

AUGMENTING A TURKISH DATASET FOR SPAM FILTERING

USING NATURAL LANGUAGE PROCESSING TECHNIQUES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYŞENUR AKSOY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF CYBERSECURITY

AUGUST 2022

Approval of the thesis:

AUGMENTING A TURKISH DATASET FOR SPAM FILTERING

USING NATURAL LANGUAGE PROCESSING TECHNIQUES

Submitted by Ayşenur AKSOY in partial fulfillment of the requirements for the degree of Master of

Science in Cyber Security Department, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin

Dean, Graduate School of Informatics

Assoc. Prof. Dr. Cihangir Tezcan

Head of Department, Cyber Security

Prof. Dr. Banu Günel Kılıç

Supervisor, Information Systems Dept., METU

Assoc. Prof. Dr. Cengiz Acartürk

Co-Supervisor, Cognitive Science Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Cihangir Tezcan

Cyber Security Dept., METU

Prof. Dr. Banu Günel Kılıç

Information Systems Dept., METU

Assoc. Prof. Dr. Burcu Can

Research Institute in Information and

Language Processing., University of Wolverhampton

Date: 25.08.2022

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : A y ş e n u r A K S O Y

Signature :

iv

ABSTRACT

AUGMENTING A TURKISH DATASET FOR SPAM FILTERING

USING NATURAL LANGUAGE PROCESSING TECHNIQUES

Aksoy, Ayşenur

MSc., Department of Cyber Security

Supervisor: Prof. Dr. Banu Günel Kılıç

Co-Supervisor: Assoc. Prof. Dr. Cengiz ACARTÜRK

August 2022, 85 pages

Today, how we communicate is altering as a consequence of the evolution of

the internet. Since one of the main communication ways of the internet is e-

mail systems and they are easy to use, cheap and fast, and have a wide user

base, they have also become a broad environment for malicious actors to act

within. Correspondingly, spam e-mails, defined as any kind of unwanted,

unwelcomed e-mails sent in bulk, are one of the main tools for these malicious

actors. Even if there is not yet a definitive way to stop spam e-mails, filtering

techniques are improving all the time. In time, spam filtering became one of

the most commonly used text classification issues in Natural Language

Processing, too. There are multiple ways to improve the classification success

of the machine learning methods, one of them is data augmentation.

Augmentation serves to generate more unique data from the dataset at hand

and improves the functionality and accuracy of machine learning models. A

machine learning model improves if the dataset is sufficient and large enough.

In this study, we examined the effects of semantically augmenting a Turkish

dataset on the accuracy of spam filtering methods and observed efficient

results that can be used in research.

Keywords: Spam filtering, NLP on Turkish, Data Augmentation

v

ÖZ

DOĞAL DİL İŞLEME TEKNİKLERİ KULLANILARAK SPAM

FİLTRELEME İÇİN TÜRKÇE VERİ KÜMESİNİN GENİŞLETİLMESİ

Aksoy, Ayşenur

Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi: Prof. Dr. Banu Günel Kılıç

Eş Tez Yöneticisi: Doç. Dr. Cengiz ACARTÜRK

Ağustos 2022, 85 sayfa

Günümüzde, internetin evriminin bir sonucu olarak iletişim kurma şeklimiz

de değişiyor. İnternetin temel iletişim yollarından biri olan e-posta sistemleri;

kullanımının kolay, ucuz ve hızlı olması ve geniş bir kullanıcı kitlesine sahip

olması, kötü niyetli aktörlerin de içinde hareket edebileceği geniş bir ortam

haline gelmiştir. Buna bağlı olarak istenmeyen ve toplu olarak gönderilen her

türlü e-posta olarak tanımlanan spam e-postalar, internetteki kötü niyetli

aktörlerin başlıca araçlarından biri haline gelmiştir. İstenmeyen e-postaları

durdurmanın henüz kesin bir yolu olmasa da, filtreleme teknikleri her zaman

gelişmeye devam etmektedir. Dolayısıyla, istenmeyen e-posta filtreleme,

Doğal Dil İşleme'de de en sık kullanılan metin sınıflandırma konularından

biri haline geldi. Bu amaçla kullanılan makine öğrenme yöntemlerinin

sınıflandırma başarısını artırmanın ise birden çok yolu vardır ve veri artırma

bunlardan biridir. Artırma, eldeki veri kümesinden daha fazla veri ve örnek

oluşturmaya hizmet eder ve eğitim veri kümelerine benzersiz örnekler

ekleyerek makine öğrenme modellerinin işlevselliğini ve doğruluğunu artırır.

Veri kümesi yeterli ve yeterince büyükse, makine öğrenme modeli de daha

iyi performans gösterir. Bu çalışmada, Türkçe bir veri setini anlamsal olarak

büyütmenin spam filtreleme yöntemlerinin doğruluğuna etkisini inceledik ve

araştırmalarda kullanılabilecek verimli sonuçlar gözlemledik.

Anahtar Sözcükler: Spam filtreleme, Türkçe’de NLP, Veri Artırımı

vi

To My Family…

vii

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisors, Prof. Dr. Banu Günel KILIÇ

for helping me get through this research and Assoc. Prof. Dr. Cengiz

ACARTÜRK for guiding me throughout my entire study, continuously

giving his support for me to get to this point.

I would also like to express my deepest gratitude to my committee members

for their reviews and very helpful contributions; Assoc. Prof. Dr. Cihangir

TEZCAN and Assoc. Prof. Dr. Burcu CAN, they let me benefit from their

wide knowledge.

Last but not least, I would like to thank my family; my mother, my father and

my siblings for always giving me moral support. Whenever things start to get

tough, they were the ones that kept me going on my feet.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. v

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS ... viii

LIST OF TABLES .. x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS ... xii

CHAPTER 1

INTRODUCTION ... 1

1.1.Motivation ... 2

1.2.Research Question ... 4

1.3.Organization of the Thesis... 5

CHAPTER 2

BACKGROUND INFORMATION AND LITERATURE REVIEW 7

2.1. Understanding Spam and Why It Is a Cybersecurity Issue 7

2.2. Artificial Intelligence and Machine Learning for Cyber Security 11

2.3. Spam Filtering .. 13

2.4. Language Modelling and Augmentation in Natural Language Processing 20

CHAPTER 3

METHODOLOGY .. 29

3.1. Obtaining Data ... 29

3.2. Preparing the Data .. 32

3.3. Choosing the Model ... 37

CHAPTER 4

RESULTS .. 49

4.1.The Data Range After Augmentation .. 49

4.2.Classification Metrics .. 50

CHAPTER 5

DISCUSSION AND CONCLUSION ... 59

5.1. Limitations of the Study ... 60

5.2. Future Work ... 61

5.3. Data Availability .. 61

ix

REFERENCES .. 63

APPENDICES ... 71

APPENDIX A ... 71

APPENDIX B .. 76

APPENDIX C .. 78

x

LIST OF TABLES

Table1: Lemmatization Examples.………………………………………... 34

Table 2: Pre-processing and Lemmatization Results……………………35-36

Table 3: Keyword extraction example….…………………………………..40

Table 4: Example of Augmentation with BERT……………………………43

Table 5: Vocabulary Lengths……………………………………………... 47

Table 6: Semantic Distance of the Datasets ……………………………… 49

Table 7: The ham-spam labelling results of the methods ….………………50

Table 8 First Accuracy Results ……………………………………………51

Table 9: First False Positive and False Negative Results………………….52

Table 10: Accuracy Scores of Different Classifiers………………………..53

Table 11: Classification Metrics for Different Dataset…………………….54

Table 12: Percentage Increase of the Metrics for Different Datasets……...54

xi

LIST OF FIGURES

Figure 1: Average daily spam volume worldwide from October 2020 to September

2021 (in billions) ... 2
Figure 2: E-mails sent and received in billions from 2017 to 2025 8
Figure 3: Daily e-mail traffic from 2015 to 2019 .. 8
Figure 4: Timeline of the major milestones in the history of spam, from its

inception to modern days ... 9
Figure 5: Relationship between AI, NLP, ML, DL, and Linguistics 12
Figure 6: Bayes Theorem Formula .. 18
Figure 7: Text classification task on spam filtering... 19
Figure 8: The CBOW and Skip-gram models ... 22
Figure 9: Word2vec Mechanism ... 23
Figure 10: The Transformer model architecture .. 25
Figure 11:Overall pre-training and fine-tuning procedures for BERT 27
Figure 12: The comparison of models ... 28
Figure 13: Example e-mail shown in source ... 30
Figure 14: Statics of the example e-mail shown in source 31
Figure 15: Original dataset shown as pandas dataframe ... 31
Figure 16: Pre-processing of Turkish Data .. 33
Figure 17: An example e-mail of pre-processing and lemmatization conducted 35
Figure 18: Word tokenization example of the dataset ... 37
Figure 19: Word2vec examples with the words within our dataset 38
Figure 20: The framework for expanding the dataset with word2vec 38
Figure 21: Individual results of trmodel for our dataset .. 39
Figure 22: An e-mail after the process of the framework .. 39
Figure 23: The results of GPT-2 model ... 41
Figure 24: BERT MLM results ... 42
Figure 25: Textual Data Augmentation Example with NLPAug 42
Figure 26: Example of an augmented e-mail using NLPAug with BERT model. .. 44
Figure 27: Example of an augmented e-mail using NLPAug with distilBERT

model. .. 44
Figure 28: The first approach to data augmentation .. 45
Figure 29: The second approach to data augmentation ... 46
Figure 30: Transformed Table of Words ... 47
Figure 31: E-Mail, Label and Words Table ... 47
Figure 32: AUC-ROC Curve of the Classification of Original Dataset 55
Figure 33: AUC-ROC Curve of the Classification of the Dataset Augmented with

BERT ... 55
Figure 34: AUC-ROC Curve of the Classification of the Dataset Augmented with

distilBERT ... 56
Figure 35: Confusion Matrix ... 56
Figure 36: Confusion Matrix of The Classification of the Original Dataset 57
Figure 37: Confusion Matrix of The Classification of the Dataset Augmented with

BERT ... 57
Figure 38: Confusion Matrix of The Classification of the Dataset Augmented with

distilBERT ... 58

xii

LIST OF ABBREVIATIONS

CBOW Continuous Bag of Words

BERT Bidirectional Encoder Representations from Transformers

BOW Bag of Words

DDoS Distributed Denial of Service

DistilBERT Distilled Bidirectional Encoder Representations from

Transformers

GLUE The General Language Understanding Evaluation

GPT Generative Pre-Trained Transformer

HTML Hypertext Markup Language

KNN K Nearest Neighbour

NIST National Institute of Standards and Technology

NLP Natural Language Processing

SVM Support Vector Machine

RNN Recurrent Neural Network

TF-IDF Term Frequency – Inverse Document Frequency

URL Uniform Resource Locator

XGBOOST eXtreme Gradient Boosting

1

CHAPTER 1

INTRODUCTION

The growth of the internet is changing the way we communicate and interact.

It also gives malicious actors a broad environment to act within. Spam, which

is one of the main tools for malicious actors on the internet, is defined as “The

abuse of electronic messaging systems to indiscriminately send unsolicited

bulk messages.” by NIST (NIST Joint Task Force, 2020). As of today, most

malicious domains, about 60%, are associated with spam campaigns (CISCO

Secure, 2022). Adversaries can conduct non-targeted phishing, such as mass

malware spam campaigns (ATT&CK Matrix for Enterprise, 2020). Phishing

frequently takes the form of a spam e-mail combined with a malicious replica

of an official website. In order to prevent internet users from getting spam e-

mails, internet and e-mail providers started to use filters to distinguish

between regular e-mails and spam e-mails according to a set of rules. Among

all the techniques developed for detecting and preventing spam, filtering the

e-mails is one of the most essential and prominent approaches (Ahmed et al.,

2022). However, the rise in the volume of spam e-mails has created an intense

need for the development of more dependable and robust anti-spam filters.

Machine learning methods have been used to improve the spam filters and

they are considered to be successful on it (Dada et al., 2019). Today, learning-

based classifiers are commonly used for spam filtering.

The idea that computers can understand ordinary languages and hold

conversations with human beings was predicted in a classic paper by Alan

Turing in 1950 (Turing, 1950) as a hallmark of computational intelligence.

Natural Language Processing (NLP), a subset of machine learning, enables

computer systems to analyze and interpret texts. NLP provides

communication between human language and computers. There are multiple

uses and purposes of NLP and text classification is one of them. Spam

filtering is one of the key applications of text classification.

To be able to use text classification for spam filtering, a large e-mail dataset

is needed. A classifier model must be trained to label the dataset accordingly.

Since English is known and accepted as the leading language on the internet,

text-oriented studies are conducted mostly on English text. There are

numerous studies on the English language and text in English and most of the

NLP problems are considered solved and closed for English. However, in

non-English languages, problems need unique approaches according to the

morphology of the target language and Turkish also needs different

approaches.

2

Recently, there has been a gap in the availability of publicly accessible e-mail

datasets in Turkish for the usage of researchers to develop spam filtering

methods systematically. To solve this problem, we created an e-mail dataset

for the purpose of spam filtering in Turkish with Natural Language

Processing techniques. We synthetically augmented the dataset according to

word similarities and context. We prepared this dataset to serve researchers

for them to conduct their studies in the field.

1.1. Motivation

Spam e-mail, also known as Unsolicited Commercial E-mail, is unsolicited

and questionable mass-e-mailed content.

Between October 2020 and September 2021, global daily spam volume

reached its highest point in July 2021, with almost 283 billion spam e-mails

from a total of 336.41 billion sent e-mails. As of August 2021, this number

dropped to 65.50 billion (CISCO Secure, 2022).

In the graphics in Figure 1, we can observe spam e-mails are always close in

numbers to the regular e-mail traffic. It is also seen that the growth of e-mail

traffic and spam e-mail traffic is directly proportional.

Figure 1: Average daily spam volume worldwide from October 2020 to September 2021 (in billions)

The most common method of spam is sent via e-mail, while it can also be

distributed via text messages, social media, or phone calls. Adversaries can

conduct non-targeted phishing, such as in mass malware spam campaigns.

3

Spam is inconvenient for internet users, consuming time and resources but

spam is also a cybersecurity threat. According to annual report from

Kaspersky lab, in 2021, cybercriminals involved in the creation and

distribution of spam and phishing tried to lure users using a variety of topics

such as lucrative investments, online streaming of global movie and TV

premieres and themes related to restrictions, requirements (Kaspersky, 2022).

While people think they can recognize spam even if it is not filtered as spam,

spammers, those that send spam messages, regularly update their methods

and messages to trick potential victims. In most cases, cyber-attackers choose

the people as their target, not the systems, since people are easier to

overcome. It can be said the most common method to target people is by

sending spam e-mails and attaching phishing links to them based on the fact

that phishing attacks account for more than 80% of reported security

incidents. Phishing and similar fraud were the most prevalent cybercrime

reported to the U.S. Internet Crime Complaint Center in 2021 (Federal Bureau

of Investigation, 2021). Therefore, people are all constantly under the

possibility of an attack from cybercriminals.

Because of these reasons, spam filtering has become an important matter and

there have been a lot of attempts to solve it. In machine learning, spam

filtering has also become one of the most popular text classification problem.

In recent years, since the traditional rule-based filtering became lacking; word

vector-based spam detection/filtering became a hot issue. Word vectors are

basically the numeric equivalents of the words which are used for processing

words. The studies done on this subject are widely focused on English since

English is the "de-facto" language for technology and the internet. Google

and Stanford University stated in joint research that e-mails attack are mostly

in English. But the same research revealed a rise in phishing attacks which

are not in English since the victim's language has an important role. Research

stated that 78% of the e-mails targeting Japanese users getting the e-mails in

Japanese language and 66% of the attacks that targeted users in Brazil were

written in Portuguese (Simoiu et al., 2020). This leads the process of spam

filtering with machine learning to be language-based too. In text-based

academic research about this topic, Turkish databases for spam are usually

small sized, collected personally and/or case-specific. This is why we looked

for ways to get a larger dataset in Turkish synthetically and decided to

augment the text data with NLP techniques to achieve that.

What is Augmentation and Why Augment the Data?

Data augmentation means synthesising new data from the data we already

have. It means applying transformations to the original labelled data to create

new data for the training. Hence, if we have data (X, Y), X is a sentence and

Y is its corresponding label. In our context, X is the e-mail and Y is the spam

or ham (non-spam) e-mail label.

4

As a part of data augmentation, X is transformed and X’ is created out of it,

and the label is preserved.

 (X, Y) ——T——> (X’, Y)

Since Y is still preserved with this transformation the e-mails X and X’ have

to be semantically similar which means it should not change the meaning of

the original sentence. Thus, even though X’ could be syntactically different

compared to X, they should semantically mean the same thing. (Nithilaa

Umasankar, 2021).

This is a concept that is used for a variety of data, such as sounds, images, or

text. But since texts have to have complete meanings, unlike images which

can have a meaning even if we cut them into half, text augmentation is

considered one of the most difficult augmentation areas. Usually, the

augmented data is similar to the existing data. Since the dataset is crucial for

all machine learning problems, small or imbalanced datasets can become the

actual problem of the process. And other than collecting more data, the

solution for this seems to be augmentation.

Augmentation serves the purpose of generating more data and more examples

from the dataset at hand without the effort to collect more relevant and usable

real data. By creating additional and distinct instances for training datasets,

data augmentation helps machine learning models perform better and produce

more accurate results. A machine learning model improves if the dataset is

large and sufficient. Reduced overfitting is one of the main benefits of data

augmentation. For instance, a classification model trained on just three

paragraphs will only be able to identify and categorize those specific texts

and the data's generalizability will be improved by a few adjustments.

1.2. Research Question

In the literature, there are only a few e-mail datasets in Turkish to be used in

spam filtering machine learning models. Since the cyber attackers started to

specifically adjust to receivers’ language, it became more important to have

more improved tools to handle spam traffic in Turkish as well.

In this study, our research questions are as follows:

 Can Turkish e-mail data be augmented semantically, with text

representation methods in NLP? Text representation is converting words into

numbers for machines to understand and decode patterns within a language.

We aim to augment an e-mail dataset and create a larger dataset that is also

meaningful in Turkish to use for spam filtering and text representations are

needed for that. There are multiple ways of text representation in NLP. It can

be done in different ways, such as frequency-based models like one-hot-

encoding, count vector, co-occurrence, or TF-IDF. By using one-hot

5

encoding, categorical variables can be transformed into a format which

machine learning algorithms can use to make more accurate predictions. In

one hot encoding, words can be easily digitized; but when two different words

are given, it is not possible to discover the relationships between these two

words. It basically works in one way and requires a lot of memory. Next in

order, count vectors are vectors created according to the frequency of words

in the document and co-occurrence is a matrix which holds the number of

words appearing together. It also requires large memory space and a lot of

processing power. TF-IDF takes into account not only the rate of occurrence

of words in the document but also the frequency of occurrence of a word in

other documents. If it is a word or phrase which appears frequently in all

documents, the TF-IDF value will be low. There are also content-based

models such as word2vec. With word2vec, the key premise is that a word's

meaning may be deduced from the company it keeps. Word2vec comes with

two neural network architectures; CBOW (continuous bag of words) and

Skip-gram. The destination word is predicted by CBOW using the nearby

words as input. On the other hand, Skip-gram does the opposite job and

predicts the words close to the input word of interest. There are also

Transformers models (i.e. BERT, distilBERT, GPT), which are context-

based. BERT, distilBERT or GPT models can produce many word

embeddings for a word which properly represent its context or its position in

a text. We aim to use models that capture the content with its meaning and

the context.

 Is augmenting a dataset have an impact on the accuracy of spam

filtering? The accuracy of text classification can be scored with different

types of algorithms to measure the correctness of the machine learning model.

Can we get a higher accuracy score with our augmented dataset for the text

classification task of spam filtering? We hypothesize that the augmented

dataset will provide improved accuracy to classify e-mails for spam filtering.

1.3. Organization of the Thesis

In this thesis, there are mainly four chapters that serve the purpose of forming

an understanding of the conducted study.

 Chapter 1 gives a short introduction to the study, and the motivation

and gives out the research question,

 Chapter 2 summarizes the background information needed for the

process, gives out details about spam and spam as a cyber-threat, and the

protection methods from it; the artificial intelligence/machine learning and

natural language processing impacts on the spam issue in the perspective of

our study,

6

 Chapter 3 presents the overall study process from collecting data to

getting the results; it shows the steps of using different techniques like

word2vec, BERT, GPT-2 to augment data semantically,

 Chapter 4 discusses the results of the methods chosen to augment the

dataset and compares the results with accuracy values,

 Chapter 5 discusses the results of different augmentation techniques we

used and their effects on the classification, specifies the limitations we came

across and gives out some ideas as the future work of this study.

7

CHAPTER 2

BACKGROUND INFORMATION AND LITERATURE REVIEW

In this chapter, the terms, the main subjects, the methods, and the models used

for our study will be described. First, we will start by describing e-mail, spam

and why is spam a cybersecurity issue. Then we will explore spam filtering

history and the machine learning application of spam filtering. Then we will

focus on word embedding theories, and models for finding similar words

according to cosine similarity and according to context. Then we will

introduce the classification task in NLP.

For the English texts, there are annotated datasets and different packages such

as NLTK (Natural Language Toolkit), TextBlob, or spaCy available online.

Part of text-based research of the English text is considered a closed issue.

Even though the natural language processing in English has its problems too,

it can be handled quickly as there is a large community handling the same

problems and sharing results and experiences. On the other hand, when the

language to be processed has more flexible word order and richer

morphology, it needs different ways of pre-processing, some extra functions

to implement, and more time to achieve the same significant accuracy as the

English language. We will be explaining language-specific practices for the

Turkish language and wrap the chapter.

2.1. Understanding Spam and Why It Is a Cybersecurity Issue

Electronic mail (e-mail) is a digital letter sent over the internet, which is an

easy and cheap way to communicate. Globally, as of 2019, a staggering 293.6

billion e-mails were sent each day and there are currently over 4 billion e-

mail users worldwide (CISCO Secure, 2022).

An e-mail statistics report data shows the fact that the daily e-mail sent count

has crossed 300 billion in 2020, with 319.6 billion in 2021, and a whopping

333.2 billion e-mails sent per day in 2022.

8

This means more than 3.5 million e-mails are sent per second, and the number

is still growing as can be seen in Figure 2 (The Radicati Group, 2019).

Figure 2: E-mails sent and received in billions from 2017 to 2025

Based on the research, it is estimated people will send and receive more than

376 billion e-mails per day by 2025 according to the data collected so far.

The same report shows e-mail traffic is growing over the years from 2015 to

2019 in Figure 3.

Figure 3: Daily e-mail traffic from 2015- to 2019

E-mail accounts can be opened from various sites which are providing this

service. E-mail is an efficient way of communication as it saves a lot of time

and money. These aspects make it a common communication tool in

professional and personal communication. Programs called MAILBOX on

the Massachusetts Institute of Technology (MIT) computers back in 1965 are

the first examples of e-mail. Even though there were some forms of e-mail, a

9

networked system was created by ARPANET and e-mail was invented in

1972. The @ symbol is used because it was not in the names of the people.

E-mails are defined as “username@computername”. 75% of ARPANET

traffic was sent by e-mail within a few years. With the invention of the e-mail,

the world has made its way to the internet from ARPANET (Leiner et al.,

2009).

The broadband internet subscribers in Türkiye, which were around 6 million

in 2008, reached 88.8 million as of the first quarter of 2022. The annual rate

of increase in the total number of internet subscribers was 5.9% (BTK -

Information and Communication Technologies Authority, 2022).

Because it has a wide user base, is easy, cheap and fast, many companies

popularly prefer e-mail systems to advertise, which results in unwanted

advertisement or an active or passive attack type; spam.

As of today, spam is a term well-known by internet users. Any kind of

unwanted, unwelcomed messages which are sent digitally and in bulk can be

counted as spam. It is defined as “The abuse of electronic messaging systems

to indiscriminately send unsolicited bulk messages.” by NIST (NIST Joint

Task Force, 2020). The first reported spam e-mail was sent by Gary Thuerk

on May 3, 1978, to several hundred users on ARPANET. It was an

advertisement for a presentation by Digital Equipment Corporation for their

DECSYSTEM-20 products. In Figure 4 below, the history of digital spam can

be seen (Ferrara, 2019).

Figure 4: Timeline of the major milestones in the history of spam, from its inception to modern days

Spammers use several kinds of ways to bulk-send their unwanted messages.

Some spam e-mails might have marketing aims and some other types of spam

messages can spread malware, trick people into divulging personal

information or scare them into thinking they need to pay to get out of trouble.

1978, ARPANET. The first
reported case of spam e-
mail by Digital Equipment
Corporation and circulated
over 400 ARPANET users.

MID 1990s, THE E-MAIL
EPIDEMIC, Because of the

spam e-mail traffic,
platforms and ISPs start

investigating spam filtering
techniques.

1995, SEARCH ENGINES,
Web content spam and link
farms, the manipılation of
web search result ranking

2000s, SOCIAL NETWORKS,
the rise of social networks
leads to new oppurtunities

and wide reach for
spammers.

2005, FAKE REVIEWS, Big e-
commerce companies fight

the manipulation of product
popularity by opinion spam

2010, SOCIAL BOTS, Millions
of accounts operated by
software populate social

media to carry out nefarious
spam campaigns

2016, FALSE NEWS, Spam
websites are created
delibaretly propogate

disinformation news in
politics, health and social

issues.

2018+, AI SPAM, Since AI can
manipulate reality,

spammers try to manipulate
AI to elicit behaviors of the

users.

10

Spam causes a lot of trouble to the internet community, large amounts of spam

traffic between servers cause delays in the delivery of legitimate e-mail,

sorting out the unwanted messages takes time and introduces a risk of deleting

normal e-mail by mistake, and people with dial-up internet access have to

spend bandwidth downloading spam e-mail. There is quite an amount of

pornographic spam that should not be exposed to children.

And last but not the least, spam can be an easy and powerful cyber-attack tool

if it contains malicious links or asks for personal information. In a sample of

more than 13 million e-mails identified as spam, more than 100,000 contained

malicious attachments; nearly 1.4 million contained malicious web links. If

opened, these attachments and links could infect the recipients’ devices with

software that allows cybercriminals to remotely access them (Alazab &

Broadhurst, 2017). Spam protection is considered one of the main protections

against cyber-attacks according to NIST since it can be the starting point for

multiple types of cyber-attacks (NIST, 2020). A spam e-mail can turn the

receiver’s computer into a bot/zombie computer which can be used without

their knowledge. Attackers can use the computer to create another mass spam

e-mail campaign.

In order to fight spam; multiple ways are proposed; legal measures like the

anti-spam law introduced in the US (The CAN-SPAM Act: Requirements for

Commercial Emailers, 2004) or social methods such as educating e-mail users

about spam and also other methods like blocking the known IP addresses of

spammers. At last, there is spam filtering and various methods of it. An

absolute solution to spam e-mails is yet to be found, and automatic filtering

methods are being evolved day by day to fight against spam.

Spam filters abundantly block lots of spam e-mails but it remains a weight to

the networks, e-mail servers, and overall internet. Given the astounding

volume of spam that reaches e-mail inboxes, it is reasonable to believe there

are global, structured, and virtual social networks of spammers. They target

not only user e-mails but also those of entire nations and organizations. One

of the tools in the informational war is spam (Nazirova, 2011). Even though

the phrases "spam" and "war" have been used in the same context since 2003,

(Gburzynski & Maitan, 2004; Weinstein, 2003) it is not until 2009 when the

issue of spammers' social networks is discussed in academic studies. The

method of spectral clustering is used in studies by Xu K.S., et al. to define

and follow the social networks of spammers by tracking a set of spam

communications gathered under project Honey Pot (Xu et al., 2009). They

depict a spammer's social network as a graph with spammers as nodes, and

they depict social connections between spammers as a corner between two

graph junctions.

Spam filtering system research and development are being done intensively

worldwide. Numerous businesses and organisations, in addition to academic

institutions, are looking into and providing various theoretical, practical, and

legal methods for spam filtering. Several organisations, including academic

labs (i.e. CSAIL MIT in the United States, Computer Laboratory Faculty at

11

Cambridge University in the United Kingdom), research centres (i.e. IBM

Research Center), and private businesses (Microsoft, Symantec, Kaspersky's

Laboratory) had a hand in this process. Many international organizations pay

close attention to the issue at hand. In 2003, the IETF (Internet Engineering

Task Force) established the ASRG (AntiSpam Research Group). There have

been numerous worldwide symposiums, summits, and conferences on this

subject (Nazirova, 2011).

2.2. Artificial Intelligence and Machine Learning for Cyber Security

For general understanding, we will briefly introduce some key factors of

artificial intelligence (AI) and machine learning, their applications in cyber

security, and the critical parts for our study.

AI can be considered as the big picture. Its goal is to make it possible for

computers to think as humans do, simulate human behaviour, and solve

problems more quickly and effectively than people can. AI is capable of doing

a wide range of functions, including planning, speaking, object detection,

sound recognition, social interactions, and business transactions. Various

techniques, including machine learning (ML), deep learning (DL),

recommendation systems, text mining, predictive and prescriptive analytics,

natural language processing, and predictive analytics, can be used to carry out

tasks.

Cyber security can be addressed from two sides in the terms of AI; AI can be

a tool to optimize the cyber security solutions or AI systems can be exploited

and need cyber security solutions to be protected (Li, 2018).

Machine Learning is an approach to AI creation. It gives machines access to

a large number of sample data and codes them to find patterns and make them

learn on their own how to perform the task, rather than programming them by

hand-coding software routines with a specific set of instructions to

accomplish a particular task.

There are multiple applications of AI and machine learning in cyber security,

such as AI2; an artificial intelligence platform to predict cyber-attacks that

have been developed by MIT Computer Science and Artificial Intelligence

Laboratory (CSAIL) and PatternEx, CylanceProtect, which is an integrated

information security threat prevention tool, which combines the benefits of

artificial intelligence with information security controls to prevent malware

infections, Darktrace, which is an information security solution, that can help

detect and recognize emerging cyber threats that are able to avoid traditional

information security protections, Amazon Macie that artificial intelligence

provides tools for Macie to find, classify and protect sensitive data on

Amazon Web Services (AWS), Deep Instinct, which is designed to protect

organization’s mobile devices and services against known and unknown

12

malicious attacks in real-time or threat intelligence solutions like IBM

QRadar Advisor and so on (Vähäkainu & Lehto, 2019).

Natural Language Processing (NLP) is the set of methods for making the

human language accessible to computers (Eisenstein, 2018). NLP is a subfield

of computer science, linguistics, and artificial intelligence. NLP is the area of

AI-based deep learning that deals with the use of natural language in

communication between people and machines. NLP offers a wide range of

capabilities to improve human performance. NLP in risk and compliance may

find standards and framework overlaps, data from the tech stack of a

company, and threat feeds to find security flaws in your infrastructure. The

ultimate goal of NLP is to "read," interpret, and comprehend language which

is useful to the end-user. Contemporary approaches to natural language

processing rely heavily on machine learning, which makes it possible to build

complex computer programs from examples (Eisenstein, 2018).

The relationship between AI, NLP, ML, DL, and Linguistics can be seen in

Figure 5 (Banerjee, 2020).

Figure 5: Relationship between AI, NLP, ML, DL, and Linguistics

Cybersecurity experts use many automated tools and technologies based on

NLP to find, test, and correct weaknesses in a company's infrastructure,

monitor malicious content on the system and identify network vulnerabilities

(Ukwen & Karabatak, 2021).

There were multiple pieces of research on NLP and its use in the field of

information security, such as the inventive study that identifies NLP use cases

and applies theoretical and empirical ontological semantics (Atallah et al.,

2001) or research that argues why NLP should move to information security

and assurance (Raskin et al., 2002).

There are also multiple applications of natural language processing methods

to be used for cyber security solutions; such as developing a multi-level

ransomware detection framework (Poudyal & Dasgupta, 2020), and detecting

social engineering attacks (Lansley et al., 2020). There were numerous other

13

studies on different areas of cyber security and natural language processing

such as information security and assurance, information retrieval, forensics,

file fragment classification, semantic knowledge representation, document

clustering, intrusion detection, malware detection, malicious URL detection,

phishing attack detection, ransomware detection, threat intelligence, DDoS

(Distributed Denial of Service) attacks detection, privacy-preserving,

vulnerabilities detection and operation and log anomaly detection (Ukwen &

Karabatak, 2021).

There are also studies specifically focusing on the Turkish language to detect

phishing attacks by URL (Buber et al., 2017), detecting Turkish phishing

attacks with machine learning classifiers (Turhanlar, 2019) or filtering

Turkish spam using LSTM techniques (Eryilmaz et al., 2020).

In e-mail spam filtering, modern machine learning and natural language

processing algorithms for spam filtering, as well as approaches for assessing

and contrasting various filtering techniques, were reviewed (Blanzieri & Bryl,

2008) and there is a study on the effectiveness of distinguishing spam from

non-spam e-mails using word embedding and a pre-trained deep learning

model (BERT) (AbdulNabi & Yaseen, 2021) or comparison between deep

learning methods with traditional machine learning algorithms applied to

spam e-mail detection by utilizing text representations from NLP (Srinivasan

et al., 2020). And there was PhishNet-NLP for spam filtering, which

combines context information with natural language processing techniques

(Verma et al., 2012).

We will use natural language processing as a tool for the spam protection

process as well.

2.3. Spam Filtering

Even though an absolute solution to spam e-mails is yet to be found, filtering

methods are being evolved day by day to fight against spam. Spam filters are

created to identify incoming dangerous e-mails from attackers or unsolicited

marketers. Spam filters abundantly block lots of spam e-mails but it remains

a weight to the networks, e-mail servers, and overall internet. They used to

work rule-based and they were only following a checklist. As the technology

evolved, spammers also evolved their techniques and rule-based-only filters

became incapable. The rise in the volume of spam e-mails has created an

intense need for the development of more dependable and strong spam filters.

Hence artificial intelligence-based methods have been asserted to improve the

filtering process, it is also observed in conjunction with the rule-based

filtering methods. In artificial intelligence-based methods, spam detection is

mostly performed using machine learning algorithms and deep learning

techniques (Karim et al., 2019).

Even though the first spam message was delivered in 1978, it was not until

1982 for it to be recognized as a problem in the academic literature (Denning,

1982). The Bayes method, initially employed by Sahami et al in 1996 and

14

thereafter by other academics (Gabber et al., 1998; Hall, 1998; Sahami, 1996;

Sahami et al., 1998) is the first mathematical tool applied to spam filtering

systems. The foundation of Bayes' classifier is the well-known Bayes

theorem, on which the first articles may be encountered as early as 1960

(Fisher, 1960).

For text classification, several machine learning techniques have been used

(Apte et al., 1994; Dagan et al., 1997; Lewis et al., 1996). After being trained

on manually categorized documents, these algorithms learn to categorize texts

into predetermined categories based on their content. These kinds of

algorithms have also been used to group e-mails into folders, thread e-mails

(Lewis & Knowles, 1997), find relevant news articles (Faiz, 2006) and more.

An attempt at using a machine learning algorithm for anti-spam filtering has

been made by Sahami (Sahami et al., 1998). Sahami et al. reported

outstanding precision and recall on unseen messages after training a Naïve

Bayesian classifier (Duda & Hart, 1973) on manually classified valid and

spam messages. It may come as a surprise that text classification can be useful

in anti-spam filtering since, unlike other text categorization tasks, the act of

mass mailing a message without reading it first, rather than its content,

constitutes spam. However, it appears that spam's language is a different

genre, and since spam communications frequently discuss subjects which are

not covered in valid messages, it may be able to train a text classifier for anti-

spam filtering.

Naïve Bayes Classifier has been utilized to solve a wide range of problems,

from the classification of texts in news organizations to the initial diagnosis

of illnesses in medicine. The presence or lack of words in the text is typically

chosen as a characteristic for the situations where Naïve Bayes Classifier is

applied. In the case of e-mail filters that classify messages as spam, the header

(fields holding generic message details such as the subject, sender, and

receiver), topic, and body (the actual contents of the message) of the e-mail

are all taken into consideration.

Then the method of overlapping probability proposed by R. Fisher in 1950 as

in Gary Robinson's paper (Robinson, 2003) was used for filtering purposes in

a statistical approach. Robinson offered to determine both the likelihood that

an e-mail is "legitimate" and its likelihood of being spam in order to detect

spam. After this, some other works addressed the use of Markov chain

PageRank (Boldi et al., 2005) and Hidden Markov Model were the following

directions (Gordillo & Conde, 2007). A brand-new technique for digitally

analysing textual e-mails for spam identification can also be seen in the

literature (Korelov et al., 2006). In some following works, the application of

clustering analysis techniques to the issue of separating authentic e-mails

from spam is discussed (Hsiao & Chang, 2008; Lee et al., 2010).

In an evolutionary situation made possible by the usage of filters (Goodman

et al., 2007), spammers use tools (Stern, 2008) with a variety of strategies

designed particularly to reduce the number of messages which are detected.

15

The earlier types of spam filtering techniques are created to identify incoming

dangerous e-mails from attackers or unsolicited marketers. Since spammers

constantly change external signs of e-mails to skip spam filtering systems,

there arises a need for an adaptive filtering system, which should have the

ability to react quickly to the changes and provide fast and qualitative self-

tuning. The course of action to be done once they have been located typically

depends on the filter's application setting. They are typically delivered to a

folder which only contains messages tagged as spam if used by a single user

as a client-side filter, making it easy to identify these messages. A mail

server's filter, on the other hand, may handle messages from many users and

either mark them as spam or remove them. Another potential is a collaborative

environment, where filters operating on several machines share knowledge of

the messages they have received in order to function better.

The rise in the volume of spam e-mails and the change in the techniques of

spammers have created an intense need for the development of more

dependable and strong spam filters. Since 2009, starting with the publication

of Cortez et al. (Cortez et al., 2009) the claim that symbiotic data mining is

a combination of collaborative filtering and content-based filtering has been

coming to reality.

Automatic filtering rules and e-mail categorization utilizing machine learning

techniques like Naïve Bayesian classification, Support Vector Machine, K

Nearest Neighbour, and Neural Networks are typically created using Content-

Based Filtering. In order to filter incoming e-mail spam, this technology often

analyses terms, the incidence, and distribution of words and phrases in e-mail

content (Christina et al., 2010).

There is Previous Likeness Based Spam Filtering Technique; it classifies

incoming e-mails based on how closely they resemble stored examples using

memory-based, or instance-based, machine learning techniques (e.g. training

e-mails). A multi-dimensional space vector is created using the e-mail's

properties, and new instances are plotted as points using this vector. The most

well-liked class of its K-closest training instances is then given the fresh

instances (Sakkis et al., 2001). It filters spam e-mails using the k-nearest

neighbour (kNN) algorithm (Mucherino et al., 2009).

Another method is Adaptive Spam Filtering Technique. This method

classifies spam into distinct categories in order to detect and filter it. It

separates an e-mail corpus into different groups, each has a unique text. Each

incoming e-mail is compared to each group, and a percentage of similarity is

calculated to determine the most likely group to which it belongs (Pelletier et

al., 2004).

There is also Heuristic or Rule-Based Spam Filtering Technique, which

compares a large number of patterns, most of which are regular expressions,

against a selected message using pre-made rules or heuristics. A message's

grade is raised when there are several related patterns. If any of the patterns

16

did not match, it subtracts from the score. Any communication that receives

a score beyond a certain level is classified as spam; otherwise, it is considered

to be authentic. While certain ranking criteria do not vary over time, others

need to be updated often in order to successfully combat the threat of

spammers who constantly add new spam messages which can easily evade

detection by e-mail filters (Christina et al., 2010). SpamAssasin is a good

example of a rule-based spam filter (Mendez et al., 2006).

One of the widely used spam filtering techniques is Case Base Filtering. First,

using a collection approach, all e-mails spam and non-spam/ham are collected

from each user's e-mail. Then, utilizing the client interface, feature extraction,

selection, grouping of e-mail data, and process evaluation, pre-processing

stages are carried out to change the e-mail. After that, the information is

divided into two vector sets. The machine learning approach is also used to

test and train datasets to determine if incoming e-mails are spam or not

(Christina et al., 2010).

Different e-mail spam classification approaches have been proposed by

numerous researchers and academics, and they have been utilized

successfully to divide data into groups.

The most successful technique applied in filtering spam is the content-based

spam filtering approach which classifies e-mails as either spam or ham

depending on the data that made up the content of the message. Bayesian

filtering, SVM, kNN classifier, neural networks, AdaBoost classifier, and

other methods are examples of this methodology. Systems based on the

machine learning approach facilitate learning and adjustment to recent

dangers posed to the security of spam filters. They also have the capacity to

counter curative channels spammers are using (Dada et al., 2019).

Before raising our research questions about Turkish spam data, we scanned

the literature for Turkish e-mail datasets for spam filtering. One study defines

adaptive anti-spam filtering for Turkish (Özgür, 2003), also there were time-

efficient methods on Turkish spam data (Çiltik & Güngör, 2006), and low

time complexity methods were also studied. The dataset is formed from the

messages of one of the authors since there was no dataset for Turkish, and

640 ham, and 640 spam messages were used for balance (Güngör & Çiltik,

2007).

There were also studies on the classification of spam with different methods,

like the artificial immune system. The dataset in the study was created from

spam sent to the contact e-mail address added to the homepage of the official

website of Siirt University, and Turkish e-mails sent to personal e-mail

addresses. There are 603 regular and 540 spam mails in total (Özdemı̇r et al.,

2013). The e-mail dataset to be used for spam filtering had to be recollected

and processed than in most studies.

17

Text classification categorizes the raw text into a group of words. It allows us

to label the unstructured texts with their relevant tags which are predicted

from a set of predefined categories. Using NLP, text classification can

automatically analyse text and then assign a set of predefined categories or

tags based upon its context. NLP can be used for topic detection, sentiment

analysis, and language detection. One of the most common uses of text

classification is spam filtering and it is widely used by service providers. E-

mail spam filtering is an important issue in network security and it has also

become important in machine learning techniques. Several machine learning

algorithms have been employed for e-mail spam filtering, including

algorithms which are considered top-performers in Text Classification (Rathi

& Pareek, 2013) like Boosting algorithm, Support Vector Machines (SVM)

algorithm (Kumar et al., 2016) and Naïve Bayes algorithm (Feng et al., 2016)

XGBOOST (Chen & Guestrin, 2016) and K Nearest Neighbour (KNN)

(Mucherino et al., 2009).

Naïve Bayes classifier that uses Naïve Bayes algorithm to classify has a very

important role in the process of filtering spam e-mail. The quality of

performance Naïve Bayes classifier is also based on datasets. In the research

done by Nurul Fitriah Rusland et al in 2017, it can be seen a dataset that has

fewer instances of e-mails and attributes can give good performance for Naïve

Bayes classifier (Rusland et al., 2017).

Naïve Bayes is a classification technique based on Bayes’ Theorem with a

conjecture of independence amid predictors (Bayes, 1763). Bayes’ Theorem

is simply a mathematical formula which is used for calculating conditional

probabilities. Conditional probability is a measure of the probability of

something occurring given that another thing has occurred.

18

The formula of Bayes’ Theorem as in Figure 6, tells us how often c happens,

given that x happens, written P(c|x) also called posterior probability, when

we know: how often x happens given that c happens, written P(c|x) and how

likely x is on its own, written P(x) and how likely x is on its own, written

P(x).

Figure 6: Bayes Theorem Formula

Posterior Probability: Probability of c occurring given evidence of x already

occurred.

Likelihood: Probability of x occurring given evidence of c already occurred.

Class Prior Probability: Probability of c happening.

Predictor Prior Probability: Probability of x happening.

In order for the algorithm to calculate the likelihood that a text belongs to a

category, any vector used to represent a text must include information about

the probabilities that particular words will appear in texts belonging to that

category. Since it is based on independent probabilities; it is possible to obtain

successful results, even when there are limited computational resources and

a small dataset.

Support Vector Machines (SVM), which, like Naïve Bayes, requires little

training data to begin producing reliable results. But SVM needs more

computing power than Naïve Bayes. In essence, SVM creates a "hyperplane"

or line that separates a region into two subspaces. Vectors (tags) that are

members of one group are found in one subspace, whereas those that are not

members of that group are found in another subspace. The hyperplane with

the greatest distance between each tag is the ideal hyperplane.

19

The basic workflow of text classification in machine learning can be seen in

Figure 7.

Figure 7: Text classification task on spam filtering

Since spam filtering is a text classification problem in the machine learning

approach, it requires a classifier to label the e-mail data from the input dataset

as ham or spam.

In machine learning problems, the quality and the quantity of data are crucial

and for these reasons we come back to our research question, to be able to get

more qualified data from a considerably small set of data would be the

solution for some machine learning cases.

20

In practice, the training step can be replaced by using a pre-trained model

which is applicable to the machine learning problem at hand.

Machine learning algorithms are usually grouped by their learning method as

follows; Supervised Machine Learning, Unsupervised Machine Learning,

Semi-Supervised Machine Learning, and Reinforcement Machine Learning.

These groups are formed by how the algorithm can model a problem based

on its interaction with the input data which can also be called environment or

experience. In our study, we will be using supervised machine learning

methods due to our problem to solve.

2.4. Language Modelling and Augmentation in Natural Language

Processing

Natural Language Processing (NLP) is the set of methods for making the

human language accessible to computers (Eisenstein, 2018). Contemporary

natural language processing techniques mainly rely on machine learning

models which enable the creation of complicated computer programs and

machine learning models need some kind of quantitative representation for

their calculations in order to process words. Developing meaningful

representations of text has been one of the primary goals of NLP since its

start. Text representation is the process of representing the text as numbers so

that computers can work on them. Depending on the problem to be resolved,

the text in question can be a document, a sentence, or a word.

Text representations in NLP systems are applied in increasingly flexible and

task-agnostic ways for downstream transfer. First, single-layer

representations such as word2vec and GloVe were learned using word vectors

(Mikolov et al., 2013; Pennington et al., 2014) and fed to task-specific

architectures, then RNNs with multiple layers of representations and

contextual state were used to form stronger representations (Dai & Le, 2015;

Peters et al., 2018) which are applied to task-specific architectures, and more

recently pre-trained recurrent or transformer language models (Vaswani et al.,

2017) have been directly fine-tuned, entirely removing the need for task-

specific architectures (Brown et al., 2020).

We will be mentioning some of the techniques that are relevant to our work.

2.4.1. Frequency-based Representations

One-hot-encoding: One hot encoding is a process by which categorical

variables are converted into a form that could be provided to machine learning

algorithms to do better predictions. In one hot encoding, while words can be

easily digitized, when two different words are given, it is not possible to

extract the relationships between these two words. Since there are as many

21

vector sizes as the number of words, there are too many "0"s in the vector. It

requires a lot of memory.

Count vector: They are vectors created according to the frequency of words

in the document.

TF-IDF: TF-IDF takes into account not only the rate of occurrence of words

in the document but moreover the frequency of occurrence of a word in other

documents (Ramos, 2003). If it is a word or phrase that appears frequently in

all documents, the TF-IDF value will be low. Texts are converted into vectors

using the bag of words technique in text categorization (Thorsten Joachims,

1998). Despite the fact that TF-IDF BoW (bag of words) representations

assign weights to various words, the word meaning cannot be captured by

them.

Co-occurrence: It is a matrix that holds the number of words appearing

together. It requires large memory space and processing power.

Bag of Words: This method gives each word that appears in the text a special

token, typically a number.

2.4.2. Word Embeddings

The fact that the vocabulary size grows together with the size of the vector

representation of texts is a noticeable disadvantage of the methods mentioned,

in addition to their inability to capture word semantics. As a result, a vector

with many zero scores is produced. This vector is referred to as a sparse vector

or sparse representation, and it requires more memory and processing

resources during modelling. Word embeddings use dense representations to

reduce dimensionality and use contextual similarity to offer a more expressive

representation.

Word Vectors: Word embedding methods learn real-valued vector

representations for a predetermined fixed-size vocabulary which has been

obtained based on a text.

The learning process can work in some parts in combination with a neural

network model (text classification) or as an unsupervised process using

document statistics.

Cosine Similarity: Cosine similarity measures the similarity between two

vectors of an inner product space. It is measured by the cosine of the angle

between two vectors and determines whether two vectors are pointing in

roughly the same direction. It is often used to measure document similarity in

text analysis (Han et al., 2012).

22

2.4.2.1. Similarity-based Word Embedding Methods

Word2vec

Word2vec is an unsupervised and prediction-based model which represents

words in vector space. It is an unsupervised learning technique to learn

continuous representations of words that have one input, one secret layer and

one output. It is developed by Google researcher Tomas Mikolov and his team

in 2013 (Mikolov et al., 2013). The biggest advantage of the Word2vec

model is that the closeness between the words is not lost due to the conditional

probability principle working logic according to the positions of the words in

the sentence.

CBOW (Continuous Bag of Words) and Skip-gram

Word2vec works in two ways; CBOW (Continuous Bag of Words) and Skip-

gram. We can see Figure 8 to understand CBOW and Skip-gram (Mikolov et

al., 2013).

Figure 8: The CBOW and Skip-gram models

These two methods generally work similarly but they have different kinds of

inputs and outputs. When creating word vectors, there are some

hyperparameters such as “window size” or embedding size. Window size

remarks how many words there must be around the target word and

embedding size indicates how many dimensions of a vector each word has to

be defined with. This also corresponds to the number of neurons on the secret

layer.

23

In the CBOW model, the words not in the centre of the window size are taken

as input and the words in the centre are tried to be predicted as output, while

in the Skip-gram model, the word in the centre is taken as input and the words

which are not in the centre are tried to be predicted as output. This process

continues until the sentence ends. These operations are applied to all

sentences and thus, mapping is applied to the unlabelled data we have at the

beginning and then it becomes ready to train.

Figure 9: Word2vec Mechanism

The hidden state shown in red in Figure 9 can maintain information about the

previous word in the sentence.

FastText

FastText is an extension of Word2vec and a library in the gensim structure

developed by Facebook AI Research team (Joulin et al., 2017) . Instead of

inputting individual words to the neural network, fastText splits words into

"n-grams" based on several letters.

For example, for the word apple - “elma”, the tri-grams should be: “elm” and

“lma”. In the n-gram expression, n represents the number of repeats. In other

words, the n expression here provides how many times the word would be

divided. It allows us to understand how much of a word or letter.

In fastText, some words can be expressed using n-grams, even though they

are not in the training dataset. Since the number of n-grams will be many

times higher than the number of words, the training period is also extended.

On the other hand, it can express words which are found in small numbers in

documents better than Word2vec, it is stated that it is faster than other

methods and it supports Skip-gram with CBOW.

There are pre-trained fastText models for many more languages than any

other embedding algorithm since it needs less data than others for training.

24

Glove

GloVe, The Global Vectors for Word Representation, is a word2vec

extension developed by Stanford as an open source (Pennington et al., 2014).

The unsupervised algorithms of Glove are based on the statistics of the data.

Models such as Skip-gram and CBOW capture semantic information but do

not use collaborative statistics. Although matrix parsing methods use these

statistics, they cannot capture semantic relationships. The “GloVe” model

aims to solve this problem by creating a new objective function using

probability statistics. The GloVe model's fundamental principle is to embed

words in meaningful vectors by concentrating on the likelihood that words

will occur together in a corpus of texts. In other words, GloVe examines the

frequency with which two terms are used together throughout the whole

corpus of texts.

2.4.2.2. Transformer

The idea of training a different language model to create better contextual

word representation has been very effective in many NLP tasks, however,

they have their disadvantages such as being difficult to train or parallelize,

having short-term memory etc. The Attention mechanism introduced in the

work by Vaswani, A. et al. in 2017 aimed to overcome most of these

problems. The other NLP models usually capture all the information in the

input sentence -the details of objects, how objects are related to each other

etc. in an intermediate state and then use this intermediary information and

express it in the output. The size of the vector used for this intermediary state

before starting to decode the output sequence is fixed. In this entire process,

the intermediate stage is crucial. The accuracy of the output from the decoding

process depends on its capacity to retain all the data passed in the input

sentence. The most important component is still the intermediate state. In

cases with very long texts as input, the intermediate state fails and is not

sufficient to capture all the information. The idea of attention enhances the

model's performance and frees the intermediate state from being entirely in

charge of encoding all the information accessible to the decoder in a fixed

length vector and from being a potential bottleneck. The information may be

distributed throughout the sequence of annotations-encoder hidden states, and

the decoder may recover it selectively as necessary. A transformer model can

“attend” or “focus” on all previous tokens that have been generated (Vaswani

et al., 2017).

Transformers are semi-supervised machine learning models that are primarily

used with text data and have replaced recurrent neural networks in natural

language processing tasks. The encoder maps an input sequence of symbol

representations (x1, ..., xn) to a sequence of continuous representations z = (z1,

..., zn). Given z, the decoder then generates an output sequence (y1, ..., ym) of

symbols one element at a time. At each step, the model is auto-regressive

25

consuming the previously generated symbols as additional input when

generating the next (Vaswani et al., 2017).

The Transformer follows the architecture using stacked self-attention and

point-wise, fully connected layers for both the encoder and decoder, shown

in the left and right halves of Figure 10 respectively (Vaswani et al., 2017).

Figure 10: The Transformer model architecture

Encoder: The encoder maps an input sequence of symbol representations (x₁,

…, xₙ) to a sequence of representations z = (z₁, …, zₙ).

Decoder: Given z, the decoder generates an output sequence (y₁, …, yₘ) of

symbols one element at a time.

Decoder

Encoder

26

GPT

The Generative Pre-Trained Transformer (GPT), is created by OpenAI. It is

an unsupervised generative model, which means it attempts to produce an

appropriate response from an input such as a sentence and the training data

were not labelled. The GPT-2 language model, developed by OpenAI in

February 2019, uses unsupervised deep learning transformers to predict the

next word or words in a sentence (Radford et al., 2019). GPT-2 can learn

language skills such as reading, summarizing, and translating an unstructured

text without the use of domain-specific training data. GPT-3 was developed

to be more resilient than GPT-2; it can handle a wider range of specialised

themes. A more accurate description may be that it is a sequential text

prediction model, even if it is still a language prediction model.

BERT

BERT, stands for Bidirectional Encoder Representations from Transformers,

was proposed in 2018 as a new language model representation. Unlike recent

language representation models, BERT is designed to pre-train deep

bidirectional representations from the unlabelled text by jointly conditioning

on both left and right contexts in all layers. As a result, the pre-trained BERT

model can be fine-tuned with just one additional output layer to create state-

of-the-art models for a wide range of tasks, such as question answering and

language inference, without substantial task-specific architecture

modifications (Devlin et al., 2018).

In BERT, from output layers, the same architectures are used in both pre-

training and fine-tuning. The same pre-trained model parameters are used to

initialize models for different downstream tasks. During fine-tuning, all

parameters are fine-tuned. [CLS] is a special symbol added before every input

example, and [SEP] is a unique separator token.

27

In Figure 11, the pre-training and fine-tuning procedures of BERT can be seen

(Devlin et al., 2018).

Figure 11:Overall pre-training and fine-tuning procedures for BERT

There are two tasks are introduced for pre-training with BERT; Masked

Language Model (MLM), Next Sentence Prediction (NSP) and the results for

11 NLP tasks are presented and claim these results enable even low-resource

tasks to benefit from deep unidirectional architectures (Devlin et al., 2018).

DistilBERT

Knowledge distillation, also known as teacher-student learning, is a

compression approach in which a small model is educated to mimic the

behaviour of a bigger model (or a group of models) wihch is introduced by

Bucilǎ, C. et al., and generalized by Hinton, G. et al. several years later

(Bucilǎ et al., 2006; Hinton et al., 2015).

DistilBERT is the distilled version of BERT, it has the same general

architecture as BERT and it is a BERT base-trained Transformer model that

is compact, quick, affordable, and light. Over 95% of BERT's performance

on the GLUE (The General Language Understanding Evaluation) language

understanding benchmark is preserved despite having 40% fewer parameters

and running 60% faster than BERT-base-uncased (Sanh et al., 2019; Wang et

al., 2019). The token-type embeddings and the pooler are removed while the

number of layers is reduced by a factor of 2. Most of the operations used in

the Transformer architecture (linear layer and layer normalisation) are highly

optimized in modern linear algebra frameworks and the investigations show

that variations on the last dimension of the tensor (hidden size dimension)

have a smaller impact on computation efficiency (for a fixed parameter

28

budget) than variations on other factors like the number of layers. Thus it

focuses on reducing the number of layers.

Figure 12: The comparison of models

In Figure 12, the performance comparison of the models can be seen (Sanh et

al., 2019).

29

CHAPTER 3

METHODOLOGY

In this chapter, the proposed augmentation and the classification models will

be explained. For the first phase, we needed to find a suitable way to augment

an e-mail dataset in Turkish. Therefore, our first step was finding or collecting

the appropriate data for our study. After acquiring the dataset, we applied the

relevant pre-processing methods to the data and implemented different

augmentation methods on the dataset. We compared the classification results

before and after the augmentation with the selected methods and presented

the comparison of them in the relevant section. In all stages of this study,

Python 3 was used as the programming language. For the environment, we

started with Jupyter Notebook but then finalize most of the work with Google

Colab.

We went through multiple ways throughout the study to find the most suitable

methods to answer our research questions. First, we have started with

word2vec methods along with gensim library to replace words in sentences

according to their cosine similarity. Then, we have done an implementation

of Transformer GPT-2 model that generates data. Finally, we have moved on

to the BERT and distilBERT of Transformer with specific augmentation

libraries. Subsequently, we used different techniques which can be used as

features in order to augment text data in Turkish language by similarity. We

presented the frameworks we used for each method. After improving on these

building blocks, we finally presented the augmented data and moved on to

the second phase. In our second phase, we performed text classification, spam

filtering in our specific case. We showed the accuracy of the spam

classification results of the initial dataset and the augmented dataset. The

details of the processes of each method are explained in their relative sections.

3.1. Obtaining Data

First, we tried to create our own dataset for this study. For this purpose, we

got an unstructured e-mail dataset from METU IT Department. This dataset

was collected from automated filters and hand-written protocols. However,

since this dataset had so many types of data, many false positives, and e-mails

in different languages, mostly English, it took some time to get usable data

from it. After selecting the suitable e-mails that are in Turkish, the dataset

became significantly small. We had to label the data as spam and ham

manually. Some e-mails were too repetitive since the data was collected from

30

multiple sources. At the beginning of the study, we used this dataset to train

a model and then use it with a pre-trained model to create new e-mails

according to word similarity but it gave poor results at every attempt. Then

we tried to find other datasets from IT Departments of some institutions but

it did not serve as a suitable solution due to data transformation processes

since the e-mails might include sensitive information. We also considered

translating English e-mails to Turkish but since the translation itself is also an

NLP problem, we decided not to use this method and stay focused on our task.

Finally, we decided to use a Turkish e-mail dataset from Kaggle which is

updated in 2019 and includes a total of 330 spam and 496 ham e-mails which

were collected from several personal accounts (Demir, 2019).

We used Python’s pandas library to use the dataset inside the code, which was

stored as a CSV document. We used the read_csv method of pandas library

and turn our dataset into a dataframe object. Pandas dataframe is a two-

dimensional, size-mutable, potentially heterogeneous tabular data structure in

Python. It contains rows and columns and it is considered one of the most

efficient ways to keep and represent CSV file information in Python code.

In Figure 13, we present the data, an example of an e-mail in the dataset, as it

is stored in Kaggle.

Figure 13: Example e-mail shown in source

31

In Figure 14, we can see the statistics of the same example e-mail in Figure

13.

Figure 14: Statics of the example e-mail in source

Additionally, in Figure 15, a sample data inside our code can be seen as it is

represented in a pandas dataframe.

Figure 15: Original dataset shown as pandas dataframe

32

3.2. Preparing the Data

The data collected from a source is generally unstructured. It contains unusual

text, meaningless characters or different languages mixed with each other.

Therefore, raw texts mostly cannot fit in machine learning or deep learning

models; the models cannot interpret the unusualness, so according to the

problem to be solved, the text might need to be cleaned or pre-processed first.

The steps of the pre-processing differed according to the model we chose.

Even though we will be explaining all the pre-processing details in this

section, we will clarify the steps used for each method in their own sections.

In the classification task, we have run the pre-processing steps for every

method. All the pre-processing steps can be seen in Appendix A.

Primarily, we reshaped the dataset as it might had duplicate rows and

columns. After removing duplicates, we had a 59.42% ham and 40.57% spam

ratio of e-mails in our dataset.

Pre-processing Methods to Be Used Only in Turkish Dataset

The pre-processing steps we used had slight differences according to the

methods. For example, we used every pre-processing step mentioned here for

word2vec implementation so that the data can be used as a valuable input

since word2vec needs the cleanest form of a word but we did not use some of

the steps with BERT or GPT-2 implementations. In this section, we will

explain all the pre-processing steps for Turkish and we will go into details of

usage in the relevant sections.

In Turkish, we have some unique cases to be solved and we also need to do

that in a certain order. To achieve that, we used some of the methods

explained here before processing the data to observe the results. The upper-

case lower case issue for Turkish is basically about the letter ‘i’ which has the

‘İ’ as the upper case for Turkish and ‘I’ for English. Because of this issue,

default functions to turn letters into upper and lower forms in programming

languages and libraries might give wrong results for Turkish. So it is solved

with a small function instead.

After that, we remove digits, punctuations, HTML tags and white spaces since

we want to focus on words and words represented as strings and these

characters would be irrelevant to the study.

Since our data consists of e-mails and some of them are random e-mails to be

sent as spam, there were a lot of irregularities. Some words that should be

written in Turkish characters were written in English characters. For example,

the word ‘akşam’ (evening) can be found as ‘aksam’ and both words are

calculated as different words as in fact, they are not. This is called asciifying

and it became a problem for us since we need the actual form of the word in

the original language with Turkish characters. This problem can be solved

with a library called Deasciifier (Sevinç et al., 2020). With this library, we

33

regularized most of the expressions which are written in ASCII characters

even though they should not have been so.

Furthermore, we followed some pre-processing steps for Turkish text which

are shown in the following Figure 16. These steps are implemented according

to the needs of the methods used.

Figure 16: Pre-processing of Turkish Data

Stopwords

Sometimes, some widespread words which would appear to be of little value

in helping select documents matching a user’s need are excluded from the

vocabulary entirely. These words are called stopwords (Manning et al.,

2009a).

The stopwords for Turkish are “acaba, ama, aslında, az, bazı, belki, biri,

birkaç, birşey, biz, bu, çok, çünkü, da, daha, de, defa, diye, eğer, en, gibi, hem,

hep, hepsi, her, hiç, için, ile, ise, kez, ki, kim, mı, mu, mü, nasıl, ne, neden,

nerde, nerede, nereye, niçin, niye, o, sanki, şey, siz, şu, tüm, ve, veya, ya,

yani” as stated in the open source NLTK library.

Stopwords are words that do not add any unique meaning to sentences. Thus,

they are usually removed for natural language processing tasks. We used

NLTK library to remove stopwords. By removing stop words, we remove the

low-level information from our text and this helps us focus on the important

information in our data. We also removed words shorter than 2 (two)

characters since these words in Turkish do not contribute to the meaning of

the text.

Lower-case all the letters (special function for Turkish)

Removing digits

Removing punctuation

Removing white spaces/HTML tags

Deascifying

Removing stopwords

Lemmatization

Word tokenization

34

Lemmatization

The goal of lemmatization is to reduce inflectional forms and sometimes

derivationally related forms of a word to a common base form (Manning et

al., 2009b). For grammatical reasons, different forms of words are used in

most languages and this is the case for Turkish as well. For instance; the

Turkish word “bataklığa”, which can be found in a text like this, has suffixes

and needs to be processed to acquire its root. The process is shown below.

1. Bataklığa (noun with suffix)

2. bataklık (noun)

3. batak (noun)

4. bat- (verb)

In Turkish, words might have some suffixes that change their characters at

the end. Also, there are derivationally related words with similar meanings,

we can see them in the example as “batak” and “bataklık”.

Sometimes it would be useful to count these words as one and other times it

might be better to separate them and then relate them to each other. The goal

here is to reduce these variations of words to a common base form.

Lemmatization usually uses vocabulary and morphological analysis of words

and aims to return the base or dictionary form of a word called “lemma”.

There is also a process which is called stemming to find the root of words but

since it does not use morphological forms of the word, it is not very applicable

to our study.

There are multiple tools for English lemmatization but we used the rich

Zemberek library that is specified for Turkish and we got the lemmas of the

words via Zemberek (Akın & Akın, 2007).

Table 1: Lemmatization Examples

Input Word Output Word

gelişen (improving) geliş (to improve)

rehberlik (guidence) rehber (guide)

mesleğe (to a profession) meslek (profession)

saygılarımızla (with our respect/best

regards)

saygı (respect)

yönetici (manager) yönet (to manage)

asistanlığı (assistantship of) asistan (assistant)

Some examples of the results of lemmatizations are given in Table 1.

35

In Figure 17 we can see an example of pre-processing and lemmatization

conducted on an e-mail in our dataset.

Figure 17: An example e-mail of pre-processing and lemmatization conducted

Table 2 shows us the results of a lemmatization process of an example e-mail

text from our dataset.

Table 2: Pre-processing and Lemmatization Results

Original Text

Sayın Yetkili,

28 Kasım 2010 tarihli KPSS sınavı sonucu ile yapılan

personel alımlarında 3391 Halkla İlişkiler Ön Lisans

programından mezun olan, kadro bekleyen ve memurluk

prosedürüne uygun yetiştirilen, biz Halkla İlişkiler

Ön Lisans mezunlarına merkezi atamalarda sınırlı

sayıda kadro verilerek bölümümüz mezunları mağdur

edilmiştir.

Halkla İlişkiler Ön Lisans mezunları olarak bu konuda

gerekli hassasiyetin gösterilmesini, mağduriyetimizin

giderilmesi için kurumlarınızda 3391 Halkla İlişkiler

Ön Lisans koduna da yer verilmesini bilgilerinize arz

ederiz.

Saygılarımızla,

Halkla İlişkiler Ön Lisans Mezunları

36

Table 2 (cont.)

After The First Cleaning

sayın yetkili kasım tarihli kpss sınavı sonucu yapılan

personel alımlarında halkla ilişkiler ön lisans

programından mezun olan kadro bekleyen memurluk

prosedürüne uygun yetiştirilen halkla ilişkiler ön

lisans mezunlarına merkezi atamalarda sınırlı sayıda

kadro verilerek bölümümüz mezunları mağdur edilmiştir

halkla ilişkiler ön lisans mezunları olarak konuda

gerekli hassasiyetin gösterilmesini mağduriyetimizin

giderilmesi kurumlarınızda halkla ilişkiler ön lisans

koduna yer verilmesini bilgilerinize arz ederiz

saygılarımızla halkla ilişkiler ön lisans mezunları

After Lemmatization

sayın yetkili kasım tarih kpss sınav sonuç yap personel

alım halk ilişki ön lisans program mezun ol kadro bekle

memur prosedür uygun yetiş halk ilişki ön lisans mezun

merkez ata sınır sayı kadro ver bölüm mezun mağdur et

halk ilişki ön lisans mezun ol konu gerekli hassasiyet

göster mağduriyet gider kurum halk ilişki ön lisans kod

yer ver bilgi arz et saygı halk ilişki ön lisans mezun

Tokenization

Given a character sequence and a defined document unit, tokenization is the

task of chopping it up into pieces, called tokens, perhaps at the same time

throwing away certain characters, such as punctuation (Manning et al.,

2009a).

Tokenization is the process where we put the input and split it into pieces

which will be meaningful for the process it will be used. For our case, we

could use sentence tokenization and word tokenization. And for word

tokenization, we used NLTK word tokenizer, a specialized Turkish word

tokenizer library and also Regex. They all worked in some cases and did not

work in some as well. We chose NLTK library for word tokenization since it

37

was more stable. We used Regex for sentence tokenization since it gave the

best results for us.

We can see an example of word tokenization for our data in Figure 18.

Figure 18: Word tokenization example of the dataset

3.3. Choosing the Model

For this study, we used multiple libraries such as Zemberek, Gensim, NLTK,

NLPAug, and scikit-learn. The usage of the libraries can be seen in the

relatable sections. We experienced multiple models for our study and chose

NLPAug with BERT/distilBERT to compare the accuracy results of the spam

filtering. Details are explained in the following sections and the relevant

Python codings can be seen in the Appendix B.

Word2vec

Our first trial was using the famous word2vec with gensim to find the most

similars of the words. To this end, first, we trained our own model with the

dataset we obtained from METU IT Department. However, since the data

amount was really small and irregular, the trained model did not give any

satisfactory results. So we decided to use a Turkish pre-trained model for it

to be more consistent. Pre-trained models assure models to get their training

with large datasets and parameters to be saved and other models to alter using

these parameters. Since they are already trained, they provide time efficiency

and provide better functioning methods. We used a Turkish pre-trained

word2vec model “trmodel”(Köksal, 2018). After the steps of pre-processing,

we implemented the model in our dataset.

After the first steps of lemmatization, filtering, punctuation removal and other

pre-processing steps mentioned before, the outputs of the model were

successful and the most similar of the words were founded accurately.

38

The results of the individual words are shown in Figure 19.

Figure 19: Word2vec examples with the words within our dataset

Moving on to the full-scale dataset implementation, the framework we

intended was as shown in Figure 20. It was aimed to change one word in each

sentence of each e-mail.

Figure 20: The framework for expanding the dataset with word2vec

Even though the considerably meaningful results with individual words as

shown in Figure 19, when we implement the code to the entire dataset, we

39

came across some errors because the pre-trained model had its own

vocabulary, and the spam e-mails had so many irregular words that have no

meaning in any language even after all the pre-processing. After handling the

errors, we implemented word tokenization and key extraction to find words

to be replaced per sentence. We used YAKE, an Automatic Keyword

Extractor, and top-k sampling method to extract the keywords and use them

as the words to be replaced with their most similar correspondents. After that,

we got the results shown in Figure 21.

Figure 21: Individual results of trmodel for our dataset

Then we moved on to the full dataset implementation and we got meaningless

results in most cases.

Figure 22: An e-mail after the process of the framework

In Figure 22, an example of the implementation of the method can be seen.

40

GPT-2

GPT-2 is a contextual method of Transformers and it enables generating

words after one sentence, it creates more sentences following the first one. In

this approach, we used a pre-trained Turkish GPT-2 model (Boğan, 2021).

For the Transformers GPT-2 implementation, we used keyword extraction

since it was not producing realistic results otherwise. For deciding which

words should be replaced with their most similar correspondents in a

sentence, we put a threshold to find the similarity ratio of the word pairs to

determine the words. We used YAKE and top-k sampling method to extract

the keywords and use them as the words to be replaced with their most similar

correspondents.

An example of the keyword extraction we have done on an e-mail sample can

be seen in Table 3.

Table 3: Keyword extraction example

Sample Text

sayın yetkili kasım tarihli kpss sınavı sonucu yapılan

personel alımlarında halkla ilişkiler ön lisans

programından mezun olan kadro bekleyen memurluk

prosedürüne uygun yetiştirilen halkla ilişkiler ön

lisans mezunlarına merkezi atamalarda sınırlı sayıda

kadro verilerek bölümümüz mezunları mağdur edilmiştir

halkla ilişkiler ön lisans mezunları olarak konuda

gerekli hassasiyetin gösterilmesini mağduriyetimizin

giderilmesi kurumlarınızda halkla ilişkiler ön lisans

koduna yer verilmesini bilgilerinize arz ederiz

saygılarımızla halkla ilişkiler ön lisans mezunları

After Cleaning and Lemmatization
sayın yetkili kasım tarih kpss sınav sonuç yap personel

alım halk ilişki ön lisans program mezun ol kadro bekle

memur prosedür uygun yetiş halk ilişki ön lisans mezun

merkez ata sınır sayı kadro ver bölüm mezun mağdur et

halk ilişki ön lisans mezun ol konu gerekli hassasiyet

göster mağduriyet gider kurum halk ilişki ön lisans kod

yer ver bilgi arz et saygı halk ilişki ön lisans mezun

After Keyword Extraction with YAKE

Halkla İlişkiler Ön Lisans mezunlarına merkezi atamalarda

sınırlı sayıda kadro verilerek bölümümüz mezunları mağdur

edilmiştir

The GPT-2 model gave some meaningful sentences on the first trials as well

but it did not suit the first suggestion we made because of how GPT-2

generates the data as altogether and how it just continues from the existing

data. So, after we implemented it on the dataset, the resulting sentences were

mostly out of context. It was not suitable to choose the word count to be

41

replaced in this method since it generated whole sentences from an input

point. Also, it needed its own modifications since the generated sentences

could end abruptly.

With the input: “Halkla İlişkiler Ön Lisans mezunlarına merkezi atamalarda

sınırlı sayıda kadro verilerek bölümümüz mezunları mağdur edilmiştir” (The

graduates of our department have been victimized by giving a limited number

of staff in central appointments to Associate Degree graduates in Public

Relations)

The output was: “Halkla İlişkiler Ön Lisans mezunlarına merkezi atamalarda

sınırlı sayıda kadro verilerek bölümümüz mezunları mağdur edilmiştir. Bu

nedenle, eğitim öğretim yılı başında yapılan sınavlardan” (The graduates of

our department have been victimized by giving a limited number of staff in

central appointments to Associate Degree graduates in Public Relations. For

this reason, the exams held at the beginning of the academic year) could be

considered a meaningful continuous sentence in Turkish but it ends mid-

sentence.

In Figure 23, we show another example of text from our dataset generated

with GPT-2 model with the input of “İngilizce öğrenmek için ne

bekliyorsunuz?” (What do you wait for learning English?) and continued with

not-so-meaningful sentences.

Figure 23: The results of GPT-2 model

The generated text was “Akademi Soru Sor! Dogum aydirma ve donemde

kalma sorunu yasadiklari icin hangi donemlere baslayacagim, nasil

gorecegimi, nereye basvurmadim simdi, ne yaz” (Literal Google Translate

translation: Academy Ask a Question! Since they have the problem of birth

month and staying in the period, which periods will I start, how will I see it,

where I have not applied now, what should I write?) which does not form a

full sentence, is not deasficiied and not context-related.

BERT Masked Model Language

In this approach, we used BERT’s Masked Language Modeling (MLM), a

fine-tuning method, since it also substitutes a certain word in the sentence

given. In MLM, a sentence is sent to BERT, and the weights are then

optimized to produce the same sentence on the opposite side. For this case,

we used a pre-trained Turkish BERT model (MDZ Digital Library Team,

2020a). With MLM, pre-trained NLP models can be fine-tuned to more

domain-specific language use-cases, with unlabelled text data.

42

We show an example of the result of BERT Masked Language Modeling

(MLM) in Figure 24.

Figure 24: BERT MLM result

One word was chosen as MASK for each sentence from e-mails.

BERT and DistilBERT with NLPAug

In this approach, we used NLPAug, a Pyhton library to augment data. Non-

contextual embeddings like Glove, fastText, word2vec or contextual

embeddings like BERT, RoBERTa, distilBERT, ElMo can be used with

NLPAug. In Figure 25 an example from the original work is shown (Ma,

2019).

Figure 25: Textual Data Augmentation Example with NLPAug

NLPAug provides three different types of augmentation: character level

augmentation, word level augmentation, and sentence level augmentation.

We used the word level augmentation along with the substitute method since

our main goal was to substitute words with their closest ones according to

semantic similarity. Substitution function use surrounding words as a feature

to predict the target word.

Using NLPAug, we observed the most reliable and meaningful augmentation

for Turkish text was with BERT and distilBERT models.

43

Therefore, we chose using BERT and distilBERT along with NLPAug library

to finally produce new augmented datasets and compare the accuracy results.

We used a Turkish pre-trained BERT model, “BERTurk” (MDZ Digital

Library Team, 2020a) and a distilled version of that model “distilBERTurk”

(MDZ Digital Library Team, 2020b).

We used top-k sampling method in NLPAug. If the length of the input is

larger than the maximum allowed input, only the heading part was augmented

and BERT/distilBERT model chose the target word to be substituted

according to context and surrounding words.

In Table 4, an example of an augmented sentence with BERT can be seen.

Table 4: Example of Augmentation with BERT

Original Sentence

Sayın Yetklili ,En fazla mezun veren bölümlerden olan

muhasebe bölümü çin daha çok kadro istiyoruz.Her

birimiz Mali Müşavir kontrolünde staj tamamladik

Bilgisayar kullanımı ve pratiklik konusunda gereken

tecrübeye sahibiz.

Augmented Sentence

Sayın Yetklili, En fazla mezun veren bölümlerden

birinin muhasebe bölümleri çin daha geniş kadro

istiyoruz. Her birimiz Mali Müşavir kontrolünde

çalışmalarını yapacak Bilgisayar kullanımı ve

pratiklik konusunda gereken özelliklere sahibiz.

For the augmentation process, we cleaned the dataset so that it will not contain

any null or duplicated values. With the usage of NLPAug library, the pre-

processing methods that have been mentioned in Section 3.2. are not fully

implemented to the dataset. We did not use lemmatization and word

tokenization since NLPAug library needed to get the words as they are in a

sentence.

44

After removing the duplicates and null values, the dataset increased from 702

rows to 700 rows. The dataset was formed of 416 ham and 284 spam e-mails

and our initial dataset had the following ratio:

 ham 0.594286

 spam 0.405714

Augmentation

We applied the NLPAug substitute function on our dataset using pre-trained

BERT and distilBERT models. The coding details can be seen in Appendix

B.

In Figure 26, we see an example of augmented e-mail using NLPAug with

BERTurk.

Figure 26: Example of an augmented e-mail using NLPAug with BERT model.

In Figure 27, we see an example of an augmented e-mail using NLPAug with

distilBERTurk.

Figure 27: Example of an augmented e-mail using NLPAug with distilBERT model.

Then we moved on to the full-scale augmentation experiments. We will

present the steps for BERT and distilBERT augmentation in order to compare

the results for both models.

45

We reproduced spam e-mails by considering semantic affinity and context.

For both models, we applied the augmentations first only to the training

dataset and then to the entire dataset to observe the effects of data size on

augmentation success. However, as noted in some of the comparisons, we

used augmented datasets from the entire dataset.

Before splitting the dataset as training and test datasets, we randomized the

full dataset to make sure spam and ham messages were distributed evenly.

First, we applied the augmentation to the training dataset. The workflow of

the first approach was shown in the following image, Figure 28.

Figure 28: The first approach to data augmentation

We separated the dataset with a ratio of 2/8 while the training dataset has 0.8

and the test dataset had 0.2 ratios. Then we got two datasets whose dimensions

are as follows:

training set: (560, 2)

test set: (140, 2)

46

After determining the first training and test datasets, we used replacing word

by similarity function of the NLPAug library which is called the “substitute”

function.

Then we aimed to see whether augmenting a larger dataset would create a

better accuracy. For this purpose, we augmented the whole dataset to have a

new training dataset. Meanwhile, we kept the test dataset as it is to evaluate

the two approaches fairly. We used the same pre-trained BERTurk model and

the substitute function. The overall workflow in this approach is shown in

Figure 29.

Figure 29: The second approach to data augmentation

We augmented the whole dataset to have a wider training dataset but kept the

test dataset to be able to have the same tool to compare the results.

Classification

Classification is the second part of this study. We chose to use the

multinomial Naïve Bayes Classifier (NBC) for the classification task since it

gives successful results with fewer resources and data. First, we built an NBC

from scratch that uses supervised machine learning methods and the NBC got

the parameters from the existing labels.

Before each classification task was performed, we used the pre-processing

methods mentioned in section 3.2, except for word tokenization.

For the input of NBC, we created a vocabulary, which in this context means

a list of all the unique words in our training set. We transformed each sentence

in an e-mail into a list by splitting the string at the space character and initiated

an empty list named vocabulary. The vocabulary is a list of unique words in

47

the dataset. We then iterated over the transformed column which contains the

text of an e-mail. Hereafter, we iterated over each sentence in that column and

append each word to the vocabulary list and removed the duplicates from the

vocabulary list.

We got the vocabulary lengths shown in Table 5 for our classification task.

We can see that there were additions to the vocabulary after augmentations.

Table 5: Vocabulary Lengths

Dataset Vocabulary Length

(As List)

Original Dataset 6775

BERT (whole dataset) 7859

distilBERT (whole dataset) 7872

BERT (only training dataset) 7917

distilBERT (only training

dataset)

7243

In Figure 30, we can see the word table that we created from the vocabulary.

The word table is a word matrix to perform classification to the dataset.

Figure 30: Transformed Table of Words

Then we match them with the e-mails as seen in Figure 31.

Figure 31: E-Mail, Label and Words Table

48

Then we started creating the spam filter. The spam filter is a function that is

based on Bayes’ Theorem and it;

 Takes a new e-mail as input (w1, w2, ..., wn),

 Calculates the values of P(spam|w1, w2, ..., wn) and P(ham|w1, w2,

..., wn),

 Compares the values of P(spam|w1, w2, ..., wn) and P(ham|w1, w2,

..., wn).

If the value of P(ham|w1, w2, ..., wn) is equal to or greater than the value of

P(spam|w1, w2,...,wn), then the message is classified as ham. If the value of

P(ham|w1, w2,..., wn) is less than the value of P(spam|w1, w2, ..., wn), then

the message is classified as spam. If a new e-mail contains words that are not

in the vocabulary, those words were ignored when calculating the

probabilities. The details can be seen in Appendix C.

After classification is done, we got the following results for the spam

classification of our initial Turkish e-mail dataset with Naïve Bayes

Classifier:

Correct: 104

Incorrect: 36

Accuracy: 0.7428571428571429

This NBC was able to succeed with a 74.28% accuracy in labelling our

Turkish e-mail data for spam filtering. This accuracy rate was not high

enough. So we decided to use a different approach and used TF-IDF

Vectorizer and scikit-learn library of Python to have a better performance

with the multinominal Naïve Bayes Classifier.

After cleaning the dataset, we turned ham and spam labels to 0 and 1 to use

them in other functions. Then we used the pre-processing methods to remove

punctuation, remove stopwords, lowercase all the letters, remove white

spaces and lemmatize the words.

After that, we split the dataset into training and test datasets and used the pre-

built classifiers of scikit-learn library. The usage of the mentioned tools and

other coding details of the classification can be seen in Appendix C.

49

CHAPTER 4

RESULTS

This section presents the accuracy results of the spam filtering classification

task applied to the dataset we had and the dataset we created by augmentation.

We implemented the classification with BERT and distilBERT models and

compared them with each other and compared the process according to

augmented data size. We also present the results of other classification

metrics and also the accuracy results of other classifiers as well.

4.1.The Data Range After Augmentation

The first dataset after the cleaning has 700 rows; which are 416 ham and 284

spam. After the augmentation, the new datasets had new ratios.

We used semantic distance to show how much the new dataset created by the

augmentation process differs from the original data. Semantic distance is a

measure of how close or distant two units of language are in terms of their

meaning. SentenceTransformers is a Python framework for state-of-the-arts

embeddings of text, sentences, and images. Sentence-BERT (SBERT) is a

modification of the pre-trained BERT network that use siamese and triplet

network structures to derive semantically meaningful sentence embeddings.

This reduces the effort for finding the most similar pair from 65 hours with

BERT to about 5 seconds with SBERT, while maintaining the accuracy

(Reimers & Gurevych, 2019).

The semantic distance between augmented e-mails and original e-mails is

calculated with an SBERT model trained with Turkish data (Çelik, 2022).

The semantic distance results can be seen in Table 6 for each step. This is a

sentence-transformers model that maps sentences and paragraphs to a 768

dimensional dense vector space.

Table 6: Semantic Distance of the Datasets

The Process
Semantic Distance From the

Original Dataset

Augmentation with

BERT
8.36%

Augmentation with

distilBERT
8.29%

50

Table 7 shows the numbers and ratios of the new datasets after the

augmentation process. We can see the ham-spam balance of the augmented

datasets.

Table 7: The ham-spam labelling results of the methods

 DATASET HAM SPAM TOTAL

Original

Dataset

Training

Dataset

330

(58.92%)

230

(41.07%)
560

Test

Dataset

86

(61.42%)

54

(38.57%)
140

Augmentat

ion on

Only

Training

Dataset

with BERT

Training

Dataset

746

(59.20%)

514

(40.79%)
1260

Test

Dataset

86

(61.42%)

54

(38.57%)
140

Augmentat

ion on

Whole

Dataset

with BERT

Training

Dataset

832

(59.42%)

568

(40.57%)
1400

Test

Dataset

86

(61.42%)

54

(38.57%)
140

Augmentat

ion on

Only

Training

Dataset

with

distilBERT

Training

Dataset

746

(59.20%)

514

(40.79%)
1260

Test

Dataset

86

(61.42%)

54

(38.57%)
140

Augmentat

ion on

Whole

Dataset

with

distilBERT

Training

Dataset

832

(59.42%)

568

(40.57%)
1400

Test

Dataset

86

(61.42%)

54

(38.57%)
140

4.2.Classification Metrics

To be able to understand whether the newly created dataset had any value, we

used Naïve Bayes classification methods to measure the accuracy levels of

both the original and the augmented datasets. A classifier's accuracy is

calculated by dividing the total number of samples that were properly

predicted by the total number of samples.

In the first implementation, we classified the original dataset and checked the

results with Naïve Bayes and we got an accuracy of approximately 74%. Then

we set the training set as the augmented dataset with BERT and distilBERT.

51

After the classification process with the first implementation, we got the

following accuracy results in Table 8.

Table 8: First Accuracy Results

Accuracy Values

Depending On

Datasets

Beginning

Accuracy

Accuracy

After

Augmentation

Accuracy

Increase (%)

Augmentation on

Only Training

Dataset With

BERT

74.28% 76.14% 2.50%

Augmentation on

Whole Dataset

With BERT

74.28% 78.57% 5.78%

Augmentation on

Only Training

Dataset With

DistilBERT

74.28% 75.71% 1.93%

Augmentation on

Whole Dataset

With DistilBERT

74.28% 77.85% 4.81%

52

We can also compare the false positive and false negative changes in Table

9. In this context; false positive means ham e-mails that are predicted as spam

and false negative means spam e-mails that are predicted as ham.

Table 9: First False Positive and False Negative Results

After that, we re-organized our input vocabulary. For word vectoring we used

TF-IDF Vectorizer and scikit-learn library of Python and classified our

datasets again with multinominal Naïve Bayes Classifier, built-in scikit-learn

library as it is mentioned in Chapter 3.

For this approach, we applied the calculation of metrics for only the datasets

that are augmented from the entire dataset to provide legibleness since there

will be multiple variables to present.

In Table 10, we can observe the results of multinominal Naïve Bayes

Classifier with TF-IDF Vectorizer and scikit-learn library. We can see the

accuracy score of Naïve Bayes Classifier is increased to 93.33 % for the

original dataset. After the augmentation with BERT; NBC accuracy score

with this vectorization increased to 97.61% and after augmentation with

distilBERT, the accuracy score is 96.19%.

Accuracy

Values

Depending

On Datasets

Beginning

False

Negative

False Negative

After

Augmentation

Beginning

False

Positive

False

Positive

After

Augme

ntation

Augmentation

on Only

Training

Dataset With

BERT

22.85% 22.28% 2.85% 1.57%

Augmentation

on Whole

Dataset With

BERT

22.85% 20.71% 2.85% 0.71%

Augmentation

on Only

Training

Dataset With

DistilBERT

22.85% 22.85% 2.85% 1.42%

Augmentation

on Whole

Dataset With

DistilBERT

22.85% 21.42% 2.85% 0.71%

53

The results of some other classifiers alongside the multinominal Naïve Bayes

Classifier are listed with their accuracy scores in Table 10. However, we

continued using Naïve Bayes Classifier for further comparisons, for

consistency.

Table 10: Accuracy Scores of Different Classifiers

There are multiple ways to evaluate a classifier so we calculated some of the

metrics;

Precision: Precision is the ratio of true positives (TP) by the sum of false

positives (FP) and true positives (TP).

Recall: Recall is the ratio of true positives (TP) by the sum of false negatives

(FN) and true positives (TP).

F1-Score: The harmonic mean of recall and precision is the F1 score. It is

located between [0, 1].

AUC-ROC Curve: AUC is Area Under Curve and ROC is Receiver Operating

Characteristic Curve. ROC is a probabilty cure and the higher the value of

AUC the better the classifier in distinguishing the classes.

Accuracy Scores Original BERT distilBERT

Support Vector

Machine (SVM)
94.28% 98.57% 99.52%

K-Nearest

Neighbour
62.85% 86.19% 90%

Naïve Bayes

Classifier
93.33 % 97.61% 96.19%

Decision Tree 90.47 % 98.09% 96.66%

Logistic

Regression
91.42% 89.04% 93.33%

Random Forest

Classifier
93.33% 97.14% 96.66%

54

The calculations for the metrics mentioned can be seen in Table 11.

Table 11: Classification Metrics for Different Dataset

Metrics
Original

Dataset

Dataset

Augmented

with BERT

Dataset

Augmented

with

distilBERT

Accuracy Score 0.93 0.95 0.96

Precision Score 0.92 0.97 0.97

Recall Score 0.89 0.91 0.93

F1-Score 0.90 0.94 0.95

AUC (of AUC-

ROC Curve)
0.97 0.99 0.99

In the Table 12, we can observe the effects of the augmentation on

classification metrics.

Table 12: Percentage Increase of the Metrics for Different Datasets

Metrics

Percentage Increase

for Dataset

Augmented with

BERT

Percentage

Increase for

Dataset

Augmented with

distilBERT

Accuracy 2.53% 3.06%

Precision 5.86% 5.98%

Recall 2.25% 3.83%

F1-Score 5.04% 5.93%

AUC (of

AUC-ROC

Curve)

1.67% 1.70%

55

In AUC-ROC Curve metric, there are also ROC curves to be observed with

and they can be seen in Figure 32, Figure 33 and Figure 34.

Figure 32: AUC-ROC Curve of the Classification of Original Dataset

AUC is the area under the ROC curve. AUC being closer to 1 means a better

performing classifier.

Figure 33: AUC-ROC Curve of the Classification of the Dataset Augmented with BERT

In Figure 33 we can see the AUC-ROC Curve of the classification of the

dataset augmented with BERT model.

56

In Figure 34 we can see the AUC-ROC Curve of the classification of the

dataset augmented with distilBERT model.

Figure 34: AUC-ROC Curve of the Classification of the Dataset Augmented with distilBERT

Another metric for classifiers is the Confusion Matrix, which is an N-

dimensional square matrix, where N stands for the total number of target

categories. It gives the values shown in Figure 35.

Figure 35: Confusion Matrix

True Positive (TP): Where the predicted “spam” was actually “spam”.

True Negative (TN): Where the predicted “ham” was actually “ham”.

False Positive (FP): Where the predicted “spam” was actually “ham”.

False Negative (FN): Where the predicted “ham” was actually “spam”.

True
Negative

(TN)

False
Positive

(FP)

False
Negative

(FN)

True
Positive

(TP)

57

Here in Figure 36, we can see the confusion matrix result of the multinominal

NBC classification of the original dataset.

Figure 36: Confusion Matrix of The Classification of the Original Dataset

In Figure 37 and Figure 38 we can see the confusion matrix of the

classification of new datasets after augmentation.

Figure 37: Confusion Matrix of The Classification of the Dataset Augmented with BERT

In Figure 37 we can see the confusion matrix of the classification of the

dataset augmented with BERT model.

58

In Figure 38 we can see the confusion matrix of the classification of the

dataset augmented with distilBERT model.

Figure 38: Confusion Matrix of The Classification of the Dataset Augmented with distilBERT

The coding details of the classifications and the classification metrics can be

seen in Appendix C.

59

CHAPTER 5

DISCUSSION AND CONCLUSION

In this study, we aimed to answer these questions.

 Can Turkish e-mail data be augmented semantically, with text

representation methods in NLP?

 Is enlarging a dataset have an impact on the accuracy of spam filtering?

For our first question, we have seen that augmenting a Turkish dataset with

text representation methods in NLP can give considerably meaningful results.

However, the model and the NLP technique must be chosen well, according

to the subject. We have also seen that the models used must be language

specific to obtain more accurate results.

Word2vec gives just one embedding as output for each word, combining all

the different senses of the word into one vector. This idea of similarity poses

a limitation. Word2vec's primary disadvantage is that it only offers a single

representation for each word, regardless of context. Therefore, words that

have several meanings have a representation that is an average of the senses,

not accurately representing either one. Given the abundance of polysemy and

complex semantics in natural languages, this representation has limitations.

On the other hand, Transformer relies on self-attention to compute

representations of its input and output. This is a concept of attention for

overcoming long-range dependencies. GPT-2 represents an effort in

designing a general task-agnostic model for context-sensitive representations

but GPT-2 looks only forward, left-to-right. The length of the input sentence

and the parameters of top-k sampling have effects on the generated sentences.

It was not suitable to choose some words to be replaced in this method since

it generated whole sentences starting from an input point.

Lastly, BERT can generate different word embeddings that captures the

context of a word, that is its position in a sentence. It uses the transformer

block to train a language model where the system is not tasked with guessing

the next word but rather one of the words masked out in the sentence. Unlike

the GPT model, BERT encodes context bidirectionally, due to the

autoregressive nature of language models, whilst GPT has one way to encode.

60

After implementing BERT and distilBERT to augment the Turkish spam e-

mail dataset we had, we created new augmented datasets. After performing

classification on the datasets before and after augmentations, we got the

results of classification metrics in Chapter 4.

The classification metrics are all calculated from the true positive, true

negative, false positive and false negative values. Hence confusion matrix

results can be discussed for an overall assessment. When we look at the

confusion matrix results of our initial dataset shown in Figure 36, we can see

the false positive value was 3 and it decreased to 2 after augmentation

processes (see Figure 37 and Figure 38 for reference). We can also observe

the false negative value was 4 in the beginning and it increased slightly for

both augmentations with BERT and distilBERT with the values 7 and 6

respectively. On the other hand, true negative and true positive values seem

to be increased as the datasets also grew. This indicates the falsely predicted

labels did not increase as much as its size did, while, the dataset is doubled in

size. We can also observe from the results that AUC area under the ROC

curve became closer to 1 after augmentations which means it performed better

after the augmentations. It can be said the augmentation was successful at

improving the classification performance, looking at these results.

Considering the results obtained in this study, we were able to observe that

the right method to augment a dataset according to the words’ meanings can

actually produce efficient results that can be used in research. We observed

that NLPAug library with the usage of BERT/distilBERT can be considered

an effective technique for processing data in Turkish. Also, we were able to

see that vectorization is an essential factor for classification performance and

should be chosen accurately.

5.1. Limitations of the Study

Even though our aim was to augment relatively a small amount of data,

having a small-sized dataset at the beginning is still considered one of the

limitations of this study.

Due to the fact that the language we are working on is Turkish, we think that

there might have been encoding problems, even though we try to reduce it as

much as possible.

There were typos in the e-mails in the dataset. Since it is thought that some

of these may cause the models to slow down or reach incorrect results, it can

be evaluated that typographical errors should be corrected from the

beginning; however, since there will be irregularities in real environment

spam e-mails as well. As it is seen, it is thought that it would be beneficial to

deal with this subject, which can have many different aspects, in a different

study to extrapolate.

61

We did not train a model from scratch in this study and we used a labelled

dataset. The work was performed mostly in Google Colab environment, so it

is considered that it might have some compliance and resource limitations as

well.

For the Word2vec model, we encountered with an unexpected error so we

would like to point out the possibility that this may be due to a technical error

and it might be examined in future studies.

5.2. Future Work

We implemented a limited number of techniques to our dataset but there are

more techniques to find similarities and generate text in NLP. Other

techniques can be applied to evaluate the results. Also, the idea of augmenting

a spam filtering dataset as explained in this work can be applied to improve

spam filtering systems. Other classification methods with different

vectorizations can be experienced to see whether there are other classification

tools for Turkish text. The data that is classified incorrectly can be analysed

to find out the reason. Additionally, the augmented data can be tested with

Generative Adversarial Networks (GANs) to see if it can be detected as

augmented or not.

The word2vec issue can be investigated in another study to find the exact

reason why it did not work.

Also, since spam e-mails may include phishing e-mails, keywords like “click”

can be considered as an effective word to label them. Augmenting specific

keywords like this can lead to a favour augmentation and conducting a study

focused on this subject to explore this issue will contribute to the academy.

5.3. Data Availability

The dataset created in this study has been published on GitHub at

https://github.com/ceaysenur/augmentedturkishspamdatasets.

https://github.com/ceaysenur/augmentedturkishspamdatasets

62

63

REFERENCES

AbdulNabi, I., & Yaseen, Q. (2021). Spam Email Detection Using Deep Learning

Techniques. Procedia Computer Science, 184, 853–858.

https://doi.org/https://doi.org/10.1016/j.procs.2021.03.107

Ahmed, N., Amin, R., Aldabbas, H., Koundal, D., Alouffi, B., & Shah, T. (2022).

Machine Learning Techniques for Spam Detection in Email and IoT Platforms:

Analysis and Research Challenges. Security and Communication Networks, 2022,

1–19. https://doi.org/https://doi.org/10.1155/2022/1862888

Akın, A. A., & Akın, M. D. (2007). Zemberek, An Open Source Nlp Framework for

Turkic Languages. In Structure (Vol. 10). https://github.com/ahmetaa/zemberek-nlp

Alazab, M., & Broadhurst, R. (2017). An Analysis of the Nature of Spam as

Cybercrime. In Cyber-Physical Security (pp. 251–266). Springer International

Publishing. https://doi.org/10.1007/978-3-319-32824-9_13

Apte, C., Damerau, F., & Weiss, S. M. (1994). Automated Learning of Decision

Rules for Text Categorization. ACM Transactions on Information Systems, 12(3),

233–251. https://doi.org/https://doi.org/10.1145/183422.183423

Atallah, M. J., McDonough, C. J., Raskin, V., & Nirenburg, S. (2001). Natural

language processing for information assurance and security: an overview and

implementations. Proceedings of the 2000 Workshop on New Security Paradigms,

51–65. https://doi.org/https://doi.org/10.1145/366173.366190

ATT&CK Matrix for Enterprise. (2020). ATT&CK v11.2.

https://attack.mitre.org/techniques/T1566/

Banerjee, D. (2020, April 14). Natural Language Processing (NLP) Simplified : A

Step-by-step Guide. https://datascience.foundation/sciencewhitepaper/natural-

language-processing-nlp-simplified-a-step-by-step-guide

Bayes, T. (1763). An Essay towards solving a Problem in the Doctrine of Chances.

https://web.archive.org/web/20110410085940/http://www.stat.ucla.edu/history/ess

ay.pdf

Blanzieri, E., & Bryl, A. (2008). A survey of learning-based techniques of email

spam filtering. Artificial Intelligence Review, 29(1), 63–92.

https://doi.org/https://doi.org/10.1007/s10462-009-9109-6

Boğan, H. (2021). GPT-2 Turkish-cased.

64

Https://Huggingface.Co/Redrussianarmy/Gpt2-Turkish-Cased.

https://huggingface.co/redrussianarmy/gpt2-turkish-cased

Boldi, P., Santini, M., & Vigna, S. (2005). PageRank as a Function of the Damping

Factor. PageRank as a Function of the Damping Factor,” Proceedings of the 14th

International Conference on World Wide Web,.

https://doi.org/https://doi.org/10.1145/1060745.1060827

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,

Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,

C., … Amodei, D. (2020). Language Models are Few-Shot Learners.

http://arxiv.org/abs/2005.14165

BTK - Information and Communication Technologies Authority. (2022). Quarterly

Market Data Report, 2022 Q1, Turkish Communication Electronics Industry (Üç

Aylık Pazar Verileri Raporu 2022 1. Çeyrek Türkiye Haberleşme Elektronik

Sektörü). https://www.btk.gov.tr/uploads/pages/pazar-verileri/uc-aylik-pazar-

verileri-raporu-2022-1.pdf

Buber, E., Diri, B., & Sahingoz, O. K. (2017). Detecting phishing attacks from URL

by using NLP techniques. 2nd International Conference on Computer Science and

Engineering, UBMK 2017, 337–342. https://doi.org/10.1109/UBMK.2017.8093406

Bucilǎ, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression.

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2006, 535–541.

https://doi.org/10.1145/1150402.1150464

Çelik, E. (2022). Turkish BERT Sentence Transformers Model.

https://huggingface.co/emrecan/bert-base-turkish-cased-mean-nli-stsb-tr

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.

International Conference on Knowledge Discovery and Data Mining.

https://doi.org/https://doi.org/10.1145/2939672.2939785

Christina, V., Karpagavalli, S., & Suganya, G. (2010). A Study on Email Spam

Filtering Techniques. International Journal of Computer Applications, 12(01), 7–9.

https://doi.org/https://doi.org/10.5120/1645-2213

Çiltik, A., & Güngör, T. (2006). Time Efficient Spam E-Mail Filtering For Turkish.

https://doi.org/https://doi.org/10.1016/j.patrec.2007.07.018

CISCO Secure. (2022). Security Outcomes Study Volume 2 Maximizing the Top Five

Security Practices.

Cortez, P., Lopes, C., Sousa, P., Rocha, M., & Rio, M. (2009). Symbiotic Data

Mining for Personalized Spam Filtering. IEEE/WIC/ACM International Conference

on Web Intelligence and Intelligent Agent Technology, 149–156.

https://doi.org/https://doi.org/10.1109/wi-iat.2009.30

Dada, E. G., Bassi, J. S., Chiroma, H., Abdulhamid, S. M., Adetunmbi, A. O., &

Ajibuwa, O. E. (2019). Machine learning for email spam filtering: review,

approaches and open research problems. Heliyon, 5(6).

65

https://doi.org/10.1016/j.heliyon.2019.e01802

Dagan, I., Karov, Y., & Roth, D. (1997). Mistake-Driven Learning in Text

Categorization. Proceedings of the 2nd Conference on Empirical Methods in Natural

Language Processing, 55–63.

Dai, A. M., & Le, Q. V. (2015). Semi-supervised Sequence Learning.

http://ai.stanford.edu/amaas/data/sentiment/index.html

Demir, C. (2019). Turkish Spam Dataset. Kaggle.

https://www.kaggle.com/cuneytdemir/turkish-spam-dataset

Denning, P. J. (1982). ACM president’s letter: Electronic Junk*.

https://doi.org/https://doi.org/10.1145/358453.358454

Devlin, J., Chang, M.-W., Lee, K., Google, K. T., & Language, A. I. (2018). BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

https://github.com/tensorflow/tensor2tensor

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. Artificial

Intelligence, 4(2), 139–143. https://doi.org/https://doi.org/10.1016/0004-

3702(73)90004-0

Eisenstein, J. (2018). Natural Language Processing.

Eryilmaz, E. E., Sahin, D. O., & Kilic, E. (2020, June 1). Filtering Turkish Spam

Using LSTM from Deep Learning Techniques. 8th International Symposium on

Digital Forensics and Security, ISDFS 2020.

https://doi.org/10.1109/ISDFS49300.2020.9116440

Faiz, R. (2006). Identifying Relevant Sentences in News Articles for Event

Information Extraction. International Journal of Computer Processing of

Languages, 19(01), 1–9.

https://doi.org/https://doi.org/10.1142/s0219427906001384

Federal Bureau of Investigation. (2021). Internet Crime Report 2021.

https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf

Feng, W., Sun, J., Zhang, L., Cao, C., & Yang, Q. (2016). A support vector machine

based naive Bayes algorithm for spam filtering. 2016 IEEE 35th International

Performance Computing and Communications Conference (IPCCC), 1–8.

https://doi.org/https://doi.org/10.1109/pccc.2016.7820655

Ferrara, E. (2019). The history of digital spam. In Communications of the ACM (Vol.

62, Issue 8, pp. 82–91). Association for Computing Machinery.

https://doi.org/10.1145/3299768

Fisher, R. . (1960). On Some Extensions of Bayesian Inference Proposed by Mr.

Lindley. Journal of the Royal Statistical Society: Series B, 22(2), 299–301.

https://doi.org/ttps://doi.org/10.1111/j.2517-6161.1960.tb00374.x

Gabber, E., Jakobsson, M., Matias, Y., & Mayer, A. (1998). Curbing Junk E-Mail

via Secure Classification. Proceedings of the Second International Conference on

66

Financial Cryptography, 198–213.

https://doi.org/https://doi.org/10.1007/bfb0055484

Gburzynski, P., & Maitan, J. (2004). Fighting the Spam Wars. ACM Transactions

on Internet Technology, 4(1), 1–30.

https://doi.org/https://doi.org/10.1145/967030.967031

Goodman, J., Cormack, G. V., & Heckerman, D. (2007). Spam and the ongoing

battle for the inbox. Communications of the ACM, 50(2), 24–33.

https://doi.org/https://doi.org/10.1145/1216016.1216017

Gordillo, J., & Conde, E. (2007). An HMM for Detecting Spam Mail. Expert Systems

with Applications, 33(3), 667–382.

https://doi.org/https://doi.org/10.1016/j.eswa.2006.06.016

Güngör, T., & Çiltik, A. (2007). Developing methods and heuristics with low time

complexities for filtering spam messages. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 4592 LNCS, 35–47. https://doi.org/10.1007/978-3-540-73351-5_4

Hall, R. J. (1998). How to Avoid Unwanted Email. Communications of the ACM,

41(3), 88–95. https://doi.org/https://doi.org/10.1145/272287.272329

Han, J., Kamber, M., & Pei, J. (2012). Cosine Similarity. In Data Mining: Concepts

and Techniques (Third Edition, p. 77).

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural

Network. http://arxiv.org/abs/1503.02531

Hsiao, W.-F., & Chang, T.-M. (2008). An Incremental Cluster-Based Approach to

Spam Filtering. Expert Systems with Applications, 34(3), 1599–1608.

https://doi.org/https://doi.org/10.1016/j.eswa.2007.01.018

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2017). Bag of tricks for

efficient text classification. 15th Conference of the European Chapter of the

Association for Computational Linguistics, EACL 2017 - Proceedings of

Conference, 2, 427–431. https://doi.org/10.18653/v1/e17-2068

Karim, A., Azam, S., Shanmugam, B., Kannoorpatti, K., & Alazab, M. (2019). A

comprehensive survey for intelligent spam email detection. IEEE Access, 7(168),

261–295. https://doi.org/https://doi.org/10.1109/access.2019.2954791

Kaspersky. (2022). Spam and Phishing 2021.

Köksal, A. (2018). Turkish Pre-trained Word2Vec Model.

Https://Github.Com/Akoksal/Turkish-Word2Vec.

https://github.com/akoksal/Turkish-Word2Vec

Korelov, S. V., Kryukov, A. K., & Rotkov, L. U. (2006). Text Messages’ Digital

Analysis on Spam Identification. Proceedings of Scientific Conference on

Radiophysics.

Kumar, S., Gao, X., Welch, I., & Mansoori, M. (2016). A Machine Learning

67

BasedWeb Spam Filtering Approach. IEEE 30th International Conference on

Advanced Information Networking and Applications (AINA), 973–980.

https://doi.org/https://doi.org/10.1109/aina.2016.177

Lansley, M., Kapetanakis, S., & Polatidis, N. (2020). SEADer++ v2: Detecting

Social Engineering Attacks using Natural Language Processing and Machine

Learning. Conference on INnovations in Intelligent SysTems and Applications.

https://doi.org/https://doi.org/10.1109/inista49547.2020.9194623

Lee, S. M., Kim, D. S., Kim, J. H., & Park, J. S. (2010). Spam Detection Using

Feature Selection and Parameters Optimization. IEEE International Conference on

Intelligent and Software Intensive Systems, 883–888.

https://doi.org/https://doi.org/10.1109/cisis.2010.116

Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C., &

Wolff, S. (2009). A brief history of the Internet. ACM SIGCOMM Computer

Communication Review, 39(5), 22–31.

https://doi.org/https://doi.org/10.1145/1629607.1629613

Lewis, D. D., & Knowles, K. A. (1997). Threading electronic mail: A preliminary

study. Information Processing & Management, 33(2), 209–217.

https://doi.org/https://doi.org/10.1016/s0306-4573(96)00063-5

Lewis, D. D., Schapire, R. E., Callan, J. P., & Papka, R. (1996). Training Algorithms

for Linear Text Classifiers. Proceedings of the 19th Annual International ACM-

SIGIR Conference on Research and Development in Information Retrieval, 298–

306. https://doi.org/https://doi.org/10.1145/243199.243277

Li, J. hua. (2018). Cyber security meets artificial intelligence: a survey. In Frontiers

of Information Technology and Electronic Engineering (Vol. 19, Issue 12, pp. 1462–

1474). Zhejiang University. https://doi.org/10.1631/FITEE.1800573

Ma, E. (2019). NLPAug. Https://Github.Com/Makcedward/Nlpaug.

Manning, C. D., Raghavan, P., & Schütze, H. (2009a). Introduction to Information

Retrieval (Online edition (c)). Cambridge University Press.

https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

Manning, C. D., Raghavan, P., & Schütze, H. (2009b). Introduction to Information

Retrieval (Online edition (c)). Cambridge University Press.

MDZ Digital Library Team. (2020a). 🇹🇷 BERTurk, BERT-base Turkish 128k-cased.

https://huggingface.co/dbmdz/bert-base-turkish-128k-cased

MDZ Digital Library Team. (2020b). 🇹🇷 DistilBERTurk,.

https://huggingface.co/dbmdz/distilbert-base-turkish-cased

Mendez, J. R., Fdez-Riverola, F., Díaz, F., Iglesias, E. L., & Corchado, J. M. (2006).

A comparative performance study of feature selection methods for the anti-spam

filtering domain. Advances in Data Mining. Applications in Medicine, Web Mining,

Marketing, Image and Signal Mining, 106–120.

https://doi.org/https://doi.org/10.1007/11790853_9

68

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word

Representations in Vector Space. http://arxiv.org/abs/1301.3781

Mucherino, A., Papajorgji, P. J., & Pardalos, P. M. (2009). k-Nearest Neighbor

Classification. In Data Mining in Agriculture (Vol. 34).

https://doi.org/https://doi.org/10.1007/978-0-387-88615-2_4

Nazirova, S. (2011). Survey on Spam Filtering Techniques. Communications and

Network, 03(03), 153–160. https://doi.org/10.4236/cn.2011.33019

NIST. (2020). SP 800-53 Security and Privacy Controls for Information Systems and

Organizations Rev.5. 3, 349.

NIST Joint Task Force. (2020). Security and Privacy Controls for Information

Systems and Organizations. https://doi.org/10.6028/NIST.SP.800-53r5

Nithilaa Umasankar. (2021, August 25). NLPAUG – A Python library to Augment

Your Text Data. https://www.analyticsvidhya.com/blog/2021/08/nlpaug-a-python-

library-to-augment-your-text-data/#:~:text=NLPAug is a python library,examples to

prevent adversarial attacks.

Özdemı̇r, C., Atas, M., & Özer, A. B. (2013). Classification of Turkish spam e-mails

with artificial immune system. IEEE Signal Processing and Communications

Applications (SIU). https://doi.org/https://doi.org/10.1109/siu.2013.6531457

Özgür, L. (2003). Adaptive Anti-Spam Filtering.

https://www.cmpe.boun.edu.tr/~gungort/theses/Adaptive Anti-Spam Filtering

Based on Turkish Morphological Analysis, ANNs and Bayes Filtering.ps

Pelletier, L., Almhana, J., & Choulakian, V. (2004). Adaptive filtering of spam.

Second Annual Conference on Communication Networks and Services Research

(CNSR’04). https://doi.org/https://doi.org/10.1109/dnsr.2004.1344731

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for

Word Representation. https://doi.org/https://doi.org/10.3115/v1/d14-1162

Peters, M. E., Neumann, M., Zettlemoyer, L., & Yih, W. (2018). Dissecting

Contextual Word Embeddings: Architecture and Representation.

http://arxiv.org/abs/1808.08949

Poudyal, S., & Dasgupta, D. (2020). AI-Powered Ransomware Detection

Framework. 2020 IEEE Symposium Series on Computational Intelligence (SSCI).

https://doi.org/https://doi.org/10.1109/ssci47803.2020.9308387

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

Language Models are Unsupervised Multitask Learners.

https://github.com/codelucas/newspaper

Raskin, V., Nirenburg, S., Atallah, M. J., & Hempelmann, Christian F. Triezenberg,

K. E. (2002). Why NLP should move into IAS. COLING-02 on A Roadmap for

Computational Linguistics -.

https://doi.org/https://doi.org/10.3115/1118754.1118757

69

Rathi, M., & Pareek, V. (2013). Spam Mail Detection through Data Mining A

Comparative Performance Analysis. I.J. Modern Education and Computer Science,

12, 31–39. https://doi.org/https://doi.org/10.5815/ijmecs.2013.12.05

Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using

Siamese BERT-Networks. Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP).

https://doi.org/https://doi.org/10.18653/v1/d19-1410

Robinson, G. (2003). A Statistical Approach to the Spam Problem.

Rusland, N. F., Wahid, N., Kasim, S., & Hafit, H. (2017). Analysis of Naïve Bayes

Algorithm for Email Spam Filtering across Multiple Datasets. IOP Conference

Series: Materials Science and Engineering, 226(1). https://doi.org/10.1088/1757-

899X/226/1/012091

Sahami, M. (1996). Learning Limited Dependence Bayesian Classifiers.

Proceedings of the Second International Conference on Knowledge Discovery and

Data Mining, 334–338. https://www.aaai.org/Papers/KDD/1996/KDD96-061.pdf

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian Approach

to Filtering Junk Email. https://www.aaai.org/Papers/Workshops/1998/WS-98-

05/WS98-05-009.pdf

Sakkis, G., Androutsopoulos, I., Paliouras, G., & Karkaletsis, V. (2001). Stacking

classifiers for anti-spam filtering of E-mail. Empirical Methods in Natural Language

Processing, 44–50.

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled

version of BERT: smaller, faster, cheaper and lighter.

http://arxiv.org/abs/1910.01108

Sevinç, E., Oktaş, R., & Çallı, Ç. (2020). turkish-deasciifier: Turkish deasciifier.

https://Github.Com/Emres/Turkish-Deasciifier.

Simoiu, C., Zand, A., Thomas, K., & Bursztein, E. (2020). Who is targeted by email-

based phishing and malware?: Measuring factors that differentiate risk. Proceedings

of the ACM SIGCOMM Internet Measurement Conference, IMC, 567–576.

https://doi.org/10.1145/3419394.3423617

Srinivasan, S., Ravi, V., Alazab, M., Ketha, S., Al-Zoubi, A. M., & Padannayil, S.

K. (2020). Spam Emails Detection Based on Distributed Word Embedding with

Deep Learning. In Machine Intelligence and Big Data Analytics for Cybersecurity

Applications (pp. 161–189). https://doi.org/https://doi.org/10.1007/978-3-030-

57024-8_7

Stern, H. (2008). A survey of modern spam tools. In Proceedings of the Fifth

Conference on Email and Anti-Spam.

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.1851

The Radicati Group, I. (2015). Email-Statistics-Report-2015-2019-Executive-

Summary. https://www.radicati.com/wp/wp-content/uploads/2015/02/Email-

70

Statistics-Report-2015-2019-Executive-Summary.pdf

Thorsten Joachims. (1998). Text Categorization with Support Vector Machines:

Learning with Many Relevant Features. Lecture Notes in Computer Science, 1398,

119–124. https://doi.org/https://doi.org/10.1007/bfb0026683

Turhanlar, M. (2019). Detecting Turkish Phishing Attacks With Machine Learning

Classifiers.

https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=aEzj_IdWAsjiSAfK3qwr

Bvp2g4bU8Rbc7de90wXXBrhKqELBMcl3RNtVuoplhVY2

Turing, A. M. (1950). I.-Computing Machinery and Intelligence.

https://doi.org/https://doi.org/10.1093/mind/lix.236.433

Ukwen, D. O., & Karabatak, M. (2021). Review of NLP-based Systems in Digital

Forensics and Cybersecurity. 2021 9th International Symposium on Digital

Forensics and Security (ISDFS).

https://doi.org/https://doi.org/10.1109/isdfs52919.2021.9486354

The CAN-SPAM Act: Requirements for commercial emailers, Washington, D.C.:

Federal Trade Commission, Bureau of Consumer Protection, Office of Consumer

and Business Education. (2004). https://www.ftc.gov/business-

guidance/resources/can-spam-act-compliance-guide-business

Vähäkainu, P., & Lehto, M. (2019). Artificial intelligence in the cyber security

environment. https://www.researchgate.net/publication/338223306

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L., & Polosukhin, I. (2017). Attention Is All You Need.

http://arxiv.org/abs/1706.03762

Verma, R., Shashidhar, N., & Hossain, N. (2012). Detecting Phishing Emails the

Natural Language Way. Computer Security – ESORICS 2012, 824–841.

https://doi.org/https://doi.org/10.1007/978-3-642-33167-1_47

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2019).

GLUE: A Multi-Task Benchmark and Analysis Platform For Natural Language

Understanding. https://doi.org/https://doi.org/10.18653/v1/w18-5446

Weinstein, L. (2003). Spam wars. Communications of the ACM, 46(8), 136.

https://doi.org/https://doi.org/10.1145/859670.859703

Xu, K., Kliger, M., Chen, Y., Woolf, P. J., & Hero, A. O. (2009). Revealing Social

Networks of Spammers Through Spectral Clustering. 2009 IEEE International

Conference on Communications.

https://doi.org/https://doi.org/10.1109/icc.2009.5199418

71

APPENDICES

APPENDIX A

Setting Up the Environment (Mounting Google Drive for Google Colab)

#Mounting Google Drive

from google.colab import drive

drive.mount('/content/drive', force_remount=False)

import pandas as pd

#Reading CSV file as pandas Dataframe

df =pd.read_csv("/content/drive/MyDrive/spam.csv", header=

None, encoding="utf-8", error_bad_lines=False)

Dataset Cleaning and Reshaping Processes

#Removing na values from dataframe

def dt_na_value_cleaning(data):

 print("\nData Shape : ", data.shape)

 print("\nNull values before removal:: ")

 print(dt.isna().sum())

 dt.dropna(inplace=True)

 dt.reset_index(inplace=True,drop=True)

 print("\nNull values after removal: ")

 print(dt.isna().sum())

 print("\nData Shape after cleaning :" , dt.shape)

 return dt

Removing duplicate values

def duplicate_content_removal(dt, col, ini_row):

 dt = dt.iloc[1: , :]

 print("\nNumber of data before removing duplicates: ",

 ini_row)

 duplicate_count = dt[col].duplicated().sum()

 print("\nNumber of Duplicates: ", duplicate_count)

 description_data = dt[col].drop_duplicates()

72

 cleaned_row = len(description_data)

 if (ini_row - cleaned_row) > 0:

 print("\nTotal data reduction : ", (ini_row - clea

ned_row))

 print("\Number of data after removing

duplicates is :", cleaned_row)

 else:

 print("\nNo duplicate data.")

 return list(description_data)

df=df.rename(columns={0: "E_Mail", 1: "Label", 2:"NaN"})

#deleting the unnecessary columns and rows

del df["NaN"]

df = df.iloc[1: , :]

df = df.replace(r'\n',' ', regex=True)

df = data_na_value_cleaning(df)

E_Mail = duplicate_content_removal(df, 'E_Mail', df.shape[

0])

df.shape

df['Label'].value_counts(normalize=True)

Splitting Dataset into Training and Test Dataset

Randomize the dataset

data_randomized = df.sample(frac=1, random_state=1)

Calculate index for split

training_test_index = round(len(data_randomized) * 0.8)

Split into training and test sets

training_set = data_randomized[:training_test_index].reset

_index(drop=True)

test_set = data_randomized[training_test_index:].reset_ind

ex(drop=True)

print(training_set.shape)

print(test_set.shape)

training_set['Label'].value_counts(normalize=True)

test_set['Label'].value_counts(normalize=True)

73

Pre-processing

#Preprocessing text data

!pip3 install jpype1

from typing import List

from jpype import JClass, JString, getDefaultJVMPath, shut

downJVM, startJVM, java, isJVMStarted

#A function for Turkish letters, to fix upper case -

lower case issue

def trlower(metin):

 def trlower_(harf):

 if harf=='I': sonuc = 'ı'

 elif harf=='İ': sonuc = 'i'

 else: sonuc = harf.lower()

 return sonuc

 sonuc = ''

 for a in metin:

 sonuc += trlower_(a)

 return sonuc

#Function for removing digits

def sayi(metin):

 sonuc = ''.join([i for i in metin if not i.isdigit()])

 return sonuc

#Function for removing punctuation

def noktalama(metin):

 sonuc = "".join([i for i in metin if i not in string.p

unctuation])

 return sonuc

#Function for removing white-spaces

def wspace(metin):

 if metin is None:

 sonuc=''

 sonuc=metin.strip()

 return sonuc

#Function for removing words less than 3 characters

def remove_length(x):

 res = list()

 for word in x:

 if len(word) >= 3:

 res.append(word)

 return " ".join(res)

74

#lemmatization

ZEMBEREK_PATH = r'/content/drive/MyDrive/zemberek-

full.jar'

#startJVM function can be needed to be removed after one-

time run

startJVM(getDefaultJVMPath(), '-ea', -

Djava.class.path=%s' % (ZEMBEREK_PATH))

def lemmatizer(text):

 TurkishMorphology = JClass('zemberek.morphology.Turkis

hMorphology')

 morphology = TurkishMorphology.createWithDefaults()

 analysis: java.util.ArrayList = (

 morphology.analyzeAndDisambiguate(text).bestAnalys

is()

)

 pos: List[str] = []

 for i, analysis in enumerate(analysis, start=1):

 f'\nAnalysis {i}: {analysis}',

 f'\nPrimary POS {i}: {analysis.getPos()}'

 f'\nPrimary POS (Short Form) {i}: {analysis.getPos

().shortForm}'

 pos.append(

 f'{str(analysis.getLemmas()[0])}'

)

 return " ".join(pos)

#applying cleaning functions to training data set one at a

time to check the results

training_set["E_Mail"] = training_set["E_Mail"].apply(trlo

wer)

training_set["E_Mail"] = training_set["E_Mail"].apply(sayi

)

training_set["E_Mail"] = training_set["E_Mail"].apply(nokt

alama)

training_set["E_Mail"] = training_set["E_Mail"].apply(wspa

ce)

#Removing Turkish stopwords with NLTK library

training_set['E_Mail'] = training_set['E_Mail'].apply(lamb

da x: ' '.join([word for word in x.split() if word not in

(stop_words)]))

75

training_set['E_Mail'] = training_set['E_Mail'].str.split(

).apply(remove_length)

training_set["E_Mail"] = training_set["E_Mail"].apply(lemm

atizer)

#since ZEMBEREK lemmatizer gives UNK as output

if a word cannot be processed, replacing it with ‘’

training_set["E_Mail"] = training_set["E_Mail"].str.replac

e("UNK", '')

training_set.head()

76

APPENDIX B

Augmentation with BERT and distilBERT

!pip install nlpaug

!pip install transformers

import nlpaug.augmenter.char as nac

import nlpaug.augmenter.word as naw

import nlpaug.augmenter.sentence as nas

import nlpaug.flow as nafc

from nlpaug.util import Action

#BERTurk Augmentation Function

def augie1(text):

 aug = naw.ContextualWordEmbsAug(

 model_path='dbmdz/bert-base-turkish-

cased', action="substitute")

 augmented_text = aug.augment(text)

 return augmented_text

#distilBERTurk Augmentation Function

def augie2(text):

 aug = naw.ContextualWordEmbsAug(

 model_path='dbmdz/distilbert-base-turkish-

cased', action="substitute")

 augmented_text = aug.augment(text)

 return augmented_text

#applying BERT version of NLPAug

dfaug1=df

dfaug1["E_Mail"]= dfaug1.apply(lambda x: augie1(x["E_Mail"

]), axis=1)

#saving the augmented e-mails only

df12 =pd.read_csv("/content/drive/MyDrive/aug1.csv", inde

x_col=0, encoding="utf-8", error_bad_lines=False)

df12.head()

#concatanating original emails with augmented emails with

BERT

concat1 = pd.concat([df, df12], axis=0)

#saving the augmented dataset as concat1 for BERT

with open('/content/drive/My Drive/concat1.csv', 'w', enco

ding = 'utf-8') as f:

 concat1.to_csv(f)

77

#applying distilBERT version of NLPAug

dfaug2=df

dfaug2["E_Mail"]= dfaug2.apply(lambda x: augie2(x["E_Mail"

]), axis=1)

dfaug2.head()

#saving the augmented e-mails only

with open('/content/drive/My Drive/aug2.csv', 'w', encodin

g = 'utf-8') as f:

 dfaug2.to_csv(f)

df22 =pd.read_csv("/content/drive/MyDrive/aug2.csv", inde

x_col=0, encoding="utf-8", error_bad_lines=False)

df22

#concatanating original emails with augmented emails with

distilBERT

concat2 = pd.concat([df, df22], axis=0)

#saving the augmented dataset as concat2 for distilBERT

with open('/content/drive/My Drive/concat2.csv', 'w', enco

ding = 'utf-8') as f:

 concat2.to_csv(f)

78

APPENDIX C

Classification (First Approach)

import pandas as pd

#The CSV file here is the original dataset, for every

other case, the augmented datasets are used

df =pd.read_csv("/content/drive/MyDrive/spam.csv", header=

None, encoding="utf-8", error_bad_lines=False)

#Pre-processing and dataset shaping should be done as it

is shown in Appendix A

#creating the vocabulary

training_set['E_Mail'] = training_set['E_Mail'].str.split(

)

vocabulary = []

for email in training_set['E_Mail']:

 for word in email:

 vocabulary.append(word)

vocabulary = list(set(vocabulary))

len(vocabulary)#output: 6774

Creating the dataframe to calculate probabilities on

word_counts_per_email = {unique_word: [0] * len(training_s

et['E_Mail']) for unique_word in vocabulary}

for index, email in enumerate(training_set['E_Mail']):

 for word in email:

 word_counts_per_email[word][index] += 1

word_counts = pd.DataFrame(word_counts_per_email)

word_counts.head()

training_set_clean = pd.concat([training_set, word_counts]

, axis=1)

training_set_clean.head()

79

#Isolating spam and ham messages first

spam_emails = training_set_clean[training_set_clean['Label

'] == 'spam']

ham_emails = training_set_clean[training_set_clean['Label'

] == 'ham']

P(Spam) and P(Ham)

p_spam = len(spam_emails) / len(training_set_clean)

p_ham = len(ham_emails) / len(training_set_clean)

N_Spam

n_words_per_spam_emails = spam_emails['E_Mail'].apply(len)

n_spam = n_words_per_spam_emails.sum()

N_Ham

n_words_per_ham_emails = ham_emails['E_Mail'].apply(len)

n_ham = n_words_per_ham_emails.sum()

N_Vocabulary

n_vocabulary = len(vocabulary)

Laplace smoothing

alpha = 1

Initiate parameters

parameters_spam = {unique_word:0 for unique_word in vocabu

lary}

parameters_ham = {unique_word:0 for unique_word in vocabul

ary}

Calculate parameters

for word in vocabulary:

 n_word_given_spam = spam_emails[word].sum() # spam_mess

ages already defined

 p_word_given_spam = (n_word_given_spam + alpha) / (n_sp

am + alpha*n_vocabulary)

 parameters_spam[word] = p_word_given_spam

 n_word_given_ham = ham_emails[word].sum() # ham_message

s already defined

 p_word_given_ham = (n_word_given_ham + alpha) / (n_ham

+ alpha*n_vocabulary)

 parameters_ham[word] = p_word_given_ham

80

#Applying bayes theorem

def classify(email):

 email = re.sub('\W', ' ', email)

 email = email.lower().split()

 p_spam_given_email = p_spam

 p_ham_given_email = p_ham

 for word in email:

 if word in parameters_spam:

 p_spam_given_email *= parameters_spam[word]

 if word in parameters_ham:

 p_ham_given_email *= parameters_ham[word]

 print('P(Spam|email):', p_spam_given_email)

 print('P(Ham|email):', p_ham_given_email)

 if p_ham_given_email > p_spam_given_email:

 print('Label: Ham')

 elif p_ham_given_email < p_spam_given_email:

 print('Label: Spam')

 else:

 print('Label: Ham')

def classify_test_set(email):

 email = re.sub('\W', ' ', email)

 email = email.lower().split()

 p_spam_given_message = p_spam

 p_ham_given_message = p_ham

 for word in email:

 if word in parameters_spam:

 p_spam_given_email*= parameters_spam[word]

 if word in parameters_ham:

 p_ham_given_ email *= parameters_ham[word]

 if p_ham_given_email > p_spam_given_email:

 return 'ham'

 elif p_spam_given_email > p_ham_given_email:

 return 'spam'

 else:

81

 return 'ham'

test_set['predicted'] = test_set['E_Mail'].apply(classify_

test_set)

#Accuracy Metrics

correct = 0

total = test_set.shape[0]

for row in test_set.iterrows():

 row = row[1]

 if row['Label'] == row['predicted']:

 correct += 1

print('Correct:', correct)

print('Incorrect:', total - correct)

print('Accuracy:', correct/total)

#False Positive and False Negative Metrics

fp=0

fn=0

for row in test_set.iterrows():

 row = row[1]

 if row['Label'] == 'spam':

 if row['predicted']=='ham':

 fn+=1

 if row['Label'] == 'ham':

 if row['predicted']=='spam':

 fp+=1

print('False Negative Ratio:', fn/total*100)

print('False Positive Ratio:', fp/total*100)

Classification (Second Approach)

!pip install pandas nltk

!pip3 install jpype1

import nltk

nltk.download('punkt')

nltk.download('stopwords')

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

stop_words = set(stopwords.words('turkish'))

82

import warnings

warnings.filterwarnings('ignore')

import pandas as pd

import re

import string

from typing import List

from jpype import JClass, JString, getDefaultJVMPath, shut

downJVM, startJVM, java, isJVMStarted

%matplotlib inline

import matplotlib.pyplot as plt

import csv

import sklearn

import pickle

import numpy as np

from sklearn.feature_extraction.text import CountVectorize

r, TfidfTransformer

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import GridSearchCV,train_tes

t_split,StratifiedKFold,cross_val_score,learning_curve

#The CSV file here is the original dataset, for every

other case, the augmented datasets are used

df =pd.read_csv("/content/drive/MyDrive/spam.csv", header=

None, encoding="utf-8", error_bad_lines=False)

#Pre-processing and dataset shaping should be done as it

is shown in Appendix A

text = pd.DataFrame(df['E_Mail'])

label = pd.DataFrame(df['Label'])

#convert the text data into vectors

from sklearn.feature_extraction.text import TfidfVectorize

r

vectorizer = TfidfVectorizer()

vectors = vectorizer.fit_transform(df['E_Mail'])

vectors.shape

#features = word_vectors

features = vectors

83

#split the dataset into train and test set

X_train, X_test, y_train, y_test = train_test_split(featur

es, df['Label'], test_size=0.15, random_state=111

#import sklearn packages for building classifiers

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.naive_bayes import MultinomialNB

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

#initialize multiple classification models

svc = SVC(kernel='sigmoid', gamma=1.0)

knc = KNeighborsClassifier(n_neighbors=49)

mnb = MultinomialNB(alpha=0.2)

dtc = DecisionTreeClassifier(min_samples_split=7, random_s

tate=111)

lrc = LogisticRegression(solver='liblinear', penalty='l1')

rfc = RandomForestClassifier(n_estimators=31, random_state

=111)

#create a dictionary of variables and models

clfs = {'SVC' : svc,'KN' : knc, 'NB': mnb, 'DT': dtc, 'LR'

: lrc, 'RF': rfc}

#fit the data onto the models

def train(clf, features, targets):

 clf.fit(features, targets)

def predict(clf, features):

 return (clf.predict(features))

pred_scores_word_vectors = []

for k,v in clfs.items():

 train(v, X_train, y_train)

 pred = predict(v, X_test)

 pred_scores_word_vectors.append((k, [accuracy_score(y_

test , pred)]))

#getting the accuracy scores of the classifiers using tf-

idf vectorizing

pred_scores_word_vectors

84

Accuracy Score of Naïve Bayes

from sklearn.metrics import accuracy_score

y_pred_nb = mnb.predict(X_test)

y_true_nb = y_test

print(f"Accuracy of the classifier is: {accuracy_score(y_t

est, y_pred_nb)}")

#confusion matrix of Naive Bayes

from sklearn.metrics import confusion_matrix

from sklearn.metrics import plot_confusion_matrix

confusion_matrix funnction a matrix containing the summa

ry of predictions

print(confusion_matrix(y_test, y_pred_nb))

plot_confusion_matrix function is used to visualize the

confusion matrix

plot_confusion_matrix(mnb, X_test, y_test)

plt.show()

#Precision Score of Naïve Bayes

from sklearn.metrics import precision_score

print(f"Precision Score of the classifier is: {precision_s

core(y_test, y_pred_nb)}")

Recall score of Naïve Bayes

from sklearn.metrics import recall_score

print(f"Recall Score of the classifier is: {recall_score(y

_test, y_pred_nb)}")

F1-Score of Naïve Bayes

from sklearn.metrics import f1_score

print(f"F1 Score of the classifier is: {f1_score(y_test, y

_pred_nb)}"

AUC-ROC Curve of Naïve Bayes

from sklearn.metrics import roc_curve, auc

class_probabilities = mnb.predict_proba(X_test)

preds = class_probabilities[:, 1]

85

fpr, tpr, threshold = roc_curve(y_test, preds)

roc_auc = auc(fpr, tpr)

Printing AUC

print(f"AUC for our classifier is: {roc_auc}")

Plotting the ROC

plt.title('Receiver Operating Characteristic')

plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)

plt.legend(loc = 'lower right')

plt.plot([0, 1], [0, 1],'r--')

plt.xlim([0, 1])

plt.ylim([0, 1])

plt.ylabel('True Positive Rate')

plt.xlabel('False Positive Rate')

plt.show()

Semantic Distance with BERT

!pip3 install torch torchvision torchaudio

!pip install sentence-transformers

from sentence_transformers import SentenceTransformer,util

import numpy as np

model = SentenceTransformer('emrecan/bert-base-turkish-

cased-mean-nli-stsb-tr')

def sem_difference(text1,text2):

 # encode sentences to get their embeddings

 embedding1 = model.encode(text1, convert_to_tensor=True)

 embedding2 = model.encode(text2, convert_to_tensor=True)

 # compute similarity scores of two embeddings

 cosine_scores = util.pytorch_cos_sim(embedding1, embeddi

ng2)

 return (100-(cosine_scores.item()*100))

dfnew=df

dfnew["New_E_Mail"]= df12["E_Mail"]

del dfnew["Label"]

dfnew['Difference'] = dfnew.apply(lambda x: sem_difference

(x['E_Mail'], x['New_E_Mail']), axis=1)

#Average of the distances

dfnew["Difference"].mean()

