with boundary conditions

u|[0,T ]×(0,∞)×{L} = −k/2 (5.12)

u|{T}×(0,∞)×[L,∞) = ∞. (5.13)

The value function u(2) of the extended version of the stochastic control problem is

again defined through (5.8) and we have:

Proposition 5.3. u(2) is the minimal viscosity solution of (5.6) and boundary condi-

tions (5.12).
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The proof proceeds parallel to the argument given in the previous section. We there-

fore provide an outline. We begin by considering the case where the boundary condi-

tion is given by

u|[0,T ]×(0,∞)×{L} = ψ (5.14)

u|{T}×(0,∞)×[L,∞) = Φ.

where ψ is a continuous and bounded function. If Φ is bounded and if the compatibil-

ity constraint Φ(ν, L) = ψ(T, ν) is verified, we can directly apply [19, Theorem 5.41]

to obtain the existence of a unique viscosity bounded and continuous solution u of the

PDE (5.6) with the boundary condition (5.14) The regularity inside the domain can

be obtained by the same arguments of Lemma 7. If the compatibility condition does

not hold, the solution still exists but is not continuous up to the boundary. Finally the

∞ terminal condition can be handled via approximation from below (as was done in

the previous section as well as in Chapter 4 in the treatment of the BSDE (3.18) and

the singular terminal condition (3.19).

5.3 PDE representation for It = 1{S̄t>L} and S = {τT−δ,L > T}

The case (I,S) = (I(3),S(3)) is Markovian in its driver term: I(3) = 1{S̄t>L} is a

function of the price process only but it is not Markovian in S(3) = {τT−δ,L > T}
because τT−δ,L, depends on the entire trajectory of the price process. But we saw in

Section 4.3 that this case can be decomposed into two components, before and after

time T − δ. We saw in the same section that after time T − δ this case either reduces

to (I,S) = (I(2),S(2)) = (1(0,τL](t), {τL > T}) for I(3)T−δ = 1 and to (I,S) = (0, ∅)
for I(3)T−δ = 0. We already derived the PDE representation of the value function for the

case (I(2),S(2)) in the previous section. (I,S) = (0, ∅) is trivially Markovian (the

BSDE simply reduces to dYt = 0 with terminal condition YT = −k/2. These PDE

representations imply that the terminal condition (4.19) equals

ξ = 1{S̄T−δ>L}u
Φ(1)

(S̄T−δ, νT−δ, T − δ)− 1{S̄T−δ≤L}
k

2
. (5.15)

With this, the problem (4.18) is completely Markovian, since both the terminal con-

dition and the cost functions are functions of the price process; the BSDE (3.18) and
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the boundary condition YT−δ = ξ reduces to the following PDE:

∂tu+ Lu− r(t, s, u) = 0, (5.16)

where

r(t, s, v) = v2volt1s>L.

The PDE is solved over over the domain [0, T − δ] × (0,+∞) × R with terminal

boundary condition

g(ν, s) = uΦ
(1)

(T − δ, ν, s)1s>L − k/21s≤L.

Note that the terminal boundary condition is bounded and continuous, i.e., no sin-

gularities. In this respect the analysis of this PDE is simpler to the case covered in

Section 5.1. The difficulty as compared to the analysis of Section 5.1 is that the r

function has a discontinuity at s = L. In what follows we focus on this aspect of the

PDE (5.16) and how it can be solved when r is discontinuous.

Lemma 9. There exists a function u(3) such that u(3) is bounded and continuous

on [0, T − δ] × (0,+∞) × R and is a solution of class C1,2 of the PDE (5.16) on

[0, T − δ)× (0,+∞)× (R \ {L}).

Proof. To circumvent the discontinuity of r, let us introduce

ϕϵ(s) =

(
1s>L+ϵ +

(s− L)

ϵ
1L<s≤L+ϵ

)
, rϵ(t, s, v) = v2voltϕ

ϵ(s).

This function is Lipschitz continuous w.r.t. s, satisfies rϵ ≤ r and converges increas-

ingly and pointwise to r when ϵ tends to zero.

From standard arguments (see [19, Theorem 5.37]), there exists a unique bounded

and continuous viscosity solution u3,ϵ of the PDE

∂tu+ Lu− rϵ(t, s, u) = 0

with the same terminal condition g. Note that the bounds on u3,ϵ do not depend on ϵ.

Thus arguing as in Lemma 7, we can prove that u3,ϵ is of class C1,2 on [0, T − δ) ×
(0,+∞)× (R \ {L}) with a norm independent of ϵ.

The comparison principle shows that u3,ϵ is a decreasing sequence and thus we can

define u(3) as the decreasing limit of u3,ϵ as ϵ tends to zero. We obtain immediately
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that u(3) is bounded and upper semi-continuous and is a viscosity subsolution of PDE

(5.16) (well-known result on stability for viscosity solutions [10]). Now an Ascoli’s

type argument shows that u(3) is in fact continuous on [0, T−δ]×(0,+∞)×(R\{L})
and thus by some regularization argument, it is a classical solution of the PDE (5.16)

on [0, T − δ)× (0,+∞)× (R \ {L}).

The only remaining point concerns the continuity of u(3) on the set {s = L}. Let

us define another approximating sequence wϵ defined as the solution of PDE (5.16)

where r is replaced by r̃ϵ:

ψϵ(s) =

(
1s>L +

(s− L)

ϵ
1L−ϵ<s≤L

)
, r̃ϵ(t, s, v) = v2voltψ

ϵ(s).

wϵ converges to w⋆, which is lower semi-continuous and is a viscosity supersolu-

tion of PDE (5.16). Moreover by comparison principle, wϵ ≤ w⋆ ≤ u(3) ≤ u3,ϵ.

Comparing sub and supersolutions imply that w⋆ = u(3) (standard result for viscosity

solutions). Let us prove this statement in our case. For any (ν, s) we have

u3,ϵ(t, ν, s)− wϵ(t, ν, s) = Y ϵ,t,ν,s
t − Ỹ ϵ,t,ν,s

t

= Y ϵ,t,ν,s
T−δ − Ỹ ϵ,t,ν,s

T−δ −
∫ T−δ

t

rϵ(u, S̄t,ν,s
u , Y ϵ,t,ν,s

u )− r̃ϵ(u, S̄t,ν,s
u , Ỹ ϵ,t,ν,s

u )du

−
∫ T−δ

t

(Zϵ,t,ν,s
u − Z̃ϵ,t,ν,s

u )dWu

= −
∫ T−δ

t

vol(u, νt,ν,su , S̄t,ν,s
u )ϕϵ(S̄t,ν,s

u )(Y ϵ,t,ν,s
u − Ỹ ϵ,t,ν,s

u )(Y ϵ,t,ν,s
u + Ỹ ϵ,t,ν,s

u )du

−
∫ T−δ

t

vol(u, νt,ν,su , S̄t,ν,s
u )(Ỹ ϵ,t,ν,s

u )2
(
ϕϵ(S̄t,ν,s

u )− ϕ̃ϵ(S̄t,ν,s
u )

)
du

−
∫ T−δ

t

(Zϵ,t,ν,s
u − Z̃ϵ,t,ν,s

u )dWu.

Using the boundedness of Y ϵ,·,·,· and Ỹ ϵ,·,·,· (uniformly w.r.t. ϵ) and standard stability

result for BSDE, we obtain the existence of a constant C independent of ϵ such that

|u3,ϵ(t, ν, s)− wϵ(t, ν, s)|2 ≤ CE
[∫ T−δ

t

(
ϕϵ(S̄t,ν,s

u )− ϕ̃ϵ(S̄t,ν,s
u )

)2
du

]
≤ 2C

∫ T−δ

t

P
(
L− ϵ ≤ S̄t,ν,s

u ≤ L+ ϵ
)
du

Fix some η > 0. The uniform ellipticity of L implies that there exists ϵ0 such that for

any ϵ < ϵ0,

P
(
L− ϵ ≤ S̄t,ν,s

u ≤ L+ ϵ
)
≤ η2/(2C).
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Hence letting ϵ go to zero, we get for any η > 0

|u(3)(t, ν, s)− w⋆(t, ν, s)| ≤ η.

Thus u(3) = w⋆ and thus u(3) is continuous.

We can now construct the minimal supersolution of the BSDE (3.18) and the bound-

ary condition (4.19) over the time interval [0, T−δ] using the function u(3) constructed

in the previous result by setting

Yt = u(3)(t, νt, S̄t), t ≤ T − δ (5.17)

Using Itô’s formula (allowed since S̄t ̸= L a.s.) we get for any 0 ≤ t ≤ T − δ

Yt = YT−δ −
∫ T

t

(Yr)
2volr1S̄r>Ldr −

∫ T

t

∇u(r, νr, S̄r)dWr

= uΦ
(1)

(T − δ, νT−δ, S̄T−δ)1S̄T−δ>L − k

2
1S̄T−δ≤L

−
∫ T

t

(Yr)
2ṽolrdr −

∫ T

t

∇u(r, νr, S̄r)dWr.

This and (5.15) imply that Y as defined in (5.17) is indeed the unique solution of

the BSDE (3.18) over the time interval [0, T − δ] with terminal condition (4.19). By

(4.18) the optimal control for this case is given by

qt = q0 exp

(
−
∫ t

0

u(3)(s, νs, S̄s)vol(s, νs, S̄s)ds

)
.

5.4 PDE representation for I(4) and S(4)

Let V (4) denote the value function of (4.12) for (I,S) = (I(4),S(4)). A natural

method to compute V (4) is to first put an upperbound n on the number of trading

intervals and then let n↗ ∞. The value function of the control problem with a limit

on the number of active intervals is:

V 4,n(q, ν, s) = inf
q∈A0

E
[∫ T

0

(q′s)
2

volns
ds− k

2
q2T

]
, (5.18)

where volnt = VoltI
4,n
t and

I4,nt =
n∑

k=−1

1[τ̄b,k≤t≤τL,k+1]
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Proposition 5.4.

V 4,n(q, ν, s) ↘ V 4(q, ν, s)

as n tends to ∞.

Proof. Note that I4,n ↗ I(4); this implies 1) V 4,n is decreasing and 2) V 4,n ≥ V (4).

Therefore we have

lim
n
V 4,n ≥ V (4).

Next we prove that we can replace the inequality ≥ above with =. For this choose

any q ∈ A0 define q̃ equal to q on the random interval [[0, τL,n+1]] and q′ equal to zero

after τL,n+1, we get:∫ T

0

(q′s)
2

vols
ds− k

2
q2T =

∫ τL,n+1

0

(q′s)
2

vols
ds+

∫ T

τL,n+1

(q′s)
2

vols
ds− k

2
q2T

=

∫ τL,n+1

0

(q̃′s)
2

volns
ds− k

2
q̃2T +

∫ T

τL,n+1

(q′s)
2

vols
ds− k

2
(q2T − q̃2T ).

Taking the expectation, we have

E
[∫ T

0

(q′s)
2

vols
ds− k

2
q2T

]
= E

[∫ τL,n+1

0

(q̃′s)
2

vols
ds− k

2
q̃2T

]
+ E

[∫ T

τL,n+1

(q′s)
2

vols
ds− k

2
(q2T − q̃2T )

]

≥ Vn(q, ν, s) + E

[∫ T

τL,n+1

(q′s)
2

vols
ds− k

2
(q2T − q̃2T )

]
.

That q̃′t = 0 for t > τL,n+1 implies q̃T = qτL,n+1
, therefore:

E
[
q2T − q̃2T

]
= E

[
(qT + q̃T )

(∫ T

ϖn

q′sds

)]

≤
[
E(qT + q̃T )

2
] 1

2

[
E
(∫ T

ϖn

q′sds

)2
] 1

2

≤ CT
1
2

[
E(qT + q̃T )

2
] 1

2

[
E

(∫ T

τL,n+1

(q′s)
2

vols
ds

)] 1
2

under the condition of Theorem 4.1 on vol. Therefore, we obtain for any strategy
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q ∈ A0 and any n:

E
[∫ T

0

(q′s)
2

vols
ds− k

2
q2T

]
≥ Vn(q, ν, s) + E

[∫ T

τL,n+1

(q′s)
2

vols
ds

]

− C
k

2

√
T
[
E (qT + q̃T )

2] 1
2

[
E

(∫ T

τL,n+1

(q′s)
2

vols
ds

)] 1
2

≥ V (q, ν, s) + E

[∫ T

τL,n+1

(q′s)
2

vols
ds

]

− C
k

2

√
T
[
E (qT + q̃T )

2] 1
2

[
E

(∫ T

τL,n+1

(q′s)
2

vols
ds

)] 1
2

Yt ≥ zt ≥ z0 and (4.13) imply that we can assume qT to be bounded. Letting n→ ∞
in the last display, bounded and dominated convergence theorems imply

E
[∫ T

0

(q′s)
2

vols
ds− k

2
q2T

]
≥ lim

n
Vn(q, ν, s) ≥ V (q, ν, s).

Since this holds for any q ∈ A0, we obtain the desired result.

Instead of deriving a PDE representation for V (4), which turns out to be difficult to do

directly, we will work with the sequence V n,4. To get such a representation we extend

the problem as in the previous sections: Now we consider the dynamical version of

this control problem. For any t ∈ [0, T ],

V 4,n(t, q, ν, s, χ) = inf
q∈A0

E
[∫ T

t

(q′s)
2

volns
ds− k

2
q2T

]
, (5.19)

the value function of the control problem starting at time t (instead of zero). Note the

additional parameter χ which can take the values {0, 1}; these are the values taken by

the process I , I = 1 represents trading is on and I = 0 represents trading is off.

As in Section 4.2, the problem (5.19) can be reduced to the time interval [0, τL] for

ξ = 1 and to the time interval [0, τb+L] for ξ = 0 by conditioning on the first transition

from one state to the other (from active to waiting or from waiting to active); doing

this gives the following two equations:

V 4,n(t, q, ν, s, 0) = E
[
V 4,n−1(τ̄b,0, q, ντ̄b,0 , L+ b, 1)1{τ̄b,0<T} −

k

2
q2T1{τ̄b,0≥T}

]
,

V 4,n(t, q, ν, s, 1) = inf
q∈A0

E
[∫ τL,0∧T

t

(q′s)
2

Vols
ds+ V 4,n−1(τL,0, qτL,0

, ντL,0
, L, 0)1{τL,0≤T}

]
.
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As in all of the previous cases the quadratic cost structure implies

V 4,n(t, q, ν, s, χ) = q2u4,n(t, ν, s, χ), (5.20)

Note that

u4,0(·, 0) = −k/23

(i.e., if we start with no trading It = 0 and there can be no further transitions to

trading the trader only pays the terminal cost −(k/2)q2. The above recursions and

the argument given in Section 5.3 imply the following sequence of PDE to compute

u4,n for n ≥ 1: for u4,n(·, 0):

∂tu
4,n(·, 0) + Lu4,n(·, 0) = 0, (5.21)

where L is defined by (5.2) and the above PDE is solved in the region [0, T − δ] ×
(0,∞)× (−∞, L+ b) with boundary conditions

u4,n(T − δ, ν, s, 0) = −k
2
, u4,n(t, ν, L+ b, 0) = u4,n(t, ν, L+ b, 1);

for u4,n(·, 1):
∂tu

4,n(·, 1) + Lu4,n(·, 1)− voltu2a,n(·, 1) = 0, (5.22)

solved in the region [0, T ]× (0,∞)× (L,∞) with boundary conditions

u4,n(T, ν, s, 1) = ∞,

u4,n(t, ν, L, 1) = u4,n−1(t, ν, L, 0), t < T − δ,

u4,n(t, ν, L, 1) = −k
2
, t ≥ T − δ.

The base case is n = 1, for which we have: u4,1(·, ·, ·, 1) = u(2) where u(2) is the

value function for the case I = 1{t≤τL} and S = {τL > T} derived in Section 5.2

(see Proposition 5.3). The arguments of Lemma 7 show that u4,1(·, ·, ·, 1) is of class

C1,2 on [0, T − δ]× (0,∞)× (L,∞) and continuous on [0, T − δ]× (0,∞)× [L,∞).

Once ua,1 is available, the computation follows the sequence:

u4,1(·, 1) → u4,1(·, 0) → u4,2(·, 1) → u4,2(·, 0) · · · (5.23)

Applying the same arguments recursively we see that u4,n satisfies the same regularity

properties for all n.
3 · stands for the parameters (t, nu, s).
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The representation (5.20) and Proposition 4.3 imply

Y min
t = u4,n(t, νt, S̄t, 1), t ≤ τL,0,

for I = I(4),n. This and (4.13) imply that the optimal control for this case is

q∗t = q0 exp

(
−
∫ t

0

un(s, νs, S̄s, 1)Vol(s, νs, S̄s)ds

)
, t ≤ τL,0.

For t > τL,0 we replace u4,n with u4,k where k is the remaining number of trading

intervals.
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CHAPTER 6

NUMERICAL EXAMPLES

In this Chapter we present some numerical examples that give an idea how the mod-

ified IS order behaves and performs for four possible choices of I and S given in

(3.14)-(3.17). In the previous chapter we saw how the computation of the value func-

tion and the optimal control for each of these choices could be reduced to the solution

of PDE. In this chapter we will be using these PDE based calculations. Recall A of

(1.1), which is the percentage deviation from the target price S0 of the average price

at which the position is (partially) closed in the time interval [0, T ]. In our numerical

examples we will focus on two aspects of the modified IS order: the optimal q∗ given

in (4.13), which is the actual trading algorithm and the distribution of the pair (qT , A)

which is the actual output of the trading algorithm. Compared to the original IS order,

the modified IS order considered in the present work has two additional parameters:

the process I that determines when trading takes place and the event S that deter-

mines when full liquidation takes place. We will show the behavior of q∗ and (q∗T , A)

and check the similarity and differences between all of the possible choices for I and

S given in (3.14)-(3.17).

To simplify the presentation and the calculations we take S̄ = σW , where W is a

standard Brownian motion and σ > 0 a constant and volt = V > 0; these are also the

choices made for these parameters in the standard Almgren-Chriss framework [14,

Chapter 3]. Under this assumption and the PDE analysis of the previous chapter the

optimal control q∗ given in (4.13) becomes

q∗t = q0 exp

(
−
∫ t

0

u(s,Ws)volsds
)
,

where u is the relevant value function. We will compute u and q∗ by discretizing and
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numerically solving the corresponding PDE, which becomes:

ut +
1

2
σ2uxx −

V

η
Itu

2 = 0, (6.1)

where the domain of the equation and its boundary conditions depend S and I may

depend on x.

One of our goals is to explore how q∗ and the distribution of (q∗T/q0, A) change with

the model parameters. To better understand this, we factor out as many parameters as

possible from the calculations. We begin with factoring out q0 from q∗:

qt =
q∗t
q0

= exp

(
−
∫ t

0

u(s,Ws)volsds
)
, (6.2)

this is the percentage of the initial position q0 remaining at time t. If we let

v(t, x) = u(t, σx)

(
V

η

)
(6.3)

the equation (6.1) reduces to

vt +
1

2
uxx − Itv

2 = 0. (6.4)

To see how A depends on model parameters let us reduce the expression (1.1) as

much as possible under the above assumptions:

A =
XT − (q0 − qT )S0

(q0 − qT )S0

By (3.2) (the expression for X ′
T ) and the assumption L(v) = ηv2:

=
−
∫ T

0
Stvtdt−

η

V

∫ T

0
Itv

2
t dt− S0(q0 − qT )

S0(q0 − qT )

By the definition (3.1) of St and the assumptions κ(v) = kv, S̄t = σWt:

=
k/2(qT − q0)

2 + σ
∫ T

0
Wtvtdt−

η

V

∫ T

0
v2t dt

(q0 − qT )S0

.

Simplifying the last expression we get

A = − kq0
2S0

(
1− qT

q0

)
+
σ

S0

1

(q0 − qT )

∫ T

0

Wtvtdt−
η

V S0

1

(q0 − qT )

∫ T

0

v2t dt. (6.5)

From this expression we see that A consists of three components: 1) one due to the

permanent price impact 2) one due to random fluctuations in price and 3) one due to
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transaction costs. All components consist of a coefficient term and a term depending

on q or its derivative v:

Permanent market impact term: A1 = 1− qT coefficient: − kq0
2S0

Random fluctuations term: A2 =
1

1− qT

∫ T

0

Wt(vt/q0)dt,coefficient:
σ

S0

Transaction costs term: A3 =
1

1− qT

∫ T

0

(vt/q0)
2dt. coefficient:

ηq0
V S0

The permanent impact term 1− qT is the portion of the initial position that is closed;

A depends linearly on this portion with coefficient
kq0
2S0

. Secondly note that if S0,

k and η are parameterized as multiples of σ then none of the coefficients appearing

in A depend on σ. We will comment on the behavior of the other two terms in the

following sections.

Before we move on let us note the following for comparison. The case I = 1 and

S = Ω corresponds to the standard Almgren Chriss liquidation algorithm with γ = 0

for which the optimal control is known to be

q∗,St = q0
T − t

T
, (6.6)

i.e., closing the position with uniform speed over the time interval [0, T ]. Then v∗,St /q0 =

1 and qT = 1. These reduce A3 to

AS
3 = 1 (6.7)

for the standard IS algorithm. Similarly, for A2 we have

AS
2 =

∫ T

0

Wtdt, (6.8)

which is a standard normal random variable by the iid increments of W .

6.1 I = 1 and S = {WT > L}

We continue or analysis with the choices I = I(1) = 1 and S = S(1) = {S̄T > L}
for I and S given in (3.14); these choices correspond to: no restriction on trading

and closing the position fully is required only when the terminal price S̄T is above a

given threshold L. Parallel to the change of variable in (6.3) we assume L is given as

45



a multiple of σ > 0; with this convention and the assumption S̄t = σWt, S becomes

S = {WT > L}. For It = 1, the PDE (6.4) is

vt +
1

2
uxx − v2 = 0; (6.9)

for S = {WT > L} the domain and the boundary conditions for this PDE are:

(t, x) ∈ [0, T ]× R and

v(T, x) = ∞ · 1[L,∞)(x)−
kV

2η
· 1(−∞,L)(x), (6.10)

x ∈ R, where we again use the scaling (6.3). Recall our convention that k and η are

specified as multiples of σ; it follows that PDE (6.9) and its boundary condition (6.10)

are independent of σ. The optimal control q∗ is computed from v via the formula (6.2):

q∗t = q0qt = q0 exp

(
−
∫ T

0

v(Wt, t)dt

)
(6.11)

we note that q∗ is independent of σ. We had already noted that the coefficients in

(6.3) are independent of σ. We have observed above that the same is true also for q∗,

therefore all of A1, A2 and A3 are independent of σ as well. The same analysis in fact

holds for all of I = I(i), S = S(i), i = 1, 2, 3, 4. treated in the following sections.

This gives us the following result:

Proposition 6.1. Suppose all of S0, k, η and L are parameterized as multiples of σ.

Then q∗ and S ′ do not depend on σ for I = I(i), S = S(i), i = 1, 2, 3, 4.

As already noted q∗ is computed via the solution of the PDE (6.9) which obviously

doesn’t have an explicit solution. To see how q∗ behaves we will solve (6.9) numer-

ically; for the parameter values we begin by considering those used in [14, Chapter

3]: T = 1, η = 0.1, V = 4× 106, S0 = 45, σ = 0.6. Recall that k parameter doesn’t

appear in the control problem corresponding to the original IS order, so no value for

k is specified in [14, Chapter 3] A k value of k = 2 × 10−7 accompanying these

parameter values is given in [14, Chapter 8] in the context of block trade pricing. The

assumption (1) in the present case reduces to

kV/2η < 1;

for the above parameter values we have kV/2η = 4, therefore the above parameter

values do not satisfy Assumption 1 To continue with our numerical example, we take
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Figure 6.1: Graph of u for I = 1 and S = {WT < L}

η = 0.3, V = 4 × 106 and k = 0.5 × 10−7 for these values we havekV/η = 2/3

which satisfies (1). In addition to these we need to provide a value for theL parameter,

which we choose as L = 1.4 ∗ σ. Several q∗ for these parameter values are shown in

Figure 6.3.

Unless otherwise noted, these are the main parameter values used through all of the

numerical examples.

The graph of v for the parameter values above are shown in Figures 6.1 and 6.2.

We note that for x > L and x away from L, u(x, ·) behaves like t 7→ yt and for x < L

and x away from L, u(x, ·) behaves like t 7→ zt. The negative boundary condition for

u means that u(x, t) takes negative values for x < L; (3.2) implies that whenever u is

negative, the corresponding q∗ is actually buying the underlying stock.
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Figure 6.2: Graph of u(x, ·) for x ∈ {0, L, 1.2L, 5L}
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Figure 6.3: Sample paths of S̄ and q∗ for I = 1 and S = {S̄T > L}; the dashed line
shows L = −1.4σ

Figure 6.3 shows four sample paths of S̄ and q∗. In the first two examples S̄ stays

above L at all times and the corresponding q∗ goes parallel to q∗,S of (6.6), the op-

timal liquidation path for the standard IS order. In the third example S̄ is below L
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approximately in the time interval [0.6, 0.8] when trading slows down, it goes above

L around 0.8 and closes above L; correspondingly q∗ speeds up trading after 0.8 and

closes the position at terminal time. In the fourth example, S̄ hits L around the mid-

dle of the trading interval and remains below L till the end; correspondingly q∗ slows

down and stops trading and the position is only partially closed at terminal time. In

the last example q∗ is in fact slightly increasing near t = T = 1 (i.e., q∗ buying the

underlying asset) ; this is due to the negative value that the terminal value takes for

x < L. These examples suggest that q∗ behaves approximately as follows: when S̄ is

above L, it behaves like the standard IS algorithm q∗,S , linearly closing the remaning

position; when S̄ goes below L, q∗ slows down/ stops trading. The negative boundary

condition implies that the algorithm can in fact execute buy trades especially when

the price is below L near terminal time T .

6.1.1 Distribution of (qT , A)

For S = {S̄T > L}, the position fully closes when the closing price is above the

lowerbound L, therefore, the probability that the algorithm closes the position at ter-

minal time is:

P(qT = 0) = P(WT > L) = 1−N0,1(L/
√
T )

where N0,1 denotes the standard normal distribution.

A random variable E is said to be exponentially distributed with rate λ if P(E >

x)) = e−λx, i.e.,

− log(P(E > x)) = λx; (6.12)

a well known fact is

E[E] =
1

λ
. (6.13)

The distribution of qT over (0,∞) depends on u via (6.11) and it obviously doesn’t
have an explicit formula. Figure 6.4 shows graphs of x 7→ P(qT > x|qT > 0),
x 7→ − log(P(qT > x|qT > 0)) and x 7→ x

E[qT |q∗T > 0]
(all estimated via simulating

104 sample paths).
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Figure 6.4: On the left: graph of px = P(qT > x|q∗T > 0), on the right: graphs of
− log(px) and

xq0
mT

, mT = E[qT |q∗T > 0]

These graphs, (6.12) and (6.13) suggest that the exponential distribution provides a

rough approximation for the conditional distribution of qT given the event {q∗T > 0}.
An exponentially distributed random variable satisfies E[E] =

1

λ
and var(E) =

1

λ2
.

In the case of qT conditioned over {q∗T > 0} we have the Monte Carlo estimates

E[qT |qT > 0] = 0.1218 and var(qT |qT > 0)1/2 = 0.1387 for the parameter values

specified above.

q∗ depends on L via the domain of the PDE (6.9) and on kV/2η via the terminal

condition (6.10). Figure 6.5 shows how E[qT |qT > 0] and var(qT |qT > 0)1/2 vary

with these parameters.
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Figure 6.5: Graph of mT = E[qT |qT > 0] and
√
varT = var(qT |qT > 0)1/2 as a

function of L

We have already noted that the permanent impact factor term A1 of (6.5) is fully

determined by qT . We now consider the joint distribution of (A2, qT ). This distribu-

tion consists of two parts: the distribution ofA2 conditioned on qT = 0 (i.e., the cases

where the algorithm closes the initial position q0 fully) and the conditional distribution

of A2 given qT for qT > 0 (the cases where the algorithm closes the initial position q0
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partially). If q∗ were a deterministic function (as in the case of the standard IS order),

A2 would be normally distributed by the normal and independent increments of W .

The q-q plot of the conditional distribution of A2 given q∗T = 0 and q∗T = x for several

values of x is shown Figure 6.6; (for x > 0 we approximate P (A2 ∈ A|q∗T/q0 = x)

with P (A2 ∈ A|qT ∈ (x, x + δ) where δ > 0 is small and we estimate the latter

by simulating 2 × 105 sample paths of W and q∗). These plots suggest that the con-

ditional distribution A2 given qT is approximately normal even though q∗ is random

and a function of W .

Figure 6.6: q-q plots of the conditional distribution of A2 given qT = x for x = 0,
x = 0.06 + j0.07, j ∈ {1, 2, 3, 4}

Figure 6.7 shows the graphs of E[A2|qT = x] and
√
var(A2|qT = x) (using the same

approximation as above and then simulation).
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Figure 6.7: Graphs of E[A2|qT = x] and
√
var(A2|qT = x) for x = 0 and x =

0.06 + j0.07, j ∈ {1, · · · , 8}

For different L values (−σ,−1.4σ) there is almost no difference for the fully liqui-
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dated cases P (A2 ≤ x)|qT = 0). But when we checked the cases that portfolio is not

liquidated fully P (A2 ≤ x)|qT > 0) there is a slight difference.
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Figure 6.9: Graphs of P (A2 ≤ x)|qT = 0) and P (A2 ≤ x)|qT > 0) for kV/η = 4/3

and kV/η = 4/30

For different kV/η values (
4

3
,
4

30
) there is no difference for the fully liquidated cases

P (A2 ≤ x)|qT = 0). As well as for the cases that portfolio is not liquidated fully

P (A2 ≤ x)|qT > 0).

We now consider the joint distribution of (A3, qT ). The left graph in Figure 6.10

shows the conditional distribution ofA3 given qT = 0; we see that most of the mass of

this distribution is concentrated around a point near 1. This is similar to the behavior

A3 = 1 for the standard IS order (See (6.7)). The right graph of Figure 6.10 shows

how the conditional mean and variance of A3 changes with qT ; as opposed to A2

this graph suggests that these conditional mean and variance are relatively flat as a

function of qT .
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Figure 6.11: Graphs of P (A3 ≤ x)|qT = 0) and P (A3 ≤ x)|qT > 0) for L = −σ
and L = −1.4σ

For different L values (−σ,−1.4σ) there is almost no difference for the fully liqui-
dated cases P (A3 ≤ x)|qT = 0). But when we checked the cases that portfolio is
not liquidated fully P (A3 ≤ x)|qT > 0) there is a slight difference. The behavior
of probability is changed for fully liquidated cases qT = 0 around 90% take same
value. For the not fully liquidated cases qT > 0 the values of A3 distributed between
0.6− 1.4.
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Figure 6.13: graph of u(2) for I = 1{t<τL} and S = {τL > T}

We note that decreasing kV/η shifts both distributions to the left.

6.2 I = 1{t<τL} and S = {τL > T}

In this model the full liquidation take place only when S = {τL > T} and trading

takes place until τL∧T. The value function and the optimal control is computed as in

the previous section using the PDE represenation given in Section 5.2.

As before we begin by a graph of the solution of the PDE in Figures 6.13 and 6.14.
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Figure 6.14: Graph of u(2)(x, ·) for x ∈ {0, L, 1.2L, 5L}
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Figure 6.15: Sample paths of S and q∗ for I = 1{t<τL} and S = {τL > T}; the dashed
line shows L = −1.4σ where σ = 1

Qualitatively these figures look similar to the PDE solutions given in the previous

section.
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Figure 6.15 shows four sample paths of S̄ and q∗. Qualitatively these sample paths are

similar to those given in the previous section. The most important difference is when

price hits L in these sample paths trading stops completely (rather than slowing down)

and never restarts. This behavior is explicitly encoded in the choice It = 1{t≤τL}.

6.2.1 Distribution of (qT , A)

To estimate the density of qT given q∗T > 0 we use the following kernel smoothing:

f̂(x) =
1

δ

n∑
i=1

n(0, 1,
x− qiT
δ

)
1

n
, (6.14)

where qiT are the simulated independent samples of qT and n(0, 1, ·) is the standard

normal density.
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Figure 6.16: Density of (q | q∗T > 0)

The graph of f̂ is presented in Figure 6.16; recall that in the previous section this

conditional distribution looked approximately exponential. This graph suggests that

this is not the case for I = 1{t≤τL}.

The remaining figure in the present section reproduce the figures in the previous sec-

tion given for the case I = 1 and S = {WT > L} which show the conditional

distribution of A2 and A3 given qT . Qualitatively the behavior of these distributions
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are similar to their counterparts in the previous section therefore, we only comment

on those graphs where the behavior is different compared to the results in the previous

section.
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Figure 6.17: q-q plots of the conditional distribution of A2 given qT = 0 for x =

0,x = 0.06 + j0.07,j ∈ {1, 2, 3, 4}
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Figure 6.18: Graphs of E[A2 | qT = x],
√
var(A2 | qT = x) for x = 0,x = 0.06 +

j0.07,j ∈ {1, . . . , 8}
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Figure 6.19: Graphs of P (A2 ≤ x | qT = 0) and P (A2 ≤ x | qT > 0) for L = −σ
and L = −1.4σ
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Figure 6.20: Graphs of P (A2 ≤ x | qT = 0) and P (A2 ≤ x | qT > 0) for κV/η =

4/3 and κV/η = 4/30
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Figure 6.21: Graphs of E[A3 | qT ],
√
var(A3 | qT = x) for x = 0,x = 0.06 +

j0.07,j ∈ {1, . . . , 8}
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A notable difference as compared to Figure 6.10 is that the expectation E[A3|qT = x]

here is significantly more decreasing in x than in Figure 6.10.
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Figure 6.22: Graphs of P (A3 ≤ x | qT = 0) and P (A3 ≤ x | qT > 0) for L = −σ
and L = −1.4σ
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Figure 6.23: Graphs of P (A3 ≤ x | qT = 0) and P (A3 ≤ x | qT > 0) for κV/η =

4/3 and κV/η = 4/30

6.3 It = 1{Wt>L} and S = {τT−δ,L > T}

In this model trading pauses when the price S̄ is below the lower bound L and Full

liquidation take place if the price process S̄ remains above L in the time interval

[T − δ, T ]. The value function and the optimal control is computed as in the previous

sections using the PDE represenation given in Section 5.3. The results in this section

are qualitatively similar to those given in the previous section; therefore we will only

comment on the differences from the observations made in the previous section.

The graph of v for the present case is shown Figures 6.24 and 6.25.
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Figure 6.24: graph of u for It = 1{Wt>L} and S = {τT−δ,L > T}
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Figure 6.25: Graph of u(x, ·) for x ∈ {0, L, 1.2L, 5L}
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Figure 6.26: Sample paths of S and q∗ for b = 0; the dashed line shows L = −1.4σ

where σ = 1

The only qualitative difference in these figures as compared to Figure 6.14 is that

v(·, x) is flat on the interval [T − δ, T ] for x < L; this arises from the fact that trading

stops if the price is below L after time T − δ.

Figure 6.26 shows four sample paths of S̄ and q∗. As already noted these sample

paths looks similar to those given in Figure 6.15 except for the following important

difference: in the current setup the trading continues when S̄ is above L.

6.3.1 Distribution of (qT , A)

Figure 6.27 shows the approximate density of q | q∗T > 0 computed with the kernel

density estimation of the previous section. All of the quantities presented in Figures

6.27-6.36 show similar behavior to their counterparts whose graphs were presented

in the previous section; and the comments made in the previous section mostly apply
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in this section as well:
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Figure 6.27: Density of (q | q∗T > 0)
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Figure 6.28: q-q plots of the conditional distribution of A2 given qT = 0 for x =

0,x = 0.06 + j0.07,j ∈ {1, 2, 3, 4}
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Figure 6.29: Graphs of E[A2 | qT ],
√
var(A2 | qT = x) for x = 0,x = 0.06 +

j0.07,j ∈ {1, . . . , 8}
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Figure 6.30: Graphs of P (A2 ≤ x | qT = 0) and P (A2 ≤ x | qT > 0) for L = −σ
and L = −1.4σ
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Figure 6.31: Graphs of P (A2 ≤ x | qT = 0) and P (A2 ≤ x | qT > 0) for κV/η =

4/3 and κV/η = 4/30
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Figure 6.32: Graphs of E[A3 | qT ],
√
var(A3 | qT = x) for x = 0,x = 0.06 +

j0.07,j ∈ {1, . . . , 8}
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Figure 6.33: Graphs of P (A3 ≤ x | qT = 0) and P (A3 ≤ x | qT > 0) for L = −σ
and L = −1.4σ
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Figure 6.34: Graphs of P (A3 ≤ x | qT = 0) and P (A3 ≤ x | qT > 0) for κV/η =

4/3 and κV/η = 4/30
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A novel feature of the algorithm in the present section is the δ parameter; recall that

in the present case we have S = {τT−δ,L > T}, i.e., the position is required to be

fully closed if the price process remains above L in the time interval [T − δ, T ]. We

next look at how δ influences the distributions of A2 and A3 in the following figures:
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Figure 6.35: Graphs of P (A2 ≤ x | qT = 0) and P (A2 ≤ x | qT > 0) for δ = 0.1,
δ = 0.2, δ = 0.3, δ = 0.8
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Figure 6.36: Graphs of P (A3 ≤ x | qT = 0) and P (A3 ≤ x | qT > 0) for δ = 0.1,
δ = 0.2, δ = 0.3, δ = 0.8

For both A2 and A3 the impact of δ seems to be the following: for qT = 0 δ has a

limited impact; for qT > 0 the distribution shifts to the left with increasing δ.

6.4 I(4) and S(4)

Finally in this section we consider the case I = I(4) and S = S(4), which corresponds

to the following trading scheme: trading stops when S̄ hits L and restarts when it
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goes back up to L+b. The full liquidation condition is almost the same as in previous

section: the position is fully closed if I(4)T−δ = 1 (the algorithm must be in trading

mode at time T − δ) and S̄ remains above L in the time interval [T, T − δ]. The value

function and the optimal control is computed as in the previous sections using the

PDE represenation given in Section 5.4. The results in this section are qualitatively

similar to those given in the previous section; therefore we will only comment on the

differences from the observations made in the previous section.

We again begin with a graph of the value function; which is qualitatively similar to
the ones in the previous sections:

Figure 6.37: graph of v for I(4) and S(4)
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Figure 6.38: Graph of u(x, ·) for x ∈ {0, L, 1.2L, 5L}
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Figure 6.39: Sample paths of S and q∗ for b = 0; the dashed line shows L = −1.4σ

where σ = 1

Figure 6.39 shows four sample paths of S̄ and q∗. These are qualitatively very similar

to those given in the previous section; the main difference is that once trading stops

when S̄ hits L it doesn’t restart until S̄ hits L + b; this is again an explicit feature of

the choice I = I(4).

6.4.1 Distribution of (qT , A)

Figure 6.40 shows the approximate density of q | q∗T > 0 computed with the kernel

density estimation of the previus section. All of the quantities presented in Figures

6.40-6.49 show similar behavior to their counterparts whose graphs were presented

in the previous section; and the comments made in the previous section mostly apply

in this section as well:
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Figure 6.40: Density of (q | q∗T > 0)
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Figure 6.41: q-q plots of the conditional distribution of A2 given qT = 0 for x =

0,x = 0.06 + j0.07,j ∈ {1, 2, 3, 4}
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Figure 6.42: Graphs of E[A2 | qT ],
√
var(A2 | qT = x) for x = 0,x = 0.06 +

j0.07,j ∈ {1, . . . , 8}
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Figure 6.43: Graphs of P (A2 ≤ x | qT = 0) and P (A2 ≤ x | qT > 0) for L = −σ
and L = −1.4σ
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Figure 6.44: Graphs of P (A2 ≤ x | qT = 0) and P (A2 ≤ x | qT > 0) for κV/η =

4/3 and κV/η = 4/30
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Figure 6.45: Graphs of E[A3 | qT ],
√
var(A3 | qT = x) for x = 0,x = 0.06 +

j0.07,j ∈ {1, . . . , 8}
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Figure 6.46: Graphs of P (A3 ≤ x | qT = 0) and P (A3 ≤ x | qT > 0) for L = −σ
and L = −1.4σ
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Figure 6.47: Graphs of P (A3 ≤ x | qT = 0) and P (A3 ≤ x | qT > 0) for κV/η =

4/3 and κV/η = 4/30

70



The novel parameter of the algorithm of the present section is b > 0 which is the

buffer put on the price process before trading restarts; in the following figures we

examine how this parameter impacts the distributions of A2 and A3:
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Figure 6.48: Graphs of P (A2 ≤ x | qT = 0) and P (A2 ≤ x | qT > 0) for b = σ ∗0.1,
b = σ ∗ 0.2, b = σ ∗ 0.3 and b = σ ∗ 0.8
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Figure 6.49: Graphs of P (A3 ≤ x | qT = 0) and P (A3 ≤ x | qT > 0) for b = σ ∗0.1,
b = σ ∗ 0.2, b = σ ∗ 0.3 and b = σ ∗ 0.8

We note that b has limited impact on the distribution of A2 and A3 when the position

is liquidated fully (i.e., the case qT = 0). When conditioned on qT > 0, we see that

the distribution of A2 shifts to the right and that of A3 shifts to the left with increasing

b.

71



72



CHAPTER 7

CONCLUSION

In this thesis we modified the standard IS to allow its behavior to depend more on the

behavior of the price of the asset being traded. To achieve this we added two more

parameters to the stochastic optimal control formulation of the model: a measurable

set S and a process I taking values {0, 1}. The set S determines when full liquida-

tion is required and I determines when trading takes place. We give four examples(

(3.14),(3.15),(3.16) and (3.17)) for S and I in which are all based on a lower bound

L specified for the price process. We provided a solution to the modified stochastic

optimal control problem via its BSDE representation. For the case when the price

process is Markovian we derived representations of the value functions for (I(i),S(i)

where i = 1, 2, 3, 4) as the solution of related PDE.

To measure the financial performance of the modified IS order we defineA 6.5, which

is the percentage deviation from the target price S0 of the average price at which the

position is (partially) closed in the time interval [0, T ]. We note that A can be divided

into three pieces: one corresponding to permanent price impact (A1), one correspond-

ing to random fluctuations in the price (A2) and one corresponding to transaction/bid-

ask spread costs (A3). A1 turns out to be a linear function of 1− qT/q0; therefore, its

distribution is fully determined by that of qT/q0. We provide a numerical study of the

distribution of qT/q0 and the conditional distributions ofA2 andA3 given qT/q0 under

the assumption that S̄t = σWt for the all four cases indicating how these distributions

change with model parameters.

An important assumption in the present work is the monetary representation of the

terminal position qT , for which we used qTST . Many other choices are obviously
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possible depending on how the events taking place after time T are modelled. These

choices will give rise to different stochastic optimal control problems probably re-

quiring new tools and ideas. This is a natural direction for future research. Another

natural direction is to try to compute the performance of the algorithms of the present

work (especially the joint distribution of (qT , A) on real trading data.
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