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ABSTRACT

QUERY AGE OF INFORMATION IN COMMUNICATION NETWORKS

Ildız, Muhammed Emrullah
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Elif Uysal

August 2022, 75 pages

We study a pull-based status update communication model where a source node sub-

mits update packets to a channel with random transmission delay, at times requested

by a remote destination node. The objective is to minimize the average query-age-

of-information (QAoI), defined as the age of information (AoI) measured at query

instants that occur at the destination side according to a stochastic arrival process.

In reference to a push-based problem formulation defined in the literature where the

source decides to update or wait at will, with the objective of minimizing the time

average AoI at the destination, we name this problem the Pull-or-Wait (PoW) prob-

lem. We provide a comparison of the two formulations: (i) Under Poisson query

arrivals and random transmission delay, an optimal policy that minimizes the time

average AoI also minimizes the average QAoI, and these minimum values are equal;

and (ii) the optimal average QAoI is shown to be less than or equal to the optimal time

average AoI under the following two cases: (1) Periodic query arrivals and random

transmission delay and (2) general query arrivals and constant transmission delay. We

identify the PoW problem in the case of a single query as a stochastic shortest path

(SSP) problem with uncountable state and action spaces, which has been not solved

in previous literature. We derive an optimal solution for this SSP problem and use it
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as a building block for the solution of the PoW problem under periodic query arrivals.

Keywords: Age of information, Communication Networks, Internet of things
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ÖZ

HABERLEŞME AĞLARINDA SORGU ANI BİLGİ YAŞI

Ildız, Muhammed Emrullah
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Elif Uysal

Ağustos 2022 , 75 sayfa

Bir kullanıcı modulünün, güncelleme paketlerini kanal aracılığı ile rastgele bir kanal

gecikmesine uğrayarak göndermesi için kaynak modulünden istemde bulunduğu bir

güncelleme sistemi üzerinde çalışılmıştır. Amaç sorgu anlarındaki ortalama bilgi ya-

şını enküçüklemektir ve sorgu anları bir stokastik süreç ile belirlenmektedir. Arz gü-

dümlü bir güncelleme sisteminde kaynak modulünün yeni bir güncelleme paketinin

ne zaman gönderileceğine ortalama bilgi yaşını enküçüklediği daha önce çalışılmış

bir probleme referansla yeni probleme Çek veya Bekle (PoW) problemi ismi veril-

miştir. Bu iki problemin karşılaştırılması yapılmıştır: (i) Eğer sorgu anları Poisson

süreç ile belirlenirse zamana göre ortalama bilgi yaşını enküçükleyen politika ayrıca

sorgu anlarındaki ortalama bilgi yaşını da enküçüklemektedir ve iki ortalama en kü-

çük bilgi yaşı birbirine eşittir; ve (ii) aşağıda verilecek iki durumda sorgu anlarındaki

elde edilebilecek en iyi ortalama bilgi yaşı her zaman zamana göre elde edilebilecek

en iyi ortalama bilgi yaşından daha küçüktür: (1) Sorgu anları periyodik ve kanal ge-

cikmesi rastgele olduğunda ve (2) sorgu anları genel bir süreç ve kanal gecikmesi

sabit olduğunda. PoW problemini tek sorgu anı için incelediğimizde bu problemin

stokastik en kısa yol (SSP) problemleri sınıfından sayılamaz durum ve aksiyon uzayı
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sınıfına dahil olduğunu fark ettik ve bu sınıftaki problemlerin genel çözümü daha

önce bulunamamıştır. Bu problemin çözümüne ulaştık ve bu çözümü periyodik sorgu

anlarındaki PoW probleminin çözümünde kullandık.

Anahtar Kelimeler: Bilgi Yaşı, Haberleşme Ağları, Nesnelerin İnterneti
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To the incompleteness of math
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CHAPTER 1

INTRODUCTION

1.1 Age of Information

The Internet of Things (IoT) paradigm has been gaining wide use in various sectors

such as environmental monitoring [1], health and wellness [2], vehicular networks [3],

smart cities [4], and so on. In many applications of these settings, a destination node

seeks to have accurate information about a remote process measured by a sensor to

utilize toward a computation. The received information packets by the destination

node are not equally valuable: The value of the update packets highly depends on

their timeliness.

As a metric to measure timeliness of update packets, the age-of-information (AoI), or

simply age, has been introduced and studied in many different environments [5–7].

It is defined as the elapsed time since the generation of the latest received update

packet. In other words, when the freshest information update packet available on the

destination node at time t is generated at time U(t), the age of information, ∆(t) on

the destination node at time t is defined as follows: [8]

∆(t) = t− U(t) (1.1)

To minimize AoI in a status update system, a sensor or a source node can generate

an update packet any time by its own will and immediately send it to a destination

node through a communication channel; this is referred to as the generate-at-will

model [8–20]. This model was introduced in [9] and further studied in [10]. The

problem formulation in [10] is concerned with the source generating updates judi-
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ciously, to minimize the overall time average AoI over a channel that imposes a ran-

dom transmission delay. In this thesis, for brevity, we will refer to this formulation

as the Update-or-Wait (UoW) problem. In the UoW problem, the source controls the

age by determining the submission times of the update packets to the channel. The

approach of minimizing the time average age of information as an objective models a

destination node that continuously utilizes the update packets; however in many IoT

scenarios the application running at the destination side will utilize the information

updates at certain times, rather than continuously [21,22]. A policy that strives to keep

the overall time average age at a minimum will not necessarily maintain minimal age

at those utilization times.

1.2 Query Age Of Information

In this thesis, we define an extension of the UoW problem, which is referred to as the

Pull-or-Wait (PoW) problem. In the PoW problem, the destination node requests an

update packet from the source node in an effort to keep a low AoI at the next query

instants, that are based on a stochastic arrival process. The query-age-of-information

(QAoI) is defined as the age values measured at query instants. The goal of the

destination in the PoW problem is to determine optimal request points to minimize

QAoI, knowing only the statistics of the channel delay and the query arrival processes.

The following simple example reveals the difference between the UoW and PoW

problems.

1.3 An Interesting Example Comparing AoI and QAoI

Consider an IoT monitoring system that requires an update packet every 4 mseconds.

Hence, the query instants are at times 4, 8, 12, . . . The transmission delay of this

channel is constant at 1.5 msec, but the requests for an update packet are assumed to

arrive at the source node without any delay. The zero-wait policy is shown in [10] to

be the optimal update policy for the UoW problem when the transmission delays are

constant. The evolution of the age of information under the zero-wait policy is shown

in Figure 1.1. This policy results in a time average age of information equal to 2.25
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and performs one packet transmission per 1.5 msec. On the other hand, a reasonable

policy, which is later shown to be an optimal policy, for the PoW problem is that

the destination node requests update packets at times 2.5, 6.5, 10.5, . . . as shown in

Figure 1.1. As a result, this policy results in the average age of information at query

instants equal to 1.5 and performs one packet transmission per query, 4 seconds.

t

Q1 Q2 Q3

5.5

3

1.51.5

1.5

44 4

∆(t)

Optimal Policy of PoW Problem

Optimal Policy of UoW Problem

Figure 1.1: Evolution of the Age of Information under the optimal policies of the
UoW and PoW formulations

Let us consider another IoT monitoring system in which the destination nodes utilize

the update packets based on a stochastic process. Specifically, the interarrival times

between utilization times i.e. queries are assumed to be either 6 msec or 7 msec

with 1/2 probability. The transmission delay from the source to the destination is 1.5

msec. The update policy that minimizes the time the average age of information is

again the zero wait policy, which results in the average age of information equal to

2.25 msec. Additionally, the zero wait policy needs to send 2 update packets for every

3 msecs. An alternative update policy submits a new update packet to the channel at

the time 4.5 msec after a query occurs. (In Section 3, this policy will be proved to

be an optimal policy to minimize the expected query average age for this system.)

This alternative update policy results in a query average age of information equal to 2

msec, and the expected transmission rate of this policy is 2/13, which is far less than

3



2/3. As a result, minimizing the query age of information leads to better freshness

with more contributive transmissions.

These two simple examples point out a crucial distinction between the UoW and PoW

problems. The PoW formulation uses the knowledge about utilization time i.e. query

instants to keep the AoI at the query instants much lower than that could be achieved

in the UoW problem, while also reducing the number of transmissions. Hence, we

observe that the two problems are distinct therefore the PoW problem calls for a

comprehensive solution.

1.4 Contributions and Novelties

This thesis aims to answer the following questions: How to optimally request update

packets to minimize the age of information upon query instants at the destination.

Under what conditions is the PoW model significantly advantageous over the UoW

model? The following are the key contributions of this thesis:

• We define the PoW problem as a direct extension of the UoW problem formu-

lated in [10]. We show that under Poisson query arrivals, any optimal solution

of the UoW problem is also an optimal solution of the PoW problem, achieving

an equal age penalty. We prove that for periodic queries the optimal average

age penalty of the PoW problem is always less than or equal to that of the UoW

problem with the same power constraint.

• We identify the PoW problem for a single query, referred to as single query

problem, as a stochastic shortest path problem with uncountable state and action

spaces. To the best of our knowledge, this class of stochastic shortest path

problems has not been solved in previous literature. We show the existence of

a deterministic policy that solves this problem (Proposition 1) and characterize

its first request point (Corollary 2). With the help of this characterization, we

exhibit an explicit solution of the stochastic shortest path problem (Section 3.3).

• We employ the solution of the stochastic shortest path problem to construct a

solution of the PoW problem under periodic query arrivals (Proposition 4).
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• We expand the results in [23] by relaxing three aspects of the system model:

Our analysis allows a general channel delay distribution; a general age penalty

function; and does not require a discount factor in the objective function.

1.5 Related Work

AoI has attracted a remarkable amount of interest [6] and it has been studied under

different formulations, such as enqueue-and-forward models [24–30], generate-at-

will models [8,10–20], random access environments [31–35], and so on. Even though

the age of information captures one semantic aspect of data, i.e. the freshness of

information, it is not sufficient for all applications. For example, the optimal policy

that minimizes the MSE in the remote estimation of a Wiener process over a random

delay channel is distinct from the age optimal policy as shown in [36]. As a result,

various suggestions for capturing the semantics of information have recently emerged

[37–40]: the Age of Incorrect Information (AoII) extends the notion of fresh updates

to that of fresh “informative” updates in [41–44]. Other metrics such as the Urgency

of Information (UoI) and the Age of Changed Information (AoCI) have been proposed

in [45] and [46], respectively.

The Query Age of Information (QAoI) is another metric that tries to capture the use-

fulness of an update packet with respect to an application more finely than the plain

AoI. The QAoI is defined as the AoI measured at certain query instants, which rep-

resent the utilization times of the destination node in the application. This notion

has been introduced in an independent set of works with different names such as

Age upon Decision (AuD), Age of Effective Information (AoEI) [21,22,47–51]. The

first works that suggest a pull-based communication model in the context of AoI

are [47, 48], where a user proactively requests update packets from multiple servers,

but the authors minimize the plain AoI and do not take utilization time into account.

A series of works [21, 22, 49, 50] suggests AuD and studies a special case of the

enqueue-and-forward model where a user utilizes upcoming update packets under a

stochastic arrival process. This model leads the authors to measure the AoI at the

utilization times. In [51], the authors study a multi-user information update system

with Bernoulli update failures and suggest AoEI that measures the average AoI at the

5



query instants.

The works that are most relevant to this work in this thesis are [10] and [23]. In [10],

the authors consider a generate-at-will model to minimize time average AoI under

a push-based communication model. We extend [10] to a pull-based communication

model and modify the objective function with respect to the QAoI. In [23], the authors

suggest the QAoI and study a similar pull-based communication model. Unlike the

packet erasure channel that is considered in [23], we study more general channels that

can have discrete, continuous, or mixed distributed transmission delays. In addition,

we define an age penalty function g(∆) to characterize the level of dissatisfaction

for data staleness, where g(.) can be any nonnegative, continuous, and nondecreasing

function. This age penalty function enables us to simulate model-specific applica-

tions. Furthermore, we minimize the average age penalty at the query instants where

there is no discount factor. In addition, we analytically compare the UoW and PoW

problems under periodic and Poisson query arrival processes.

The rest of this thesis is organized as follows: In Section 2, we present the system

models of the PoW and UoW problems. In Section 3, we formulate the PoW problem

and analyze it. In Section 4, we compare the PoW problem with the UoW problem.

In Section 5, we present numerical results to show the behavior of the solution in the

PoW problem under different transmission delay processes. Finally, we conclude this

thesis in Section 6 by summarizing our contributions and discussing future directions.
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CHAPTER 2

SYSTEM MODEL AND PROBLEM FORMULATIONS

2.1 Pull or Wait (PoW) Problem

We consider a pull-based information update system depicted in Figure 2.1, where

a destination node is interested in information updates generated by a source node.

The destination node requests an update packet from the source node according to

an update policy. The request arrives at the source node without any delay. When a

request occurs, the source node immediately generates an update packet and submits

it to the channel. The channel induces a random delay from the source node to the

destination node. The destination node should not request a new update packet when

the previously requested update packet has not arrived at the destination node, because

this will incur an unnecessary waiting time in the queue.

The update packets delivered to the destination node are utilized toward a computa-

tion. In this information update system, we assume that the destination node possesses

a query arrival process that represents the utilization time of the upcoming update

packets received from the source node. The destination node aims to minimize the

average AoI at the query instants. As the destination node can recognize past states of

the query arrival process, it requests update packets from the source node by taking

account of not only the random delays induced by the channel but also the past states

of the query process.

Let the time that Update j, j = 1, 2, . . . is requested from the source, and sub-

mitted to the communication channel be denoted by Rj . Update j is delivered to

the destination node after a random transmission delay Yj at time Dj = Rj + Yj .

Then, the destination node requests Update j + 1 at time Rj+1 after a waiting period

7



Pull (Request)

Source

Queue
Channel

Destination

Figure 2.1: System Model of the PoW Problem

Zj ∈ [0,M ]. This implies that Rj+1 = Dj + Zj . We assume that the transmis-

sion delay process, {Yj}∞j=0, is i.i.d. and takes values in a bounded range such that

Pr(Yj ∈ [BL, BU ]) = 1 where BL > 0. On the other side, the query arrives to the

destination node at {Qk, k = 1, 2, . . .} based on a stochastic process.

At any time t, let U(t) denote the generation time of the update packet that has been

most recently received by the destination node. Consequently,

∆(t) = t−max{Rj : Dj ≤ t} (2.1)

We also introduce an age penalty function, g(∆), that represents the level of dissatis-

faction for data staleness or the need for a new information update. This function is

defined as g : [0,∞) −→ [0,∞) and it is continuous, nonnegative, and nondecreasing.

Our goal is to minimize the average age penalty at the time of queries by controlling

the sequence of waiting periods, (Z0, Z1, . . . ). Let π = (Z0, Z1, . . . ) denote an up-

date policy. A causal update policy determines the waiting period Zj based on the

sequence (Zi)
j−1
i=0 , the random processes {Yj}∞j=0, {Qk}∞k=1, and their realizations be-

fore Dj . Let Π be the set of all causal update policies. Then, the objective function is

defined as the following:

h̄opt =min
π∈Π

lim sup
n→∞

E
[∑n

k=1 g
(
∆(Qk)

)]
n

(2.2)

s.t. lim inf
n→∞

1

n
E

[
n∑

j=1

(Yj + Zj)

]
≥ 1

fmax

(2.3)

Throughout the thesis, we refer to this problem as the Pull or Wait (PoW) problem.

We refer to the objective function of the PoW problem as the query average age

8
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Figure 2.2: System Model of the UoW Problem

penalty.

2.2 Update or Wait (UoW) Problem

In the system model that was studied in [10] and that is depicted in Figure 2.2, the

source node generates update packets and sends them to the destination node through

the channel. Different from the system model of the PoW problem, the destination

node does not request an update packet. Instead, the source node submits update

packets to the channel seeking to minimize the time average age penalty at the desti-

nation node. Therefore, the objective function is the following:

ḡopt =min
π∈Π

lim sup
n→∞

E
[ ∫ Dn

0
g
(
∆(t)

)
dt
]

E[Dn]
(2.4)

s.t. lim inf
n→∞

1

n
E

[
n∑

j=1

(Yj + Zj)

]
≥ 1

fmax

(2.5)

Throughout the thesis, we refer to this problem as the Update or Wait (UoW) prob-

lem. We refer to the objective function of the UoW problem as the time average age

penalty.

9
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CHAPTER 3

PROBLEM FORMULATION AND ANALYSIS

In this chapter, we formulate the PoW problem without the power constraint (2.3).

We first analyze the PoW problem under a specific case of single query. Let Q > 0

be the time at which the query occurs. For this case, Problem (2.2) reduces to:

h̄one
opt (Q) = min

π∈Π
E
[
g(∆(Q))

]
(3.1)

Henceforth, we will refer to Problem (3.1) as the single query problem. As we will

show in the rest of this section, the solution of the single query problem will be a

building block of the solution of the PoW problem, given in (2.2), under periodic

query arrivals.

The single query problem belongs to the class of stochastic shortest path problems

with uncountable state and action spaces. The state of the problem at stage j is the

pair of the remaining time from the delivery point of Update j until the query and

the current age at the delivery point of Update j, (Q − Dj,∆(Dj))
1. The random

disturbance and the control action at stage j are Yj and Zj , respectively. The ab-

sorbing state occurs at stage j when Q − Dj ≤ 0. State transitions that do not end

in the absorbing state are costless. The cost of reaching the absorbing state from a

state (Q − Dj,∆(Dj)) where Q − Dj > 0 is g(Q − Dj + ∆(Dj)). This problem

class is introduced in [52] for a finite state space, compact action space, a transi-

tion kernel that is continuous for all actions, under the assumption that an optimal

1 It is shown in Proposition 1 that there exists an optimal policy of the single query problem in which Zj

is determined as a function of Q − Dj and ∆(Dj). As a result, the single query problem can be minimized
in the set of deterministic policies. When Zj is determined as a function of Q − Dj and ∆(Dj), the pair
(Q − Dj ,∆(Dj)), j ≥ 0 forms a Markov chain because ∆(Dj) = Yj , Yj’s are i.i.d., and Q − Dj+1 =
Q−Dj − Yj − Zj .
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policy must be proper (i.e. reachability of the termination state in a finite expected

time). [53] relaxes the assumptions of [52] such that the state and action spaces are

arbitrary, the transition kernel does not need to be continuous, but the space of the

random disturbance is countable. A related problem class is introduced by [54] as

transient Markov decision problems with solutions that are transient policies (simi-

lar, but not identical, to proper policies), general state and action spaces, and contin-

uous transition kernel. [55] further relaxes the assumptions of [54] to the existence of

non-transient policies, but keeps the assumption about the continuity of the transition

kernel [55, Assumption 1b]. None of these results are directly applicable to the single

query problem because in our problem the random disturbance Yj may not come from

a countable set and the transition kernel is not restricted to be continuous especially

when the random disturbance Yj has a mixed distribution.

In the rest of this section, we will show the existence of a deterministic optimal policy

for the single query problem, and characterize its first request point in Section 3.1.

With the help of this characterization, we will reformulate the PoW problem under

periodic query arrivals in terms of the single query problem in Section 3.2. Finally,

we will provide a complete solution of the single query problem in Section 3.3, which

concludes the solution of the PoW problem in (2.2) under periodic query arrivals.

3.1 Existence of a Deterministic Optimal Policy for the Single Query Problem

In this section, we first show that there exists an optimal policy, πopt
1 , for the single

query problem, that is a deterministic policy. Then, we define the border point of πopt
1

for a query arriving at time Q, denoted as QBP ∈ [Q − 3BU , Q − BU ]. We prove

that QBP is an optimal request point under the policy πopt
1 for every delivery point

Dj satisfying Dj < Q − 3BU . This property will help us transform the solution of

the single query problem into a solution of the PoW problem under periodic query

arrivals.

At any delivery point Dj , an optimal update policy seeks to find a request point Rj+1

to minimize the expected age penalty at the query. To express the expected age

penalty at the query in terms of a request point Rj , we define the Gπ
R function. In

12



addition to the Gπ
R function, we define the Gπ

D function to express the expected age

penalty at the query in terms of a delivery point Dj as the following:

Definition 1. For a given query Q, let Rj and Dj be any request and delivery points,

respectively. Gπ
R : [0,∞)× [0,∞) → [0,∞) and Gπ

D : [0,∞)× [0,∞) → [0,∞) are

defined as follows:

Gπ
R

(
Q−Rj,∆(Rj)

)
= E

[
g(∆(Q))

∣∣∣∣π is applied,Rj is a request point,

AoI at Rj is ∆(Rj)

] (3.2)

Gπ
D

(
Q−Dj,∆(Dj)

)
= E

[
g(∆(Q))

∣∣∣∣π is applied,Dj is a delivery point,

AoI at Dj is ∆(Dj)

] (3.3)

These expectations are taken over the possible transmission delays and the waiting

period decisions by the policy π ∈ Π.

It will be shown in Proposition 1 that the information of the remaining time until

the query Q −Dj and the AoI at the delivery point ∆(Dj) are sufficient statistics to

determine an optimal waiting period. This implies that the minimization of the single

query problem can be performed by only considering the set of causal policies that

determines the waiting period Zj based on Q−Dj and ∆(Dj). Therefore, there is no

need to explicitly provide the sequences of (Yi)
j
i=0 and (Zi)

j−1
i=0 for the functions Gπ

R

and Gπ
D.

The two functions have a chain relationship with each other. When the destination

node requests an update packet from the source node at Rj , Update j is delivered

to the destination node after a random transmission delay Yj at time Dj = Rj + Yj .

Hence, ∆(Dj) = Yj . If the delivery occurs before the query i.e. Q−Rj−Yj ≥ 0, the

expected age penalty can be represented with the function Gπ
D. If Q − Rj − Yj < 0,

the AoI at the query is Q− Rj +∆(Rj) for sure. This relationship can be written as

13



follows:

Gπ
R

(
Q−Rj,∆(Rj)

)
= E

[
Gπ

D(Q−Rj − Yj, Yj)

∣∣∣∣Yj ≤ Q−Rj

]
× Pr(Yj ≤ Q−Rj)

+ g
(
Q−Rj +∆(Rj)

)
× Pr(Yj > Q−Rj)

(3.4)

This expectation is taken over possible transmission delays.

On the other hand, when the update packet is delivered to the destination node at Dj ,

the destination node waits for a duration Zj to request a new update packet. Hence,

the request point is Q − Dj − Zj , and the AoI at the request point is ∆(Dj) + Zj .

When the request point is before the query i.e, Q − Dj − Zj ≥ 0, the expected age

penalty at the query can be represented with the function Gπ
R. When Q−Dj−Zj < 0,

the AoI at the query is Q−Dj+∆(Dj) for sure. This relationship can also be written

as follows:

Gπ
D

(
Q−Dj,∆(Dj)

)
= E

[
Gπ

R(Q−Dj − Zj,∆(Dj) + Zj)

∣∣∣∣Zj ≤ Q−Dj

]
× Pr(Zj ≤ Q−Dj)

+ g
(
Q−Dj +∆(Dj)

)
× Pr(Zj > Q−Dj)

(3.5)

This expectation is taken over possible waiting periods that are determined by the

policy π in order to take randomized policies into account.

Now, we move on to obtain a deterministic optimal policy of the single query prob-

lem. The optimal age penalty in this problem can be achieved in a special subset of

Π. In the next proposition, we prove this in detail.

Definition 2.

• A policy π ∈ Π is said to be a stationary and deterministic policy if there exists

decision function z : [0,∞)× [0,∞) → [0,M ] such that Zj = z(Yj, Q−Dj)

for j = 0, 1, . . .

• The set of all stationary and deterministic policies is denoted as ΠSD.

Proposition 1. If the transmission delay process {Yj}∞j=0 is i.i.d. such that Pr(Yj ∈
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[BL, BU ]) = 1, M < ∞, and the penalty function g is continuous, non-negative, and

non-decreasing, then there exists a deterministic update policy that is optimal for the

single query problem.

Proof. In the proof, we need to use the extended version of the functions Gπ
R and Gπ

D

that must include the sequences of (Yi)
j
i=0 and (Zi)

j−1
i=0 in order to cover all possible

causal update policies. Hence, they are Gπ
D(Q − Dj,∆(Dj), (Yi)

j
i=0, (Zi)

j−1
i=0 ) and

Gπ
R(Q − Rj,∆(Rj), (Yi)

j−1
i=0 , (Zi)

j−1
i=0 ). Let us map each Q −Dj to a natural number

n satisfying (n− 1)BL ≤ Q−Dj < nBL. We perform discrete induction on n. The

proposition is first proved for every j, (Yi)
j
i=0, and (Zi)

j−1
i=0 that satisfy (n − 1)BL ≤

Q − Dj < nBL when n = 1. Then, the proposition is assumed to be correct when

n = 2, 3, . . . , K where K is an arbitrary natural number. Finally, it is proved when

n = K + 1. The detailes are given in the Appendix A.

According to the previous proposition, there exists a deterministic optimal update

policy πopt
1 ∈ ΠSD that decides waiting periods based on the values of Q − Dj and

∆(Dj) for every j, (Yi)
j
i=0, and (Zi)

j−1
i=0 . Interestingly, for some specific values of

Q−Rj , the expected age penalty at the query may not depend on the value of ∆(Rj).

For example, when the destination node is supposed to request an update packet from

the source node before Q−BU , the requested update packet must reach the destination

node before the query. This is because the transmission delay can be at most BU .

Therefore, the AoI at the request point cannot affect the expected age penalty at the

query. The next proposition proves this in detail.

Proposition 2. If the elapsed time since a request point until the query is greater than

BU , then the AoI at the request point does not affect the expected age penalty at the

query under a deterministic policy.

Proof. This proposition is an immediate result of (3.4). If Q − Rj ≥ BU , then

Yj ≤ Q−Rj for sure. Therefore, (3.4) becomes

Gπ
R

(
Q−Rj,∆(Rj)

)
= E

[
Gπ

D

(
Q−Rj − Yj, Yj

)]
(3.6)

As the transmission delay process is i.i.d. and ∆(Rj) = Yj−1+Zj−1, ∆(Rj) does not
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affect Gπ
D(Q − Rj − Yj, Yj) when Q − Rj is given. Hence, the proof is completed.

Note that this property is valid for every π ∈ ΠSD.

As a result of previous proposition, we can modify the function G
πopt
1

R when πopt
1 is a

deterministic optimal policy and Q − Rj is greater than or equal to BU . Hence, for

every request point Rj and its AoI ∆(Rj) satisfying Q − Rj ≥ BU , we redefine the

G
πopt
1

R function with one argument as the following:

G
πopt
1

R (Q−Rj) = G
πopt
1

R

(
Q−Rj,∆(Rj)

)
(3.7)

For a given query Q and a deterministic optimal policy πopt
1 , let us define its border

point QBP that satisfies the following:

G
πopt
1

R (Q−QBP ) = inf
Rj : Rj≤Q−BU

G
πopt
1

R (Q−Rj) (3.8)

In the next proposition, we show the existence of a border point. Then, we specify

one of these points as the border point.

Proposition 3. Let D∗
j be a specific delivery point satisfying D∗

j = Q − 3BU and

Y ∗
j = BL. The request point R∗

j+1 determined by a deterministic optimal policy πopt
1

is a border point for the query Q. We designate R∗
j+1 as the ’selected’ border point.

Proof. In the proof, we first prove that the request must occur by the time Q−BU i.e,

R∗
j+1 ≤ Q−BU . This ensures that R∗

j+1 is in the intended interval of (3.8). Then, we

show that the optimal request point, R∗
j+1, attains the infimum in (3.8). The detailed

proof is given in Appendix B.

In the rest, for brevity, we will refer to the selected border point as the border point.

The exact location, QBP , of the border point depends on the exact time of the query

and the optimal policy πopt
1 . This is because the border point is specified as the request

point that is determined by πopt
1 when the delivery point is Q − 3BU and the age at

the delivery point is BL. Hence, the border point can be considered as a function of

a query Q and a deterministic optimal policy πopt
1 . Nevertheless, there is a special
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property of the border point concerning the relation between Q and QBP , proved in

the following corollary:

Corollary 1. The time duration between a query and its border point does not depend

on the exact time of the query for a given deterministic optimal policy.

Proof. This corollary is an immediate result of Proposition 1 and the definition of

R∗
j+1. The request point R∗

j+1 determined by a deterministic optimal policy πopt
1 is the

border point when D∗
j = Q − 3BU and ∆(D∗

j ) = Y ∗
j = BL regardless of the exact

time of the query. The optimal waiting period at D∗
j is solely determined by πopt

1

based on Q − D∗
j and ∆(D∗

j ) by Proposition 1. As Q changes, Q − D∗
j and ∆(D∗

j )

do not change. Hence, Z∗
j does not change. As R∗

j+1 = Q − 3BU + Z∗
j , the proof is

completed.

We next prove in Lemma 1 that if a delivery point occurs before Q − 3BU , then it is

optimal to wait until the border point to place a request.

Lemma 1. Let QBP be the border point of a query Q and a deterministic optimal

policy πopt
1 . Then, for any delivery point Dj satisfying Dj < Q − 3BU , the border

point QBP is an optimal request point under the policy πopt
1 .

Proof. To reach contradiction, suppose that the claim is false. Then, there exists a

delivery point Dj ∈ [0, Q − 3BU) and an AoI at the delivery ∆(Dj) such that the

request point Rj+1 determined by a deterministic optimal policy πopt
1 satisfies the

following: Gπopt
1

R (Q − QBP ) > G
πopt
1

R (Q − Rj+1,∆(Rj+1))
2. By (3.8), Rj+1 cannot

be in the interval [0, Q− BU). By Lemma 5 that is given in the proof of Proposition

1, Rj+1 cannot be in the interval [Q−BU , Q] as well. This completes the proof.

Corollary 2. There exists a deterministic optimal policy πopt
1 for a given query Q

satisfying Q > 3BU such that the first request point is the border point.

Proof. This is an immediate result of Lemma 1 and the designation of the border

point in Proposition 3.

2 As Rj+1 can be in the interval [Q−BU , Q], the G
π
opt
1

R function should be written with AoI argument.
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Corollary 3. If Q > 3BU , h̄one
opt (Q) is independent of the exact time of the query Q.

In other words, we can define h̄one
opt as the following:

h̄one
opt = h̄one

opt (Q) = G
πopt
1

R (Q−QBP ) (3.9)

where πopt
1 is a deterministic optimal policy and QBP is their border.

Proof. From Corollary 2, there exists a deterministic optimal policy πopt
1 whose first

request point is the border for a given query Q satisfying Q > 3BU . This means that

h̄one
opt (Q) = G

πopt
1

R (Q−QBP ). Furthermore, the time duration between Q−QBP does

not change when Q is shifted by Corollary 1. Hence, the expected age penalty at the

border point for any Q > 3BU is the same because the destination node can request

an update packet at the border point under an optimal policy. As a result, we can

define h̄one
opt = h̄one

opt (Q). This completes the proof.

Thus far, we have shown the existence of an optimal policy πopt
1 that has two important

properties:

• πopt
1 is a deterministic optimal policy that decides the waiting period at Dj

solely based on the Q−Dj and ∆(Dj).

• The first request point of the policy πopt
1 is in the interval [Q− 3BU , Q−BU ].

These two properties enable us to transform the optimal update policy of the single

query problem into an optimal update policy of the PoW problem under periodic

query arrivals.

3.2 Periodic Sequence of Queries

In this section and next section, we assume that the query arrival process {Qk}∞k=1 is

deterministic and periodic with T . Let Qk = kT , for k = 1, 2, . . . . Furthermore, we

assume that T > 4BU .3 Based on these assumptions, we construct an optimal update
3 Considering the delay in many practical communication links is expected to be much lower than the query

period for typical applications, this assumption is not restrictive for many practical cases of interest.
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policy πopt for a periodic sequence of queries in the next proposition. Then, we point

out the properties of the update policy πopt based on the next proposition.

Proposition 4. If the transmission delay process {Yj}∞j=0 is i.i.d. such that Pr(Yj ∈
[BL, BU ]) = 1 and the query arrival process, {Qk}∞k=1, is deterministic and periodic

with T > 4BU , then h̄opt is equal to h̄one
opt .

Proof. It is clear that h̄one
opt ≤ h̄opt. Otherwise, it would contradict the optimal solution

of the single query problem. Therefore, it is enough to construct an update policy πopt

achieving h̄one
opt of expected age penalty for the periodic sequence of queries.

Let πopt
1 be the optimal policy of the single query problem characterized in Corollary

2. Let QBP
i be the border point of Qi and πopt

1 . From the starting point, πopt can

follow πopt
1 between [0, Q1]. This can be performed because πopt

1 decides to wait until

QBP
1 and QBP

1 ≥ Q1 − 3BU > 0. From Corollary 3, the expected age penalty at Q1

is Gπopt
1

R (Q1 − QBP
1 ). As the policy πopt follows πopt

1 until the point Q1, the channel

must be idle before Q1 + BU as the transmission delay can be at most BU . When

the channel is idle, πopt can follow πopt
1 again, but this time the policy is performed

for the query Q2. The act of following the policy πopt
1 is possible because QBP

2 ≥
Q2 − 3BU > Q1 + BU . Hence, the expected age penalty at Q2 is Gπopt

1
R (Q2 − QBP

2 )

by Corollary 3. For the remaining queries Q3, Q4, . . . , it can be replicated similar to

Q2. Then, the expected age penalty at every query Qk is G
πopt
1

S (Qk − QBP
k ). From

Corollary 1, all of the expected age penalties are equal to h̄one
opt .

The previous proposition allows us to decouple the immediate next query from the

set of all the queries while constructing an optimal policy πopt for the PoW problem

under periodic query arrivals. As a result, the update policy πopt takes only the imme-

diate next query into account. This decoupling property enables us to solve the PoW

problem without a discount factor. The next corollary presents another result of the

decoupling property.

Corollary 4. Let Aj = Q− T
⌊
Dj

T

⌋
that represents the remaining time until the next

query at a delivery point Dj . The update policy πopt constructed in Proposition 4 is a

stationary and deterministic policy, which is a function of ∆(Dj) = Yj and Aj .
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Proof. The update policy πopt is a repetitive employment of the update policy πopt
1 ,

that is characterized in Corollary 2. Therefore, πopt possesses all the properties of

πopt
1 . As πopt

1 is solely determined based on Q−Dj and ∆(Dj) by Proposition 1, πopt

is stationary and deterministic function of Aj and ∆(Dj) = Yj .

Note that we prove in Corollary 4 that the constructed policy πopt is a stationary and

deterministic policy, which is a function of Aj and Yj . We also show in Proposition

4 that the optimal update policy for the PoW problem under periodic query arrivals

turns out to myopic in the sense that at any delivery point, the decision about the

optimal waiting time does not depend on future queries other than the immediate next

one. Therefore, what remains to solve the PoW problem is to find an optimal policy

for the single query problem, and apply it at each consecutive query interval.

3.3 Explicit Solution of PoW Problem

In the previous section, we exploited the decoupling property Proposition 4 to show

that one can construct a solution of the PoW problem under periodic query arrivals

through employing a sequence of deterministic policies that each solve the single

query problem. In this section, we provide an explicit solution of the single query

problem by generating a sequence of update policies that are solutions of stochastic

shortest path problems with finite state and action spaces obtained by quantization.

Then, we show that the sequence of update policies converges to an optimal policy

of the single query problem with increasingly fine quantization. The quantization

argument is given next.

We divide the real line interval [0, Q] into N equal sub-intervals, and define two new

transmission delay processes:

1. Upper Quantized Transmission Delay Process: If a transmission delay Yj oc-

curs with a probability in a transmission delay process, the transmission delay

is quantized to Q
N

⌈
Yj

Q/N

⌉
with the same probability in its upper quantized trans-

mission delay process. In other words, for every m ∈ N, we have the following:
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Pr

(
Y upp
j = m

Q

N

)
= Pr

(
Yj ∈

(
(m− 1)

Q

N
,m

Q

N

])
(3.10)

2. Lower Quantized Transmission Delay Process: If a transmission delay Yj oc-

curs with a probability in a transmission delay process, the transmission delay

is quantized to Q
N

⌊
Yj

Q/N

⌋
with the same probability in its lower quantized trans-

mission delay process. In other words, for every m ∈ N, we have the following:

Pr

(
Y low
j = (m− 1)

Q

N

)
= Pr

(
Yj ∈

[
(m− 1)

Q

N
,m

Q

N

))
(3.11)

Even though the transmission delays are quantized, an optimal policy can determine

waiting periods in the real interval [0,M ]. Hence, the state space is still an uncount-

able set. The next proposition allows us to restrict the state space to a finite set.

Proposition 5. When a quantization on the transmission delay is performed for any

number of sub-intervals N , there exists an optimal update policy whose request points

are in the set
{
0, Q

N
, 2Q

N
, . . . , Q

}
.

Proof. The proof is given in Appendix C.

The state and action spaces for lower and upper quantizations of a transmission delay

process becomes finite because the ages at the delivery points are quantized and the

possible delivery points form a finite set as a result of Proposition 5. Then, we can

define the spaces of Aj, Yj, and Zj as follows:

Definition 3. For a given query Q, let us define the following sets:

• AN =

{
0, Q

N
, 2Q

N
, . . . , Q

}
• ZN =

{
0, Q

N
, 2Q

N
, . . . ,

⌊ M
Q/N ⌋Q
N

}

• YN =

{⌊
BL
Q/N

⌋
Q

N
,

(⌊
BL
Q/N

⌋
+1
)
Q

N
, . . . ,

⌈
BU
Q/N

⌉
Q

N

}
Up to now, we have only analyzed the optimal update policy for quantized transmis-

sion delays. The next proposition puts an upper and a lower bound to the optimal
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expected age penalty for an unquantized transmission delay process. Furthermore, it

proposes an update policy whose expected age penalty lays between the upper and

lower bounds with the help of characterization in Section 3.1.

Proposition 6. For any given transmission delay process and the number of sub-

intervals N , the following hold:

(i) There exists an update policy for an unquantized transmission delay process

whose expected age penalty is less than or equal to the optimal age penalty for

the upper quantized transmission delay process.

(ii) The optimal expected age penalty for lower quantization of a transmission de-

lay process is less than or equal to the optimal expected age penalty for the

unquantized transmission delay process.

Proof. For the proof of (i), we construct an update policy for an unquantized trans-

mission delay process whose expected age penalty is less than or equal to the opti-

mal expected age penalty for the upper quantized transmission delay process. There

exists an optimal update policy for the upper quantized transmission delay process

by Proposition 1. Let πopt
1 be a deterministic optimal policy that is characterized in

Corollary 2. Let zopt(., .) be the decision function of the update policy πopt
1 . The

constructed optimal policy determines Rj+1 for j ≥ 0 as the following:

Rj+1 = Q− Q

N

⌈
Aj

Q/N

⌉
+ zopt

(
Q

N

⌈
∆(Yj)

Q/N

⌉
,
Q

N

⌈
Aj

Q/N

⌉)
(3.12)

Now, let us prove that this constructed policy gives the desired expected age penalty.

Let (Yi)
J
i=1 where J is an arbitrary natural number be a transmission delay sequence

from the unquantized transmission delay process when an update packet at the border

point is requested. The correspondence of the transmission delay sequence on the

upper quantized transmission delay process is
(

Q
N

⌈
Yi

Q/N

⌉)J

i=1

. If the constructed

policy follows the steps above, then the request points are the same for (Yi)
J
i=1 and(

Q
N

⌈
Yi

Q/N

⌉)J

i=1

. Thus, for any Dj where 1 ≤ j ≤ J , the AoI in the interval
[
Q −

Dj,
Q
N

⌈
(Q−Dj)

Q/N

⌉)
is smaller for the unquantized transmission delay process. For
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every point outside this interval, the AoI will be the same for both of the transmission

delay processes. This is valid for every transmission delay sequence (Yi)
J
i=1, hence

the expected age penalty for the unquantized transmission delay process is less than

or equal to the optimal expected age penalty for the upper quantized transmission

delay process.

The proof of (ii) is similar to the previous part. Let πopt
1 be a deterministic optimal

policy for the unquantized transmission delay process. By Proposition 1, πopt
1 can

find the optimal waiting period for every ∆(Dj) and Q−Dj . If the destination nodes

follow the same update policy πopt
1 for the lower quantized transmission delay process,

the obtained expected age penalty is less than or equal to the optimal expected age

penalty for the unquantized transmission delay process. This completes the proof.

The optimal update policy for the upper quantization of a transmission delay pro-

cess enables us to construct an update policy for the transmission delay process. The

expected age penalty resulting from this constructed update policy is proved to lays

between the optimal expected age penalties of the upper and lower quantized trans-

mission delay processes. Furthermore, we show in the next proposition that the upper

and lower bounds converge to each other as N increases. Thus, we can find an update

policy whose expected age penalty is arbitrarily close to the optimal expected age

penalty for any transmission delay process and age penalty function.

Proposition 7. For ϵ > 0, there exists N1 ∈ N such that the difference between

optimal expected age penalties of upper and lower quantizated transmission delay

processes is less than ϵ if the quantization is performed with N ≥ N1 sub-intervals.

Proof. The proof is provided in Appendix D.

Propositions 6 and 7 employ optimal solutions of the upper and lower quantized

transmission delay processes while constructing an update policy for the unquantized

transmission delay process. Hence, the remaining part of this section is to solve the

stochastic shortest path problem for quantized transmission delay processes. When

the transmission delay process is quantized, the problem turns out to be a stochastic

23



shortest path problem with finite state and action spaces as a result of Proposition 5.

This problem class can be solved by the value iteration method given the explicit cost

of each action in each state [56].

To provide an explicit cost of each action in each state, we again use the function Gπ
R.

We prove in Proposition 1 that there exists a deterministic policy πopt
1 = z(Yj, Aj)

that is optimal for a given transmission delay process {Yi}. Then, the following can

be obtained by incorporating (3.5) into (3.4):

G
πopt
1

R

(
Q−Rj,∆(Rj)

)
= E

[
G

πopt
1

R (Q−Rj − Yj − Zj, Yj + Zj)

∣∣∣∣Yj + Zj ≤ Q−Rj

]
× Pr(Yj + Zj ≤ Q−Rj)

+ g
(
Q−Rj +∆(Rj)

)
× Pr(Yj + Zj > Q−Rj)

(3.13)

where Zj = z(Yj, Aj).

The single query problem is explicitly solved in Algorithm 1. In this algorithm, the

functions upperGπopt

R and lowerGπopt

R denote the expected age penalties for the upper and

lower quantized transmission delays, respectively. These functions are recursively

calculated by using (3.13) similar to the value iteration method. This calculation is

performed through the loop in AN with ascending order. The optimal waiting time

for a pair (Yj, Aj) ∈ YN × AN is determined by minimizing the function Gπ
R in the

set ZN . Note that the set AN ,YN , and ZN is employed in the algorithm as if they

are arrays.

The output of Algorithm 1 is a decision function of Yj and Aj that characterizes an

optimal update policy of the single query problem for the upper quantized transmis-

sion delay process. An optimal policy of the single query problem for the unquantized

transmission delay process is constructed by an optimal update policy for the upper

quantized transmission delay process as it is shown in Proposition 6(i). Then, the con-

structed update policy is applied to each consecutive query interval, which is optimal

for the PoW problem under periodic query arrivals.

Algorithm 1 is more general and efficient than the algorithm obtained in [23]. Algo-
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rithm 1 is more general because it gives an optimal policy for every bounded trans-

mission delay process in a continuous domain whereas the algorithm in [23] is re-

stricted to the time slotted systems and packet erasure channels. Additionally, differ-

ent from [23], we introduce a continuous penalty function that can model a wide class

of applications. Algorithm 1 is more efficient than the algorithm obtained in [23] be-

cause we first decouple the queries and then apply a value iteration algorithm whereas

the algorithm in [23] applies the value iteration algorithm to directly infinitely many

queries, which significantly increases the complexity.
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Algorithm 1 Solution of the Single Query Problem
1: given tolerance ϵ and sufficiently large N
2: repeat
3: for i = 1 to length(AN) do
4: for j = 1 to length(YN) do
5: for k = 1 to length(ZN) do
6: Using (3.13), calculate

upperGπopt

R

(
AN(i)−ZN(k),YN(j) + ZN(k)

)
,

lowerGπopt

R

(
AN(i)−ZN(k),YN(j) + ZN(k)

)
7: end for
8:

upperz

(
YN(j),AN(i)

)
= max

{
argmin
x∈ZN

upperGπopt

R

(
AN(i)− x,YN(j) + x

)}

9:

lowerz

(
YN(j),AN(i)

)
= max

{
argmin
x∈ZN

lowerGπopt

R

(
AN(i)− x,YN(j) + x

)}
10: end for
11: end for
12: N = 2N
13: until upperGπopt

R (Q)− lowerGπopt

R (Q) < ϵ

14: return upperz
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CHAPTER 4

COMPARISON BETWEEN POW AND UOW PROBLEMS

In this chapter, we compare these two problems. First, we share a case in which the

two problems are equivalent. Then, we show the superity of the PoW problem over

UoW problem under the following two cases: (i) The transmission delay is bounded

and the query arrival process is periodic; and (2) the transmission delay is constant

and the query arrival process is an i.i.d. general process.

4.1 Poisson Query Arrival Process

In this section, we prove that PoW problem is equivalent to UoW problem when the

query arrival process is Poisson.

Proposition 8. Let the query arrival process of a PoW problem be a Poisson pro-

cess. For any transmission delay process, the optimal update policy that solves the

UoW problem also solves the PoW problem with the same transmission delay process.

Moreover, the optimal time average and query average age penalties are equal.

Proof. The proof is provided in Appendix E, and it is based on the ’Poisson arrivals

see time averages’ property exhibited by the query process.

4.2 General Transmission Delay Process

In this section, we assume that the transmission delay process is i.i.d. and takes values

in a bounded interval. On the other hand, the query arrival process is periodic with

any period T .
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It was proven in [10] that an optimal solution of the UoW problem can be found in

special subset of the set Π, which was defined as follows:

Definition 4.

• A policy π ∈ Π is said to be a stationary and deterministic policy if there

exists a decision function z : [0,∞) → [0,M ] such that Zj = z(Yj) for all

j = 0, 1, . . . .

• The set of all stationary and deterministic policies is denoted as ΠSD.

For a given fmax and a transmission delay process {Yj}, let πopt ∈ Π be an optimal

update policy for the UoW problem. It was proven in [10] that the objective function

in (2.4) attains its limit under the stationary and deterministic policies. Hence, we can

define the function gopt : [BL, BU ] → R+ as follows:

gopt(Y0) = lim
n→∞

EY
[ ∫ Dn

0
g(∆(t))dt

∣∣Y0, π
opt
]

E[Dn]
(4.1)

where the expectation is taken with respect to transmission delay sequences given that

the update policy πopt is performed. Let us define a function f : ([0, T ],ΠSD) → Π in

an effort to construct update policies based on a stationary and deterministic update

policy.

f(x, πin) = πout (4.2)

where πin is a stationary deterministic policy in which Zj = z(Yj), z : [0,∞) →
[0,M ]. Then, πout is a causal policy in which Zj = z(Yj) with the same z function

for j > 0 and Z0 = z(Y0) + x. Note that determination of Zj for j > 0, i.e. πout, is a

function of Yj , which makes the policy stationary and deterministic for j > 0.

Lemma 2. Let ΠPoW be the image of the function f(x, πopt) where x ∈ [0, T ]. The

objective function of the PoW problem attains its limit for every policy in the set

ΠPoW .

Proof. The proof is provided in Appendix F.
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As a result of previous proposition, let us define the function h : [BL, BU ]×ΠPoW →
R+ as follows:

h(Y0, π) = lim
n→∞

EY
[∑n

k=1 g(∆(Qk))
∣∣Y0, π

]
n

(4.3)

where the expectation is taken with respect to possible transmission delay sequences

given that π ∈ ΠPoW is performed. In the rest of the section, we seek to establish

a relationship between the functions h(Y0, π) and gopt(Y0) such that an average of

h(Y0, π) for some π ∈ ΠPoW is equivalent to gopt(Y0).

Let ∆π,Y(t) denote AoI at time t, when a stationary and deterministic policy π is

performed on a transmission delay sequence Y = (Y0, Y1, . . . ). When the performed

policy π is a stationary and deterministic policy which is function of Yj , ∆π,Y(t) is a

function of t. Then, it is obvious from the definition of the function f in (4.2) that

∆πopt,Y(t) = ∆f(x,πopt),Y(t+ x), for t > M +BU (4.4)

As (4.4) holds for every transmission delay sequence, we can take expectation on

transmission delay sequences. Thus, the following equation holds for every t > M +

BU :

EY
[
∆πopt,Y(t)

]
= EY

[
∆f(x,πopt),Y(t+ x)

]
(4.5)

Let m be a natural number such that (m+1)T > M + T +BU . Then, we can obtain

the following:

h
(
Y0, f(x, π

opt)
)
= lim

n→∞

EY
[∑n

k=1 g
(
∆f(x,πopt),Y(Qk)

)∣∣Y0

]
n

(a)
= lim

n→∞

EY
[∑n

k=m+1 g
(
∆f(x,πopt),Y(Qk)

)∣∣Y0

]
n−m

(b)
= lim

n→∞

EY
[∑n

k=m+1 g
(
∆πopt,Y(Qk − x)

)∣∣Y0

]
n−m

(4.6)

where (a) follows from the properties of limit and (b) follows from (4.5).

Let us divide the interval [0, T ] into small intervals with length δ. Then, we obtain the
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following:

∑T/δ
i=1 h

(
Y0, f

(
(i− 1)δ, πopt

))
T/δ

(a)
=

T/δ∑
i=1

lim
n→∞

EY

[∑n
k=m+1 g

(
∆πopt,Y

(
Qk − (i− 1)δ

))]
(n−m)T/δ

(b)
= lim

n→∞

T/δ∑
i=1

EY

[∑n
k=m+1 g

(
∆πopt,Y

(
Qk − (i− 1)δ

))(
n−m

)
T/δ

]
(c)
= lim

n→∞
EY

[∑Qn/δ
i=Qm/δ+1 g

(
∆πopt,Y

(
iδ
))(

Qn −Qm

)
/δ

]

(4.7)

where (a) follows from (4.6), (b) follows from interchanging the order of the limit

and summation by Lebesgue’s Dominated Convergence Theorem as all of the terms

are upper bounded by g(Bu +M), and (c) follows from exchanging summation and

expectation.

As δ goes to 0, we can obtain the following:

lim
δ→0

∑T/δ
i=1 h

(
Y0, f

(
(i− 1)δ, πopt

))
T/δ

(a)
= lim

δ→0
lim
n→∞

EY

[∑Qn/δ
i=Qm/δ+1 g

(
∆πopt,Y(iδ)

)(
Qn −Qm

)
/δ

∣∣∣∣Y0

]
(b)
= lim

n→∞
lim
δ→0

EY

[∑Qn/δ
i=Qm/δ+1 g(∆πopt,Y(iδ))(

Qn −Qm

)
/δ

∣∣∣∣Y0

]
(c)
= lim

n→∞
EY

[
lim
δ→0

∑Qn/δ
i=Qm/δ+1 g(∆πopt,Y(iδ))(

Qn −Qm

)
/δ

∣∣∣∣Y0

]
(d)
= lim

n→∞
EY

[∫ Qn

Qm
g(∆πopt,Y(t))dt(
Qn −Qm

) ∣∣∣∣Y0

]
(e)
= lim

n→∞
EY

[∫ Qn

0
g(∆πopt,Y(t))dt

Qn

∣∣∣∣Y0

]
(f)
= lim

n→∞
EY

[∫ Dn

0
g(∆πopt,Y(t))dt

Dn

∣∣∣∣Y0

]
(g)
= gopt(Y0)

(4.8)

In (4.8), (a) follows from (4.7). (b) follows from Moore Osgood Theorem as the

term with the expectation is proved to be uniformly convergent in Appendix G. (c)
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follows from Lebesgue’s Dominated Convergence Theorem as g(∆πopt,Y(.)) is upper

bounded by g(BU + M). (d) follows from the Riemann Integration that is proved

in [57, Theorem 6.10]. (e) and (f) are obtained from the following facts: (i) [0, Qm] is

a bounded interval. (ii) BL < ∆πopt,Y(t) < M + BU for all t ∈ R+. (iii) Let Di be

the closest delivery point to a query Qk. Then |Di −Qk| < (BU +M)/2. (g) follows

from (4.1).

As a result, we establish the intended relationship between the functions h(Y0, π) and

gopt(Y0). Now, let us prove the fundamental result of this section:

Theorem 1. If the transmission delay process {Yj}∞j=0 is i.i.d. such that Pr(Yj ∈
[BL, BU ]) = 1 and the query arrival process {Qk}∞k=1 is periodic, then h̄opt ≤ ḡopt

with the same transmission power constraint fmax, for every period T .

Proof. We are going to prove that for every starting point of Y0 ∈ [BL, BU ], there

exists x ∈ [0, T ] such that h(Y0, f(x, π
opt)) ≤ gopt,Y0 where πopt the optimal up-

date policy for the UoW problem. Suppose that this is not true. Then, there exists

Y0 ∈ [BL, BU ] such that for all x ∈ [0, T ], h(Y0, f(x, π
opt)) > gopt,Y0 . Furthermore,

g(∆πopt,Y(t)) is lower semi-continuous with respect to t because g is continuous and

non-decreasing. As g is uniformly continuous on the interval [BL, BU + M ] and

bounded in this compact interval; lower semi-continuity of EY [g(∆f(x,πopt),Y(Qk))]

with respect to x can be easily shown by its definition. Then, h(Y0, f(x, π
opt) turns

out to be sum of countable lower semi-continuous functions with respect to x. Count-

able sum of lower semi-continuous functions is lower semi-continuous when they are

lower bounded [58, Chapter 2]. As the variable x is in a compact set [0, T ], the func-

tion attains h(Y0, f(x, π
opt) its infimum. Hence, there exists C > 0 such that (4.9) is

satisfied.

h(Y0, f(x, π
opt)) ≥ gopt,Y0 + C (4.9)

lim
δ→0

∑T/δ
i=1 h

(
Y0, f

(
(i− 1)δ, πopt

))
T/δ

≥ gopt,Y0 + C (4.10)

(4.10) can be obtained as a result of (4.9). Then, (4.10) contradicts (4.8). Therefore,

for every Y0 ∈ [BL, BU ], there exists x ∈ [0, T ] such that h(Y0, f(x, π
opt)) ≤ gopt,Y0 .
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Corollary 5. Theorem 1 is valid when there is no power constraint in the objectives

of both PoW and UoW problems.

Proof. It is proven in Theorem 1 that there exists π ∈ ΠPoW such that the query

average age penalty of the PoW problem under the policy π is less than or equal to

the optimal time average age penalty of the UoW problem. When there are no power

constraints in the objectives of both PoW and UoW problems, then we can construct

such a set ΠPoW from the optimal policy of the UoW problem. Therefore, the proof

is still valid.

4.3 General Query Arrival Process

In this section, we assume that the transmission delays are constant whereas the query

arrival process can be any i.i.d. process.

Again, it was shown in [10] that there exists a solution of the UoW problem in the

set of stationary and deterministic policies. Suppose that πopt ∈ ΠSD is an optimal

policy for a transmission delay time Y . Then, the waiting times determined by πopt

will be a constant Z. In that case, the AoI will be a function whose value linearly rises

from Y to 2Y + Z and returns to Y with period Y + Z. Let us define the function

mod : R× R → R to express the AoI.

mod(x, y) = x−
⌊
x

y

⌋
× y

∆(t) = mod(t, Y + Z) + Y (4.11)

Then, ḡopt can be expressed as:

gopt =

∫ 2Y+Z

Y
g(t))dt

Y + Z
(4.12)

Let us define h : Π → R+ as:

h(π) = lim sup
n→∞

E
[∑n

k=1 g
(
∆(Qk)

)∣∣π]
n

(4.13)
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In the rest of the section, we will categorize the interarrival times, {Q′
k}, into two

classes similar to [59]. If Q′
k belongs to class 1, we will show that PoW problem can

attain a better age penalty than the optimal age penalty of the UoW problem just by

changing the first waiting time Z0. If Q′
k belongs to class 2, we will show that the

optimal age penalty of the PoW problem is equal to that of the UoW problem. These

two classes are defined as follows:

Definition 5.

• If there exists a β ∈ R such that Pr(Q′
k ∈ {β, 2β, 3β, . . . } = 1) and β =

p
q
(Y + Z) (p, q ∈ N), then the distribution of the Q′

k is said to be class 1.

• If the distribution of Q′
k is not class 1, it is said to be class 2.

It should be noted that the classification of the query interarrival times depends on the

stationary and deterministic policy applied.

4.3.1 Class 1 Interarrival Times Between Queries

Let us define a function f : R+ ∪ {0}×ΠSD → Π that changes the first waiting time

Z0 as follows:

f(x, πin) = πout (4.14)

In the above equation, πin is a stationary and deterministic policy with deterministic

function z. πout determines the waiting times by Z0 = z(Y ) + x, Zj = z(Y ) : j > 0.

Then, πout policy is also a stationary and deterministic policy for Zj : j > 0. Let

ΠPoW denote the image set of the function f .

Let ∆π(t) denote the change of the AoI over time. Then, the definition of the function

f implies that the below holds for every π ∈ ΠSD.

∆π(t) = ∆f(x,π)(t+ x), if t > Y + x (4.15)

Since the AoI is periodic, as stated in (4.11), and {Q′
k}’s form a i.i.d. process, the

QAoI ∆(Qk) can be expressed as a Markov chain. Two important properties of this

Markov chain are specified in the following lemma.
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Lemma 3. If the policy π ∈ ΠPoW is applied, the markov chain expressing the AoI at

query instants occurring after 2Y +M , i.e. Qk > 2Y +M , has q states where each

state communicates with all other states.

Proof. The definition of ΠPoW implies there exists a πin ∈ ΠSD such that f(x, πin) =

π. Let Z be the waiting time determined by policy πin. Without loss of generality,

assume that β is the greatest real number satisfying β = p
q
(Y + Z). Further assume,

p and q are relatively prime natural numbers. Definition of β implies that Qk should

be a positive integer multiple of β. Furthermore, q × β = p × (Y + Z). Since ∆(t)

is a periodic function with period (Y + Z), there are atmost q states ∆(Qk) can take.

These states are the following: mod(β + x, Y + Z) + Y,mod(2β + x, Y + Z) +

Y, . . . ,mod(qβ + x, Y + Z) + Y . If we prove that these q states communicate with

each other, we prove there cannot be less than q states since it shows that every state

is accessible from the initial state. Assume we are at state m. Let’s check whether

all states are accessible from state m. Since β is the greatest possible number, either

Pr(Q′
k = β) > 0 is true or there exists relatively prime numbers p1, q1 ∈ N such that

Pr(Q′
k = p1β),Pr(Q

′
k = q1β) > 0. If Pr(Q′

k = β) > 0, after n−m+q queries, state

n can be reached with a positive probability. Else if Pr(Q′
k = p1β),Pr(Q

′
k = q1β) >

0 state n can be reached after a + b queries since there exists a, b, c ∈ N such that

p1a+ q1b = n−m+ qc where p1 and q1 are relatively prime numbers. Consequently,

all states are accessible from each other which concludes the proof.

Corollary 6. Let c1, c2, . . . , cq denote the AoI of the q states. This Markov chain

reaches to a steady state where the steady state probabilities are denoted by

p1, p2, . . . , pq. Then we have,

h(π) =

q∑
i=1

g(ci)× pi (4.16)

Proof. Lemma 3 shows that the Markov chain is ergodic and unichain. Then, this

Markov chain reaches to one and only one steady state [60, Chapter 4.3.1] and these

steady state probabilities are equal to the limiting fraction of time in each state.

Now, we share the main contribution of this section.
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Theorem 2. Let πopt ∈ ΠSD be the optimal policy of the UoW problem under the

constraint fmax. Assume that the distribution of the interarrival times of the queries

are class 1 when the waiting times are determined by the policy πopt. Then, there

exists a x ∈ [0, Y + Z] such that the average age obtained from the PoW problem

when the policy f(x, πopt) is applied is less than or equal to the average age obtained

from the UoW problem. Furthermore, policy f(x, πopt) satisfies the condition fmax.

Proof. Assume it is not true. Hence for all x ∈ [0, Y +Z], policy f(x, πopt) is greater

than gopt. Then, ∫ Y+Z

0
h(f(t, πopt))dt

Y + Z
> gopt (4.17)

On the other hand,∫ Y+Z

0
h(f(t, πopt))dt

Y + Z

(a)
=

∑q
i=1 pi ×

∫ Y+Z

0
g(mod(iβ + t, Y + Z) + Y )dt

Y + Z

(b)
=

∑q
i=1 pi ×

∫ 2Y+Z

Y
g(t)dt

Y + Z

(c)
=

∫ 2Y+Z

Y
g(t))dt

Y + Z
(d)
= gopt

(4.18)

where (a) can be obtained from 6; (b) can be obtained from the age penalty function

of the states shown in the proof of Lemma 3; (c) can be obtained form the fact that

the sum of pi’s are equal to 1 since pi’s are the steady state probabilities; finally, (d)

can be obtained from (4.12).

Then, (4.17) contradicts with (4.18). Hence, there exists a x ∈ [0, Y + Z] such that

the average age obtained from the PoW problem using policy f(x, πopt) is less than

or equal to the optimal age obtained from the UoW problem. Since policy f(x, πopt)

only affects the first waiting time and πopt satisfies the condition on fmax, f(x, πopt)

also satisfies the condition fmax. This concludes the proof.

Theorem 2 shows that when the inerarrival times between queries i.e. {Q′
k}, is class

1, the optimal average age can be obtained from the PoW problem is less than that of

the UoW problem.
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4.3.2 Class 2 Interarrival Times Between Queries

Say that policy πopt ∈ ΠSD is an optimal solution for the UoW problem under the

constraint fmax. Let the interarrival times of the queries be class 2 when Z is the

waiting time determined by the policy πopt and the transmission delays are constant.

In this subsection, we show that the h(πopt) is equal to the gopt. For this purpose, we

define the following:

Definition 6. If there exist a ≤ c < d ≤ b for every c, d ∈ R such that the below

conditions are satisfied, the real series (x1, x2, x3, . . . ) is equidistributed in the closed

interval [a, b].

lim
n−→∞

∣∣{x1, x2, . . . , xn} ∩ [c, d]
∣∣

n
=

d− c

b− a
(4.19)

Here, |{x1, x2, . . . , xn}∩[c, d]| designates the number of elements of xj in the interval

[c, d].

Now, we share the main contribution of this subsection:

Theorem 3. Let πopt ∈ ΠSD be the optimal policy of the UoW problem under the

constraint fmax. Also, let the interarrival times be class 2 when the waiting times

are determined by πopt. Then, the optimal age obtained from the PoW problem with

policy πopt is equal to that of the UoW problem.

Proof. Consider the series whose elements are g(∆(Q1)), g(∆(Q2)), g(∆(Q3)), . . . .

If we apply the elements of these series as the policy πopt, corresponding time average

age penalties form the series with elements g(mod(Q1, Y +Z)+Y ), g(mod(Q2, Y +

Z)+Y ), g(mod(Q3, Y +Z)+Y ), . . . due to (4.11). Since the inerarrival times of the

queries are i.i.d. for this series, its elements are equidistributed in the closed interval

[g(Y ), g(2Y + Z)] [59, Theorem 2]. Then,

h(πopt) =

∫ 2Y+Z

Y
g(t))dt

Y + Z
= gopt (4.20)

Theorem 3 shows the goal of the section for class 2 inerarrival times of the queries

{Q′
k}.
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Corollary 7. Theorems 2 and 3 are valid when there is no power constraint in the

objectives of both PoW and UoW problems.

Proof. The proof is the same as the proof of Corollary 5.

Theorems 2 and 3 complete the contribution of this section, where we showed the

superiority of PoW problem over UoW problem when the query arrival process is

general and the transmission delays are constant.
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CHAPTER 5

NUMERICAL RESULTS

Throughout the section, we exhibit the behavior of the average age penalties for the

PoW and UoW problems under different transmission delay processes. To be consis-

tent with our system model which assumes finite valued transmission delay, we will

utilize truncated versions of certain transmission delay distributions such as exponen-

tial and log-normal distributions. Specifically, we truncate the values to start at 0.01

and go up to a maximum value chosen such that the cumulative distribution of the

transmission delay at this value is 0.95. We choose T = 4BU .

We compare three different update policies: the zero-wait policy, the optimal policy

of the UoW problem found in [10], and the optimal policy of the PoW problem found

in Algorithm 1. The optimal solutions of the UoW problem and the PoW problem are

referred to as UoW-optimal policy and PoW-optimal policy, respectively. The average

age penalty of the PoW-optimal policy is calculated by averaging the age penalties

at the query instants. The average age penalties of the zero-wait policy and UoW-

optimal policy are calculated as time average age penalties. Perhaps surprisingly, in

all of our simulations, the time-average AoI and QAoI are identical for the zero-wait

and UoW-optimal policies. The reason is, in all of our examples Xj = Yj +Zj obeys

the ’Case 1 i.i.d.’ random variable definition in [59]. Case 1 random variables are

all the random variables except the cases that there exists β ∈ R such that Pr(Xj ∈
{kβ : k ∈ N}) = 1 or Pr(Xj = 0) = 1. The proof for the equivalence of the time-

average AoI and QAoI is subject to our future works. Note that the random variable

Xj under the PoW-optimal policy may not be an i.i.d. random variable, that is why

the PoW-optimal policy can result in a lower age than the time-average age of the

UoW-optimal policy.
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Table 5.1: Lower bounds on the query average age with i.i.d. truncated exponential
distributed service times

Q
N

λ
1 1.2 1.4 1.6 1.8 2

0.16 1.297 1.097 0.897 0.792 0.702 0.624

0.08 1.359 1.159 0.958 0.854 0.763 0.684

0.04 1.391 1.191 0.99 0.885 0.795 0.715

0.02 1.407 1.207 1.006 0.901 0.811 0.731

Table 5.2: Upper bounds on the query average age with i.i.d. truncated exponential
distributed service times

Q
N

λ
1 1.2 1.4 1.6 1.8 2

0.16 1.457 1.257 1.057 0.952 0.862 0.784

0.08 1.439 1.239 1.038 0.934 0.843 0.764

0.04 1.431 1.231 1.03 0.925 0.835 0.755

0.02 1.427 1.227 1.026 0.921 0.831 0.751

Table 5.3: Number of Gπ
R calculations to determine an optimal update policy when

service times are i.i.d. truncated exponential distribution and the penalty function is
identity.

Q
N

λ
1 1.2 1.4 1.6 1.8 2

0.16 7×104 5×104 3×104 2×104 2×104 1×104

0.08 6×105 4×105 2×105 2×105 1×105 1×105

0.04 5×106 3×106 2×106 1×106 1×106 8×105

0.02 4×107 3×107 1×107 1×107 7×106 6×106

Tables 5.1, 5.2, and 5.3 illustrate the change in lower bounds of the query average

age, upper bounds of the query average age, and the number of calculations to find

an optimal policy, respectively for different numbers of sub-intervals N under i.i.d.

truncated exponentially distributed services times. Observing the tables 5.1 and 5.2,

we detect that the upper bound is much stricter than the lower bound. This is also

the case for the other transmission delay processes such as log-normal, beta, uniform

distributions. Even though the number of calculations is exponentially increasing as

the number of sub-intervals N increases, the upper bounds of the query average age

are rapidly converging. It means that reaching a satisfactory approximate solution

for the PoW problem does not require an excessive number of Gπ
R calculations. As a

result, we decide to present only the upper bound of the query average age to avoid
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confusion in the following figures.
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Figure 5.1: Average age at query instants with i.i.d. beta distributed services times.
The optimal policies of the PoW problems are found with Q

N
= 0.05.

Figures 5.1, 5.2, and 5.3 illustrate the behavior of the average ages under i.i.d. beta

distributed service times with equal α, β parameters, i.i.d. truncated log-normal dis-

tributed service times, i.i.d. truncated Pareto distributed service times, respectively.

When α = β = 1, the Beta distribution becomes a uniform distribution between 0 and

1. As α = β approaches 0, it approaches a bimodal distribution concentrated around

0 and 1 with probability close to 0.5 each. Interestingly, as α and β increase, the

average ages of the zero-wait policy and the UoW-optimal policy decrease whereas

the average age of the PoW-optimal policy increases even though the mean of the

beta distribution is constant, α
α+β

= 1
2
. The benefit of using the PoW-optimal policy

is pronounced when the transmission delay is bi-modal distributed. The log-normal

distribution is a heavy-tailed distribution especially for large σ. We observe in Figure

5.2 that the PoW-optimal policy performs better than the other policies in heavy-tailed

distribution as well. On the other hand, as α goes to ∞, the Pareto distribution con-

verges to the dirac delta function δ(t − xm). We choose xm = 1 which leads that

UoW-optimal policy is equivalent to the zero wait policy for α ≥ 3 [10, Theorem 5].

We observe in Figure 5.3 that PoW-optimal policy performs well as the transmission

delay distribution approaches the dirac delta function.
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Figure 5.2: Average age at query instants with i.i.d. truncated log-normal distributed
services times with parameters (σ, µ) where µ = 0. The optimal policies of the PoW
problems are found with Q

N
= 0.2.

Figure 5.4 exhibits the behavior of the average age penalties for different α when the

age penalty function g(x) = eαx − 1 and service times are exponentially distributed

with λ = 1. This nonlinear age penalty function represents destination nodes that

demand very fresh update packets and harshly penalize stale update packets. In the

figure, we observe that the PoW-optimal policy works much better than the other

policies especially for high α values. It means that the pull-based communication

model is beneficial to utilize when the destination node demands very fresh update

packets.

Up to now, we have not put any constraint on the number of transmissions for the

policies. Figures 5.5 and 5.6 illustrate the behavior of the average ages under trun-

cated i.i.d. exponential distributed service times and Pareto distributed service times,

respectively, when the number of transmissions in the UoW-optimal policy is con-

strained by the number of transmissions made by the PoW-optimal policy. We ob-

serve that the average age of the PoW-optimal policy is much lower than the average

age of the UoW-optimal policy for an equal number of transmissions. This implies

that in a practical situation, applying the PoW solution can be significantly more

energy-efficient, for the same age performance.
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Figure 5.3: Average age at query instants with i.i.d. truncated Pareto distributed
services times with (xm, α) where xm = 1. The optimal policies of the PoW problems
are found with Q

N
= 0.05. Note that the optimal policy of the UoW problem is

equivalent to the zero wait policy when xm = 1 and α ≥ 3.
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Figure 5.4: Average age penalty at query instants with the age penalty function
g(x) = eαx − 1 and i.i.d. truncated exponential distributed services times where
λ = 1. The optimal policies of the PoW problems are found with Q

N
= 0.05.
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Optimal Policy of UoW Problem

with Transmission Constraint
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Figure 5.5: Average age at query instants with i.i.d. truncated exponential distributed
services times with the parameter λ when the optimal policy of the UoW problem
is constrained to transmit the same number of update packets as the optimal policy
of PoW the problem. The optimal policies of the PoW problems are found with
Q
N

= 0.05.
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Figure 5.6: Average age at query instants with i.i.d. truncated Pareto distributed
services times with the parameters (xm, α) where xm = 1, when the optimal policy
of the UoW problem is constrained to transmit the same number of update packets as
the optimal policy of the PoW problem. The optimal policies of the PoW problems
are found with Q

N
= 0.05.
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CHAPTER 6

CONCLUSION

We studied the optimal control of the status update system in which the destination

node requests the source node to submit an update packet to the channel. We de-

fined a continuous, non-decreasing, and non-negative penalty function to represent

the level of dissatisfaction on data staleness. While solving the PoW problem, we

first identified the PoW problem under the single query case as a stochastic short-

est path problem with uncountable state and action spaces. For this specific SSP

problem, we obtained an optimal policy. Using the solution of the SSP problem, we

found out an optimal policy for the PoW problem under periodic query arrival pro-

cesses. Furthermore, we provided an analytical comparison between the UoW and

PoW problems: (i) An optimal policy that minimizes the UoW problem also mini-

mizes the PoW problem under Poisson query arrivals. Furthermore, their average age

penalties are equivalent. (ii) The optimal query average age penalty under periodic

query arrivals is always less than or equal to the optimal time average age penalty.

An interesting by product is that for a large class of distributions, the QAoI achieved

by Zero-Wait and the UoW-optimal policies are identical to the time-average AoI

achieved by these policies, and both are remarkably higher than the QAoI achieved

by the PoW-optimal policy, even when the former two are allowed an unconstrained

number of transmissions. For the same number of tranmissions, the PoW-optimal re-

sult achieves a more significant lowering of QAoI, which in turn implies the potential

energy efficiency of a PoW-optimal solution for a desired Query AoI performance.

Future directions for this work include the general solution of the PoW problem (i.e.,

for general query arrival processes, and delay processes with memory), and exhibiting

the superiority of the result to those obtained by previous push-based solutions.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof. We first prove that Q − Dj and ∆(Dj) are sufficient statistics to obtain an

optimal Zj for every j, (Yi)
j
i=0, and (Zi)

j−1
i=0 . We perform induction on Q − Dj . Let

us map each Q−Dj to a natural number n such that (n− 1)BL ≤ Q−Dj < nBL.

If n = 1, then Q − Dj < BL. For every waiting period Zj , the age penalty at the

query is constant because a new update cannot arrive until the query. Then, the age

penalty at the query is g(Q − Dj + ∆(Dj)). Thus, if n = 1, Q − Dj and ∆(Dj)

are sufficient statistics to obtain an optimal Zj for every j, (Yi)
j
i=0, and (Zi)

j−1
i=0 . Let

us assume that Q − Dj and ∆(Dj) are sufficient statistics to obtain an optimal Zj

for n = 2, 3, . . . K where K is an arbitrary natural number. Let ΠK be the set of

all causal waiting policies such that if π ∈ ΠK ; then π determines waiting times at

delivery points Dj : Q − Dj < KBL solely based on Q − Dj and ∆(Dj), for the

delivery points Dj : Q − Dj ≥ KBL, the waiting policy may not determine the

waiting time based on Q − Dj and ∆(Dj). Due to the induction assumption, the

single query problem can be minimized in the set of ΠK . Let us prove that the single

query problem can be minimized in the set of ΠK+1 as well. For every π ∈ ΠK , we

can obtain the following:

Gπ
R

(
Q−Dj − Zj,∆(Dj) + Zj, (Yi)

j
i=0, (Zi)

j
i=0

)
(a)
= E

[
Gπ

D

(
Q−Dj − Zj − Yj+1, Yj+1, (Yi)

j+1
i=0 , (Zi)

j
i=0

)∣∣∣∣Yj+1 + Zj ≤ Q−Dj

]
× Pr

(
Yj+1 + Zj ≤ Q−Dj

)
+ g

(
Q−Dj +∆(Dj)

)
× Pr

(
Yj+1 + Zj > Q−Dj

)
(A.1)

55



where (a) follows from (3.4). Q−Dj+1 = Q−Dj−Zj−Yj+1 < KBL as Yj+1 ≥ BL

and Q−Dj < (K + 1)BL. This means that we can exploit the induction assumption

in the RHS of (A.1) to claim that (Yi)
j
i=0 and (Zi)

j−1
i=0 does not affect the value of the

term with expectation given Q−Dj+1 = Q−Dj − Yj+1 −Zj and ∆(Dj+1) = Yj+1.

This is because π ∈ ΠK . In the term with penalty function, only Q−Dj and ∆(Dj)

appear. This means that the optimal control problem of choosing an optimal Zj at

the delivery point Dj does not depend on (Yi)
j
i=0 and (Zi)

j−1
i=0 . This completes the

induction. Once the single query problem can be minimized in the set of
⋃∞

K=1ΠK ,

it is easy to show that the calculation of the functions Gπ
D and Gπ

R can be performed

by only knowing Q − Dj and ∆(Dj) for every π ∈
⋃∞

K=1ΠK . The proof can be

performed with a similar induction.

From now on, we can omit (Yi)
j
i=0 and (Zi)

j−1
i=0 from Gπ

R and Gπ
D. For the part related

to the existence of a deterministic optimal policy, we construct a deterministic optimal

policy by performing another induction on Q−Dj . Before move on to the induction,

we state some simple observation.

Lemma 4. Let us assume that there exists a deterministic optimal policy πopt
1 .

(i) Let h : R → R such that h(ϵ) = maxx∈[0,M+BU ]g(x + ϵ) − g(x). Then, we can

obtain the following for every t1, t2 ∈ R

0 ≤ G
πopt
1

R (t1, t2 + ϵ)−G
πopt
1

R (t1, t2) ≤ h(ϵ) (A.2)

(ii) If f(x) = G
πopt
1

R (Q − Dj − x,∆(Dj)) is a lower semi-continuous function for

a given Q−Dj and ∆(Dj), then f ′(x) = G
πopt
1

R (Q−Dj − x,∆(Dj) + x) is a

lower semi-continuous function as well.

(iii) If f(x) = G
πopt
1

R (Q − Dj − x,∆(Dj)) is a lower semi-continuous function for

every Q−Dj and ∆(Dj) satisfying Q−Dj < C, where C is an arbitrary real

number, then f ′′(x) = Gπopt
1 (Q−Di−Yi+1−x, Yi+1) is a lower semi-continuous

function as well for every Q−Di and ∆(Di) satisfying Q−Di < C.

(iv) For every ϵ > 0, there exists δ > 0 such that

Pr(t1 < Yj ≤ t1 + δ) < ϵ (A.3)
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where t1 is a given real number satisfying t1 ∈ [BL, BU ].

(v) For every Q−Dj , ∆(Dj), and ϵ > 0, there exists δ > 0 such that

G
πopt
1

D (Q−Dj−Zj − Yj+1, Yj+1)− g(Q−Dj +∆(Dj)− δ) < ϵ (A.4)

Proof. (i) It follows from (3.4) and the facts that the penalty function g is continu-

ous and non-decreasing.

(ii) It follows from the definition of lower semi-continuity and Lemma 4(i)

(iii) It follows from Lemma 4(ii) and the fact that πopt
1 is a deterministic optimal

policy.

(iv) The transmission delay is measurable on Borel algebra on the real line.

(v) It follows from (3.5) and the fact that the penalty function g is continuous and

non-decreasing.

The idea which will be proven by the induction is that f(x) = G
πopt
1

R (Q − Dj −
x,∆(Dj)) is a lower semi-continuous function. From Lemma 4(ii), f ′(x) = G

πopt
1

R (Q−
Dj − x,∆(Dj) + x) is a lower semi-continuous function as well. Therefore, it at-

tains its infimum for every Q − Dj and ∆(Dj) due to the extension of Extreme

Value Theorem to semi-continuity. Then, this infimum point can be determined as

the waiting time at the delivery point Dj . This policy is a deterministic optimal pol-

icy that decides the waiting periods solely based on Q − Dj and ∆(Dj). Now, let

us move on to the induction. When Q − Dj < BL, then all waiting periods result

in the same age penalty. This means that there exists a deterministic optimal policy

πopt
1 for n = 1. Additionally, f(x) = G

πopt
1

R (Q − Dj − x,∆(Dj)) is lower semi-

continuous for every Dj satisfying Q − Dj < BL. Let us assume for n = 2 that

f(x) = G
πopt
1

R (Q − Dj − x,∆(Dj)) is lower semi-continuous for every Dj satisfy-

ing BL ≤ Q − Dj < 2BL. Note that the superscript πopt
1 refers in the definition of

the function f that the deterministic optimal policy πopt
1 is performed starting with

(j+2)th request because (j+1)th request has already determined as Dj +x. The de-

livery point Dj+1 must satisfy Q−Dj+1 < (2−1)BL in which there exists a determin-
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istic optimal policy. As f(x) = G
πopt
1

R (Q−Dj − x,∆(Dj)) is lower semi-continuous

for n = 2, f ′(x) = G
πopt
1

R (Q−Dj − x,∆(Dj) + x) is a lower semi-continuous func-

tion as well by Lemma 4(ii). Hence, the function f ′ attains its minimum for every

BL ≤ Q − Dj < 2BL and ∆(Dj). Therefore, there exists a deterministic opti-

mal policy for n = 2 as well. Similar to the transition from n = 1 to n = 2, let us

assume one by one that the function f(x) = G
πopt
1

R (Q−Dj−x,∆(Dj)) is lower semi-

continuous and there exists a deterministic optimal policy for n = 2, 3, . . . , K where

K is an arbitrary natural number. Let us prove that f(x) = G
πopt
1

R (Q−Dj−x,∆(Dj))

is a lower semi-continuous function for n = K + 1. To reach contradiction, sup-

pose that the claim is false. Then, there exists Q − Dj,∆(Dj), and x0 satisfying

KBL ≤ Q −Dj < (K + 1)BL such that f(x) = G
πopt
1

R (Q −Dj − x,∆(Dj)) is not

lower semi-continuous at x0. Hence, there exist either an increasing or a decreasing

sequence (xn) and C > 0 such that limn→∞ xn = x0 and f(xn) − f(x0) < −C for

every n ∈ N.

If (xn) is a increasing sequence, then we obtain the following by (3.4):

f(xn)− f(x0) = A× Pr(Yj+1 ≤ Q−Dj − x0)

+B × Pr(Q−Dj − x0 < Yj+1 ≤ Q−Dj − xn)

+ C × Pr(Q−Dj − xn < Yj+1)

(A.5)

where A,B, and C are the following:

A =E

[
G

πopt
1

D

(
Q−Dj − xn − Yj+1, Yj+1

)
−G

πopt
1

D

(
Q−Dj − x0 − Yj+1, Yj+1

)∣∣∣∣Yj+1 ≤ Q−Dj − x0

] (A.6)

B =g(Q−Dj +∆(Dj))− E

[
G

πopt
1

D

(
Q−Dj − xn − Yj+1, Yj+1

)∣∣∣∣
Q−Dj −Xn < Yj+1 ≤ Q−Dj − x0

] (A.7)

C = g(Q−Dj − xn +∆(Dj))− g(Q−Dj − x0 +∆(Dj)) (A.8)
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From the induction assumption and Lemma 4(iii), A can be arbitrarily small. B is

upper bounded by g(M + BU) and the multipliers of B in (A.5) can be arbitrarily

small by Lemma 4(iv). C can be arbitrarily small due to the continuity of the penalty

function g. Therefore, there exists xn such that f(xn) − f(x) ≥ −C, which is a

contradiction.

If (xn) is a decreasing sequence, then an equation similar to (A.5) can be written. The

terms that are similar to A and C can be analyzed similarly. The term that is simi-

lar B can be analyzed with the help of Lemma 4(v). After the analysis, a similar

contradiction can be achieved.

As a result, the function f(x) is lower semi-continuous. From Lemma 4(ii), the

function f ′(x) is lower semi-continuous for every Q − Dj and ∆(Dj) satisfying

KBL ≤ Q − Dj < (K + 1)BL. Thus, the function attains its infimum, and the

infimum point can be determined as a deterministic optimal waiting period Zj , which

completes the induction.
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APPENDIX B

PROOF OF PROPOSITION 3

Proof. We start this proof with a lemma:

Lemma 5. For any delivery point Dj ∈ [0, Q− 2BU ] and its AoI ∆(Dj), an optimal

request point Rj+1 must be until Q−BU i.e. Rj+1 ≤ Q−BU .

Proof. Let us assume that this lemma is not true: There exist a delivery point Dj ∈
[0, Q − 2BU ] and its AoI at the delivery ∆(Dj) such that an optimal request point is

Rj+1 > Q − BU . Let this policy follows πopt and let R∗ = Rj+1. We will show that

there exists πmodified such that Gπmodified

D (Q−Dj,∆(Dj)) ≤ Gπopt

D (Q−Dj,∆(Dj)).

Let πmodified determine Rmod
j+1 = Dj and Rmod

j+2 = R∗. As the time duration between

Dj and R∗ is greater than BU , πmodified can determine Rmod
j+2 as R∗ regardless of the

transmission delay of the (j+1)th update. After the request at R∗, let πmodified imitate

πopt. This means that Gπopt

R (Q − t1, t2) = Gπmodified

R (Q − t1, t2) for every t1 ≥ R∗

and t2 ∈ [BL, BU +M ]. As a result of the modification, we can state that

Gπmodified

D

(
Q−Dj,∆(Dj)

)
(a)
= Gπmodified

R

(
Q−Rmod

j+2 ,∆(Rmod
j+2 )

)
(b)
= Gπopt

(
Q−R∗,∆(Rmod

j+2 )

) (B.1)

where (a) follows from the decision of R̂j+1 and R̂j+2, and (b) follows from the fact

that πmodified imitates πopt starting from the point R∗.

On the other hand, as πopt determines the request point Rj+1 as R∗, we can state that

Gπopt

D

(
Q−Dj,∆(Dj)

)
= Gπopt

R

(
Q−R∗,∆(Rj+1)

)
(B.2)

61



As ∆(Rj+1) > ∆(Rmod
j+2 ), and Q−R∗ < BU , we can say that Gπopt

R (Q−R∗,∆(Rj+1))

> E[Gπopt
(Q−R∗,∆(Rmod

j+2 ))]
1 by (3.4). As a result of (B.1) and (B.2), Gπmodified

D (Q−
Dj,∆(Dj)) < Gπopt

D (Q − Dj,∆(Dj)) that contradicts with the fact that πopt is the

optimal policy. Hence, there is no such Dj , which completes the proof.

As a result of Lemma 5, R∗
j+1 ≤ Q− BU . From Proposition 2, AoI at R∗

j+1 does not

affect the age penalty at the query. Next, we prove that there is no Rj+1 ∈ [0, Q−BU ]

such that Gπopt
1

R (Q − R∗
j+1) > G

πopt
1

R (Q − Rj+1). If there existed such Rj+1 ∈ [Q −
3BU , Q − BU ], then the destination node would determine the optimal request point

for the delivery point D∗
j as Rj+1. Hence, we can state the following for every delivery

point Dj and its transmission delay Yj satisfying Dj ∈ [Q − 3BU , Q − 2BU ] and

Yj ∈ [BL, BU ]:

Gπopt

R (Q−R∗
j+1) ≤ Gπopt

D (Q−Dj, Yj) (B.3)

On the other hand, such Rj+1 cannot be in the interval [0, Q−3BU ] as well. This state-

ment is proved by induction. Similar to the proof of Proposition 1, Rj+1 is mapped to

a natural number n if it satisfies (n− 1)BL ≤ Q− 3BU −Rj+1 < nBL. It is true for

n = 1 i.e. such Rj+1 cannot be in the interval 0 ≤ Q − 3BU − Rj+1 < BL because

of the following:

G
πopt
1

R

(
Q−Rj+1

) (a)
= E

[
G

πopt
1

D

(
Q−Rj+1 − Yj+1, Yj+1

)]
(b)

≥ G
πopt
1

R

(
Q−R∗

j+1

) (B.4)

where (a) follows from (3.4), and (b) follows from (B.3). Let us assume that the

induction statement is true for n = 2, 3, . . . , K where K is an arbitrary natural num-

ber. This statement assumes the following for every request point Rj+1 satisfying

0 ≤ Q− 3BU −Rj+1 < KBL:

Gπopt

R (Q−Rj∗+1) ≤ Gπopt

R (Q−Rj+1) (B.5)

Let us prove the induction statement for n = K + 1. For every Rj+1 satisfying

1 If there exists x < BU such that Pr(Yj ∈ (x,BU ]) = 0, then BU can be shifted to x. Thus, we can assume
that Pr(Yj ∈ (x,BU ]) > 0 for every x < BU . As a result, we can claim that Gπopt

R (Q − R∗,∆(Rj+1)) is
strictly greater than E[Gπopt

(Q−R∗,∆(Rmod
j+2 ))].
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KBL ≤ Q− 3BU −Rj+1 < (K + 1)BL, we have the following:

G
πopt
1

R

(
Q−Rj+1

) (a)
= E

[
G

πopt
1

D

(
Q−Rj+1 − Yj+1, Yj+1

)]
(b)

≥ G
πopt
1

R

(
Q−R∗

j+1

) (B.6)

where (a) follows from (3.4), and (b) follows from (B.5). This implies that the induc-

tion is completed.

As a result, for every Rj+1 ∈ [0, Q−BU ], we have the following:

G
πopt
1

R (Q−R∗
j+1) ≤ G

πopt
1

R (Q−Rj+1) (B.7)

It means that R∗
j+1 attains its infimum value on the interval [0, Q − BU ]. This com-

pletes the proof.
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APPENDIX C

PROOF OF PROPOSITION 5

Proof. We perform a similar induction included in the proof of Proposition 1. Let us

map each Q−Dj to a natural number n that satisfies (n− 1)BL ≤ Q−Dj < nBL.

If n = 1, the request point does not affect the expected age penalty at the query.

Thus, requesting at the query is an optimal request point that proves the proposi-

tion statement for n = 1. Let us assume that the optimal request point is in the

set {0, N
Q
, 2N

Q
, . . . , Q} when a delivery occurs at time Dj satisfying (n − 1)BL ≤

Q −Dj < nBL for n = 1, 2, . . . , K where K is an arbitrary natural number. Let us

prove that the optimal request point is in the set {0, N
Q
, 2N

Q
, . . . , Q} when a delivery

occurs at time Dj satisfying KBL ≤ R − Dj < (K + 1)BL. Let us assume the

inverse. There exists a delivery point Dj such that KBL ≤ Q − Dj < (K + 1)BL

and the is no optimal request point in the set {0, N
Q
, 2N

Q
, . . . , Q}. As there exists

an optimal policy from Proposition 1, there exists an optimal request point Rj+1 ̸∈
{0, N

Q
, 2N

Q
, . . . , Q}. For every quantized transmission delay Yj+1, the next delivery

point satisfies Q − Dj+1 < KBL. If Q − Dj+1 > 0, the optimal next request point

should be in the set {0, N
Q
, 2N

Q
, . . . , Q} due to the induction assumption. Instead of

requesting at Rj+1, if the request was performed at Rmod
j+1 =

⌈
Rj+1
N/Q

⌉
N

Q
, there would be

two cases based on the transmission delay Yj+1. For every m ∈ N; if Dmod
j+1 > mQ

N
,

then Dj+1 > mQ
N

; if Dmod
j+1 < mQ

N
, then Dj+1 < mQ

N
because of the quantized trans-

mission delay process, where mQ
N

represents the possible next request point or the

query. Therefore, requesting an update packet at Rmod
j+1 is optimal given that Rj+1 is

an optimal request point. This conclusion contradicts with the assumption. Hence,

there exists an optimal request point in the set {0, N
Q
, 2N

Q
, . . . , Q} for every delivery

point, which completes the proof.
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APPENDIX D

PROOF OF PROPOSITION 7

Proof. Let δ = 1
2
maxx∈[0,M+BU ] g(x + ϵ) − g(x). Let N1 be a natural number sat-

isfying N1 > 3Q2

4δBL
. There exists a deterministic optimal policy πopt

1 whose first re-

quest point is the border point for lower quantization of the transmission delay with

N ≥ N1 by Corollary 2. We construct an update policy πmod
1 for upper quantiza-

tion of the transmission delay with N by utilizing πopt
1 . Let the border point corre-

sponding to the lower quantized transmission delay and πopt
1 be QBP . Let πmod

1 pull

its first request at Rmod
1 = QBP − Q

N
× Q−QBP

BL
. Note that Rmod

1 − QBP < δ as

QBP ≥ Q − 3BU > Q
4

and N ≥ N1. Let (Yj)
J
j=1 be an arbitrary transmission de-

lay sequence from the unquantized transmission delay process where
∑J

j=1 Yj > Q.

Let (Y upp
j )Jj=1 and (Y low

j )Jj=1 be the sequences that correspond to upper and lower

quantized of (Yj)
J
j=1, respectively. Let (Zj)

J
j=1 be the waiting time sequences that is

causally determined by πopt
1 based on (Y low

j )Jj=1. If πmod
1 determines the waiting peri-

ods the same as πopt
1 after the first request point i.e. Rmod

j+1 = Rmod
j +Y upp

j +Zj, j ≥ 1,

then the difference between age penalties under πopt
1 and πmod

1 is less than ϵ. This is

because 0 < Rj −Rmod
j < δ for every j where Rj is the jth request point under πopt

1 .

As this is valid for every transmission delay sequence (Yj)
J
j=1, its expected difference

is less than ϵ. This completes the proof.
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APPENDIX E

PROOF OF PROPOSITION 8

Proof. Let ΠUoW
Pois ,Π

PoW
Pois be the sets of optimal causal policies for the UoW and PoW

problems, respectively, for a given transmission delay process under a Poisson query

arrival process. We prove in this proof that ΠUoW
Pois ⊂ ΠPoW

Pois and ΠPoW
Pois ⊂ ΠUoW

Pois for

every transmission delay process, which completes the first part of the proposition.

Let Nt be a Poisson counting process with a parameter λ. Then, Nt has the stationary

and independent increments property. By Taylor expansion, we can state that

Pr(Nt+δ −Nt = 1) = λδe−λδ = λδ + o(δ) (E.1)

Let us divide the time interval [0, Qn] into small interval with length δ. Let P be the

partition that consists of these small intervals. Then, an upper Darboux sum can be

derived as follows:

E

[ n∑
k=1

g(∆(Qk))

]
≤ E

[Qn/δ∑
j=0

P (Nt+δ −Nt = 1)× sup
t : t∈[0,δ)

g
(
∆(jδ + t)

)]

= E

[Qn/δ∑
j=0

(λδ + o(δ))× sup
t : t∈[0,δ)

g
(
∆(jδ + t)

)]
= U(g(∆),P)

(E.2)
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Similar to the upper Darboux sum, a lower Darboux sum can be derived as follows:

E

[ n∑
k=1

g(∆(Qk))

]
≥ E

[Qn/δ∑
j=0

P (Nt+δ −Nt = 1)× inf
t : t∈[0,δ)

g
(
∆(jδ + t)

)]

= E

[Qn/δ∑
j=0

(λδ + o(δ))× inf
t : t∈[0,δ)

g
(
∆(jδ + t)

)]
= L(g(∆),P)

(E.3)

Let P1 and P2 be the partitions consisted of small intervals with length δ in which

there is no delivery and there is a delivery, respectively. This means that P = P1 ∪ P2

and P1 ∩ P2 = ∅. Then, there exists δ1 > 0 such that the partition P1 is organized

with δ1 length small intervals and U(g(∆),P1) − L(g(∆),P1) < ϵ/2 since g(∆(.))

is continuous on the partition P1. Inside any interval in P2, the supremum point is

less than or equal to g(BU + M) while the infimum point is greater than or equal

to g(BL). On the other hand, the number of small intervals in P2 can be at most

Qn/BL. Therefore if the partition P2 is organized with small intervals with length δ2

equal to ϵ×BL

3Qn×(g(M+BU )−g(BL))
, then U(g(∆),P2) − L(g(∆),P2) ≤ ϵ/3 < ϵ/2. As a

result, if the partition P is organized with δ = min(δ1, δ2) length small intervals, then

U(g(∆),P) − L(g(∆),P) < ϵ because U(g(∆),P1) + U(g(∆),P2) = U(g(∆),P)

and L(g(∆),P1) + L(g(∆),P2) = L(g(∆),P). Hence, for every n ∈ N, we have

proved the following by [57, Theorem 6.6]:

E

[ n∑
k=1

g(∆(Qk))

]
= E

[
λ

∫ Qn

0

g(∆(t))dt

]
(E.4)

Note that λ is just a constant and (E.4) holds for every n ∈ N. Then, we can obtain

the following:

lim sup
n→∞

E

[ n∑
k=1

g(∆(Qk))

]
n

(a)
= lim sup

n→∞
E

[∫ Qn

0
g(∆(t))dt

Qn

]
(b)
= lim sup

n→∞
E

[∫ Dn

0
g(∆(t))dt

Dn

] (E.5)

where (a) follows from E[Qn] = n/λ. (b) can be shown by using the following two
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facts: (i) Let Di be the closest delivery point to a query Qk. Then, |Di − Qk| <

(BU +M)/2. (ii) the function g(∆) has upper and lower bounds. As a result of (E.5),

minimizing (2.2) and (2.4) are equivalent, which implies that ΠUoW
Pois and ΠPoW

Pois are

equivalent. Furthermore, their average age penalties are equivalent by (E.5).

71



72



APPENDIX F

PROOF OF LEMMA 2

Proof. In this proof, under a stationary and deterministic policy π ∈ ΠPoW , we show

that the limit an exists as n goes to ∞ where an is the following:

an =
E
[∑n

k=1 g(∆(Qk))
∣∣Y0

]
n

(F.1)

Y0 is given in the expectation, Z0 = z(Y0) + x where x is constant; hence Z0 is

constant. Let Xj = Yj + Zj for j ∈ N. The transmission delays are i.i.d., and the

update policy π is a stationary and deterministic policy, which is a function of Yj for

j > 0; thus Xj is i.i.d. for j > 0. The probabilities of Xj can be calculated based on

the probabilities of Yj and the policy π.

The request points can be represented as Rj+1 = Z0 +
∑j

i=1Xi for j ≥ 1 and

R1 = Z0. Let the stopping time τk = min{τk : Rτk > Qk}. The modulo operation is

defined as the following:

mod(Rτk , T ) = Rτk − T ×max{k : Tk < Rτk} (F.2)

We can construct a Markov chain whose states are {mod(Rτk , T ), k ≥ 1}.

E[g(∆(Qk))|mod(Rτk , T )] can be calculated from the conditional expectation of Xj

given Yj , independent of k. Throughout the proof, we consider Xj in two different

scenarios similar to [59].

The first scenario is Pr(Xj ∈ {kβ : BL ≤ kβ ≤ BU +M and k ∈ N}) = 1 such that

β is a rational multiple of T . Hence, the Markov chain has a finite number of states.

Let these states be 1, 2, . . . , N These states communicate with each other. Therefore,
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it has a steady state distribution [60, Section 4.3.1] and the limiting time-average

fraction of time spent in each state can be calculated from [60, Theorem 7.2.6]. Let

these fractions be p1, . . . , pN . Then all the subsequences of an goes to the same value

equal to
∑N

i=1E[g(∆(Qk))|mod(Rτk , T ) = ithstate]×pi. All the subsequences of an

goes to the same limit, so the limit of an exists.

The second scenario is all the random variables Xj except the previous scenario.

Given Rj = mT + a where m ∈ N and a < T , the probability of which Rj is

a stopping time is equal to Pr(Xj−1 > a). From [59, Theorem 1 and 2], Rj is

equidistributed in modulo T with probability 1. Due to the equidistriution, the lim-

iting time-average fraction of time spent in the state of mod(Rτk , T ) = a exists and

it is proportional to Pr(Xj > a). Once the limiting time-average fraction exists, all

the subsequences of an defined in (F.1) goes to the same value similar to the second

scenario. Thus, the limit of an exists. This completes the proof.
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APPENDIX G

PROOF OF UNIFORM CONVERGENCE

Proof. Let fk : N → R, k ∈ N be a function such that

fk(n) =

∑Qn/2−k

i=0 g
(
∆πopt,Y

(
i× 2−k

))
Qn/2−k

(G.1)

Let f : N → R be a function such that

f(n) =

∫ Qn

0
g
(
∆πopt,Y(t)

)
dt

Qn

(G.2)

If we prove that fk → f uniformly for every {Yj} and {Zj} sequence providing that

Yj ∈ [BL, BU ] and Zj ∈ [0,M ], we can ignore the expectation since it is uniformly

convergent for every possible sequence. Then, the proof is completed.

Let Mk ∈ R be

Mk = sup
n∈N

|fk(n)− f(n)| (G.3)

As penalty function g is non-decreasing and ∆πopt,Y(.) < BU+M , then Mk ≤ g(M+

BU). Furthermore, as k goes to infinity, Mk approaches 0 due to the continuity of the

penalty function, g. As a result, fk is uniformly convergent to f by [57, Theorem 7.9].

This completes the proof.
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