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ABSTRACT 

AUGMENTING A TURKISH DATASET FOR SPAM FILTERING 

USING NATURAL LANGUAGE PROCESSING TECHNIQUES 

Aksoy, Ayşenur 

MSc., Department of Cyber Security 

Supervisor: Prof. Dr. Banu Günel Kılıç 

Co-Supervisor: Assoc. Prof. Dr. Cengiz ACARTÜRK 

August 2022, 85 pages 

 

 

Today, how we communicate is altering as a consequence of the evolution of 

the internet. Since one of the main communication ways of the internet is e-

mail systems and they are easy to use, cheap and fast, and have a wide user 

base, they have also become a broad environment for malicious actors to act 

within. Correspondingly, spam e-mails, defined as any kind of unwanted, 

unwelcomed e-mails sent in bulk, are one of the main tools for these malicious 

actors. Even if there is not yet a definitive way to stop spam e-mails, filtering 

techniques are improving all the time. In time, spam filtering became one of 

the most commonly used text classification issues in Natural Language 

Processing, too. There are multiple ways to improve the classification success 

of the machine learning methods, one of them is data augmentation. 

Augmentation serves to generate more unique data from the dataset at hand 

and improves the functionality and accuracy of machine learning models. A 

machine learning model improves if the dataset is sufficient and large enough. 

In this study, we examined the effects of semantically augmenting a Turkish 

dataset on the accuracy of spam filtering methods and observed efficient 

results that can be used in research. 

 

Keywords: Spam filtering, NLP on Turkish, Data Augmentation 
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ÖZ 

DOĞAL DİL İŞLEME TEKNİKLERİ KULLANILARAK SPAM 

FİLTRELEME İÇİN TÜRKÇE VERİ KÜMESİNİN GENİŞLETİLMESİ 

Aksoy, Ayşenur 

Yüksek Lisans, Siber Güvenlik Bölümü 

Tez Yöneticisi: Prof. Dr. Banu Günel Kılıç 

Eş Tez Yöneticisi: Doç. Dr. Cengiz ACARTÜRK 

Ağustos 2022, 85 sayfa 

 

 

Günümüzde, internetin evriminin bir sonucu olarak iletişim kurma şeklimiz 

de değişiyor. İnternetin temel iletişim yollarından biri olan e-posta sistemleri; 

kullanımının kolay, ucuz ve hızlı olması ve geniş bir kullanıcı kitlesine sahip 

olması, kötü niyetli aktörlerin de içinde hareket edebileceği geniş bir ortam 

haline gelmiştir. Buna bağlı olarak istenmeyen ve toplu olarak gönderilen her 

türlü e-posta olarak tanımlanan spam e-postalar, internetteki kötü niyetli 

aktörlerin başlıca araçlarından biri haline gelmiştir. İstenmeyen e-postaları 

durdurmanın henüz kesin bir yolu olmasa da, filtreleme teknikleri her zaman 

gelişmeye devam etmektedir. Dolayısıyla, istenmeyen e-posta filtreleme, 

Doğal Dil İşleme'de de en sık kullanılan metin sınıflandırma konularından 

biri haline geldi. Bu amaçla kullanılan makine öğrenme yöntemlerinin 

sınıflandırma başarısını artırmanın ise birden çok yolu vardır ve veri artırma 

bunlardan biridir. Artırma, eldeki veri kümesinden daha fazla veri ve örnek 

oluşturmaya hizmet eder ve eğitim veri kümelerine benzersiz örnekler 

ekleyerek makine öğrenme modellerinin işlevselliğini ve doğruluğunu artırır. 

Veri kümesi yeterli ve yeterince büyükse, makine öğrenme modeli de daha 

iyi performans gösterir. Bu çalışmada, Türkçe bir veri setini anlamsal olarak 

büyütmenin spam filtreleme yöntemlerinin doğruluğuna etkisini inceledik ve 

araştırmalarda kullanılabilecek verimli sonuçlar gözlemledik. 

 

Anahtar Sözcükler: Spam filtreleme, Türkçe’de NLP, Veri Artırımı 
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CHAPTER 1 

INTRODUCTION 

The growth of the internet is changing the way we communicate and interact. 

It also gives malicious actors a broad environment to act within. Spam, which 

is one of the main tools for malicious actors on the internet, is defined as “The 

abuse of electronic messaging systems to indiscriminately send unsolicited 

bulk messages.” by NIST (NIST Joint Task Force, 2020).  As of today, most 

malicious domains, about 60%, are associated with spam campaigns (CISCO 

Secure, 2022). Adversaries can conduct non-targeted phishing, such as mass 

malware spam campaigns (ATT&CK Matrix for Enterprise, 2020). Phishing 

frequently takes the form of a spam e-mail combined with a malicious replica 

of an official website. In order to prevent internet users from getting spam e-

mails, internet and e-mail providers started to use filters to distinguish 

between regular e-mails and spam e-mails according to a set of rules. Among 

all the techniques developed for detecting and preventing spam, filtering the 

e-mails is one of the most essential and prominent approaches (Ahmed et al., 

2022). However, the rise in the volume of spam e-mails has created an intense 

need for the development of more dependable and robust anti-spam filters. 

Machine learning methods have been used to improve the spam filters and 

they are considered to be successful on it (Dada et al., 2019). Today, learning-

based classifiers are commonly used for spam filtering. 

The idea that computers can understand ordinary languages and hold 

conversations with human beings was predicted in a classic paper by Alan 

Turing in 1950 (Turing, 1950) as a hallmark of computational intelligence. 

Natural Language Processing (NLP), a subset of machine learning, enables 

computer systems to analyze and interpret texts. NLP provides 

communication between human language and computers. There are multiple 

uses and purposes of NLP and text classification is one of them. Spam 

filtering is one of the key applications of text classification. 

To be able to use text classification for spam filtering, a large e-mail dataset 

is needed. A classifier model must be trained to label the dataset accordingly. 

Since English is known and accepted as the leading language on the internet, 

text-oriented studies are conducted mostly on English text. There are 

numerous studies on the English language and text in English and most of the 

NLP problems are considered solved and closed for English. However, in 

non-English languages, problems need unique approaches according to the 

morphology of the target language and Turkish also needs different 

approaches. 
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Recently, there has been a gap in the availability of publicly accessible e-mail 

datasets in Turkish for the usage of researchers to develop spam filtering 

methods systematically. To solve this problem, we created an e-mail dataset 

for the purpose of spam filtering in Turkish with Natural Language 

Processing techniques. We synthetically augmented the dataset according to 

word similarities and context. We prepared this dataset to serve researchers 

for them to conduct their studies in the field. 

 

1.1. Motivation 

Spam e-mail, also known as Unsolicited Commercial E-mail, is unsolicited 

and questionable mass-e-mailed content.  

Between October 2020 and September 2021, global daily spam volume 

reached its highest point in July 2021, with almost 283 billion spam e-mails 

from a total of 336.41 billion sent e-mails. As of August 2021, this number 

dropped to 65.50 billion (CISCO Secure, 2022).  

In the graphics in Figure 1, we can observe spam e-mails are always close in 

numbers to the regular e-mail traffic. It is also seen that the growth of e-mail 

traffic and spam e-mail traffic is directly proportional. 

 

 

Figure 1: Average daily spam volume worldwide from October 2020 to September 2021 (in billions)  

The most common method of spam is sent via e-mail, while it can also be 

distributed via text messages, social media, or phone calls. Adversaries can 

conduct non-targeted phishing, such as in mass malware spam campaigns. 
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Spam is inconvenient for internet users, consuming time and resources but 

spam is also a cybersecurity threat. According to annual report from 

Kaspersky lab, in 2021, cybercriminals involved in the creation and 

distribution of spam and phishing tried to lure users using a variety of topics 

such as lucrative investments, online streaming of global movie and TV 

premieres and themes related to restrictions, requirements (Kaspersky, 2022). 

While people think they can recognize spam even if it is not filtered as spam, 

spammers, those that send spam messages, regularly update their methods 

and messages to trick potential victims. In most cases, cyber-attackers choose 

the people as their target, not the systems, since people are easier to 

overcome.  It can be said the most common method to target people is by 

sending spam e-mails and attaching phishing links to them based on the fact 

that phishing attacks account for more than 80% of reported security 

incidents. Phishing and similar fraud were the most prevalent cybercrime 

reported to the U.S. Internet Crime Complaint Center in 2021 (Federal Bureau 

of Investigation, 2021). Therefore, people are all constantly under the 

possibility of an attack from cybercriminals. 

Because of these reasons, spam filtering has become an important matter and 

there have been a lot of attempts to solve it. In machine learning, spam 

filtering has also become one of the most popular text classification problem. 

In recent years, since the traditional rule-based filtering became lacking; word 

vector-based spam detection/filtering became a hot issue. Word vectors are 

basically the numeric equivalents of the words which are used for processing 

words. The studies done on this subject are widely focused on English since 

English is the "de-facto" language for technology and the internet. Google 

and Stanford University stated in joint research that e-mails attack are mostly 

in English. But the same research revealed a rise in phishing attacks which 

are not in English since the victim's language has an important role. Research 

stated that 78% of the e-mails targeting Japanese users getting the e-mails in 

Japanese language and 66% of the attacks that targeted users in Brazil were 

written in Portuguese (Simoiu et al., 2020). This leads the process of spam 

filtering with machine learning to be language-based too. In text-based 

academic research about this topic, Turkish databases for spam are usually 

small sized, collected personally and/or case-specific. This is why we looked 

for ways to get a larger dataset in Turkish synthetically and decided to 

augment the text data with NLP techniques to achieve that. 
 

What is Augmentation and Why Augment the Data? 

Data augmentation means synthesising new data from the data we already 

have. It means applying transformations to the original labelled data to create 

new data for the training. Hence, if we have data (X, Y), X is a sentence and 

Y is its corresponding label. In our context, X is the e-mail and Y is the spam 

or ham (non-spam) e-mail label. 
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As a part of data augmentation, X is transformed and X’ is created out of it, 

and the label is preserved. 

 (X, Y) ——T——> (X’, Y) 

Since Y is still preserved with this transformation the e-mails X and X’ have 

to be semantically similar which means it should not change the meaning of 

the original sentence. Thus, even though X’ could be syntactically different 

compared to X, they should semantically mean the same thing. (Nithilaa 

Umasankar, 2021). 

This is a concept that is used for a variety of data, such as sounds, images, or 

text. But since texts have to have complete meanings, unlike images which 

can have a meaning even if we cut them into half, text augmentation is 

considered one of the most difficult augmentation areas. Usually, the 

augmented data is similar to the existing data. Since the dataset is crucial for 

all machine learning problems, small or imbalanced datasets can become the 

actual problem of the process. And other than collecting more data, the 

solution for this seems to be augmentation. 

Augmentation serves the purpose of generating more data and more examples 

from the dataset at hand without the effort to collect more relevant and usable 

real data. By creating additional and distinct instances for training datasets, 

data augmentation helps machine learning models perform better and produce 

more accurate results. A machine learning model improves if the dataset is 

large and sufficient. Reduced overfitting is one of the main benefits of data 

augmentation. For instance, a classification model trained on just three 

paragraphs will only be able to identify and categorize those specific texts 

and the data's generalizability will be improved by a few adjustments. 

 

1.2. Research Question 

In the literature, there are only a few e-mail datasets in Turkish to be used in 

spam filtering machine learning models. Since the cyber attackers started to 

specifically adjust to receivers’ language, it became more important to have 

more improved tools to handle spam traffic in Turkish as well. 

In this study, our research questions are as follows: 

 Can Turkish e-mail data be augmented semantically, with text 

representation methods in NLP? Text representation is converting words into 

numbers for machines to understand and decode patterns within a language. 

We aim to augment an e-mail dataset and create a larger dataset that is also 

meaningful in Turkish to use for spam filtering and text representations are 

needed for that. There are multiple ways of text representation in NLP. It can 

be done in different ways, such as frequency-based models like one-hot-

encoding, count vector, co-occurrence, or TF-IDF. By using one-hot 
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encoding, categorical variables can be transformed into a format which 

machine learning algorithms can use to make more accurate predictions. In 

one hot encoding, words can be easily digitized; but when two different words 

are given, it is not possible to discover the relationships between these two 

words. It basically works in one way and requires a lot of memory. Next in 

order, count vectors are vectors created according to the frequency of words 

in the document and co-occurrence is a matrix which holds the number of 

words appearing together. It also requires large memory space and a lot of 

processing power. TF-IDF takes into account not only the rate of occurrence 

of words in the document but also the frequency of occurrence of a word in 

other documents. If it is a word or phrase which appears frequently in all 

documents, the TF-IDF value will be low. There are also content-based 

models such as word2vec. With word2vec, the key premise is that a word's 

meaning may be deduced from the company it keeps. Word2vec comes with 

two neural network architectures; CBOW (continuous bag of words) and 

Skip-gram. The destination word is predicted by CBOW using the nearby 

words as input. On the other hand, Skip-gram does the opposite job and 

predicts the words close to the input word of interest. There are also 

Transformers models (i.e. BERT, distilBERT, GPT), which are context-

based. BERT, distilBERT or GPT models can produce many word 

embeddings for a word which properly represent its context or its position in 

a text. We aim to use models that capture the content with its meaning and 

the context. 

 Is augmenting a dataset have an impact on the accuracy of spam 

filtering? The accuracy of text classification can be scored with different 

types of algorithms to measure the correctness of the machine learning model. 

Can we get a higher accuracy score with our augmented dataset for the text 

classification task of spam filtering? We hypothesize that the augmented 

dataset will provide improved accuracy to classify e-mails for spam filtering. 
 

1.3. Organization of the Thesis 

In this thesis, there are mainly four chapters that serve the purpose of forming 

an understanding of the conducted study. 

 Chapter 1 gives a short introduction to the study, and the motivation 

and gives out the research question, 

 Chapter 2 summarizes the background information needed for the 

process, gives out details about spam and spam as a cyber-threat, and the 

protection methods from it; the artificial intelligence/machine learning and 

natural language processing impacts on the spam issue in the perspective of 

our study, 
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 Chapter 3 presents the overall study process from collecting data to 

getting the results; it shows the steps of using different techniques like 

word2vec, BERT, GPT-2 to augment data semantically, 

 Chapter 4 discusses the results of the methods chosen to augment the 

dataset and compares the results with accuracy values, 

 Chapter 5 discusses the results of different augmentation techniques we 

used and their effects on the classification, specifies the limitations we came 

across and gives out some ideas as the future work of this study. 
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CHAPTER 2 

BACKGROUND INFORMATION AND LITERATURE REVIEW 

 

In this chapter, the terms, the main subjects, the methods, and the models used 

for our study will be described. First, we will start by describing e-mail, spam 

and why is spam a cybersecurity issue. Then we will explore spam filtering 

history and the machine learning application of spam filtering. Then we will 

focus on word embedding theories, and models for finding similar words 

according to cosine similarity and according to context. Then we will 

introduce the classification task in NLP. 

For the English texts, there are annotated datasets and different packages such 

as NLTK (Natural Language Toolkit), TextBlob, or spaCy available online. 

Part of text-based research of the English text is considered a closed issue. 

Even though the natural language processing in English has its problems too, 

it can be handled quickly as there is a large community handling the same 

problems and sharing results and experiences. On the other hand, when the 

language to be processed has more flexible word order and richer 

morphology, it needs different ways of pre-processing, some extra functions 

to implement, and more time to achieve the same significant accuracy as the 

English language. We will be explaining language-specific practices for the 

Turkish language and wrap the chapter. 

 

2.1. Understanding Spam and Why It Is a Cybersecurity Issue 

Electronic mail (e-mail) is a digital letter sent over the internet, which is an 

easy and cheap way to communicate. Globally, as of 2019, a staggering 293.6 

billion e-mails were sent each day and there are currently over 4 billion e-

mail users worldwide (CISCO Secure, 2022). 

 

An e-mail statistics report data shows the fact that the daily e-mail sent count 

has crossed 300 billion in 2020, with 319.6 billion in 2021, and a whopping 

333.2 billion e-mails sent per day in 2022. 
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This means more than 3.5 million e-mails are sent per second, and the number 

is still growing as can be seen in Figure 2 (The Radicati Group, 2019). 

 

Figure 2: E-mails sent and received in billions from 2017 to 2025 

Based on the research, it is estimated people will send and receive more than 

376 billion e-mails per day by 2025 according to the data collected so far. 

The same report shows e-mail traffic is growing over the years from 2015 to 

2019 in Figure 3. 

 

Figure 3: Daily e-mail traffic from 2015- to 2019 

E-mail accounts can be opened from various sites which are providing this 

service. E-mail is an efficient way of communication as it saves a lot of time 

and money. These aspects make it a common communication tool in 

professional and personal communication. Programs called MAILBOX on 

the Massachusetts Institute of Technology (MIT) computers back in 1965 are 

the first examples of e-mail. Even though there were some forms of e-mail, a 
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networked system was created by ARPANET and e-mail was invented in 

1972. The @ symbol is used because it was not in the names of the people. 

E-mails are defined as “username@computername”. 75% of ARPANET 

traffic was sent by e-mail within a few years. With the invention of the e-mail, 

the world has made its way to the internet from ARPANET (Leiner et al., 

2009). 

The broadband internet subscribers in Türkiye, which were around 6 million 

in 2008, reached 88.8 million as of the first quarter of 2022. The annual rate 

of increase in the total number of internet subscribers was 5.9% (BTK - 

Information and Communication Technologies Authority, 2022). 

Because it has a wide user base, is easy, cheap and fast, many companies 

popularly prefer e-mail systems to advertise, which results in unwanted 

advertisement or an active or passive attack type; spam. 

As of today, spam is a term well-known by internet users. Any kind of 

unwanted, unwelcomed messages which are sent digitally and in bulk can be 

counted as spam. It is defined as “The abuse of electronic messaging systems 

to indiscriminately send unsolicited bulk messages.” by NIST (NIST Joint 

Task Force, 2020). The first reported spam e-mail was sent by Gary Thuerk 

on May 3, 1978, to several hundred users on ARPANET. It was an 

advertisement for a presentation by Digital Equipment Corporation for their 

DECSYSTEM-20 products. In Figure 4 below, the history of digital spam can 

be seen (Ferrara, 2019). 

 

Figure 4: Timeline of the major milestones in the history of spam, from its inception to modern days 

 

Spammers use several kinds of ways to bulk-send their unwanted messages. 

Some spam e-mails might have marketing aims and some other types of spam 

messages can spread malware, trick people into divulging personal 

information or scare them into thinking they need to pay to get out of trouble. 

1978, ARPANET. The first 
reported case of spam e-
mail by Digital Equipment 
Corporation and circulated 
over 400 ARPANET users.

MID 1990s, THE E-MAIL 
EPIDEMIC,  Because of the 

spam e-mail traffic, 
platforms and ISPs start 

investigating spam filtering 
techniques.

1995, SEARCH ENGINES, 
Web content spam and link 
farms, the manipılation of 
web search result ranking

2000s, SOCIAL NETWORKS, 
the rise of social networks 
leads to new oppurtunities 

and wide reach for 
spammers.

2005, FAKE REVIEWS, Big e-
commerce companies fight 

the manipulation of product 
popularity by opinion spam

2010, SOCIAL BOTS, Millions 
of accounts operated by 
software populate social 

media to carry out nefarious 
spam campaigns

2016, FALSE NEWS, Spam 
websites are created 
delibaretly propogate 

disinformation news in 
politics, health and social 

issues.

2018+, AI SPAM, Since AI can 
manipulate reality, 

spammers try to manipulate 
AI to elicit behaviors of the 

users.
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Spam causes a lot of trouble to the internet community, large amounts of spam 

traffic between servers cause delays in the delivery of legitimate e-mail, 

sorting out the unwanted messages takes time and introduces a risk of deleting 

normal e-mail by mistake, and people with dial-up internet access have to 

spend bandwidth downloading spam e-mail. There is quite an amount of 

pornographic spam that should not be exposed to children. 

And last but not the least, spam can be an easy and powerful cyber-attack tool 

if it contains malicious links or asks for personal information. In a sample of 

more than 13 million e-mails identified as spam, more than 100,000 contained 

malicious attachments; nearly 1.4 million contained malicious web links. If 

opened, these attachments and links could infect the recipients’ devices with 

software that allows cybercriminals to remotely access them (Alazab & 

Broadhurst, 2017). Spam protection is considered one of the main protections 

against cyber-attacks according to NIST since it can be the starting point for 

multiple types of cyber-attacks (NIST, 2020). A spam e-mail can turn the 

receiver’s computer into a bot/zombie computer which can be used without 

their knowledge. Attackers can use the computer to create another mass spam 

e-mail campaign. 

In order to fight spam; multiple ways are proposed; legal measures like the 

anti-spam law introduced in the US (The CAN-SPAM Act: Requirements for 

Commercial Emailers, 2004) or social methods such as educating e-mail users 

about spam and also other methods like blocking the known IP addresses of 

spammers. At last, there is spam filtering and various methods of it. An 

absolute solution to spam e-mails is yet to be found, and automatic filtering 

methods are being evolved day by day to fight against spam. 

Spam filters abundantly block lots of spam e-mails but it remains a weight to 

the networks, e-mail servers, and overall internet. Given the astounding 

volume of spam that reaches e-mail inboxes, it is reasonable to believe there 

are global, structured, and virtual social networks of spammers. They target 

not only user e-mails but also those of entire nations and organizations. One 

of the tools in the informational war is spam (Nazirova, 2011). Even though 

the phrases "spam" and "war" have been used in the same context since 2003, 

(Gburzynski & Maitan, 2004; Weinstein, 2003) it is not until 2009 when the 

issue of spammers' social networks is discussed in academic studies. The 

method of spectral clustering is used in studies by Xu K.S., et al. to define 

and follow the social networks of spammers by tracking a set of spam 

communications gathered under project Honey Pot (Xu et al., 2009). They 

depict a spammer's social network as a graph with spammers as nodes, and 

they depict social connections between spammers as a corner between two 

graph junctions. 

Spam filtering system research and development are being done intensively 

worldwide. Numerous businesses and organisations, in addition to academic 

institutions, are looking into and providing various theoretical, practical, and 

legal methods for spam filtering. Several organisations, including academic 

labs (i.e. CSAIL MIT in the United States, Computer Laboratory Faculty at 
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Cambridge University in the United Kingdom), research centres (i.e. IBM 

Research Center), and private businesses (Microsoft, Symantec, Kaspersky's 

Laboratory) had a hand in this process. Many international organizations pay 

close attention to the issue at hand. In 2003, the IETF (Internet Engineering 

Task Force) established the ASRG (AntiSpam Research Group). There have 

been numerous worldwide symposiums, summits, and conferences on this 

subject (Nazirova, 2011). 

 

2.2. Artificial Intelligence and Machine Learning for Cyber Security 
 

For general understanding, we will briefly introduce some key factors of 

artificial intelligence (AI) and machine learning, their applications in cyber 

security, and the critical parts for our study. 

AI can be considered as the big picture. Its goal is to make it possible for 

computers to think as humans do, simulate human behaviour, and solve 

problems more quickly and effectively than people can. AI is capable of doing 

a wide range of functions, including planning, speaking, object detection, 

sound recognition, social interactions, and business transactions. Various 

techniques, including machine learning (ML), deep learning (DL), 

recommendation systems, text mining, predictive and prescriptive analytics, 

natural language processing, and predictive analytics, can be used to carry out 

tasks. 

Cyber security can be addressed from two sides in the terms of AI; AI can be 

a tool to optimize the cyber security solutions or AI systems can be exploited 

and need cyber security solutions to be protected (Li, 2018). 

Machine Learning is an approach to AI creation. It gives machines access to 

a large number of sample data and codes them to find patterns and make them 

learn on their own how to perform the task, rather than programming them by 

hand-coding software routines with a specific set of instructions to 

accomplish a particular task. 

There are multiple applications of AI and machine learning in cyber security, 

such as AI2; an artificial intelligence platform to predict cyber-attacks that 

have been developed by MIT Computer Science and Artificial Intelligence 

Laboratory (CSAIL) and PatternEx, CylanceProtect, which is an integrated 

information security threat prevention tool, which combines the benefits of 

artificial intelligence with information security controls to prevent malware 

infections, Darktrace, which is an information security solution, that can help 

detect and recognize emerging cyber threats that are able to avoid traditional 

information security protections, Amazon Macie that artificial intelligence 

provides tools for Macie to find, classify and protect sensitive data on 

Amazon Web Services (AWS), Deep Instinct, which is designed to protect 

organization’s mobile devices and services against known and unknown 
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malicious attacks in real-time or threat intelligence  solutions like IBM 

QRadar Advisor and so on (Vähäkainu & Lehto, 2019). 

Natural Language Processing (NLP) is the set of methods for making the 

human language accessible to computers (Eisenstein, 2018). NLP is a subfield 

of computer science, linguistics, and artificial intelligence. NLP is the area of 

AI-based deep learning that deals with the use of natural language in 

communication between people and machines. NLP offers a wide range of 

capabilities to improve human performance. NLP in risk and compliance may 

find standards and framework overlaps, data from the tech stack of a 

company, and threat feeds to find security flaws in your infrastructure. The 

ultimate goal of NLP is to "read," interpret, and comprehend language which 

is useful to the end-user. Contemporary approaches to natural language 

processing rely heavily on machine learning, which makes it possible to build 

complex computer programs from examples (Eisenstein, 2018).  

The relationship between AI, NLP, ML, DL, and Linguistics can be seen in 

Figure 5 (Banerjee, 2020). 

 

Figure 5: Relationship between AI, NLP, ML, DL, and Linguistics 

Cybersecurity experts use many automated tools and technologies based on 

NLP to find, test, and correct weaknesses in a company's infrastructure, 

monitor malicious content on the system and identify network vulnerabilities 

(Ukwen & Karabatak, 2021). 

There were multiple pieces of research on NLP and its use in the field of 

information security, such as the inventive study that identifies NLP use cases 

and applies theoretical and empirical ontological semantics (Atallah et al., 

2001) or research that argues why NLP should move to information security 

and assurance (Raskin et al., 2002). 

There are also multiple applications of natural language processing methods 

to be used for cyber security solutions; such as developing a multi-level 

ransomware detection framework (Poudyal & Dasgupta, 2020), and detecting 

social engineering attacks (Lansley et al., 2020). There were numerous other 
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studies on different areas of cyber security and natural language processing 

such as information security and assurance, information retrieval, forensics, 

file fragment classification, semantic knowledge representation, document 

clustering, intrusion detection, malware detection, malicious URL detection, 

phishing attack detection, ransomware detection, threat intelligence, DDoS 

(Distributed Denial of Service)  attacks detection, privacy-preserving, 

vulnerabilities detection and operation and log anomaly detection (Ukwen & 

Karabatak, 2021). 

There are also studies specifically focusing on the Turkish language to detect 

phishing attacks by URL (Buber et al., 2017), detecting Turkish phishing 

attacks with machine learning classifiers (Turhanlar, 2019) or filtering 

Turkish spam using LSTM techniques (Eryilmaz et al., 2020). 

In e-mail spam filtering, modern machine learning and natural language 

processing algorithms for spam filtering, as well as approaches for assessing 

and contrasting various filtering techniques, were reviewed (Blanzieri & Bryl, 

2008) and there is a study on the effectiveness of distinguishing spam from 

non-spam e-mails using word embedding and a pre-trained deep learning 

model (BERT) (AbdulNabi & Yaseen, 2021) or comparison between deep 

learning methods with traditional machine learning algorithms applied to 

spam e-mail detection by utilizing text representations from NLP (Srinivasan 

et al., 2020). And there was PhishNet-NLP for spam filtering, which 

combines context information with natural language processing techniques 

(Verma et al., 2012). 

We will use natural language processing as a tool for the spam protection 

process as well. 

 

2.3. Spam Filtering 

Even though an absolute solution to spam e-mails is yet to be found, filtering 

methods are being evolved day by day to fight against spam. Spam filters are 

created to identify incoming dangerous e-mails from attackers or unsolicited 

marketers. Spam filters abundantly block lots of spam e-mails but it remains 

a weight to the networks, e-mail servers, and overall internet. They used to 

work rule-based and they were only following a checklist. As the technology 

evolved, spammers also evolved their techniques and rule-based-only filters 

became incapable. The rise in the volume of spam e-mails has created an 

intense need for the development of more dependable and strong spam filters. 

Hence artificial intelligence-based methods have been asserted to improve the 

filtering process, it is also observed in conjunction with the rule-based 

filtering methods. In artificial intelligence-based methods, spam detection is 

mostly performed using machine learning algorithms and deep learning 

techniques (Karim et al., 2019). 

Even though the first spam message was delivered in 1978, it was not until 

1982 for it to be recognized as a problem in the academic literature (Denning, 

1982). The Bayes method, initially employed by Sahami et al in 1996 and 
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thereafter by other academics (Gabber et al., 1998; Hall, 1998; Sahami, 1996; 

Sahami et al., 1998) is the first mathematical tool applied to spam filtering 

systems. The foundation of Bayes' classifier is the well-known Bayes 

theorem, on which the first articles may be encountered as early as 1960 

(Fisher, 1960).  

For text classification, several machine learning techniques have been used 

(Apte et al., 1994; Dagan et al., 1997; Lewis et al., 1996). After being trained 

on manually categorized documents, these algorithms learn to categorize texts 

into predetermined categories based on their content. These kinds of 

algorithms have also been used to group e-mails into folders, thread e-mails 

(Lewis & Knowles, 1997), find relevant news articles (Faiz, 2006) and more. 

An attempt at using a machine learning algorithm for anti-spam filtering has 

been made by Sahami (Sahami et al., 1998). Sahami et al. reported 

outstanding precision and recall on unseen messages after training a Naïve 

Bayesian classifier (Duda & Hart, 1973) on manually classified valid and 

spam messages. It may come as a surprise that text classification can be useful 

in anti-spam filtering since, unlike other text categorization tasks, the act of 

mass mailing a message without reading it first, rather than its content, 

constitutes spam. However, it appears that spam's language is a different 

genre, and since spam communications frequently discuss subjects which are 

not covered in valid messages, it may be able to train a text classifier for anti-

spam filtering. 

Naïve Bayes Classifier has been utilized to solve a wide range of problems, 

from the classification of texts in news organizations to the initial diagnosis 

of illnesses in medicine. The presence or lack of words in the text is typically 

chosen as a characteristic for the situations where Naïve Bayes Classifier is 

applied. In the case of e-mail filters that classify messages as spam, the header 

(fields holding generic message details such as the subject, sender, and 

receiver), topic, and body (the actual contents of the message) of the e-mail 

are all taken into consideration.  

Then the method of overlapping probability proposed by R. Fisher in 1950 as 

in Gary Robinson's paper (Robinson, 2003) was used for filtering purposes in 

a statistical approach. Robinson offered to determine both the likelihood that 

an e-mail is "legitimate" and its likelihood of being spam in order to detect 

spam. After this, some other works addressed the use of Markov chain 

PageRank (Boldi et al., 2005) and Hidden Markov Model were the following 

directions (Gordillo & Conde, 2007). A brand-new technique for digitally 

analysing textual e-mails for spam identification can also be seen in the 

literature (Korelov et al., 2006). In some following works, the application of 

clustering analysis techniques to the issue of separating authentic e-mails 

from spam is discussed (Hsiao & Chang, 2008; Lee et al., 2010). 

In an evolutionary situation made possible by the usage of filters (Goodman 

et al., 2007), spammers use tools (Stern, 2008) with a variety of strategies 

designed particularly to reduce the number of messages which are detected. 
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The earlier types of spam filtering techniques are created to identify incoming 

dangerous e-mails from attackers or unsolicited marketers. Since spammers 

constantly change external signs of e-mails to skip spam filtering systems, 

there arises a need for an adaptive filtering system, which should have the 

ability to react quickly to the changes and provide fast and qualitative self-

tuning. The course of action to be done once they have been located typically 

depends on the filter's application setting. They are typically delivered to a 

folder which only contains messages tagged as spam if used by a single user 

as a client-side filter, making it easy to identify these messages. A mail 

server's filter, on the other hand, may handle messages from many users and 

either mark them as spam or remove them. Another potential is a collaborative 

environment, where filters operating on several machines share knowledge of 

the messages they have received in order to function better. 

The rise in the volume of spam e-mails and the change in the techniques of 

spammers have created an intense need for the development of more 

dependable and strong spam filters. Since 2009, starting with the publication 

of Cortez et al.  (Cortez et al., 2009) the claim that symbiotic data mining is 

a combination of collaborative filtering and content-based filtering has been 

coming to reality.  

Automatic filtering rules and e-mail categorization utilizing machine learning 

techniques like Naïve Bayesian classification, Support Vector Machine, K 

Nearest Neighbour, and Neural Networks are typically created using Content-

Based Filtering. In order to filter incoming e-mail spam, this technology often 

analyses terms, the incidence, and distribution of words and phrases in e-mail 

content (Christina et al., 2010). 

There is Previous Likeness Based Spam Filtering Technique; it classifies 

incoming e-mails based on how closely they resemble stored examples using 

memory-based, or instance-based, machine learning techniques (e.g. training 

e-mails). A multi-dimensional space vector is created using the e-mail's 

properties, and new instances are plotted as points using this vector. The most 

well-liked class of its K-closest training instances is then given the fresh 

instances (Sakkis et al., 2001). It filters spam e-mails using the k-nearest 

neighbour (kNN) algorithm (Mucherino et al., 2009). 

Another method is Adaptive Spam Filtering Technique. This method 

classifies spam into distinct categories in order to detect and filter it. It 

separates an e-mail corpus into different groups, each has a unique text. Each 

incoming e-mail is compared to each group, and a percentage of similarity is 

calculated to determine the most likely group to which it belongs (Pelletier et 

al., 2004). 

There is also Heuristic or Rule-Based Spam Filtering Technique, which 

compares a large number of patterns, most of which are regular expressions, 

against a selected message using pre-made rules or heuristics. A message's 

grade is raised when there are several related patterns. If any of the patterns 
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did not match, it subtracts from the score. Any communication that receives 

a score beyond a certain level is classified as spam; otherwise, it is considered 

to be authentic. While certain ranking criteria do not vary over time, others 

need to be updated often in order to successfully combat the threat of 

spammers who constantly add new spam messages which can easily evade 

detection by e-mail filters (Christina et al., 2010). SpamAssasin is a good 

example of a rule-based spam filter (Mendez et al., 2006). 

One of the widely used spam filtering techniques is Case Base Filtering. First, 

using a collection approach, all e-mails spam and non-spam/ham are collected 

from each user's e-mail. Then, utilizing the client interface, feature extraction, 

selection, grouping of e-mail data, and process evaluation, pre-processing 

stages are carried out to change the e-mail. After that, the information is 

divided into two vector sets. The machine learning approach is also used to 

test and train datasets to determine if incoming e-mails are spam or not 

(Christina et al., 2010). 

Different e-mail spam classification approaches have been proposed by 

numerous researchers and academics, and they have been utilized 

successfully to divide data into groups. 

The most successful technique applied in filtering spam is the content-based 

spam filtering approach which classifies e-mails as either spam or ham 

depending on the data that made up the content of the message. Bayesian 

filtering, SVM, kNN classifier, neural networks, AdaBoost classifier, and 

other methods are examples of this methodology. Systems based on the 

machine learning approach facilitate learning and adjustment to recent 

dangers posed to the security of spam filters. They also have the capacity to 

counter curative channels spammers are using (Dada et al., 2019). 

Before raising our research questions about Turkish spam data, we scanned 

the literature for Turkish e-mail datasets for spam filtering. One study defines 

adaptive anti-spam filtering for Turkish (Özgür, 2003), also there were time-

efficient methods on Turkish spam data (Çiltik & Güngör, 2006), and low 

time complexity methods were also studied. The dataset is formed from the 

messages of one of the authors since there was no dataset for Turkish, and 

640 ham, and 640 spam messages were used for balance (Güngör & Çiltik, 

2007). 

There were also studies on the classification of spam with different methods, 

like the artificial immune system. The dataset in the study was created from 

spam sent to the contact e-mail address added to the homepage of the official 

website of Siirt University, and Turkish e-mails sent to personal e-mail 

addresses. There are 603 regular and 540 spam mails in total (Özdemı̇r et al., 

2013). The e-mail dataset to be used for spam filtering had to be recollected 

and processed than in most studies. 
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Text classification categorizes the raw text into a group of words. It allows us 

to label the unstructured texts with their relevant tags which are predicted 

from a set of predefined categories.  Using NLP, text classification can 

automatically analyse text and then assign a set of predefined categories or 

tags based upon its context. NLP can be used for topic detection, sentiment 

analysis, and language detection. One of the most common uses of text 

classification is spam filtering and it is widely used by service providers. E-

mail spam filtering is an important issue in network security and it has also 

become important in machine learning techniques. Several machine learning 

algorithms have been employed for e-mail spam filtering, including 

algorithms which are considered top-performers in Text Classification (Rathi 

& Pareek, 2013) like Boosting algorithm, Support Vector Machines (SVM) 

algorithm (Kumar et al., 2016) and Naïve Bayes algorithm (Feng et al., 2016) 

XGBOOST (Chen & Guestrin, 2016) and K Nearest Neighbour (KNN) 

(Mucherino et al., 2009). 

Naïve Bayes classifier that uses Naïve Bayes algorithm to classify has a very 

important role in the process of filtering spam e-mail. The quality of 

performance Naïve Bayes classifier is also based on datasets. In the research 

done by Nurul Fitriah Rusland et al in 2017, it can be seen a dataset that has 

fewer instances of e-mails and attributes can give good performance for Naïve 

Bayes classifier (Rusland et al., 2017). 

Naïve Bayes is a classification technique based on Bayes’ Theorem with a 

conjecture of independence amid predictors (Bayes, 1763). Bayes’ Theorem 

is simply a mathematical formula which is used for calculating conditional 

probabilities. Conditional probability is a measure of the probability of 

something occurring given that another thing has occurred. 
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The formula of Bayes’ Theorem as in Figure 6, tells us how often c happens, 

given that x happens, written P(c|x) also called posterior probability, when 

we know: how often x happens given that c happens, written P(c|x) and how 

likely x is on its own, written P(x) and how likely x is on its own, written 

P(x). 

 

Figure 6: Bayes Theorem Formula 

Posterior Probability: Probability of c occurring given evidence of x already 

occurred. 

Likelihood: Probability of x occurring given evidence of c already occurred. 

Class Prior Probability: Probability of c happening. 

Predictor Prior Probability: Probability of x happening. 

 

In order for the algorithm to calculate the likelihood that a text belongs to a 

category, any vector used to represent a text must include information about 

the probabilities that particular words will appear in texts belonging to that 

category. Since it is based on independent probabilities; it is possible to obtain 

successful results, even when there are limited computational resources and 

a small dataset. 

Support Vector Machines (SVM), which, like Naïve Bayes, requires little 

training data to begin producing reliable results. But SVM needs more 

computing power than Naïve Bayes. In essence, SVM creates a "hyperplane" 

or line that separates a region into two subspaces. Vectors (tags) that are 

members of one group are found in one subspace, whereas those that are not 

members of that group are found in another subspace. The hyperplane with 

the greatest distance between each tag is the ideal hyperplane. 
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The basic workflow of text classification in machine learning can be seen in 

Figure 7. 

 

Figure 7: Text classification task on spam filtering 

 

Since spam filtering is a text classification problem in the machine learning 

approach, it requires a classifier to label the e-mail data from the input dataset 

as ham or spam. 

In machine learning problems, the quality and the quantity of data are crucial 

and for these reasons we come back to our research question, to be able to get 

more qualified data from a considerably small set of data would be the 

solution for some machine learning cases. 
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In practice, the training step can be replaced by using a pre-trained model 

which is applicable to the machine learning problem at hand. 

Machine learning algorithms are usually grouped by their learning method as 

follows; Supervised Machine Learning, Unsupervised Machine Learning, 

Semi-Supervised Machine Learning, and Reinforcement Machine Learning. 

These groups are formed by how the algorithm can model a problem based 

on its interaction with the input data which can also be called environment or 

experience. In our study, we will be using supervised machine learning 

methods due to our problem to solve. 

 

2.4. Language Modelling and Augmentation in Natural Language 

Processing 

Natural Language Processing (NLP) is the set of methods for making the 

human language accessible to computers (Eisenstein, 2018). Contemporary 

natural language processing techniques mainly rely on machine learning 

models which enable the creation of complicated computer programs and 

machine learning models need some kind of quantitative representation for 

their calculations in order to process words. Developing meaningful 

representations of text has been one of the primary goals of NLP since its 

start. Text representation is the process of representing the text as numbers so 

that computers can work on them. Depending on the problem to be resolved, 

the text in question can be a document, a sentence, or a word. 

Text representations in NLP systems are applied in increasingly flexible and 

task-agnostic ways for downstream transfer. First, single-layer 

representations such as word2vec and GloVe were learned using word vectors 

(Mikolov et al., 2013; Pennington et al., 2014) and fed to task-specific 

architectures, then RNNs with multiple layers of representations and 

contextual state were used to form stronger representations (Dai & Le, 2015; 

Peters et al., 2018)  which are applied to task-specific architectures, and more 

recently pre-trained recurrent or transformer language models (Vaswani et al., 

2017) have been directly fine-tuned, entirely removing the need for task-

specific architectures (Brown et al., 2020). 

We will be mentioning some of the techniques that are relevant to our work. 

 

2.4.1. Frequency-based Representations 

One-hot-encoding: One hot encoding is a process by which categorical 

variables are converted into a form that could be provided to machine learning 

algorithms to do better predictions. In one hot encoding, while words can be 

easily digitized, when two different words are given, it is not possible to 

extract the relationships between these two words. Since there are as many 
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vector sizes as the number of words, there are too many "0"s in the vector. It 

requires a lot of memory. 

Count vector: They are vectors created according to the frequency of words 

in the document. 

TF-IDF: TF-IDF takes into account not only the rate of occurrence of words 

in the document but moreover the frequency of occurrence of a word in other 

documents (Ramos, 2003). If it is a word or phrase that appears frequently in 

all documents, the TF-IDF value will be low. Texts are converted into vectors 

using the bag of words technique in text categorization (Thorsten Joachims, 

1998). Despite the fact that TF-IDF BoW (bag of words) representations 

assign weights to various words, the word meaning cannot be captured by 

them. 

Co-occurrence: It is a matrix that holds the number of words appearing 

together. It requires large memory space and processing power. 

Bag of Words: This method gives each word that appears in the text a special 

token, typically a number. 

 

2.4.2. Word Embeddings 

The fact that the vocabulary size grows together with the size of the vector 

representation of texts is a noticeable disadvantage of the methods mentioned, 

in addition to their inability to capture word semantics. As a result, a vector 

with many zero scores is produced. This vector is referred to as a sparse vector 

or sparse representation, and it requires more memory and processing 

resources during modelling. Word embeddings use dense representations to 

reduce dimensionality and use contextual similarity to offer a more expressive 

representation. 

Word Vectors: Word embedding methods learn real-valued vector 

representations for a predetermined fixed-size vocabulary which has been 

obtained based on a text. 

The learning process can work in some parts in combination with a neural 

network model (text classification) or as an unsupervised process using 

document statistics. 

Cosine Similarity: Cosine similarity measures the similarity between two 

vectors of an inner product space. It is measured by the cosine of the angle 

between two vectors and determines whether two vectors are pointing in 

roughly the same direction. It is often used to measure document similarity in 

text analysis (Han et al., 2012). 
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2.4.2.1. Similarity-based Word Embedding Methods 

Word2vec 

Word2vec is an unsupervised and prediction-based model which represents 

words in vector space. It is an unsupervised learning technique to learn 

continuous representations of words that have one input, one secret layer and 

one output. It is developed by Google researcher Tomas Mikolov and his team 

in 2013  (Mikolov et al., 2013). The biggest advantage of the Word2vec 

model is that the closeness between the words is not lost due to the conditional 

probability principle working logic according to the positions of the words in 

the sentence. 

 

CBOW (Continuous Bag of Words) and Skip-gram 

Word2vec works in two ways; CBOW (Continuous Bag of Words) and Skip-

gram. We can see Figure 8 to understand CBOW and Skip-gram (Mikolov et 

al., 2013). 

 

Figure 8: The CBOW and Skip-gram models 

These two methods generally work similarly but they have different kinds of 

inputs and outputs. When creating word vectors, there are some 

hyperparameters such as “window size” or embedding size. Window size 

remarks how many words there must be around the target word and 

embedding size indicates how many dimensions of a vector each word has to 

be defined with. This also corresponds to the number of neurons on the secret 

layer.  
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In the CBOW model, the words not in the centre of the window size are taken 

as input and the words in the centre are tried to be predicted as output, while 

in the Skip-gram model, the word in the centre is taken as input and the words 

which are not in the centre are tried to be predicted as output. This process 

continues until the sentence ends. These operations are applied to all 

sentences and thus, mapping is applied to the unlabelled data we have at the 

beginning and then it becomes ready to train. 

 

 

Figure 9: Word2vec Mechanism 

The hidden state shown in red in Figure 9 can maintain information about the 

previous word in the sentence. 

 

FastText 

FastText is an extension of Word2vec and a library in the gensim structure 

developed by Facebook AI Research team (Joulin et al., 2017) . Instead of 

inputting individual words to the neural network, fastText splits words into 

"n-grams" based on several letters. 

For example, for the word apple - “elma”, the tri-grams should be: “elm” and 

“lma”. In the n-gram expression, n represents the number of repeats. In other 

words, the n expression here provides how many times the word would be 

divided. It allows us to understand how much of a word or letter. 

In fastText, some words can be expressed using n-grams, even though they 

are not in the training dataset. Since the number of n-grams will be many 

times higher than the number of words, the training period is also extended. 

On the other hand, it can express words which are found in small numbers in 

documents better than Word2vec, it is stated that it is faster than other 

methods and it supports Skip-gram with CBOW. 

There are pre-trained fastText models for many more languages than any 

other embedding algorithm since it needs less data than others for training. 
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Glove 

GloVe, The Global Vectors for Word Representation, is a word2vec 

extension developed by Stanford as an open source (Pennington et al., 2014). 

The unsupervised algorithms of Glove are based on the statistics of the data. 

Models such as Skip-gram and CBOW capture semantic information but do 

not use collaborative statistics. Although matrix parsing methods use these 

statistics, they cannot capture semantic relationships. The “GloVe” model 

aims to solve this problem by creating a new objective function using 

probability statistics. The GloVe model's fundamental principle is to embed 

words in meaningful vectors by concentrating on the likelihood that words 

will occur together in a corpus of texts. In other words, GloVe examines the 

frequency with which two terms are used together throughout the whole 

corpus of texts. 

 

2.4.2.2. Transformer 

The idea of training a different language model to create better contextual 

word representation has been very effective in many NLP tasks, however, 

they have their disadvantages such as being difficult to train or parallelize, 

having short-term memory etc. The Attention mechanism introduced in the 

work by Vaswani, A. et al. in 2017 aimed to overcome most of these 

problems. The other NLP models usually capture all the information in the 

input sentence -the details of objects, how objects are related to each other 

etc. in an intermediate state and then use this intermediary information and 

express it in the output. The size of the vector used for this intermediary state 

before starting to decode the output sequence is fixed. In this entire process, 

the intermediate stage is crucial. The accuracy of the output from the decoding 

process depends on its capacity to retain all the data passed in the input 

sentence. The most important component is still the intermediate state. In 

cases with very long texts as input, the intermediate state fails and is not 

sufficient to capture all the information. The idea of attention enhances the 

model's performance and frees the intermediate state from being entirely in 

charge of encoding all the information accessible to the decoder in a fixed 

length vector and from being a potential bottleneck. The information may be 

distributed throughout the sequence of annotations-encoder hidden states, and 

the decoder may recover it selectively as necessary. A transformer model can 

“attend” or “focus” on all previous tokens that have been generated (Vaswani 

et al., 2017). 

Transformers are semi-supervised machine learning models that are primarily 

used with text data and have replaced recurrent neural networks in natural 

language processing tasks. The encoder maps an input sequence of symbol 

representations (x1, ..., xn) to a sequence of continuous representations z = (z1, 

..., zn). Given z, the decoder then generates an output sequence (y1, ..., ym) of 

symbols one element at a time. At each step, the model is auto-regressive 
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consuming the previously generated symbols as additional input when 

generating the next (Vaswani et al., 2017). 

The Transformer follows the architecture using stacked self-attention and 

point-wise, fully connected layers for both the encoder and decoder, shown 

in the left and right halves of Figure 10 respectively (Vaswani et al., 2017). 

 

Figure 10: The Transformer model architecture 

Encoder: The encoder maps an input sequence of symbol representations (x₁, 

…, xₙ) to a sequence of representations z = (z₁, …, zₙ).  

Decoder: Given z, the decoder generates an output sequence (y₁, …, yₘ) of 

symbols one element at a time. 

 

 

 

 

Decoder 

Encoder  
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GPT 

The Generative Pre-Trained Transformer (GPT), is created by OpenAI. It is 

an unsupervised generative model, which means it attempts to produce an 

appropriate response from an input such as a sentence and the training data 

were not labelled. The GPT-2 language model, developed by OpenAI in 

February 2019, uses unsupervised deep learning transformers to predict the 

next word or words in a sentence (Radford et al., 2019). GPT-2 can learn 

language skills such as reading, summarizing, and translating an unstructured 

text without the use of domain-specific training data. GPT-3 was developed 

to be more resilient than GPT-2; it can handle a wider range of specialised 

themes. A more accurate description may be that it is a sequential text 

prediction model, even if it is still a language prediction model. 

 

BERT 

BERT, stands for Bidirectional Encoder Representations from Transformers, 

was proposed in 2018 as a new language model representation. Unlike recent 

language representation models, BERT is designed to pre-train deep 

bidirectional representations from the unlabelled text by jointly conditioning 

on both left and right contexts in all layers. As a result, the pre-trained BERT 

model can be fine-tuned with just one additional output layer to create state-

of-the-art models for a wide range of tasks, such as question answering and 

language inference, without substantial task-specific architecture 

modifications (Devlin et al., 2018). 

In BERT, from output layers, the same architectures are used in both pre-

training and fine-tuning. The same pre-trained model parameters are used to 

initialize models for different downstream tasks. During fine-tuning, all 

parameters are fine-tuned. [CLS] is a special symbol added before every input 

example, and [SEP] is a unique separator token.  
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In Figure 11, the pre-training and fine-tuning procedures of BERT can be seen 

(Devlin et al., 2018). 

 

 

Figure 11:Overall pre-training and fine-tuning procedures for BERT 

 

There are two tasks are introduced for pre-training with BERT; Masked 

Language Model (MLM), Next Sentence Prediction (NSP) and the results for 

11 NLP tasks are presented and claim these results enable even low-resource 

tasks to benefit from deep unidirectional architectures (Devlin et al., 2018). 

 

DistilBERT 

Knowledge distillation, also known as teacher-student learning, is a 

compression approach in which a small model is educated to mimic the 

behaviour of a bigger model (or a group of models) wihch is introduced by 

Bucilǎ, C. et al., and generalized by Hinton, G. et al. several years later 

(Bucilǎ et al., 2006; Hinton et al., 2015). 

DistilBERT is the distilled version of BERT, it has the same general 

architecture as BERT and it is a BERT base-trained Transformer model that 

is compact, quick, affordable, and light. Over 95% of BERT's performance 

on the GLUE (The General Language Understanding Evaluation) language 

understanding benchmark is preserved despite having 40% fewer parameters 

and running 60% faster than BERT-base-uncased (Sanh et al., 2019; Wang et 

al., 2019). The token-type embeddings and the pooler are removed while the 

number of layers is reduced by a factor of 2. Most of the operations used in 

the Transformer architecture (linear layer and layer normalisation) are highly 

optimized in modern linear algebra frameworks and the investigations show 

that variations on the last dimension of the tensor (hidden size dimension) 

have a smaller impact on computation efficiency (for a fixed parameter 
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budget) than variations on other factors like the number of layers. Thus it 

focuses on reducing the number of layers.  

 

 

Figure 12: The comparison of models 

 

In Figure 12, the performance comparison of the models can be seen (Sanh et 

al., 2019). 
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CHAPTER 3 

METHODOLOGY 

In this chapter, the proposed augmentation and the classification models will 

be explained. For the first phase, we needed to find a suitable way to augment 

an e-mail dataset in Turkish. Therefore, our first step was finding or collecting 

the appropriate data for our study. After acquiring the dataset, we applied the 

relevant pre-processing methods to the data and implemented different 

augmentation methods on the dataset. We compared the classification results 

before and after the augmentation with the selected methods and presented 

the comparison of them in the relevant section. In all stages of this study, 

Python 3 was used as the programming language. For the environment, we 

started with Jupyter Notebook but then finalize most of the work with Google 

Colab. 

We went through multiple ways throughout the study to find the most suitable 

methods to answer our research questions. First, we have started with 

word2vec methods along with gensim library to replace words in sentences 

according to their cosine similarity. Then, we have done an implementation 

of Transformer GPT-2 model that generates data. Finally, we have moved on 

to the BERT and distilBERT of Transformer with specific augmentation 

libraries. Subsequently, we used different techniques which can be used as 

features in order to augment text data in Turkish language by similarity. We 

presented the frameworks we used for each method. After improving on these 

building blocks, we finally presented the augmented data and moved on to 

the second phase. In our second phase, we performed text classification, spam 

filtering in our specific case. We showed the accuracy of the spam 

classification results of the initial dataset and the augmented dataset. The 

details of the processes of each method are explained in their relative sections. 

 

3.1. Obtaining Data 

First, we tried to create our own dataset for this study. For this purpose, we 

got an unstructured e-mail dataset from METU IT Department. This dataset 

was collected from automated filters and hand-written protocols. However, 

since this dataset had so many types of data, many false positives, and e-mails 

in different languages, mostly English, it took some time to get usable data 

from it. After selecting the suitable e-mails that are in Turkish, the dataset 

became significantly small. We had to label the data as spam and ham 

manually.  Some e-mails were too repetitive since the data was collected from 
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multiple sources. At the beginning of the study, we used this dataset to train 

a model and then use it with a pre-trained model to create new e-mails 

according to word similarity but it gave poor results at every attempt. Then 

we tried to find other datasets from IT Departments of some institutions but 

it did not serve as a suitable solution due to data transformation processes 

since the e-mails might include sensitive information. We also considered 

translating English e-mails to Turkish but since the translation itself is also an 

NLP problem, we decided not to use this method and stay focused on our task. 

Finally, we decided to use a Turkish e-mail dataset from Kaggle which is 

updated in 2019 and includes a total of 330 spam and 496 ham e-mails which 

were collected from several personal accounts (Demir, 2019). 

We used Python’s pandas library to use the dataset inside the code, which was 

stored as a CSV document. We used the read_csv method of pandas library 

and turn our dataset into a dataframe object. Pandas dataframe is a two-

dimensional, size-mutable, potentially heterogeneous tabular data structure in 

Python. It contains rows and columns and it is considered one of the most 

efficient ways to keep and represent CSV file information in Python code. 

In Figure 13, we present the data, an example of an e-mail in the dataset, as it 

is stored in Kaggle. 

 

 

 

Figure 13: Example e-mail shown in source 
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In Figure 14, we can see the statistics of the same example e-mail in Figure 

13. 

 

Figure 14: Statics of the example e-mail in source 

 

Additionally, in Figure 15, a sample data inside our code can be seen as it is 

represented in a pandas dataframe. 

 

 

Figure 15: Original dataset shown as pandas dataframe 
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3.2. Preparing the Data 

The data collected from a source is generally unstructured. It contains unusual 

text, meaningless characters or different languages mixed with each other. 

Therefore, raw texts mostly cannot fit in machine learning or deep learning 

models; the models cannot interpret the unusualness, so according to the 

problem to be solved, the text might need to be cleaned or pre-processed first. 

The steps of the pre-processing differed according to the model we chose. 

Even though we will be explaining all the pre-processing details in this 

section, we will clarify the steps used for each method in their own sections. 

In the classification task, we have run the pre-processing steps for every 

method. All the pre-processing steps can be seen in Appendix A. 

Primarily, we reshaped the dataset as it might had duplicate rows and 

columns. After removing duplicates, we had a 59.42% ham and 40.57% spam 

ratio of e-mails in our dataset. 

 

Pre-processing Methods to Be Used Only in Turkish Dataset 

The pre-processing steps we used had slight differences according to the 

methods. For example, we used every pre-processing step mentioned here for 

word2vec implementation so that the data can be used as a valuable input 

since word2vec needs the cleanest form of a word but we did not use some of 

the steps with BERT or GPT-2 implementations. In this section, we will 

explain all the pre-processing steps for Turkish and we will go into details of 

usage in the relevant sections.  

In Turkish, we have some unique cases to be solved and we also need to do 

that in a certain order. To achieve that, we used some of the methods 

explained here before processing the data to observe the results. The upper-

case lower case issue for Turkish is basically about the letter ‘i’ which has the 

‘İ’ as the upper case for Turkish and ‘I’ for English. Because of this issue, 

default functions to turn letters into upper and lower forms in programming 

languages and libraries might give wrong results for Turkish. So it is solved 

with a small function instead. 

After that, we remove digits, punctuations, HTML tags and white spaces since 

we want to focus on words and words represented as strings and these 

characters would be irrelevant to the study. 

Since our data consists of e-mails and some of them are random e-mails to be 

sent as spam, there were a lot of irregularities. Some words that should be 

written in Turkish characters were written in English characters. For example, 

the word ‘akşam’ (evening) can be found as ‘aksam’ and both words are 

calculated as different words as in fact, they are not. This is called asciifying 

and it became a problem for us since we need the actual form of the word in 

the original language with Turkish characters. This problem can be solved 

with a library called Deasciifier (Sevinç et al., 2020). With this library, we 
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regularized most of the expressions which are written in ASCII characters 

even though they should not have been so. 

Furthermore, we followed some pre-processing steps for Turkish text which 

are shown in the following Figure 16. These steps are implemented according 

to the needs of the methods used. 

 

Figure 16: Pre-processing of Turkish Data 

Stopwords 

Sometimes, some widespread words which would appear to be of little value 

in helping select documents matching a user’s need are excluded from the 

vocabulary entirely. These words are called stopwords (Manning et al., 

2009a). 

The stopwords for Turkish are “acaba, ama, aslında, az, bazı, belki, biri, 

birkaç, birşey, biz, bu, çok, çünkü, da, daha, de, defa, diye, eğer, en, gibi, hem, 

hep, hepsi, her, hiç, için, ile, ise, kez, ki, kim, mı, mu, mü, nasıl, ne, neden, 

nerde, nerede, nereye, niçin, niye, o, sanki, şey, siz, şu, tüm, ve, veya, ya, 

yani” as stated in the open source NLTK library. 

Stopwords are words that do not add any unique meaning to sentences. Thus, 

they are usually removed for natural language processing tasks. We used 

NLTK library to remove stopwords. By removing stop words, we remove the 

low-level information from our text and this helps us focus on the important 

information in our data. We also removed words shorter than 2 (two) 

characters since these words in Turkish do not contribute to the meaning of 

the text. 

Lower-case all the letters (special function for Turkish)

Removing digits

Removing punctuation

Removing white spaces/HTML tags

Deascifying

Removing stopwords

Lemmatization

Word tokenization
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Lemmatization 

The goal of lemmatization is to reduce inflectional forms and sometimes 

derivationally related forms of a word to a common base form (Manning et 

al., 2009b). For grammatical reasons, different forms of words are used in 

most languages and this is the case for Turkish as well.  For instance; the 

Turkish word “bataklığa”, which can be found in a text like this, has suffixes 

and needs to be processed to acquire its root. The process is shown below. 

1. Bataklığa (noun with suffix) 

2. bataklık (noun) 

3. batak (noun) 

4. bat- (verb) 

In Turkish, words might have some suffixes that change their characters at 

the end. Also, there are derivationally related words with similar meanings, 

we can see them in the example as “batak” and “bataklık”. 

Sometimes it would be useful to count these words as one and other times it 

might be better to separate them and then relate them to each other. The goal 

here is to reduce these variations of words to a common base form. 

Lemmatization usually uses vocabulary and morphological analysis of words 

and aims to return the base or dictionary form of a word called “lemma”. 

There is also a process which is called stemming to find the root of words but 

since it does not use morphological forms of the word, it is not very applicable 

to our study. 

There are multiple tools for English lemmatization but we used the rich 

Zemberek library that is specified for Turkish and we got the lemmas of the 

words via Zemberek (Akın & Akın, 2007). 

Table 1: Lemmatization Examples 

Input Word Output Word 

gelişen (improving) geliş ( to improve) 

rehberlik (guidence) rehber (guide) 

mesleğe (to a profession) meslek (profession) 

saygılarımızla (with our respect/best 

regards) 

saygı (respect) 

yönetici (manager) yönet (to manage) 

asistanlığı (assistantship of) asistan (assistant) 

 

Some examples of the results of lemmatizations are given in Table 1. 
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In Figure 17 we can see an example of pre-processing and lemmatization 

conducted on an e-mail in our dataset. 

 

 

Figure 17: An example e-mail of pre-processing and lemmatization conducted 

 

Table 2 shows us the results of a lemmatization process of an example e-mail 

text from our dataset. 

 

Table 2: Pre-processing and Lemmatization Results 

Original Text 
 

Sayın Yetkili, 

28 Kasım 2010 tarihli KPSS sınavı sonucu ile yapılan 

personel alımlarında 3391 Halkla İlişkiler Ön Lisans 

programından mezun olan, kadro bekleyen ve memurluk 

prosedürüne uygun yetiştirilen, biz Halkla İlişkiler 

Ön Lisans mezunlarına merkezi atamalarda sınırlı 

sayıda kadro verilerek bölümümüz mezunları mağdur 

edilmiştir. 

Halkla İlişkiler Ön Lisans mezunları olarak bu konuda 

gerekli hassasiyetin gösterilmesini, mağduriyetimizin 

giderilmesi için kurumlarınızda 3391 Halkla İlişkiler 

Ön Lisans koduna da yer verilmesini bilgilerinize arz 

ederiz. 

Saygılarımızla, 

Halkla İlişkiler Ön Lisans Mezunları 
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Table 2 (cont.) 

After The First Cleaning  

 

sayın yetkili kasım tarihli kpss sınavı sonucu yapılan 

personel alımlarında halkla ilişkiler ön lisans 

programından mezun olan kadro bekleyen memurluk 

prosedürüne uygun yetiştirilen halkla ilişkiler ön 

lisans mezunlarına merkezi atamalarda sınırlı sayıda 

kadro verilerek bölümümüz mezunları mağdur edilmiştir 

halkla ilişkiler ön lisans mezunları olarak konuda 

gerekli hassasiyetin gösterilmesini mağduriyetimizin 

giderilmesi kurumlarınızda halkla ilişkiler ön lisans 

koduna yer verilmesini bilgilerinize arz ederiz 

saygılarımızla halkla ilişkiler ön lisans mezunları 

 

After Lemmatization 
 

sayın yetkili kasım tarih kpss sınav sonuç yap personel 

alım halk ilişki ön lisans program mezun ol kadro bekle 

memur prosedür uygun yetiş halk ilişki ön lisans mezun 

merkez ata sınır sayı kadro ver bölüm mezun mağdur et 

halk ilişki ön lisans mezun ol konu gerekli hassasiyet 

göster mağduriyet gider kurum halk ilişki ön lisans kod 

yer ver bilgi arz et saygı halk ilişki ön lisans mezun 

 

 

Tokenization 

Given a character sequence and a defined document unit, tokenization is the 

task of chopping it up into pieces, called tokens, perhaps at the same time 

throwing away certain characters, such as punctuation (Manning et al., 

2009a). 

Tokenization is the process where we put the input and split it into pieces 

which will be meaningful for the process it will be used. For our case, we 

could use sentence tokenization and word tokenization. And for word 

tokenization, we used NLTK word tokenizer, a specialized Turkish word 

tokenizer library and also Regex. They all worked in some cases and did not 

work in some as well. We chose NLTK library for word tokenization since it 
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was more stable. We used Regex for sentence tokenization since it gave the 

best results for us. 

We can see an example of word tokenization for our data in Figure 18. 

 

Figure 18: Word tokenization example of the dataset 

 

3.3. Choosing the Model 

For this study, we used multiple libraries such as Zemberek, Gensim, NLTK, 

NLPAug, and scikit-learn. The usage of the libraries can be seen in the 

relatable sections. We experienced multiple models for our study and chose 

NLPAug with BERT/distilBERT to compare the accuracy results of the spam 

filtering. Details are explained in the following sections and the relevant 

Python codings can be seen in the Appendix B. 

 

Word2vec 

Our first trial was using the famous word2vec with gensim to find the most 

similars of the words. To this end, first, we trained our own model with the 

dataset we obtained from METU IT Department. However, since the data 

amount was really small and irregular, the trained model did not give any 

satisfactory results. So we decided to use a Turkish pre-trained model for it 

to be more consistent. Pre-trained models assure models to get their training 

with large datasets and parameters to be saved and other models to alter using 

these parameters. Since they are already trained, they provide time efficiency 

and provide better functioning methods. We used a Turkish pre-trained 

word2vec model “trmodel”(Köksal, 2018). After the steps of pre-processing, 

we implemented the model in our dataset. 

After the first steps of lemmatization, filtering, punctuation removal and other 

pre-processing steps mentioned before, the outputs of the model were 

successful and the most similar of the words were founded accurately. 
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The results of the individual words are shown in Figure 19. 

 

 

Figure 19: Word2vec examples with the words within our dataset 

 

Moving on to the full-scale dataset implementation, the framework we 

intended was as shown in Figure 20. It was aimed to change one word in each 

sentence of each e-mail. 

 

 

Figure 20: The framework for expanding the dataset with word2vec 

 

Even though the considerably meaningful results with individual words as 

shown in Figure 19, when we implement the code to the entire dataset, we 
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came across some errors because the pre-trained model had its own 

vocabulary, and the spam e-mails had so many irregular words that have no 

meaning in any language even after all the pre-processing. After handling the 

errors, we implemented word tokenization and key extraction to find words 

to be replaced per sentence. We used YAKE, an Automatic Keyword 

Extractor, and top-k sampling method to extract the keywords and use them 

as the words to be replaced with their most similar correspondents. After that, 

we got the results shown in Figure 21. 

 

Figure 21: Individual results of trmodel for our dataset 

 

Then we moved on to the full dataset implementation and we got meaningless 

results in most cases.  

 

 

Figure 22: An e-mail after the process of the framework 

In Figure 22, an example of the implementation of the method can be seen. 
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GPT-2 

GPT-2 is a contextual method of Transformers and it enables generating 

words after one sentence, it creates more sentences following the first one. In 

this approach, we used a pre-trained Turkish GPT-2 model (Boğan, 2021). 

For the Transformers GPT-2 implementation, we used keyword extraction 

since it was not producing realistic results otherwise. For deciding which 

words should be replaced with their most similar correspondents in a 

sentence, we put a threshold to find the similarity ratio of the word pairs to 

determine the words. We used YAKE and top-k sampling method to extract 

the keywords and use them as the words to be replaced with their most similar 

correspondents. 

An example of the keyword extraction we have done on an e-mail sample can 

be seen in Table 3. 

Table 3: Keyword extraction example 

Sample Text 

sayın yetkili kasım tarihli kpss sınavı sonucu yapılan 

personel alımlarında halkla ilişkiler ön lisans 

programından mezun olan kadro bekleyen memurluk 

prosedürüne uygun yetiştirilen halkla ilişkiler ön 

lisans mezunlarına merkezi atamalarda sınırlı sayıda 

kadro verilerek bölümümüz mezunları mağdur edilmiştir 

halkla ilişkiler ön lisans mezunları olarak konuda 

gerekli hassasiyetin gösterilmesini mağduriyetimizin 

giderilmesi kurumlarınızda halkla ilişkiler ön lisans 

koduna yer verilmesini bilgilerinize arz ederiz 

saygılarımızla halkla ilişkiler ön lisans mezunları 

After Cleaning and Lemmatization 
sayın yetkili kasım tarih kpss sınav sonuç yap personel 

alım halk ilişki ön lisans program mezun ol kadro bekle 

memur prosedür uygun yetiş halk ilişki ön lisans mezun 

merkez ata sınır sayı kadro ver bölüm mezun mağdur et 

halk ilişki ön lisans mezun ol konu gerekli hassasiyet 

göster mağduriyet gider kurum halk ilişki ön lisans kod 

yer ver bilgi arz et saygı halk ilişki ön lisans mezun 

After Keyword Extraction with YAKE 

Halkla İlişkiler Ön Lisans mezunlarına merkezi atamalarda 

sınırlı sayıda kadro verilerek bölümümüz mezunları mağdur 

edilmiştir 

 

The GPT-2 model gave some meaningful sentences on the first trials as well 

but it did not suit the first suggestion we made because of how GPT-2 

generates the data as altogether and how it just continues from the existing 

data. So, after we implemented it on the dataset, the resulting sentences were 

mostly out of context. It was not suitable to choose the word count to be 



   

 

41 

 

replaced in this method since it generated whole sentences from an input 

point. Also, it needed its own modifications since the generated sentences 

could end abruptly.  

With the input: “Halkla İlişkiler Ön Lisans mezunlarına merkezi atamalarda 

sınırlı sayıda kadro verilerek bölümümüz mezunları mağdur edilmiştir” (The 

graduates of our department have been victimized by giving a limited number 

of staff in central appointments to Associate Degree graduates in Public 

Relations) 

The output was: “Halkla İlişkiler Ön Lisans mezunlarına merkezi atamalarda 

sınırlı sayıda kadro verilerek bölümümüz mezunları mağdur edilmiştir. Bu 

nedenle, eğitim öğretim yılı başında yapılan sınavlardan” ( The graduates of 

our department have been victimized by giving a limited number of staff in 

central appointments to Associate Degree graduates in Public Relations. For 

this reason, the exams held at the beginning of the academic year) could be 

considered a meaningful continuous sentence in Turkish but it ends mid-

sentence. 

In Figure 23, we show another example of text from our dataset generated 

with GPT-2 model with the input of “İngilizce öğrenmek için ne 

bekliyorsunuz?” (What do you wait for learning English?) and continued with 

not-so-meaningful sentences. 

 

 

Figure 23: The results of GPT-2 model 

 

The generated text was “Akademi Soru Sor! Dogum aydirma ve donemde 

kalma sorunu yasadiklari icin hangi donemlere baslayacagim, nasil 

gorecegimi, nereye basvurmadim simdi, ne yaz” (Literal Google Translate 

translation: Academy Ask a Question! Since they have the problem of birth 

month and staying in the period, which periods will I start, how will I see it, 

where I have not applied now, what should I write?) which does not form a 

full sentence, is not deasficiied and not context-related. 

 

BERT Masked Model Language 

In this approach, we used BERT’s Masked Language Modeling (MLM), a 

fine-tuning method, since it also substitutes a certain word in the sentence 

given. In MLM, a sentence is sent to BERT, and the weights are then 

optimized to produce the same sentence on the opposite side. For this case, 

we used a pre-trained Turkish BERT model (MDZ Digital Library Team, 

2020a). With MLM, pre-trained NLP models can be fine-tuned to more 

domain-specific language use-cases, with unlabelled text data. 
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We show an example of the result of BERT Masked Language Modeling 

(MLM) in Figure 24.  

 

 

Figure 24: BERT MLM result 

One word was chosen as MASK for each sentence from e-mails. 

 

BERT and DistilBERT with NLPAug 

In this approach, we used NLPAug, a Pyhton library to augment data. Non-

contextual embeddings like Glove, fastText, word2vec or contextual 

embeddings like BERT, RoBERTa, distilBERT, ElMo can be used with 

NLPAug. In Figure 25 an example from the original work is shown (Ma, 

2019). 

 

Figure 25: Textual Data Augmentation Example with NLPAug 

 

NLPAug provides three different types of augmentation: character level 

augmentation, word level augmentation, and sentence level augmentation. 

We used the word level augmentation along with the substitute method since 

our main goal was to substitute words with their closest ones according to 

semantic similarity. Substitution function use surrounding words as a feature 

to predict the target word. 

Using NLPAug, we observed the most reliable and meaningful augmentation 

for Turkish text was with BERT and distilBERT models. 
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Therefore, we chose using BERT and distilBERT along with NLPAug library 

to finally produce new augmented datasets and compare the accuracy results. 

We used a Turkish pre-trained BERT model, “BERTurk” (MDZ Digital 

Library Team, 2020a) and a distilled version of that model “distilBERTurk” 

(MDZ Digital Library Team, 2020b). 

We used top-k sampling method in NLPAug. If the length of the input is 

larger than the maximum allowed input, only the heading part was augmented 

and BERT/distilBERT model chose the target word to be substituted 

according to context and surrounding words. 

In Table 4, an example of an augmented sentence with BERT can be seen. 

 

Table 4: Example of Augmentation with BERT 

Original Sentence 

Sayın Yetklili ,En fazla mezun veren bölümlerden olan 

muhasebe bölümü çin daha çok kadro istiyoruz.Her 

birimiz Mali Müşavir kontrolünde staj tamamladik 

Bilgisayar kullanımı ve pratiklik konusunda gereken 

tecrübeye sahibiz. 

Augmented Sentence 

Sayın Yetklili, En fazla mezun veren bölümlerden 

birinin muhasebe bölümleri çin daha geniş kadro 

istiyoruz. Her birimiz Mali Müşavir kontrolünde 

çalışmalarını yapacak Bilgisayar kullanımı ve 

pratiklik konusunda gereken özelliklere sahibiz. 

 

For the augmentation process, we cleaned the dataset so that it will not contain 

any null or duplicated values. With the usage of NLPAug library, the pre-

processing methods that have been mentioned in Section 3.2. are not fully 

implemented to the dataset. We did not use lemmatization and word 

tokenization since NLPAug library needed to get the words as they are in a 

sentence. 
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After removing the duplicates and null values, the dataset increased from 702 

rows to 700 rows. The dataset was formed of 416 ham and 284 spam e-mails 

and our initial dataset had the following ratio: 

 

 ham     0.594286 

 spam    0.405714 

 

Augmentation 

We applied the NLPAug substitute function on our dataset using pre-trained 

BERT and distilBERT models. The coding details can be seen in Appendix 

B. 

In Figure 26, we see an example of augmented e-mail using NLPAug with 

BERTurk. 

 

Figure 26: Example of an augmented e-mail using NLPAug with BERT model. 

In Figure 27, we see an example of an augmented e-mail using NLPAug with 

distilBERTurk. 

 

 

Figure 27: Example of an augmented e-mail using NLPAug with distilBERT model. 

 

Then we moved on to the full-scale augmentation experiments. We will 

present the steps for BERT and distilBERT augmentation in order to compare 

the results for both models. 
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We reproduced spam e-mails by considering semantic affinity and context. 

For both models, we applied the augmentations first only to the training 

dataset and then to the entire dataset to observe the effects of data size on 

augmentation success. However, as noted in some of the comparisons, we 

used augmented datasets from the entire dataset. 

Before splitting the dataset as training and test datasets, we randomized the 

full dataset to make sure spam and ham messages were distributed evenly. 

First, we applied the augmentation to the training dataset. The workflow of 

the first approach was shown in the following image, Figure 28. 

 

 

Figure 28: The first approach to data augmentation 

 

We separated the dataset with a ratio of 2/8 while the training dataset has 0.8 

and the test dataset had 0.2 ratios. Then we got two datasets whose dimensions 

are as follows: 

training set: (560, 2) 

test set:   (140, 2) 

 



   

 

46 

 

After determining the first training and test datasets, we used replacing word 

by similarity function of the NLPAug library which is called the “substitute” 

function. 

Then we aimed to see whether augmenting a larger dataset would create a 

better accuracy. For this purpose, we augmented the whole dataset to have a 

new training dataset. Meanwhile, we kept the test dataset as it is to evaluate 

the two approaches fairly. We used the same pre-trained BERTurk model and 

the substitute function. The overall workflow in this approach is shown in 

Figure 29. 

 

 

Figure 29: The second approach to data augmentation 

We augmented the whole dataset to have a wider training dataset but kept the 

test dataset to be able to have the same tool to compare the results. 

 

Classification 

Classification is the second part of this study. We chose to use the 

multinomial Naïve Bayes Classifier (NBC) for the classification task since it 

gives successful results with fewer resources and data.  First, we built an NBC 

from scratch that uses supervised machine learning methods and the NBC got 

the parameters from the existing labels. 

Before each classification task was performed, we used the pre-processing 

methods mentioned in section 3.2, except for word tokenization. 

For the input of NBC, we created a vocabulary, which in this context means 

a list of all the unique words in our training set. We transformed each sentence 

in an e-mail into a list by splitting the string at the space character and initiated 

an empty list named vocabulary. The vocabulary is a list of unique words in 
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the dataset. We then iterated over the transformed column which contains the 

text of an e-mail. Hereafter, we iterated over each sentence in that column and 

append each word to the vocabulary list and removed the duplicates from the 

vocabulary list. 

We got the vocabulary lengths shown in Table 5 for our classification task. 

We can see that there were additions to the vocabulary after augmentations. 

Table 5: Vocabulary Lengths 

Dataset Vocabulary Length 

(As List) 

Original Dataset 6775 

BERT (whole dataset) 7859 

distilBERT (whole dataset) 7872 

BERT (only training dataset)  7917 

distilBERT (only training 

dataset) 

7243 

 

In Figure 30, we can see the word table that we created from the vocabulary. 

The word table is a word matrix to perform classification to the dataset. 

 

Figure 30: Transformed Table of Words 

 

Then we match them with the e-mails as seen in Figure 31. 

 

Figure 31: E-Mail, Label and Words Table 
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Then we started creating the spam filter. The spam filter is a function that is 

based on Bayes’ Theorem and it; 

 Takes a new e-mail as input (w1, w2, ..., wn), 

 Calculates the values of P(spam|w1, w2, ..., wn) and P(ham|w1, w2, 

..., wn), 

 Compares the values of P(spam|w1, w2, ..., wn) and P(ham|w1, w2, 

..., wn). 

If the value of P(ham|w1, w2, ..., wn) is equal to or greater than the value of 

P(spam|w1, w2,...,wn), then the message is classified as ham. If the value of 

P(ham|w1, w2,..., wn)  is less than the value of P(spam|w1, w2, ..., wn), then 

the message is classified as spam. If a new e-mail contains words that are not 

in the vocabulary, those words were ignored when calculating the 

probabilities. The details can be seen in Appendix C. 

After classification is done, we got the following results for the spam 

classification of our initial Turkish e-mail dataset with Naïve Bayes 

Classifier: 

Correct:  104 

Incorrect:  36 

Accuracy:  0.7428571428571429 

 

 

This NBC was able to succeed with a 74.28% accuracy in labelling our 

Turkish e-mail data for spam filtering. This accuracy rate was not high 

enough. So we decided to use a different approach and used TF-IDF 

Vectorizer and scikit-learn library of Python to have a better performance 

with the multinominal Naïve Bayes Classifier. 

After cleaning the dataset, we turned ham and spam labels to 0 and 1 to use 

them in other functions. Then we used the pre-processing methods to remove 

punctuation, remove stopwords, lowercase all the letters, remove white 

spaces and lemmatize the words. 

After that, we split the dataset into training and test datasets and used the pre-

built classifiers of scikit-learn library. The usage of the mentioned tools and 

other coding details of the classification can be seen in Appendix C. 
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CHAPTER 4 

RESULTS 

This section presents the accuracy results of the spam filtering classification 

task applied to the dataset we had and the dataset we created by augmentation. 

We implemented the classification with BERT and distilBERT models and 

compared them with each other and compared the process according to 

augmented data size. We also present the results of other classification 

metrics and also the accuracy results of other classifiers as well. 

 

4.1.The Data Range After Augmentation 

The first dataset after the cleaning has 700 rows; which are 416 ham and 284 

spam. After the augmentation, the new datasets had new ratios. 

We used semantic distance to show how much the new dataset created by the 

augmentation process differs from the original data. Semantic distance is a 

measure of how close or distant two units of language are in terms of their 

meaning. SentenceTransformers is a Python framework for state-of-the-arts 

embeddings of text, sentences, and images. Sentence-BERT (SBERT) is a 

modification of the pre-trained BERT network that use siamese and triplet 

network structures to derive semantically meaningful sentence embeddings. 

This reduces the effort for finding the most similar pair from 65 hours with 

BERT to about 5 seconds with SBERT, while maintaining the accuracy 

(Reimers & Gurevych, 2019). 

The semantic distance between augmented e-mails and original e-mails is 

calculated with an SBERT model trained with Turkish data (Çelik, 2022). 

The semantic distance results can be seen in Table 6 for each step. This is a 

sentence-transformers model that maps sentences and paragraphs to a 768 

dimensional dense vector space. 

 

Table 6: Semantic Distance of the Datasets 

The Process 
Semantic Distance From the 

Original Dataset 

Augmentation with 

BERT  
8.36% 

Augmentation with 

distilBERT  
8.29% 
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Table 7 shows the numbers and ratios of the new datasets after the 

augmentation process. We can see the ham-spam balance of the augmented 

datasets. 

 

Table 7: The ham-spam labelling results of the methods 

 DATASET HAM SPAM TOTAL 

 

Original 

Dataset 

Training 

Dataset 

330 

(58.92%) 

230 

(41.07%) 
560 

Test 

Dataset 

86 

(61.42%) 

54 

(38.57%) 
140 

Augmentat

ion on 

Only 

Training 

Dataset 

with BERT 

Training 

Dataset 

746 

(59.20%) 

514 

(40.79%) 
1260 

Test 

Dataset 

86 

(61.42%) 

54 

(38.57%) 
140 

 

Augmentat

ion on 

Whole 

Dataset 

with BERT 

Training 

Dataset 

832 

(59.42%) 

568 

(40.57%) 
1400 

Test 

Dataset 

86 

(61.42%) 

54 

(38.57%) 
140 

Augmentat

ion on 

Only 

Training 

Dataset 

with 

distilBERT 

Training 

Dataset 

746 

(59.20%) 

514 

(40.79%) 
1260 

Test 

Dataset 

86 

(61.42%) 

54 

(38.57%) 
140 

Augmentat

ion on 

Whole 

Dataset 

with 

distilBERT 

Training 

Dataset 

832 

(59.42%) 

568 

(40.57%) 
1400 

Test 

Dataset 

86 

(61.42%) 

54 

(38.57%) 
140 

 

4.2.Classification Metrics 

To be able to understand whether the newly created dataset had any value, we 

used Naïve Bayes classification methods to measure the accuracy levels of 

both the original and the augmented datasets. A classifier's accuracy is 

calculated by dividing the total number of samples that were properly 

predicted by the total number of samples. 

In the first implementation, we classified the original dataset and checked the 

results with Naïve Bayes and we got an accuracy of approximately 74%. Then 

we set the training set as the augmented dataset with BERT and distilBERT.  
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After the classification process with the first implementation, we got the 

following accuracy results in Table 8. 

Table 8: First Accuracy Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accuracy Values 

Depending On 

Datasets 

Beginning 

Accuracy 

Accuracy 

After 

Augmentation 

Accuracy 

Increase (%) 

Augmentation on 

Only Training 

Dataset With 

BERT 

74.28% 76.14% 2.50% 

Augmentation on 

Whole Dataset 

With BERT 

74.28% 78.57% 5.78% 

Augmentation on 

Only Training 

Dataset With 

DistilBERT 

74.28% 75.71% 1.93% 

Augmentation on 

Whole Dataset 

With DistilBERT 

74.28% 77.85% 4.81% 
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We can also compare the false positive and false negative changes in Table 

9. In this context; false positive means ham e-mails that are predicted as spam 

and false negative means spam e-mails that are predicted as ham. 

 

Table 9: First False Positive and False Negative Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After that, we re-organized our input vocabulary. For word vectoring we used 

TF-IDF Vectorizer and scikit-learn library of Python and classified our 

datasets again with multinominal Naïve Bayes Classifier, built-in scikit-learn 

library as it is mentioned in Chapter 3. 

For this approach, we applied the calculation of metrics for only the datasets 

that are augmented from the entire dataset to provide legibleness since there 

will be multiple variables to present. 

In Table 10, we can observe the results of multinominal Naïve Bayes 

Classifier with TF-IDF Vectorizer and scikit-learn library. We can see the 

accuracy score of Naïve Bayes Classifier is increased to 93.33 % for the 

original dataset. After the augmentation with BERT; NBC accuracy score 

with this vectorization increased to 97.61% and after augmentation with 

distilBERT, the accuracy score is 96.19%. 

 

 

 

Accuracy 

Values 

Depending 

On Datasets 

Beginning 

False 

Negative 

False Negative 

After 

Augmentation 

Beginning 

False 

Positive 

False 

Positive

After 

Augme

ntation 

Augmentation 

on Only 

Training 

Dataset With 

BERT 

22.85% 22.28% 2.85% 1.57% 

Augmentation 

on Whole 

Dataset With 

BERT 

22.85% 20.71% 2.85% 0.71% 

Augmentation 

on Only 

Training 

Dataset With 

DistilBERT 

22.85% 22.85% 2.85% 1.42% 

Augmentation 

on Whole 

Dataset With 

DistilBERT 

22.85% 21.42% 2.85% 0.71% 
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The results of some other classifiers alongside the multinominal Naïve Bayes 

Classifier are listed with their accuracy scores in Table 10. However, we 

continued using Naïve Bayes Classifier for further comparisons, for 

consistency. 

 

Table 10: Accuracy Scores of Different Classifiers 

 

 

 

 

 

 

 

 

 

There are multiple ways to evaluate a classifier so we calculated some of the 

metrics; 

Precision: Precision is the ratio of true positives (TP) by the sum of false 

positives (FP) and true positives (TP). 

Recall: Recall is the ratio of true positives (TP) by the sum of false negatives 

(FN) and true positives (TP). 

F1-Score: The harmonic mean of recall and precision is the F1 score. It is 

located between [0, 1]. 

AUC-ROC Curve: AUC is Area Under Curve and ROC is Receiver Operating 

Characteristic Curve. ROC is a probabilty cure and the higher the value of 

AUC the better the classifier in distinguishing the classes. 

 

 

 

 

Accuracy Scores Original BERT distilBERT 

Support Vector 

Machine (SVM) 
94.28% 98.57% 99.52% 

K-Nearest 

Neighbour 
62.85% 86.19% 90% 

Naïve Bayes 

Classifier 
93.33 % 97.61% 96.19% 

Decision Tree 90.47 % 98.09% 96.66% 

Logistic 

Regression 
91.42% 89.04% 93.33% 

Random Forest 

Classifier 
93.33% 97.14% 96.66% 
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The calculations for the metrics mentioned can be seen in Table 11. 

 

Table 11: Classification Metrics for Different Dataset 

Metrics 
Original 

Dataset 

Dataset 

Augmented 

with BERT 

Dataset 

Augmented 

with 

distilBERT 

Accuracy Score 0.93 0.95 0.96 

Precision Score 0.92 0.97 0.97 

Recall Score 0.89 0.91 0.93 

F1-Score 0.90 0.94 0.95 

AUC (of AUC-

ROC Curve) 
0.97 0.99 0.99 

 

In the Table 12, we can observe the effects of the augmentation on 

classification metrics. 

 

Table 12: Percentage Increase of the Metrics for Different Datasets 

Metrics 

Percentage Increase 

for Dataset 

Augmented with 

BERT 

Percentage 

Increase for 

Dataset 

Augmented with 

distilBERT 

Accuracy 2.53% 3.06% 

Precision 5.86% 5.98% 

Recall 2.25% 3.83% 

F1-Score 5.04% 5.93% 

AUC (of 

AUC-ROC 

Curve) 

1.67% 1.70% 
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In AUC-ROC Curve metric, there are also ROC curves to be observed with 

and they can be seen in Figure 32, Figure 33 and Figure 34. 

 

 

Figure 32: AUC-ROC Curve of the Classification of Original Dataset 

 

AUC is the area under the ROC curve. AUC being closer to 1 means a better 

performing classifier. 

 

 

Figure 33: AUC-ROC Curve of the Classification of the Dataset Augmented with BERT 

In Figure 33 we can see the AUC-ROC Curve of the classification of the 

dataset augmented with BERT model. 
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In Figure 34 we can see the AUC-ROC Curve of the classification of the 

dataset augmented with distilBERT model. 

 

 

Figure 34: AUC-ROC Curve of the Classification of the Dataset Augmented with distilBERT 

 

Another metric for classifiers is the Confusion Matrix, which is an N-

dimensional square matrix, where N stands for the total number of target 

categories. It gives the values shown in Figure 35. 

 

Figure 35: Confusion Matrix 

True Positive (TP): Where the predicted “spam” was actually “spam”. 

True Negative (TN): Where the predicted “ham” was actually “ham”. 

False Positive (FP): Where the predicted “spam” was actually “ham”. 

False Negative (FN): Where the predicted “ham” was actually “spam”. 

True 
Negative 

(TN)

False 
Positive   

(FP)

False 
Negative 

(FN)

True  
Positive   

(TP)
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Here in Figure 36, we can see the confusion matrix result of the multinominal 

NBC classification of the original dataset. 

 

Figure 36: Confusion Matrix of The Classification of the Original Dataset 

 

In Figure 37 and Figure 38 we can see the confusion matrix of the 

classification of new datasets after augmentation. 

 

 

Figure 37: Confusion Matrix of The Classification of the Dataset Augmented with BERT 

In Figure 37 we can see the confusion matrix of the classification of the 

dataset augmented with BERT model. 
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In Figure 38 we can see the confusion matrix of the classification of the 

dataset augmented with distilBERT model. 

 

 

Figure 38: Confusion Matrix of The Classification of the Dataset Augmented with distilBERT 

 

The coding details of the classifications and the classification metrics can be 

seen in Appendix C. 
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CHAPTER 5  

DISCUSSION AND CONCLUSION 

In this study, we aimed to answer these questions. 

 Can Turkish e-mail data be augmented semantically, with text 

representation methods in NLP? 

 Is enlarging a dataset have an impact on the accuracy of spam filtering? 

 

For our first question, we have seen that augmenting a Turkish dataset with 

text representation methods in NLP can give considerably meaningful results. 

However, the model and the NLP technique must be chosen well, according 

to the subject. We have also seen that the models used must be language 

specific to obtain more accurate results. 

Word2vec gives just one embedding as output for each word, combining all 

the different senses of the word into one vector. This idea of similarity poses 

a limitation. Word2vec's primary disadvantage is that it only offers a single 

representation for each word, regardless of context. Therefore, words that 

have several meanings have a representation that is an average of the senses, 

not accurately representing either one. Given the abundance of polysemy and 

complex semantics in natural languages, this representation has limitations. 

On the other hand, Transformer relies on self-attention to compute 

representations of its input and output. This is a concept of attention for 

overcoming long-range dependencies. GPT-2 represents an effort in 

designing a general task-agnostic model for context-sensitive representations 

but GPT-2 looks only forward, left-to-right. The length of the input sentence 

and the parameters of top-k sampling have effects on the generated sentences. 

It was not suitable to choose some words to be replaced in this method since 

it generated whole sentences starting from an input point. 

Lastly, BERT can generate different word embeddings that captures the 

context of a word, that is its position in a sentence. It uses the transformer 

block to train a language model where the system is not tasked with guessing 

the next word but rather one of the words masked out in the sentence. Unlike 

the GPT model, BERT encodes context bidirectionally, due to the 

autoregressive nature of language models, whilst GPT has one way to encode. 
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After implementing BERT and distilBERT to augment the Turkish spam e-

mail dataset we had, we created new augmented datasets. After performing 

classification on the datasets before and after augmentations, we got the 

results of classification metrics in Chapter 4. 

The classification metrics are all calculated from the true positive, true 

negative, false positive and false negative values. Hence confusion matrix 

results can be discussed for an overall assessment. When we look at the 

confusion matrix results of our initial dataset shown in Figure 36, we can see 

the false positive value was 3 and it decreased to 2 after augmentation 

processes (see Figure 37 and Figure 38 for reference).  We can also observe 

the false negative value was 4 in the beginning and it increased slightly for 

both augmentations with BERT and distilBERT with the values 7 and 6 

respectively. On the other hand, true negative and true positive values seem 

to be increased as the datasets also grew. This indicates the falsely predicted 

labels did not increase as much as its size did, while, the dataset is doubled in 

size. We can also observe from the results that AUC area under the ROC 

curve became closer to 1 after augmentations which means it performed better 

after the augmentations. It can be said the augmentation was successful at 

improving the classification performance, looking at these results. 

Considering the results obtained in this study, we were able to observe that 

the right method to augment a dataset according to the words’ meanings can 

actually produce efficient results that can be used in research. We observed 

that NLPAug library with the usage of BERT/distilBERT can be considered 

an effective technique for processing data in Turkish. Also, we were able to 

see that vectorization is an essential factor for classification performance and 

should be chosen accurately. 

 

5.1. Limitations of the Study 

Even though our aim was to augment relatively a small amount of data, 

having a small-sized dataset at the beginning is still considered one of the 

limitations of this study. 

Due to the fact that the language we are working on is Turkish, we think that 

there might have been encoding problems, even though we try to reduce it as 

much as possible. 

There were typos in the e-mails in the dataset. Since it is thought that some 

of these may cause the models to slow down or reach incorrect results, it can 

be evaluated that typographical errors should be corrected from the 

beginning; however, since there will be irregularities in real environment 

spam e-mails as well. As it is seen, it is thought that it would be beneficial to 

deal with this subject, which can have many different aspects, in a different 

study to extrapolate. 
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We did not train a model from scratch in this study and we used a labelled 

dataset. The work was performed mostly in Google Colab environment, so it 

is considered that it might have some compliance and resource limitations as 

well. 

For the Word2vec model, we encountered with an unexpected error so we 

would like to point out the possibility that this may be due to a technical error 

and it might be examined in future studies. 

 

5.2. Future Work 

We implemented a limited number of techniques to our dataset but there are 

more techniques to find similarities and generate text in NLP. Other 

techniques can be applied to evaluate the results. Also, the idea of augmenting 

a spam filtering dataset as explained in this work can be applied to improve 

spam filtering systems. Other classification methods with different 

vectorizations can be experienced to see whether there are other classification 

tools for Turkish text. The data that is classified incorrectly can be analysed 

to find out the reason. Additionally, the augmented data can be tested with 

Generative Adversarial Networks (GANs) to see if it can be detected as 

augmented or not. 

The word2vec issue can be investigated in another study to find the exact 

reason why it did not work. 

Also, since spam e-mails may include phishing e-mails, keywords like “click” 

can be considered as an effective word to label them. Augmenting specific 

keywords like this can lead to a favour augmentation and conducting a study 

focused on this subject to explore this issue will contribute to the academy. 

 

5.3. Data Availability 

The dataset created in this study has been published on GitHub at 

https://github.com/ceaysenur/augmentedturkishspamdatasets. 

  

https://github.com/ceaysenur/augmentedturkishspamdatasets
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APPENDICES 

 

APPENDIX A 

Setting Up the Environment (Mounting Google Drive for Google Colab) 

 

#Mounting Google Drive 

from google.colab import drive 

drive.mount('/content/drive', force_remount=False) 

 

import pandas as pd 

#Reading CSV file as pandas Dataframe 

df =pd.read_csv("/content/drive/MyDrive/spam.csv", header=

None, encoding="utf-8", error_bad_lines=False) 

 

 

Dataset Cleaning and Reshaping Processes 

#Removing na values from dataframe 

def dt_na_value_cleaning(data): 

  print("\nData Shape : ", data.shape) 

  print("\nNull values before removal:: ") 

  print(dt.isna().sum()) 

 

  dt.dropna(inplace=True) 

  dt.reset_index(inplace=True,drop=True) 

 

  print("\nNull values after removal: ") 

  print(dt.isna().sum()) 

  print("\nData Shape after cleaning :" , dt.shape) 

 

  return dt 

 

# Removing duplicate values 

def duplicate_content_removal(dt, col, ini_row): 

    dt = dt.iloc[1: , :] 

    print("\nNumber of data before removing duplicates: ",

 ini_row) 

    duplicate_count = dt[col].duplicated().sum() 

    print("\nNumber of Duplicates: ", duplicate_count) 

 

    description_data = dt[col].drop_duplicates() 
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    cleaned_row = len(description_data) 

     

    if (ini_row - cleaned_row) > 0: 

        print("\nTotal data reduction : ", (ini_row - clea

ned_row)) 

        print("\Number of data after removing 

duplicates is :", cleaned_row) 

    else: 

        print("\nNo duplicate data.") 

    return list(description_data) 

 

df=df.rename(columns={0: "E_Mail", 1: "Label", 2:"NaN"}) 

#deleting the unnecessary columns and rows 

del df["NaN"] 

df = df.iloc[1: , :] 

df = df.replace(r'\n',' ', regex=True)  

df = data_na_value_cleaning(df) 

E_Mail = duplicate_content_removal(df, 'E_Mail', df.shape[

0]) 

df.shape 

df['Label'].value_counts(normalize=True) 

 

Splitting Dataset into Training and Test Dataset 

# Randomize the dataset 

data_randomized = df.sample(frac=1, random_state=1) 

 

# Calculate index for split 

training_test_index = round(len(data_randomized) * 0.8) 

 

# Split into training and test sets 

training_set = data_randomized[:training_test_index].reset

_index(drop=True) 

test_set = data_randomized[training_test_index:].reset_ind

ex(drop=True) 

 

print(training_set.shape) 

print(test_set.shape) 

 

training_set['Label'].value_counts(normalize=True) 

test_set['Label'].value_counts(normalize=True) 
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Pre-processing 

#Preprocessing text data 

 

!pip3 install jpype1 

 

from typing import List 

from jpype import JClass, JString, getDefaultJVMPath, shut

downJVM, startJVM, java, isJVMStarted 

 

#A function for Turkish letters, to fix upper case - 

lower case issue 

def trlower(metin): 

    def trlower_(harf): 

        if harf=='I': sonuc = 'ı' 

        elif harf=='İ': sonuc = 'i' 

        else: sonuc = harf.lower() 

        return sonuc 

    sonuc = '' 

    for a in metin: 

        sonuc += trlower_(a) 

    return sonuc 

 

#Function for removing digits 

def sayi(metin):     

    sonuc = ''.join([i for i in metin if not i.isdigit()]) 

    return sonuc 

#Function for removing punctuation 

def noktalama(metin): 

    sonuc = "".join([i for i in metin if i not in string.p

unctuation]) 

    return sonuc 

 

#Function for removing white-spaces 

def wspace(metin): 

    if metin is None: 

        sonuc='' 

    sonuc=metin.strip() 

    return sonuc 

 

#Function for removing words less than 3 characters 

def remove_length(x): 

    res = list() 

    for word in x: 

        if len(word) >= 3: 

            res.append(word) 

    return " ".join(res) 
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#lemmatization 

ZEMBEREK_PATH = r'/content/drive/MyDrive/zemberek-

full.jar' 

   

#startJVM function can be needed to be removed after one-

time run  

startJVM(getDefaultJVMPath(), '-ea', -

Djava.class.path=%s' % (ZEMBEREK_PATH)) 

 

def lemmatizer(text): 

 

    TurkishMorphology = JClass('zemberek.morphology.Turkis

hMorphology') 

    morphology = TurkishMorphology.createWithDefaults() 

 

    analysis: java.util.ArrayList = (  

        morphology.analyzeAndDisambiguate(text).bestAnalys

is()  

        ) 

    pos: List[str] = [] 

    for i, analysis in enumerate(analysis, start=1): 

        f'\nAnalysis {i}: {analysis}', 

        f'\nPrimary POS {i}: {analysis.getPos()}' 

        f'\nPrimary POS (Short Form) {i}: {analysis.getPos

().shortForm}' 

 

        pos.append( 

            f'{str(analysis.getLemmas()[0])}' 

            )      

    return " ".join(pos) 

   

#applying cleaning functions to training data set one at a 

time to check the results 

training_set["E_Mail"] = training_set["E_Mail"].apply(trlo

wer) 

training_set["E_Mail"] = training_set["E_Mail"].apply(sayi

) 

training_set["E_Mail"] = training_set["E_Mail"].apply(nokt

alama) 

training_set["E_Mail"] = training_set["E_Mail"].apply(wspa

ce) 

#Removing Turkish stopwords with NLTK library 

training_set['E_Mail'] = training_set['E_Mail'].apply(lamb

da x: ' '.join([word for word in x.split() if word not in 

(stop_words)])) 
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training_set['E_Mail'] = training_set['E_Mail'].str.split(

).apply(remove_length) 

 

training_set["E_Mail"] = training_set["E_Mail"].apply(lemm

atizer) 

#since ZEMBEREK lemmatizer gives UNK as output 

if a word cannot be processed, replacing it with ‘’ 

training_set["E_Mail"] = training_set["E_Mail"].str.replac

e("UNK", '') 

training_set.head() 

 

 

  



   

 

76 

 

APPENDIX B 

Augmentation with BERT and distilBERT 

!pip install nlpaug 

!pip install transformers 

 

import nlpaug.augmenter.char as nac 

import nlpaug.augmenter.word as naw 

import nlpaug.augmenter.sentence as nas 

import nlpaug.flow as nafc 

 

from nlpaug.util import Action 

 

#BERTurk Augmentation Function 

def augie1(text): 

  aug = naw.ContextualWordEmbsAug( 

      model_path='dbmdz/bert-base-turkish-

cased', action="substitute") 

  augmented_text = aug.augment(text) 

  return augmented_text 

 

#distilBERTurk Augmentation Function 

def augie2(text): 

  aug = naw.ContextualWordEmbsAug( 

      model_path='dbmdz/distilbert-base-turkish-

cased', action="substitute") 

  augmented_text = aug.augment(text) 

  return augmented_text 

 

#applying BERT version of NLPAug 

dfaug1=df 

dfaug1["E_Mail"]= dfaug1.apply(lambda x: augie1(x["E_Mail"

]), axis=1) 

#saving the augmented e-mails only 

df12 =pd.read_csv("/content/drive/MyDrive/aug1.csv",  inde

x_col=0, encoding="utf-8", error_bad_lines=False) 

df12.head() 

#concatanating original emails with augmented emails with 

BERT 

concat1 = pd.concat([df, df12], axis=0) 

 

#saving the augmented dataset as concat1 for BERT 

with open('/content/drive/My Drive/concat1.csv', 'w', enco

ding = 'utf-8') as f: 

  concat1.to_csv(f) 
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#applying distilBERT version of NLPAug 

dfaug2=df 

dfaug2["E_Mail"]= dfaug2.apply(lambda x: augie2(x["E_Mail"

]), axis=1) 

dfaug2.head() 

#saving the augmented e-mails only 

with open('/content/drive/My Drive/aug2.csv', 'w', encodin

g = 'utf-8') as f: 

  dfaug2.to_csv(f) 

 

df22 =pd.read_csv("/content/drive/MyDrive/aug2.csv",  inde

x_col=0, encoding="utf-8", error_bad_lines=False) 

df22 

 

#concatanating original emails with augmented emails with 

distilBERT 

concat2 = pd.concat([df, df22], axis=0) 

 

#saving the augmented dataset as concat2 for distilBERT 

with open('/content/drive/My Drive/concat2.csv', 'w', enco

ding = 'utf-8') as f: 

  concat2.to_csv(f) 
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APPENDIX C 

 

Classification (First Approach) 

import pandas as pd 

#The CSV file here is the original dataset, for every 

other case, the augmented datasets are used 

df =pd.read_csv("/content/drive/MyDrive/spam.csv", header=

None, encoding="utf-8", error_bad_lines=False) 

 

#Pre-processing and dataset shaping should be done as it 

is shown in Appendix A 

 

#creating the vocabulary 

training_set['E_Mail'] = training_set['E_Mail'].str.split(

) 

vocabulary = [] 

for email in training_set['E_Mail']: 

  for word in email: 

      vocabulary.append(word) 

 

vocabulary = list(set(vocabulary)) 

 

len(vocabulary)#output: 6774 

 

# Creating the dataframe to calculate probabilities on 

word_counts_per_email = {unique_word: [0] * len(training_s

et['E_Mail']) for unique_word in vocabulary} 

 

for index, email in enumerate(training_set['E_Mail']): 

  for word in email: 

    word_counts_per_email[word][index] += 1 

 

word_counts = pd.DataFrame(word_counts_per_email) 

word_counts.head() 

 

training_set_clean = pd.concat([training_set, word_counts]

, axis=1) 

training_set_clean.head() 
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#Isolating spam and ham messages first 

spam_emails = training_set_clean[training_set_clean['Label

'] == 'spam'] 

ham_emails = training_set_clean[training_set_clean['Label'

] == 'ham'] 

 

# P(Spam) and P(Ham) 

p_spam = len(spam_emails) / len(training_set_clean) 

p_ham = len(ham_emails) / len(training_set_clean) 

 

# N_Spam 

n_words_per_spam_emails = spam_emails['E_Mail'].apply(len) 

n_spam = n_words_per_spam_emails.sum() 

 

# N_Ham 

n_words_per_ham_emails = ham_emails['E_Mail'].apply(len) 

n_ham = n_words_per_ham_emails.sum() 

 

# N_Vocabulary 

n_vocabulary = len(vocabulary) 

 

# Laplace smoothing 

alpha = 1 

 

# Initiate parameters 

parameters_spam = {unique_word:0 for unique_word in vocabu

lary} 

parameters_ham = {unique_word:0 for unique_word in vocabul

ary} 

 

# Calculate parameters 

for word in vocabulary: 

   n_word_given_spam = spam_emails[word].sum() # spam_mess

ages already defined 

   p_word_given_spam = (n_word_given_spam + alpha) / (n_sp

am + alpha*n_vocabulary) 

   parameters_spam[word] = p_word_given_spam 

 

   n_word_given_ham = ham_emails[word].sum() # ham_message

s already defined 

   p_word_given_ham = (n_word_given_ham + alpha) / (n_ham 

+ alpha*n_vocabulary) 

   parameters_ham[word] = p_word_given_ham 
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#Applying bayes theorem 

def classify(email): 

 

   email = re.sub('\W', ' ', email ) 

   email  = email.lower().split() 

 

   p_spam_given_email = p_spam 

   p_ham_given_email = p_ham 

 

   for word in email: 

      if word in parameters_spam: 

         p_spam_given_email *= parameters_spam[word] 

 

      if word in parameters_ham:  

         p_ham_given_email *= parameters_ham[word] 

 

   print('P(Spam|email):', p_spam_given_email) 

   print('P(Ham|email):', p_ham_given_email) 

 

   if p_ham_given_email > p_spam_given_email: 

      print('Label: Ham') 

   elif p_ham_given_email < p_spam_given_email: 

      print('Label: Spam') 

   else: 

      print('Label: Ham') 

 

def classify_test_set(email): 

 

   email = re.sub('\W', ' ', email ) 

   email = email.lower().split() 

 

   p_spam_given_message = p_spam 

   p_ham_given_message = p_ham 

 

   for word in email: 

      if word in parameters_spam: 

         p_spam_given_email*= parameters_spam[word] 

 

      if word in parameters_ham: 

         p_ham_given_ email *= parameters_ham[word] 

 

   if p_ham_given_email > p_spam_given_email: 

      return 'ham' 

   elif p_spam_given_email > p_ham_given_email: 

      return 'spam' 

   else: 
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      return 'ham' 

 

test_set['predicted'] = test_set['E_Mail'].apply(classify_

test_set) 

 

#Accuracy Metrics 

correct = 0 

total = test_set.shape[0] 

 

for row in test_set.iterrows(): 

   row = row[1] 

   if row['Label'] == row['predicted']: 

      correct += 1 

 

print('Correct:', correct) 

print('Incorrect:', total - correct) 

print('Accuracy:', correct/total) 

 

#False Positive and False Negative Metrics 

fp=0 

fn=0 

 

for row in test_set.iterrows(): 

  row = row[1] 

  if row['Label'] == 'spam': 

    if row['predicted']=='ham': 

      fn+=1 

  if row['Label'] == 'ham': 

    if row['predicted']=='spam': 

      fp+=1 

print('False Negative Ratio:', fn/total*100) 

print('False Positive Ratio:', fp/total*100) 

 

 

Classification (Second Approach) 

!pip install pandas nltk 

!pip3 install jpype1 

 

import nltk 

nltk.download('punkt') 

nltk.download('stopwords') 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize 

stop_words = set(stopwords.words('turkish')) 
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import warnings 

warnings.filterwarnings('ignore') 

 

import pandas as pd 

import re 

import string 

 

from typing import List 

from jpype import JClass, JString, getDefaultJVMPath, shut

downJVM, startJVM, java, isJVMStarted 

 

%matplotlib inline 

import matplotlib.pyplot as plt 

import csv 

import sklearn 

import pickle 

import numpy as np 

from sklearn.feature_extraction.text import CountVectorize

r, TfidfTransformer 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import GridSearchCV,train_tes

t_split,StratifiedKFold,cross_val_score,learning_curve 

 

 

#The CSV file here is the original dataset, for every 

other case, the augmented datasets are used 

 

df =pd.read_csv("/content/drive/MyDrive/spam.csv", header=

None, encoding="utf-8", error_bad_lines=False) 

 

#Pre-processing and dataset shaping should be done as it 

is shown in Appendix A 

text = pd.DataFrame(df['E_Mail']) 

label = pd.DataFrame(df['Label']) 

 

#convert the text data into vectors 

from sklearn.feature_extraction.text import TfidfVectorize

r 

 

vectorizer = TfidfVectorizer() 

vectors = vectorizer.fit_transform(df['E_Mail']) 

vectors.shape 

 

#features = word_vectors 

features = vectors 
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#split the dataset into train and test set 

X_train, X_test, y_train, y_test = train_test_split(featur

es, df['Label'], test_size=0.15, random_state=111 

 

#import sklearn packages for building classifiers 

from sklearn.linear_model import LogisticRegression 

from sklearn.svm import SVC 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

 

#initialize multiple classification models 

svc = SVC(kernel='sigmoid', gamma=1.0) 

knc = KNeighborsClassifier(n_neighbors=49) 

mnb = MultinomialNB(alpha=0.2) 

dtc = DecisionTreeClassifier(min_samples_split=7, random_s

tate=111) 

lrc = LogisticRegression(solver='liblinear', penalty='l1') 

rfc = RandomForestClassifier(n_estimators=31, random_state

=111) 

 

#create a dictionary of variables and models 

clfs = {'SVC' : svc,'KN' : knc, 'NB': mnb, 'DT': dtc, 'LR'

: lrc, 'RF': rfc} 

 

#fit the data onto the models 

def train(clf, features, targets): 

    clf.fit(features, targets) 

 

def predict(clf, features): 

    return (clf.predict(features)) 

 

pred_scores_word_vectors = [] 

for k,v in clfs.items(): 

    train(v, X_train, y_train) 

    pred = predict(v, X_test) 

    pred_scores_word_vectors.append((k, [accuracy_score(y_

test , pred)])) 

 

#getting the accuracy scores of the classifiers using tf-

idf vectorizing 

pred_scores_word_vectors 
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# Accuracy Score of Naïve Bayes 

from sklearn.metrics import accuracy_score 

 

y_pred_nb = mnb.predict(X_test) 

y_true_nb = y_test 

 

print(f"Accuracy of the classifier is: {accuracy_score(y_t

est, y_pred_nb)}") 

 

 

#confusion matrix of Naive Bayes 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import plot_confusion_matrix 

 

# confusion_matrix funnction a matrix containing the summa

ry of predictions 

print(confusion_matrix(y_test, y_pred_nb)) 

 

# plot_confusion_matrix function is used to visualize the 

confusion matrix 

plot_confusion_matrix(mnb, X_test, y_test) 

plt.show() 

 

#Precision Score of Naïve Bayes 

from sklearn.metrics import precision_score 

 

print(f"Precision Score of the classifier is: {precision_s

core(y_test, y_pred_nb)}") 

 

# Recall score of Naïve Bayes 

from sklearn.metrics import recall_score 

 

print(f"Recall Score of the classifier is: {recall_score(y

_test, y_pred_nb)}") 

 

# F1-Score of Naïve Bayes 

from sklearn.metrics import f1_score 

 

print(f"F1 Score of the classifier is: {f1_score(y_test, y

_pred_nb)}" 

 

# AUC-ROC Curve of Naïve Bayes 

from sklearn.metrics import roc_curve, auc 

 

class_probabilities = mnb.predict_proba(X_test) 

preds = class_probabilities[:, 1] 

 



   

 

85 

 

fpr, tpr, threshold = roc_curve(y_test, preds) 

roc_auc = auc(fpr, tpr) 

 

# Printing AUC 

print(f"AUC for our classifier is: {roc_auc}") 

 

# Plotting the ROC 

plt.title('Receiver Operating Characteristic') 

plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) 

plt.legend(loc = 'lower right') 

plt.plot([0, 1], [0, 1],'r--') 

plt.xlim([0, 1]) 

plt.ylim([0, 1]) 

plt.ylabel('True Positive Rate') 

plt.xlabel('False Positive Rate') 

plt.show() 

 

 

Semantic Distance with BERT 

!pip3 install torch torchvision torchaudio 

!pip install sentence-transformers 

from sentence_transformers import SentenceTransformer,util 

import numpy as np 

 

model = SentenceTransformer('emrecan/bert-base-turkish-

cased-mean-nli-stsb-tr') 

 

def sem_difference(text1,text2): 

  # encode sentences to get their embeddings 

  embedding1 = model.encode(text1, convert_to_tensor=True) 

  embedding2 = model.encode(text2, convert_to_tensor=True) 

  # compute similarity scores of two embeddings 

  cosine_scores = util.pytorch_cos_sim(embedding1, embeddi

ng2) 

  return (100-(cosine_scores.item()*100)) 

 

dfnew=df 

dfnew["New_E_Mail"]= df12["E_Mail"] 

del dfnew["Label"] 

dfnew['Difference'] = dfnew.apply(lambda x: sem_difference

(x['E_Mail'], x['New_E_Mail']), axis=1) 

 

#Average of the distances  

dfnew["Difference"].mean() 


