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ABSTRACT

AUTOMATED VIDEO GAME TESTING USING
REINFORCEMENT LEARNING AGENTS

Arıyürek, Sinan

Ph.D., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Elif Sürer

Co-Supervisor: Assoc. Prof. Dr. Aysu Betin Can

September 2022, 91 pages

In this thesis, several methodologies are introduced to automate and improve video game playtesting.
These methods are based on Reinforcement Learning (RL) agents. First, synthetic and human-like
tester agents are proposed to automate video game testing. The synthetic agent uses test goals gener-
ated from game scenarios, and the human-like agent uses test goals extracted from tester trajectories.
Tester agents are derived from Sarsa and Monte Carlo Tree Search (MCTS) but focus on finding
defects, while traditional game-playing agents focus on maximizing game scores. Second, various
MCTS modifications are proposed to enhance the bug-finding capabilities of MCTS. Third, to im-
prove playtesting developing persona is introduced, enabling development in an agent’s personality
and more robust playtesting. RL algorithms aim to find paths that maximize the total accumulated
reward. However, discovering various alternative paths that achieve the same objective is equally es-
sential for playtesting. Consequently, Alternative Path Finder (APF) is introduced to let RL agents
discover these alternative paths. We experiment with our proposed methodologies using the General
Video Game Artificial Intelligence (GVG-AI) and VizDoom frameworks. The experiments reveal that
human-like and synthetic agents compete with human testers’ bug-finding performances. Furthermore,
the experiments indicate that MCTS modifications improve bug-finding performance. Moreover, the
experiments show that developing personas provide better insight into the game and how different play-
ers would play. Lastly, the alternative paths found by APF are presented and reasoned why traditional
RL agents cannot discover those paths.
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ÖZ

PEKİŞTİRMELİ ÖĞRENME YÖNTEMLERİ KULLANARAK OYUNLARIN OTOMATİK
TEST EDİLMESİ

Arıyürek, Sinan

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Elif Sürer

Ortak Tez Yöneticisi: Doç. Dr. Aysu Betin Can

Eylül 2022, 91 sayfa

Bu tez çalışmasında bilgisayar oyunu test yöntemlerini otomatize etmek ve geliştirmek için birçok
metodoloji tanıtılmaktadır. Bu yöntemler, Pekiştirmeli Öğrenme (RL) ajanlarına dayanmaktadır. Ön-
celikle, video oyunu testini otomatize etmek için sentetik ve insan-benzeri test ajanları önerilmiştir.
Sentetik ajan, oyun senaryolarından oluşturulan test hedeflerini kullanmaktadır. İnsan-benzeri ajan
ise test edenin izlediği yollardan çıkarılan test hedeflerini kullanmaktadır. Bu test ajanları, Sarsa ve
Monte Carlo Ağaç Araması (MCTS) kullanılarak türetilmekledir. Geleneksel oyun oynama ajanları
oyun skorlarını maksimize etmeye odaklanmışken, test ajanlarının odağı hataları bulmaya yöneliktir.
İkinci olarak, MCTS’nin hata bulma yetisini geliştirmek için çeşitli MCTS modifikasyonları öneril-
miştir. Üçüncü olarak, oyun testini iyileştirmek için gelişen karakter tasarımı sunulmuştur. Gelişen
karakter, bir ajanın kişiliğini geliştirmeye olanak sağlar ve böylece daha doğru oyun testleri elde edilir.
RL algoritmalarının amacı toplam ödülü maksimize edecek yolları bulmaktır. Bununla birlikte aynı
hedefe ulaşan alternatif yolları keşfetmek de oyun testi için önemlidir. Bu nedenle, RL ajanlarının bu
alternatif yolları da keşfedebilmesi için, Alternatif Yol Bulucu (APF) tanıtılmıştır. Önerdiğimiz meto-
dolojileri Genel Video Oyun Yapay Zeka (GVG-AI) ve VizDoom ortamlarını kullanarak test etmek-
teyiz. Deneyler, insan-benzeri ve sentetik ajanların, gerçek insanların yaptıkları testlerdeki hata bulma
performanslarıyla rekabet ettiğini ortaya koymaktadır. Ayrıca deneyler, hata bulma performansının
MCTS modifikasyonları sayesinde iyileştirildiğini göstermektedir. Dahası, deneyler gelişen karakterin
oyuna ve farklı oyuncuların oyunu nasıl oynayacağına dair daha iyi bir fikir sağladığını göstermektedir.
Son olarak, APF tarafından bulunan alternatif yollar sunulmuş ve geleneksel RL ajanlarının neden bu
yolları bulamadığı açıklanmıştır.
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CHAPTER 1

INTRODUCTION

The video game industry is a growing multi-billion industry [50] where developing a successful game
is a challenging task. The challenge arises because video game development combines multiple
crafts[53], gamers are difficult to please [16] and span several platforms. Though the success of a
video game can be attributed to numerous aspects, the game developers make every effort to pro-
duce the perfect game as possible. Therefore, game development companies conduct alpha and beta
playtesting sessions to understand how gamers perceive the game. These playtesting sessions are in-
dispensable as playtesters provide essential information such as the strong and weak points of the game
and the bugs they have found. While human playtesting is beneficial for games, it introduces additional
costs and latency to the game development process. Additionally, the requirements of the game change
frequently [80], which requires repeating the tests while conducting new tests.

We can playtest a video game to find bugs. In this thesis, we define bugs as the discrepancy between
game design attributes and game implementation. Researchers proposed several methodologies to
automate game testing such as record/replay [64], handcrafted scenarios [19], UML and state machines
[40], Petri nets [34], and RL [71, 51]. However, when the game environment changes, test sequences
and scenarios such as [64, 19] become obsolete, and a manual tester effort is required to create a new
test sequence. Unlike these manual techniques, UML-based techniques automate the test generation
process. However, generating sequences from UML runs into state explosion for larger games; without
a gameplay AI, it relies on the generated states to play the game. Hence, researchers employed AI to
test games. A Petri net that contains high-level actions of a game is used to generate test sequences
using an AI [34]. RL is used with short and long-term memory to test Point-and-Click games [71].
Furthermore, RL is used to test the crafting system in Minecraft [51]. More generalized approaches to
test video games are used to find bugs in two GVG-AI games [52]. As the authors [52] have stated,
since the agent was a gameplaying agent, the agent was not required to find all the bugs. Lastly, a team
of agents with different purposes is introduced to test games [32]. Nevertheless, these studies have at
least one of the following drawbacks no controlled testing environment, no automated oracle, and no
RL agent.

In our first paper [5], we showed how we could generate human-like and synthetic test goals and then
use RL agents to realize these goals. Test goals are objectives that agents want to validate in a game.
When we exercised these agents, they generated trajectories that are checked by an automated oracle to
detect bugs. We used RL agents, as automated game testing frameworks fail to perform without an RL
agent when the game under test is updated. Furthermore, in the last decade, researchers have shown
that RL agents can surpass humans in arcade games [55], Go [85], StarCraft II [96] and Dota 2 [60].
However, these RL agents were game-playing agents, and the requirements for game testing agents
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are different. For example, a game testing agent will also test the failure scenarios to verify whether
failing is possible. Nonetheless, this scenario would be a training failure for a game-playing agent.
Consequently, we proposed two ways to encapsulate these testing goals, human-like and synthetic,
which an RL agent can realize as test scenarios.

Human-like agents tend to perform actions similar to humans. Therefore, these agents are used to
create believable opponents or to playtest a game like a human. Researchers used human-like agents
to create believable opponents and generate human-like playtest data in games such as Unreal Tour-
nament [92], Super Mario [61], Catan [23], GVG-AI [45], Spades [22], and Candy Crush [31]. In-
verse reinforcement learning (IRL) [59] is one of the ways to extract human-like objectives from
collected human playtest data. In game playing, most human players stick to the same goal: winning
the game. However, for game testing, testers may experiment with certain test goals and then test
another test goal. Consequently, the IRL approaches such as Apprenticeship Learning [1], Maximum
Entropy IRL [101], Apprenticeship Learning About Multiple-intentions [7], and Maximum Entropy
Deep IRL [97] may not explain the structure behind observed tester behavior. There are approaches
such as Bayesian Non-parametric IRL [54] and IRL via Spatio-temporal Subgoal Modeling [88]; these
approaches fall short of generalizing to unseen states and the ability to generalize to different levels,
respectively. Consequently, we proposed the Multiple-Greedy Policy IRL (MGP-IRL) [5] to explain
the structure behind collected human test trajectories. In this thesis, we refer to the SARSA or MCTS
agent that realizes extracted human test goals as the human-like agent.

On the other hand, human-like agents incur the human-playtest data. Consequently, the game must
have been playtested before. We proposed synthetic test goals to offer an alternative to human-like test
goals. Synthetic goals are handcrafted goals by an expert and researchers used these goals within RL
agents to play arcade games [55], role-playing games [36], and Match-3 games [56]. For gameplaying
handcrafting an objective is simpler than handcrafting an objective for testing as testing requires inter-
action with a more extensive set of game elements. We tackled the synthetic test goal generation from
the perspective of software testing. A game can be viewed as implementing the game designer’s story.
This story —whether linear or non-linear— can be represented using a graph [2]. In this thesis, this
graph is referred to as a game scenario graph. The game scenario graph (see Figure 1) is designed by
the game designer and contains high-level behavior. The nodes on this figure hold atomic properties
that match the game properties or sprites. The available transitions between the nodes are shown using
arrows, and the nodes that do not have an outgoing arrow are terminal nodes. A node on this graph
is matched with the states of the game (see Figure 2). Edges are the actions that progress the story.
Additionally, as directed graphs form the foundation of several coverage criteria in software testing
[3], it is possible to generate test sequences using this graph and a coverage criterion. We enhance
the test sequence by adding actions at each node that should not progress the game, such as colliding
with an obstacle. The coverage criterion determines how much of that objective must be tested. For
example, if the objective is to collide with obstacles, coverage refers to how many of the obstacles the
agent should collide with. Consequently, the test sequences verify the implementation of the game
scenario while the enhancements check other aspects of the game such as testing collisions and unin-
tended actions. In this thesis, we refer to the Sarsa or MCTS agent that realizes synthetic test goals as
the synthetic agent.

In our paper titled “Automated Video Game Testing Using Synthetic and Human-like Agents,” we used
SARSA and MCTS agents [5] to realize human-like and synthetic test goals and compared these agents
against human testers. We used the GVG-AI framework to craft three different games, each of four
levels. GVG-AI games are written in Video Game Description Language (VGDL). Later this VGDL is
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Figure 1: ©2019 IEEE.
A game scenario graph using the predicates avatar, key, fire, door, andwater. key denotes whether
avatar carries the key. The other predicates denote whether these sprites exist in the current frame.
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Realized nodes of Game Scenario Graph from Figure 1.

interpreted by the GVG-AI game engine to simulate gameplay. Hence, we altered VGDL descriptions
to insert faults into these games. These faults affect the game’s implementation to behave differently
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from the ideal design of the game. In order to create synthetic test goals, we sketched the scenario graph
of these games and used this scenario graph and game sprites to generate synthetic test goals. Next, we
used IRL to generate human-like test goals. However, we had to develop our IRL approach, MGP-IRL,
to extract the tester behavior as test goals. Lastly, we used SARSA and MCTS RL agents to realize
these test goals. Our experiments showed that agents provide comparable testing experiences to that
of humans. Additionally, we compared the bug-finding performance with the bug-finding performance
of game playing agent to constitute a baseline. Testing agents’ bug-finding performance was superior
to regular game-playing agents.

On the other hand, we also observed that SARSA could find more bugs than MCTS. However, we
also observed that due to the stochastic nature of MCTS, MCTS was able to discover different bugs
in various executions. In GVG-AI, several enhancements [68, 25, 87, 102] are employed to increase
the performance of the Vanilla MCTS. Moreover, the authors [25, 87] noted that not every enhance-
ment has an equal contribution to the performance. Furthermore, in board games, different MCTS
enhancements [74] were favored in different games. Therefore, in “Enhancing the Monte Carlo Tree
Search Algorithm for Video Game Testing,” we experimented with several MCTS modifications and
compared them under two distinct computational budgets [4]. We aimed to analyze their impact on
the bug-finding performances of our agents. We experimented with six enhancements in this regard,
and we introduced a new tree reuse strategy within these enhancements. Our experiments showed
that MCTS agent that realize human-like test goals could surpass SARSA agents and human testers in
finding bugs. However, the MCTS agents that realize synthetic test goals found fewer bugs than the
SARSA agents.

These experiments presented two essential principles for game testing agents. First, the capability to
re-train the agent to find different bugs is essential. MCTS discovered a new trajectory to test even
when executed with the same test goal. Second, synthetic test goals are better realized with potent
RL agents such as SARSA[89], DQN[55], or PPO [83]. MCTS only plans within its computational
budget; therefore, depending on the game’s complexity, the MCTS agent might not have found a viable
action. The importance of synthetic test goals is that these goals can be generated without any human
test data. Therefore, synthetic agents can be employed earlier than human-like agents to test games.
Nevertheless, the stochasticity of SARSA agents is very low compared to MCTS agents. Therefore,
an advancement for RL agents toward game testing should be to improve the ability to find various
paths. RL algorithms such as Deep Q-Network (DQN) [55], Proximal Policy Optimization (PPO) [83],
and Monte Carlo Tree Search (MCTS) [14] disregard the previous trajectories. Consequently, even if
we train an agent with any of these algorithms and then evaluate the agent and repeat this process
numerous times, all the generated trajectories would be similar. However, the trajectories may be
different due to the following reasons a) the random initialization of the Neural Network (DQN and
PPO), b) ε-greedy policy of DQN, c) stochasticity of MCTS, and d) the game’s nondeterminism. The
critical point is that even if the agent generates a distinct trajectory, this result is not by design but by
random chance.

In order to diversify the paths, one has to change the feedback mechanism of the environment. Proce-
dural personas [36, 56] accomplish this by rewiring the feedback mechanism with a utility function.
An agent representing a persona will learn a different policy than another agent representing a different
persona. However, the procedural persona approach also falls short when the game designer wants to
see different playstyles within the same persona. For example, the game designer may want to see
how other players complete a game with multiple endings. To model these players, she trains an agent
that mimics the Exit persona and analyzes the trajectory of this agent’s execution. Nevertheless, the
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resultant trajectory of this persona will be the path to the closest ending. As a result, the other endings
in the game will be neglected, and the game designer will only have to playtest data corresponding to
one possible end of the game. A preliminary solution to this problem is masking the feedback from
some endings. Thus, the agent will generate a playtest towards a particular ending. However, this so-
lution requires additional tinkering, and there might be additional playtests towards the same ending.
Another subpar solution is that the game designer would apply randomness to the agent’s actions or
add random noise to the input to diversify the trajectories. However, randomness does not guarantee
that the agent will generate different playtests. Therefore, this solution also does not give complete
control to the game designer.

On the other hand, with human playtesters, the game designer could have asked a playtester to play
differently. The playtester already knows which paths or particular states she has visited before, so
she uses this past knowledge to play the game differently. Therefore, the source of this problem is that
the current agent does not know what the previous agents did in the previous runs. Therefore, every
playtester which an RL agent represents generates a playtest anew. In order to solve this problem, we
proposed Alternative Path Finder (APF) [6] in “Playtesting: What is Beyond Personas.”

We use the exploration methodology to provide a basis for APF. Exploration methods in RL improve
the agent’s policy by motivating the agent to explore the environment. As the agent explores an en-
vironment, the agent improves its policy. The researchers proposed methods to encourage the agent
to explore less visited states [11, 26, 66]. Compared to the traditional exploration methods such as
ε-greedy, where exploration is achieved through randomness, these modern algorithms entice explo-
ration logically. These algorithms learn to distinguish the unvisited states from the visited states;
consequently, these algorithms guide the agents to less-visited states. As a result, exploration methods
vastly improved the agent’s score, such as Montezuma’s Revenge [11]. As in exploration, APF also
knows the previous trajectories. However, there is a clear distinction between exploration and APF.
Exploration methods aim to increase the agent’s knowledge about its environment during training.
Therefore, this agent delivers top performance in this environment when we evaluate. The goal of
APF is to help the agent to discover different performances without changing the agent’s goal. There-
fore during training, APF modulates the reward structure so that the old performances are penalized,
and different performances are rewarded.

APF knows the previous trajectories and guides the agent to learn to play differently from previous
ones. For this purpose, APF penalizes the agent when the agent visits a similar state and rewards the
agent when the agent visits a different state, compared to the states in the previous trajectories. APF
employs the state comparison algorithms used in exploration algorithms. These state comparison al-
gorithms are the backbone of exploration research, and researchers tested these algorithms in multiple
games. We show how we build the APF framework to generate new and unique playtests and how
APF augments an RL agent.

Additionally, the playtesting process may employ players with distinct playstyles. These players will
respond to the game differently and generate different play traces. The game designer can use these
play traces to shape her game. In order to automate playtesting with different players, researchers
replaced these playtesters with procedural personas. A procedural persona describes an archetypal
player’s behavior. Researchers used personas to playtest a Role-Playing Game [36] and a Match-
3 [56] game. As a result, personas enabled distinct playstyles and helped to playtest a game like
distinct players.
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In order to realize the personas using RL agents, researchers used a utility function [38] to define the
decision model of a persona. This utility function was used as the reward function of the Q-Learning
agents. However, this replacement makes the agents bound to the utility function. Since the utility
function is tailored for a specific decision model, the behavior of these agents is constant throughout
the game. Therefore, the procedural personas approach is not flexible enough to create personas with
developing decision models. For example, a player may change her objectives while playing the game.
Consequently, the decision model of this player cannot be captured by a utility function.

Bartle [9] presents these changes a player can undergo while playing a Massively Multiplayer Online
Role-Playing Game. We think that the change in the playstyle occurs after accomplishing a goal. For
example, a player may start a game by opening the treasures to find a required item and then killing
monsters. This player chooses her actions like a Treasure Collector until she finds the desired item and
becomes a Monster Killer. We propose a sequence of goals to model the decision-making mechanism
of this player. The sequence-based approach was previously used in automated video game testing
agents [5] and was more practical than non-sequence-based approaches.

We proposed the developing persona [6] to overcome the shortcomings of procedural persona in
“Playtesting: What is Beyond Personas.” The developing persona model consists of multiple goals
that are linked. Each goal consists of criteria and a utility function. The utility function serves the
same purpose as in procedural personas. The criteria determine until which condition the current goal
is active. When the current goal criteria are fulfilled, the next goal becomes active. The agent plays
until the last goal criterion is fulfilled or until the end of the game. The game designer sets the criteria
and utility functions of each goal. The goal structure enables the creation of dynamic personas. Addi-
tionally, this approach gives a more granularized control over a persona. The game designer can create
variations of Monster Killer by setting different criteria. In order to playtest a casual Monster Killer,
the game designer may set a health threshold as the criterion; and to playtest a hardcore Monster Killer,
the game designer may set the percentage of monsters killed as the criterion.

1.1 Research Questions

In this thesis, we ask the following questions regarding the test goal generation. We propose two
different methods, synthetic and human-like, and we use two different RL agents to realize these test
goals Sarsa and MCTS.

• Which test goal technique is better for finding bugs?
• What is the difference between MCTS and Sarsa agents in bug finding?
• Which human-like agent is more similar to human testers?

Next, we enhance MCTS with several modifications and investigate these modifications regarding the
computational budget. We ask the following research questions to analyze the effect on bug-finding.

• What is the impact of different computational budgets?
• Which modifications enhance MCTS’s bug finding performance?
• What is the bug finding performances compared to Sarsa(λ) that uses the same test goals?
• What is the effect of modifications on human-like behavior?
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Furthermore, we consider the following research questions on Developing persona when comparing
the Procedural personas.

• How does a goal-based persona perform compared to a procedural persona?
– Diversity of playtests generated by personas
– Agreement between interactions performed and Persona’s decision model

Lastly, we examine the Alternative Path Finder with the following research questions.

• Which additional paths can be discovered with APF?
• Does APF guarantee whether the agent find a different path?

1.2 Contributions of the Study

We list the contributions of this thesis as follows.

• Human-like tester agents.
• Synthetic tester agents.
• A test state to capture tester strategies and play them.
• Analysis of MCTS modifications for game testing.
• A more flexible and potent persona model, developing persona.
• A way to discover alternative paths in games, Alternative Path Finder.

We published the following papers from this study:

• S. Ariyurek, A. Betin-Can and E. Surer, "Automated Video Game Testing Using Synthetic and
Humanlike Agents," in IEEE Transactions on Games, vol. 13, no. 1, pp. 50-67, March 2021,
doi: 10.1109/TG.2019.2947597.
• S. Ariyurek, A. Betin-Can and E. Surer, "Enhancing the Monte Carlo Tree Search Algorithm

for Video Game Testing," 2020 IEEE Conference on Games (CoG), 2020, pp. 25-32, doi:
10.1109/CoG47356.2020.9231670.
• S. Ariyurek, E. Surer and A. Betin-Can, "Playtesting: What is Beyond Personas," in IEEE Trans-

actions on Games, doi: 10.1109/TG.2022.3165882.

1.3 Organization of the Thesis

This thesis is organized as follows: Chapter 2 gives preliminary information about Graph Testing,
RL, MCTS, GVG-AI, and VizDoom. Chapter 3 describes the examples and methodologies of related
research. We grouped the related research into the following sections Game Testing, Game Play-
ing, Learning from Humans, MCTS Modifications, Playtesting, Personas in Playtesting, Automated
Playtesting, and Exploration Methods in Reinforcement Learning. We present our methodologies in
five Chapters, from 4 to Chapter 8. These methodologies are Test State, Test Goal Generation, MCTS
Modifications, Alternative Path Finding, and Developing Persona. Next, we describe our experimenta-
tion setup in Chapter 9. We present the results of our experiments in Chapter 10. Chapter 11 discusses
the outcomes of experiments regarding our research questions and contributions and limitations of the
proposed methodologies. Lastly, we conclude this thesis with Chapter 12.
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CHAPTER 2

PRELIMINARIES

We present the preliminary material in the following subsections: Reinforcement Learning, Monte
Carlo Tree Search, VizDoom, and Graph Testing.

2.1 Reinforcement Learning

Supervised learning, unsupervised learning, and reinforcement learning (RL) are the three fundamental
paradigms of machine learning. RL concerns how agents should act in an environment such that the ac-
tions that the agent takes maximize the cumulative reward [89]. An agent experiences an environment
by observing and interacting with the environment. As a result of these interactions the environment
changes constantly. This interplay between the environment and the agent could be formulated using
a Markov Decision Process (MDP).

Markov Decision Process is a tuple (S,A, T,R) where S is the set of states, A is the set of actions,
T : S × A × S → [0, 1] is the state transition probability matrix, and R : S × A → Q is the reward
function.

The objective of an RL agent is to find the best action given a state. The best action corresponds to
the action that will lead to the maximum cumulative reward. The policy of RL agent defines which
action to take given a state. Consequently, through numerous interactions with the environment, RL
algorithms improve the policy. Policy maps all the available actions in a state to a probability.

δ ← R(s, a) + γQ(s′, a′)−Q(s, a)

Q(s, a)← Q(s, a) + αδ
(1)

State-action-reward-state-action (Sarsa) is a model-free on-policy temporal difference RL method. In
(1), Q(s, a) —the Q-function— calculates the total accumulated reward an agent will take by acting
with action a in state s. R(s, a) represents the reward function and the parameters of this function are
α ∈ [0, 1] is the learning rate, δ is the temporal difference error, and γ ∈ [0, 1] is the discount rate.

The training is performed as follows, the agent starts interacting in this environment according to a pol-
icy, and this interplay continues until the environment terminates. The termination of the environment
could occur due to a success, a failure, or a time limit.
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In the case of Sarsa, for each episode, the Q-function is iterated starting from an initial state. Sarsa is
a temporal difference learning (TDL) algorithm. TDL algorithms use the previous estimate of Q(s, a)

and the observed reward to update the new estimateQ′(s, a). Therefore, TDL algorithms do not require
T , the state transition probability, of an environment, which makes Sarsa model-free. The Q(s, a) is
updated using the a′ ∈ A selected from the current policy which leads to an on-policy algorithm.

Eligibility traces is an extension to TDL where the Q(s, a) is updated using the reward collected in
subsequent states as well. In contrast, Sarsa only updates the Q(s, a) using the reward collected by
taking action a at the state s. Consequently, eligibility traces speeds up the learning drastically. While
calculating the Q(s, a) update, the rewards collected in the subsequent states are decayed by λ. In this
study, we use Sarsa(λ) to refer to the Sarsa that uses eligibility traces.

Lastly, the Q-function can be represented using a table of state and action pairs (tabular)[89], or by
a function approximator such as a neural network[55, 83]. Furthermore, there is the dilemma of ex-
ploration/exploitation. Exploration gathers more knowledge, and exploitation chooses the best action
with the current knowledge. The agent’s objective is to maximize the total expected reward; therefore,
it must balance exploration/exploitation during training.

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [14] is a search algorithm that builds a tree to get the best available
action. MCTS consists of four consecutive steps: selection, expansion, simulation, and backpropa-
gation. These steps are executed iteratively until a computational budget expires. A computational
budget is a constraint on a resource such as time or number of iterations. When the computational
budget expires, a child of the root —the best available action— is returned.

The Monte Carlo Tree Search [14] (MCTS) algorithm is a search technique that constructs a tree to
find the best possible action. The four sequential phases of MCTS are selection, expansion, simulation,
and backpropagation. These steps are carried out continuously until a computational budget expires.
A computational budget is a limit on a resource, such as time or the number of iterations. When the
resource allotted for computing resources has been used up, a subtree of the root —the best possible
action— is returned.

UCB1 = X̃i + 2Cp

√
2 lnn

ni
(2)

The selection step selects a node using a Tree Policy. Upper Confidence Bounds (UCB1) shown in
Equation 2 is a well-known technique for this policy. X̃i is the average score of the ith child, Cp is
the exploration constant, n represents the visitation amount of the root, and ni is the visitation count
of the ith child.

The search tree is expanded during the expansion phase by adding one of the chosen node’s unvisited
children. Then, a simulation is rolled out from this unvisited child to estimate the child’s value. A
default policy is used in simulation to produce actions. This strategy produces completely random
actions. The agent acts according to these actions and the reward obtained through this simulation is
back propagated from this child to the root.
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2.3 GVG-AI

GVG-AI [69] is a framework that includes various 2D games. There are almost 120 single-player
games available, including well-known titles such as Mario, Sokoban, and Zelda. GVG-AI offers a
demanding and engaging environment due to the diversity of games. GVG-AI games have another
unique feature: they are all written in Video Game Description Language (VGDL) [82]. This language
specifies the game rules for a particular game, such as what happens if the avatar strikes an adversary
or interacts with a key.

In this thesis, we look at the faults between game implementation and game design. The GVG-AI
framework builds a game by processing VGDL source code and running it through the GVG-AI engine.
We are not evaluating the internal GVG-AI engine but rather the produced game. Thus, we consider
VGDL as the implementation.

2.4 VizDoom

The VizDoom [44] is a platform that wraps the infamous Doom game as an RL environment. The
VizDoom offers a flexible, efficient, and lightweight RL training platform. The environment is a 3D
world, where the agent sees the environment from a first-person perspective, and the agent’s action
space is much larger than GVG-AI. Furthermore, the agent only observes a part of the game state,
which adds additional complexity to RL training.

2.5 Graph Testing

There are various systematic approaches to generate tests and assess the suitability of the test set. First,
testers model the system being tested (SUT) and use this model to identify defects. A standard way to
model software is using graphs. Using graphs is standard practice to model software. After a graph is
created to model the SUT, one can employ systematic testing methodologies to develop test scenarios.

A directed graph is a structure that consists of nodes N and edges E where E ⊆ N × N . A path
sampled from this graph is represented as a series of nodes [n1, n2, ..., nM ], where each pair of con-
secutive nodes is contained in the set of edges E. In our study, the graph corresponds to the game
scenario graph given by the game designer. Furthermore, depending on the graph coverage criterion,
this graph may be used to produce numerous paths. These paths correspond to different ways to play
the game. In this thesis, we utilized the all-path coverage criterion. All-path coverage criterion is met
when the test set exercises each path in the graph [3].

11



12



CHAPTER 3

LITERATURE REVIEW

3.1 Game testing

Software testing is a dynamic investigation for validating the software quality attributes. In the case of
game software testing, these attributes include cross-platform operability, aesthetics, performance in
terms of time and memory, consistency, and functional correctness in a multi-user environment [80].

In order to validate these attributes, researchers proposed various methods to generate test sequences:
record/replay [64], handcrafted scenarios [19], UML and state machines [40], Petri nets [34], and
RL [71, 51]. However, when the game environment changes, test sequences and scenarios such as [64,
19] become obsolete, and a manual tester effort is required to create a new test sequence. Unlike these
manual techniques, UML-based techniques automate the test generation process. However, generating
sequences from UML runs into state explosion for larger games; without a gameplay AI, it relies on
the generated states to play the game. Hence, researchers employed AI to test games. A Petri net that
contains high-level actions of a game is used to generate test sequences using an AI [34]. RL is used
with short and long-term memory to test Point-and-Click games [71]. Furthermore, RL is used to test
the crafting system in Minecraft [51].

More generalized approaches to test video games are used to find bugs in two GVG-AI games [52].
As the authors [52] have stated, since the agent was a gameplaying agent, the agent was not required
to find all the bugs. Lastly, a team of agents with different purposes is introduced to test games [32].
Nonetheless, all of these studies lack controlled experimentation.

After the initial success of Deep Reinforcement Learning, researchers explored the viability of gener-
ating a game testing agent. The agent mentioned in the studies discussed above was mainly a game-
playing agent, unavailable to find bugs outside the intended game paths. Wuji [100] generates test
goals using evolutionary algorithms where the fitness is to explore game states, and the RL agent
learns to play this test goal. The authors execute an automated test oracle during RL agent training
to detect bugs. Nevertheless, there is no guarantee that evolutionary algorithms will generate goals
that span all game sequences. Automatic video game exploration is beneficial in Super Mario World
and The Legend of Zelda [17]. The authors augmented the collected trajectories with an exploration
algorithm to increase the state coverage. Exploring the environment [30] to improve the state cover-
age is utilized to automate game testing in 3D environments. Though exploration helps increase state
coverage, this approach does not guarantee to test a particular set of scenarios. In order to assert that
specific scenarios are tested, researchers [65] combined Behavior-driven development with writing test
scenarios.
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On the other hand, an automated test oracle has uttermost priority for automated game testing. GLIB
is an NN trained to detect UI and visual glitches for video games. However, this method cannot
detect bugs where the visual is correct, but the action that led to this visual was faulty. In conclusion,
automated game testing still has a long way to go [72].

3.2 Game Playing

Researchers have used RL and MCTS in various games, and the literature on these topics is rich.
For instance, Sarsa(λ) is used to construct a human-like agent in Unreal Tournament [28] and as a
game-playing agent in Ms. Pac-Man [94]. Afterward, tabular RL methods were traded with function
approximators.

DQN [55] demonstrated that RL agents could surpass humans in several Atari games. Additionally,
RL architectures that intermix MCTS and NN and a custom learning plan, AlphaGo [85], proved that
agents could beat humans. Similarly, AlphaStar [96] which uses a custom architecture and a learning
plan, was able to beat top StarCraft players. Last but not least, OpenAI Five [60] also uses a custom
architecture and a learning curriculum to train agents in Dota2.

On the other hand, in general game playing, MCTS’s aheuristic and anytime characteristics are preva-
lent. In order to increase the performance of vanilla MCTS, researchers proposed several modifi-
cations [25, 87]. Amongst them, knowledge-based evaluation (KBE) [68] is found beneficial. An-
other highly used algorithm in general game playing is Rolling Horizon Evolutionary Algorithms
(RHEA) [27]. However, like MCTS, RHEA requires modifications to become competitive in a game,
and there is no guarantee that a modification would work in another game.

Lastly, there are studies for general game playing [29] and MOBA [99] games that use Deep Rein-
forcement Learning. Although these papers aimed to create better agents in game playing, our purpose
is to create an agent that tests the game by playing with respect to test goals.

3.3 Learning From Humans

Although it is crucial to include domain expertise, determining the right set of rewards is challenging.
Furthermore, even humans learn better when coached by or imitated by an expert. Inverse reinforce-
ment learning (IRL) is the study of extracting a reward function given an environment and observed
behavior sampled from an optimal policy [59]. In the literature, different IRL approaches exist to
learn the reward function. First, some approaches assume that the trajectories are sampled from the
same policy [1, 101]. Next, some approaches assume trajectories could be sampled from different
policies [7]. Then some approaches assume many sub-goals exist within the same trajectory [54, 88].
Consequently, given a trajectory, each method may extract a different set of reward functions.

On the other hand, testers may apply different strategies during their playtest. Consequently, their
trajectories fit better with the multiple sub-goals methods [54, 88]. However, as noted by [88, 54]
fails to generalize to unseen states, and the approach in [88] finds sub-goals only at the same level.
Nevertheless, we aim to apply the learned test goals to other levels. Thus, we proposed MGP-IRL to
overcome these problems [5].
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Last but not least, human-like agents are employed as game playing agents in Unreal Tournament [92],
Super Mario [61], Catan [23], GVG-AI [45], Spades [22], and Candy Crush [31].

3.4 MCTS Modifications

MCTS modifications are major upgrades to vanilla MCTS. Consequently, researchers employed vari-
ous modifications to improve the performance of MCTS agents. For example, in GVG-AI, researchers
experimented with various modifications [68, 25, 87, 102] and showed the advantages of these modi-
fications. However, as noted by authors [25, 87], the contribution of each modification is not the same
and may change depending on the game. Furthermore, different modifications were found favorable in
board games [74]. On the other hand, we want to improve our MCTS agent’s bug-finding performance.
Nevertheless, the research on this topic is blank; thus, we list MCTS modifications for game-playing
research.

MCTS represents and explores the game as a tree. This tree may have several nodes corresponding to
the same game state. Consequently, a piece of critical information stored in one of these nodes is not
transmitted to the other nodes. In order to tackle this issue, transposition tables (TT) were introduced
to MCTS by Childs et al. [18]. TT encourages information exchange across nodes in the MCTS tree
that correspond to the same game state. The authors utilized this shared information to determine
the UCB1 score of a node, and they provided three techniques to calculate this score. TT is used in
games such as Deep Sea Treasure [70], General Game Playing [103] (GGP), and Hearthstone [20].
Lastly, Xiao et al. [98] used a state’s feature representation to search for related states in memory and
enhanced knowledge distribution.

It is often challenging to locate a terminal state or even a state that alters the game score in GVG-
AI, which may lead the MCTS agent to act erratically. Powley et al. [74] presented modifications
to capitalize on games’ episodic nature. Their modifications have proven valuable in games such as
Dou Di Zhu, Hearts, and Othello. Soemers et al. [87] experimented with eight modifications, including
KBE. Their experiments revealed that in GVG-AI, KBE modification was the most prominent. Also, in
GVG-AI, İlhan and Etaner-Uyar [102] used temporal difference learning to extract domain knowledge
from past experiences and used this knowledge to boost their MCTS agent. Finally, Silver et al. [85]
trained a value NN to analyze the game state in Go successfully, and AlphaGo defeated the world
champion in Go using this NN.

The tree reuse strategy uses the previously generated tree to guide the forthcoming MCTS runs. More-
over, pruning this tree is as simple as selecting the subtree of the selected child. Nevertheless, using
the previous tree as is may increase the memory requirements and put additional constraints on the
computational budget, which are essential concerns for MCTS. In Ms. Pac-Man, Pepels et al. [67]
suggested a decaying tree reuse approach. This decaying tree reuse approach was utilized by Soemers
et al. [87] in GVG-AI games and by Santos et al. in Hearthstone [79].

MixMax modification is introduced by Jacobsen et al. [41] to counter the cowardice behavior of the
MCTS agent in Super Mario Bros. In GVG-AI, MixMax is used by Khalifa et al. [45] to create a more
human-like MCTS agent. Furthermore, Frydenberg et al. [25] used MixMax in GVG-AI. However,
their findings for MixMax were mixed.
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The simulation policy in Vanilla MCTS chooses random actions in rollouts. Finnsson and Bjorns-
son [24] calculated the likelihood of actions in General Game Playing (GGP) using Gibbs sampling.
As a result, the authors skewed the simulation policy by choosing probability-based action. According
to Tak et al. [90], this simulation policy does not set the selection probability of the optimal action. As
a result, they employed ε-greedy to improve this simulation policy. Additionally, Powley et al. [74]
compared Gibbs sampling and ε-greedy approaches in GGP and found that ε-greedy is preferable. Sil-
ver et al. [86] employed softmax to parameterize the simulation policy in Go. Perez et al. [68] used
the learned experience to bias rollouts in GVG-AI. In contrast, James et al. [42] examined why more
informed rollouts result in less effective agents. According to their research, knowledge-based rollouts
may lead to high bias and low variation, leading to poor performance.

3.5 Playtesting

Playtesting is a technique used in the game development process. Playtesters test a game, and their
feedback is gathered. Afterward, game designers analyze and study this feedback and then improve
their game. Since playtesting requires a human effort, researchers suggested strategies to automate
playtesting. First, Powley et al. [73] combined automated playtesting with a game creation tool. Next,
Gudmundsson et al. [31] built an NN architecture to predict the most human-like action in Candy
Crush. Afterward, this architecture measures the difficulty of Candy Crush levels. Finally, Roohi et
al. [78] utilized RL to predict Angry Birds Dream Blast’s level difficulty. The automated playtesters
in these experiments are considered to belong to the same player archetype.

On the other hand, during a playtest, each playtester may belong to a different player archetype. For
example, one player may want to enjoy the game as much as possible, while another may want to see
how fast she can finish the game. Consequently, depending on the application, the data collected from
these two playtesters should be used differently.

3.6 Personas in Playtesting

Personas are used in playtesting to give game designers an idea of how various players would approach
the game. These unique player types are represented by Personas, which are fictitious characters. For
example, Bartle [10] identified four unique personas in a Multi-User Dungeon Game Socializers, Ex-
plorers, Achievers, and Killers. Furthermore, he laid the groundwork for these four personas’ interests
and typical acting patterns. Afterward, Bartle [9] expanded on this study by providing persona devel-
opment sequences. The development sequences explain how and why a player may shift to a different
persona.

Furthermore, Tychsen and Canossa [93] collected game metrics from the game Hitman Blood Assas-
sin. The authors used this collected data to classify the human playtesters into Mass Murderer, Silent
Assassin, Mad Butcher, and The Cleaner.

To sum up, these researches focused on identifying which persona is playing the game and what would
these personas would do in this game.
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3.7 Automated Playtesting

Researchers suggested using RL agents to realize a persona’s decision model to automate playtesting.
Holmgård et al. [38] employed a utility function to implement the decision model of a persona. For
each persona, the authors created a different utility function. Later, this utility function replaced the
reward function of the Q-Learning agent. Consequently, they trained a different RL agent for each per-
sona. The authors also crafted an environment to evaluate the RL, MiniDungeons. The results showed
that each RL agent generated a different play trace as a persona would. Holmgård et al. [37] expanded
on their prior work using a neural network instead of Q-Learning. The authors handpicked the neural
network’s inputs based on heuristics. The weights of this neural network were determined using a
genetic algorithm. Hence the authors named their new agent as “evolved agent.” Their experiments
revealed that —compared to the Q-Learning agent— the evolved agent needed less training and was
better at generalizing to other levels.

Building upon their work, Holmgård et al. [39] proposed using an MCTS agent for personas. Their
motivation for employing MCTS [14] was to expedite the playtesting process. In contrast to the Q-
Learning and evolved agent, MCTS required no training time. Furthermore, they conducted their
experiments in a new environment called MiniDungeons 2. Though MCTS agents provided playtest
data quickly, the agent’s success decreased. Finally, Holmgård et al. [36] improved upon their previous
work by applying modifications to the Vanilla MCTS. Their proposed modification improved the se-
lection phase of MCTS. Furthermore, the authors noted that this new environment was too difficult for
Vanilla MCTS. Therefore, the authors substituted the UCB1 equation with a new formula. A genetic
algorithm constructed this new formula, and each persona formed a different formula. Their experi-
ments demonstrated that this modification is an essential improvement and the results matched with
the correct persona model.

For Match-3 games, Mugrai et al. [56] handcrafted four distinct personas, which are Max Score, Min
Score, Max Moves, and Min Moves. The authors used MCTS to realize these personas. The experi-
ments demonstrated that these four personas provide useful information to the game designer. On the
other hand, besides RL agents, Silva et al. [21] designed a set of heuristics that represents a unique
persona in the Ticket to Ride board game. These personas were selected amongst the competitive
personas and played against each other. Their experiments revealed unique encounters and situations
where the game rules were lacking.

The utility function is the fundamental disadvantage of persona research. First, the utility function is
constant and static throughout the game. As a result, the development sequences defined by Bartle [9]
cannot be realized. Additionally, the personas may generate a similar playtrace depending on the level
arrangement [36]. These issues may result in synthetic playtesters producing inadequate feedback to
the game designer. Lastly, synthetic playtesters may not playtest all playable pathways since RL agents
maximize the overall cumulative reward.

3.8 Exploration Methods in Reinforcement Learning

An RL agent interacts with the environment to determine which action offers the maximum reward in
a given state. Consequently, the RL agent must explore this environment to improve this policy. The
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exploration problem is how to motivate an RL agent to explore the unexplored part of an environment.
The researchers presented various methods to tackle this problem.

Count-based techniques promote rarely visited states over frequently visited ones. As a result, the
agent is rewarded for exploring these rarely visited states. Researches experimented with the follow-
ing methods to formulate a count for the states, a density model [11], a neural density model [63], a
hash table [91], and exemplar models [26]. The uncertainty measurement of the agent is a different
strategy to provide an extra reward to entice exploration. Researchers formulated uncertainty using
bootstrapped DQN [62], state-space features [66], and neural function error [15]. Furthermore, re-
searchers presented methods for exploring the state space by optimizing the state marginal distribution
to match a target distribution [48].

Last but not least, the exploration methods aim to encourage the agent to discover the environment
and not to find different ways to play. Consequently, the agent will learn to play the game as best as
possible.
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CHAPTER 4

METHODOLOGY I: TEST STATE

Testers evaluate a game using various approaches [76], their approaches lead them, and these testers
interact with different game aspects. However, when the same tester re-evaluates the same game, the
tester interacts with aspects different than before. Because the tester has already tested a particular
portion of a game and now tests another portion. This behavior of testers’ is akin to a path-finding al-
gorithm, such as Depth First Search (DFS). DFS retains which nodes it has visited, which prevents the
DFS from terminating. Similarly, these testers mark specific interactions as “tested” in their memory,
in software, or on a piece of paper. This “memory” prevents testers from performing already tested
interactions.

An MDP may be used to model interactions that advance the game, such as picking up a key. On
the other hand, modeling activities that do not progress the game using only the game state, such as
attempting to get through a wall, is challenging. If the game does not permit this interaction, the actor
should remain in the same position. Additionally, an actor may repeatedly strike the wall if a positive
reward is received from this interaction. We could solve this state representation problem by labeling
this wall as “tested” in a memory. This interaction is not recorded in the game state but memory. As a
result, when we combine the game state with a memory, the MDP formulation becomes simpler.

Pfau et al. [71] use a concept similar to memory to explore an adventure game. This memory is then
used to modulate the reward of each available action. However, their usage of memory was limited
to Point-and-Click games, and we propose a memory to be used for 2D grid games. Therefore, we
propose a grid-based memory model and refer to this memory as the test state. This test state marks
the interactions executed by the human testers of RL agents. We use this test state as a supplement to
the game state. In game testing, if we utilize the game state without the test state, then our MDP will
be insufficient. First, the game state can only be altered via specific VGDL game rules, meaning that
some interactions will have no effect. Second, because of a bug, even interactions that should change
the state of the game may not change the state.

In games, interactions occur between entities. For 2D grid games, these interactions are between game
sprites. We define a sprite as η and the set of sprites as Γ. Next, we refer to the two sprites as η0
and η1. Additionally, we can add more parameters to this interaction for game testing purposes. We
use Pos : <x, y> to indicate the position of the interaction and Dir ∈ {↑, ↓,←,→} to describe the
direction of the interaction. The Dir refers to the direction of the first sprite η0. However, if the first
sprite does not have a direction, we use→ as default. We use Type to describe the action type. For
GVG-AI games, we use the following Type ∈ {Move, Use}. Lastly, we useAvatarState to represent
the types of an avatar in VGDL. To sum up, our interaction ζ definition is as follows ζ = < η0, η1,
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Pos, Dir, Type, AvatarState>. We should note that our “interaction” definition differs from the
interaction definition in GVG-AI.

Since we emphasize grid games, we utilize a test state constructed as a 3D grid. To cope with the
following issues, we choose a 3D grid to represent the test state for a 2D grid game. First, the tester
may prioritize interacting with a sprite from all directions or may prefer the same direction for all
sprites. Second, the tester may perform an interaction several times. Lastly, the tester may perform
her interactions using Move and Use. These issues are addressed with a 3D grid. Every layer in
this 3D grid is a 2D grid with the dimensions of the game grid. We utilized 12 2D grids in the final
implementation. The first four levels represent the Move interactions between the avatar and other
sprites. The Use interactions between the avatar and other sprites are represented in the following four
levels. The rest of the interactions are stored in the last four levels of this test state. For instance, when
another sprite interacts with another sprite, such as other movable sprites, or when the avatar pushes
the water bucket, and the water bucket moves as well. We used four levels for each of these groups to
differentiate the direction of these interactions. Lastly, we store a count at each cell of this 3D grid.
This count represents the total amount of interactions performed for a specific group, direction, and
position.

Although we presented a test state for 2D grid games, the test state could also be used for different
games. The primary concept is reproducing the visual environment and marking the tested interactions.
In addition, other layers may be added to this test state based on the distinctions that must be made
between various categories, such as movement and use. On the other, if the test scope is limited to a
few sprites such as keys or doors. Then, we could use an array to verify if these sprites are tested or
not.

For 2D grid games, we use the following definitions. A 2D grid game is a tuple <G, I, A, Γ, δ, ||ζ||>,
where G is the set of game states, I is the set of test states, A = {↑, ↓,←,→, Use,Nil} is the set
actions where Nil signifies taking no action. Γ denotes the set of sprites, and the transition function
is denoted by δ, which generates the next game state, test state, and the interactions from the current
game state, test state, and action. ||ζ|| is the set of all interactions. We extend the S definition from the
MDP (see Section 2.1) as S : G × I.

We use the following feature definition φ = <η0, η1, Weight, Method, Type, Rep, AvatarState>.
η0, η1 ∈ Γ, and Weight represents the received reward; the direction preference of the tester is captured
in Method parameter, where Method ∈ {Each,All}. We use Each to differentiate different directions
and All to consider all directions to be the same. The type of the action is represented in Type ∈
{Move, Use}. Rep restricts how often the award may be acquired. Lastly, AvatarState denotes the state
of the avatar.

We calculate the reward function as follows. When an actor acts in the game, interactions are gener-
ated. These interactions are matched with the features to calculate the reward of performing this action.
The matching procedure is as follows first, the feature φ matching to the η0, η1,Method,AvatarState
parameters of the interaction ζ is found. Next, the Rep parameter of φ is compared with the count
stored in the test state. The η0, Dir, and Type of ζ are used to extract the count value. If the count ≤
Rep, the actor receives the reward in Weight, and then the count value in the test state is incremented.
If theMethod parameter of φ is Each, we only increment the cell corresponding to theDir. However,
if the Method parameter of φ is All then we increment all four cells. Nevertheless, an interaction may
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SpriteSet
floor > Immovable img=oryx/floor3
goal > Door img=oryx/doorclosed1
key > Immovable img=oryx/key2
sword > OrientedFlicker img=oryx/slash1
movable >
avatar > ShootAvatar stype=sword
nokey > img=oryx/necromancer1
withkey > img=oryx/necromancerkey1

wall > Immovable img=oryx/wall3
InteractionSet
movable wall > stepBack
nokey goal > stepBack
goal withkey > killSprite
nokey key > transformTo stype=withkey

killSecond=True

Figure 3: ©2019 IEEE.
An example VDGL snippet with SpriteSet and InteractionSet.

not match a feature, in this case, we return a predefined reward, and the test state remains unchanged.
In our experiments, we set this predefined reward as −1.

Figure 3 portrays a game state, and three test states. The VGDL in Figure 3 denotes the rules of this
game. The game state shown in Figure 4a contains the following sprites Γ={Avatar,Door, F loor,Key,Wall}.
A pink triangle shows the direction of Avatar andAvatarState=NoKey. The two test states are shown
in Figure 4b and Figure 4c, where the interactions in the first four levels are colored red, and the in-
teractions in layers four through eight are colored blue. Hence, their combination produces the color
magenta. The only difference between Figure 4b and Figure 4c is that the features of the former have
Each, and the latter use All in the Method parameter. Furthermore, the arrows indicate state’s stored
interaction direction. The count values for the first four layers of Figure 4b are shown in Figure 4d.
For convenience, the cells with zero counts are left blank.

In the grid shown in Figure 4a, the top-left corner is Pos : <0, 0> and the Avatar is at position Pos :

<4, 4>. In Figure 4b, we see that the direction is ↑ at Pos : <2, 0>. Furthermore, at Pos : <3, 4>,
we see that all directions are present besides ↑. Moreover, when the Method is All, we can no longer
differentiate the direction (see Figure 4c). Lastly, by inspecting the colors in Figure 4b and Figure 4c,
we can differentiate between the Use and Move interactions.
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(a) Game State (b) Test State with Method::Each

(c) Test State with Method::All

1 1
1

1
11 1

1
11 1
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1
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(d) Test State Layers of (b)

Figure 4: ©2019 IEEE.
Game State and Test State
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CHAPTER 5

METHODOLOGY II: TEST GOAL GENERATION

5.1 Synthetic Test Goals

Testing is a crucial step in game development, and automation of this step is essential as it expedites de-
velopment while lowering testing effort. However, even though strategies like playing a pre-defined or
pre-captured scenario are beneficial, these methods become ineffective when the game layout changes.
On the other hand, using RL agents in game testing offers more flexibility. Thus, in this Section, we
describe a game scenario graph-based method to generate synthetic test objectives. RL agents use
these test objectives and act as artificial testers.

Using graph coverage criteria, we generate several scenario paths using the game scenario graph. The
game designer provides the game scenario graph, such as Figure 1. The game scenario graph in this
example specifies permitted transitions. The paths generated from this graph cover different nodes of
the game scenario. We aim to produce test objectives from these generated paths that an agent can
comprehend. In this respect, we use features stored in the nodes to direct the RL agent toward the test
objectives. As a result, when RL agents check whether every path generated from this game scenario
graph could be executed, we can verify if the game scenario graph is implemented correctly.

In addition to checking if the game implements the scenario, we also want to check whether the game
implements some other behavior that is not in the scenario, as any tester would do. These checks
encourage the agent to ask: What happens if the avatar attacks the key? Can an avatar pass through
these walls? In order to verify questions such as these, we create a list using all combinations of
the following feature <η0, η1, Type, AvatarState>. We refer to this list as the modifications list.
Nevertheless, a game may have a high sprite count, and creating an all combinations list becomes
enormous. We suggest using the pair-wise combinatorial [47] strategy in these cases. Last, we reduce
the modification list by limiting the first parameter, η0, to be movable.

The algorithm for creating synthetic test goals is as follows: The game designer provides a game
scenario graph, the coverage criterion, and a map to match edges in this graph to abstract features. A
feature is considered abstract when the Weight, Method, and Rep parameters are null. The algorithm
then generates sequences in the form [n1, n2, ..., nM ]. First, this sequence is transformed by replacing
each pair of nodes (ni, nj), the edge, with an abstract feature. We refer to this modified sequence as
the feature sequence. The next step is to modify each of these created feature sequences by adding
features from the modification list. This additional feature may be added at any point in the feature
sequence. However, we restricted the modification process with the following requirement. We require
the Hamming distance between the candidate feature from the modification list, and each feature in the
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sequence must be at least one. The η0, η1, Type, AvatarState are the parameters of features used to
determine the Hamming distance, which is the number of parameters where values are distinct. This
requirement allows the feature sequence to be extended by different modifications. Since modifying
with a modification whose Hamming distance is 0 would be meaningless.

Afterward, we prune our modification list. We need an approach to push these modifications to the
feature sequences. Suppose we push all K modifications into a feature sequence with M features
at once. In that case, we could insert up to M × K modifications —without taking the order of
modifications into account. However, this testing method is inferior since one of the features from
the modification list may crash the game, and we will not be able to test the other modifications. We
propose to copy the entire feature sequence M × K times. Afterward, we insert a single distinct
modification from the modification list to the cloned feature sequences. Lastly, we fill the missing
parameters of abstract features as follows: if η1 is a moveable sprite, the Rep parameter is set to 3;
if η1 is abundant in the level, such as walls, Rep is set to 1; otherwise, Rep is set to 2. The Method
parameter is set to All, and the Weight parameter is set to 1.

Modifying the feature sequence will direct the RL agent to test various game mechanics. After modi-
fication of the feature sequence is done, we transform this modified feature sequence into a sequence
of test goals. Compared to the goal state definition in [77, 54, 88], our goal state definition is different.
The goal state is defined as Sh where Sh ⊆ S. However, if we want to represent the state Sh where we
tested to get beyond every wall in the game, we could match multiple s to this goal Sh. Additionally,
a test goal should provide the flexibility to check any amount of walls. However, the goal defined
by [77, 54, 88] neglects this possibility. In order to overcome this problem, we also supplement each
feature in the goal with a criterion. This criterion indicates the proportion of eta1 to be checked. As
a result, the criteria determine if the agent achieved the test goal while the features direct the agent
through the environment. Consequently, we define our test goal as h, and h is composed of features
and criteria {(φ0, c0), (φ1, c1), ..., (φn, cn)}, where c0, ..., cn represents the criterion for each feature.
Finally, the sequence of test goals is represented asH=(h0, ..., hn). We set each criterion c0, ..., cn as
100% for our synthetic test goals.

The RL agent is trained in a game starting with the first goal h0. When the criteria are met, the agent
moves to the next goal in the H, in this case, h1. The training continues until all of the H goals are
processed. Nevertheless, the agent may not accomplish a test goal h for two reasons. First, the test
goal can be impossible, like attacking an unreachable door. Furthermore, a bug may interfere, and the
agent may get stuck. Consequently, we let the agent train in an environment for a certain number of
steps since it is impossible to know if a test goal h is feasible. Therefore, we decided that if the agent
cannot fulfill the test goal h in the given number of steps, the agent should not start the training with
the subsequent test goal. However, in our implementation, we added the flexibility to let the game
designer decide whether the agent should continue on training.

We accomplish three objectives with our sequence of test goals. First, we want the agent to execute the
test goals in the desired order so that the agent traverses the scenario graph in the appropriate order.
Second, the whole sequence of test goals may not be played due to a defect, but executing each test
goal allows us to identify precisely where the error happened. Lastly, the sequence of test goals is
a scalable approach. Since each goal corresponds to a node in the game scenario graph if the game
scenario graph is large, only more test goals are added to theH. We should note that the other approach
was to flatten the sequence of test goals to a single test goal. However, we retained the sequence of
goals approach [77].
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Lastly, we add an exploration feature <Avatar, Floor, All, Move, 0.01, 1, AvatarState> to every
test goal inH. By adding this feature, we assist the exploration of the agent. While adding this feature,
we copy the AvatarState parameter from the other features in the same test goal.

5.2 Human-Like Test Goals

The importance of beta testing cannot be neglected in game development. Human testers that partici-
pate in beta testing utilize their experience and heuristics to identify different issues. Furthermore, the
activities of each participant may be logged for future use. These logs can be stored as trajectories,
and a trajectory τ is a chain of actions [a0, ..., an] where ai ∈ A and 0 ≤ i ≤ n, where n is the length
of the trajectory. A trajectory does not indicate anything useful but reveals test goals when repeated in
the same game environment. As a result, the gathered trajectories are employed in regression testing
in the literature [64]. We propose to automate test goal creation and capture the knowledge of human
testers by learning from their activities rather than copying or replaying them. In order to understand
this knowledge, inverse reinforcement learning [89] (IRL) is used. IRL presumes that the trajectory
is near-optimal. However, this assumption may not hold during ad hoc testing. Furthermore, the hu-
man tester could carry out a complicated series of tasks that are impossible to simulate using linear
weights [54, 88]. To address these issues, we propose MGP-IRL.

MPG-IRL accepts that the trajectory may not be near-optimal but assumes that the trajectory could
be split into multiple near-optimal chunks. MGP-IRL does this by aggressively splitting the trajectory
and then merging these trajectories based on the likelihood threshold given by the user. When one
trajectory can no longer be merged with another, MPG-IRL concludes that under the given likelihood
threshold, this trajectory should be converted into a test goal. As a result, MGP-IRL generates a
sequence of test goalsH depending on the likelihood threshold.

Algorithm 1 describes MPG-IRL. The algorithm breaks the actions in the trajectory into the fewest
possible trajectories and interactions in line 2. In order to split the trajectory, we iterate the trajectory
from the beginning and split the trajectory where η0, η1, and Type interaction parameters differ from
the previous interaction. Line 3 initializes the previous likelihood threshold κa to zero, the goal se-
quence mathcalH to empty sequence, the prior features set Φa to empty set, the previous trajectory
set τa to empty sequence, and the previous features set Φa to empty set.

We iterate each of the divided trajectories one by one. Starting from the first segment, we transform
this segment into a feature φi in line 6. The Weight,Method, and Rep parameters of φi are kept
empty since they cannot be collected from interactions alone. We only create features for the observed
interactions. Therefore, the IRL algorithm knows which features have non-zero weights [1]. This
application of non-zero weights helps the IRL algorithm to learn using fewer trajectories. Then, in
line 8 Φb is created by joining the feature φi with the preceding feature Φa. In line 9, we set the Rep
parameter of the features in Φb. In order to find the Rep parameter, we replay the combined trajectory
τb and analyze the repetitions by checking the interactions performed. Setting the Rep parameter is
crucial for IRL to learn the Weight of a feature correctly.

In line 10, we employ IRL to learn the Weight parameter of the features Φb of trajectory τb. We
used Maximum Likelihood Inverse Reinforcement Learning [7] (MLIRL) in our implementation since
MLIRL calculates the likelihood of a trajectory and is robust to slight noise. Next, in line 11, the
likelihood [7] of the trajectory κb is calculated using Φb. The probability of the trajectory κb is then
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determined using Φb in line 11. We determine whether to merge trajectories and features based on this
probability estimate. The trajectory τa may be sampled with the likelihood of κa from a policy πa.
However, we ask whether τi should be added to τa, sampled from the policy πb with the likelihood of
κb. To answer this question, we compare κb with κa. The difference κa - κb is negative, if πb explains
the trajectory τb better than πa explains the trajectory τa.

In line 12, we check whether the difference between κb and κa is less than κT . κT is the likelihood
threshold that is given as an input parameter to the algorithm. In our experiments, we investigated the
impact of the threshold κT . We found that the agent could display the learned features more accurately
if the threshold is 0. Furthermore, we could add that when the κT is larger, the algorithm becomes
more analogous to the internal IRL algorithm. Afterward, if the criteria in line 12 are met, the previous
features Φa is replaced with the current features Φb, the current likelihood κa is set as κb, and the
current trajectory is set to τb. On the other hand, if we cannot fulfill these criteria, we transform the
previous features Φa into a goal h. Furthermore, we calculate a criterion c for each feature in the Φa
if the Reward of this feature is non-negative.

We calculate the criteria for the goal h as follows. First, we repeat the trajectory τa and check the in-
teractions. From the interactions, we count each feature in Φa. We represent this count as countF (φi)

where φi ∈ Φi. Afterward, we count how many times η1 appears in the game, countS(η1). For
instance, in Figure 4a, the counts for countS(Wall)=27 and countS(Door)=1. We calculate the
criterion for each feature in Φi as countF (φi)

countS(η1)
× 100. In order to achieve similar interactions in other

levels, we normalized the countF (φi) by countS(η1). After we calculate the criteria, we progress the
game G by applying actions from the trajectory τa, and then we reset the test state.

The algorithm looks for a remaining segment at line 19; if there is one, we turn this segment into a goal.
Last but not least, not every tester will test the same aspect in the same manner. As we mentioned in
Chapter 4, the tester may have Direction preference. Though this part is not shown in the algorithm,
we repeat the lines from 6 to 11 by alternating the Method parameter of each feature φi. We choose
the Method which yields a better likelihood.

To conclude, we split the trajectory into segments by checking where the interactions differ. We created
features using the observed interactions, which allowed us to create non-zero weight features, calculate
the repetition count, and find the direction preference. This approach’s most important benefit was
learning policies within a likelihood threshold. For example, consider a human executed the following
actions in Figure 4a. First, she attempted to enter the door while attacking the walls along the way,
and finally, she attacked the Key. This trajectory is broken down into interactions by MGP-IRL. The
weights, technique, and repetition cap for walls are discovered in the first iteration. In the next iteration,
the algorithm considers combining the initial trajectory where she attacked the walls with the trajectory
where she attempted to enter the door. The likelihood of the combined trajectory increases since the
tester attacked a particular portion of walls, which are on the route to the door. Consequently, MPG-
IRL joins these two trajectories and features. The algorithm examines merging with the trajectory
attacking the Key in the following iteration. Nevertheless, adding this trajectory will decrease the
likelihood as the Key could have been attacked earlier in the trajectory. Consequently, MPG-IRL
merges this trajectory depending on the κT value. If this criterion is not met, the first combined
trajectory is transformed into a goal, and the rest is transformed into another goal. These two goals
are added sequentially to the H. On the other hand, if the criterion is met, the whole trajectory is
transformed into a single goal and then added toH.

26



Our technique differs from [54] and [88] in that their sub-goal definition is state-based, limiting the
application of the goals to other levels. Furthermore, our feature definition also allows us to learn the
number of repeats and direction preferences, which are not calculated in their technique.

Algorithm 1 ©2019 IEEE.
Multiple Greedy Policy Inverse Reinforcement Learning

1: procedure MGP-IRL(G, τ , κT )
2: ζ0..n, τ0..n, n← SPLITTRAJECTORY(G, τ)

3: Φa ← { }, τa ← [ ], κa ← 0,H ← [ ]

4: i← 0

5: while i ≤ n do
6: φi ← CREATEFEATURE(ζi)

7: τb ← CONCATENATE(τa, τi)

8: Φb ← Φa ∪ φi
9: Φb ← ANALYZEREPETITIONS(G, τb, Φb)

10: Φb ← IRL(G, τb, Φb)

11: κb ← CALCULATELIKELIHOOD(G, τb, Φb)

12: if Φa is { } OR κa − κb ≤ κT OR Φa is Φb then
13: Φa ← Φb, τa ← τb, κa ← κb
14: i← i+ 1

15: else
16: G, h← CREATEGOAL(G, Φa, τa)

17: H ← APPEND(H, h)

18: Φa ← { }, τa ← [ ], κa ← 0

19: if Φa is not { } then
20: G, h← CREATEGOAL(G, Φa, τa)

21: H ← APPEND(H, h)
returnH

5.3 Generating Test Sequences

Testing is a demanding process, and any change to the software or concept necessitates re-testing.
Testing gets more and more tedious due to this necessity. Consequently, the capability to automatically
generate new test sequences is crucial. Our solution uses RL agents to automatically generate new test
sequences based on human-like or synthetic test goals. This section describes how our agents transform
the test goals into test sequences.

Reinforcement learning algorithms require an environment to perform. This environment contains a
reward vector. However, this reward vector is tailored towards game-playing agents. Consequently,
we do not use this reward vector, but the learned features Φ in a goal h. Starting from the first goal h in
H, the agent is trained in this environment, and the agents are rewarded according to the features Φ in
this goal h. While the agent is interacting with this environment, the agent checks whether the criteria
are fulfilled or not. However, the synthetic agent has no genuine experience, and the human-like agent
plays on a different level, so the criteria set in the features Φ may be unrealistic. Therefore, we use a
criteria threshold cT to determine the fulfillment condition. Furthermore, when the agent completely
fulfills a criterion c of a feature φ, we dampen the weights of this feature φ. Thus, the agent starts to
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perform these interactions less as these are less rewarding. Furthermore, the agent’s primary purpose
is to fulfill its test goal. Consequently, we reward the agent based on the goal’s completion percentage.
This extra reward is specified in this thesis as rewardcompletion where the reward is a positive real
value and overallcompletion ∈ [0, 1]. To calculate the overallcompletion, first, we compute the
individual completion of each criterion. Next, we multiply each of these completion scores with each
other to calculate the overallcompletion. As a result, if the individual completion of a single criterion
is zero, the total is also zero. When the agent completes the goal fully or completes a percentage of a
goal —given that the number of steps is passed, we decide that the agent achieved the current test goal.
The current test goal becomes inactive, and the next test goal becomes active from H. Also, during
this goal transition, we reset the current test state.

We propose to use two RL agents, MCTS and Sarsa. In the selection phase of MCTS, we employ trans-
positions [18] to share information between states. Specifically, we use UCT3 [18]. In the simulation
phase of MCTS, we apply knowledge-based evaluations (KBE) to score the states. For the Sarsa agent,
we implement the Sarsa(λ) algorithm described in Section 2.1. Eligibility traces help to spread the es-
timated long-term reward gained by completing a goal. Finally, we selected the Boltzmann exploration
strategy [46].

Test Oracle: Defining and performing a test sequence is incomplete if we cannot evaluate whether
the test passes or fails. In order to assess if the game performs as anticipated, we propose to use an
automated test oracle. Evaluating tests using an automated test oracle is far more efficient since it elim-
inates the need for human intervention. Therefore, we chose to employ a model-based oracle [95] to
assess whether an execution fails or succeeds. We did not employ a vision-based oracle since our goal
is not to discover visual faults but to identify differences between game design and implementation.

We initialize the automated test oracle with the constraints —the game model — and the game scenario
graph. The test oracle receives the game state and interactions performed at each game step. The oracle
first uses the game state and the constraints to assert collision faults. Next, the oracle matches the game
state to a node in the game scenario graph. The oracle checks that the transition is correct given the
interactions and the game scenario node. Lastly, the oracle checks the game constraints to verify if
this transition was made with proper interactions. The oracle reports the found violations if a fault is
discovered during any of these steps.
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CHAPTER 6

METHODOLOGY III: MCTS MODIFICATIONS

6.1 Transpositions

We propose using transposition tables (TT), specifically the UCT3 approach [18], as our initial adjust-
ment since UCT3 is a proven strategy. In the search tree, we store a reference to an entry in the TT, and
then in the TT, we store the node information. This node information is utilized in the selection phase
of the MCTS algorithm. Furthermore, this node information is updated during the backpropagation
step of the MCTS algorithm. Lastly, the information stored in TT is not used during rollouts of the
simulation phase.

6.2 Knowledge-Based Evaluations

Our goal is to test games that may have bugs. Furthermore, these bugs may obstruct reaching terminal
states. Testing whether one can lose a game is also a test objective for game tester agents. Conse-
quently, the rewards of penalties received from the game or terminal states could be deceiving. As a
result, we propose using KBE to reward our tester agents.

EVALKBE(s, a) = φ(s,a) · (wd) + (wh)f(s,a) − (wh)fs (3)

We use Equation 3 to evaluate the state provided by the environment. The φ(s,a) represents the features
in state s when action a is performed. The weight of achieving a goal state is represented by wh. Next,
fs, f(s,a) ∈ [0, 1] represents how much of the goal criterion is met. We should add that value of fs
is 0 if fs is smaller than cT . Lastly, the dampening factor is represented by d. The dampening factor
is used to mitigate the reward obtained from features when the criterion for this feature is already
accomplished. KBE enhancement is utilized in all of the tester MCTS agents.

6.3 Tree Reuse

The backpropagation phase of MCTS becomes cumbersome and time-consuming when UCT3 of
TT [18] is used. Furthermore, this predicament grows when the tree is reused. Additionally, the test
state described in Chapter 4 expands the number of states. For example, attacking the Walls does not
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progress the game without the test state. However, with the test state, this attacking action is recorded
in the test state. As a result, the entire search tree may get relatively large and cannot be reused; thus
must be pruned. Pepels et al. [67] employed a rule-based strategy to eliminate the old nodes, and
Powley et al. [75] presented a method to recycle old nodes. However, we propose a new approach,
namely the fast expansion approach. Fast expansion is a lightweight tree reuse technique that offers
simple interaction with transpositions.

We retain the previously generated tree while generating a new tree with MCTS. We employ fast
expansion during the selection phase to rapidly gather knowledge from the previous tree. Next, we
modify the selection phase of MCTS to search for the selected node in the previous tree. If this node
exists in the previous tree, we flatten the information and add this information to the current tree. To
flatten a node, first, we calculate the average score X̃ , and we set the visitation count of this node
to 1. Afterward, we continue with the selection phase, select a new node, and if this node is in the
previous tree, we again employ the fast expansion. This process is repeated until the selection phase
chooses a node absent in the previous tree. As a result, the nodes are expanded in a fast approach, and
the previous knowledge is retained. The remaining steps of MCTS remain unaffected. This approach
prunes the nodes that are not chosen in the selection phase, thus, preventing bloating of the tree. Most
importantly, the previously generated information is not lost.

6.4 MixMax

We propose MixMax because the agents should consider all possible paths, even if these paths are risky.
As indicated in Equation 4,Q is used to blend X̃i, the average score, with themaxXi, maximum score
for taking this action, which is given in Equation 2.

maxXi ×Q+ X̃i × (1−Q) (4)

The achievement of a test objective is the victory condition for our tester agent. The agent receives
the highest reward when the agent reaches this state. Consequently, if the agent has reached this state,
MixMax enhancement will increase the likelihood of selecting this action.

6.5 Boltzmann Rollout

We suggest the Boltzmann rollout based on the Boltzmann exploration methodology in RL [89]. How-
ever, according to James et al. [42], this modification may generate less effective agents. Therefore,
we are interested to see whether this modification will affect the bug-finding stability of our agents.

p(i) =
eβv(s,a)∑

a′
eβv(s,a′)

(5)

We modify the rollout phase of the MCTS algorithm by using Equation 5. This equation calculates
the probability of selecting a node p(i) in state s. The Boltzmann beta β is the only variable in this
equation and controls the stochasticity of selecting a node. When β is set to 0, the Boltzmann rollout
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acts like a random rollout. We use the KBE modification, EVALKBE(s, a) Equation 3, to calculate the
value v(s, a).

In contrast, James et al. [42] examined why more informed rollouts result in less effective agents. Ac-
cording to their research, knowledge-based rollouts may lead to high bias and low variation, leading to
poor performance. However, we decided to implement this modification to see how informed rollouts
affect the discovery of bugs.

6.6 SP-MCTS

Single-Player MCTS (SP-MCTS) was developed by Schadd et al. [81]. The UCB1 calculation in

Equation 2 is extended by adding the term
√∑

x2−niX̃i+D
ni

(see Equation 6). This additional term
causes UCB1 to prefer nodes with high variance, and D is usually a big constant value to indicate
uncertainty for nodes that are hardly investigated. In puzzle games, Schadd et al. [81] demonstrated
that their version outperformed competing techniques like IDA∗, a variation of A∗ that restricts the
search depth and incrementally increases this depth until the criteria are reached.

X̃i + Cp

√
lnn

ni
+

√∑
x2 − niX̃i +D

ni
(6)

6.7 Computational Budget

One may configure the computational budget of MCTS, which is set as 40ms for the GVG-AI com-
petition. However, a computational budget is not a modification in the traditional sense. Baier and
Winands (2016) examined several MCTS time management techniques and studied the effects of the
computational budget on five board games. Furthermore, many different computational budgets were
evaluated by Nelson [58]. The author discovered that the win rate stabilizes in the GVG-AI framework
at a specific computational budget. We find the experimental results on the computational budget are
promising. Consequently, propose to investigate the effect of the computational budget on bug-finding
behavior.
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CHAPTER 7

METHODOLOGY IV: ALTERNATIVE PATH FINDER

RL agents are driven by the feedback they get from their environments. The feedback will shape
the agent’s policy it receives throughout training. After training, the agent will act according to the
learned policy. Additionally, the learned policies will be comparable if we repeatedly train the same
agent in the same environment. After each training session, we may assess the trained agent in the same
environment to gather trajectories. Because the learned policies were comparable, these trajectories
will also be comparable. However, the game designer may be interested in seeing players or agents
employing a variety of playstyles.

The agent learns by interacting with the environment. Therefore, the environment’s feedback mecha-
nism must be altered to diversify the learned policies. Rewiring the feedback mechanism using a utility
function is employed by procedural personas [36, 56]. Consequently, for each persona, the policy that
an agent learns will be unique. However, the procedural persona approach falls short when the game
designer wants to observe distinct playstyles for the same persona. For instance, if a game has many
endings, the game designer could be interested in how various players complete the game. Therefore,
she trains an agent that uses the Exit persona’s utility weights and then evaluates this agent’s execution.
Nevertheless, the game’s alternative endings will be ignored, and the game creator will only get data
corresponding to one possible game ending. One may mask the feedback from some of the alternative
endings. However, various paths may lead to the same ending, and this solution fails to address the real
problem. Alternatively, the game creator may randomize the agent’s behaviors or add random noise
to the input, which would help to vary the path. Randomness, however, does not ensure that the agent
will create various playtests. To summarize, none of these rudimentary solutions address the problem
of how to generate alternative playtests.

On the other hand, the game designer could have asked the human playtesters to alternate their
playstyles. Then, the human playtester could use her past knowledge to play the game differently.
This playtester knows her path in the previous playtest, and when she is instructed to play differently,
she takes a different path. However, the agent is blind to the last executions with RL agents. Therefore,
the agents neglect these prior executions. In order to solve this problem, we propose the Alternative
Path Finder.

7.1 Measuring Similarity

Markov Decision Process (MDP) could be used to explain a game by formulating the interaction
between an actor and the environment [89].
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Suppose we obtained the following trajectory from an agent or a human player, τ= {s0, a0, s1, a1, ...,
sn} where a corresponds to an action, s corresponds to a state, and the subscripts denote the action
or state at time t. Current RL agents disregard this previously generated trajectory τ , and our goal is
to train an agent that knows the τ . Next, we require this agent to use the τ knowledge to generate a
different trajectory than τ . To describe how close these two trajectories are, we must thus compute a
metric. To describe how close these two trajectories are, we must thus compute a metric to represent
the similarity of these two trajectories. In this study, two different methods are proposed to calculate
the similarity. The first method calculates the recoding probability of a state s, p(s|τ). If s ∈ τ , the
probability should be high, and if s /∈ τ , the probability should be low. The second method calculates
the prediction error of a dynamics model q((st, at, st+1)|τ). If the transition st, at, st+1 exists in τ ,
then the prediction error should be low, and if this transition does not exist in τ , then the error should
be high.

For the rest of this study, we use observation o in place of state s as the RL agents in most frameworks
such as GVG-AI [69] and VizDoom [44] only obtain the observation rather than the state. Furthermore,
the observation is the frame f seen by the RL agent playing the game.

7.2 From Recoding Probability to Intrinsic Feedback

Context Tree Switching (CTS) [12] was utilized by Bellemare et al. [11] to encourage an RL agent
for exploration. The recoding probability of a pixel is measured by CTS using a filter. Figure 5a and
Figure 5b indicate the filters employed by the CTS and this study, respectively. In order to recode
a pixel or to predict, the filter accumulates information about that pixel’s neighbors. The recoding
probability of an image is computed when this process is performed on each pixel of an image.

We require a boundary probability value to leverage the recoding probability to distinguish between
novel and similar frames. This boundary probability is denoted as pmin (see Equation 7). We first
train a CTS model using all of the frames in previous trajectories. Then we use this trained CTS model
to calculate the recoding probability of all the frames in previous trajectories. The lowest of all these
recoding probabilities is then assigned as the pmin. Since CTS is a learning-positive model, every
frame from these trained trajectories will have a greater recoding probability than pmin.

pmin = min(p(f0|CTS), p(f1|CTS), ..., p(fn|CTS))

s.t. f0..n ∈ τ0, ..., τn
(7)

When an agent or a human player plays the game, the actor will receive a new frame fnew. We begin by
calculating the recoding probability of this frame, pnew=p(fnew|CTS). If the recoding probability of
pnew is less than or equal to pmin, we conclude that this frame provides new information; otherwise,
no new information is provided by this frame. Secondly, we use the difference of pnew to pmin to
compute the amount of reward or penalty.

pnew > pmin : feedback =
β

1 + log pnew

pmin

− β

pnew ≤ pmin : feedback = β − β

1 + log pmin

pnew

(8)
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Filters mask the pixels around the orange pixel, the data from white pixels are blocked, and the data
from the cyan pixels are supplied. Finally, CTS uses the information gathered from cyan pixels to
predict the recoding probability of the orange pixel.

To compute the additional reward signal, we utilize Equation 8. When pnew is set to 0, this formula
produces the highest β reward and the minimum −β reward when pnew is set to 1. Negative feedback
is given for visiting states similar to those already visited, while a positive response is given for visiting
novel states. The APF approach that makes use of CTS is referred to as APFCTS.

7.3 From Predicting Dynamics to Intrinsic Feedback

The Intrinsic Curiosity Module (ICM) was used by Pathak et al. [66] to encourage an RL agent for
exploration. Neural Network-based architecture ICM learns to anticipate environment dynamics and
exploits prediction error as intrinsic motivation. Two neural networks compose ICM: the forward
model and the inverse model. Using the current state features φ(st) and current action at, the for-
ward model predicts the next state features φ(st+1). Using the current state features φ(st) and the
next state features φ̂(st+1), the inverse model predicts the current action at. ICM uses Convolutional
Neural Network (CNN) to encode the states into state features φ(st) = CNN(st+1). The predic-
tion error is the difference between the extracted future state features φ(st+1) and the projected next
state features φ̂(st+1). Therefore, the prediction error will be low if the agent has seen the transition
φ(st), at, φ(st+1), and large otherwise.

We need a boundary value to utilize the prediction error to distinguish between novel and similar
frames. This value is referred to as qmean (see Equation 9). To begin, we construct the ICM archi-
tecture. Then, we set the weights of the CNN layers via transfer learning and freeze these layers. As
the source for transfer learning, we use the CNN layers of the previously trained agent. Afterward, we
train the forward and inverse layers of ICM by using previously collected trajectories as input. When
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the training is done, we get an ICM model that predicts the transitions in the collected trajectories with
higher certainty and predicts the unseen transitions with a higher fault. Finally, we replay the prior
trajectories, collect all prediction errors, and compute the mean of all prediction errors.

qmean = mean(ICM(f0, a0, f1), ..., ICM(fn−1, an−1, fn))

s.t. f0..n ∈ τ0, ..., τn
s.t. a0..n−1 ∈ τ0, ..., τn

(9)

When an actor acts a on frame f , the environment responds to this action and updates its state,
and the actor observes fnew, a new frame. ICM predicts the error of transition from f to fnew as
qnew=ICM(f, a, fnew). If qnew is greater than qmean, then the transition of f to fnew with action a
is unlikely to be in the previous trajectories. On the other hand, if qmean is greater than qnew, then the
transition of f to fnew with action a is likely in the previous trajectories.

qnew > qmean : feedback = β − β

1 + log qnew

qmean

qnew ≤ qmean : feedback =
β

1 + log qmean

qnew

− β
(10)

To determine the extra reward signal, we utilize Equation 10. When qnew is set to 0 this equation yields
−β and when qnew is set to∞ this formula yields β. We penalize similar transitions and reward novel
transitions using this calculated feedback signal. The APF approach that makes use of ICM is referred
to as APFICM.

7.4 APF Architecture

We add a new entity to the Agent and Environment interaction, which is represented in Figure 6. Both
APFCTS and APFICM may be used to define the APF. As a requirement, the APF should have been
trained using the previous trajectories as described in Section 7.2 or Section 7.3. This requirement is to
ensure that APF recognizes states or transitions. When an agent interacts with the environment, APF
is the first to receive the new observation and the reward signal from the environment. APF modulates
this reward by calculating auxiliary feedback (see Equation 8 or Equation 10).

One of the flaws of this APF architecture is that the feedback is limitless. The agent may cycle through
new states or get trapped in a novel state, i.e., the noisy television [15]. The agent may get addicted to
this positive feedback and may not perform the actual task in the environment. The second flaw is that,
as in Super Mario Bros. [66], certain game elements may be rigid and provide no alternative paths.
Consequently, APF will naively penalize this portion of the game.

For each of these problems with APF architecture, we provide a solution. We suggest limiting the
overall reward and penalty modulation to address the first issue. This strategy reduces the potential
for endless feedback, and it works as follows: if a state is distinct, APF clamps the reward by the
positive cap poscap. APF yields this clamped reward and then deducts the clamped reward from the
poscap. When the positive cap poscap reaches zero, APF no longer provides a reward for visiting a
novel state. Likewise, when the positive cap poscap reaches zero, APF no longer provides a reward
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Alternative Path Finding Architecture.

for visiting a novel state. We apply the same concepts to the penalty modulation by introducing a
negative cap negcap. By introducing a limit, we mitigate the agent visiting novel states repeatedly [15].
This approach also makes creating the utility function for personas easier since the total reward and
penalty are known in advance. Finally, we recommend removing specific segments from the collected
trajectories to address the second disadvantage. As a result, APF will not learn to discern states from
these segments and will no longer punish the agent.

We presented two distinct APF methods, and each has its merits and disadvantages. For example, the
CTS model could be trained on a trajectory of a few frames. Nevertheless, APFICM requires more
data than APFCTS. Furthermore, for transfer learning, a previously trained agent must be supplied
for APFICM. On the other hand, APFICM is more robust to noise, whereas noise would impact the
recoding probability of CTS.

Furthermore, we must establish a line between exploration and APF since APF relies on the techniques
utilized in exploration. Exploration approaches aim to expand the agent’s environmental awareness
while being trained. The exploration methods intrigue the agent to visit unvisited areas of this envi-
ronment. Consequently, when this agent is evaluated, the agent knows the best actions to perform. On
the other hand, APF exploits the exploration methods to learn about the previous trajectories. During
training, APF modifies the reward structure of the environment so that the previously played paths
are no longer interesting for the agent. When we evaluate the agent, the agent generates a different
trajectory than previous trajectories.
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CHAPTER 8

METHODOLOGY V: DEVELOPING PERSONA

An archetypal player’s decision model is reflected by a persona. For a persona to evaluate a video
game, the decision model of the persona should be translated to game variables. Next, this translation
should be realized by an actor. Researchers [36, 56] suggested employing a utility function to relate
the decision model to game conditions. This utility function substitutes the environment’s reward
mechanism with a customized reward mechanism for each persona. Researchers have employed RL
agents as actors [36, 56]. Therefore, the decision model of a persona is represented by these RL
agents, who are comparable to synthetic playtesters. The procedural personas used by these playtesters
represented several personas, including the Monster Killer, Treasure Collector, and Exit personas. We
enhance the procedural persona approach by introducing a multi-goal persona.

We propose a multi-goal persona to generate a more customizable playtester. We have two reasons why
a multi-goal persona would benefit game designers. First, the game designer does not have granular
control over the procedural personas. For example, the game designer may want to playtest a pro-
cedural monster killer persona that kills monsters until their health drops below a certain percentage.
However, when to cease killing monsters was left to the RL agent, and the game designer had little
control over these decisions [13]. Second, the procedural personas do not allow development in the
decision model. Though procedural personas may realize the persona archetypes that Bartle [9] pre-
sented, procedural personas cannot realize the development sequences that Bartle demonstrates. For
example, if the goal of the procedural persona is killing monsters, the procedural persona will always
be a Monster Killer. This procedural persona will never develop as a Treasure Collector.

A multi-goal persona is a procedural persona having a connected series of objectives rather than a
single utility function. A goal consists of a utility function and a transition to the next goal. The
transition does not need to be defined if the sequence has one goal. Consequently, a procedural persona
is analogous to a goal-based persona with a single goal. The transition links the objectives and occurs
when the criteria conditions are fulfilled. Criteria may be, for example, killing 50% of the creatures,
exploring 90% of the game, having less than 20% health, or a combination of these factors. The
developing persona keeps track of interactions such as how many Monsters, and Treasures have been
slain or gathered. Aside from interactions, the evolving character is aware of how much of its health
remains. This information is used by developing personas to determine if the existing criteria are met.
When all of the conditions for the current goal are met, the next goal is activated. The training or
evaluation of the goal-based persona finishes when no more goals exist.

While presenting the transitions between objectives, we discussed the "sudden" transitions between
goals, in which the current goal goes inactive, and the new goal becomes active immediately. This
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Figure 7: ©2022 IEEE.
An example level created by GVG-AI framework.

shift, though, can potentially be "fuzzy." Both the current goal and the future goal may be active at the
same time. The criterion fulfillment percentage might be used in a fuzzy transition implementation. For
example, if the criteria are met by at least 50%, the next goal may become active while the present goal
remains active. The persona would benefit from both utility functions. When the persona completes
the current objective, the subsequent goal becomes the sole active goal. As a result, a fuzzier transition
would result in a smoother progression of playstyles.

We constructed an example level in Figure 7 to showcase the goal-based personas. The Avatar may
execute the following actions: Pass, Attack, Left, Right, Up, and Down. A pink triangle indicates
the Avatar’s orientation. If the Avatar’s and the action’s directions align, the Avatar advances one
square in that direction; otherwise, the Avatar changes direction. When Avatar conducts Attack, the
Avatar slashes in the direction of the Avatar. Avatars can attack Monsters and kill them. The Monsters
move randomly and kill the Avatar if they collide. Avatar may also pick up Treasure chests by simply
moving over them. Finally, the game ends successfully when the Avatar escapes through the Door.

In order to playtest a Monster Killer persona, a game designer may conceptualize the following per-
sonas. The objective of the first Monster Killer persona is to kill the Monsters and then collect the
Treasures as a prize. The second Monster Killer gathers the Treasure to gain an edge over the Mon-
sters and then kills the Monsters. The game designer creates two developing personas to implement
the aforementioned personas, as seen in Figure 8. She then creates the utility functions for the ob-
jectives, as seen in Table 1. The game designer may use any RL agent to create these personas as
playtesters. The game designer can employ the agent for playtesting when the agent has completed
training. Developing personas is important because it provides a mechanism to define how players’
objectives alter throughout a game.
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Table 1: ©2022 IEEE.
Utility weights for the goals.

Goal Names

Game Event Killer Collector Exit

Death -1.0 -1.0 -1.0

Exit Door 1.0

Monster Killed 1.0

Treasure Collected 1.0

Exit

Collected

All Treasures

Collector

Killed All 

Monsters

Killer

Exit

Killed All 

Monsters

Killer

Collected

All Treasures

Collector

Figure 8: ©2022 IEEE.
Developing Persona.
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CHAPTER 9

EXPERIMENTS

9.1 Experiments for Synthetic and Human-like Test Goals

To experiment with synthetic and human-like test goals, we created three distinct games using the
GVG-AI framework (see Figure 9, Figure 10, and Figure 11). These games range in difficulty and
have dimensions of 6x7, 8x9, and 10x11. These games are referred to as Game A, Game B, and Game
C, respectively. There are four levels in each of these games. The arrangement of these stages varies,
which are shown in Figure 9, Figure 10, and Figure 11. In addition, the Avatar may only utilize the
Use action in the first two levels of each game. The objective of Game A is straightforward: the Avatar
must pick up the Key and proceed to the Door. The Avatar in Game B must extinguish the Fire, pick
up the Key, and complete the level by passing through the Door. The Avatar in Game C must construct
the Key by assembling the Key pieces, the mush pick up the assembled Key, and complete the level by
passing through the Door. Finally, each level of Game B includes a unique game scenario graph.

For our experiments, we made minor modifications to the GVG-AI code to access all of the interac-
tions amongst all sprites, including the hidden sprites. Although hidden sprites are not necessary for
gameplay, this information might be crucial while testing a game and could help the agent discover
bugs. Furthermore, the percentage of a level explored and how it is explored defines different tester
behavior. For example, a tester might explore all of the tiles of a game without interacting with any
sprite other than Floor.

To validate our technique, we employ fault seeding. According to Ammann and Offutt [3], fault
seeding is a technique for evaluating the defect detection rate of software tests and test processes. The
VGDL descriptions (see Figure 12, Figure 13, and Figure 14) represent the source code of our games—
not the GVG-AI engine; hence, we modified VGDL descriptions while injecting errors. These faults
cause the game’s implementation to act differently than the game’s ideal concept. To diversify the bugs,
we utilize [49] as a reference. We change the VGDL game description by eliminating lines from the
interaction set, rearranging or renaming the sprites in the interaction, and adding fallacious interactions.
We introduced 45 defects into the VGDL scripts of the games. If there are many occurrences of the
same problem during scoring, it is scored as one. The fault injected VGLD descriptions are shown in
Figure 12, Figure 13, and Figure 14.

A total of 427 trajectories from 15 human volunteers with various gaming and testing backgrounds
were gathered. During data collection, we specified the game rules and goals for each game, but there
were no directions on what to test. Testers could replay the same level as often as they wanted and
switch between levels and games. There were tutorial levels to help players become acquainted with
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(a) Game A Level 1 (b) Game A Level 2

(c) Game A Level 3 (d) Game A Level 4

Figure 9: ©2019 IEEE.
Four levels of Game A.
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(a) Game B Level 1 (b) Game B Level 2

(c) Game B Level 3 (d) Game B Level 4

Figure 10: ©2019 IEEE.
Four levels of Game B.
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(a) Game C Level 1 (b) Game C Level 2

(c) Game C Level 3 (d) Game C (9x11) Level 4

Figure 11: ©2019 IEEE.
Four levels of Game C.
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BasicGame square_size=60
SpriteSet
floor > Immovable img=oryx/floor3
goal >
goal2 > Door color=GREEN img=oryx/doorclosed1
goal1 > Door color=GREEN img=oryx/doorclosed1

key > Immovable color=ORANGE img=oryx/key2
sword >
swordnokey > OrientedFlicker limit=9 singleton=True img=oryx/slash1
swordkey > OrientedFlicker limit=9 singleton=True img=oryx/slash1

avatar > ShootAvatar
nokey > img=oryx/necromancer1 stype=swordnokey
withkey > color=ORANGE img=oryx/necromancerkey1 stype=swordkey

wall > Immovable autotiling=false img=oryx/wall3

LevelMapping
g > floor goal2
+ > floor key
A > floor nokey
w > floor wall
. > floor

InteractionSet
avatar wall > stepBack
nokey goal2 > stepBack
nokey goal1 > stepBack
wall swordnokey > killSprite scoreChange=0
goal1 swordkey > killSprite scoreChange=0
goal2 swordkey > spawn stype=goal1 scoreChange=0
goal2 swordkey > killBoth scoreChange=0
goal2 withkey > killSprite scoreChange=0
nokey key > transformTo stype=withkey scoreChange=0 killSecond=True

TerminationSet
SpriteCounter stype=goal win=True
SpriteCounter stype=avatar win=False

Figure 12: ©2019 IEEE.
VGDL describing the ruleset for Level 1 of Game A.
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BasicGame square_size=60
SpriteSet

floor > Immovable img=newset/floor6
goal >

goal2 > Door color=GREEN img=oryx/doorclosed1
goal1 > Door color=GREEN img=oryx/doorclosed1

key > Immovable color=ORANGE img=oryx/key2
sword >

swordnokey > OrientedFlicker limit=9 singleton=True img=oryx/slash1
swordkey > OrientedFlicker limit=9 singleton=True img=oryx/slash1

debris > Immovable autotiling=false img=newset/whirlpool1
avatar > ShootAvatar

nokey > img=newset/chef stype=swordnokey
withkey > color=ORANGE img=newset/chef_key stype=swordkey

wall > Immovable autotiling=false img=newset/floor4
water > Immovable autotiling=false img=oryx/water1
fire > Passive autotiling=false img=oryx/fire1

LevelMapping
g > floor goal1
+ > floor key
e > floor water
f > floor fire
A > floor nokey
w > floor wall
. > floor

InteractionSet
withkey water > killIfFromAboveNotMoving
water avatar > bounceForward
water wall goal key > undoAll

avatar fire > killSprite

fire water > transformTo stype=debris scoreChange=0 killSecond=True
avatar wall > stepBack
nokey goal1 > stepBack

goal1 withkey > killSprite scoreChange=0
nokey key > transformTo stype=withkey scoreChange=0 killSecond=True
water swordnokey > transformTo stype=fire killSecond=True

TerminationSet
SpriteCounter stype=goal win=True
SpriteCounter stype=avatar win=False

Figure 13: ©2019 IEEE.
VGDL describing the ruleset for Level 1 of Game B.
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BasicGame square_size=60
SpriteSet
floor > Immovable img=newset/floor2
goal > Door color=GREEN img=oryx/doorclosed1
key > Immovable color=ORANGE img=oryx/key3
keyleft > Immovable color=ORANGE img=oryx/key3_0
keyright > Immovable color=ORANGE img=oryx/key3_1
sword > OrientedFlicker limit=9 singleton=True img=oryx/slash1
avatar > ShootAvatar
nokey > img=newset/man2 stype=sword
withkey > color=ORANGE img=newset/man2_key stype=sword

wall >
normalwall > Immovable autotiling=false img=newset/blockT
fakewall > Immovable autotiling=false img=newset/blockT

LevelMapping
g > floor goal
r > floor keyright
l > floor keyleft
A > floor nokey
w > floor normalwall
t > floor fakewall
. > floor

InteractionSet
keyleft avatar > bounceForward
keyright avatar > bounceForward
keyleft goal normalwall > undoAll
keyright goal normalwall fakewall > undoAll

keyleft keyright > transformTo stype=key killSecond=true
avatar wall > stepBack

key sword > killSprite
nokey goal > stepBack
goal withkey > killSprite scoreChange=0
nokey key > transformTo stype=withkey scoreChange=0 killSecond=true

TerminationSet
SpriteCounter stype=goal win=True
SpriteCounter stype=avatar win=False

Figure 14: ©2019 IEEE.
VGDL describing the ruleset for Level 1 of Game C.

49



the controls and the surroundings. We should point out that all games included bugs except for the
instructional levels. We gathered trajectories using the GVG-AI framework, and for each game, a total
of 118, 173, and 136 trajectories were collected, respectively. It should be mentioned that 8x9 has
more game scenario pathways than the other games. Hence testers performed more tests on it.

For these trajectories, we used MGP-IRL with κT likelihood thresholds of 0.0, 0.5, and 1.0; note
that MLIRL calculates log-likelihood. We used the following parameters for MLIRL described in
[7, Algorithm 1]: M=20, β=5, T=0.01. To evaluate the efficiency of the MGP-IRL, we evaluated
these three alternative threshold values. We suggest using a threshold of 0.0 to discover weights, and a
threshold of 1.0 is nearly as effective as using MLIRL. For each game, for each tester, and each level, a
human-like test goal is learned using the collected trajectories from the other three levels. As a result,
human-like agents produce more tests than the original human tester.

We used the game scenario graph and the sprites to create the synthetic test goals. The synthetic agent
generated 28, 234, and 88 distinct test sequences for our Game A, Game B, and Game C. We used
entire path coverage because there are no loops in these game scenario graphs. Finally, a baseline
agent is developed to assess the effect of modifications on bug detection. The test goals used by the
baseline agent are generated using only the game scenario graph.

Our comparison did not employ off-the-shelf testing methods such as record/replay, test automation
frameworks, or monkey testing. Even if the avatar faces a different way, the record/replay tools will
not work. A specialist must manually create the scenarios for test automation frameworks, which
are laborious and not scalable. Finally, monkey testing creates random events to stress test the user
interface, which is not the goal of our test. As a result, COTS testing methods were insufficient in our
studies.

For Sarsa(λ), we chose the following parameters: learning rate α=0.03, γ=0.95, β=1, temporal
difference λ=0.8, and for MCTS: γ=0.95, exploration term Cp=3, rollout depth is 8, 300ms for
computation budget on i7-4700HQ using single core. Five MCTS runs were performed. Our criteria
threshold cT was set to 0.01, the goal completion reward was set to 10, and the features other than
non-zero reward are considered as a singular feature with a reward of -1. We have decided not to
advance an agent if it does not achieve its present goal. We evaluated with game durations of 50,
100, 150, 200, 250, and 300 because there is no clear definition of a terminal state and picked the
one with the highest criteria fulfillment. We set the direction option for Game C to All to reduce the
memory requirements. Sarsa(λ) agent ran for a few minutes to 6 hours, depending on the intricacy of
the goal sequence being played. Finally, several bugs enabled testers to leave the designated grid area.
We assumed that the agent was interacting with the Floor sprite since the outside of the grid was not
modeled. This behavior generated issues such as divergence during training using MCTS and Sarsa
agents. As a result, we issued a negative reward when the agent attempted to explore outdoors after
exiting the map.

9.2 Experiments for MCTS Modifications

We utilized the same experimentation setup in Section 9.1. To experiment with synthetic and human-
like test goals, we created three distinct games using the GVG-AI framework (see Figure 9, Figure 10,
and Figure 11). These games range in difficulty and have dimensions of 6x7, 8x9, and 10x11. These
games are referred to as Game A, Game B, and Game C, respectively. There are four levels in each
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of these games. The arrangement of these stages varies, which are shown in Figure 9, Figure 10, and
Figure 11. In addition, the Avatar may only utilize the Use action in the first two levels of each game.
The objective of Game A is straightforward: the Avatar must pick up the Key and proceed to the Door.
The Avatar in Game B must extinguish the Fire, pick up the Key, and complete the level by passing
through the Door. The Avatar in Game C must construct the Key by assembling the Key pieces; then
picks up the assembled Key, and complete the level by passing through the Door. Finally, each level
of Game B includes a unique game scenario graph.

From 15 distinct human subjects with a range of gaming and testing backgrounds, we gathered a total
of 427 trajectories. The testers warmed up by playing practice levels to become acquainted with the
game controls and environment. During testing, participants could play the games in any sequence and
any number of times. The GVG-AI framework is used to collect the tester trajectories.

These gathered trajectories are used to generate human-like test goals. Human-like agents employed
the human-like test goals collected from the other three levels of the same game during tests. We
developed synthetic test goals by generating paths from a level’s game graph. The sprite set of the
game under test is used to build a modification list. This modification list is used to make changes to
the sampled pathways. Finally, the original test goals are utilized as baseline test goals.

We created five different MCTS agents using the modifications described in Section 6 and ran them
five times for each level. These agents are KBE-MCTS, FE-MCTS, MM-MCTS, BR-MCTS, and SP-
MCTS (for modifications, see Table 2). The MCTS agents all utilized γ=0.95 and a rollout depth of
6. In all MCTS agents except SP-MCTS, the exploration term is set to Cp=3.0. We evaluated with 40
and 300 milliseconds for the computational budget on an i7-8750H (4.1 GHz) with a single core. An
automated test oracle examines each test sequence after being created by these agents.

We use the following parameters for KBE enhancement to calculate Equation 3 threshold for the
criteria cT=0.01, goal reward wh=10, and for interacting with the features that are absent in goal
w= − 1. For the MixMax enhancement, Q is chosen as 0.25. Furthermore, in order to retain some
randomness in Boltzmann rollouts, we selected Boltzmann beta as β = 0.5. Lastly, for SP-MCTS, we
choose D as 10000.

9.3 Experiments for Developing Persona and APF

To test our ideas, we utilized the environments GVG-AI [69], and VizDoom [44]. This section de-
scribes the environments and the experimental setup.

Figure 15 shows the first testbed game produced using the GVG-AI framework. The game has a 14×20

grid size and includes an Avatar, Exits, static Monsters, Treasures, and Walls. A human player or an
agent controls the Avatar. The game continues until the Avatar goes to one of the Exits, or is killed
by a Monster, or until 200 timesteps have passed. The action space has six actions: No-Op, Attack,
Left, Right, Up, and Down. The GVG-AI framework is extended to handle a game with several Doors.
The following interactions result in separate feedback for the actor: killing a Monster, being killed by
a Monster, collecting a Treasure, and colliding with a Door.

The second testbed game is a Doom level, as illustrated in Figure 17. The game has a 1600 × 832

grid size and includes an Avatar, Exit, Monsters, Treasures, and Walls. A human player or an agent
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Table 2: ©2020 IEEE.
The MCTS Agents’ Modifications.

Agents

KBE

-

MCTS

FE

-

MCTS

MM

-

MCTS

BR

-

MCTS

SP

-

MCTS

Modifications

Transpositions X X X X X

KBE X X X X X

Tree Reuse X

MixMax X

Boltzmann Rollout X

SP-MCTS X

controls the Avatar. The game continues until the Avatar goes to the Door, is slain by a Monster, or
reaches 2000 timesteps. Attack, Move Left, Move Right, Move Up, Move Down, Turn Left, and Turn
Right are the seven actions in the action space. The following events result in separate feedback for
the actor: killing a Monster, being killed by a Monster, collecting a Treasure, and colliding with the
Door. Furthermore, the actor receives negative feedback of 0.001 for every step performed.

The third testbed game is another Doom level, as depicted in Figure 18. The game has a 1664 × 704

grid size and includes an Avatar, Exit, and Walls. A human player or an agent controls the Avatar. The
game continues until the Avatar walks through the Door, or until 2000 timesteps have passed. Attack,
Move Left, Move Right, Move Up, Move Down, Turn Left, and Turn Right are the seven actions in the
action space. If the actor interacts with the Door, he or she receives feedback. Furthermore, the actor
constantly receives negative feedback of 0.001 for every step performed.

We experiment with procedural and goal-based personas in the first and second testbed games. In
the first and third testbed games, we evaluated the APF. For the APF experiment, we utilized the
same random seed to ensure that the APF approach was correctly tested. In all experiments, we
utilize the PPO [83] agent. We modified the base PPO implementation for the PPO+CTS, PPO+ICM,
PPO+APFCTS, and PPO+ICM+APFICM. We used the Stable-Baselines project [35] as our base PPO
agent. During our initial experiments, we tested the proposed approaches with other RL agents, and we
found that PPO requires less hyperparameter tuning. Hence, we used PPO in all of our experiments.
Table 3 shows the hyperparameters of PPO agents, whereas Table 4 shows the hyperparameters of
APF approaches. Lastly, since the initial game is deterministic, we assessed the trained agent once.
Nevertheless, because the second and third games are stochastic, we tested the trained agent 1000
times. Additionally, we found that our training was more reliable if an exploration algorithm like CTS
or ICM was utilized. The training in the first game had to be restarted for the agents that do not use
exploration.

The GVG-AI environment sends observations with the shape 160 × 112 × 4 is sent by the GVG-AI
environment. We scale them down to 80 × 56 and then turn them into grayscale. Following that, we
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Figure 15: ©2022 IEEE.
Map of the first testbed game.

stack the most recent four observations before feeding the stacked data to the agent. Next, we transform
the observation into a 42× 42, 3-bit grayscale picture for CTS utilized in PPO+CTS and APFCTS and
then compute the recoding probability of this observation. Finally, we resize the observation sent by
the Doom environment, which has the following dimensions: 160× 120× 1 to 84× 84× 1, and feed
the downsized observation to the agent and APFICM.

We created four distinct procedural personas and five distinct developing personas. The four procedu-
ral personas are Exit, Monster Killer, Treasure Collector, and Completionist. Table 5 shows the utility
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Figure 16: ©2022 IEEE.
Doom in-game snapshot.

weights of these procedural personas. These procedural personas were selected from [36], and we used
these personas as models to create their developing persona equivalents. The five developing personas
are Developing Monster Killer, Developing Treasure Collector, Developing Raider, Developing Com-
pletionist, and Developing Casual Completionist. Table 7 shows the development sequences of these
personas, Table 6 shows the utility function of the goals, and Table 8 shows the criteria of these goals.
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Figure 17: ©2022 IEEE.
Map of second testbed game.

Figure 18: ©2022 IEEE.
Map of third testbed game.
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Table 3: ©2022 IEEE.
Hyperparameters of RL Agents.

Agents

Hyperparameters PPO PPO+CTS PPO+ICM

Policy CNN CNN CNNLstm

Timesteps 1e8 1e8 2e8

Horizon 256 256 64

Num. Minibatch 8 8 8

GAE (λ) 0.95 0.95 0.99

Discount (γ) 0.99 0.99 0.999

Learning Rate (α) 5× 10−4 5× 10−4 5× 10−4

Num. Epochs 3 3 4

Entropy Coeff. 0.01 0.01 0.001

VF Coeff. 0.5 0.5 0.5

Clipping Param. 0.2 0.2 0.1

Max Grad. Norm. 0.5 0.5 0.5

Num. of Actors 16 16 32

CTS Beta (β) - 0.05 -

CTS Filter - L-shaped -

ICM State Features - - 256

ICM Beta (β) - - 0.2

Table 4: ©2022 IEEE.
Hyperparameters of APF Methods.

Hyperparameters APFCTS APFICM

poscap 0.4 0.1

negcap -0.4 -0.4

APF Beta (β) 0.01 0.01
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Table 5: ©2022 IEEE.
Utility weights of game events for the Exit (E), Monster Killer (MK), Treasure Collecter (TC), and

Completionist (C) procedural personas.

Personas

Game Event (E) (MK) (TC) (C)

Reaching an Exit 1 0.5 0.5

Killing a Monster 1 1

Collecting a Treasure 1 1

Dying -1 -1 -1 -1

Table 6: ©2022 IEEE.
Utility weights of game events for Killer (K), Collecter (Col), Exit (E), and Completionist (Com)

goals.

Goal Names

Game Event (K) (Col) (E) (Com)

Death -1 -1 -1 -1

Exit Door 1

Monster Killed 1 1

Treasure Collected 1 1

Table 7: ©2022 IEEE.
Development sequences for developing personas.

Hyperparameters Development Sequence

Dev. Killer Killer -> Exit

Dev. Collector Collector -> Exit

Dev. Raider Killer -> Collector -> Exit

Dev. Completionist Completionist -> Exit

Dev. Casual Completionist Casual Completionist -> Exit
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Table 8: ©2022 IEEE.
Goal criteria for Killer (K), Collecter (Col), Completionist (Com), and Casual Completionist (Cas.

Com.) personas.

Goal Names

Criterion (K) (Col) (Com) (Cas. Com.)

Monsters Killed 50% 100%

Treasure Collected 50% 100%

Remaining Health 50%
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CHAPTER 10

RESULTS

10.1 Results for Synthetic and Human-like Test Goals

We evaluated eight distinct tester groups to evaluate bug finding performance: original human testers,
three human-like Sarsa(λ) agents, one MCTS agent with a likelihood threshold of 0.0, one baseline
Sarsa(λ) agent, and one MCTS and one Sarsa(λ) agent with synthetic goals. For bug detecting per-
formance, there are two figures. The first one compares these groups in each game using a barplot.
Individual agents contribute to a group’s overall score, and the total bug count is considered total
unique bugs. The percentage of bugs found by MCTS agents is the mean of 5 runs. The second figure
compares individual testers in human-like agents to original human testers. This figure is represented
by a violin plot.

The cross-entropy of human behavior and agent behavior is used to assess how similar human-like
agents are to original humans. The trajectory collected from the human tester is replayed to get a list
of interactions ζh0,...,n. Then the trajectory executed by a human-like agent learned from this human
tester’s trajectory is replayed to find a second list of interactions ζa0,...,n. Each list is binned using
η0, η1, T ype,AvatarState, and the frequency of each bin is used to calculate the cross-entropy of
ζh0,...,n and ζa0,...,n. We deleted interactions’ position and direction during the comparison because they
heavily rely on the level layout. Finally, the number of actions done by the agents and splits performed
by MGP-IRL are investigated. Violin plots are used to depict action-length figures. Figures for cross-
entropy and the number of splits are displayed in box plots with IQR=1.5, except for cross-entropy,
which is shown in the log scale.

Figure 19 bugs found depicts the bug-finding abilities of several agents in each game. We can see
that humans discovered all of the bugs in the second game and 90% of the bugs in the first and third
games. In Game A, human-like agents with a probability threshold of 0.0 and the synthetic Sarsa(λ)
agent outperformed humans and detected all bugs, while the synthetic MCTS agent also found 90%
of all bugs. The baseline agent’s bugs can be read as the number of bugs discovered by playing only
the scenarios supplied by the designer. The total performance difference between the MCTS agent and
Sarsa(λ) ranges from 5% to 10%. The contrast between various testers is obvious in Game B. Human-
like agents outperformed synthetic agents, and there is a 10% gap between the top human-like agent
and human testers. The baseline agent outperforms by more than 40%. In Game C, the gap between
humans and agents widens, and the synthetic Sarsa(λ) agent outperforms the human-like Sarsa(λ)
agent with a probability threshold of 0.0. Also, fewer defects are discovered in all three games when
MCTS agents use their test objectives.
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Figure 19: ©2019 IEEE.
The Percentage of Bugs Found by RL Agents and Human Testers.
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Figure 20: ©2019 IEEE.
Percentage of Bugs Found by Human-Like RL Agents and Human Testers.
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Figure 21: ©2019 IEEE.
Cross-Entropy of Human-Like RL Agents.
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Figure 23: ©2019 IEEE.
Number of Splits Made by MGP-IRL to Collected Human Trajectories.

10.1.1 Experiment 1: Agents Testing Game A

The scores of several human-like entities in detecting bugs are depicted in Figure 20 bugs found (Game
A). Individual performance of human-like agents is at least equal to or better than individual humans
in a basic game like this, where an agent may achieve almost flawless runs. The human-like Sarsa(λ)
agent with a probability threshold of 0.0 conducted the most similar interactions, as seen in Figure
21 (Game A). Additionally, this similarity was negatively impacted by the likelihood threshold. The
human-like MCTS agent with a probability threshold of 0.0 executed the most actions among all agents
in Figure 22 (Game A). The baseline agent completed the game in fewer than 15 acts. The number
of splits produced by MGP-IRL is shown in Figure 23 (Game A): the likelihood threshold of 0.0
splits more than the others, the likelihood threshold of 1.0 splits the least, and most of the time, it
considers the trajectory as a whole. Finally, the overall number of bugs discovered —in all five runs—
of human-like MCTS, and synthetic MCTS is 100%.

10.1.2 Experiment 2: Agents Testing Game B

Human-like agents have a higher bug-detecting mean than individual human testers in Figure 20 (Game
B), but they cannot compete with the best human tester. The cross-entropy of interactions is compa-
rable across the agents in this game, with the human-like agent with a probability threshold of 0.0
leading, as seen in Fig (Game B). Retargeting was not optimal in this game since one of the sprites
was missing in the last level. Thus, the total cross-entropy is greater than in Game A. In Figure 22
(Game B), we can observe that the synthetic MCTS agent performed the most actions and had a differ-
ent shape from the other agents. The maximum number of actions that the baseline agent carried out
was 40. According to Figure 23, the human-like agent with a probability threshold of 1.0 executed the
fewest splits, while the human-like agent with a the likelihood threshold of 0.0 divided the trajectory
the most. Finally, the overall number of flaws detected in all five runs of human-like MCTS is 90%,
whereas synthetic MCTS is 76%.
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10.1.3 Experiment 3: Agents Testing Game C

Human-like Sarsa(λ) agents increased the overall performance of individual humans, as seen in Figure
20 (Game C), except for one tester. Compared to all testers, human-like MCTS agents have lower
mean bug finding performance. Figure 21 (Game C) indicates that the mean cross-entropy of Sarsa(λ)
agents is less than 0.5 and similar to previous games. We can see in Figure 22 (Game C) that all actors
performed more actions than in previous games. When compared to other games, Figure 23 (Game C)
shows that the number of splits for each agent increased. Finally, the total bugs detected —in all five
runs— of human-like MCTS are 90%, and synthetic MCTS are 80%, which indicates MCTS could
find a different bug in every run.

10.2 Results for MCTS Modifications

We present our results in Table 9 and Table 10. The results of the MCTS agents are displayed within
the 0.95 confidence interval since they are run five times. The score of Sarsa(λ) is not inside an interval
because it is only run once. When calculating the number of bugs discovered, multiple instances of the
same bug are recorded as one. As more than one tester tested a game, Combined indicates all of the
bugs found by these testers when their results are merged, and Individual implies bugs found by each
tester. We also prioritize tester agents that uncover the most faults with the quickest test sequences or
within the smallest computing budget. Finally, we employed cross-entropy to compare the interactions
performed by a human tester’s trajectory to those performed by the human-like agent. The lower the
cross-entropy, the more similar the interactions are.

10.2.1 Game A

The grid size in Game A is 6×7. When combined, human testers could detect 90% of the defects.
However, individual performance was only around half of this score, as shown in Table 9. Except for
BR-MCTS, human-like MCTS agents with a 40ms computational budget were able to discover all of
the faults, and these agents produced a comparable sequence length. MM-MCTS and SP-MCTS have
lower cross-entropy scores than the other MCTS agents (Table 10). The computing budget increases
the number of bugs found while decreasing sequence lengths. For every agent except FE-MCTS,
cross-entropy scores similarly declined when we increased the computational budget. With a com-
putational budget of 40ms, the synthetic agent could not detect all of the faults. FE-MCTS has the
shortest sequence length, while SP-MCTS has the greatest bug detecting score. The increase in the
computational budget has a good effect on FE-MCTS and MM-MCTS. With a computational budget
of 40ms, baseline MCTS agents identified at most 44% of the flaws, while increasing the computa-
tional budget reduced the bug discovery percentage to 40%. Overall, human-like MCTS scores are
comparable to human-like Sarsa(λ), while synthetic Sarsa(λ) scores are superior to synthetic MCTS.

10.2.2 Game B

The grid size in Game B is 8×9. Table 9 demonstrates that human testers discovered all bugs when
their individual scores were combined. When they are evaluated separately, however, their scores are
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Figure 24: ©2020 IEEE.
Actions that causes faults in Level 2 of Game B.
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lower than Game A. None of the agents could find all the bugs in Game B. FE-MCTS discovered
more than other MCTS agents within the 40ms computational budget. Except for BR-MCTS, the
sequence length of all MCTS agents is comparable. The lowest cross-entropies are found in KBE-
MCTS, followed by FE-MCTS (Table 10). The cross-entropies of all agents were reduced when the
computational budget was increased. This increase benefited the bug-finding performance of all agents
except FE-MCTS. Synthetic FE-MCTS discovered more flaws than other synthetic MCTS agents un-
der both computational budgets. KBE-MCTS, FE-MCTS, and BR-MCTS had similar and better base-
line scores than MM-MCTS and SP-MCTS. Human-like Sarsa(λ) and synthetic Sarsa(λ) had greater
bug detection rates than human-like and synthetic MCTS.

The bugs on Level 2 of Game B are represented as lines in Figure 24. Line in yellow: The two sprites
overlap when the Avatar pushes the Water Bucket into the Key. The rule to prevent this overlap is
lacking in VGDL, which is a game design flaw. Orange Line: The Avatar can shove the Water Bucket
into the Wall. Another flaw in the game design is the lack of a collision rule between this specific Wall
and Water Bucket in VGDL. Purple Line: The Avatar can travel through the Wall and complete the
game without collecting the Key. These specifications are present in the game concept; however, they
are not implemented in VGDL.

10.2.3 Game C

The grid size in Game C is 10×11, the largest of the three games. As shown in Table 9, various
MCTS agents outperformed the Sarsa(λ). Human testers have the lowest individual bug detecting per-
formance, and their combined performance is 90%. While synthetic MCTS agents do not outperform
synthetic Sarsa(λ) agents, human-like MCTS agents outperform human-like Sarsa(λ) agents, and some
even outperform human testers. The increase in the computational budget improves the performance of
all MCTS agents except the baseline BR-MCTS. Human-like FE-MCTS and SP-MCTS outperformed
all other agents with a computational budget of 300ms. MM-MCTS has the shortest trajectory among
human-like agents, while FE-MCTS has the lowest cross-entropy (Table 10). Among synthetic MCTS
agents, Synthetic BR-MCTS has the highest bug detection rate. In certain instances, the baseline agent
could not detect any problems, while FEBR-MCTS performed the best.

10.3 Results for Developing Persona and APF

10.3.1 Experiment I: Procedural vs Goal-based personas:

The interactions of seven distinct personas are presented in Table 11. The Exit persona navigates
immediately to the Door, located four spaces below the Avatar. The other three procedural personas
proceed to the same Door, but they also gather the Treasure and slay the Monster on the way. The
Developing Killer persona defeats all of the Monsters in the level’s top half. The Developing Collector
persona acquires four Treasures on the level’s top half. The Developing Raider is a hybrid of the
Developing Killer and the Developing Collector, killing Monsters and collecting Treasures in the top
part of the level. Finally, the Developing Completionist kills and gathers more Monsters and Treasures
than any other persona. Developing Completionist, kills all Monsters and collects all Treasures, except
the Monster and Treasure below the beginning location. All procedural personas interact with a limited
portion of the level, whereas developing personas engage with a larger portion. For this reason, we ran
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Table 9: ©2020 IEEE.
Bug Finding Percentage and Trajectory Length of Human Testers, Sarsa(λ), and MCTS. The values

shown with range have values Confidence Interval of 0.95.

Bug Finding Percentage % Trajectory Length

Tester
Game A

(6x7)
Game B

(8x9)
Game C
(10x11)

Game A
(6x7)

Game B
(8x9)

Game C
(10x11)

Humans
Combined 90.0 100.0 90.0 41.0− 58.8 38.8− 49.7 74.5− 99.9

Individual 42.7− 56.0 29.5− 46.3 26.7− 43.7

Sarsa(λ)
Synthetic 100.0 76.2 70.0 31.6− 50.1 75.8− 89.1 129.0− 148.4

Human-Like 100.0 90.5 70.0 39.3− 48.0 47.7− 53.2 97.9− 109.6

Baseline 30.0 42.9 10.0 6.8− 14.8 13.1− 21.8 30.2− 65.3

Computational Budget 40ms Sequence Length
KBE-MCTS

Synthetic 84.0− 90.0 64.0− 70.0 36.0− 50.0 84.4− 109.3 98.4− 108.0 211.6− 232.5

Human-Like 86.0− 100.0 67.0− 73.0 60.0− 68.0 70.2− 78.6 61.3− 66.5 90.1− 99.5

Baseline 20.0− 20.0 34.0− 41.2 10.0− 10.0 14.7− 38.9 52.0− 70.7 72.9− 129.1

MM-MCTS
Synthetic 82.0− 90.0 46.0− 58.6 42.0− 50.0 98.5− 129.2 100.6− 111.4 199.8− 219.4

Human-Like 92.0− 100.0 74.6− 83.0 58.0− 88.0 72.1− 80.2 61.9− 67.8 74.5− 83.5

Baseline 26.0− 40.0 9.0− 17.0 0.0− 0.0 19.2− 59.0 67.3− 104.6 91.8− 132.6

FE-MCTS
Synthetic 84.0− 90.0 59.8− 68.0 52.0− 64.0 62.7− 84.8 97.0− 106.0 195.9− 215.0

Human-Like 92.0− 100.0 76.6− 87.0 72.0− 80.0 70.8− 78.8 63.2− 68.7 80.3− 89.5

Baseline 20.0− 28.0 33.0− 39.4 10.0− 10.0 13.2− 32.8 58.7− 85.1 48.0− 102.0

BR-MCTS
Synthetic 82.0− 90.0 57.8− 65.0 50.0− 66.0 96.7− 128.4 112.8− 125.8 207.1− 228.2

Human-Like 76.0− 90.0 76.0− 82.0 56.0− 70.0 89.0− 99.8 103.0− 112.6 117.1− 130.6

Baseline 20.0− 20.0 32.0− 40.4 13.2− 26.4 22.9− 82.6 53.5− 82.3 36.7− 76.4

SP-MCTS
Synthetic 84.0− 96.0 46.8− 60.2 38.0− 58.0 99.3− 127.9 107.2− 118.8 197.2− 217.9

Human-Like 94.0− 100.0 72.0− 83.2 70.0− 92.0 74.4− 82.8 61.6− 67.5 75.9− 85.1

Baseline 26.0− 44.0 15.0− 19.0 0.0− 6.0 15.5− 35.2 65.3− 105.5 61.3− 130.1

Computational Budget 300ms
KBE-MCTS

Synthetic 84.0− 90.0 61.0− 71.0 46.0− 60.0 76.5− 97.8 103.4− 112.9 219.9− 239.0

Human-Like 100.0− 100.0 75.6− 84.0 68.0− 90.0 63.5− 71.1 67.9− 73.5 109.3− 118.5

Baseline 20.0− 26.0 30.0− 36.0 10.0− 16.0 10.0− 15.8 54.9− 77.5 82.2− 132.0

MM-MCTS
Synthetic 84.0− 96.0 49.6− 64.0 48.0− 70.0 86.2− 109.1 95.9− 106.3 206.2− 226.9

Human-Like 100.0− 100.0 79.4− 87.0 68.0− 92.0 66.0− 73.4 64.2− 69.7 77.7− 87.2

Baseline 30.0− 38.0 15.0− 22.2 0.0− 12.0 18.7− 55.1 52.8− 79.0 64.5− 132.3

FE-MCTS
Synthetic 90.0− 96.0 60.6− 74.0 50.0− 66.0 49.6− 64.3 88.8− 97.2 202.8− 220.0

Human-Like 94.0− 100.0 76.8− 82.2 76.0− 94.0 47.4− 52.8 53.4− 57.8 105.7− 115.0

Baseline 24.0− 40.0 35.8− 42.0 10.0− 10.0 10.8− 18.1 38.4− 55.9 89.7− 131.6

BR-MCTS
Synthetic 80.0− 88.0 66.0− 72.0 60.0− 66.0 61.7− 85.3 77.7− 86.8 198.8− 218.4

Human-Like 84.0− 90.0 76.8− 82.2 74.0− 80.0 77.0− 85.6 88.7− 97.0 116.6− 128.4

Baseline 22.0− 34.0 21.4− 32.2 2.0− 14.0 15.1− 31.4 42.4− 64.1 54.4− 117.4

SP-MCTS
Synthetic 84.0− 96.0 44.0− 58.4 46.0− 62.0 83.5− 108.4 105.1− 115.7 202.4− 223.8

Human-Like 100.0− 100.0 81.0− 85.0 76.0− 94.0 68.5− 75.9 63.9− 69.3 82.5− 91.6

Baseline 30.0− 38.0 15.0− 20.6 0.0− 6.0 16.4− 42.8 48.9− 76.1 57.2− 130.6
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Table 10: ©2020 IEEE.
Cross-Entropy Results of Sarsa(λ) and MCTS. The values shown with range have values Confidence

Interval of 0.95.

Cross-Entropy

Human-like Agent
Game A

(6x7)
Game B

(8x9)
Game C
(10x11)

Sarsa(λ) 0.27− 0.37 0.57− 0.69 0.69− 0.82

Computational Budget 40ms
KBE-MCTS 0.72− 0.82 1.12− 1.20 1.15− 1.22

MM-MCTS 0.57− 0.64 1.24− 1.33 1.20− 1.27

FE-MCTS 0.61− 0.70 1.16− 1.25 1.18− 1.25

BR-MCTS 1.10− 1.22 1.22− 1.31 1.15− 1.22

SP-MCTS 0.58− 0.66 1.21− 1.30 1.20− 1.27

Computational Budget 300ms
KBE-MCTS 0.65− 0.75 1.00− 1.07 1.05− 1.12

MM-MCTS 0.57− 0.65 1.11− 1.20 1.21− 1.28

FE-MCTS 0.75− 0.85 0.98− 1.06 0.98− 1.05

BR-MCTS 0.93− 1.05 1.00− 1.08 1.08− 1.15

SP-MCTS 0.53− 0.61 1.12− 1.20 1.19− 1.26

the same experiment with PPO + CTS RL agent for procedural personalities. The interactions done by
procedural personas as the agent explores the environment are shown in Table 11. We can see that the
interactions done by the PPO + CTS RL agent are more in line with the persona’s decision model.

Table 11: ©2022 IEEE.
Interactions performed by the PPO RL agent in Experiment I.

Game Event

Personas Monsters Killed Treasures Collected Door

Exit 0 0 1

Monster Killer 1 1 1

Treasure Collector 1 1 1

Completionist 1 1 1

Dev. Killer 3 0 1

Dev. Collector 1 4 1

Dev. Raider 3 4 1

Dev. Completionist 5 8 1

10.3.2 Experiment II: Alternative paths found in GVG-AI:

We used the path found by the Exit persona in Experiment I to train APFCTS (see Path 1 in Figure
25). Then, we trained the PPO + CTS + APFCTS agent in the first testbed game while using the
Exit persona’s utility weights. We repeated the experiment for each path obtained from the PPO +
CTS + APFCTS agent. First, an APFCTS is trained using one of the obtained paths, and then we use
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Table 12: ©2022 IEEE.
Interactions performed by the PPO + CTS RL agent in Experiment I.

Game Event

Personas Monsters Killed Treasures Collected Door

Monster Killer 2 0 1

Treasure Collector 0 3 1

Completionist 2 3 1

this trained APFCTS to train a PPO + CTS + APFCTS agent. The paths identified at the end of the
process are shown in Figure 25. Table 13 shows the total discounted rewards—the rewards received
from the environment and the APFCTS. The bold values indicate the alternative paths of the trained
path. For example, Path 1 has four alternative paths—Paths 2 to 6. Table 13 also shows that, when we
use APFCTS, the reward of playing the same path decreases by at least 0.1, and the reward of space-
disjoint paths increases by at least 0.1. This reward difference justifies why APF supports finding
alternative paths.

Lastly, Table 13 shows that APFCTS clusters the paths in Experiment II into two equivalence classes,
which are {1, 2} and {3, 4, 5, 6}. Therefore, we may interpret that distinct paths refer to paths that are
space-disjoint from the one trained on for APFCTS.

Table 13: ©2022 IEEE.
Total Discounted Reward without APFCTS and with APFCTS. The first row shows the total

discounted reward without APFCTS. For the rows with a path number, the number indicates which
path we used to train the APFCTS. The values under tested paths show the total discounted reward

that the agent receives when APFCTS modulates the environment reward. The bold values
demonstrate the found paths when we execute the PPO + CTS + APFCTS agent.

Tested Paths

Trained Path 1 2 3 4 5 6

- 0.86 0.78 0.84 0.84 0.86 0.76

1 0.76 0.77 0.98 0.98 0.98 0.98

2 0.82 0.61 0.98 0.99 0.98 0.98

3 0.98 0.98 0.74 0.86 0.82 0.88

4 0.99 0.98 0.86 0.72 0.86 0.86

5 0.98 0.98 0.81 0.85 0.76 0.87

6 0.99 0.98 0.87 0.87 0.88 0.60
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Figure 25: ©2022 IEEE.
Paths found by Exit persona with PPO and with PPO + CTS + APFCTS.

10.3.3 Experiment III: Personas in Doom:

In the second testbed game, a Doom level, we tested with nine various personalities (see Figure 17).
Table 14 displays the interaction results, and all personas react following their specifications. The
Exit persona always completes the game, and rarely kills a Monster but never obtains a Treasure. The
Monster Killer persona typically kills all Monsters, seldom obtains Treasures, and always completes
the game. Monster Killer is identical to Developing Killer. However, it only kills half of the Monsters
and seldom dies. Both the Treasure Collector and the Developing Collector have similarities. They
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each gather a single Treasure, slay the fewest Monsters, and perish the most. Minor distinctions
exist between the Completionist, Developing Completionist, and Developing Casual Completionist
personalities. The Developing Casual Completionist always completes the level but can sometimes
not acquire the second Treasure. The Completionist and Developing Completionist routinely gather
the second Treasure, but they seldom die and cannot complete the level.

Table 14: ©2022 IEEE.
Interactions of Personas in Experiment III over 1000 evaluations.

Game Event

Personas Monsters Treasures Door Death

Exit 0.27 ± 0.48 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

MK 5.79 ± 0.91 0.01 ± 0.07 0.98 ± 0.15 0.00 ± 0.00

Dev. Killer 3.54 ± 0.98 0.01 ± 0.08 0.96 ± 0.19 0.01 ± 0.08

TC 1.94 ± 0.70 0.94 ± 0.24 0.80 ± 0.40 0.19 ± 0.39

Dev. Collector 2.00 ± 0.65 0.95 ± 0.22 0.87 ± 0.34 0.13 ± 0.34

Dev. Raider 3.52 ± 0.73 0.98 ± 0.15 0.97 ± 0.17 0.01 ± 0.08

Comp. 5.76 ± 1.06 1.91 ± 0.38 0.95 ± 0.22 0.01 ± 0.11

Dev. Comp. 5.81 ± 0.92 1.91 ± 0.36 0.96 ± 0.19 0.01 ± 0.09

Dev. Cas. Comp. 5.83 ± 0.53 0.98 ± 0.13 0.98 ± 0.14 0.00 ± 0.00

10.3.4 Experiment IV: Alternative paths found in Doom:

In the third testbed game, we used the PPO + ICM agent to train an Exit persona. The first path
indicated in Figure 26 is the Exit persona’s trajectory. Using this initial approach, we trained an
APFICM, and then we trained a new Exit persona using a PPO + ICM + APFICM agent. The new
Exit persona took the second route. Table 15 shows the total discounted reward collected by these two
Exit personas. Because the first road has 52 steps and the second path has 77 steps, the total reward of
the first path is more than that of the second. APFICM, on the other hand, boosts the total reward from
the second path while lowering the total reward from the first path.
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Figure 26: ©2022 IEEE.
Paths found by Exit persona with PPO and with PPO + ICM + APFICM.

Table 15: ©2022 IEEE.
Total Discounted Reward without APFICM and with APFICM over 1000 evaluations. First row
shows the total discounted reward without APFICM. For the rows with a number, we train the

APFICM and calculate the discounted reward by using ICM. The bold values demonstrate the found
paths when we execute the PPO + ICM + APFICM agent by training APFICM with the trained path.

Tested Paths

Trained Path 1 2

- 0.80 ± 0.02 0.68 ± 0.01

1 0.51 ± 0.02 0.78 ± 0.01
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CHAPTER 11

DISCUSSION

In this thesis, we first established a technique for capturing tester behavior, known as test state. We
then introduced two strategies for generating test goals for agents: synthetic and human-like. We used
Sarsa(λ) and MCTS RL agents to achieve these test objectives. Next, we analyzed the agents’ bug-
finding abilities in three games and assessed how similar the human-like agents were to the original
human testers. Following that, we experimented with various MCTS modifications in order to produce
a better tester agent. We tested these modifications on three games with 45 bugs, evaluating their ef-
fects on bug-finding performance, how they are affected by the computational budget, and comparing
these results with human testers and an agent using Sarsa(λ). Furthermore, we highlighted an en-
hancement for procedural persona, developing persona, to allow game creators to playtest their games
effectively. Finally, we presented APF, a strategy for empowering RL agents to discover new paths.
We experimented with developing persona and APF in GVG-AI and Doom environments.

Test state helped to distinguish previously equivalent states. Test state supports this behavior and many
more such as attacking walls and covering all empty spaces. Consequently, we were able to model the
testing behavior using MDP and MGP-IRL could learn tester heuristics from collected trajectories.
Note that, these trajectories were collected from games that contained bugs. Though we used the test
state primarily for testing, it can benefit the gameplay. There can be many hidden doors and other rare
objectives in a game, and an agent utilizing the test state can engage with these objectives.

Creating a synthetic test objective from the game scenario graph and modifying it was beneficial be-
cause the synthetic agent outperformed the baseline in all experiments (Figure 19). In Game B, which
features the most complicated game scenario graph, the baseline agent outperformed half of the indi-
vidual human testers (Figure 19 and Figure 20). Because the underlying graph information is chal-
lenging to grasp, these testers could not cover all proposed pathways of the game. Modifications led
the agent to various pathways, while graph coverage gave the path for playing the game. The game
graph has significant advantages since it forces the agent to play each desired scenario and ensures that
these routes are covered, unlike in [71]. Furthermore, the modifications urged the agent to emphasize
the game’s constraints. In the experiments, the synthetic agent outperforms every individual tester in
human-like agents and the majority of human testers (Figure 19 and Figure 20), demonstrating the
synthetic agent’s potency. Finally, the synthetic agent offers a customizable approach with a config-
urable coverage requirement and various adjustments for conducting tests without gathering massive
data. The Sarsa(λ) agent, in contrast to the MCTS agent, used synthetic test objectives better since it
discovered more problems in all three games (Figure 19).
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Human testers could neither identify the defects nor outperform the synthetic agent individually. How-
ever, when their performance results were combined, they could find most bugs and outperform the
synthetic agent in two of three tests (Figure 19). This situation is also apparent in human-like testers,
where the combined human-like agent outperformed the synthetic agent in every trial (Figure 19).
Several human testers went through various game pathways and found various bugs. As a result,
finding distinct testers is critical. Furthermore, because human-like test goals were generated from
these testers’ sequences, they also profited from this variation. When we examine the bug-detecting
performance of different human-like agents, we find that the human-like Sarsa(λ) agent with a proba-
bility threshold of 0.0 leads in both individuals (Figure 20) and overall (Figure 19) performance. This
achievement can be attributed to the multi-goal strategy. First, a simple goal is easier to play than a
complicated one; second, when an agent plays a different level, verifying one goal at a time is best
since level composition may induce the agent to skip a feature too soon. Third, the test steps must be
carried out in the correct order.

MGP-IRL was proposed to generate human-like test goals based on collected tester trajectories. All
of the tests in Section 9.1 show that human-like Sarsa(λ) agents with a probability threshold of 0.0
could perform more comparable interactions to human testers (see Figure 21). We discovered that
when the probability threshold grows, so does the mean cross-entropy. The bug-finding performance
of these agents follows a non-increasing trend when the probability threshold is increased (Figure 20).
As a result, the human-like agent with a probability threshold of 0.0 is both the most human-like and
the most successful in discovering bugs. The number of times the MGP-IRL divided the trajectory is
shown in Figure 23. In all games, the likelihood threshold of 1.0 extracted the weights of the features
using the whole trajectories.

We employed the Sarsa(λ) and MCTS agents to construct test sequences. The agents completed the test
goals after receiving rewards from various interactions. The achievement of test objectives is reviewed
using criteria, and if the agent meets the criteria, the agent moves on to the next test goal in the
sequence. This strategy led our agent to investigate numerous test objectives. Sarsa(λ) outperforms
MCTS in terms of mean bug-detecting performance (Figure 19). Among all agents, the synthetic
MCTS agent discovered the fewest bugs. Our manually designed weights were better suited to the
Sarsa(λ) agent than the MCTS agent. On the other hand, one of the human-like MCTS agents with a
probability threshold of 0.0 was able to detect all of the bugs, which was not the case for this agent
when Sarsa(λ) was used (Figure 20 Game A). After a thorough investigation, we discovered that some
fake walls caused the discrepancy. Because the human agent did not check all of the barriers, the MCTS
agent uncovered this flaw due to the stochastic nature of MCTS. Furthermore, when we aggregated the
unique bugs detected in all MCTS runs, we discovered that human-like MCTS agents could find 90%
of the bugs in Game C, which is the same as humans’. As a result, we conclude that the stochasticity
of MCTS is advantageous in testing.

MCTS and Sarsa(λ) come equipped with built-in procedures for finding bugs, provided the agent is
given the necessary objectives and features. In the first experiment (Figure 19 Game A), the baseline
agent surpassed one of the human testers owing to the exploration aspect of these techniques. If the
agent’s purpose is to obtain the key and it is only feasible after attacking the door due to a flaw, then
the agent may find this precise sequence. Trajectory plots reveal a difference between testing and
game playing —performed by the baseline agent. Game A features a modest board, yet human testers
performed over 100 actions (see Figure 22 Game A). In the same game, the baseline agent may only
do 15 actions, which is the length of the game scenario graph’s route. MCTS agents performed more
actions than Sarsa(λ) agents in all experiments described in Section 9.1 (see Figure 22). This difference
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is expected because Sarsa(λ) optimizes the whole sequence, whereas MCTS has to choose an action in
300ms. As a result, the MCTS cross-entropy values are lower in all three experiments (see Figure 21).
The distinction between testing and gameplay also appears in other games (see Figure 22). Another
notable difference is that the shape of the synthetic agent differs much from that of human testers, but
the shape of human-like testers mimics that of human testers (see Figure 22). The non-human nature
of our synthesized method is also shown in this way.

We investigated many MCTS modifications to increase an MCTS agent’s game testing performance.
In addition, we investigated the impact of the computational budget on the MCTS modifications. Our
experiments in Section 9.2 for human-like agents show that increasing the computational budget has a
favorable effect on the majority of the MCTS agents. KBE-MCTS gains the most from this increase.
As a result, we may conclude that KBE-MCTS could not explore the tree with a computational budget
of 40ms. SP-MCTS and MM-MCTS are also favorably influenced, but not as much as KBE-MCTS.
Furthermore, when more computation is done, they become more stable agents, and as a result, their
confidence interval narrows. BR-MCTS outperforms KBE-MCTS in Game B and Game C with a
40ms computational budget. The increase in the computational budget, on the other hand, reverses
the situation. The bias in BR-MCTS rollouts restricts its upper bound and makes it the most stable
agent. The only advantage of FE-MCTS over KBE-MCTS is the ability to reuse trees. Tree reuse im-
proves the bug-finding percentage significantly under 40ms, but KBE-MCTS outperforms FE-MCTS
in Games A and B as the computational budget increases. Because these games are small compared
to Game C, tree reuse reduces stochasticity. FE-MCTS also performs the shortest sequences within a
computational budget of 300ms. The increased computational budget for synthetic agents improved
the bug detection performance of all agents, indicating that synthetic test objectives are more difficult
to achieve than human-like test goals. A baseline agent’s ability to identify flaws is restricted to the
bugs in the scenario, and baseline Sarsa(λ) indicates this proportion. Therefore, the increase in the
computational budget had a beneficial effect on the baseline FE-MCTS. The impact of the computa-
tional budget is unclear for other baseline MCTS agents. In addition, there are cases where a baseline
MCTS agent outperforms the baseline Sarsa(λ). This increase in bug-finding performance is also due
to the stochasticity of the MCTS, which also helped to discover the fake walls in [52].

For bug detection, we proposed a set of six possible modifications to the MCTS agent. SP-MCTS,
with a computational budget of 300ms, is the best overall for human-like agents. Although FE-MCTS
may approach and even exceed the same upper bound, FE-MCTS achieves this performance when both
computational budgets are considered. In these cases, however, SP-MCTS sequence lengths are shorter
than FE-MCTS. The MixMax modification can explain this variation. MM-MCTS and SP-MCTS have
similar upper bounds, but because SP-MCTS explores more, it assures a better lower bound. The least
effective human-like agent, BR-MCTS, is reliable. When it comes to synthetic agents, SP-MCTS is
one of the least successful, whereas BR-MCTS has begun to thrive. This shows that synthetic test
goals are positioned further down in the tree than human-like objectives. As a result, for synthetic
test goals, MixMax, and Tree Reuse is effective. BR-MCTS is also valuable because these objectives
can be discovered through biased rollouts. In synthetic MCTS, there is no obvious winner; however,
FE-MCTS looks promising.

Furthermore, when we compare the MCTS variants with Sarsa(λ) using Table 9. In Game A, human-
like agents using MCTS variants reach the bug finding percentage obtained with Sarsa(λ), and they
can achieve this with a 40ms computational budget, except BR-MCTS. In Game B, the human-like
agent using MM-MCTS, FE-MCTS, and SP-MCTS is 3-5% behind of Sarsa(λ). In Game C, the MM-
MCTS, FE-MCTS, and SP-MCTS with 40ms computational budget and all human-like MCTS agents
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with 300ms surpass Sarsa(λ)’s bug-finding performance. These bug finding percentages show that
human-like MCTS agents can compete with Sarsa(λ) in bug-finding with the advantage of using a
less computational budget. For synthetic agents, we observe that bug finding performance of Sarsa(λ)
is better. Nevertheless, in Game A and Game B, FE-MCTS; in Game C, MM-MCTS are the best
competitors. Furthermore, for every game, we can see that Sarsa(λ) produces shorter sequences, which
are more human-like than MCTS agents. For the baseline agent, FE-MCTS with 300ms computational
budget performs closest to Sarsa(λ), thanks to the tree reuse modification.

MCTS, on the other hand, may perform more random actions than Sarsa(λ). This behavior has an
impact on the agent’s human-likeness. When we compare the cross-entropy scores in Table 10, we
see a direct relationship between the computation budget and the human-likeness of KBE-MCTS, SP-
MCTS, and MM-MCTS, but not for FE-MCTS and MM-MCTS. However, we cannot claim that an
agent would uncover more bugs if it behaves more like the original person. Human testers’ heuristics
offer the goals for testing the game, and any randomness added while constructing a sequence reduces
the similarity. Furthermore, owing to randomness, multiple runs may discover different bugs.

Game designers employ procedural personas and developing personas to automate the playtesting pro-
cess. One disadvantage of procedural personas stems from the utility function. A utility function
implements a persona’s decision model. A Treasure Collector, for example, receives positive feedback
after completing the level and collecting a Treasure. However, if the agent’s starting location is near
the Door, the agent may overlook the Treasures. On the other hand, if the Door is placed after the
Treasures, the agent is more likely to engage with the majority of the Treasures. This dilemma was
demonstrated in Experiment I of Section 9.3. The procedural personas Monster Killer, Treasure Col-
lector, and Completionist all performed the identical set of activities in the absence of any exploring
technique. When we included the exploration technique in the agents who realize these personas, the
set of acts performed by these personas changed. Additionally, these new sets of activities matched
their decision model better. This issue is also seen in the MCTS agent playtesting of the MiniDungeons
2 game [36].

The issue with the utility function is that it is an aggregation of multiple goals. As a result, depending
on the level composition, and the hyperparameters of the RL agent, the procedural persona reflects
only one of those playstyles. We feel that the Developing Completionist matches the notion of a
“Completionist” character better than the procedural Completionist in Experiment I in Section 9.3.
Developing personas tackles this issue by offering a series of goals. As a result, a game designer may
utilize the developing persona to select the playstyle carefully she wishes to playtest.

Developing personas have the added benefit of supporting changing playstyles, which gives them an
edge over procedural personas. For example, in Experiment I of Section 9.3, the Developing Raider
killed the Monsters and then collected the Treasures. The Developing Raider begins the game as
a Monster Killer and, after meeting a criterion, transforms into a different persona —a Treasure
Collector—. These development sequences were discussed by Bartle [10], but they were impossi-
ble with a single utility function. As a result, this behavior displayed by Developing Raider was
absent in procedural personalities. Another critical feature of playtesting is the capacity to construct
play traces as though humans generated them. We used handcrafted utility functions in this study;
however, these utility functions could have been extracted from human playtest data using Inverse Re-
inforcement Learning [89]. This modification may aid the RL agent in producing a more human-like
playtest [5, 92].

76



We conducted experiments on the Doom environment in addition to the GVG-AI environment (see
Section 9.3). We believe that our study is the first to playtest personas in a 3D environment. The
researchers [36, 56] used the MCTS RL agent to realize personas in 2D surroundings. Unfortunately,
MCTS would be a poor choice for 3D environments, and MCTS would underrepresent the persona.
As a result, we employed the PPO agent in Experiments III and IV in Section 9.3 because PPO is a
competent agent used by OpenAI [8]. Experiment III in Section 9.3 shows that the PPO agent correctly
realized the decision models of personas. We deduce that a player must kill a Monster to complete
this level based on the findings in Table 14. The level is the most difficult for Treasure Collector and
Developing Collector because they must slay a Monster to gather the Treasures. When we compare the
Developing Casual Completionist and Developing Completionist personas, we discover an essential
aspect of the game. The former never dies but only collects one Treasure, while the latter rarely
dies but gathers both Treasures. Based on this information, we may conclude that obtaining the second
Treasure results in the player’s death. Because the Developing Casual Completionist is more concerned
about losing her health, she considers collecting the second Treasure dangerous. Furthermore, when
the Killer and Developing Killer personas are compared, the latter dies more than the former. This
comparison reveals another aspect of this level. If a player enters a fight to kill Monsters, he or she
should kill as many as possible. Otherwise, this player, like the Developing Killer, will die. On the
other hand, the Developing Casual Completionist kills as many Monsters as a Monster Killer. This
indifference suggests that the game may not be demanding enough for a hardcore gamer.

Limitations & Challenges: The test state increased the number of states explored by our agents,
which creates an issue for tabular RL. However, the test state is considerably simple and requires less
than 2KB of space for Game C. Nevertheless, the solution for this problem is to use RL agents that use
function approximators such as DQN [55] or PPO [83].

The MGP-IRL algorithm is the most crucial component influencing human-like performance. We can
improve its greedy approach with dynamic programming, but this substitution will increase the time
required to develop a test objective. On the other side, we can instruct a human tester to test a game,
allow the tester to segment the trajectory, and then use MGP-IRL to determine the feature’s repeat
count, preferred direction, and rewards. This strategy, however, will apply to internal testing rather
than open beta testing. It is also worth noting that the weights suggested by IRL stabilize with the
quantity of data it analyses. This method requires that the tester repeats the same objective in several
runs.

Furthermore, if a tester discovers a bug, she will exploit it. When MGP-IRL attempts to structure
these trajectories, the exploited sequences are generalized to all scenarios. This generalization makes
it impossible to understand the tester’s actions. For example, if a tester discovers a wall through which
the avatar may pass, the tester tries to carry other objects, but human-like agents interpret this wall
as any other wall. As a result, the agent will try to engage with any wall. MPG-IRL generalizes the
fake wall as any wall. Consequently, the test goal extracted from this sequence will be ill-formed.
Furthermore, unlike Game B, Game C includes a free puzzle; thus, testers had different solutions to
this puzzle. Therefore, this behavior was neither easily caught nor easily duplicated.

We chose movable sprites over enemies because tester agents would check whether an enemy’s inter-
actions are correct with different sprites. Since the enemies act randomly, to observe the same interac-
tions, the tester agents should restart the game until they observe the desired behavior. Nevertheless,
this behavior is not relatable to a human tester.

77



However, all of our proposed methods rely on RL algorithms. As a result, if these agents cannot play a
game, we cannot utilize RL agents to test this game. Finally, APF performance is related to the success
of exploratory strategies. We encountered this issue while using Doom in our experiments. Doom’s
frames confused the CTS algorithm, causing it to fail to discriminate between states. However, ICM
successfully identified the states in Doom; consequently, we used APFICM in Doom. Nonetheless,
there may be scenarios where ICM fails, and we must employ an alternative exploration algorithm.

Finally, testing is complex for RL algorithms because the environment does not provide a clear goal
compared to the gameplay. As a result, the creation of test objectives becomes the responsibility of
game designers.
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CHAPTER 12

CONCLUSION & FUTURE WORK

This thesis focused on the problem of creating intelligent agents that play and test video games. We
presented three approaches to generating goals: developing persona, synthetic, and human-like agent.
Next, we employed RL agents to realize these goals on GVGAI and VizDoom environments. Further-
more, we introduced new methodologies to improve the testing capabilities of RL agents. For MCTS
tester agents, we compared several modifications while presenting a novel modification. Lastly, we
introduced Alternative Path Finder, which helps agents to discover unique ways of playing and testing
a game. We submitted all of the approaches mentioned in this thesis and published two journals and
one conference paper.

In our first paper, we were interested in the problem of creating tester agents. The game-playing
RL agents demonstrated that in arcade games [55], Go [85], StarCraft II [96], and Dota 2 [60], RL
agents can surpass humans. However, game testing agents were outdated compared to game playing
agents. We proposed a test state to capture and execute tester behavior in this regard. Additionally,
we provided two methods for creating test objectives: synthetic and human-like. The game scenario
graph served as the foundation for the synthetic test objectives. We further modified these objectives
to investigate the consequences of unanticipated game transitions. Using MGP-IRL, human testers’
acquired trajectory data is used to understand human-like test objectives. MGP-IRL extracted the tester
heuristic as attributes, which were then transformed into objectives. To play these test objectives, we
used MCTS and Sarsa agents. The agent was driven to various game states by these objectives, and
the agent produced test sequences. In order to assess whether the game acts as predicted, we executed
these sequences, and the automated test oracle verified the states and actions.

In the GVGAI environment, we tested with MCTS and Sarsa agents. Our findings demonstrated that
the test state aided in capturing the human tester heuristic even when the game contained faults and
allowed MCTS and Sarsa agents to play the game as testers. The synthetic agent outperformed the
baseline agent and the vast majority of individual human-testers and human-like agents. Furthermore,
when individual human-like agents work together, they may compete with the performance of synthetic
agents and human testers. We also looked into the bug detection capabilities of MCTS and Sarsa
agents. We discovered that Sarsa’s mean performance is better than MCTS’s. However, we also
discovered that MCTS’s stochasticity is advantageous in game testing. Furthermore, the cumulative
scores of all five MCTS run demonstrated that the human-like MCTS agent competes with humans.
Finally, the human-like agent with a likelihood threshold of 0.0 behaved similarly to the human testers,
thanks to our MGP-IRL method. We showed that these agents could successfully test unexplored
levels. Furthermore, the synthetic agent extends model-based testing by bringing the widely accepted
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agent notion in gaming to traditional test approaches. Additionally, once constructed, these bots can
test a game unlimited times, reducing the need for human testing.

In our experiments, the Sarsa agent outperformed the MCTS agent in game testing. We proposed
several modifications to improve the bug-finding capabilities of the MCTS agent. We looked at how
these modifications affected bug finding capabilities of MCTS agents. In this regard, we proposed
using transpositions, knowledge-based evaluations, tree reuse, MixMax, Boltzmann rollouts, and SP-
MCTS. We tested these modifications in three GVGAI games. Our synthetic and human-like test goals
were executed using MCTS to generate sequences later replayed in the game to check for problems
with our oracle. We used two alternative computational budgets, 40 and 300 milliseconds, to better
understand the effect of timing on these modifications. Our findings indicate that the modifications
are beneficial, but their effectiveness depends on the agent type. Our experiments revealed that MM-
MCTS and FE-MCTS performed better for the synthetic agent, although BR-MCTS had a better lower
bound score with a shorter sequence. For human-like agents, SP-MCTS outperformed FE-MCTS
within both computational budgets. Lastly, the FE-MCTS with a computational budget of 300ms
performed better than the other baseline MCTS.

Additionally, our most recent article proposed creating personas to enhance game playtesting. The
procedural persona approach [36, 56], which is frequently used while playtesting video games, was
replaced by our developing persona proposal. With the introduction of a multi-goal technique, which
served as the foundation for our developing persona, we could create different player archetypes that
were not conceivable with procedural persona. We contrasted procedural and developing persona in
GVGAI and Doom, two distinct environments. Our findings indicate that developing persona gives the
game designers access to more in-depth and distinctive game information. As a result, we concluded
that game designers might use developing personas to learn more about the game during playtest-
ing. Finally, we demonstrated how state-of-the-art RL algorithms might be used to expand automated
playtesting to 3D environments.

On the other hand, even though we developed several novel methods for playtesting and game testing,
all of our methods were based on RL algorithms. The objective of RL algorithms is to determine the
optimum course of action given a state; consequently, the RL algorithms are quite likely to produce
the same trajectories. However, human playtesters might attempt other paths after testing a certain
trajectory. The RL literature has progressed from DQN [55] to PPO [83], and agents were able to
overcome humans in games that were previously considered to be impossible [85, 96, 60]. However,
as humans, we usually play games for amusement, and we may even play some of these games several
times. When we play these games again, we are aware of our previous strategies, so we strive to play
differently to enjoy ourselves. However, advancements in RL algorithms ignore this aspect of human
gameplay. We proposed the Alternative Path Finder to allow the agents to find alternative ways to play
the same game. We tested APF in GVGAI and Doom environments and demonstrated that it ensures
the discovery of a unique path. APF might be used for playing and testing games, even though we only
tested it for playtesting. We see this as one of our most significant contributions to RL.

In the future, we may utilize a PPO agent to play our synthetic and human-like test objectives and
APF to expand state coverage. Furthermore, we may extend our game testing to 3D environments
using Doom [44] and Minecraft [43] environments. This future work will incorporate the method-
ologies we proposed in this thesis. Additionally, we might utilize a neural network to record which
actions are performed rather than recording them on a test state. This information might be stored
using an architecture similar to APFICM. The advantage of this enhancement is that it allows the test
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state to be scaled to more complicated games. Furthermore, compared to typical game-playing trajec-
tories, testers’ test trajectories are more complicated and chaotic. Because of this, we want to make
our MGP-IRL more resistant to random actions and enhance the internal IRL algorithm with more
sample-efficient approaches [84]. Lastly, in the Doom environment, we used an LSTM layer in PPO
architecture to play in a POMDP. Therefore, there is a possible improvement for APFICM by substi-
tuting the linear layer with an LSTM layer. This substitution will help APFICM to distinguish actions
selected in succession. As a result, APFICM will learn to separate paths rather than separate actions.

Additionally, we rely on RL and exploration methods to solve the task of testing the game. However,
depending on the chosen environment, these methods may fall short or use a larger computational
budget to realize the given goal. We can amend this problem by utilizing curriculum learning [57].
In curriculum learning, a set of mini-tasks are generated in sequence, and the agent is trained with
these mini-tasks. Afterward, the knowledge learned from these mini-tasks is transferred to the actual
task. Furthermore, we can use an automated goal generation framework [33] to generate mini-goals
that guide the agent in the environment. These mini-goals have an appropriate difficulty; therefore, the
agent’s policy is improved.
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