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ABSTRACT 

 

IDENTIFICATION OF POSITION-DEPENDENT 

WORKPIECE DYNAMICS IN MILLING PROCESS 

 

 

 

Altun,Barış 

Master of Science, Mechanical Engineering 

Supervisor : Assist. Prof.  Dr. Hakan ÇALIŞKAN 

Co-Supervisor: Assist. Prof.  Dr. Orkun ÖZŞAHİN 

 

 

August 2022, 129 pages 

 

Frequency Response Functions (FRFs) are utilized for analyzing vibrations created 

during milling process. FRFs obtained with external excitations are often not 

sufficient as machine-tool dynamics are position-dependent (to machine-tool axes, 

workpiece placement) and frequency domain to be identified requires specialized 

equipment. In this thesis, an identification method based on operational excitation 

addressing these problems is proposed. A single rectangular workpiece is processed 

and acceleration measurements are taken. FRF is calculated according to the 

proposed method of sampling engagements individually and force calculation based 

on mechanistic models. Results are compared with tap test results. Force coefficients 

to be used are identified by tap tests obtained from a different spot and mechanistic 

force model by processing a similar rectangular workpiece. Results are confirmed 

with FRF obtained in the same location. 

Keywords: Operational Modal Analysis, Position dependent Machine-Tool 

Dynamics, Identification of Force Coefficients, Chatter, Milling Force 
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İŞLEMİNDE TANILANMASI 
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Tez Yöneticisi: Dr. Hakan ÇALIŞKAN 

Ortak Tez Yöneticisi: Dr. Orkun ÖZŞAHİN 

 

 

Ağustos 2022, 129 sayfa 

 

Frekans Tepki Fonksiyonları (FRF) frezeleme sürecinde oluşan titreşimlerin 

analizinde kullanılır. Dışarıdan gelen uyarımlarla elde edilen FRF’ler sıklıkla 

frezeleme sürecinde ortaya çıkan titreşimleri tanımlamakta yetersiz kalmaktadır. 

Bunun başlıca sebepleri FRF’in tezgahın o anki pozisyonuna bağlı olması (eksenler 

ve parça pozisyonu) ve incelenen frekans bölgesinin bölgeye uygun ekipmana 

ihtiyaç duymasıdır. Bu tezde, bu sorunları aşan operasyonel bir uyarım metodu 

sunulmuştur. Tek, dikdörtgen bir parça frezelenmiş ve ivme ölçümleri alınmıştır. 

Frekans Tepki Fonksiyonu bu çalışmada önerilen şekilde takım-temas ivmelerinin 

tek tek örneklenmesi ile mekanistik kuvvet modelleri sayesinde 

hesaplanmıştır.Sonuçlar çekiç testleri ile karşılaştırılmıştır. Kuvvet katsayıları freze 

tezgahının başka bir konumunda yapılan çekiç testleri ile yine dikdörtgen bir 

parçanın işlenmesi ile tanımlanmıştır. Sonuçlar aynı konumda elde edilen FRF’lerin 

çekiç testiyle karşılaştırılması ile doğrulanmıştır. 

Anahtar Kelimeler: Operasyonel Modal Analiz, Pozisyona Bağlı Takım-Tezgah 

Dinamikleri, Kuvvet Katsayısı Tanımlamaları, Tırlama, Frezeleme kuvveti
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CHAPTER 1  

1 INTRODUCTION 

Milling is a category of manufacturing processes under the name of “Machining” in 

which a rotating cutting tool makes contact with a stationary workpiece and this 

action removes material from the workpiece in a form of small particles of deformed 

workpiece material called “chips.” A graphic description is given in Figure 1.1. By 

controlling the position of the workpiece and cutting tool, material from the 

workpiece can be removed in a controlled fashion and this gives the workpiece the 

desired shape. Milling process is an established practice in the industry as it is 

especially useful in shaping metals and manufacturing complex shapes as long as 

features are accessible from the surface. Some of the application areas may be listed 

as manufacturing of casting molds, firearms, missile bodies, shafts and other power 

transmission members. 

 

Figure 1.1 Description of Milling Process [1] 
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Just like all manufacturing processes, milling process has challenges. One major 

source of problems is vibrations present during operation. Because machining 

processes rely on material removal with an application of force in a small area, 

vibrations are inherent to machining processes. Vibrations are known to be 

detrimental to manufacturing results and harmful to machine-tool. For this reason, 

handling of vibrations in milling process is an important research area. 

Fundamentally, there are 3 types of vibrations are categorized. Transient vibrations 

occur when there is displacement but no additional force, such as when cutting tool 

leaves the workpiece. Forced vibrations are the direct result of force applied due to 

milling process itself. Self-excited (regenerative) [2] vibrations are observed with 

forced vibrations and caused by workpiece and machine-tool vibrations changing 

chip removal rate and consequently, the force applied. Regenerative vibrations are 

associated with a phenomenon called chatter when this self-excited event becomes 

unstable and starts diverging. Chatter can be diagnosed with abnormally high noise 

together with a characteristic wavy pattern left in the workpiece. Chatter results with 

poor surface finish and possible damage on workpiece and machine-tool. 

The most critical thing to be known about these vibrations is the fact that just like 

any other vibration, they are a function of force applied and dynamic characteristics 

of machine-tool. In other words, machine-tool can be modelled and vibrations can 

be regarded as an output. This conclusion is used in some prominent ways such as 

chatter detection and suppression methods or chatter stability studies like Stability 

Lobe Diagram [2], various identification methods such as operational modal analysis 

[10], and even tool and spindle monitoring techniques related to noise and vibrations. 

This means that machine-tool identification techniques are in demand both in the 

Academy and the Industry.  

One of the most useful methods to represent machine-tool behavior under excitation 

is utilizing Frequency Response Functions. FRFs are useful for milling dynamics 

analysis for several reasons. They are fairly easy to calculate and utilize in practice 

with minimal training. Since a lot of machinery used in industry, such as milling 

machines, have some sort of periodic or mostly periodic excitations, frequency 
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domain methods like FRF are well utilized for representing such dynamics of such 

systems. Utilizing multiple measurements for a better estimation is easy to apply 

with FRFs and for this reason, they function well with noise and uncertainties. 

Finally, together with some assumptions such as a linear system, they can be used to 

construct a transfer function.  

1.1 FRF Identification Methods for Milling Machines  

In the previous chapter, the motivation for obtaining FRF from machine-tool is 

explained. This chapter gives the literature regarding how to obtain FRF in machine-

tool. 

FRFs for milling applications are commonly obtained by measurement of output 

under excitation, i.e. empirically. These methods can be separated into two based on 

the method of excitation as experimental and operational. Experimental methods rely 

on external force application devices such as hammers or shakers and output 

measurements. Experimental methods to obtain desired data for identification is a 

practical and reliable approach in terms of excitation control and for testing a select 

few spots. Such methods are great at applying accurate excitation but implementing 

them can be challenging, especially during operation [22]. Operational approach is 

to obtain data during the machine under investigation is performing its intended task. 

In other words, excitation is provided by the system itself. In this approach, 

information regarding input excitation can be obtained through various methods 

depending on the system, such as modelling of the system or assuming randomized 

excitation such as white noise, as in Output-Only Modal Analysis which is the most 

common form of operational modal analysis methods. Operational methods have the 

potential to reflect behavior during operation more accurately but control over 

excitation is more challenging. 

Empirical methods of obtaining FRF have vast literature behind them. Significant 

work has been put into Experimental and Operational Modal Analysis [3], as well as 
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obtaining FRF only, i.e. without modal analysis. Experimental Modal Analysis is a 

highly automatized identification method [3,4] and is widely used. Yet, modal 

analysis results are not equivalent to FRF obtained and even on highly automatized 

systems, the accuracy of results depends on abilities of the researcher. Operational 

method applications for the milling process have motivational reasons supporting 

their development, such as machine tool structure dynamics are known to change 

during operation [3,7,8-11,13-15,17,21] and application of experimental methods 

during operation requires additional work as excitation reflecting operation 

conditions can be necessary and challenging to satisfy as an application of force at a 

specific spot can require accommodations [3,22].  

Obtaining the desired excitation on operational methods is an important research area 

for milling applications. Major challenges regarding milling process are uncertainty 

in force excitation due to the complexity of the process and harmonic excitation 

being dominant during operation. Özşahin et.al. [13] utilize a workpiece with 

randomized channels and processed this workpiece with feed direction vertical to the 

side of a set of walls in order to achieve randomized excitation. The excitation 

method is confirmed with coherence function and frequency content of excitation. 

Dynamometer measurements are taken as input and a laser vibrometer is used on 

cutting tool. Li et.al. [10] utilize inertia of the machine itself for excitation for 

identification of machine tool structure at lower than 500 [Hz] domain where main 

structural mode frequencies reside. The core idea is to shake the machine tool by 

moving the table and the spindle of the machine under investigation at a desired 

speed and acceleration. The core purpose of the paper is to show differences in the 

dynamics of the worktable (table) at different movement speeds and locations. The 

method provides mode frequencies and damping ratios but not amplitude as there is 

no force measurement and the method relies on a flat frequency profile. In other 

words, scaling is missing Author explains which parameters change during the 

process. Li et.al. [11] apply the first single thin workpiece for machine tool 

identification. This method assumes an impulse model for excitation which is 

explained by parameters such as angular speed, feed and wall thickness for 
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excitation. The method intents to achieve white noise for application of Operational 

Modal Analysis methods. This article also offers several simplified calculations for 

estimating where excitations will be effective. Cai et.al. [7] have taken the method 

used by Li et.al. and in order to obtain better random signal which is used with Output 

Only Modal Analysis methods, designed a workpiece with a randomized shape. 

Moreover, the authors also randomized angular speed and feed. Berthold et.al. [21] 

apply the same principle with a generic process and have shown that white noise 

requirements can be satisfied without a special workpiece. The author also presents 

methods to select process parameters to achieve excitation with various frequency 

content. Koike et.al. [6] apply chip regeneration model with servo motor information 

to check chatter stability experimentally through a spindle model and real time data. 

This is not an identification application but sensors present in the machine itself is 

used to describe tool-tip behavior. Similar applications are done for force 

calculations. [20, 23] Wang et.al. [8] have also applied a designed workpiece but 

only targeted modal shapes and for heavy machinery by randomized channels 

approach. So far, the scaling issue had not been mentioned. There are various ways 

to approach scaling. The mass change approach is popular for cutting tool 

identification [9, 26] but it is hard to apply on heavy moving parts such as machine-

tool table.  Peng et.al. [9] address this issue with a hybrid approach. The author 

utilizes movement and so inertial forces of the machine tool structure for 

identification. In addition, the author utilizes tap tests on the same machine. Mode 

shapes are expected to stay stable during operation and mode frequencies and 

damping are obtained through operational modal analysis. Iglesias et.al. [12] utilize 

a simple sweeping method for exciting desired frequency domain for identification. 

Force and acceleration measurements were present. This method gives excellent 

control over excitation frequency and is very intuitive to use. The author also 

explains non-diagonal members of the transfer function matrice and how to obtain 

them. A major disadvantage of this method is that exciting higher frequencies can be 

limited by spindle speed.  Berthold et.al. [12] compare EMA and OMA methods 

while questioning position dependence and time-invariance of the machine itself and 
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identifies regions (position of spindle and table) with constant FRF on the 

investigated machine. This is critical to maintain the white noise assumption. Li et.al. 

[15] develop another inertia based application. In this case, multiple axes are moved 

simultaneously for more accurate results. Effects of machine tool structure itself on 

transfer functions, namely collisions inside the screw nut pair and impact excitation 

as a result of it are given as problems and so different sequences of impulses are 

tested to see if there is a nonlinearity as a result of it. Results indicate no significant 

nonlinearity. There have been studies regarding FRF identification or utilization 

without force measurement for table of machine tool structure. One critical work is 

that of Cai et.al. [18]. This article applies a conventional uncut chip thickness based 

cutting force model with previously known force coefficients in order to obtain an 

input similar to white noise but predictable. The advantages of this approach are that 

the method obtains a great amount of test data and force calculation is confirmed 

with measurements. Moreover, this approach gives a great deal of control over force 

excitation. However, problems with the reliability of force coefficients and phase 

measurement are reported. 

The current research area regarding modal analysis without measurement of force 

measurements relies heavily on white noise production at desired frequency domain 

in order to obtain modal shapes. This means identification quality is based on the 

quality of produced white noise and while modal parameter identification can be 

accurate, it necessarily includes these additional assumptions. Compounding with 

the fact that FRFs of machine-tool, especially table, is position dependent and so 

accurate positioning can be necessary, white noise approaches or even experimental 

methods can be not sufficient. Methods with force information are possible as Cai 

et.al. [18] have shown but they either require force measurement or accurate 

estimation of force in which it requires some initial knowledge.  
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1.2 Force Modelling 

In the previous chapter, it is shown that some form of force data is necessary for FRF 

identification unless output only methods are utilized. One method of obtaining force 

data is (direct or indirect) measurement of force. Taps and shakers automatically 

does force measurement but for other methods additional sensors are necessary. 

Dynamometers are commonly used for such applications. However, dynamometers 

have some issues preventing them from widespread application. Many facilities, 

industrial or academic, do not possess such device. They are significantly expensive. 

Moreover, they are cumbersome as they are required to be attached to the table and 

used as a workpiece holder to function. This would change table dynamics. Indirect 

measurements with accelerometers or encoders are a possibility but they require 

knowledge of the machine-tool beforehand as this is not an option if identification 

of the said machine-tool is the mission. Another method of obtaining force data is 

force calculation. Force calculation does not have the same equipment limitation or 

knowledge requirement regarding the machine-tool but it requires process 

parameters such as axial depth or angular speed of cutting tool. 

There are multiple approaches to force calculation in milling. Empirical models are 

interpolated formulations that are on top of experimental data. Such an approach is 

cumbersome and preferred only when other approaches are infeasible but most force 

calculation approaches are at least partially empirical as force coefficients need to be 

determined. Finite Element Analysis and similar numerical calculations are preferred 

for studies regarding contact surface and deformation zone research of machining 

applications and they are not easily scalable. Mechanistic calculations are the most 

popular and suitable calculation method for force estimation of milling process 

beforehand. Mechanistic models are based on geometric calculation of static chip 

thickness with process parameters and force coefficients which are usually obtained 

empirically. Total chip thickness is the summation of dynamic and static chip 

thicknesses. Static chip is calculated based on geometry of workpiece, cutting tool 

and kinematics and it is explained in this section. Dynamic chip thickness is based 
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on displacements that are the result of milling forces applied and they are explained 

in Chapter 1.3. The oldest known model regarding static chip thickness comes from 

Martellotti [27]. This model takes cutting tool edge as circular and takes cutting tool 

geometry ideal. In this model, the force is based on cutting tool angular position, 

diameter of cutting tool and feed per insert. This model is suitable when feed per 

tooth is small compared to cutting tool diameter. In literature, there are more 

advanced models with more process parameters [28]. Especially in micro-

machining, there are models based on high eccentricity and high feed per tooth 

compared to cutting tool diameter [29]. Moreover, works such as the study of Niaki 

et.al. [30] offer geometry based numerical static chip thickness calculation methods 

as an alternative to analytical calculations. Such methods have high calculation cost 

but they are easily adaptable to various conditions and they are selected on trochoidal 

milling. As important as calculating static chip thickness, application to the tool 

geometry is also a must. Koenigsberger et.al. [31] are the first people to develop 

mechanistic model of milling process. Kline [32] include tool eccentricity into 

calculation. All models mentioned above utilizes coefficients called as force 

coefficients. These parameters change values depends on process parameters and the 

material of workpiece. Such a change may be critical depending on the application. 

Considering this factor, linear and nonlinear milling force models can be selected. 

Linear milling force models rely on constant force coefficients and edge force 

coefficients as such a model relies on the assumption that force coefficients does not 

change drastically under the process parameters selected during milling [33]. This 

means that such a model is suitable under a range of process parameters they should 

not be exceeded. Nonlinear milling force models utilizes force coefficients that are 

an exponential function of chip thickness and possibly many other process 

parameters. Compared to linear milling force model force coefficients, they can be 

applied to a wider range of process parameters but they are harder to obtain. Force 

coefficients in general are affected by multitude of factors [28] such as chip thickness 

[33], cutting tool geometry, cutting tool material and workpiece material [34]. 

Although it is observed comparably rare, literature also includes axial depth and 
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cutting tool angular speed of cutting tool [35] as possible process parameters to effect 

force coefficients.  

1.3 Process Modelling 

Given that force is created during chip removal and chip removal effects force itself, 

there should be a process model explaining this behavior. Dynamic chip regeneration 

model commonly used in chatter research in machining processes is the default 

approach regarding milling dynamics. This model is also used with mechanistic force 

calculations and transfer functions of machine-tool. 

 

Figure 1.2 Example Demonstration of Milling Dynamics (A Review Of Chatter 

Vibration Research In Milling [40]) 

Entire milling dynamics can be described with merging of force model and cutting 

tool-workpiece vibration model. Force created during milling process is a function 

of chip thickness. Chip thickness is not just effected by process parameters but also 

displacement at workpiece and cutting tool as a result of force created. Since such a 

displacement during tool contact changes chip thickness, this causes a different 

amount of chip removed the next time cutting tool makes a contact. This results in a 

closed loop system in which chip thickness functions as delayed feedback [39]. 
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Delay differential equations are usually analyzed under chatter research and they are 

the basis of self-excited vibration models [40].  

1.4 Identification of Force Coefficients 

Accurate information of force coefficients requires time and money investment to 

get. As the first approach, getting accurate force coefficients from literature is 

challenging from multiple points. First of all, there is no widely available database 

for such parameters that is easily reachable, contains desired information regarding 

materials or process parameters selected and accurate. Another factor is that force 

coefficients are usually specific to given cutting tool unless it is a generalized 

identification like orthogonal cutting test. Finally, material characteristics are varied 

from one manufacturer to another. Given these conditions, available coefficients 

without required knowledge of their method of obtainment are useful as a proxy and 

not much else. As the next approach, application of identification methods where or 

when it is needed with materials and tools to be used is attractive and this is an 

applied way of solving this problem. However, this usually requires a dynamometer 

for force measurement. Issues with dynamometers are mentioned in force modelling 

Chapter 1.2.  

Force calculations without direct force measurement is a research area with multiple 

approaches. Aggarwal et.al. [20] utilize applied spindle motor current measurements 

together with inefficiencies on spindle structure to calculate tangential force 

coefficients. This method requires extensive initial study and only obtains tangential 

cutting force coefficient. Zhou et.al. [25] apply Kalman filter and tap test results to 

calculate force excitation. Yamato et.al. [21] apply motor current along with encoder 

readings and applies modelling of feed drive system to obtain force estimation. Load 

side disturbance observer (LSDO) relies on multiple encoder measurements and tool 

tip models. The method demands a force measurement reference for obtaining 

machine-tool parameters such as mass but process parameters or tap tests are not 

involved. Encoder measurements can require a strong enough excitation for 
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significant signal. Force observers in milling are an important research area but they 

are mostly omitted in this literature research because using indirect measurement in 

a machine-tool to be identified is challenging. 

Regarding identification of force coefficients without dynamometer, Pawelko et.al. 

[19] perform the most prominent research regarding this area. Pawelko et.al. [19] 

utilize FRF measurements for identification of force coefficients and lists various 

error factors. The method applied is based on frequency domain representation of 

force model at only first two harmonics and workpiece dynamics are assumed rigid. 

The main issue the article addresses is that obtaining all four linear force model force 

coefficients at the same time requires ill-conditioned matrices and Tikhonov 

regularization can be applied for this problem. The method is only tested numerically 

Wang et.al. [41] utilize only one dominant modes of FRF to obtain a mass-spring-

damper equation and by applying convolution, a set of linear equations in time 

domain to be used for least squares are created. The method does not give 

coefficients and results are accurate in amplitude for high radial engagement. 

1.5 Scope of the Thesis 

This thesis presents an easy-to-implement, in-operation identification method that 

offers more control over excitation compared to tap tests and the method offered has 

better control over the position force applied. In other words, this thesis proposes a 

quasi-operational FRF identification method for the table of a milling machine which 

can easily be applied in multiple spots with varying excitation levels and which does 

not rely on modal analysis. This is achieved by a force excitation that is obtained 

with pre-planned process and designed workpiece. The workpiece offered in this 

thesis is a single rectangular workpiece that is cut with small radial engagement. This 

provides a set of impulse-like force applied on a certain position with calculable 

amplitude distributed into a path, reaching numbers possibly more than a thousand 

individual excitations. Details regarding the utilized workpiece, the force model and 

the identification process are provided in their respective chapters. 
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The first step is to simulate the milling dynamics to observe effects of process 

parameters, dynamic chip thickness and transfer functions. This step allows to 

demonstrate accuracy and efficiency of following steps, as well as explains 

modelling choices, theoretical background and practical limitations regarding both 

the modelling itself and how process parameter selections affect identification 

methods to be applied in following chapters. Figure 1.3 describes the approach 

followed in this chapter. A milling dynamics model is developed. The model 

developed includes chip regeneration, transfer functions obtained with FRFs 

measured from the same milling machine the experiment performed, the force model 

and static chip thickness calculations chosen. Process model is a set of calculations 

obtained from the model that are merged together in order to be programmed. For 

programming, two different approaches are tested as MATLAB™ Simulink and 

Convolution Integral. Their differences are explained. Experiment is performed with 

same process parameters used in the model is confirmed with comparing acceleration 

data obtained from both approach.  

 

Figure 1.3 Milling Dynamics Model Verification 

For identification, this thesis is separated into two steps. Figure 1.4 summarizes the 

approach. Since force is calculated, force coefficients must be accurate. In the first 

step, force coefficients are identified by tap tests applied on a selected spot in table 

and milling process performed in the same spot on table. In the second step, 
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identified force coefficients are used to obtain FRF from different, various positions 

with engagements and responses sampled from data. Details of these approaches are 

given in their respective chapters. 

 

Figure 1.4 Identification Approach Summarized For Force Coefficients and FRF 

of Machine Tool Table 

This thesis is separated into 6 chapters. In Chapter 2, a milling dynamics and force 

model to be used are introduced, along with the simulation developed. Chapter 3 

explains identification of force coefficients. Chapter 4 explains the FRF 

identification method offered. Chapter 5 gives the experiment procedure and 

application of identification procedures introduced in the previous two chapters. 

Chapter 6 concludes the thesis. 
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CHAPTER 2  

2 MILLING DYNAMICS MODEL 

In Chapter 1.5, the intent and purposes of the process model have been explained 

only briefly. In this section, details are provided. There are two fundamental reasons 

utilization of a process model for milling dynamics in this thesis. The first reason is 

to address dynamic chip thickness and its effects on the excitation. It should be 

reminded that the method of excitation in this thesis is force application by a 

carefully designed milling process. The core purpose of this thesis is to identify the 

table of a milling machine considering its dynamics is position dependent, and this 

position dependency suggests an excitation method that has high distance resolution. 

In other words, fine control over where to apply force is desired. In addition, given 

applications in literature utilizing similar excitation methods and advantages they 

offered over such as controlling excitation levels and observing possible changes of 

dynamics during operation, this approach proves useful. However, there is no 

dynamometer available to measure the force excitation by process and even if there 

was one, it is heavy, cumbersome and it can change table dynamics. In other words, 

it cannot be used for the identification of table dynamics unless there is high 

confidence that it does not change table dynamics to be identified. This problem led 

to force calculation methods as an alternative method of regaining necessary 

knowledge regarding excitation input. The problem with utilizing force calculation 

methods is that self-excited vibrations change the force applied by chip regeneration. 

This means that static chip thickness based methods should not be applied directly 

before addressing dynamic chip thickness. The second reason the milling dynamics 

model for this thesis has been developed is to be able to test identification methods 
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before applying them to experimental results because experiments are costly both in 

terms of time and money. 

The milling dynamics model to be used should reflect the purpose it is going to be 

used. In this thesis, linear milling force model is used and force coefficients are found 

experimentally. How they are found in this thesis is given at Chapter 3. For static 

chip thickness, Martellotti model [1] is deemed enough. A 2D delay differential 

equation model is utilized for X and Y directions of both table and spindle. For 

obtaining FRF, tap tests have been utilized. The model is programmed with two 

alternative solutions. The first approach is utilizing MATLAB Simulink and the 

second approach is utilizing convolution integral. For MATLAB Simulink, transfer 

functions are obtained with analysis done with CutPro. For the convolution integral 

approach, impulse response functions obtained with Inverse Fast Fourier Transform 

(IFFT) are utilized. The reasoning behind applying two different models is that so 

difference caused by modal analysis and transfer function format of MATLAB-

Simulink model can be tested as the convolution model does not use transfer 

functions obtained with modal analysis. Details are provided at Section 2.2.2. 

Models are tested by comparing the output of models with an experiment using the 

same process parameters. Considering the frequency domain where tap test results 

may be deemed reliable (in other words where coherence is high), in order to excite 

the given frequency domain, workpiece dimensions and process parameters such as 

angular speed of cutting tool have been selected accordingly. 

Chapter 2.1 explains the entire model’s theoretical foundation. Chapter 2.2 explains 

MATLAB Simulink model and convolution integral model programmed. Chapter 

2.3 validates the model with experimentation and discusses results obtained.  

2.1 Mathematical Model Overview 

Under this study, vibrations of spindle and table on X and Y directions are analyzed. 

Description of milling process is given in Figure 2.1. Here, the table of machine-tool 

(“table” for short) is represented by G1,xx(s), G1,yy(s) and the spindle of machine 
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tool (“spindle” for short) is represented by G2,yy(s), G2,xx(s). For transfer functions 

between X and Y directions, for table G1,xy(s), G1,yx(s) and for spindle G2,xy(s), 

G2,yx(s) are used. Transfer functions are given together in matrice form as shown in 

equation (2.13), as G1(s) for table and G2(s) for spindle. Dynamic chip thickness is 

briefly described in the figure. This entire model is explained in detail at Chapter 

2.1.1.  

 

 

Figure 2.1 Milling Dynamics and Chip Regeneration 

Workpiece and cutting tool transfer functions at the contact region are used for 

representing table and spindle dynamics respectively. These transfer functions are 

the ones which affect vibrations at the contact region. In other words, transfer 

functions utilized in this thesis represent the relation between force excitation at the 

contact region and vibration at the contact region. 
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To make the presentation of the model easier, milling dynamics has been separated 

into three parts. In Chapter 2.1.1, mechanistic force model utilized is explained. This 

chapter also explains selection principles regarding process parameters. As 

mentioned in this chapter, this model is not enough by itself to calculate force if there 

is dynamic chip regeneration present. Chapter 2.1.2 explains transfer functions to be 

used, how to obtain them and how to apply them in calculations. This chapter also 

presents transfer functions that are obtained. Chapter 2.1.3 explains utilizing these 

together. 

2.1.1 Selection of Process Parameters for Mechanistic Force Model 

Cutting force, F, is the result of chip removal. Chip thickness is the sum of static chip 

thickness based on feed per insert and dynamic chip thickness based on vibrations 

between cutting tool and workpiece as in chip regeneration factor. Figure 2.1 

describes chip regeneration. Milling force created during operation pushes 

workpiece and cutting tool from their ideal path and this creates a difference in chip 

thickness when cutting tool contacts with workpiece for a second time. Ideal paths 

lead to static chip thickness h0 [m]. Chip thickness is measured in radial direction 

and static chip thickness depends on cutting tool angular position of cutting tool θj 

as given below: 

h0(t) = c sin θj(t)        j ∈ {1,2, … . Nt} (2.1) 

where c [m] gives feed per insert and it is a function of feed in X direction Vx[m/s] 

gives, angular speed of cutting tool ns [rad/s] and number of inserts Nt. It is found 

as equation (2.2). j gives insert index. 

c =
Vx
ns
60Nt

 (2.2) 

In practice, cutting tool deviates from following a kinematically determined path, as 

shown in Figure 2.1. Since the same situation applies for the previous contact of 
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workpiece and cutting tool, chip thickness is given as difference on the radial 

direction between two real paths as below: 

hj(t) = h0(t) + [x(t) − x(t − τ)] sin θj(t) + [y(t) − y(t − τ)] cos θj(t)  

j ∈ {1,2, … . Nt} 

(2.3) 

Here, x(t − τ) and y(t − τ)) gives the surface left from the previous contact of 

workpiece and cutting tool. τ [s] describes time passes between two contacts. τ [s] 

can be found with angular speed of cutting tool ns and number of inserts Nt as below: 

τ =
ns
Nt60

 (2.4) 

Forces in radial and tangential directions are given below: 

Fr,j(t) = [Krchj(t) + Kre]apgj(t) (2.5) 

Ft,j(t) = [Ktchj(t) + Kte]apgj(t) (2.6) 

Here, Ktc [N/m2] and Krc [N/m2] gives tangential and radial cutting coefficients and 

Kte[N/m] and Kre[N/m] gives tangential and radial edge force coefficients. Axial 

depth of cutting tool is given with constant 𝐚𝐩 and chip thickness 𝐡𝐣(𝐭) is given 

in equation (2.3). Helix angle is omitted and cutting tool is selected according to 

this assumption as shown in Figure 5.2. During the process, workpiece and cutting 

tool makes a contact at only a domain of angles. This domain is represented with the 

window function gj(t) as in equation (2.7). There is contact during cutting tool insert 

and workpiece when cutting tool angle is between θst and θex as given in Figure 2.1. 

gj(t) = {
1, θex ≥ mod(θj(t), 2π)

0, otherwise                     
  j ∈ {1,2, … . Nt} (2.7) 

Angular position of cutting tool (per inserts) θj(t) is given below for constant angular 

speed of cutting tool.  
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θj(t) = 2π (
ns
60
t +

j − 1

Nt
)     j ∈ {1,2, … . Nt} (2.8) 

In this thesis, a shoulder face mill with inserts is selected and only one insert is used. 

This means that Nt = 1, as shown in Figure 5.2. 

Because vibrations are measured at X and Y directions, a transformation calculation 

from radial coordinates to Cartesian coordinates is necessary. It is given at equation 

(2.9a).  

𝐅(t) = [
Fx(t)

Fy(t)
] = 𝐅𝐝(t) + 𝐅𝐬(t)  (2.9a) 

𝐅𝐬(t) = apKtcc𝐀𝐩(t) + apKte𝐀𝐩,𝟐(t) (2.9b) 

𝐅𝐝(t) = apKtc𝐀(t)[𝐱(t) − 𝐱(t − τ)] (2.9c) 

where (t) = [x(t) y(t)]𝐓. Here, 𝐅(t) gives total forces in X and Y directions. Force 

caused by static chip thickness 𝐅𝐬(t) is given as equation (2.9b) and likewise, force 

caused by dynamic chip thickness 𝐅𝐝(t) is given as equation (2.9c). Similarly, 

displacement at X and Y directions are represented with 𝐱(t). 𝐀(t), 𝐀𝐩(t) and 

𝐀𝐩,𝟐(t) represents window function, angular relations and forces in general. 

Equation (2.10a) to (2.10g) explains  𝐀(t), 𝐀𝐩(t) and 𝐀𝐩,𝟐(t) with matrice members. 

𝐀(t) =
1

2
[
axx(t) axy(t)

ayx(t) ayy(t)
]     𝐀𝐩(t) =

1

2
[
axx(t)

ayx(t)
]    𝐀𝐩,𝟐(t) = [

axx,2(t)

ayx,2(t)
] (2.10a)  

axx(t) = −g(t) [(sin2θ(t)) +
Krc
Ktc

(1 − cos2θ(t))] (2.10b) 

axx,2(t) = −g(t) [(cosθ(t)) +
Kre
Kte

sinθ(t)] (2.10c) 

axy(t) = −g(t) [(1 + cos2θ(t)) +
Krc
Ktc

sin2θ(t)] (2.10d) 

ayx(t) = g(t) [(1 − cos2θ(t)) −
Krc
Ktc

sin2θ(t)] (2.10e) 
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ayx,2(t) = g(t) [(sinθ(t)) −
Kre
Kte 

cosθ(t)] (2.10f) 

ayy(t) = g(t) [(sin2θ(t)) −
Krc
Ktc

(1 + cos2θ(t))] (2.10g) 

A general description of the milling process and the workpiece to be cut are shown 

in Figure 2.1. Entry and exit angles, axial depth, feed, feed direction and angular 

speed are known through the geometry of the workpiece and process 

parameters. All of these parameters are kept constant for repeating the same 

excitation. Together with this knowledge and force coefficients, the force is 

calculated through equations (2.10a) and its pieces, 𝐱(t − τ) and 𝐱(t). As mentioned 

previously in the beginning of Section 2.1, 𝐱(t − τ) and 𝐱(t) require process 

dynamics to be known and those are explained in the next chapter. The primary 

selection of workpiece geometry is a single thin walled workpiece that its’ centerline 

is aligned to the feed direction In other words, θst + θex = 𝜋, as shown in Figure 

2.2. Workpieces that do not obey this rule (offset workpiece) are omitted from 

identification of force coefficients. 

 

Figure 2.2 Centered Workpiece and Offset Workpiece 
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A centered workpiece has several advantages. Given that qualities of static force are 

critical because it is used for identification at following chapters and the fact that this 

thesis is primarily challenged by not being able to measure the force applied with a 

dynamometer; a simple excitation is desired and a centered workpiece helps to 

simplify the procedure. This means for the selection of a centered workpiece: 

1. Due to low angular engagement, force excitation takes short time and is 

impulse-like. This means that the frequency bandwidth of force is high and 

uniform as possible. As an additional benefit, low radial engagement also 

reduces dynamic chip thickness.  

2. The workpiece is easy to produce as the shape is simple. Moreover, 

positions of tool-workpiece engagement are easy to calculate and this is 

helpful for localized identification of FRF. 

3. Cartesian forces (Fx(t) and Fy(t)) are dominantly affected by tangential 

and radial forces and they are decoupled in case tool path coincides with the 

axis of the workpiece (longitudal centerline of the workpiece). 

4. Change in static chip thickness during contact is limited as possible. In a 

milling process where chip thickness varies significantly at logarithmic 

scale, such as down-milling, nonlinear force model with exponential force 

coefficients would be required. 

5. As it is shown on the next page, there is a certain level of control over force 

excitation characteristics by controlling milling process parameters. 

Here is a sample static force calculation done with the given equation (2.9b) to show 

basic manipulations on the input on a centered workpiece. Process parameters can 

be used to control amplitude, harmonic peaks and frequency domain but not 

independently. For example, angular speed of cutting tool affects amplitude but also 

harmonic frequency and zero crossing position. Some of these relations were noted 

earlier [11]. Effects of angular speed and wall thickness at cutting force in the 

frequency domain are as shown in Figure 2.3. 
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Zero crossing is where excitation reaches zero. The frequency of this point fzc[Hz] 

is engagement duration and is defined as equation (2.11). Here, L gives distance 

cutting edge travels during the process, which is roughly wall thickness. 

 

Figure 2.3 Effects of Angular Speed and Wall Thickness on Cutting Force 

Spectrum, Centered Workpiece, Tool Diameter: 65 [mm], Axial Depth Of Cut: 2.9 

[mm], Ktc=1319 [Mpa], Krc= 788 [Mpa] 

fzc =
1

∆T
= (

θex − θst
nS
60 ⋅ 2π

)

−1

≅ (
L

nS
60 ⋅ π ⋅ D

)

−1

 (2.11) 

Zero crossing and as a result, the frequency domain to be excited is widened by 

decreasing the engagement duration which is possible by either increasing angular 

speed or decreasing the wall thickness, as given in equation (2.11). However, both 

actions reduce the amplitude of excitation, especially at lower frequencies. This 

effect is visible on Figure 2.3. At the zero frequency, force calculation with a 4 [mm] 

wall cut, which is given in black; has twice the force amplitude of force calculation 

with a 2 [mm] wall cut, which is given in red. However, zero crossing frequency is 
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also almost halved. Likewise, increasing the angular speed of the cutting tool from 

3000 [rpm] to 6000 [rpm] has the same effect. 

Frequency values of harmonics are a function of angular speed, equal to revolution 

per seconds. Changing angular speed from 3000 [rpm] to 6000 [rpm], moves the 

harmonic peaks from 50 [Hz] to 100 [Hz]. Changing the wall thickness has no visible 

effect on harmonics. 

2.1.2 Spindle and Work Piece Transfer Functions 

Cutting tool and workpiece dynamics are represented with transfer functions in X 

and Y directions. Cutting tool displacement is represented with 𝐱2(t) and workpiece 

displacement is represented with 𝐱1(t). Total displacement 𝐱(t) is given as equation 

(2.12). 

𝐱(s) = [x(t)  y(t)]T = 𝐱𝟏(s) + 𝐱𝟐(s) (2.12a) 

𝐱𝟏(s) = 𝐆𝟏(s) ⋅ 𝐅(s) (2.12b) 

𝐱𝟐(s) = 𝐆𝟐(s) ⋅ 𝐅(s) (2.12c) 

Here, 𝐅(𝐬) is Laplace domain representation of 𝐅(𝐭). Cutting tool transfer function 

𝐆𝟐(s) and workpiece transfer function 𝐆𝟏(s) are given at equation (2.13). How to 

obtain FRFs and details of modal analysis applied are explained in following 

chapters.  

𝐆𝟏(s) = [
G1,xx G1,xy
G1,yx G1,yy

] (2.13a) 

𝐆𝟐(s) = [
G2,xx G2,xy
G2,yx G2,yy

] (2.13b) 
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2.1.2.1 Tap Test and FRF Calculations 

Any suitable experimental method for obtaining FRFs, such as hammers or shakers, 

can be used for this purpose, as long as a desired excitation at a desired spot in a 

desired direction can be applied. The excitation method applied here is what is 

selected according to the equipment available. What is critical in this chapter is that 

FRFs from both directions with at least two sensors placed at two Cartesian 

directions should be present because FRFs between forces and vibrations at X and Y 

directions are desired. 

For this thesis, FRFs that are to be used to obtain transfer functions to be used in the 

simulation are obtained through tap tests applied on both workpiece (representing 

table) and cutting tool (representing spindle). Tap hitting spots and accelerometer 

positions are given at Figure 2.4a. By hitting point 2 at X direction and measuring 

the response at points 1 and 3, FRFs P2P1 and P2P3 are obtained. Similarly, by hitting 

point 4 in Y direction and measuring the response at the same accelerometers, FRFs 

P4P1 and P4P3 are obtained. P2P1 and P4P3 represents X and Y direction transfer 

functions while P4P1 and P2P3 represents cross relation between X and Y directions. 

 

Figure 2.4  a) Work Piece Accelerometer Positions (1-3), Tap Test Tap Spots (2-4) 

and Test Parameters b) A Representation of Tap Test at Spindle  
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For spindle, cutting tool to be used during experiments is attached to the spindle and 

the hammer is hit to the only insert in tangential direction while the response is 

measured from an accelerometer placed radially and at a 90° distance. This way, the 

response of tangential force at the same direction is measured. Because spindle is 

roughly axi-symmetric, a single tap is deemed sufficient and FRF between X and Y 

directions are not measured. Axi-symmetry is observed from previous tap tests 

performed at the laboratory. Figure 2.4b gives a description of a hammer test for 

spindle. 

 

Figure 2.5 a) Hammer Used for Tap Tests. b) NI 9234 Data Acquisition Device 

Allows 4 BNC Ports That Measures Voltage Difference 

As hammer, DYTRAN 5800B3T (Figure 2.5a) and as accelerometers at X and Y 

directions respectively, PCB 352C23 [5.12mV/g] and DYTRAN 3225F1 [10.23 

mV/g] are used. These accelerometers measure at only one direction. For data 

acquisition, NI 9234 data processing card (Figure 2.5b) is used and the sampling 

frequency is 51200 [Hz]. This card has 4 BNC ports and takes measurements by 
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voltage difference obtained by any suitable sensor. This card supports data sampling 

up to 51200 [Hz] and a voltage difference of 10 [V]. Data is processed with CutPro 

software. 

Two different models that is applied requires different set of transfer functions. 

MATLAB Simulink model can utilize Laplace Domain transfer functions. 

Convolution Integral model utilizes Impulse Response Functions (IRF). Figure 2.6, 

Figure 2.7 and Figure 2.10 provide FRFs and frequency domain representation of 

transfer functions obtained by them. Figure 2.11 to Figure 2.14 provide IRF’s 

utilized for Convolution Integral model. 

2.1.2.1.1 Transfer Functions for MATLAB Simulink Model 

Cutpro program is used for modal analysis in this thesis. Tables from Table 2-1 to 

Table 2-5 give modal parameters obtained by utilizing this program on FRFs 

obtained. By applying equation (2.14) and modal parameters, transfer functions are 

found. N gives number of modes selected to construct transfer functions and tables 

provide number of modes and modal parameters at every mode. 

G(ω)d,fg  = ∑

ωn
2

kn
s2 + 2ζωs + ωn2

N

n=1

    d ∈ {1,2}, f ∈ {x, y}, g ∈ {x, y}  (2.14) 

Here, kn gives modal stiffness and ωn gives mode frequency. ζ gives modal 

damping. As mentioned at Figure 2.6, Figure 2.7 and Figure 2.10 provide FRFs and 

frequency domain representation of transfer functions obtained by them. At Figure 

2.6,  G1,xx and G1,yx gives response of table at X direction by forces applied at X and 

Y directions as they are constructed from  P2P1 and P4P1 FRFs. Likewise, Figure 2.7 

give G1,yy and G1,xy transfer functions as they represent table response at Y direction 

by forces applied at Y and X directions and they are constructed by P4P3 and P2P3, 

all respectively. Finally, Figure 2.10 gives spindle’s transfer function at both X and 

Y directions without a transfer function representing a relation between two 
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directions. FRF of cutting tool is also given as the FRF used for constructing G2. Due 

to axi-symmetry, it is assumed there is no significant transfer function between two 

directions for cutting tool. 

The frequency domain to be analyzed is limited to 300-3000 [Hz]. This is because 

of two major reasons. At the lower end, force applied is not enough to overcome 

nonlinearities such as frictions and similar factors to achieve significant coherence 

at the end result (FRF obtained). At a frequency domain lower than 300 [Hz], 

coherence values may be lower than 0.5. For higher frequencies, coherence is also 

low but this is because there is no significant force excitation at such high frequency 

values due to contact time being too long. Process parameters should be selected 

according to frequency domain to be analyzed and this is explained in the next 

chapter with equation (2.18). 

By comparing FRFs given at Figure 2.6 and Figure 2.7, it can be observed that the 

table is more rigid at Y direction compared to X direction. For this reason, the 

transfer function at XX direction (force at X direction and measurement from X 

direction) is the dominant transfer function for table. For YX direction, transfer 

function has significant modes compared to XX direction transfer function at 500-

1000 [Hz] and 1500-2000 [Hz] frequency domain (920 and 1750 [Hz], Table 2-9). 

These mode frequencies are close to XX direction transfer function mode 

frequencies (896 and 1745 [Hz], Table 2-9). For the frequency where transfer 

functions representing the relation between two directions (YX) is most dominant, 

that is 1750 [Hz], the ratio between YX direction transfer function to XX direction 

transfer function is around 20%. This means that for X direction, the effect of YX 

direction transfer function should be small if forces at both directions are similar. 

The situation is different for Y direction as XY direction transfer function is more 

significant compared to the effect of YX direction transfer function in Y direction. 

At the frequency domain where the effect of XY direction transfer function is the 

least significant, the ratio of XY FRF to YY FRF is around 30% and the ratio is 

higher for transfer functions. At frequency domain around 1700 [Hz], XY direction 

transfer function is bigger than YY counterpart.  



 

 

29 

 

Figure 2.6 Tap Test Comparison with Modal Analysis Outputs, Table (Workpiece) 

XX vs. YX 

 

Figure 2.7 Tap Test Comparison with Modal Analysis Outputs, Table (Workpiece) 

XY vs. YY 
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Coherence values for two selected tests are given at Figure 2.8 and Figure 2.9. Figure 

2.8 gives coherence of P2P1 (XX direction transfer function is constructed from) and 

Figure 2.9 gives coherence of P2P3 (XY direction transfer function is constructed 

from). P2P1 gives reliable coherence values but P2P3 is only reliable at some selected 

frequency domain values. 

 

Figure 2.8 Coherence Graphs for Tap Test Comparison XX (P2P1) 

 

Figure 2.9 Coherence Graphs for Tap Test Comparison XY (P2P3) 

Finally, cutting tool transfer function is 10 to 100 times bigger than table transfer 

functions as spindle is significantly less rigid compared to the table. 
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Figure 2.10 Tap Test Comparison with Modal Analysis Output, Spindle 
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Table 2-1:Modal Parameters of Spindle (Applicable to Both Directions) 

Mode ωn/2π [Hz] ξ kn [N/m] 

1 335.21 5.40e-3 6.09e7 

2 396.03 1.85e-2 1.40e7 

3 598.73 2.01e-2 2.49e7 

4 906.41 1.45e-2 2.41e7 

5 1002.41 1.30e-3 5.20e8 

6 1078.01 8.70e-3 9.69e6 

7 1744.95 7.60e-3 7.11e8 

8 1955.62 1.44e-2 3.26e8 

9 2336.14 8.30e-3 4.10e7 
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Table 2-2: XX Modal Parameters for Table 

Mode ωn/2π [Hz] ξ kn [N/m] 

1 286.93 3.60e-3 9.48e8 

2 317.87 1.00 e-3 5.25e9 

3 383.02 2.50 e-3 1.59e10 

4 432.92 1.70 e-3 3.13e9 

5 563.05 1.20 e-3 1.45e10 

6 689.47 2.50 e-3 9.44e9 

7 896.06 1.93 e-2 1.01e8 

8 1540.19 1.80 e-3 9.91e9 

9 1745.57 3.40 e-3 7.20e8 

10 2248.17 6.90 e-3 1.51e9 

11 3370.89 4.20 e-3 3.59e9 
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Table 2-3: YY Modal Parameters for Table 

Mode ωn/2π [Hz] ξ kn [N/m] 

1 427.04 3.15e-5 9.41e10 

2 846.03 9.30e-4 7.01e10 

3 889.62 5.17e-5 2.28e12 

4 907.48 5.90e-3 1.21e9 

5 1643.18 9.10e-3 3.50e9 

6 2010.65 1.53e-2 4.20e9 

7 2896.82 7.20e-3 2.39e9 

8 3610.77 1.80e-3 3.48e10 

 

Table 2-4: XY Modal Parameters for Table 

Mode ωn/2π [Hz] ξ kn [N/m] 

1 205.13 1.59e-4 6.23e10 

2 917.61 3.20e-3 4.43e9 

3 1706.37 4.70e-3 3.75e9 

4 2855.61 8.20e-3 3.23e9 
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Table 2-5: YX Modal Parameters for Table 

Mode ωn/2π [Hz] ξ kn [N/m] 

1 232.46 3.52e-4 2.58e10 

2 250.59 4.30e-5 1.61e11 

3 270.43 1.07e-4 1.42e11 

4 290.05 1.30e-3 2.60e10 

5 328.16 2.78e-4 7.86e10 

6 467.12 1.30e-3 1.38e10 

7 920.77 7.40e-3 1.93e9 

8 1750.24 5.50e-3 3.07e9 
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2.1.2.1.2 Transfer Functions of Convolution Integral Model 

Obtaining IRF’s can be done quickly by readily available functions. MATLAB IFFT 

function [42] is used on FRFs shown at Figure 2.6 and Figure 2.7. One important 

point is that only the selected frequency domain is used for obtaining IRFs. Values 

of FRFs at other frequencies are taken as zero. 

 

Figure 2.11 Impulse Response Function of (P2P1) 



 

 

37 

 

Figure 2.12 Impulse Response Function of (P4P1) 

 

Figure 2.13 Impulse Response Function of (P2P3) 
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Figure 2.14 Impulse Response Function of (P4P3) 

 

Figure 2.15 Impulse Response Function of Spindle 
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2.1.3 Merging Models of Force Calculation and Transfer Functions  

Block diagram representation of milling process is given at Figure 2.16. Dynamic 

chip regeneration is represented with feedback. By multiplying chip regeneration 

with force coefficients and transformation to Cartesian coordinates, 𝐅𝐝(𝐬) can be 

calculated. 𝐅𝐬(𝐬) is consist of two parts. One of them depends on feed per insert, 

angular position of cutting tool and cutting force coefficients while the other one 

depends on edge force coefficients and does not depend on chip thickness. 

Physically, cutting force is a function of chip thickness but for numerical simplicity, 

it is not calculated in the model and instead, 𝐅𝐝(𝐬) and 𝐅𝐬(𝐬) are calculated 

seperately. 

 

Figure 2.16 Milling Dynamics, Representation of Chip Regeneration 

Here, 𝐀(s), 𝐀𝐩(s) and 𝐀𝐩,𝟐(s) are Laplace domain transformation of 𝐀(t), 𝐀𝐩(t) 

and 𝐀𝐩,𝟐(t). 

2.2 Simulation Model  

Two different approaches have been developed consecutively. The first approach is 

utilizing MATLAB Simulink. This program offers the advantage of providing off-

the-shelf numerical solvers for differential equations and programming is relatively 
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easy for the simulation of dynamic systems. However, several practical problems has 

appeared and an alternative approach of convolution integral has been developed for 

addressing these problems. These problems are mentioned in sections 2.2.2 and 2.3. 

2.2.1 MATLAB Simulink Model 

Simulation of the entire process is constructed in MATLAB Simulink as shown in 

Figure 2.17. On the left side force coefficients (Ktc, Kte, Krc, Kre), axial depth (ap), 

feed per insert (c), θ1(θst) ve θ2(θex) start and exit angles are given as process 

parameters. Angular speed of the cutting tool is taken as constant and angular 

position of cutting tool is calculated with Simulink clock. Window function is 

performed with “Interval Test” block. At the bottom, a group of blocks representing 

chip thickness feedback is provided. Constant delay blocks are utilized for delay τ 

as angular speed of cutting tool is taken as constant. Because there is only one insert, 

τ is equal to time passed during one turn of the cutting tool. “Chip_Thickness” block 

given at the very bottom of Figure 2.17 calculates chip thickness given at equation 

(2.3) with vibrations at X and Y directions. 

G(s) subsystem block given at the right side of Figure 2.17 involves transfer 

functions of workpiece and cutting tool. This subsystem is visible on Figure 2.18. 

Here, 6 transfer functions of 8 that are given at equation (2.13) are used as for spindle, 

G2,xy(s) and G2,yx(s) are not used. 

For the numerical solver, time step is taken as constant (fixed-step, model settings). 

ODE solver is picked by Simulink automatically. Time step is a function of angular 

speed of cutting tool and is given as equation (2.15): 
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Figure 2.17 Developed Simulink Model 

 

Figure 2.18 G(s) Subsystem of the Developed Simulink Model 
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∆Tsim =
60

|nS|
⋅
1

P
 (2.15) 

Here, P gives data points per one turn of cutting tool and is taken as 1000 for this 

study.  

2.2.2 Convolution Integral Model 

MATLAB Simulink Model suggested above has several problems as: 

1. MATLAB Simulink models utilize time-step solvers. This means that 

models must be programmed in a way to utilize time-step solvers. This is a 

limitation compared to a programming language. In this thesis, in order to 

apply FRFs into MATLAB Simulink model, Laplace domain transfer 

functions are utilized. In order to obtain transfer functions, Modal Analysis 

is applied. Modal Analysis requires additional time from researchers. 

Moreover, it introduces additional uncertainty. 

2. MATLAB Simulink does not utilize transfer functions with complex 

numbers. This means that phase information is lost by utilizing equation 

(2.14). 

The second problem is not a major problem unless dynamic chip thickness becomes 

significant. The first problem has turned out to be significant during the verification 

process in Section 2.3. 

Alternatively, for cases where modal analysis does not reflect the behavior desirably, 

a simulation model based on Convolution Integral may be utilized Total chip 

thickness given in equation (2.3) utilize displacements in Cartesian directions. These 

displacements are a function of transfer functions. This is where Convolution 

Integral can be utilized as equation (2.16). 

𝐱𝟏(t) = [
x1(t)

y1(t)
] = ∫ [

g1,xx(t − τ) g1,xy(t − τ)

g1,yx(t − τ) g1,yy(t − τ)
] [
Fx(t)

Fy(t)
] dτ 

𝐭

𝟎

 (2.16) 
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Here, g1,xx(t) is time domain IRF that can be obtained by IFFT from P2P1, XX 

direction table FRF. Only the frequency domain included for identification purposes 

is utilized to obtain IRFs. 

Utilizing this equation removes the model from MATLAB Simulink in which tools 

of MATLAB Simulink cannot be used and it makes the calculation significantly 

slower. In exchange, it removes errors caused by modal analysis and loss of phase 

information by the MATLAB Simulink model. 

Equation (2.16) can be programmed as a summation of discrete arrays as equation 

(2.17a). This equation addresses time constraints. M is a limit number of array size. 

M ⋅ ∆Tsim indicates past time duration to be included into the calculation. For 

example, if M ⋅ ∆Tsim is equal to 0.1 seconds, only the data from the current time to 

0.1 seconds previous is included into the calculation. Equation (2.17c) explains how 

to obtain M. IRFs dampens out after M ⋅ ∆Tsim seconds and so summation after this 

time is insignificant. In addition, time intervals where force excitation is zero is also 

omitted as they add zero into the calculation. 

𝐱𝟏(E ⋅ ∆Tsim) = [
x1(E ⋅ ∆Tsim)

y1(E ⋅ ∆Tsim)
]

≅∑[
𝑔1,𝑥𝑥(i ⋅ ∆Tsim) 𝑔1,𝑥𝑦(i ⋅ ∆Tsim)

𝑔1,𝑦𝑥(i ⋅ ∆Tsim) 𝑔1,𝑦𝑦(i ⋅ ∆Tsim)
] ⋅ [

Fx((E − i) ⋅ ∆Tsim)

Fy((E − i) ⋅ ∆Tsim)
]

𝑖∈Ι

⋅ ∆Tsim  

(2.17a) 

[
𝑔1,𝑥𝑥((M) ⋅ ∆Tsim) 𝑔1,𝑥𝑦((M) ⋅ ∆Tsim)

𝑔1,𝑦𝑥((M) ⋅ ∆Tsim) 𝑔1,𝑦𝑦((M) ⋅ ∆Tsim)
] ≈ 𝟎 (2.17b) 

Ι = {𝑖 ∈ 𝑁|𝑖 ≥ max(E − M, 0), i ≤ 𝐄, 𝐅(i ⋅ ∆Tsim) ≠ 𝟎} (2.17c) 

Here, set I gives indexes to include in the equation as equation (2.17c). 

2.3 Model Validation 

Confirmation of the model is done with a cutting test. Cutting tests are performed on 

Deckel FP 5CC CNC machine. This milling machine is retrofitted in our laboratory 
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and it has Beckhoff motor drivers and CNC controllers. The workpiece and cutting 

tool to be used in tests are shown in Figure 2.4. A thin walled workpiece that is 5 

[mm] thickness and 4 [mm] depth is cut in X direction with 2.9 [mm] axial depth 

and accelerations are measured from points 1 and 3. Wall depth is kept small for 

preventing wall bending. Acceleration measurements are compared with 

acceleration estimations obtained from the model with the same process parameters 

and the model is confirmed. Material selected is AL7075, being a hardened 

aluminium type used in aerospace applications. Process parameters are given at 

Table 2-6. 

Process parameters are selected according to the frequency domain where the 

coherence of FRFs are reliable. (300-3000 [Hz] as mentioned in the previous 

chapter) Cutting tool has one insert and as shown in Figure 2.1, angular speed of 

cutting tool, feed and start-exit angles of cutting tool during the test (i.e. wall 

thickness and offset from the center point) are constant.  

Given these conditions, the frequency value where excitation amplitude takes the 

smallest value, zero crossing, can be calculated with equation (2.11). The calculation 

is shown in equation (2.18). As it can be seen, zero crossing is at 3181 [Hz] with 

given process parameters which is lower than 3500 [Hz] where tap tests are 

somewhat reliable. In this equation, ∆T gives time passed during operation and L 

gives wall thickness. 

Table 2-6: Experiment and Models’ Process Parameters For Model Verification 

Cutting Tool Diameter 63.3 [mm] , Single Insert 

Angular Speed of cutting tool (ns) 4800 [rpm] 

Axial Depth (ap) 2.9 [mm] 

Wall Thickness (𝐋) 5 [mm] 

Entry-Exit Angles Centered Workpiece (Figure 2.2) 

Feed Vx=10 [mm/s]        Vy =0 

Material AL7075 
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fzc =
1

∆T
≅ (

L
nS
60 ⋅ π ⋅ D

)

−1

≅ 3181 [Hz] (2.18) 

Start and exit angles can be calculated as below: 

θex =
π

2
− sin−1 (

−L/2

D/2
) = 94.53°    θst =

π

2
− sin−1 (

L/2

D/2
) = 85.46° 

Workpiece is made of AL 7075 aluminium and cutting coefficients are given at Table 

2-7. The method of identification of force coefficients is given at Chapter 3 and the 

results are from Chapter 5. 

Table 2-7: Force Coefficients (Model Input) 

Ktc=603 [MPa] Krc=244.10 [MPa] 

Kte=28.15 [kN/m] Kre=20.08 [kN/m] 

 

Figure 2.19 and Figure 2.20 give Simulink force outputs at X and Y directions 

respectively and in the frequency domain. Peaks (local maximums) give harmonics 

and they are integer multiplications of roll per second of the cutting tool that is 80 

[Hz]. The frequency content of forces are consistent with equation (2.18) as 

amplitude of the force is reducing while the frequency of the force is getting closer 

to the zero crossing frequency. Figure 2.21 gives static force (force caused by static 

chip thickness) and this graph allows to observe effects of force coefficients and 

start-exit angles; such as the amplitude of force during contact changes with angular 

position of cutting tool and contact time are functions of these angles. Amplitude of 

force is also a function of force coefficients as it can be observed in the figure. In 

addition, chip thickness obtained from simulation is given at Figure 2.22. As it can 

be seen, dynamic chip thickness disappears quickly and after 15 [ms], it is 

insignificant. After this point, calculations performed only with static chip thickness 

can be considered as total force. This finding is very critical as this clearly shows 

that dynamic chip thickness can be omitted at certain conditions. 
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Figure 2.19 Frequency Domain Representation of Static Force in X Direction 

(MATLAB Simulink) 

 

Figure 2.20 Frequency Domain Representation of Static Force in Y Direction 

(MATLAB Simulink) 
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Figure 2.21 Static Forces in Both Directions (MATLAB Simulink) 

 

Figure 2.22 Dynamic Chip Regeneration (MATLAB Simulink) 
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To confirm the model, acceleration measurements are taken during the experiment 

as accelerometers are placed on points 1 and 3 as shown in Figure 2.4. These 

acceleration measurements are compared to Simulink acceleration estimations. 

Comparison of acceleration is performed at frequency domain. There are several 

reasons for this selection over comparison at time domain. First of all, vibrations are 

mostly consist of harmonics and it is easier to compare harmonics at frequency 

domain. Moreover, not the entirety of frequency domain is used so direct comparison 

is not possible without filtering. In addition, even small changes like phase shift may 

cause drastic change in time domain. For those reasons, data and estimations are 

transferred to frequency domain and model outputs are converted from displacement 

to acceleration in frequency domain by multiplying with square of frequency in unit 

of radians. Harmonics with largest local amplitudes are expected to be close to mods 

of transfer functions as forces are distributed fairly evenly. Comparison is given at 

the figures below. 

For the X direction, as it can be seen at Figure 2.23, experimental acceleration is 

consistent with both MATLAB Simulink and Convolution Integral model 

acceleration outputs. To prevent confusion, only harmonics of MATLAB Simulink 

and Convolution Integral’s models’ acceleration output are drawn. The highest 

acceleration value models’ acceleration output and experimental value, both in X 

direction, is observed at 1760 [Hz] and their amplitudes are 4.82 [m/s2], 4.64 [m/s2], 

5.7 [m/s2] respectively (The Convolution Integral and then MATLAB Simulink). In 

addition, peak values are observed at 880 [Hz] and 2240-2320 [Hz]. Checking at 

Table 2-9, modes 7 and 10 are close. Aside from frequency domain near 2000 [Hz], 

Simulink output and experimental values are close at or around ±20% and they 

resembles the character of G1,xx(iω). Looking at Figure 2.6, the largest cause of 

difference is modal analysis and convolution partially helps. Moreover, for 

frequency domain lower than 500 [Hz], coherence values are too low. Numerical 

comparisons can be done with Table 2-9 and Table 2-10. 
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Figure 2.24 gives a comparison for Y direction. Experiment acceleration 

measurements in Y direction and Simulink acceleration output in Y direction are 

significantly worse compared to X direction. Convolution Integral is significantly 

more accurate compared to Simulink for Y direction. This indicates that most of this 

problem is caused by modal analysis but this is not the only cause of error. Rigidity 

of Y direction significantly higher it can be seen by comparing Figure 2.7 and Figure 

2.6. Results of this situation can be seen by comparing Figure 2.24 (Y direction) and 

Figure 2.23 (X direction). Highest acceleration value of Y direction for Simulink 

output is at 1680 [Hz] with 0.54 [m/s2] and for experiment at 1760 [Hz] with 0.50 

[m/s2] amplitude. Convolution Integral model gives peak at 1680 [Hz] with 0.50 

[m/s2]. High rigidity requires higher force excitation for overcoming nonlinearities 

and noise factors and this problem is visible with coherence calculations. Moreover, 

force at X direction is significant at response in Y direction. In summary, in addition 

to problems observed at X direction; Y direction has poor coherence issues and Y 

direction acceleration response is significantly affected by X direction force. 

Removing modal analysis helps partially regarding these problems. 

Given amplitude ratios are applicable for data points (or selected frequency values, 

as in a single acceleration value comparison at the selected frequency), an error 

indicator for the entire frequency domain selected is desirable. For a comparison 

based on harmonics, only the harmonics of angular speed of cutting tool that are 

present at the selected frequency domain can be utilized. In short, all harmonics given 

at the table can be used for a single error indicator, as called “Batch-Size” in Table 

2-8: Batch-Size Error Criteria Calculations. For additional error indicators, Root 

Mean Square Error (RMSE) and Symmetric Mean Absolute Percentage Error 

(SMAPE). Calculation of error criterias are explained at equations (2.19) and (2.20). 

RMSD = √
1

T
∑(X̂(ωt) − X(ωt))

2
T

t=1

 (2.19) 
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SMAPE =
1

T
∑

|X̂(ωt) − X(ωt)|

|X̂(ωt)| + |X(ωt)|

T

t=1

 (2.20) 

Checking at table Table 2-8, different than the expected result, MATLAB Simulink 

model provides better estimation for X direction but the difference is insignificant. 

Estimations of X direction is worse in terms of absolute error that can be observed 

better with RMSD but SMAPE estimations are significantly better for X direction 

for both models. For Y direction, the Convolution Integral has provided significantly 

better outcome both error criterias. 

As a result, there are several key points to be taken. The largest source of error is 

utilizing FRFs with poor coherence. Equipment to be used for tap tests is critically 

dependent to the frequency domain to be analyzed. Process parameters to be selected 

should be adjusted to the frequency domain to be analyzed. Modal analysis quality 

must be sufficient and if not, convolution integral should be utilized. There is no 

major source of error observed from the process model as long as process parameters 

are selected correctly and modal analysis is handled well. 

Table 2-8: Batch-Size Error Criteria Calculations, Acceleration Outputs 

Compared to Experimental Data 

 RMSD SMAPE 

Convolution X 0.4410 0.3572 

Convolution Y 0.1030 0.4463 

Simulink X 0.3584 0.2680 

Simulink Y 0.1668 0.9827 
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Figure 2.23 Experimental Acceleration in the X Direction Compared to 

Acceleration Estimation Obtained Through Simulink 

   

Figure 2.24 Experimental Acceleration in the Y Direction Compared to 

Acceleration Estimation Obtained Through Simulink 
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Table 2-9: Comparison of X and Y Direction Accelerations by Harmonics. 

(Ratios of Harmonics Are That of Convolution to Experiment) 

Frequency 

[Hz] 

Simulink 

Acceleration 

Output X 

Experiment 

Acceleration 

Output X 

Simulink 

Acceleration 

Output Y 

Experiment 

Acceleration 

Output Y 

Amplitude 

Ratio X 

Amplitude 

Ratio Y 

240 0.0355 0.3222 0.0030 0.1248 0.1104 0.0246 

320 0.0732 0.2632 0.0056 0.0591 0.2784 0.0961 

400 0.2766 0.4221 0.0162 0.1082 0.6552 0.1503 

480 0.2871 0.3591 0.0142 0.0886 0.7994 0.1614 

560 0.5228 0.4830 0.0286 0.0931 1.0824 0.3077 

640 0.6928 0.6742 0.0486 0.1031 1.0277 0.4720 

720 1.1703 1.2675 0.0817 0.1482 0.9233 0.5515 

800 1.8295 1.5847 0.1543 0.1084 1.1545 1.4233 

880 2.5899 2.3586 0.4131 0.2747 1.0980 1.5037 

960 2.3399 2.7667 0.3343 0.4337 0.8457 0.7709 

1040 1.6351 2.5710 0.1373 0.3478 0.6360 0.3949 

1120 1.1669 1.3314 0.0802 0.0845 0.8764 0.9489 

1200 0.8420 0.7454 0.0524 0.0991 1.1297 0.5143 

1280 0.5816 0.6406 0.0361 0.0831 0.9080 0.4347 

1360 0.3358 0.4812 0.0253 0.0451 0.6980 0.5622 

1440 0.0763 0.5463 0.0146 0.0811 0.1398 0.1806 

1520 0.5792 0.8500 0.0199 0.0907 0.6814 0.1717 

1600 0.5367 1.2203 0.1325 0.2377 0.4398 0.5574 

1680 1.9639 2.9256 0.5088 0.4042 0.6712 1.2590 

1760 4.6402 5.6957 0.4817 0.5044 0.8146 0.9550 

1840 1.9433 2.2515 0.3133 0.1108 0.8631 2.8267 

1920 1.0844 1.3858 0.2510 0.1495 0.7825 1.6789 

2000 0.6466 1.3659 0.2039 0.3010 0.4734 0.6778 

2080 0.3953 1.3741 0.1658 0.3621 0.2877 0.4580 

2160 0.6494 1.2116 0.1566 0.2978 0.5360 0.5258 

2240 1.2928 1.8323 0.1699 0.2683 0.7055 0.6336 

2320 1.3190 1.5360 0.1923 0.3863 0.8587 0.4979 

2400 1.0177 1.0130 0.2188 0.3600 1.0046 0.6079 

2480 0.7832 0.6069 0.2497 0.2867 1.2905 0.8710 

2560 0.6138 0.4020 0.2870 0.2038 1.5271 1.2942 

2640 0.4838 0.3431 0.3344 0.3369 1.4102 0.9925 

2720 0.3783 0.3251 0.3939 0.4444 1.1635 0.8863 

2800 0.2892 0.2683 0.4473 0.4337 1.0781 1.0315 

2880 0.2122 0.3074 0.4175 0.2257 0.6902 1.2309 

2960 0.3026 0.3028 0.1223 0.2657 0.9994 1.5760 
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Table 2-10: Comparison of X and Y Direction Accelerations by Harmonics. 

(Ratios of Harmonics Are That of Simulink to Experiment) 

Frequency 

[Hz] 

Simulink 

Acceleration 

Output X 

Experiment 

Acceleration 

Output X 

Simulink 

Acceleration 

Output Y 

Experiment 

Acceleration 

Output Y 

Amplitude 

Ratio X 

Amplitude 

Ratio Y 

240 0.1058 0.3222 0.0008 0.1248 0.3285 0.0063 

320 0.0951 0.2632 0.0013 0.0591 0.3614 0.0212 

400 0.2214 0.4221 0.0026 0.1082 0.5246 0.0240 

480 0.3097 0.3591 0.0030 0.0886 0.8623 0.0340 

560 0.5684 0.4830 0.0056 0.0931 1.1768 0.0604 

640 0.7650 0.6742 0.0101 0.1031 1.1348 0.0979 

720 1.1318 1.2675 0.0193 0.1482 0.8929 0.1302 

800 1.8531 1.5847 0.0448 0.1084 1.1694 0.4135 

880 2.5640 2.3586 0.1568 0.2747 1.0871 0.5709 

960 2.2496 2.7667 0.0631 0.4337 0.8131 0.1454 

1040 1.6407 2.5710 0.0546 0.3478 0.6381 0.1569 

1120 1.1816 1.3314 0.0468 0.0845 0.8875 0.5542 

1200 0.8581 0.7454 0.0450 0.0991 1.1513 0.4537 

1280 0.6037 0.6406 0.0471 0.0831 0.9424 0.5666 

1360 0.3880 0.4812 0.0536 0.0451 0.8063 1.1897 

1440 0.2815 0.5463 0.0685 0.0811 0.5154 0.8445 

1520 0.7792 0.8500 0.1068 0.0907 0.9167 1.1770 

1600 0.7217 1.2203 0.2327 0.2377 0.5914 0.9791 

1680 2.1496 2.9256 0.546 0.4042 0.7347 1.3511 

1760 4.8154 5.6957 0.3591 0.5044 0.8454 0.7119 

1840 1.9632 2.2515 0.1689 0.1108 0.8719 1.5240 

1920 1.0806 1.3858 0.1114 0.1495 0.7797 0.7453 

2000 0.6675 1.3659 0.0929 0.3010 0.4887 0.3087 

2080 0.5238 1.3741 0.0863 0.3621 0.3812 0.2384 

2160 0.8424 1.2116 0.0820 0.2978 0.6953 0.2754 

2240 1.4305 1.8323 0.0794 0.2683 0.7807 0.2960 

2320 1.3508 1.5360 0.0790 0.3863 0.8794 0.2045 

2400 0.9899 1.0130 0.0810 0.3600 0.9773 0.2249 

2480 0.7294 0.6069 0.0857 0.2867 1.2020 0.2989 

2560 0.5483 0.4020 0.0935 0.2038 1.3641 0.4587 

2640 0.4122 0.3431 0.1042 0.3369 1.2015 0.3092 

2720 0.3042 0.3251 0.1146 0.4444 0.9359 0.2578 

2800 0.2171 0.2683 0.1107 0.4337 0.8092 0.2552 

2880 0.1461 0.3074 0.0976 0.2257 0.4753 0.4325 

2960 0.0887 0.3028 0.1084 0.2657 0.2929 0.4080 

  





 

 

55 

 

CHAPTER 3  

3 IDENTIFICATION OF FORCE COEFFICIENTS 

3.1 Overview 

As discussed in Chapter 1.4, obtaining force coefficients through an empirical 

method that is not relying on direct force measurement is a suitable approach for this 

thesis. In Chapter 2, it has been shown that dynamic chip thickness can become 

insignificant under stable process and force can be assumed to be only dependent on 

static chip thickness. This chapter explains how to obtain force coefficients.  

The approach this thesis uses relies on FRFs obtained through tap tests, acceleration 

measurements taken during a milling process with controlled parameters and the 

force model. A force estimation is performed utilizing acceleration measurements 

and FRFs obtained through tap tests. Force calculation is performed with the given 

model in Chapter 2 and an identification procedure between these two are applied. 

Chapter 3.1 explains the theory and calculations of force estimation along with how 

to apply force calculation and force estimation for identification. This chapter also 

addresses various problems to be solved regarding identification of force 

coefficients. Chapter 3.2 explains the identification calculations, and Chapter 3.3 

exemplifies how to apply the method in practice by showing it in simulation in which 

the effectiveness of the method is shown.  

Starting with force calculation, equation (2.9b) should be written in open format in 

order to emphasize effects of every force coefficients as in equations from (3.1a) to 

(3.1d). 
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𝐅𝐬(t) = apKtcc
1

2
[
axx(t)

ayx(t)
] + apKte [

axx,2(t)

ayx,2(t)
] (3.1a) 

𝐅𝐬(t) = g(t)ap

(

 Ktcc
1

2

[
 
 
 − [(sin2θ(t)) +

Krc
Ktc

(1 − cos2θ(t))]

[(1 − cos2θ(t)) −
Krc
Ktc

sin2θ(t)]
]
 
 
 

+ Kte

[
 
 
 − [(cosθ(t)) +

Kre
Kte

sinθ(t)]

[(sinθ(t)) −
Kre
Kte 

cosθ(t)]
]
 
 
 

)

  

(3.1b) 

𝐅𝐬(t) = g(t)ap [
−c cos(θ) sin(θ) −c sin2(θ) − cos(θ) − sin(θ)

c sin2(θ) −c cos(θ) sin(θ) sin(θ) − cos(θ)
] [

Ktc
Krc
Kte
Kre

] (3.1c) 

𝐅𝐬(t) = [
Htc,x(t) Hrc,x(t) Hte,x(t) Hre,x(t)
Htc,y(t) Hrc,y(t) Hte,y(t) Hre,y(t)

] [

Ktc
Krc
Kte
Kre

] (3.1d) 

Here, Hmn,d(t) represents force in d direction caused by Kmn. For force estimation, 

total vibrations in frequency domain can be described as a function of force and FRFs 

as below: 

𝐱(ω) = [
x(ω)

y(ω)
] =⋅ [

Gxx(ω) Gxy(ω)

Gyx(ω) Gyy(ω)
]

⏟            
𝐆(ω)

[
Fx(ω)

Fy(ω)
]

⏟    
𝐅𝐬(ω)

 
(3.2) 

�̂�𝐬(ω) = [
Gxx(ω) Gxy(ω)

Gyx(ω) Gyx(ω)
]

−1

[
X(ω)

Y(ω)
] (3.3) 

Here, �̂�𝐬(ω) is the force estimation in frequency domain. This is the data that force 

calculation is supposed to match by identifying force coefficients as equation (3.4) 

and (3.5). 

�̂�𝐬(ω) ≅ 𝐅𝐬(ω) (3.4) 

[
Gxx(ω) Gxy(ω)

Gyx(ω) Gyx(ω)
]

−1

[
X(ω)

Y(ω)
]

⏟                  
�̂�𝐬(ω)

≅ [
Htc,x(ω) Hrc,x(ω) Hte,x(ω) Hre,x(ω)

Htc,y(ω) Hrc,y(ω) Hte,y(ω) Hre,y(ω)
]

⏟                            
𝐇(ω)

[

Ktc
Krc
Kte
Kre

] (3.5) 

Here, 𝐇(ω) provides set of multipliers for force coefficients in the given set of linear 

equations. 
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Equation (3.5) could be used for a least squares method application. However, there 

are several problems preventing a direct application. 

1. As shown in Figure 2.3, Figure 2.19, Figure 2.23 etc…, frequency domain 

of both acceleration data and force calculation is dominated by harmonics. 

Moreover, because calculation must be time-synched to the data and there 

can be shifts of angular speed, feed etc…, direct application of equation 

(3.5) ends up with a zero accuracy, meaningless result due to dividing by 

too small numbers during calculation. 

2. As mentioned in the introduction, this thesis develops a method for local 

identification because local variations of FRF is expected. Utilizing entire 

data in one shot does not serve this purpose. 

3. Cross FRFs Gxy and Gyx are small and their coherence is comparably poor. 

An option of removing them can be ideal. 

4. Contrary to above two points, applying 𝐇(ω) returns ill-conditioned 

matrice without accommodations and as a result, it cannot be directly used 

[Appendix B]. 

The first and the second problem is handled with utilizing individual cutting tool-

workpiece contacts as “engagements.” Figure 3.1 illustrates the force and 

acceleration response of a sampled engagement. As seen from the figure, the cut is 

equivalent to a single tap test, as it involves one force excitation caused by a single 

tool-workpiece contact and response in its’ entirety until it dampens out. Different 

from the tap test, here the force is calculated theoretically. Hence its time axis has to 

be synchronized with the experimentally measured acceleration signal. In order to 

synchronize the two, an acceleration threshold of 6 [m/s2] is utilized to place the 

force date. Note that since the tool has one cutting insert there exists a single 

excitation in one spindle revolution and the harmonics disappear till the second 

engagement, as it can be seen from Figure 3.2. However, a single test can offer 

multiple, even hundreds of engagements sampled at the spot that can be calculated.  
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Figure 3.1 A Sampled Engagement Example 

 

Figure 3.2 A Sampled Engagement Example in Frequency Domain 

The third problem is resolved by simply ignoring Gxy(ω) and Gyx(ω) as shown in 

equation (3.6b) Depending on how major a difference this is, it is expected to a slight 

under-estimation or force coefficients compared to adding Gxy(ω) and Gyx(ω) into 

calculation. Values obtained by not ignoring cross FRF are shown in this thesis 

as 2D force coefficients’ identification as this option can lead to better force 

coefficients’ estimation given in a case when cross FRF cannot be ignored and 
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coherence is higher. Together with this knowledge equation (3.5) can be used to 

obtain equations from (3.6a) to (3.6d).  

𝛚n×1 = [ω1, ω2, , … , ωi, …ωn]
T (3.6a) 

�̂�𝐬(ωi)𝟐×1 = [
Gxx
−1
(ωi)X(ωi)

Gyy
−1
(ωi)Y(ωi)

] (3.6b) 

𝐇(ωi)𝟐×4 = [
Htc,x(ωi) Hrc,x(ωi) Hte,x(ωi) Hre,x(ωi)

Htc,y(ωi) Hrc,y(ωi) Hte,y(ωi) Hre,y(ωi)
] (3.6c) 

|�̂�𝐬(𝛚)2n×1| ≅ ap𝐇(𝛚)2n×4 [

Ktc
Krc
Kte
Kre

] (3.6d) 

𝐇 in equation (3.6c) provides set of multipliers for force coefficients in given set of 

linear equations. 𝛚 is a set of frequency values sampled and ωi is one selected 

frequency. 

The fourth problem is resolved by splitting the problem into segments. The first point 

to figure out is that instead of finding all force coefficients at the same time, force 

can be approximated by assuming only one of coefficients is non-zero. Starting with 

representing Cartesian force calculations separately: 

Fx(ω, Ktc, Krc, Kte, Kre) = [Htc,x(ω) Hrc,x(ω) Hte,x(ω) Hre,x(ω)] [

Ktc
Krc
Kte
Kre

] (3.7) 

Fy(ω, Ktc, Krc, Kte, Kre) = [Htc,y(ω) Hrc,y(ω) Hte,y(ω) Hre,y(ω)] [

Ktc
Krc
Kte
Kre

] (3.8) 

Here, Fy(ω, Ktc, Krc, Kte, Kre) is force calculation in Y direction that is obtained with 

given force coefficients. 

In this step, force calculation can be assumed to be only obtained with a single force 

coefficient as below: 
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Fx(ω, Ktc, Krc, Kte, Kre) = 

apcHtc,x(ω)KXtc = apcHrc,x(ω)KXrc = apHte,x(ω)KXte = apHre,x(ω)KXre 
(3.9) 

Fy(ω, Ktc, Krc, Kte, Kre) = 

apcHtc,y(ω)KYtc = apcHrc,y(ω)KYrc = apHte,y(ω)KYte = apHre,y(ω)KYre 
(3.10) 

Such an assumption is not always accurate but that is not necessary. What is desired 

is to see the effects of force coefficients used as input on the force coefficients 

obtained with the assumption. In addition, there is a linear relation between force 

coefficients used as input on force calculation and force coefficients obtained after 

the assumption. In other words, force coefficients obtained with the assumption are 

linear function of input force coefficients. Applying the same principle into force 

estimation, force coefficients obtained with the assumption as the force being 

represented with only one force coefficient is a linear function of real force 

coefficients. This allows equations from (3.11) to (3.16) to be written. By taking 

force calculation and replacing one force coefficient with 1(one) and the rest zero, 

assumption ratio matrices  𝐗𝐅𝐦𝐚𝐭𝐫 and 𝐘𝐅𝐦𝐚𝐭𝐫 can be obtained. 

𝐗𝐅𝐦𝐚𝐭𝐫 =

[
 
 
 
 
Xtctc Xtcrc Xtcte Xtcre
Xrctc Xrcrc Xrcte Xrcre
Xtetc Xterc Xtete Xtere
Xretc Xrerc Xrete Xrere]

 
 
 
 

 (3.11) 

apHαβ,x(ω)Xαβnm = apHnm,x(ω) ⋅ 1 (3.12) 

𝐘𝐅𝐦𝐚𝐭𝐫 =

[
 
 
 
 
Ytctc Ytcrc Ytcte Ytcre
Yrctc Yrcrc Yrcte Yrcre
Ytetc Yterc Ytete Ytere
Yretc Yrerc Yrete Yrere]

 
 
 
 

 (3.13) 

apHαβ,y(ω)Yαβnm = apHnm,y(ω) ⋅ 1 (3.14) 

[

KXtc
KXrc
KXte
KXre

] = 𝐗𝐅𝐦𝐚𝐭𝐫 [

Ktc
Krc
Kte
Kre

] (3.15) 
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[

KYtc
KYrc
KYte
KYre

] = 𝐘𝐅𝐦𝐚𝐭𝐫 [

Ktc
Krc
Kte
Kre

] (3.16) 

For a centered workpiece with small wall thickness (a single thin walled workpiece 

with centerline aligned with X axis), this equation returns roughly (not exactly but 

approximately) a simple relation with chip thickness as below: 

𝐗𝐅𝐦𝐚𝐭𝐫 ≅

[
 
 
 
 
 1 0

1

c
0

0 1 0
1

c
c 0 1 0
0 c 0 1]

 
 
 
 
 

 (3.17) 

𝐘𝐅𝐦𝐚𝐭𝐫 ≅

[
 
 
 
 
 1 0

1

c
0

0 1 0
1

c
c 0 1 0
0 c 0 1]

 
 
 
 
 

 (3.18) 

Under these conditions, for centered workpiece, equation (3.19) can be written. 

�̂�𝐬(𝛚)2n×1 = [
F̂x(𝛚)n×1
F̂y(𝛚)n×1

]

≅  ap [
𝟎n×1 |Hrc,x(𝛚)n×1| 𝟎n×1 |Hrc,x(𝛚)n×1|

|Htc,y(𝛚)n×1| 𝟎n×1 |Htc,y(𝛚)n×1| 𝟎n×1
] [

Ktc
Krc
Kte
Kre

] 

(3.19) 

Equation (3.19) is given as amplitude format. With given reduction, phase 

information is not needed for identification. This equation can be reduced as follows: 

𝐇(𝛚)2n×2 = [
|Hrc,x(𝛚)n×1| 𝟎n×1

𝟎n×1 |Htc,y(𝛚)n×1|
] (3.20) 

�̂�𝐬(𝛚)n×1 = [
F̂x(𝛚)n×1
F̂y(𝛚)n×1

] ≅ ap𝐇(𝛚)2n×2 [
KA
KB
] (3.21) 

Here KA and KB are the intermediate coefficients and are defined as equations (3.22a) 

and (3.22b). 
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KA = KXrc = cKrc + Kre (3.22a) 

KB = KYtc = cKtc + Kte (3.22b) 

3.2 Identification of Coefficients 

Merging three solutions to three problems and utilizing the calculation given in 

Chapter 3.1, a two-part least squares approach to calculate force coefficients is 

utilized. In the first part; since multiple sample engagements are available, a 

recursive least squares approach is applied. Recursive least squares method is 

selected because force coefficients are expected to converge to a value with more 

sampled engagement are added into the calculation. This acts as a proxy for quality 

of the estimation. As a weight matrice, amplitude of known FRF itself is utilized so 

the results are expected to be more accurate during FRF identification. The second 

part is simply utilizing the least squares method to separate KA and KB into cutting 

and edge coefficients based on chip thickness.  

The recursive least square algorithm is given in equation (3.24). The subscript ‘i’ is 

used to count the tool and the workpiece engagements. The response vectors is of 

size n × 1 and are defined for the frequency array 𝛚. Recursive matrice and 

regression matrice are given at equation (3.23).  

𝐇 = Hnm,D(𝛚)n×1 

𝐖 = 𝐆DD(𝛚)n×1 

(3.23) 

𝐏i = ([𝐇 ∘ 𝐖]
T𝐇)−𝟏 

[KDnm]i = 𝐏i[𝐇 ∘𝐖]
T[ F̂D,i(𝛚)n×1] 

𝐏i+1 = (𝐏i
−𝟏 + [𝐇 ∘𝐖]T𝐇)

−𝟏
 

𝐉𝐢+𝟏 = 𝐏i+1[𝐇 ∘𝐖] 

(3.24) 
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[KDnm]i+1 = [KDnm]i + 𝐉𝐢+𝟏([ ĤD,i(𝛚)n×1] − 𝐇[KDnm]i) 

Here, ∘ symbol in [𝐇 ∘𝐖] indicates piecewise multiplication as equation (3.25). 

[𝐇 ∘ 𝐖]uq = 𝐇uq𝐖uq     uq → index (3.25) 

For centered workpiece, recursive least squares equation is given below: 

𝐏i = ([𝐇 ∘ 𝐖]
T𝐇)−𝟏 

[
KA
KB
]
i

= 𝐏i[𝐇 ∘𝐖]
T [ 
𝐆𝐱𝐱(𝛚)𝐧×𝟏

−𝟏
𝐱𝐢(𝛚)𝐧×𝟏 𝟎𝐧×𝟏

𝟎𝐧×𝟏 𝐆𝐲𝐲(𝛚)𝐧×𝟏
−𝟏
𝐲𝐢(𝛚)𝐧×𝟏

] 

𝐏i+1 = (𝐏i
−𝟏 + [𝐇 ∘𝐖]T𝐇)

−𝟏
 

𝐉𝐢+𝟏 = 𝐏i+1[𝐇 ∘𝐖] 

[
KA
KB
]
i+1

= [
KA
KB
]
i

+ 𝐉𝐢+𝟏 ([ 
𝐆𝐱𝐱(𝛚)𝐧×𝟏

−𝟏𝐱𝐢(𝛚)𝐧×𝟏 𝟎𝐧×𝟏
𝟎𝐧×𝟏 𝐆𝐲𝐲(𝛚)𝐧×𝟏

−𝟏𝐲𝐢(𝛚)𝐧×𝟏
]

− 𝐇 [
KA
KB
]
i

) 

(3.26) 

Here, Pi is the covariance matrice (alternatively called information matrice) at ith 

sampled engagement. In this application matrice size is 2×2. 𝐇2n×2 is the regressor 

matrice (alternatively called basis matrice) which comes from a set of linear 

equations which in this case are equation (3.20). Ji+1 is referred as Kalman gain 

because recursive least squares work in the same principle as Kalman filter. Finally, 

the intermediate coefficients [KA KB ]
T
i+1 is calculated and the cycle repeats with 

i increasing by one until all selected sampled engagements are used, finalizing the 

calculation.  Note [𝐇 ∘𝐖] utilizes element-wise multiplication (3.25) for memory 

efficiency. This is for saving memory as diagonal weight matrices are sparse. In order 

to increase the quality of the estimations a weight matrice 𝐖2n×2, which consists of 

the amplitude of known FRF itself is utilized.  
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𝐖 = [
|𝐆𝐱𝐱(𝛚)𝐧×𝟏| 𝟎𝐧×𝟏

𝟎𝐧×𝟏 |𝐆𝐲𝐲(𝛚)𝐧×𝟏|
] (3.27) 

The reason to utilize such a weight matrice is to give more importance into frequency 

domain with higher excitation values as such regions are more likely to have better 

signal to noise ratio. 

In the second part, with the help of various tests with different feed per insert, force 

coefficients are separated into edge and shear components, as explained equation 

(3.28) and (3.29), completing identification of force coefficients. 

𝐊𝐃𝐧𝐦 = [

KDnm,1
⋮

KDnm,n

]     𝐇𝐃𝐧𝐦 = [

Dnmtc,1 Dnmte,1 Dnmrc,1 Dnmre,1
⋮ ⋮ ⋮ ⋮

Dnmtc,n Dnmtc,n Dnmtc,n Dnmtc,n

] 

n → Number of tests with different proces parameters 

(3.28) 

[

Ktc
Kte
Krc
Kre

] = (𝐇𝐃𝐧𝐦
𝐓 ⋅ 𝐇𝐃𝐧𝐦)

−𝟏
⋅ 𝐇𝐃𝐧𝐦

𝐓 𝐊𝐃𝐧𝐦 (3.29) 

For centered workpiece, the second least squares can be simplified as below: 

𝐊𝐀 = [

KA,1
⋮

KA,n

]     𝐊𝐁 = [

KB,1
⋮

KB,n

]     𝐇𝟏 = [
c1 1
⋮ ⋮
cn 1

] 

n → Number of tests with different feed per tooth 

(3.30) 

[
Ktc
Kte
] = (𝐇𝟏

𝐓 ⋅ 𝐇𝟏)
−𝟏
⋅ 𝐇𝟏

𝐓𝐊𝐀      [
Krc
Kre
] = (𝐇𝟏

𝐓 ⋅ 𝐇𝟏)
−𝟏
⋅ 𝐇𝟏

𝐓𝐊𝐁 (3.31) 

3.3 Application on the Model 

The approach this thesis uses relies on FRF obtained through tap tests and 

acceleration measurements taken during a cutting process with controlled 

parameters. Figure 3.3 explains the approach of how to obtain force coefficients. 

Explaining the basic framework of the method step by step: 
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A. Given as “Point FRF”, an FRF representing behavior of the machine-tool 

structure in which measurement is to be taken is needed for force estimation 

in the following steps. This FRF is obtained through tap tests in this thesis. 

B. Measured acceleration is data obtained during operation with an 

accelerometer. Every window with boundaries are a sample data such as 

xi(t) or yi(t). As it can be seen, there are slight variations at data in different 

time sections, as this is also the case in the real system. In total, the data are 

sampled with 7 windowed time chapters. Selection of time sections are 

determined so that when acceleration response to the force occurred during 

one contact is in the windowed time frame, from when acceleration starts to 

rise until acceleration dampens out. 

C. The same acceleration at the previous step that has been sampled with 7 

windows are represented in frequency domain. For this description, 

sampling provides 7 separate acceleration measurements; for example for 

X direction, it is xi(t) i ∈ {1,2, … ,7}, which were resulted from 7 tool 

contacts, converted to frequency domain as xi(ω) i ∈ {1,2, … ,7}, as i 

represents a sample data. 

D. For every sample data, force estimation (Fx,i(ω), Fy,i(ω)) is obtained 

thought equation (3.6b) point FRF and sampled data xi(t). 

E. Together with the force model (given in Chapter 2), curve fitting force 

estimation with force coefficients is applicable. KA,i and KB,i intermediate 

force coefficients are estimated with this curve fitting. Calculations of 

curvefit is explained in this chapter, on the following paragraphs. 

F. Repeating the first 5 steps for various tests with different feed per insert 

values, Recursive Least Squares Method is applied to obtain KA and KB and 
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a second least squares method with chip thickness is used to obtain 4 force 

coefficients.  

 

Figure 3.3 Explanation of Cutting Coefficients Identification (Simulation Test 3) 

Simulation is designed for testing identification methods. For force coefficients, 3 

tests have been performed. Process parameters of the 3 mentioned tests are detailed 

in Table 3-1. Force coefficients are taken from Table 2-7 and the same force 

coefficients are identification outputs obtained at Chapter 5. FRFs are substituted 

from modal analysis outputs shown in Figure 2.6 and Figure 2.7 for simulation. 500-

1500 [Hz] frequency domain has been selected for identification. The reason for this 

selection is because the same frequency domain is selected for identification with 
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experiment data and the choice explained in the experiment chapter. Those reasons 

cannot be observed in simulation. 

Table 3-1: Test Parameters of Cutting Force Identification 

(Simulation Demonstration) D=63.3 [mm], ap=2.9 [mm] 

Test Vx [mm/min] ns [rpm] L [mm] Workpiece Type 

1 600 3072 6 Centered 

2 450 3072 6 Centered 

3 300 3072 6 Centered 

 

In Table 3-1, feed and angular speed parameters are selected to achieve different chip 

thickness values because in order to apply equations (3.28) and (3.29) multiple chip 

thickness values are needed. Zero crossing value that is calculated with equation 

(2.11) is 3181 [Hz] for three “tests” and this is sufficient for 3000 [Hz] maximum 

value for frequency domain that is limited by the tap test applied. Wall depth is 

constant and higher than axial depth, which is also constant.  

Step E of identification of force coefficients is shown with test 3 simulation output 

in Figure 3.4. Force estimations are calculated according to equation (3.6b) and given 

in blue color for every data sampled, as numbered from 1 to 7. With progressing 

recursive least squares method, KA,i are calculated according to equation (3.26) and 

KA,i are used for force curvefit as shown in the figure. 

Engagements sampled and obtained from the figure above are as shown in Figure 

3.6. Acceleration data at Figure 3.6 has been used to obtain force estimations of 

Figure 3.4. Figure 3.4 is equivalent to Step E of FRF identification method given at 

Figure 3.3 with the exception that force at every engagement sampled was calculated 

with KA,i instead of a single value through. If this was experimental data, the 

amplitude of force at every engagement sampled was going to be slightly different. 

An important point to be seen is that as mentioned several times before amplitude of 

acceleration dampens out quickly, which is necessary for the quality of results being 

sufficient. 
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Figure 3.4 Test 3, Recursive Least Squares Application Of Calculating KA,i 

(Simulation Version Of Step E of Calculation of Force Calculation From Chapter 

3.2) 
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For all coefficients at all tests, Figure 3.5 gives the recursive calculation of 

(KA,i, KB,i) for all 3 tests. As it is shown in Figure 3.5, (KA,i, KB,i)  converges into a 

value. 

 

Figure 3.5 Variations of Force Coefficients During Recursive Least Squares, 

Simulation 

Table 3-2 gives identified KA and KB for every test. Values on this table are simply 

the end value of the previous table as end result of recursive least squares method is 

taken as final value of KA and KB. As it is expected, chip thickness being smaller 

results in larger values for KA and KB.  Resulting FRF identification outputs (FRFs 

identified by obtaining Step E of FRF identification method as shown in Figure 3.6 

for every test and applying a suitable FRF calculation method like it is suggested at 

equations (4.1) to (4.4) while at the same time applying KA and KB as Ktc and Krc 

respectively) can be seen in Figure 3.7 and Figure 3.8. Y direction provides less 

accurate results as the effect of cross FRF is higher. FRF identification method is 

given in Chapter 4. 
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Figure 3.6 7 Engagements Sampled from X Direction Test 3 (Step E FRF 

Identification) Simulation 
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Table 3-2: Intermediate Force Coefficients Identified. (Simulation) 

 Recursive Least Squares Output 

Test KB [N/m] KA [N/m] 

3 149.74e3 58.34e3 

2 118.79e3 48.33e3 

1 87.83e3 38.32e3 

 

 

Figure 3.7 Tap Test Result (X direction) Compared to FRF Identification 

(Simulation) 

Since KA and KB are obtained and their accuracy is controlled qualitatively with 

several approaches, applying the second part of identification of force coefficients is 

available. Three tests with different chip thickness values offered three sets of KA 

and KB. Using equation (3.28) and (3.29) on Table 3-2, force coefficients are 

identified in Table 3-3. Original coefficients have not been exactly obtained but the 

results are accurate. If cross FRFs are not omitted, results slightly shift for 
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coefficients obtained from Y direction changes more significantly for X direction. 

Values obtained are slightly smaller. 

 

Figure 3.8 Tap Test Result (Y direction) Compared to FRF Identification 

(Simulation) 

 

Table 3-3: Force Coefficients (Cross FRF Omitted) 

Ktc=634 [MPa] Krc=205.07 [MPa] 

Kte=25.92 [kN/m] Kre=18.29 [kN/m] 

 

Table 3-4: Force Coefficients (Cross FRF Included) 

Ktc=581 [MPa] Krc=175.37 [MPa] 

Kte=20.58 [kN/m] Kre=17.01 [kN/m] 
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 CHAPTER 4  

4 FRF IDENTIFICATION WITH SELECTED ENGAGEMENTS 

This section explains FRF identification procedures utilized in this thesis. It is 

assumed that procedures at the previous chapter are followed or force coefficients of 

the workpiece to be processed is determined. In addition, practical solutions applied 

in the previous chapter for identification of force coefficients are used in this chapter, 

such as utilizing individual engagements and omitting cross FRF from the 

calculation. Details are presented at their respective sections. Section 4.1 explains 

the theory of the approach followed without calculations. Section 4.2 provides 

calculations. Section 4.3 presents application of the method at the simulation, along 

with discussion of the results. Section 4.4 provides a separate, two dimensional FRF 

identification approach.  

4.1 FRF Calculation Method with Selected Engagements  

Since acceleration measurements and force calculation shows harmonic peaks as 

dominant in the frequency domain, direct application of FRF calculation is 

inaccurate in practice. Moreover, since this thesis uses calculated force, placement 

of force with time is not as accurate as measuring force simultaneously with 

response. This issue is mentioned at Chapter 3.1 for identification of force 

coefficients while explaining the application of equation (3.5). 

FRF identification method offered here relies on the fact that noise is low and 

damping is relatively high for this system (machine tool and workpiece together), 

the very same thing that identification of force coefficients method relies on. This 

means that table acceleration measurements can be sampled out with individual force 
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excitations as sampled engagements given at Figure 3.1. The fundamental principle 

of the method is that since every engagement is a time section of a singular impulse 

and a singular response from contact moment to the damping out of the response, 

every engagement can be regarded as a single tap test. Moreover, given cross FRFs 

are small and unreliable, they are omitted just like equation (3.6b). Figure 4.1 

describes the method from top to bottom. 

 

Figure 4.1 FRF Identification Method Described with Synchronization Based on 

Threshold (Experiment Data) 

A. Acceleration measurement is performed and data are given. 

B. Based on process parameters (axial depth, force coefficients etc…), force is 

calculated. Due to variations in angular speed and angular positions of 

cutting tool changes in feed and tolerances of workpiece, calculated force 

may not be synchronized to the measurement. 
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C. Force calculation is synchronized according to the absolute value of 

acceleration values. Calculated forces per tool contact is placed right after 

magnitude of acceleration exceeds a certain value. 

D. Application of first three steps provides a force calculation synchronized 

onto acceleration measurement obtained. 

E. Time sections around forces and their responses are windowed, obtaining 

engagements sampled. 

Synchronization procedure is especially critical in cases where angular speed of 

cutting tool is hard to pinpoint as in experiment phase, since force calculation is not 

automatically synchronized with table response like in a measurement, the method 

used to match force calculation with measurements are described in Figure 4.1 is one 

of the factors makes this technique possible. Force calculated is placed in the moment 

amplitude of measurement value exceeds a threshold. This method is introduced at 

Figure 3.1.  

4.2 FRF Calculation 

After obtaining engagements, any suitable method of obtaining FRF from tap tests 

can also be used in this case. For this thesis, the spectral density function is used for 

the calculation of FRF. Defining Fq,i(ω) as frequency domain version of force 

excitation at ith engagement sampled and qi(ω) as frequency domain version of 

workpiece response at ith engagement sampled, equations (4.1a) to (4.1d) are written. 

Sqq,i(ω) = qi(ω) ⋅ qi(ω)
T (4.1a) 

SqF,i(ω) = qi(ω) ⋅ Fq,i(ω)
T (4.1b) 

SFq,i(ω) = Fq,i(ω) ⋅ qi(ω)
T (4.1c) 

SFF,i(ω) = Fq,i(ω) ⋅ Fq,i(ω)
T (4.1d) 
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Functions given at equations (4.1a) to (4.1d) are spectral density functions. qi(ω)′ 

indicates conjugate of qi(ω). 

The average of spectral density functions are taken as equation (4.2a). 

Sqq(ω) =∑
Sqq,i(ω)

N

N

i=1

 (4.2a) 

SqF(ω) =∑
SqF,i(ω)

N

N

i=1

 (4.2b) 

SFq(ω) =∑
SFq,i(ω)

N

N

i=1

 (4.2c) 

SFF(ω) =∑
SFF,i(ω)

N

N

i=1

 (4.2d) 

N is the number of engagements selected. FRF is calculated as equation (4.3). 

Coherence is be calculated as equation (4.4). 

G(ω) =
Sqq(ω)

SqF(ω)
≡
SFq(ω)

SFF(ω)
 (4.3) 

C(ω) =
|SqF(ω)|

√Sqq(ω)SFF(ω)

 (4.4) 

4.3 Application on the Model 

The method needs to be demonstrated with simulation before testing because testing 

is expensive and cumbersome. Table 4-1 provides process parameters. Force 

parameters are taken from Table 2-7. 
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Table 4-1: Test Parameters of  FRF identification (Simulation) D=63.3 [mm], 

ap=2.9 [mm] 

Test Vx  [mm/min] ns  [rpm] L [mm] 

4 600 4800 6 

 

To demonstrate the method better, Step E from Figure 4.1 is visualized with 

experiment data as shown in Figure 4.2. 7 engagements obtained from simulation are 

given in the figure. Data is sampled according to angular speed of cutting tool and 

synchronization based on threshold has been utilized for matching force calculations 

to accelerations measured. Data and force estimation are zero padded to reach 1 [Hz] 

in frequency domain. 

After obtaining results shown in Figure 5.12, any method applicable to multiple tap 

test measurements can be used for this case. Equations from (4.1) to (4.4) explain 

the method for this paper. 

Figure 4.3 and Figure 4.4 provide the end results of FRF identification method based 

on simulation. Result for X direction is sufficient. X direction proves more successful 

due to G1,yx(ω) being insignificant compared to G1,xx(ω). In other words, Figure 4.4 

results are comparably worse due to significant cross FRF effect compared to X 

direction. 
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Figure 4.2 FRF Identification Step E with Simulation (Test 4) 
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The method obtains better results under these conditions: 

1. Lack of sufficient damping to completely settle transient response is 

observed to be a more significant issue at lower frequency domain. Lower 

frequency domain region benefits from lower angular speed. 

2. Since the method is 1D, systems with insignificant cross FRFs return results 

that are more accurate. 

3. Window used to obtain engagements sampled should start from as close as 

to when the cutting tool-workpiece contact happened to prevent interference 

from the previous contact. 

 

Figure 4.3 FRF Identification Results from Simulation for X Direction 
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Figure 4.4 FRF Identification Results from Simulation for Y Direction 

4.4 Two Dimensional FRF Identification  

The reader is suggested to read the rest of Chapter 4 before reading this section. 

Since it is visible that one dimensional method failed to obtain accurate results for Y 

direction under perfect transfer function conditions (FRF of transfer functions used 

for simulation is known because the researcher determines it exactly.) and X 

direction provides an accurate result in the given frequency domain, the weight of 

cross FRF is deemed critical enough that it makes FRF identification by omitting it 

difficult. Given this factor, it should be investigated whether an identification method 

including cross FRF is possible. 

For two dimensional FRF identification, the fundamental challenge is that 

acceleration at both Cartesian directions (X and Y direction) are affected by both 

Cartesian forces (Force in X direction has response at both X and Y directions). This 

means that identification cannot be reduced to a single engagement sampled and 
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alternatively multiple engagements should be used. This situation creates two 

problems for the application of the method. The first one is that identification of 

cross FRF can require a wide physical region (the distance on the workpiece) and for 

this reason, local identification can be challenging. The second one is that an 

alternative quality measurement method to coherence can be needed. 

The identification method starts with collecting every engagement sampled in 

frequency domain. Xi(𝛚)n×1  Yi(𝛚)n×1 are responses at ith engagement given i ∈

{1,… , N} and Fx,i(ω) Fy,i(ω) are Forces at ith engagement. A collected set of 

engagements in frequency domain enables identification per frequency points 

selected as equation (4.7) gives the identification result below: 

𝐘𝐘𝐧 =

[
 
 
 
 
 
X1(ωn)
⋮

XD(ωn)

Y1(ωn)
⋮

YD(ωn)]
 
 
 
 
 

 (4.5) 

𝐅𝛚𝐧 =

[
 
 
 
 
 
 
Fx,1(ωn) 0 Fy,1(ωn) 0

⋮ ⋮ ⋮ ⋮
Fx,i(ωn) 0 Fy,i(ωn) 0

0 Fx,1(ωn) 0 Fy,1(ωn)

⋮ ⋮ ⋮ ⋮
0 Fx,i(ωn) 0 Fy,i(ωn)]

 
 
 
 
 
 

 (4.6) 

[
 
 
 
 
Gxx(ωn)

Gxy(ωn)

Gyx(ωn)

Gyy(ωn)]
 
 
 
 

= (𝐅𝛚𝐧
𝐓 ⋅ 𝐅𝛚𝐧)

−𝟏
⋅ 𝐅𝛚𝐧

𝐓 𝐘𝐘𝐧 (4.7) 

Here, 𝐘𝐘𝐧 indicates all acceleration values at ωnfrequency point sampled. 𝐅𝛚𝐧 

indicates all force calculations at ωnfrequency point sampled. Equation (4.7) should 

be repeated for all frequency points selected. 

For a quality indicator, acceleration data utilized for identification can be compared 

to the acceleration that can be calculated with obtained transfer functions. 
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[
 
 
 
 
 
X1(ωn)
⋮

XD(ωn)

Y1(ωn)
⋮

YD(ωn)]
 
 
 
 
 

≅

[
 
 
 
 
Gxx(ωn)

Gxy(ωn)

Gyx(ωn)

Gyy(ωn)]
 
 
 
 

𝐅𝛚𝐧  (4.8) 

For identification, two tests that are in close proximity and in perpendicular direction 

are selected. Variations between force calculations are desired as effects of cross 

FRF should be contrasted by applying various excitations. In other words, effects of 

cross FRFs should be observable with given excitation for identification. The optimal 

excitation profile is uncertain and requires more research and for this reason, 

excitation must be tested with simulation.  If this set of parameters provides good 

identification results with simulation, they can be utilized for testing. However, 

experimenting with simulation has shown that tests performed in perpendicular feed 

directions offer more accurate results compared to tests performed in the same 

direction. This knowledge should be used as a guideline. 

Table 4-2: Test Parameters for Two Dimensional FRF Identification  

(Simulation Demonstration) D=63.3 [mm], ap=2.9 [mm] 

Test Vx  

[mm/min] 

ns [rpm] L [mm] Workpiece 

Type 

Direction 

of Cut 

1 600 3072 6 Centered X 

4 600 4800 5 Centered Y 

 

Force coefficients utilized for testing is the same from Table 2-7. 

Force excitations sampled are given at Figure 4.5 and Figure 4.6 below: 
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Figure 4.5 Force Calculations for X direction (Two Dimensional FRF Calculation) 

 

Figure 4.6 Force Calculations for Y direction (Two Dimensional FRF Calculation) 
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From force profile, frequency values close to zero crossings can be inaccurate. 

Otherwise, there are variations between profiles for identification. Acceleration 

outputs that are sampled from the simulation are provided together with acceleration 

calculations that are done with equation (4.7); at Figure 4.7 and Figure 4.8. FRFs 

obtained are used to obtain accelerations used for identification successfully.  

It can be concluded that two dimensional FRF identification (i.e. including cross 

FRF) is possible with the given method but results are always more accurate at the 

dominant FRF. 

 

Figure 4.7 Simulation Accelerations Obtained from X Direction (Two 

Dimensional FRF Calculation) 
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Figure 4.8 Simulation Accelerations Obtained from Y Direction (Two 

Dimensional FRF Calculation) 

FRFs obtained with the method is provided in Figure 4.9 and Figure 4.10. The 

method is shown to be accurate for Gxx and in mode frequencies for other FRFs 

identified. Inaccuracies are observed in frequency points where reference FRFs have 

low amplitude compared to the same reference FRF at different frequency points. 

This is not a major problem as mode amplitudes and mode characteristics are the 

most important characteristics of FRF. FRFs obtained with the method at frequency 

domains where zero crossings (Figure 2.3) of force excitation resides are less 

accurate compared to the frequency domain where the force excitation is sufficient. 
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Figure 4.9 FRFs Obtained from X Direction, Compared to Reference FRF (Two 

Dimensional FRF Calculation) 

 

Figure 4.10 FRFs Obtained from Y Direction, Compared to Reference FRF (Two 

Dimensional FRF Calculation) 
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 CHAPTER 5  

5 EXPERIMENTS AND DISCUSSION 

In this chapter, identification methods offered in this thesis are tested and confirmed 

with experimental data. These methods are demonstrated with simulation in their 

respective chapters and this chapter follows the same template offered with 

simulation, except practical considerations that had not been addressed are included 

here. Chapter 5.1 explains experimental setup and preparations. Chapter 5.2 gives 

calculation of force coefficients. Chapter 5.3 provides FRF identification. 

5.1 Setup of the Experiment and FRFs to be Used for Identification 

Starting with machine-tool, Deckel FP5CC, 5 axis CNC milling machine retrofitted 

with Beckhoff electronics was readily available for the process. A very important 

detail regarding this machine is that Y axis movement is controlled by spindle head 

and so Y-axis direction in table (where workpiece is placed) is very stiff compared 

to X direction of table. This makes omitting non-diagonal members of transfer 

function easier. Cutting tool used is EM90 63X6 022 EDPT 140408 (MBC cutting 

tools, Figure 5.2) which is a square shoulder face milling tool with 63.3 [mm] 

diameter (with inserts) placed on it. It allows 6 inserts but only one of them is used 

and neither the cutting tool nor insert has significant helix angle. Insert used is EDPX 

140420-CKN20M (Rapid Maxtools). 
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Table 5-1: Test Format 

Test:1,2,3,4 Sampling: 51200 [Hz] Deckel FP5CC 

D=63.3 [mm] ap=2.9 [mm] Wall Depth=4 [mm] 

Point 1 Accelerometer Point 3 Accelerometer Centered Workpiece 

5.12 [mV/g] 10.23 [mV/g] Insert: Single 

 

 

Figure 5.1 Identification Test: Accelerometers Points 1 and 3, Tap Test Spots 2 

and 4; along with Test Positions 
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Measurement setup is the exact same on the Chapter 2. For refreshing the memory: 

As hammer, DYTRAN 5800B3T (Figure 2.5a) and as accelerometers at X and Y 

directions PCB 352C23 [5.12mV/g] and DYTRAN 3225F1 [10.23 mV/g] are used 

respectively. These accelerometers take data from single direction only. Regarding 

hammer, measurements have been shown to have coherence value consistently 

above 0.8 at frequency domain from 500 [Hz] to 3000 [Hz] which limits frequency 

domain to be analyzed. (Figure 5.5 and Figure 5.6) Data collection is done through 

NI 9234 processing card (Figure 2.5b). Figure 5.1 provides tool paths of tests with 

parameters varied between tests. Point 1 and 3 gives acceleration positions and points 

2 and 4 gives tap test spots and Figure 5.2 gives a picture of the workpiece.  

Figure 5.3 and Figure 5.4 provides tap test results. The same FRFs used in Chapter 

2 are used in this chapter. For refreshing the memory: The results of machine tool 

structure mentioned above is obvious. As it is visible from Figure 5.3, P4P1, cross 

FRF representing XY direction is comparably lower than P2P1, FRF in XX direction. 

This same statement is not true for Y direction as in Figure 5.4, cross and diagonal 

FRFs (P2P3 vs. P4P3) are comparable to each other. P2P1 is the most significant FRF 

for table. Additional details are given in Appendix 1. Detailing workpiece, AL7075 

aluminum alloy is the material workpiece is made of and Figure 5.1 and Figure 5.2 

present the workpiece dimensions. 3 tests are performed. The first 3 tests are used 

for the identification of force coefficients and test 4 is used for FRF Identification. 

Conditions applying all tests are given in Table 5-1 and details regarding tests are 

presented in their related chapters, including design decisions on the workpiece 

regarding zero crossing and cutting path.  

Figure 5.5, Figure 5.6 gives coherence examples. As it can be seen, cross FRF has 

comparably poor coherence values. 
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Figure 5.2 Workpiece and Cutting Tool 

 

Figure 5.3 Tap Tests Comparison XX vs. YX 
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Figure 5.4 Tap Tests Comparison XY vs. YY 

 

Figure 5.5 Coherence of XX 

 

Figure 5.6 Coherence of YX 
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5.2 Calculation of Force Coefficients 

Three tests that have been detailed in Figure 5.1 and detailed in Table 5-2 have been 

performed for force coefficients. As explained at Chapter 5.1, tap tests have been 

performed at two points on the table of machine-tool, representing X and Y 

directions. The placement of the table was as close as possible to the cutting tool for 

representing cutting conditions accurately because FRFs are expected to be position 

dependent. Figure 5.1 and Figure 5.2 give the workpiece and tap test points.  Despite 

knowing the fact that FRFs can be position dependent, a single tap test point from 

one Cartesian side is utilized for directional reference. This is because tap tests from 

previous experiments have already shown that the distance travelled during the 

experiment is not enough to change transfer functions significantly at the frequency 

domain of 500 to 1500 [Hz] in X direction (Appendix 1). This frequency domain is 

selected for identification of force coefficients due to multiple reasons, the first one 

being already mentioned in the previous sentence. Amplitude of FRFs at lower 

frequency domain show vast difference between operational transfer function 

(transfer function of the machine-tool (table-workpiece) during operation) and tap 

test results. This is not necessarily a problem for the application of the method 

offered here but for confirmation of the method, frequency domain that the tap test 

offers good coherence must be used. Amplitude of FRFs at frequencies higher than 

5000 [Hz] during operation show local variations in amplitude based on proximity 

to the accelerometer and just like low frequencies, tap test returns poor coherence 

for such high frequency domain. The frequency domain of 1500-3000 [Hz] is where 

it is expected to find regional variations as previous tap tests indicated and this 

frequency domain that the method offered in this thesis reveals. 500-1500 [Hz] 

frequency domain has none of these issues while it gives a dominant mode on Figure 

5.3 and it is still a frequency domain where force excitation can be adjusted to be as 

high in all tests (…which is determined by milling process parameters but this 

frequency domain can be comfortably excited). 
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Table 5-2: Test Parameters of Identification of Force Coefficients, D=63.3 

[mm], ap=2.9 [mm], Wall Depth=4 [mm] 

Test Vx  

[mm/min] 

ns  

[rpm] 

L [mm] Sample 

Position 

[mm] 

Sample 

Length 

[mm] 

Workpiece 

Type 

1 300 3072 6 20 1 Centered 

2 450 3072 6 20 1 Centered 

3 600 3072 6 20 1 Centered 

 

In Table 5-2, angular speed and feed parameters are selected to obtain different static 

chip thickness values since in order to apply equations (3.28) and (3.29) multiple 

chip thickness values are needed. The zero crossing value which is calculated with 

equation (2.11) is 3181 [Hz] for the first three tests and this is sufficient for 3000 

[Hz] maximum value for frequency domain that is determined by the researchers 

with the help of tap tests as shown in coherence graphs. During the first 3 tests, the 

cutting tool center has travelled 32 [mm] in each test. This value is longer than 

sufficient enough for dynamic chip thickness to disappear which it is expected to 

happen in first couple impacts. The estimation of dynamic chip thickness 

disappearing is a conservative estimation as the exact process parameters are used 

for Chapter 2 and dynamic chip thickness disappeared. This is one of the purposes 

of simulation.  The sample position is taken as 20 [mm] from the start of every 

individual test and a region of 1 [mm] has selected for sampling. Ideally, less distance 

from the start and less total cutting distance could be used to keep the identification 

region minimal but as mentioned in the previous paragraph, the frequency domain 

of 500-1500 [Hz] offers stable known FRF. Wall depth is constant and higher than 

axial depth, which is also constant.  

Results of application of identification of force coefficients are provided below. Step 

E of identification of force coefficients is shown with test 3 data in Figure 5.7. Force 

estimations are calculated according to equation (3.3) for every engagement 

sampled, as numbered from 1 to 8. With progressing recursive least squares method, 
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KA,i are calculated according to equation (3.26) and KA,i are used for force curvefit. 

As it can be seen in the figure, there are variations even between consecutive force 

estimations and this shows one small benefit of recursive least squares application 

as it allows observing such variations, even though it evens out eventually. One 

drawback is that force estimations around a frequency domain closer to 500 [Hz] 

does not necessarily keep the trend of force curvefit. This is an undesirable situation 

as the force calculation does not reflect force estimation for this region. However, 

this situation is not evidence against the method because multitude of reasons such 

as poor tap test results to poor signal-to-noise ratio and low excitation can cause such 

issues. In this case, amplitude of FRFs at given the frequency domain is small and 

so signal to noise ratio can be expected to be poor. 

Sampled engagements obtained from Figure 5.7 are as shown in Figure 5.9. 

Acceleration data at Figure 5.9 has been used to obtain force estimations of Figure 

5.7. Figure 5.9 is equivalent to Step E of FRF Identification method given at Chapter 

4.1, with the exception that force at every engagement was calculated with KA,i 

instead of a single value through.  

This can be seen from the figure as the amplitude of force at every engagement is 

different. Another important point to be seen is that as mentioned several times 

before amplitude of acceleration dampens out quickly and there is very limited 

background noise, which both necessary for the quality of results are being sufficient. 

For all coefficients at all tests, Figure 5.8 gives recursive calculation of (KA,i, KB,i) 

for all 3 tests. As it is shown in Figure 5.8, (KA,i, KB,i)  converges into a value.  
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Figure 5.7 Test 3, Recursive Least Squares Application of Calculating KA,i (Real 

Data Version of Step E of Calculation of Force Coefficients From Chapter 3.3) 
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Figure 5.8 Variations of Force Coefficients during Recursive Least Squares 
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Figure 5.9 7 Engagements Sampled from X direction Test 3 (FRF Identification 

Step E) 
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Intermediate force coefficients obtained with a single sampled engagement instead 

of recursive least squares are also provided in the figure as individual stars. This 

indicates a variation of force coefficients. 

Table 5-3: Intermediate Force Coefficients Identified 

 Recursive Least Squares Output 

Test KB [N/m] KA [N/m] 

1 87.03e3 43.62e3 

2 116.50e3 57.25e3 

3 145.92e3 66.54e3 

 

 

Figure 5.10 Tap Test Result (X Direction) Compared to FRF Identification 

If what is shown in two figures (Figure 5.7 and Figure 5.9) above and recursive least 

squares calculation shown in Chapter 3 are applied for the first 3 tests, Table 5-3 

gives identified KA and KB for every test. Values on this table are simply the end 

value of the previous table as the end result of recursive least squares method is taken 
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as final value of KA and KB.  As it is expected, chip thickness being smaller results 

in larger values for KA and KB.   

 

Figure 5.11 Tap Test Result (Y Direction) Compared to FRF Identification 

Resulting FRF Identification outputs (FRFs identified by obtaining Step E of FRF 

Identification method as shown in Figure 5.9 for every test and applying a suitable 

FRF calculation method like it is suggested at equations (4.1) to (4.4) while at the 

same time applying KA and KB as Ktc and Krc respectively) can be seen in Figure 

5.10 and Figure 5.11. These figures function as quality control. 

Three tests with different chip thickness values offered 3 sets of KA and KB. Using 

equation (3.28) and (3.29), force coefficients are identified as Table 5-4. These force 

coefficients are used for simulation throughout the entire thesis. These force 

coefficients are final. This value can be compared to values obtained from the 

literature [16]. 

  



 

 

100 

 

Table 5-4: The Identified Force Coefficients (Cross FRF Omitted) 

Ktc=603 [MPa] Krc=244.21 [MPa] 

Kte=28.15 [kN/m] Kre=20.08 [kN/m] 

 

If cross FRFs are not omitted, results slightly shift for coefficients obtained from X 

direction change more significantly for Y direction. However, the values obtained 

are larger. 

Table 5-5: The Identified Force Coefficients (Cross FRF Included) 

Ktc =666 [MPa] Krc =254.85 [MPa] 

Kte =35.12 [kN/m] Kre =20.51 [kN/m] 

 

Table 5-6 gives a set of force coefficients taken from a milling force review paper 

[6].  It is seen that the values found in this thesis are comparable to the results of the 

research papers. It should be noted that some of the listed research papers experiment 

with extreme conditions such as composite material and very small chip thickness.  

Table 5-6 A Set of Force Coefficients from [6] 

Cutter 

Material 
Lubrication Workpiece 

Ktc 

[MPa] 

Kte 

[kN/m] 

Krc 

[MPa] 

Kre 

[kN/m] 

Cemented 

Carbide 

Dry 

 

AL7075-

T6 

767.01 27.7 168.80 26.6 

600.46 17.9 180.96 20.42 

High 

Speed 

Steel 
AL7075 

 

951.36 11.11 262.59 11.31 

Cemented 

Carbide 
1319.4 19.65 788.83 26.77 

5.3 FRF Identification 

Force coefficients obtained are utilized for FRF identification with test 4. The tool 

path of test 4 is shown in Figure 5.1. Table 5-7 provides process parameters of the 
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test.Some important decision factors must be listed. A long path in Y direction at a 

different side of workpiece is selected to achieve position dependent difference in 

FRF and to display the effectiveness of the method by applying it at a different spot 

than where force coefficients are identified. Process parameters are selected to be 

close to the process parameters in which force coefficients are identified. The only 

major difference is that angular speed is increased to identify a wider frequency 

domain. For confirmation purposes, a tap test comparison is performed but there is 

no reason to stick to frequency domain where force coefficients are identified. Force 

coefficients obtained can be used outside of the frequency domain where tap tests 

are used. The experiment setup has not changed from the first three tests to keep 

variations to a minimum. The same cutting tool, workpiece and the same 

accelerometer positions are utilized. 

Table 5-7: Test Parameters of FRF Identification, D=63.3 [mm], ap=2.9 [mm], 

Wall Depth=4 [mm] 

Test Vy  

[mm/min] 

ns  

[rpm] 

Wall 

Thickness

[mm] 

Sample 

Position 

[mm] 

Sample 

Length 

[mm] 

Workpiece 

Type 

4 600 4800 5 10,70,140 1 Centered 

 

For identification, X direction is selected because as mentioned in Chapter 2 and 

Chapter 5.1, the table in this direction is significantly less rigid compared to Y 

direction and non-diagonal members of transfer function (Gyx(s)  compared to 

Gxx(s) vs.Gxy(s) compared to Gyy(s)). (Figure 5.3) As visible on Table 5-7, 3 

regions are selected for sampling from this test, considering that distance can show 

the change of transfer function with distance, demonstrating the method and its 

advantages.  

By utilizing workpiece length and feed per insert, around length over feed per insert 

engagements sampled are expected. This value is equal to 1184 for 4800 [rpm] and 

they are all at different spots. This is a significantly high number compared to tap 
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tests or shakers. However, due to both variations at the initial position of the 

workpiece, given tolerances, variations at the angular position and angular speed of 

cutting tool, an accurate value of contact time cannot be reliably calculated to express 

the entire frequency measurement domain, which is 25600 [Hz] (half of the sampling 

rate). This is where placing force calculation to the time where acceleration exceeds 

a certain value is critical as this method automatically handles the problem of force 

timing.  

The cutting distance of test 4 is 148 [mm]. In this 148 [mm] distance the cutting tool 

has taken, the data that are obtained from cutting first 10 and last 7 [mm] of the 

cutting path is rejected for eliminating possible transient effects and from the rest of 

the data, mentioned 3 desired regions are sampled. Both force calculations and 

acceleration measurements has been zero padded to reach 1 [Hz] frequency 

resolution. Finally, FRF identification method has been applied. 

Step E from Chapter 4.1 is visualized with experiment data as shown in Figure 5.12. 

9 sampled engagements obtained from 10-11 [mm] region from 148 [mm] tool path 

during test 4 are given in the figure for demonstration purposes. Acceleration has 

been measured during cutting, data is sampled according to the angular speed of 

cutting tool and synchronization has been utilized for matching force calculations to 

accelerations measured. Data and force estimation are zero padded to reach 1 [Hz] 

in frequency domain. 

After obtaining the results shown in Figure 5.12, any method applicable to multiple 

tap test measurements can be used for this case. Equations from (4.1) to (4.4) explain 

the method for this thesis. 

Figure 5.14 gives FRF identification results together with P2P1 tap test results as a 

reference and Figure 5.13 gives the coherence value of identified FRFs. Coherence 

values are consistently higher than 0.8 for the given frequency domain. Tap test 

results and FRF identification outputs match quite well, except for the frequency 

domain that changes which is between 1500-2000 [Hz] domain. 
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Figure 5.12 FRF Identification Step E with Real Data. (Test 4, 4800 rpm and 10-

11 [mm] Sampled Tool Path) 

The amplitude of FRF at the frequency domain between 1500-2000 [Hz] domain 

shows variations among the path and these variations are visible in Figure 5.14 to 

Figure 5.16. Figure 5.15 shows that during the experiment, the amplitude of FRF in 

this frequency domain changes more than amplitudes of FRF at any other frequency 

domain. Figure 5.16 shows that local FRF identification results match with their 

respective tap test results (Appendix 1). This means that not just the method 

accurately predicts FRF, but it also detects local variations.  

Finally, for estimations offered at Figure 5.16, batch-size error criterias can be 

applied. 
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Table 5-8: Batch-Size Error Criteria Calculations 

 RMSD SMAPE 

Measurement 4 3.3e4 0.0013 

Measurement 8 4.7e4 0.0019 

 

Figure 5.13 Coherence Values of Identified FRFs 

 

Figure 5.14 FRF Identification Results of Selected Regions 
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Figure 5.15 FRF Identification Results Compared on Top of Each Other 

 

Figure 5.16 FRF Identification Results With Tap Tests of The Same Position 

(Appendix 1) 
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5.4  Two Dimensional FRF Identification 

Just like in Chapter 4, two tests on close proximity has been selected for two 

dimensional FRF identification. 

Table 5-9: Test Parameters of Two Dimensional FRF Identification, D=63.3 

[mm], ap=2.9 [mm], Wall Depth=4 [mm] 

Test V 

[mm/min] 

ns  

[rpm] 

Wall 

Thickness 

[mm] 

Sample 

Position 

[mm] 

Sample 

Length 

[mm] 

Workpiece 

Type 

3 600 (X) 3072 6 20 1 Centered 

4 600 (Y) 4800 5 140 1 Centered 

 

Starting from force profile, force calculations representing force excitation are given 

below: 

 

Figure 5.17 Forces Given in X Direction (Experiment, Test 3 and 4) 

Different than simulation, there is a variation between acceleration measurements 

sampled as shown below. Figure 5.22 returns wildly various acceleration 

measurements. 
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Figure 5.18 Forces Given in Y Direction (Experiment, Test 3 and 4) 

 

Figure 5.19 Acceleration Sampled from Test 3, X Direction 
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Figure 5.20 Acceleration Sampled from Test 4, X Direction 

 

Figure 5.21 Acceleration Sampled from Test 3, Y Direction 
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Figure 5.22 Acceleration Sampled from Test 4, Y Direction 

As expected, zero crossings become a problem during identification as shown in 

Figure 5.23. Even though this problem did not appear in the simulation, it appears in 

experimental data, as any uncertainty in transfer functions results in dividing by a 

small number during FRF identification. 1550 [Hz]-1700 [Hz] frequency domain has 

been removed from frequency domain of identification and the process is repeated. 

Figure 5.24 and Figure 5.25 provide the results. Unfortunately, the identification 

results cross FRFs are only correct in amplitude and some modes for Gxy and only 

for amplitude for Gyx. The rest of the results are accurate and Gyy is obtained fairly 

successfully for frequency domain under 1550 [Hz]. 

Results can be used for identification of dominant FRF like the one dimensional 

method offered in the previous section and it is a good measurement stick for 

checking how significant cross FRF are. Most of the problem can be attributed to the 

results in Figure 5.22 given its significant variation. 
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Figure 5.23 Passing Zero Crossing Returns Peaks with Very High Amplitude. 

 

Figure 5.24 FRFs Obtained from X Direction, Two Dimensional FRF 

Identification 
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Figure 5.25 FRFs Obtained from Y Direction, Two Dimensional FRF 

Identification 
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CHAPTER 6  

6 CONCLUSION AND FUTURE WORK 

The method offered in this thesis has been confirmed to be useful for obtaining FRF 

at different spots accurately compared to tap tests, proving the approach, while still 

keeping mentioned advantages. Cutting parameters were selected for the machine-

tool table-workpiece to be excited in the analyzed frequency domain. Identification 

of force coefficients has been performed by a selected region with consistent FRF 

and accuracy of force coefficients has been shown to compare acceleration results. 

More than 1000 tool contact separated into cutting path has been performed and they 

are combined in various regions and local identification of FRF has been performed. 

These results were achieved without a dynamometer and without initial knowledge 

of the material. As long as the same material is used, the same force coefficients can 

be applied without another tap test.  A major possible advantage is that the method 

offers on-operation identification which allows for analysis of differences between 

operation conditions and tests done outside of the operation. This means that if 

machine transfer functions change during operation, the results obtained here can be 

more accurate than tap tests when the machine is not operational. Two dimensional 

identification did not offer the same accuracy that was expected by observing 

simulation results. However, it has successfully shown how critical cross FRF are 

for machines with unclear stiffness difference for Cartesian directions. 

The advantages listed above are also present in many other methods mentioned in 

the introduction. However, this method does not need white noise and gives the 

shape and amplitude of FRF without additional assumptions such as mode 

frequencies or modal shapes. However, this method needs additional work for 
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accurate identification of mode parameters if they are desired because short window 

time is a limit for frequency resolution. 

One important factor is that this method works with the assumption that the force 

model is correct. This is satisfied quite easily if the material type is known, cutting 

tool is basic such as the cutting tool selected has no helix angle and feed is low 

compared to tangential speed. However, as shown in the results constant force 

coefficients are not necessarily accurate enough. This issue can be solved by utilizing 

a well-known material. If the force model is not accurate enough, tests should be 

performed with the same angular speed every time in order to eliminate chip 

thickness difference from force calculation. In other words, it should be make sure 

as every excitation is done with same cutting parameters. 

Significant cross correlation factors can distort identification of force coefficients if 

they are present. Likewise, current method does not offer an option to identify cross 

correlations. This issue has especially proven difficult for Y direction. 

Due to lack of equipment that could take measurements during operation, application 

to the spindle of machine-tool has not been performed. There is no reason to think 

that this method cannot be applied to spindle if measurement is present such as a 

laser vibrometer. In addition, another possible application is to identify spindle 

through utilizing the given model since dynamic chip regeneration is affected by 

spindle dynamics. Identification of spindle with given model should be possible if 

dynamic chip thickness is intentionally increased.  

As mentioned, methods for extending frequency response values into higher 

frequency domain are possible given zero crossings are controlled by angular speed 

of the cutter. Conversely, a lower frequency domain is studied as in most of articles 

listed in the introduction. Both cases offer additional challenges. A lower frequency 

domain requires higher excitations and dynamics of machine tool starts to become 

more significant. A higher frequencies means workpiece characteristics starts to be 

apparent. 
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Finally, the method should be extended to a lower frequency domain for operational 

identification because the literature indicates this is the frequency domain where 

operational FRFs can be different for machine-tool table. 

To sum up, possible application areas are local FRF identification of machine tool 

structure, prediction of excitation and study of material force coefficient. 

6.1 Industrial Applications 

In terms of industrial applications, the thesis can be separated into three parts. 

Identification of force coefficients has the most immediate potential as 

dynamometers are not present in most manufacturing plants but chatter is a 

significant problem and force coefficients are a factor for chatter. Moreover, force 

coefficients are also a major determining factor for energy consumption. FRF 

identification is useful for quick identification of configurations where the machine-

tool is more susceptible to vibrations. The milling model has not been designed for 

direct application. However, it is necessary for verification of results from 

experiments as checking for whether process parameters and machine-tool 

characteristics together allow the given identification process or not, even though 

dynamic chip regeneration can be safely omitted for most applications. In addition, 

being able to simulate vibrations, as mentioned in previous paragraphs, can be handy 

for future identification approaches. 

In any sort of industrial application, the process should be re-developed in a way that 

it requires limited or no training from employees. Otherwise, the method can be 

offered as a package service. 

.
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APPENDICES 

A. Appendix 1 

This appendix gives FRF measurements through tap tests that is not presented at 

Chapters 3 and 4. This appendix verifies assumptions given as: 

1. Cross-correlation factors are insignificant. 

2. Measurement taken from workpiece is descriptive enough and as long as 

the direction is the same, placement position has limited effect.  

3. Y direction is significantly stiffer.  

Table A 1 gives differences between tap tests and Figure A 1 provides tap test hit 

spots. Figure A 2 and Figure A 3 gives tap test results regarding local variations of 

FRF of X and Y direction. Results indicate that while table position has no effect on 

FRF of X direction above 500 [Hz], different spots in Y direction has varying results. 

Measurement 3 is out of workpiece and likely dynamics of workpiece holder is 

involved. Movement in Z direction has also shown to be insignificant.  

Table A 1: Tap Test Results (FRF) for Variations between Positions 

Measurement X Position 

[mm] 

Z Position 

[mm] 

Hydraulic 

Brakes 

Motor 

Brakes 

1 350 100 On On 

2 -350 100 On On 

3 -350 100 On On 

4 -350 100 On On 

5 -350 100 On On 

6 -350 100 Off On 

7 -350 100 Off Off 

8 -350 300 Off Off 

9 Same with 9 Same with 9 On On 

10 Same with 10 Same with 10 On On 

Measurements 9 and 10 were older and their exact position is missing. However, 

table position did not change.  
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Figure A 1 Positions of Tap Test Spots 

Hydraulic braking is also shown to be insignificant. Variation of FRF amplitude in 

domain 1500-2000 [Hz] should be a focus point. In addition, coherence values may 

be found at Figure A 4 to Figure A 7. 
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Figure A 2 X direction Tap Test Results from Various Spots 

1  

Figure A 3 Y direction Tap Test Results from Various Spots 
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Figure A 4 Coherences of Previous Measurements 1 and 2 

 

Figure A 5 Coherences of Previous Measurements 3 and 4 
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Figure A 6 Coherences of Previous Measurements 5 and 6 

 

Figure A 7 Coherences of Previous Measurements 7 and 8 
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B. Appendix 2 

This appendix shows that direct application of equation (3.5) for least squares 

method is not feasible because direct application of 𝐇(ω) returns ill-conditioned 

matrice.  

𝐇(ω) is defined as below: 

𝐇(ω) = [
Htc,x(ω) Hrc,x(ω) Hte,x(ω) Hre,x(ω)

Htc,y(ω) Hrc,y(ω) Hte,y(ω) Hre,y(ω)
] (B.1) 

It can be formatted to a simpler form: 

𝐇(ω) = [
𝑎11 𝑎12 𝑎13 𝑎14
−𝑎12 𝑎11 −𝑎14 𝑎13

] (B.2) 

𝑎11 = ℱ (−cap cos(θ(t)) sin(θ(t)) g(𝑡)) (B.3) 

𝑎12 = ℱ (−cap sin
2(θ(t)) g(𝑡)) (B.4) 

𝑎13 = ℱ (−ap cos(θ(t)) g(𝑡)) (B.5) 

𝑎14 = ℱ (−ap sin(θ(t)) g(𝑡)) (B.6) 

Here, 𝑎11 is a member of matrice 𝐇(ω). Direct application of least squares method 

could look like this: 

[

Ktc
Krc
Kte
Kre

] = (𝐇𝐓𝐇)−1𝐇𝐓𝐅�̂�(ω) (B.7) 

In this case 𝐇𝐓𝐇 can be written as: 

𝐇𝐓𝐇 = [

𝑎11 −𝑎12
𝑎12 𝑎11
𝑎13 −𝑎14
𝑎14 𝑎13

] [
𝑎11 𝑎12 𝑎13 𝑎14
−𝑎12 𝑎11 −𝑎14 𝑎13

] (B.8) 
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= [

𝑎11𝑎11 + 𝑎12𝑎12 𝑎11𝑎12 − 𝑎12𝑎11 𝑎11𝑎13 + 𝑎12𝑎14 𝑎11𝑎14 − 𝑎12𝑎13
𝑎11𝑎12 − 𝑎12𝑎11 𝑎11𝑎11 + 𝑎12𝑎12 −𝑎11𝑎14 + 𝑎12𝑎13 𝑎11𝑎13 + 𝑎12𝑎14
𝑎11𝑎13 + 𝑎12𝑎14 −𝑎11𝑎14 + 𝑎12𝑎13 𝑎13𝑎13 + 𝑎14𝑎14 𝑎13𝑎14 − 𝑎14𝑎13
𝑎11𝑎14 − 𝑎12𝑎13 𝑎11𝑎13 + 𝑎12𝑎14 𝑎13𝑎14 − 𝑎14𝑎13 𝑎13𝑎13 + 𝑎14𝑎14

] 

= [

𝑎11𝑎11 + 𝑎12𝑎12 0 𝑎11𝑎13 + 𝑎12𝑎14 𝑎11𝑎14 − 𝑎12𝑎13
0 𝑎11𝑎11 + 𝑎12𝑎12 −𝑎11𝑎14 + 𝑎12𝑎13 𝑎11𝑎13 + 𝑎12𝑎14

𝑎11𝑎13 + 𝑎12𝑎14 −𝑎11𝑎14 + 𝑎12𝑎13 𝑎13𝑎13 + 𝑎14𝑎14 0
𝑎11𝑎14 − 𝑎12𝑎13 𝑎11𝑎13 + 𝑎12𝑎14 0 𝑎13𝑎13 + 𝑎14𝑎14

] (B.9) 

𝑎11𝑎14 − 𝑎12𝑎13 can be  written as below: 

𝑎11𝑎14 − 𝑎12𝑎13

= ℱ (−cap cos(θ(t)) sin(θ(t)) g(𝑡))ℱ (−ap sin(θ(t)) g(𝑡))

− ℱ (−cap sin
2(θ(t)) g(𝑡))ℱ (−ap cos(θ(t)) g(𝑡)) 

=
cap
2

2𝜋
∫ cos(θ(t)) sin(θ(t))
∞

−∞

sin(θ(t − τ)) 𝑑𝜏

−
cap
2

2𝜋
∫ cos(θ(t − τ)) sin(θ(t))
∞

−∞

sin(θ(t)) 𝑑𝜏 = 0 

(B.10) 

𝐇𝐓𝐇 can be re-written as: 

𝐇𝐓𝐇 = [

𝑎11𝑎11 + 𝑎12𝑎12 0 𝑎11𝑎13 + 𝑎12𝑎14 0
0 𝑎11𝑎11 + 𝑎12𝑎12 0 𝑎11𝑎13 + 𝑎12𝑎14

𝑎11𝑎13 + 𝑎12𝑎14 0 𝑎13𝑎13 + 𝑎14𝑎14 0
0 𝑎11𝑎13 + 𝑎12𝑎14 0 𝑎13𝑎13 + 𝑎14𝑎14

] (B.11) 

Replacing columns 2 and 3 with each other gives: 

𝐇𝐓𝐇 = [

𝑎11𝑎11 + 𝑎12𝑎12 𝑎11𝑎13 + 𝑎12𝑎14 0 0
𝑎11𝑎13 + 𝑎12𝑎14 𝑎13𝑎13 + 𝑎14𝑎14 0 0

0 0 𝑎11𝑎11 + 𝑎12𝑎12 𝑎11𝑎13 + 𝑎12𝑎14
0 0 𝑎11𝑎13 + 𝑎12𝑎14 𝑎13𝑎13 + 𝑎14𝑎14

] (B.12) 

This results in ill-conditioned matrice. 




