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ABSTRACT 

 

NONLINEAR VIBRATION ANALYSIS OF FUNCTIONALLY GRADED 

BEAMS  

 

 

 

Dedeköy, Demir 

Master of Science, Mechanical Engineering 

Supervisor : Prof. Dr. Ender Ciğeroğlu 

Co-Supervisor: Asst. Prof. Dr. Bekir Bediz 

 

 

August 2022, 98 pages 

 

In this thesis, nonlinear forced vibrations of functionally graded (FG) Euler-

Bernoulli Beams are studied. Two types of nonlinearities, large deformation 

nonlinearity and nonlinearities resulting from rotating beam dynamics, are 

considered. The Spectral Chebyshev Technique (SCT) is employed for solving 

governing equations of the spectral-temporal boundary value problems of beam 

vibrations, which do not always have closed-form analytical solutions. The SCT is 

combined with Galerkin’s method to obtain spatially discretized nonlinear 

differential equations of motion.  Those equations of motion are then converted into 

nonlinear algebraic equations with the Harmonic Balance Method (HBM), which are 

solved with the help of Newton’s method with arc-length continuation. First, natural 

frequencies and mode shapes of the uniform and functionally graded beams are 

obtained with respect to different case scenarios of material distribution properties. 

A convergence analysis is performed to obtain the minimum number of Chebyshev 

polynomials required to obtain precise results. Afterward, frequency responses of the 

nonlinear beams subjected to different boundary conditions are studied. 

Keywords: Nonlinear Vibrations, Composite Beams, Forced Response, Spectral 

Chebyshev Technique, Harmonic Balance Method 
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ÖZ 

 

FONKSİYONEL OLARAK DERECELENDİRİLMİŞ KİRİŞLERİN 

DOĞRUSAL OLMAYAN TİTREŞİM ANALİZİ 

 

 

 

Dedeköy, Demir 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Ender Ciğeroğlu 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Bekir Bediz 

 

 

Ağustos 2022, 98 sayfa 

 

Bu çalışmada doğrusal olmayan, fonksiyonel olarak derecelendirilmiş (FOD) Euler-

Bernoulli kirişlerinin, kuvvete dayalı lineer olmayan titreşimleri çalışılmaktadır. 

Problemi lineer olmaktan çıkartan yüksek deformasyon durumu ve dönmeye bağlı 

oluşan kuvvetler göz önüne alınmıştır. Kirişin görüngesel-zamansal problemini 

sonlu elemanlarına ayırmak için Chebyshev polinomlarını kullanan Görüngesel 

Chebyshev Tekniği kullanılmıştır. Bu teknik Galerkin methodu ile birleştirilerek, 

görüngesel olarak ayrıştırılmış lineer olmayan diferansiyel denklemler elde 

edilmiştir. Harmonik denge methodu kullanılarak, bu denklemler linear olmayan 

cebirsel denklemere çevrilmiştir. Denklemlerin çözümü için Newton methodunun 

yay boyu devam tekniği kullanılmıştır.  İlk olarak, doğal frekanslar, farklı materyal 

dağılımlarını kapsayan senaryolara göre bulunmuştur. Sonrasında kaç polinom 

kullanılarak hassas sonuçlar elde edilebileceğini gösteren bir yakınsama analizi 

yapılmıştır. Son olarak da, çalışmada incelenen kiriş yapılarının kuvvete dayalı 

lineer olmayan frekans tepkileri incelenmiştir.  

Anahtar Kelimeler: Lineer Olmayan Titreşimler, Kompozit Kirişler, Kuvvete 

Dayalı Tepki, Görüngesel Chebyshev Tekniği, Harmonik Denge Metodu 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Nonlinear Vibrations in the Frequency Domain 

With the increasing demand for highly functional and durable engineering materials, 

the importance of nonlinear vibration analysis has become evident. The linear 

vibration analysis lacks understanding and pre-determining some of the aspects of 

dynamic properties. Some failure points of the structures can not be observed with a 

linear approach due to linear modeling stiffness and boundary conditions. For 

instance, the structure can have a nonlinear boundary condition that has a piece-wise 

effect on the system, such as boundaries with gaps. The materials under such 

boundary conditions behave strictly nonlinear, making it impossible to get accurate 

results with linear modeling. Moreover, dry friction force and stiffness behavior that 

material exhibits (such as quadratic or cubic stiffness characteristics)  can also induce 

nonlinearity in the system. Lastly, the problem itself may contain nonlinearity 

depending on the physical system. For example, finite deformations affect the 

vibration behavior of structures and introduce nonlinear characteristics to the model.  

Fewer studies are conducted to solve nonlinear vibrations than linear vibrations due 

to their complex form. The nonlinear vibration studies contain different cases from 

various engineering systems. However, a vast amount of studies focus on free 

vibrations, and few studies are concentrated on forced vibrations, most of which are 

based on time-domain solutions. Nevertheless, frequency-domain approaches 

provide computationally more time and cost-effective solutions than time-domain 

ones. Therefore, they can be utilized in the design procedure of engineering systems 

to determine the failure points resulting from nonlinear vibration analysis without 

the need for costly analysis models. 
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1.2 Linear and Nonlinear Vibrations of Composite Beams 

In recent years, there have been many developments in material technologies. Many 

new composite materials, such as laminated composites, functionally graded 

materials, and carbon nano-tube reinforced structures, are used widely in engineering 

systems. As a result, dynamic aspects of related materials drew the interest of many 

researchers. Composite beams have become the most commonly studied structures 

since they can exhibit fundamental physical properties of any form and can be a basis 

for developing models of more complicated geometries. Therefore, many researchers 

studied the transverse vibrations of the classical or higher-order composite 

beam/plate models for linear and nonlinear vibration problems.  

Linear vibration problems of composite beams are classified into spectral-temporal 

boundary problems. The problem does not have a closed-form analytical solution 

when the system has distributed parameters which is the main case for composite 

structures. Hence, many different numerical techniques are used to solve those 

problems, which consist of discretization of the spectral part and the selected solution 

method.  When nonlinear vibrations of these structures are considered, there is also 

a need to employ a nonlinear solution method. The various approximation, 

discretization, and nonlinear solution methods are discussed in the Literature Search 

section. 

The main nonlinearity source for the beam problems in the literature is the large 

deformation of structures. Large deformation nonlinearity, also known as geometric 

nonlinearity or Von-Karman nonlinearity, results from the stretching force 

developed along the beam due to large transverse deformations [1]. The transverse 

deformation causes the beam to elongate. However, when the beam has immovable 

ends, this elongation results in axial force due to the physical resistance to 

deformation at boundary conditions. This axial force is also called the stretching 

force and induces nonlinearity to the system. When the transverse deformations are 

low, this stretching force is small and does not significantly affect the beam behavior. 
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Nonetheless, if the transverse deformations are high, the effect of the stretching force 

on the beam’s dynamic behavior becomes undeniable. This is the reason the 

nonlinearity is called large deformation nonlinearity. Therefore, when applied 

external forces are high and significant transverse deformations are present, the 

nonlinear forcing term must be added to the equation of motion. Additionally, this 

nonlinearity must be modeled carefully when the beam is rotating, and the Coriolis 

effect and centrifugal force fields are introduced to the system. These force fields 

lead to a strong coupling of the structural modes in axial, chordwise, and flapwise 

directions [2]–[4], and the stiffening and coupling effects need to be modeled 

properly to determine the nonlinear dynamics. 

Composite beams and rotating composite beams that undergo large deformations are 

extensively used to analyze numerous engineering applications such as modeling 

airplane wings, helicopter propellers, wind turbines, etc. However, nonlinear modal 

features that are shaped with varying mechanical properties, large external loads, and 

rotating speeds have introduced additional design parameters to control and tune the 

modal characteristics of composite structures  leading to  reliable, economical, and 

optimal designs. Consequently, this study aims to develop a generic method to solve 

such crucial nonlinear vibration problems of stationary and rotating composite 

beams with cost-effective methods in the frequency domain.
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CHAPTER 2  

2 LITERATURE REVIEW 

Materials that are composed of two or more different phases with distinct mechanical 

properties are specified as composite materials. Those phases are categorized into 

the matrix and dispersed phases. The matrix phase is the main continuous phase of 

the structure, whereas the dispersed phase is included in the matrix phase with a 

discontinuous distribution. When two phases are combined, a unique new material 

is formed with physical properties distinct from the properties of the two phases[5]. 

Composites can be categorized according to matrix constituent or reinforcement 

phases. The first category involves metal matrix, ceramic matrix, and organic matrix 

composites. Organic matrix composites are divided into polymer and carbon matrix 

composites. In the second category, the composites are classified as particulate, 

fiber-reinforced, and laminar composites. Particulate composites include particle 

form dispersed phases combined with a matrix phase. The particle inclusion can be 

random or with a preferred arrangement. When fibers are used in the dispersed phase, 

the composite structure is named fiber-reinforced or fibrous composites. Short fiber-

reinforced composites include small discontinuous fiber as the dispersed phase, 

whereas long fiber-reinforced composites include continuous fiber orientation. Short 

fiber-reinforced composites are sub-categorized to random fiber orientations and 

preferred fiber orientations; meanwhile, long fiber-reinforced composites are sub-

categorized to unidirectional and bidirectional fiber orientations. Lastly, when a 

composite comprises two or more distinct layers with different fiber orientations, it 

is called a laminate composite. Material properties in laminate composites also 

depend on the angles and stacking between the layers [5]. 

Apart from the categories mentioned above, the functionally graded composite 

materials should also be explained. A functionally graded material (FGM) is a type 
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of composite structure that consists of two or more phases to have preferred spatial 

variations of mechanical properties along its directions. Considering the 

categorization according to reinforcement phases, the FGM is not classified as a 

different category, and they are primarily associated with particulate composites and 

fiber-reinforced composites. There are many techniques to manufacture FGMs, such 

as electrophoretic deposition, chemical vapor deposition, spark plasma sintering and 

centrifugal casting. However, the design and manufacturing process of FGMs create 

new challenges that drew many researchers' attention [6]. 

When vibration studies in the literature are considered, several approaches are found 

to model the material properties of such described composite structures. One 

approach is predicting an overall material property using techniques such as the rule 

of mixture, Mori-Tanaka, and Halpin-Tsai methods. In those approaches, the 

problem has two stages. The first one is property estimation with those mentioned 

methods, and the second stage is the solution of the beam vibrations. However, since 

overall properties are estimated, the beam equation is similar to the uniform beam. 

This method is commonly preferred for laminated composite beams and FG beams 

that are graded along the thickness.  

Another approach is based on inserting material variation profiles into the derivation 

of the equation of motion. Material property distributions of composite beams can 

either be assumed or found with experimental data as spatial functions. Inserting 

them into the derivation makes the differential equation of motion more complicated 

and challenging. Therefore, these types of studies are more focused on solving 

complicated beam equations efficiently than estimating the material properties 

correctly. This method is best applied for FG materials since they are designed to 

exhibit specific spatial material property variations. 
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2.1 Composite Beam Vibrations in Literature 

2.1.1 Linear Composite Beam Vibrations in Literature 

In many works, the mechanical properties of the composite beams are estimated with 

various methods, and free vibration analyses are done concerning those estimated 

properties without any nonlinearities. Alshorbagy et al. [7] worked on the dynamic 

characteristics of functionally graded (FG) Bernoulli Beams, graded along the 

thickness direction with a power law distribution. They modeled the beam as 

combinations of axially and transversely uniform beams. Sina et al. [8] considered 

the same type of  FG beams but solved the problem with analytical methods. Vo-

Duy et al. [9] worked on a 2-phase; laminated FG beam with a variation in the 

thickness direction, which involves carbon-nanotube(CNT) reinforcement. An 

extended rule of mixture is used to estimate the material properties, and first-order 

shear deformation theory is utilized to formulate the equations. They also 

investigated the effect of the CNTs volume fraction on the natural frequencies and 

mode shapes. Hesmati and Yas [10] also studied CNT-reinforced FG beams in the 

thickness direction but with an Eshelby-Mori-Tanaka approach to estimate the 

material properties. The above studies [9], [10], employed the finite element method 

to obtain free vibration solutions. 

Some studies considered the material variation of the composite beams along the 

longitudinal direction. Liu et al.[11] suggested a new method called Spline Finite 

Point Method (SFPM) to solve the vibrations of axially tapered FG Bernoulli beams 

subjected to various boundary conditions. By SFPM, the researchers discretized the 

beam with scattered nodes instead of using meshes, unlike finite element methods, 

and approximated the transverse displacement using interpolation functions. Zhao et 

al.[12] also considered tapered axially FG beams but solved it for Bernoulli and 

Timoshenko beams using Spectral Chebyshev Technique (SCT).  This technique is 

presented by Yagci et al. [13] to solve linear and nonlinear beam problems. In this 

method, Chebyshev polynomials are used as basis functions with the application of 
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Galerkin Method to get the discretized equations of motion, which a simple eigen-

value problem can solve. 

Vibrations of 2D-FG materials have also been studied by researchers. Wang et al. 

[14] studied the Euler-Bernoulli beams with material distribution along length 

according to power law and thickness according to exponential gradation. They 

solved the system by combining analytical methods and numerical methods, then 

found that the material property variation along with both directions strongly affects 

the beam's natural frequency. Researchers concluded that this strong effect could be 

used in the design of structures to make them vibrate at specific frequencies. Hao 

end Wei [15] utilized Hamilton’s principle to find the equations of a 2D-FG 

Timoshenko beam and proposed a new dynamic stiffness method combined with 

Wittrick-William algorithm to calculate the natural frequencies. Şimşek [16] 

considered forced vibrations in the time domain in addition to free vibration 

according to both Bernoulli and Timoshenko models. He considered trial functions 

in both directions as simple polynomials and solved the equation of motion by using 

an implicit time integration method, Newmark-β. 

In some research, simple laminated composites, in which mechanical properties 

depend on the ply angles and stacking sequence rather than a specific direction, are 

practiced. Hodges et al. [17] used both the finite element method and analytical 

methods to obtain the mechanical properties of the thin laminated composite beams. 

They solved the arising equations with analytical methods and finite element 

methods, then compared the results with the various experimental studies from the 

literature. They concluded that the finite element method is more effective than the 

analytical method since the analytical method requires a good estimation of natural 

frequency. Wu and colleagues [18] studied the thin laminated composites with the 

help of finite element methods, but they expanded the scope of the work by including 

the various beam shapes, including open and closed sections. 
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2.1.2 Nonlinear Composite Beam Vibrations with Large Deformations in 

Literature 

Nonlinear free vibrations have drawn the attention of many researchers in recent 

years. Ghasemi and Mohandes [19] worked on the laminated composite Bernoulli 

beams by using Hamilton’s principle and embedding Green-Langrange strain tensor. 

They obtained the governing equations and employed the generalized differential 

quadrature method (GDQM) to solve for mode shapes and natural frequencies. They 

also investigated the effect of lay-up sequences on modes and natural frequencies. 

Bangera and Chandrashekhara [20] developed a finite element method for the 

nonlinear vibrations of thick laminated beams. They considered a higher-order beam 

theory whose nonlinear equations are solved with the direct iterative method. They 

investigated the effect of boundary conditions, beam geometries, and ply orientation 

on the nonlinear mode shapes. 

 Ke, et al.[21] investigated the problem for the FG single-walled carbon nanotube 

(SWCNT) reinforced Timoshenko beams. In the study, material properties are 

assumed to be graded in the thickness direction of the beam. The rule of mixture is 

utilized for the estimation of properties. The direct iterative method is employed to 

solve the eigenvalue equations which are obtained via Ritz Method. In another work 

of theirs [22], they investigated the functionally graded Bernoulli Beams. This time 

they used the Galerkin method to obtain second-order nonlinear ordinary equations, 

which consist of cubic and quadratic nonlinear terms. With the Runge-Kutta method, 

the direct iterative method is used to obtain the natural frequencies and mode shapes 

for different end support. Raffie et al. [23] also worked CNTs reinforced FG-

Bernoulli beams with surface bonded piezo-electric layers controlled via applied 

voltage. They used the Galerkin method; nevertheless, they considered only cubic 

nonlinear terms. They used the multiple time scales method to obtain the nonlinear 

vibration characteristics of the beam. Another nonlinear free vibration research 

oriented around FGM beams with material property variation in the thickness 

direction is conducted by Feng et al. [24] in which they focused on multilayer 
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polymer nanocomposite Timoshenko beams reinforced randomly with graphene 

platelets (GPLs). In their work, effective material properties are estimated by 

Halphin-Tsai micromechanics model. Natural frequencies and mode shapes are 

calculated by using the Ritz Method.  

Tang et al. [25] studied the nonlinear free vibrations of 2D FG-Bernoulli beams. 

They applied Hamilton’s Principle to derive the nonlinear equations and used 

GDQM to predict the modes. For the closed-form solutions, they practiced the 

homotopy analysis method. They concluded that the nonlinear dynamics of FG 

beams are highly dependent on material property distribution. 

Multiple researchers practiced nonlinear forced vibrations of composite beams in the 

frequency domain. Chakrapani et al. [26] studied the forced vibrations for fiber-

reinforced composites with various fiber orientations. They devised a nonlinear 

viscoelastic beam model using von Karman strains and Kelvin-Voigt stress-strain 

relationship. They benefitted from the classical plate theory, including the effect of 

composite fiber orientations on material properties. They used the method of 

multiple time scales for solving derived equations. Finally, they compared their 

results with the experimental ones and concluded to have a good agreement between 

them. Youzera et al. [27] practiced the same problem for three-layered, symmetric 

laminated composite beams. For the analytical formulation of the problem, they 

considered higher-order zig-zag theories that account for both shear and normal 

deformations. They applied the Galerkin method to equations and used the harmonic 

balance method (HBM) to solve the frequency response of a simply-supported 

system. Lastly, Sınır et al. [28] worked on FG-Bernoulli beams with varying cross-

sections. They assumed that material properties varied along the beam length and 

used the multiple time scales method and DQM to find an approximate solution in 

the frequency domain. 

In addition to those works, Ciğeroğlu and Samandari  [29], [30] studied the nonlinear 

vibrations of regular and curved double-walled carbon nanotubes (DWCNT) 

embedded in an elastic medium by considering the nonlinear van der Waals force 
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combined with geometric nonlinearity. In their first work [30], they derived the 

equation of motion by using the Bernoulli beam model and represented the motion 

of DWCNT by multiple eigenfunctions of the linear system. Then, they employed 

the describing function method (DFM) to represent the nonlinear forces as external 

forces, which enabled identifying when multiple trial functions needed to be 

considered. By utilizing multiple trial functions, they found that detecting distinctive 

vibration modes at a particular frequency was possible. In the latter work [29], they 

advanced to curved DWCNTs. The equation of motion is discretized and obtained 

by DQM, which yields a set of nonlinear algebraic equations. They solved those 

equations by Newton’s method with arc-length continuation. Apart from the findings 

of their previous study, they also observed that the boundary conditions had a 

powerful effect on the natural frequencies.  

In conclusion, since this study aims to find an effective and accurate nonlinear 

vibration solution for beams, the focus is on nonlinear modeling rather than material 

property estimation. In this case, the modeling of axially functionally graded Euler-

Bernoulli beams is studied as this study's primary composite beam structure. If 

nonlinear vibrations of distributed parameter beam equations can be solved, 

combining them with any property estimation method without changing the 

modeling and solution method is possible.  

Regarding the discretization and solution of the problem, researchers have utilized 

many methods to solve linear and nonlinear equations. Finite element-based 

approaches result in accurate results for the system; however, they are 

computationally more expensive than the other methods due to the need for a large 

degree of freedom and proper meshing. Numerical methods such as DQM, GDQM, 

and direct iteration method provide faster solutions; however, they have convergence 

problems for frequency-domain approaches of nonlinear vibration systems. 

Approximate solutions such as Galerkin, Rayleigh-Ritz, and assumed modes are 

more efficient than the finite element methods; however, they require trial functions 

to be satisfied with respect to boundary conditions. When the equations and the 



 

 

12 

boundary conditions become more complex, it gets harder to identify those boundary 

trial functions.  

A more recent method, Spectral Chebyshev Technique, has been developed as a 

meshless approximate method [13]. In this method, exponentially convergent 

Chebyshev polynomials are utilized as the basis to discretize the governing equations 

in either the weak or strong form. In the weak form, the motion equations are 

obtained implicitly in the form of algebraic equations. In this condition, the solution 

can be obtained easier when compared to solving the partial differential equations 

directly. The boundary conditions are incorporated into the solution by applying the 

projection matrix approach. Therefore, a different set of basis/trial functions for each 

boundary condition are no longer required.  

After spatial domain discretization, the algebraic nonlinear governing differential 

equations can be solved in the frequency domain. The most popular techniques to 

solve such equations are, namely, the perturbation methods [31]–[38], describing 

function method (DFM) [39], and the harmonic balance method (HBM) [40]–[42]. 

Among these, HBM is capable of treating numerous kinds of nonlinearities with high 

accuracy and is applicable to large-scale models [40]. In this method, the periodic 

steady-state response of the system is expanded by the Fourier series, whose 

coefficients need to be determined. By inserting this expansion into the nonlinear 

equations governing the system's dynamics and balancing the identical harmonic 

terms, one can obtain and solve a set of nonlinear algebraic equations to obtain the 

unknown Fourier coefficients. Those nonlinear algebraic equations can be solved 

with path-following methods. Newton’s method with arc-length continuation is 

preferred in this study due to its accuracy and good convergence. 
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2.2 Nonlinear Uniform and Composite Rotating Beam Vibrations in 

Literature 

As discussed in the previous section, functionally graded beam problems are more 

complicated than the property estimated laminated composites and uniformly CNT-

reinforced ones. Therefore in this section, the literature search is more focused on 

the modeling-solution of the uniform and FG rotating beams. 

One of the most critical topics in modeling rotating beams is including the centrifugal 

force field to model the stiffening effects appropriately. According to the literature, 

methods of including this force field in the model can be classified into three 

categories.  

The first approach simplifies the model by introducing a stretch variable instead of 

axial deformation [4], [43]–[49]. Some researchers considered the effect of Coriolis 

force on the rotating beams and the coupling between the axial and flapwise motion. 

Nevertheless, they neglected the coupling of chordwise motion. Lin and Hsiao [2]  

studied the Timoshenko beams with this approach, derived the equations with the 

d’Alembert principle, and applied a power series-based solution. A similar study was 

conducted by Cai et al. [45] for cantilever beams in which they utilized the finite 

element method for solution. Younesian and Esmailzadeh [46] also had the same 

approach to the problem in modeling; however, they employed the Galerkin method 

for approximation and the multiple scales method for solution. Chung and Yoo [44]  

considered the coupling of all chordwise, flapwise, and stretching(axial) motions; 

however, they neglected the Coriolis effects on the beam motion and performed a 

finite element analysis. The above studies and some others [50], [51] have used 

simplified models and neglected either the gyroscopic terms caused by the Coriolis 

force field or considered only single or second-order deformations and neglected the 

couplings. Such studies improved computational efficiency; however, they are 

lacking in terms of meeting the desired accuracy. 
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Another aspect of the studies discussed in the previous paragraph was that they all 

considered uniform beams. Nevertheless, some studies utilize the stretching variable 

approach without neglecting coupling or gyroscopic effects and consider FG beams 

[43], [47]–[49], [52]–[54]. Li et al. [47] studied the free vibrations of rotating FG 

beams using the assumed modes method, whereas  Arvin et al. [49] conducted a 

similar study using multiple scales. Oh and Yoo [43] extended the stretch variable 

approach to the pre-twisted functionally graded beams. Zhang and Li [48] considered 

tapered FG beams and employed a new dynamic method in which slope angle and 

stretch variable are combined to define the beam motion with the help of the B-spline 

method. They solved the forced vibrations in the time domain.  

In the second approach, equivalent centrifugal force components are used, and direct 

integration of centrifugal forces (DICFs) is performed to calculate the work done by 

this force field [50], [52]–[70]. Adair and Jaeger [50] studied the non-uniform 

rotating Bernoulli beams by this approach; however, they neglected the chordwise 

coupling. Many researchers studied uniform rotating beams considering all coupling 

motions. Yang et al. [58] derived the Bernoulli beam equations containing 

centrifugal stiffening effects with Hamilton Principle and employed a finite element 

method for the solution. Mei [61]  used a new approach called differential 

transformation to obtain equations and mode shapes of centrifugally stiffened 

Bernoulli Beams. Banerjee and Kennedy [63] derived the equations with Hamilton’s 

principle and dynamic stiffness method and utilized the Frobenius method of power 

series solution. Yao et al. [62] studied the pre-twisted beams by using numerical 

simulations with the help of the multiple scales method. Zhang and Li [64]  worked 

on the forced vibrations of pre-twisted rotating beams in the frequency domain by 

considering the external force of harmonic gas pressure. 

Some researchers used DCIFs for rotating functionally graded beams. Zhu and Mote 

[55] considered the non-uniform Bernoulli beams with a mass attached to the 

endpoint. They observed that the high rotational speeds substantially affect the 

natural frequencies, whereas the effects of relatively low speeds can be neglected. 

Zarrinzadeh et al.[70] employed the finite element method to solve the free 
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vibrations of tapered FG beams. Banerjee [56] derived a dynamic stiffness matrix 

with the Frobenius method for uniform Bernoulli beams. However, he included an 

axial force at the end of the beam, which enabled assembling the stiffness matrix 

from different elements. As a result, he analyzed the non-uniform beams by 

assembling many uniform beams. In another study [57], he applied a similar 

technique for Timoshenko beams. Chen et al. [52] considered the 2D(in the axial and 

thickness direction)  FG Timoshenko beams and used a finite element formulation 

with NURBS function. Additionally, various researchers practiced DCIFs of rotating 

beams with the differential transform method [59], [60], [71].  

Many studies solving the rotations of FG beams with DCIFs regarded cases 

containing supersonic/subsonic airflow, thermal gradients, and pre-

deformations(pre-twist). Fazelzadeh et al. [69] investigated the case with supersonic 

gas flow and utilized DQM for the solution. Subsonic air flow excitation case for the 

laminated pre-twisted thin-walled beams is practiced by Zhang et al. [66]. In the 

study, they applied the Chebyshev-Ritz method to obtain natural frequencies. Oh et 

al. [68] considered the thermal effects on the turbomachinery blades by modeling 

them as thin-walled beams graded in the thickness direction.  

Rotating beams undergo steady-state equilibrium deformations (SSEDs), which are 

not considered in both of the mentioned categories. The methods of the third category 

are introduced to determine the SSEDs in the model by static analysis under 

centrifugal forces (SACF). Accordingly, these methods use nonlinear strain relations 

to obtain the stiffening effects [31], [72]–[78] . By using nonlinear strain relations, 

pre-stressed analysis is performed to achieve SACF, results in (i) linear stiffening 

term in equations governing the system's dynamics and (ii) nonlinear terms 

representing the couplings and large deformations. The results obtained with this 

method manifested that the predicted natural frequencies are different from the ones 

obtained with the first two categories.  

Arvin and Nejad studied the free vibrations with Galerkin discretization and the 

multiple scales method. Huang et al. [73] found the natural frequencies by dividing 
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the beam into multiple equal segments and solving those divided equations with 

power series solution. Pesheck et al. [72] used a reduced order model and invariant 

manifold approach to find the solution in time domain.  Kim et al [75] practised 

Galerkin method with numerical simulations to obtain mode shapes. Additionally, 

they investigated the forced response with a time-domain approach. Thomas et al. 

[77] employed  discretized appropriate mode method with a path following 

numerical solution  to get free  vibrations and forced vibrations in both frequency 

and time domain. Afterward, they worked on the same case based on a finite element 

approach and compared the results.  

The above studies regarded uniform rotating beams. Tian, Zhang, and Hua [76] 

studied the FG beams with double tapered cross-sections and uneven porosity phase 

distribution. They used the rule of mixture to describe material properties. The 

researchers modified the variational method based on the Ritz method for equation 

derivation of the beam divided into several free-free segments and then combined 

those equations with compatibility relations to solve with the weighted residuals 

method. Lotfan et al. [31] conducted a comprehensive study on both time and 

frequency responses of axially FG beams. They also added a time-dependent rotation 

speed variation into their study. They utilized the Spectral Chebyshev Method to 

discretize the problem and employed the method of multiple scales to study nonlinear 

behavior. 

According to the discussion above, modeling the rotation effects appropriately and 

taking into account possible complexities arising from the geometry and/or material 

bring about convoluted models. In the past decades, these models with/without the 

above-discussed simplifications have been solved via several approaches, such as 

finite element [44], [51], [58], Galerkin [46], [62] , Rayleigh Ritz [4], [78], dynamic 

stiffness matrix (DSM) [63], power series [56], [57], [73], differential transform 

method (DTM), [59]–[61], [71], and differential quadrature method [32], [33], [53]. 

Like the case in the previous section, finite element based solutions provide precise 

predictions for the dynamic behavior of the system, however, they necessitate the 

use of a large number of degrees of freedom (DOFs) and, as a result, increase the 
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computational cost [34]. Approximate methods such as Galerkin, Rayleigh-Ritz or 

DSM are computationally efficient when compared to FE; however, a new set of 

basis/trial functions are required to satisfy each different boundary condition [35]. 

In the past decades, researchers have utilized power series method to investigate the 

dynamics of rotating beams. This method has proved accurate and efficient in both 

single-segment discretization of the beam [79], and multi-segment discretization 

with the application for cases with high rotating speed [73]. However, according to 

this approach, the boundary conditions must be homogeneous, which can be 

considered as a disadvantage of this approach [36]–[38]. Moreover, based on DTM 

and DQM, the derivative and integral operators are calculated numerically, and the 

basis functions highly affect the convergence and accuracy of the solution.  

To study the nonlinear dynamics of rotating FG beams, again, SCT is applied, 

combining with HBM and Newton’s method with arc-length continuation. The SCT 

has been used to model the dynamics of linear systems. However, few studies have 

included nonlinearity in the models [13].  Nevertheless, in the current work of 

rotating beams, the SCT can be advanced further to model the nonlinear vibrations 

of the system based on weak-form formulation. That is, by the aid of the element-

wise multiplication definition, the strain and kinematic relations in the presence of 

couplings and large amplitude vibrations can be expressed by matrix form equations. 

The model of the rotating FG beam can be developed by including stiffening effects, 

SSEDs, structural mode couplings, and complexities coming from the material 

properties together. The developed model based on the nonlinear integral boundary 

value problem (IBVP) presents the internal nonlinear forcing functions in the matrix 

form such that HBM can be easily applied to obtain the forced nonlinear response 

about the SSEDs. 
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CHAPTER 3  

3 METHODOLOGY 

3.1 Harmonic Balance Method 

Any periodic function can be represented by the summation of sines and cosines by 

Fourier Series. Additionally, periodic solutions of ordinary differential equations can 

be represented by Fourier Series. When we are dealing with vibration problems of 

periodically excited single or multi-degree of freedom systems, we can assume the 

solution by Fourier Series expansion.  

For nonlinear vibration problems, HBM can be applied to obtain the nonlinear 

algebraic equations from the equations of motion of the system. In HBM, the 

nonlinear internal forces in the system can be written as a direct forcing vector. Then 

an assumed form of a periodic solution is embedded into the nonlinear equation to 

be expressed in Fourier Series. Finally, coefficients of similar terms can be balanced 

to  determine unknown coefficients. 

3.1.1 Case Study: Nonlinear Response of a SDOF system with Cubic 

Stiffness  

A case study was performed in this section for a better explanation of the HBM. This 

study investigates a simple, single degree of freedom mass-spring problem with a 

cubic stiffness added. A free body diagram for the system is given in Figure 3.1. 

The equation of motion for the system with mass(m), damping(c), linear and 

nonlinear springs with stiffnesses (k, kc), and force amplitude F0 at a frequency of w 

is given below. 
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Figure 3.1. Free body diagram of the SDOF system  

A single harmonic solution can be assumed to the problem. 

 ( ) ( ) ( )sin     coss cx t x wt x wt= +  3.2 

Derivatives of the assumed solution are, 

 ( ) ( ) ( )cos     sins cx t wx wt wx wt= −  3.3 

 ( ) ( ) ( )2 2sin     coss cx t w x wt w x wt= − −  3.4 

The terms in the equation of motion can be expressed as: 
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The cubic expression can be expanded and rewritten with the help of trigonometric 

relations. 
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By considering the sine and cosine terms’ equality and balancing the terms, two 

nonlinear algebraic equations can be obtained as: 
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( ) ( )2 2 2

0

 3
 

4
s c c s c smw k x cwx k x x x F− + − + + =  

3.8 

 
( ) ( )2 2 2 3

  0
4

c s c s c cmw k x cwx k x x x− + + + + =  
3.9 

Since a single harmonic solution is assumed, higher-order terms, sin(3wt) and 

cos(3wt) are neglected. If a multi-harmonic solution was assumed, it would be 

necessary to consider the higher-order terms. The force and the solution could be 

assumed in the summation form given below for the multi-harmonic solution 

scenario. 
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3.11 

Here the term x0 is called the bias term. It is essential to consider the bias term even 

if there is no constant force since the bias term can occur anyways, depending on the 

nonlinearity type. 

For the multi-harmonic case, unknown coefficients of the nonlinear forces are 

obtained in terms of sines and cosines with the help of the Fourier Transformation 

equations given below. 
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In the above equations, fnl is the nonlinear internal force, and θ is the wt 

multiplication.  
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3.2 Frequency Response Functions of Nonlinear Systems with Newton’s 

Method and Arc-Length Continuation 

A frequency response function is used for the quantification of the system response 

to the excitation level, magnitudewise in the frequency domain. For linear systems, 

the equation of motion is written in the frequency domain, and response magnitude 

can be solved analytically for each frequency. Nevertheless, for a nonlinear system, 

an analytical solution is not possible. Therefore, numerical methods are utilized to 

get nonlinear frequency response functions. 

In this study, Newton’s method with arch-length continuation is preferred. Newton’s 

method is not enough on his own to solve these nonlinear frequency responses due 

to some reasons. First of all, it is possible to get multiple solutions for a specific 

frequency which requires a good path following method to identify all of them. 

Additionally, at the turning of the frequency curve, there are local points whose 

Jacobian’s are zero, making Newton’s method unsolvable. By adding a new path 

following parameter called arch-length, the Jacobian is made non-zero at those 

points. What is more, this arc-length searches for the following solution in an arch 

and hence becomes very effective in identifying the next solution point; even the 

path starts to turn around. 

With the addition of a new parameter to the system, the vector of unknowns can be 

written as 

 
q

w

 
=  
 

x
 

3.15 

where x represents the vector with unknowns and w represents frequency. However, 

frequency becomes unknown too, and a new equation is required to be added into 

the system, which is the equation of a hypothetical sphere centered on the previous 

solution point and has a radius Δs. 

 ( ) ( ) ( )
2 2 2

1 1 1   k k k k k kw w s s− − −− + − = −x x  3.16 
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where, ∆𝑥 = 𝑥𝑘 − 𝑥𝑘−1, ∆𝑤 = 𝑤𝑘 − 𝑤𝑘−1 𝑎𝑛𝑑 ∆𝑠 = 𝑠𝑘 − 𝑠𝑘−1. 

As a result, a new equation is obtained. 

 ( ) ( ) ( ) ( )
T 2

1 1 1,  k k k k k k k kh w s s− − −= − − − −x x x x x  3.17 

With the addition of this new equation, the equation set of Newton’s method is 

written. 
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An example nonlinear frequency response curve is given in Figure 3.2 for the cubic 

stiffness case described in Chapter 3.1.1 for different excitation levels. (Parameters 

are taken as k=10000 N/m, m=10 kg, kc=1000000 N/m3, μ=0.03, c=kμ and 

f=15,20,25N).  

 

Figure 3.2. Frequency response of the SDOF system described in Chapter 3.1.1 
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3.3 Spectral Chebyshev Technique 

In the SCT, Chebyshev polynomials are used for obtaining system matricies for the 

boundary value problemof beam vibrations. A function of the problem can be 

expressed by a Chebyshev series expansion as 

 
( ) ( )

0

k k

k

y x T x


=

=  
3.19 

Where Tk(x) is Chebyshev polynomials of the first kind which can be given as 

follows 

 1( ) cos( cos ( )) for 0,1,2,....kT x k x k−= =      3.20 

Chebyshev polynomial representation of a function is valid for (-1,1) interval since 

the cosine function is defined between those intervals. Consequently, there arises a 

need for mapping between the (-1,1) interval and the function boundaries. For 

instance, if a beam problem is considered with borders (l1, l2), then mapping should 

be done between x ∈ (l1, l2) and ζ ∈ (-1, 1) to satisfy the equations below 
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Sampled points can represent the displacement function of the beam at specific 

increments for numerical calculations. If the sampling point number is selected the 

same as the number of Chebyshev polynomials, a one-to-one mapping occurs 

between the sampled points and Chebyshev coefficients αk. For N number of 

Chebyshev polynomials, N number of Gauss-Lobatto points are used for sampling 

spatial domain, which is defined as 

 

 ( )1
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The relation between sampled displacement function of the beam and the Chebyshev 

expansion coefficients can be written as 

 

    = Fa Γ y  3.24 

where 𝚪𝐹 is a N x N forward transformation matrix which can be expressed by 

Chebyshev polynomials.. Additionally, the backward transformation matrix can be 

defined which is the inverse of the forward transformation matrix. 

Exact derivative and integral of any function and vector that is constructed by 

Chebyshev polynomials can be obtained as  

 

 ( )n

n=y Q y  3.25 

 ( )
2

1

T
l

l
y x dx = v a  3.26 

Here Qn is the derivative matrix with respect to order n. 𝐯 is the definite integral 

vector. Derivation of the Qn and v is given in Appendix A. Additionally, the inner 

product of two functions can be written in the form given below with the help of 

SCT. 

 ( ) ( )
2

1

T
l

l
f x g x dx = f Vg  3.27 

V is called the inner product matrix, and its calculation is also given in Appendix A. 

For a wave equation (with boundaries l1 and l2) given in Eq. 3.28, the boundary 

conditions can be written in a generic way such as, 

 y y f= +  3.28 

 ( )( ) ( )
1 2

10

 
ij

k

k j

ik

t 
==

=  
3.29 

Here β’s are the constants of the spatial part of the boundary condition, whereas α’s 

are the constants of the temporal part. Both can be written in vector form. The i and 

j indices correspond to the boundary location (l1 and l2, i=1,2) and the number of the 

boundary condition (j=1,2), and k is the derivative order. When boundary conditions 

change, the derivation of the equation does not change; only these matrices change.  
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By considering the Chebyshev expansion sampled at N points and the derivation, 

integration, and inner product matrices, the wave equation can be rewritten in the 

Chebyshev domain. 

 = +
2

y Q y f  3.30 

A vital step in imposing boundary conditions to the equation in the Chebyshev 

domain is expressing y with the help of projection matrices P and R which are 

obtained by the singular value decomposition of β. This procedure makes it possible 

to solve the system for z that only satisfies the homogeneous boundary conditions, 

whereas y satisfies all boundary conditions. This stage is also named basis 

recombination. 

    = +y Pz Rα  3.31 

After the projection matrices are involved, Eq. 3.30 can be expressed in the form 

given in Eq. 3.32, and the residual can be defined as given in Eq. 3.33.  

 ( )     + = + +
2

Pz Rα Q Pz Rα f  3.32 

 ( )        = + − + −
2

Pz Rα Q Pz Rα f  3.33 

The Galerkin method is applied to the system to obtain the approximate solution. By 

this method, the residual error is minimized by making its inner product with 

weighting functions go zero.  

 ( ) ( )
2

1

T 0
l

l
x x dx  = = θ V  3.34 

Here θ(x) is the weighting function, which must satisfy the homogeneous boundary 

condition. A simple weighting function, such as  = P , can be considered. That 

transforms Eq. 3.34 into the form given in Eq. 3.35. 

 ( ) ( )( )   0  − − + − =T

2 2
P V Pz Q Pz f Q Rα Rα  3.35 
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The equation above must be satisfied for arbitrary  ; therefore, the terms inside the 

brackets must be also zero. The resulting equation can be written as the following 

and can be easily expressed in mass-stiffness and force form. 

     − = − +T T T T T

2 2
P VPz P VQ Pz P Vf P VRα P VQ Rα  3.36 

 *   + =Mz Kz f  3.37 

where   
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3.38 
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CHAPTER 4  

4 LINEAR AND NONLINEAR VIBRATIONS OF UNIFORM AND 

FUNCTIONALLY GRADED BEAMS 

4.1 Mathematical Model 

4.1.1 Uniform Beams 

The equation of a Bernoulli Beam with uniform material properties is given below. 

 ( ) ( )
( )

4 2

4 2

, ,
  ,

y x t y x t
EI A f x t

x t


 
+ =

 
 

4.1 

Boundary conditions for this beam can be written in a generic way such that, 

 ( )3 2 1 0   
ij ij ij ij ijy y y y t    + + + =   4.2 

For example, if a simply supported beam is considered, then the moment (related to 

the second derivative of deformation) and the deformation at the boundaries should 

be zero. Consequently, boundary conditions can be written as vectors with the SCT. 

 ( )
01 02

T T

2 1 0 1 01 t+ =
2

β e Q β e α  4.3 

 ( )
1 2

T T

2 1 0 1 1 t
L L L+ =

2
β e Q β e α  4.4 

Boundary projection matrices are imposed on the system, as it was described in 

Chapter 3.3. Then the residual is obtained given in the form below. 

 ( ) ( )( )   A EI = + − + −
4

Pz Rα Q Pz Rα f  4.5 

As the next step, Galerkin method is applied to the system, and the equation of 

motion is acquired in Chebyshev domain. 

    A EI A EI + = − +T T T T T

4 2
P VPz P VQ Pz P Vf P VRα P VQ Rα  4.6 
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When the basic boundary conditions with no temporal dependencies are considered, 

which is the case for this study, the  becomes zero. As a result, equivalent 

mass, stiffness, and forcing matrices are written. 

 *,    ,   A EI= = =T T T

4
M P VPz K P VQ Pz f P Vf  4.7 

A simple eigenvalue problem solution can be handled by using M and K matrices to 

get the natural frequencies and mode shapes. To obtain the frequency response, a 

periodic force can be assumed to the system and Eq. 4.6 can be solved in the 

frequency domain. 

If large deformation nonlinearity is also considered, then a new term comes for the 

equation of motion which is the stretching force developed in the beam due to the 

large deformations.Bernoulli beam equation for uniform beam, in the presence of an 

axial force, is given in the following equation [80].  
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y y w
EI A P f x t
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
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4.8 

To explain the nonlinear force term, firstly, the nonlinear axial strain of a beam can 

be written as 

 
21

( )
2

yx
xx

uu

x x



= +
 

 
4.9 

The first term gives the axial strain developed along the beam due to the axial 

elongation. When modeling the large deformation nonlinearity of Bernoulli beams 

the first term is neglected and the problem is solved for immovable boundary 

conditions such as fixed-fixed and pinned-pinned. For the stress-free edges, the 

nonlinearity disappears since axial deformation is a function of transverse 

deformation already. 

In the large deformation theory, nonlinear force occurs due to the total stretch 

developed along the beam. Therefore, the spatial dependence of strain should be 

removed from the equation by integration over length. Axial force developed along 

the beam can be written as 
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x xxN EA=  4.10 

Integrating both sides yields, 
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For the uniform case the beam equation is simplified as,  
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4.12 

The nonlinear term of this equation can be rewritten in the Chebyshev domain, 
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2T

F 1 2v Γ Q Pz Q Pz  
4.13 

Afterwards, the above equation can be solved in the frequency domain using HBM 

and Newton’s Method with arc-length continuation. 

4.1.2 Functionally Graded Beams 

The method for the non-uniform beams is the same as the uniform beam case; 

however, the equations become different. When a parameter or some parameters 

vary along the beam length, they are functions of the length rather than constants. 

Hence, inner product multiplication is defined in Eq. 3.34 changes form. New 

functions of parameter distribution involve multiplication. Therefore, the order of 

the multiplication increases, and a new higher-order inner product matrix is defined. 

The calculation of the higher-order inner product matrix is given in Appendix A. 

 ( ) ( ) ( )
2

1

T
l

l
f x h x g x dx = hf V g  4.14 

With the addition of a new inner product matrix, the equation of motion for a beam 

with varying Young Modulus along its length is written as an example. 
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The equation is expanded and written in the Chebyshev domain using the chain rule. 
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  '    ''     A I  + + + = 
T T T

E 4 E 3 E 2P VPz P V Q Pz 2V Q Pz V Q Pz P Vf  4.17 

Here , are the inner product matrices calculated according to derivatives 

of sampled Young Modulus distribution functions. That means h(x) given in Eq. 

4.14, is replaced with . 

If the beam had all of its properties varying along the beam length, then a helpful 

approach would be the group the various functions such that they can be written as 

a single function for the inner product multiplication, such as 

 ( ) ( ) ( )a x E x I x=  4.18 

 ( ) ( ) ( )b x A x x=  4.19 

 ( ) ( ) ( )d x A x E x=  4.20 

which resolves the equation of motion in Chebyshev domain as 

 '' ''         a a a
 + + + = 

T T T

b 4 3 2P V Pz P V Q Pz 2V Q Pz V Q Pz P Vf  4.21 

For the nonlinear case, the equation can be expressed with the form given below, 

which makes applying HBM and SCT easier. 
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4.22 

Afterwards, this nonlinear phrase can be adapted to SCT, such as 
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Considering the property variations between Eqs. 4.18-4.20 and by adding the 

nonlinear large deformation force obtained above equation to the Eq. 4.17, the 

nonlinear equation in the Chebyshev domain is obtained. 

  
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4.24 

Single or multi-harmonic solutions can be assumed for the system, and equations can 

be solved in the frequency domain. In this study, the application and formulation of 

HBM to the system are handled by computer programs since the nonlinear term 

given in Eq. 4.23 yields too many terms due to the multi-harmonics and different 

matrix multiplications. 

4.2 Results and Discussion 

4.2.1 Natural Frequencies and Convergence Analysis 

First, natural frequencies of the uniform beam without nonlinearities are found with 

various numbers of used Chebyshev polynomials.  In the process, different boundary 

conditions are regarded. The results are compared with the exact solution which is 

present for the linear vibrations of the uniform Bernoulli beam [80]. The comparison 

is given in Table 4.1. 

Table 4.1. Natural frequencies of pinned-pinned uniform beam  

 Natural Frequencies (rad/s) 

Exact Solution SCT with 9 

Polynomials 

SCT with 13 

Polynomials 

1st 144.244 144.244 144.244 

2nd 576.977 576.994 576.977 

3rd 1298.198 1298.677 1298.198 
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Table 4.1 (cont’d) 

4th 2307.908 2452.392 2307.957 

5th 3606.105 4012.955 3606.596 

Table 4.2. Natutal frequencies of fixed-fixed uniform beam  

 Natural Frequencies (rad/s) 

Exact Solution SCT with 9 

Polynomials 

SCT with 13 

Polynomials 

1st 326.980 326.986 326.986 

2nd 901.347 901.647 901.348 

3rd 1766.9999 1770.323 1767.003 

4th 2920.959 3242.881 2921.322 

5th 4363.408 5165.420 4365.938 

Table 4.3. Natural frequencies of pinned- fixed uniform beam  

 Natural Frequencies (rad/s) 

Exact Solution SCT with 9 

Polynomials 

SCT with 13 

Polynomials 

1st 225.337 225.337 225.337 

2nd 730.240 730.309 730.236 

3rd 1523.587 1525.877 1523.580 

4th 2605.423 2811.163 2605.539 

5th 3975.750 4601.434 3977.551 
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The natural frequencies are calculated according to the parameters (E=71 GPa, 

wt=0.03 m, ht=0.01 m, ρ=2770 kg/m3). Additionally, in the study, beam cross-section 

is considered to be symmetric with respect to its axes for all scenarios. As a result, it 

is observed that the desired results are achieved for the first natural frequencies with 

an error smaller than %0.01. Nonetheless, as solutions are sought for the higher 

natural frequencies, distinguishable errors up to %15 start to occur with 9 

polynomials. When the number of Chebyshev polynomials is increased again to 13, 

errors start to decrease below %0.05. That proves a direct correlation between the 

required number of Chebyshev polynomials and the number of natural frequencies 

that need to be found with the slightest error. A convergence analysis is conducted 

to observe the correlation between the error and the number of polynomials used. 

Initially, the first 5 mode shapes are regarded in this analysis. For three boundary 

conditions that are considered,  natural frequency results are plotted with respect to 

different polynomial numbers used. A desired error percent is selected to be %0.1. 

  

Figure 4.1. Errors of first five natural frequencies depending on the number of 

Chebyshev polynomials used(BCs: a)pinned-pinned, b)fixed-fixed, c)pinned-fixed) 
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Here it should be noted that to find n numbers of natural frequency, there is a need 

to use n+4 Chebyshev polynomials. This happens due to the singular value 

decomposition of the boundary projection matrices, which reflects the system with 

four boundary conditions. Results show that the error ratio increases as the natural 

frequencies increase (pinned-pinned to fixed-fixed). However, as seen in the 

previous figure, an increase in the used polynomial number results in a fast 

convergence to the exact values with negligible errors. As expected, more 

polynomials are required to obtain precise results for higher natural frequencies. 

Secondly, natural frequencies and mode shapes for the functionally graded tapered 

beam are found. Since there is no exact solution is available for the case, the results 

are compared with the work in the literature. Liu et al. [11] considered the problem 

and provided the first two natural frequencies according to chosen material property 

distributions. Additionally, they compared their results with another study conducted 

by Shahba and Rajasekaran [81]. In their studies, property distributions are taken as 

below. 
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4.28 

By considering the above distributions, the eigenvalue problem derived by SCT is 

solved. The results are compared to the studies mentioned above with four scenarios 

of different property variations along with two boundary conditions, fixed-fixed (F-

F) and pinned-pinned (P-P). In the Table 4.4 and Table 4.5, results were given by 

using 13 Chebyshev polynomials (the polynomial number is correlated according to 
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convergence analysis which will be described later). Material properties are taken as 

(E0 =210 GPa, wt =0.01 m, ht =0.03 m, A0 = wt ht, ρ0 =7900 kg/m3).  

Natural frequencies are nondimensionalized in the table according to the below 

equation. 

 4
* 0 0

0 0

A L
w w

E I


=  

4.29 

Table 4.4 Comparison of the normalized natural frequencies of varying parameter 

FG beam between the calculated ones and references found/ pinned-pinned 

 cb 0 0.2 0.4 0.6 

ch  w1 w2 w1 w2 w1 w2 w1 w2 

0 SCT 9.029 36.372 9.060 36.342 9.087 36.315 9.099 36.297 

R1 9.029 36.372 9.060 36.342 9.087 36.315 9.099 36.297 

R2 9.029 36.372 9.060 36.342 9.087 36.315 9.099 36.297 

0.2 SCT 8.134 32.523 8.146 32.512 8.150 32.508 8.134 32.516 

R1 8.134 32.524 8.146 32.512 8.150 32.508 8.134 32.516 

R2 8.134 32.523 8.146 32.512 8.150 32.508 8.134 32.516 

0.4 SCT 7.153 28.474 6.008 24.137 7.125 28.500 7.079 28.537 

R1 7.153 28.475 7.146 28.482 7.125 28.500 7.079 28.537 

R2 7.153 28.474 7.146 28.482 7.125 28.500 7.079 28.537 

0.6 SCT 6.036 24.110 6.008 24.137 5.964 24.179 5.887 24.247 

R1 6.036 24.110 6.008 24.137 5.964 24.179 5.887 24.247 

R2 6.036 24.110 6.008 24.137 5.964 24.179 5.887 24.247 

 

In the table R1 corresponds to Liu’s work whereas R2 corresponds to Shahba’s. It is 

observed that the results have an excellent agreement with Shahba’s study. 

Additionally, the results suggest that the ch dominates the outcome rather than the cb 

value. Those parameters affect the area and moment of inertia distributions which 

are plotted in Appendix D. The first natural frequency distributions for 2 cases are 

given in Figure 4.2, the first has the ch is fixed whereas is cb varying, and the other is 

vice versa. 
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Table 4.5. Comparison of the normalized natural frequencies of varying parameter 

FG beam between the calculated ones and references found / fixed-fixed 

 cb 0 0.2 0.4 0.6 

ch  w1 w2 w1 w2 w1 w2 w1 w2 

0 SCT 20.472 56.548 20.415 56.471 20.288 56.297 20.019 55.920 

R1 20.472 56.549 20.415 56.472 20.288 56.298 20.019 55.921 

R2 20.472 56.548 20.415 56.471 20.288 56.297 20.019 55.920 

0.2 SCT 18.217 50.479 18.200 50.456 18.129 50.359 17.944 50.101 

R1 18.217 50.480 18.200 50.456 18.129 50.359 17.944 50.101 

R2 18.217 50.479 18.200 50.456 18.129 50.359 17.944 50.101 

0.4 SCT 15.828 44.024 15.850 44.054 15.835 44.036 15.737 43.901 

R1 15.828 44.025 15.850 44.055 15.835 44.037 15.737 43.903 

R2 15.828 44.024 15.850 44.054 15.835 44.036 15.737 43.901 

0.6 SCT 13.229 36.964 13.289 37.049 13.332 37.112 13.323 37.108 

R1 13.229 36.965 13.290 37.051 13.332 37.114 13.324 37.111 

R2 13.229 36.964 13.289 37.049 13.332 37.112 13.323 37.108 

 

Figure 4.2. Non-dimensionalized natural frequency distributions with one of the 

parameters is fixed whereas the other varies (BCs: a)pinned-pinned, b)fixed-fixed) 

As given in the Figure 4.2, variation of ch affected the first natural frequencies 

dramatically, whereas variation of cb didn’t have such an effect. That is, the cubic 

term in the inertia distribution has a powerful effect on the natural frequency. As the 

next step, mode shapes for the first 5 natural frequencies of two scenarios with two 
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BCs (with distributions ch=0.6 and cb=0.6 and ch=0.2 and cb=0.2) are plotted in 

Figure 4.3 and Figure 4.4. 

 

Figure 4.3. Mode shapes of non-uniform fixed-fixed beam (with distributions 

a)ch=0.2\cb=0.2 and b)ch=0.6\cb=0.6) 

 

Figure 4.4. Mode shapes of non-uniform pinned-pinned beam (with distribution 

a)ch=0.2\cb=0.2 and b)ch=0.6\cb=0.6) 

The mode shape of the uniform beam is not given here since it is very basic and 

present in many works (can be accessed for all boundary conditions from [80]). It 

was observed that when ch and cb are small, the mode shape is closer to the uniform 
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beam’s symmetric mode shapes. However, when ch and cb increase, the beam 

becomes more functionally graded, resulting in more asymmetric mode shapes. 

A convergence analysis was made similar to the previous case. Since now there are 

also property variation parameters ch and cb considered, the cases were not 

investigated separately according to natural frequencies. Instead, a relative 

logarithmic assessment is preferred which is given with the following equation 
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LCV is the logarithmic convergence value, 
N

iw   denotes the natural frequency of the 

ith vibration mode obtained by N
 number of polynomials, and M is the number of 

modes within the frequency bandwidth of interest. To determine the sufficient 

number of polynomials, LCV   should be satisfied (where   is the threshold 

value selected by the user). In this case  is selected to be 0.1% ( 3 = − ) and first 5 

natural frequencies are considered. Since there is no exact solution available, it is 

necessary to find a reference case whose natural frequency is denoted ref
N

iw


. To 

determine the reference case, the fifth natural frequencies were plotted for two 

boundary condition scenarios in Figure 4.5, since it is the last converging one among 

the first five natural frequencies. 

In Figure 4.5, it can be seen that after 13 polynomials, natural frequencies do not 

change and converge to a specific value. It is also observed that as the variation 

parameters increase, the convergence occurs with more Chebyshev polynomials. 

ref
N is selected to be 21, which is a much bigger value than 13 to guarantee the 

convergence. The logarithmic convergence values are given in Figure 4.6. 
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Figure 4.5. Non-dimensionalized fifth natural frequency with respect to the number 

of polynomials used (BCs: a)pinned-pinned, b)fixed-fixed) 

 

Figure 4.6. Convergence results with respect to logarithmic convergence value 

(BCs: a)pinned-pinned, b)fixed-fixed) 

To obtain precise results for overall of 5 natural frequencsies, 10 polynomials are 

found to be adequate. 

4.2.2 Frequency Responses 

The nonlinear frequency responses of the uniform and non-uniform beams are 

discussed with respect to different boundary conditions and various amplitudes of 



 

 

42 

forces. The properties of the beam are taken the same as in the previous case. The 

study is performed by considering three harmonics. The damping is considered as  

  4.31 

Two boundary conditions, pinned-pinned and fixed-fixed, are considered. A point 

force is applied at the mid point of the beam structures for both cases. The fixed 

boundary condition implies that the assigned surface cannot deform or rotate. On the 

other hand, pinned boundary condition allows rotation but no translation at the point 

applied. For the fixed boundary, transverse deflection and the slope is zero. For the 

pinned boundary, the transverse deflection and the bending moment must be zero. 

 

Figure 4.7.  Fixed-fixed and pinned-pinned beams with a point force applied at the 

mid point 

Firstly, frequency response plots for uniform beams are plotted. In all of the 

upcoming frequency response plots, the beam is excited at the middle point where 

also response is taken from. The first two plots give the first harmonic response 

(normalized with respect to the force applied) of the system subjected to different 

excitation levels concerning fixed-fixed and pinned-pinned boundary conditions. 

The linear response is also given for a single force value since the force normalized 

responses are the same for all force values for the linear system.  

The upcoming frequency response studies are performed by using 7 Chebyshev 

polynomials. The responses are plotted around the first natural frequency. The 

previous convergence analysis found that 7 polynomials generate precise results for 

the first natural frequency. As of the initial step, the first harmonic responses of the 

beams with respect to different excitation levels and two BCs are given in Figure 4.8 

and Figure 4.9. (µ taken as 0.05 for the rest of the cases in Chapter 4) 
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Figure 4.8. Force normalized, first harmonic nonlinear frequency response for 

uniform beam with  pinned-pinned boundary conditions 

 

Figure 4.9. Force normalized, first harmonic nonlinear frequency response for 

uniform beam with  fixed-fixed boundary conditions 

In the nonlinear study, it is observed that as the force increases, the nonlinear effect 

(which can be reasoned with the shift of frequency curve) on the beam increases too. 

Higher forces result in higher stretching forces, raising the nonlinear behavior but 
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decreasing the transverse deflection. Additionally, it is observed that a third 

harmonic response occurs, whereas there isn’t a second harmonic response or bias 

term. The reason is that the nonlinear force of large deformation has a cubic form 

that generates odd harmonics responses. If there was a quadratic force, it would be 

expected to have a second harmonic response and bias term. In Figure 4.10 and 

Figure 4.11, third harmonic responses are given. 

 

Figure 4.10. Force normalized, third harmonic nonlinear frequency response for 

uniform beam with  pinned-pinned boundary conditions 

The third harmonic response is much smaller compared to the first harmonic 

response. As the applied force increases, the nonlinear effect increases too. However, 

when applied force increases, the deflection caused by the third harmonic doesn’t 

decrease like it was in the first harmonic. Figure 4.12 is given for comparison of the 

first and third harmonic responses for the pinned-pinned case. 
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Figure 4.11. Force normalized, the third harmonic nonlinear frequency response for 

the uniform beam with  fixed-fixed boundary conditions 

 

Figure 4.12. Force normalized, first harmonic and third harmonic nonlinear 

frequency response for uniform beam with  pinned-pinned boundary conditions 

As it can be seen from Figure 4.12, the third harmonic response is smaller than the 

first one. Nonetheless, it is not negligible for considering the total response since that 

response occurs in higher frequencies at which smaller deflections are expected. 
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Subsequently, the same study is performed for functionally graded tapered beams. 

As it was given in Figure 4.2, cb distributions didn’t affect the results significantly. 

Thus, the cases where ch=cb and ch are varying, are considered in the upcoming 

scenarios (such as ch=cb=0, ch=cb=0.2, ch=cb=0.4, ch=cb=0.6). The first and third 

harmonic responses of two FG beams (ch=cb=0.2, pinned-pinned, and ch=cb=0.4 

fixed-fixed) are given with different excitation levels in Figure 4.13 and Figure 4.14.  

 

Figure 4.13. Force normalized, first harmonic, and third harmonic nonlinear 

frequency response for the FG beam with  pinned-pinned boundary conditions 

(ch=cb=0.2) 

Nonlinearity created a similar effect on the FG beam deformation to uniform beam 

deformation. However, the variation of parameters made the beam less stiff, resulting 

in larger deformations and higher stretching forces, creating a more significant 

nonlinear effect. 

Nonetheless, the third harmonic response exhibited a different behavior by having 2 

response peak regions for the fixed case. This is explained by modal coupling 

phenomena (or internal resonance). The different modes of the system can excite 

each other and the energy exchange between those different modes results in mixed 

frequency responses. The frequency at the first peak of the third harmonic response 

corresponds to the second natural frequency. This phenomenon does not only occur 
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for ch=cb=0.4 and BCs fixed-fixed case. If the frequency range of the case given in 

Figure 4.13 (ch=cb=0.4 and BCs pinned-pinned) is expanded, those internal 

resonances can also be identified.  

 

Figure 4.14. Force normalized, first harmonic and third harmonic nonlinear 

frequency response for the FG beam with  pinned-pinned boundary conditions 

(ch=cb=0.4) 

In Figure 4.15, modal couplings can be observed better. The multiplied frequency of 

the third harmonic response (with 3x due to the third harmonic) of the first frequency 

peak around the normalized frequency of 2.7 corresponds to the first natural 

frequency. The third peak around the normalized frequency of 10.9 corresponds to 

the second natural frequency. The coupling of the first mode is more powerful 

compared to the one with the second mode. Additionally, the coupling results to a 

linear response in both cases due to the low amplitude.  
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Figure 4.15. Force normalized, first harmonic and third harmonic nonlinear 

response for FG beam with  pinned-pinned boundary conditions (ch=cb=0.4, f=15N) 

As the next step in the study, the first harmonic responses of all considered FG beams 

are investigated in the same plot. Responses regarding different material property 

distributions are given in Figure 4.16 and Figure 4.17. Afterward, those responses 

are plotted with respect to normalized frequency (to their natural frequency) to obtain 

the effect of material distribution on nonlinear behavior.  

When the response is normalized with respect to natural frequencies, the nonlinear 

effect can be observed better. From Figures 4.18 and 4.19, it can be clearly observed 

that, as the parameter variation increases and makes the beam less stiff, the nonlinear 

effect on the beam response increases too. 

In Figures 4.20 and 4.21, linear frequency responses of uniform and FG beams are 

given together with nonlinear frequency responses of uniform and FG beams so as 

to show the effects of both nonlinearity and FG property distributions.  

Interestingly, it is observed that the values of the case ch=cb=0.8 give rise to the 

different behavior of the first harmonic frequency response with fixed-fixed 

boundary conditions.  
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Figure 4.16. Force normalized, the first harmonic nonlinear frequency response for 

FG beams with pinned-pinned boundary conditions (f=15N) 

 

 

Figure 4.17. Force normalized, the first harmonic nonlinear frequency response for 

FG beams with fixed-fixed boundary conditions (f=40N) 
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Figure 4.18. Force and frequency normalized, first harmonic nonlinear response for 

non-uniform beams with pinned-pinned boundary conditions (f=15N) 

 

 

Figure 4.19. Force and frequency normalized, first harmonic nonlinear response for 

FG beams with fixed-fixed boundary conditions (f=40N) 
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Figure 4.20. Force normalized, first harmonic linear/nonlinear responses of 

uniform and FG beams with 7 polynomials and pinned pinned BCs (f=15N) 

 

 

Figure 4.21. Force normalized, first harmonic linear/nonlinear responses of 

uniform and FG beams with 7 polynomials and fixed-fixed BCs (f=40N) 
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Figure 4.22. Force normalized, first harmonic nonlinear response of non-uniform 

beam(ch=cb=0.8) with 7 polynomials and fixed-fixed boundary conditions (f=15N) 

In the Figure 4.22, it seems that there occurs an unexpected result that can not be 

explained with modal coupling. This happens due to the substantial variation of 

parameters along the beam length. In Figure D.2, it can be observed that values of 

ch=cb=0.8 create a drastic change in the material properties along beam length. 

Although seven polynomials are sufficient to obtain the precise frequency response, 

it is not enough to discretize the beam. Due to one-to-one mapping of SCT, the beam 

is discretized into the number of points equal to the number of polynomials. 

However, it is found that the small number of discretization points is not useful for 

obtaining the response of the beams that have a highly-varied distribution of material 

properties. Therefore the same case is solved by using eleven polynomials, and the 

results are given in Figure 4.23. 

Significant differences between the two plots are observed. The form of the curve is 

corrected, and the response appears to be smaller when a higher number of 

polynomials are considered. Additionally, the case is solved with 15 polynomials 

and found that the response is very close to the one with 11 polynomials, which 
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generated a convergence. It is concluded that, even though a specific number of 

polynomials are enough to obtain the first natural frequency precisely, it may not 

yield the correct frequency responses depending on the material property variation. 

 

Figure 4.23. Force normalized, first harmonic nonlinear response of non-uniform 

beam(ch=cb=0.8) with 11 polynomials and fixed-fixed boundary conditions 

(f=15N) 
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CHAPTER 5  

5 NONLINEAR VIBRATIONS OF FUNCTIONALLY GRADED BEAMS 

WITH SCT 

5.1 Mathematical Model 

The rotating axially FG beam geometry is depicted in Figure 5.1. Schematic of the 

rotating FG(axially) beam with coordinate systems. The beam is mounted to a rigid 

hub of radius rh, which is rotating about its axis with constant velocity Ω. The beam 

has length L, thickness ht, width hw, and is assumed to be under an external harmonic 

force per unit length, f. Four Cartesian coordinate systems are considered to 

formulate the problem. The first is the fixed inertial coordinate system, O1XYZ, the 

Z axis, which coincides with the rotation axis. Second is the rotating coordinate 

system, ORxyz, where OR is placed at the root of the beam, and the z axis is parallel 

to the rotation axis. The third and fourth are local coordinate systems OUx1y1z1 and 

ODx2y2z2, which are located at the undeformed and deformed beam cross-section, 

respectively. 

 

Figure 5.1. Schematic of the rotating FG(axially) beam with coordinate systems 

The beam considered in this research is an axially FGM, and the material properties 

are functions of volume fractions of the constituents that are changing continuously 
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along the beam length. The effective material property, P, is calculated by the rule 

of mixtures, where PA and PB denote the material properties of the matrix, with A 

and B inclusions.  

 
A A B BP P V P V= +  5.1 

VA and VB are the corresponding volume fractions of the constituents, satisfying VA 

+ VB =1 at each cross-section. In this study, VB is considered as a four-parameter 

variation profile given by 

 
1 ( ) ( )

p

c

B

x x
V a b

l l

 
= − + 
 

 
5.2 

With this formulation, by changing the parameters a, b, c, and the volume fraction 

index p(0≤p≤∞), it is possible to construct symmetric/asymmetric volume fraction 

distributions along the beam. Note that for p is zero or p goes to infinity, one can 

obtain homogeneous isotropic material as a special case of the FGM [82]. 

5.1.1 Strain-Displacement and Kinematic Relations 

According to Figure 5.1, deformations of a generic point on the mid-plane of the 

beam along x1, y1, and z1 axes, are denoted, respectively, by 𝑢̅, 𝑣̅, and 𝑤̅, which 

sequentially represent the axial, the chordwise, and the flapwise deformations. 

Moreover, the bending rotations along y2 and z2 axes are shown by 𝜑̅y and 𝜑̅z, 

respectively. Therefore, based on the first-order shear deformation theory, the 

position vector of a generic point B on the deformed beam cross-section can be 

obtained as 

    1 2 3 2 2 2 2;  ;  ;  ;  z yhu u u r x u y z y v z w = = + + − + + +r  5.3 

Where (u1, u2, and u3 ) is the displacement field of the beam along x, y, and z axes, 

respectively. According to Green's strain definition, and by supposing a slender 

geometry for the beam, the following strain-displacement relations are considered 
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 2 2

1, 2, 3,

1
( )

2
xx x x xu u u = + +  

5.4 

 1, 2,xy y xu u = +  5.5 

 1, 3,xz z xu u = +  5.6 

Here, ui,j shows the derivation of ui with respect to j.  

To include the stiffening effects and the time-dependent axial, centrifugal force in 

the rotating beam, the SSEDs must be considered in the model [75]. The beam's 

deformations are considered a sum of the SSEDs, qs, and the disturbing deformations 

about the equilibrium position, q, in the following form. 

 
s= +q q q  5.7 

  = ;  ;  ;  ;  y zu v w  q  5.8 

  = ;  ;  ;  ;  
s ss s s s y zu v w  q  5.9 

By using Eqs. 5.3-5.9, the strain in the beam is expressed as 

 2

1

( ) ( )nl nl

yz yz i i

i


=

 +  = B q + b B q B q  
5.10 

Where Byz is the differential operator matrix of the linear strains, byz is a vector 

resulting from steady-state equilibrium deformation terms, nl

iB 's are differential 

operator matrices of the nonlinear strains, and " " represents the element-wise 

multiplication. The details of the matrices and the vector in Eq. 5.10 are given in 

Appendix B. 

To formulate the kinematics of deformations, the velocity of a generic point on the 

rotating beam is calculated by 

 p v = r + Ω r  5.11 

where   is expressed as below, and over-dot denotes derivation with respect to time. 

Similar to the strain in the beam, the velocity is given by Eq. 5.11, can be rewritten 

as 
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  = 0;  0;  s Ω  5.12 

 
1 2yz yz yz( )p s  v = q + q +q v  5.13 

The operator matrices 
yzi

 's, and the vector 
yzv are given in Appendix B. 

5.1.2 Integral Boundary Value Problem 

The IBVP governing the dynamics of the system can be derived using the extended 

Hamilton’s principle. For this purpose, the variations of the kinetic energy is 

expressed as 

 T

0
( ) d d

L

k p p
A

U x A x  =   v v  5.14 

where  ,  , and A are the variational parameter, mass density, and the cross-

sectional area, respectively. According to the constitutive relation, the stress in the 

beam can be expressed as σ = Cε , where C is the constitutive matrix defined as 

 ( ) 0 0

0 ( ) 0

0 0 ( )

E x

G x

G x

 
 
 
  

C =  

5.15 

Here, E and G are Young's and shear modulus, respectively. Therefore, the variations 

of the elastic strain energy can be expressed as 

 T T

0
d d

L

s
A

U A x =   ε C ε  5.16 

Moreover, by assuming the external force as 0 sin( )f f wt= , variations of the work 

done by this (non-conservative) force can be defined by 

 T

0

ˆd
L

ncW x =  q f  5.17 

where forcing vector can be expressed as.  

  ˆ= 0;  0;  ;  0;  0ff  5.18 
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Once the variations of the kinetic and elastic strain energies, and work done by the 

external force are calculated, by using Eqs. 5.10 and  5.13-5.18, the nonlinear IBVP, 

which models the problem based on weak-form governing equations, can be obtained 

as 

 

 

 

 

 


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1 1 2 1 2 2 2
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5.19 

Where 

 

 

 
2

T T T T T T T T

2 yz yz

T T T T T T

yz yz yz yz yz yz yz yz yz yz

, , , , , , ,

, , , , }d ,      , 1,2

i i

i j

i i i j
A

A i j =

{Λ Λ Λ Λ Λ v B C B B C b B b} = {Λ Λ

   Λ Λ  Λ v B C B B C b B ,b
 

5.20 

The discretization of the IBVP given by Eq. 5.19 via the spectral Chebyshev method 

is discussed in the next subsection. Accordingly, after applying the differential 

operators and integration over x domain, coefficients of the terms q , q  and q

respectively, contribute to the mass, Gyroscopic, and stiffness matrices. Moreover, 

the term T

2Λ v and those including q q , and q q q sequentially, contribute to the 

steady-state equilibrium forcing, nonlinear quadratic forcing, and cubic nonlinear 

forcing functions. In addition, the stiffening effect is modeled by terms 

T( ) (nl

iB q C b) 's. These terms are linear; however, they originate from nonlinear 

strains in the beam. It is also noteworthy that the following properties of the element-

wise multiplication are used to obtain Eq. 5.19. 

 
1 2 3 1 2 1 3( ) = +a a +a a a a a  5.21 

 T T T

1 2 3 1 2 3( ) ( )=a a a a a a  5.22 
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1 2 2 1=a a a a  5.23 

here ia 's are vectors of the same size. 

5.1.3 The Spectral Chebyshev Technique for Nonlinear IBVP 

The scaled Chebyshev polynomials of the first kind are used to discretize the IBVP 

given by Eq. 5.19. As discussed in Chapter 3.3, these recursive polynomials are 

orthogonal, exponentially convergent, and construct a complete set on the interval    

[-1,1]; thus, the spatial domain x is mapped to [ 1,1]  − . Accordingly, each 

deformation iq  in the model, 1 2( , ,...)q u q v= = , needs to be presented with a 

Chebyshev series expansion as [13] 

 
1 1

1

( )
k

N

i i k

k

q a C 
− −

=

=  
5.24 

Here 1kC − 's are the Chebyshev polynomials, and ia ’s are the coefficients of the 

expansion, and N is the number of Gauss-Lobatto sampling points. Forward and 

backward transformation matrices, the derivative, and integral matrices can be 

defined as it is described in Chapter 3.3. Based on weighted inner product definition,  

definite integral of functions g1 and g2 can be expanded by Chebyshev polynomials,  

 T

1 2 1 2( ) ( ) ( )d rr g g


    = g V g  5.25 

In which Vr is the weighted inner product matrix and r is the weighting function.  g1 

and g2 are vectors of the functions whose values are calculated in the sampled 

domain. After discretizing the IBVP given by Eq. 5.19, performing derivative and 

integral operations, and ignoring the nonlinear terms in the SSEDs, the equations of 

steady-state equilibrium condition, and the governing equations of motion about the 

equilibrium state for an unconstrained rotating beam are obtained as: 

 0s s sK q +f =  5.26 

 
0

nl nl

s d q cMq +Gq +(K + K + K )q +f (q) +f (q) = f  5.27 
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In Eq. 5.26, sK  the steady-state equilibrium stiffness matrix and force vector are, 

respectively. In Eq. 5.27, M is the mass matrix, G is the Gyroscopic matrix, 0K  is 

the stiffness matrix of the non-rotating beam, dK  models the stiffening/softening 

effects, and f is the generalized external force vector, respectively. Moreover, nl

qf  

and nl

cf  are sequentially internal quadratic nonlinear forcing and internal cubic 

nonlinear forcing functions, given by 

 T T T T

1 2 2 3 3 2 1 2 3 1 3( ) ( )nl

q + +f (q) = N (N q N q N q N q) + 2N N q N q 2N N q N q  5.28 

 T

2 4 2 2 3 3 2

T

3 4 2 2 3 3 3

( )

( )

nl

q +

+

f (q) = 2N N (N q N q N q N q) N q

                 + 2N N (N q N q N q N q) N q
 

5.29 

Where Ni’s, the matrices and vectors in Eqs. 5.26-5.27 are given in Appendix C. 

Like in the non-rotating beam case, basis recombination with projection matrices are 

used to impose the essential boundary conditions such as 

 ˆq = Pq  5.30 

It is worth noting that the same boundary conditions are applied to the SSEDs, qs, 

and one can define ˆ
s sq = Pq . Accordingly, by using these transformations and pre-

multiplying each term in Eqs. 5.26-5.27 by PT, the governing equations of rotating 

an FG beam are obtained as 

 ˆ 0s s s+ =K q f  5.31 

 nl nl

q cMq +(G +C)q +(K)q + f (q) + f (q) = f  5.32 

The damping effect is added to the model by inserting C  as a damping matrix 

proportional to the mass matrix with coefficient  . The global matrices and vectors 

written above are defined as 

 T T T

T T

0

T T T

,      ,    

( )

ˆ ˆ      

s s s

s d

nl nl nl nl

q q c c

= =

=

K P K P,     f P f M = P MP

G = P GP,     K P K + K + K P ,    

f = P f (Pq),  f = P f (Pq), f = P f

 

5.33 
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After solving the nonlinear algebraic equations given by Eq. 5.31 and obtaining the 

deformations ˆ sq , one can investigate the nonlinear dynamics of the beam about the 

determined equilibrium condition via solving Eq. 5.32.  

To solve the nonlinear equation of motion (given in Eq. 5.32) in the frequency 

domain, HBM is implemented. Displacement vector and nonlinear forces can be 

expressed in the form.  

 
0

1

ˆ sin( ) cos( ),      
H

s c

k k

k

k k wt  
=

+ + =q = q q q  
5.34 

where s

kq , and c

kq  are coefficient vectors and 0q  is the bias vector representing the 

streaming/drifting caused by the quadratic nonlinearity, and H is the number of 

harmonics used in the solution. Similarly, the external force vector can be expressed 

as 

 
0

1

sin( ) cos( ),      
H

s c

k k

k

k k wt  
=

+ + =f = f f f  
5.35 

Fourier equations can be employed after placing the expressed forms into the 

equation of motion (Eqs. 3.12-3.14) to find the equivalent unknown coefficients 

resulting from HBM. 

Based on the equality of trigonometric and bias terms, 2H+1 number of nonlinear 

algebraic equations emerge for each degree of freedom. Those nonlinear algebraic 

equations can be solved by Newton’s method with arc-length continuation. 

5.2 Results and Discussion 

This section investigates the nonlinear dynamic behavior of the rotating axially FG 

beam based on the developed model via several numerical examples. For more 

general results, the following dimensionless parameters are introduced. 
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5.36 

where ˆˆ ˆ,  ,  ,  , ,   and nw w     denote hub radius ratio, slenderness ratio, damping 

ratio, nth dimensionless natural frequency, dimensionless rotating speed, 

dimensionless excitation frequency, and dimensionless external force, respectively. 

Moreover, T is defined as 

 
2 B

B z

A
T L

E I


=  

5.37 

The slenderness ratio,  , defines the geometrical property of the beam. It should also 

be mentioned that the beam's cross-section is considered square, i.e. 
z yI I= . The 

matrix and inclusions of the FGM are considered as aluminum (metal) and zirconia 

(ceramic), with  32707 kg\mA m = = , 70 GPaA mE E= = , 35700 kg\mB c = =

, 168 GPaB cE E= = where subscripts m and c stand for metal and ceramic, 

respectively. Poisson’s ratios are 0.3A mv v= = , and shear modulus is calculated by 

 / 2(1 )G E v= +  5.38 

In the study, two material property distributions are selected, which are given in 

Table 5.1. Those material variation profiles for parameters a,b,c and   are provided 

in Appendix D. 

Table 5.1. Material property distributions of FG beams studied 

 a b c ρ 

FGM A 1.5 0.8 2 1 

FGM B 1.8 1.6 5 0.4 
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5.2.1 Convergence Analyses and Model Validation 

A convergence analysis is performed similarly to the one in Chapter 4 in order to 

determine the required number of polynomials in solving the rotating beam natural 

frequencies with the spectral Chebyshev technique. Accordingly, to perform the 

convergence analysis N
 is gradually increased, and the predicted natural 

frequencies are compared to reference values calculated by a large value of N
. To 

measure the level of convergence quantitatively, a relative logarithmic assessment 

given in Eq. 4.30 is carried out. 

Convergence results are shown in Figure 5.2 for two sets of FGM distribution 

parameters as functions of dimensionless rotating speed. The LCV values are 

obtained based on the convergence of the first five natural frequencies of the rotating 

axially FG beam, i.e. M=5, and for the reference case, 20
ref

N =  is assumed. Each 

colored contour represents a level of LCV, and the integer values of the LCV  are 

provided on each contour. According to this figure, by considering the maximum 

convergence error to be 1% ( 2 = − ), the number of polynomials should be more 

than seven, as shown with horizontal lines. Accordingly, the discretization of the 

problem 7N =  is considered. Based on first-order shear deformation theory, the 

beam has five degrees of freedom at a point.  

The proposed model based on IBVP formulation is validated by comparing the 

natural frequencies to those obtained by the FE modeling of the rotating blade in 

commercial software. The details regarding the model developed in this software are 

summarized in Table 5.2. The results of comparing the first four dimensionless 

natural frequencies for two different FGM parameter distributions are given in Table 

5.3 and. The relative difference between the results is also given in these tables. It is 

observed that there is an excellent agreement between the presented results.  
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Figure 5.2. Convergence plots for dimensionless natural frequencies based on SCT  

as a function of dimensionless rotating speed for 0,  150 = = and               

a)FGM A b)FGM B 

Table 5.2. Details of the FE modeling 

Software COMSOL Multiphysics v5.6 

Physics Type 3D solid mechanics under rotating 

frame volume forces 

Study Type Pre-stressed eigenfrequency analysis 

Element Type Tetrahedral 

Number of elements 892 

Number of DOFs 5595 

 

Table 5.3. The comparison of dimensionless natural frequencies of the rotating FG 

beam, with the FE model 0.1,  150 = = FGM A. 

ˆ 2 =  Mode Present 

Model 

FE Model Relative 

difference (%) 

0 1 4.0216 4.0289 0.18 

2 4.0216 4.0289 0.18 

3 22.5376 22.5736 0.16 
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Table 5.3. (cont’d) 

 4 22.5376 22.5736 0.16 

5 1 5.0066 5.0193 0.25 

2 7.0779 7.0865 0.12 

3 25.5825 25.6222 0.15 

4 26.0691 26.1072 0.14 

10 1 6.8743 6.9082 0.49 

2 12.1457 12.1642 0.16 

3 33.0580 33.1101 0.16 

4 34.5499 34.5974 0.14 

15 1 8.8694 8.9513 0.91 

2 17.4553 17.4962 0.23 

3 42.6189 42.7093 0.21 

4 45.2176 45.2982 0.18 

 

Table 5.4. The comparison of dimensionless natural frequencies of the rotating FG 

beam, with the FE model 0.1,  150 = = FGM B. 

ˆ 2 =  Mode Present 

Model 

FE Model Relative 

difference (%) 

0 1 3.8208 3.8162 0.12 

2 3.8208 3.8162 0.12 

3 21.3601 21.3094 0.24 

4 21.3601 21.3094 0.24 

5 1 4.8253 4.8281 0.06 

2 6.9509 6.9523 0.02 

3 24.6624 24.7138 0.21 

4 25.1667 25.2161 0.20 

10 1 6.6770 6.6891 0.18 

2 12.0352 12.0411 0.05 
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Table 5.4. (cont’d) 

 3 32.6026 32.8498 0.75 

4 34.1151 34.4887 1.08 

15 1 8.6374 8.6573 0.23 

2 17.3390 17.3478 0.05 

3 42.5911 43.0581 1.08 

4 45.1947 45.6303 0.61 

 

For the case of the HBM, the harmonic truncation order, H, plays an important role 

in the accuracy and quality of the vibration response. For example, low values of H 

may omit the higher-order relevant components that significantly influence the 

response of the system. On the other hand, assuming high values for this parameter 

will increase the computational cost. Therefore, a convergence analysis is performed 

to determine a suitable value for H. Since the acceleration response is more affected 

by the contribution of higher harmonics, the acceleration responses of the axial, 

chordwise, and flapwise motions at the tip of the rotating beam generated by a high 

value of H are considered as the reference values to perform the convergence study. 

Accordingly, H is gradually increased, and the relative error of prediction with 

respect to the reference value, calculated by 10refH = , is considered as a quantitative 

criterion to assess the level of convergence.  

The convergence errors are determined by calculating the maximum relative 

differences between the acceleration responses in a half-period time range at the 

nonlinear resonance frequency. Accordingly, in Table 5.5 the relative errors of 

prediction are reported for the axial, ea, chordwise ec, and flapwise ef motions. 

Similar to the SCT convergence error, the maximum error is considered to be 1%, 

thus, 2H =  is assumed for the HBM. In this regard, for the 30 degrees-of-freedom 

rotating beam, 150 equations are solved to obtain the nonlinear frequency response 

of the system. 
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Table 5.5. Convergence results for HBM based on relative errors of acceleration 

prediction with respect to the reference case with Href  =10 at the nonlinear frequency 

for ˆ0.1,  150,  0.005,  5,  0.002   = = =  = = and FGM A. 

 H 

1 2 3 4 5 

ea % 12.1754 0.6151 0.2841 0.0077 0.0080 

ec % 7.0015 0.5278 0.2657 0.0068 0.0099 

ef  % 19.8558 0.7013 0.3169 0.0031 0.0122 

 

5.2.2 Frequency Responses of Nonlinear Model 

In the upcoming cases, the system is considered to be under a transverse force per 

unit length of the beam. The deflection at the tip of the beam is obtained, and the 

related frequency responses are plotted. The displacement at the tip is normalized by 

the beam thickness, and the frequencies are normalized around the first flapwise 

natural frequency of the system, meaning that the excitation frequency is close to the 

second natural frequency. The obtained responses include the zeroth harmonic, q0, 

and the first and second harmonics response of which is calculated as 

 2 2 ,      1,2s c

k k k k= + =q q q  
5.39 

The zeroth and second harmonics have vital importance on the beam’s nonlinear 

behavior since they are directly related to the quadratic nonlinearity. In the case of 

cubic nonlinearity, the first harmonic plays the main role. 

For a non-rotating beam, there occurs a coupling between the axial and flapwise 

motions, as shown in Figure 5.3, whereas the beam is excited just transversely. In 

this figure, all the obtained harmonics are provided for the axial, chordwise, and 

flapwise motions. For the chordwise motion, all the harmonics are zero, representing 

no coupling effect for this structural mode. However, due to the presence of quadratic 
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nonlinearity, there is a significant bias term affecting the response of the beam in the 

axial direction (Figure 5.3a). Therefore, including the bias term in the analysis is 

quite important to obtain correct results. Additionally, the effect of the second 

harmonic term in the axial response can be seen in Figure 5.3c. Hence, it is not 

possible to observe the dynamic coupling of the axial and flapwise motions unless 

the second harmonic is considered in the analysis. The coupling of structural modes 

here is due to the large deformation and subsequent axial tensile force in the beam. 

However, in the case of a rotating FG beam, the coupling occurs among all the 

structural motions. Figure 5.4 shows the frequency response plot for the beam 

rotating with the speed of ˆ 1 = . In this case, the coupling is due to the large 

amplitude deflections, as well as time-dependent centrifugal force. Therefore, 

chordwise motion is also present in the frequency response. 

 

Figure 5.3. Frequency response based on the axial, chordwise, and flapwise tip 

response of the beam for ˆ0,  150,  0.01,  0,  0.003   = = =  = = , and 

FGM B, a)bias term (zeroth harmonic)  b)first harmonic c)second harmonic 

The FGM's parameters can be considered design parameters since they significantly 

affect the nonlinear behavior of the system. A case study is performed to investigate 

the effect of volume fraction index on the nonlinear behavior of the rotating FG 

beam. The frequency response plots are obtained for four different values of the 

volume fraction in FGM B, and shown in Figure 5.5. For the simplicity,  response of 
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the only first harmonic flapwise motion is given since for the other harmonics and 

motions, the effect of ρ is similar. It is observed that different volume fractions can 

result in totally different nonlinear behaviors. Since ρ has a dramatic effect on the 

frequency response, it can be used as a design parameter to control the nonlinearity 

in the system. 

 

Figure 5.4. Frequency response based on the axial, chordwise, and flapwise tip 

response of the beam for ˆ0,  150,  0.01,  1,  0.003   = = =  = = , and  FGM 

A,  a)bias term (zeroth harmonic)  b)first harmonic c)second harmonic 

To investigate the effect of rotation speed on the frequency response, results are 

obtained for four different dimensionless rotation speeds. Figure 5.6 to Figure 5.8 

depict the nonzero harmonics of the axial, chordwise, and flapwise motions. Results 

are provided for two different values of the volume fraction index, which induce 

different effects on the nonlinear response, such as hardening or softening. It is 

observed that change in the rotation speed directly affects the axial and flapwise 

motions of the beam. As the rotation speed increases, the deformation of the beam 

and the nonlinear effect on the response decrease. However, for the chordwise 

motion, the rotation has not such a one-way effect on the response. As the rotation 

speed increases, the resonance amplitude in the chordwise direction increases to a 

maximum value and then decreases as the rotating speed increases. This observation 
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implies that there exists a rotating speed about ˆ 2 =  that plays a role of critical 

speed to maximize the chordwise deformation. 

 

Figure 5.5 Frequency response based on the flapwise tip response of the beam for 

different values of volume fraction index with 0,  150, = =

ˆ 0.01,  1,  0.003 =  = = , and FGM B 
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Figure 5.6 Nonzero harmonics of the frequency response based on the azial motion 

of the beam for different values of rotation speed and volume fraction index with 

0,  150, = =  0.01,  0.003 = =  and FGM B, a)zeroth harmonic, b)second 

harmonic 
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Figure 5.7 Second harmonics of the frequency response based on the chordwise 

motion of the beam for different values of rotation speed and volume fraction index 

with 0,  150, = =  0.01,  0.003 = =  and FGM B 

 

Figure 5.8 First harmonics of the frequenct response based on the flapwise motion 

of the beam for different values of rotation speed and volume fraction index with 

0,  150, = =  0.01,  0.003 = =  and FGM B 
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CHAPTER 6  

6 CONCLUSION 

6.1 Overview of Results 

In this study, nonlinear vibrations of the uniform and composite beam structures are 

studied. Functionally graded beams are selected as the composite structure type, and 

large deformation nonlinearity is considered. The spectral Chebyshev Technique is 

used for discretization and solution of the problem. The harmonic Balance Method 

with the arch-length continuation of Newton’s method is employed to obtain 

nonlinear frequency responses. Responses consisting of multiple harmonics are 

considered. Many case scenarios based on the material property distribution, 

boundary conditions, and excitation levels are performed to observe the effects of 

nonlinearities. As a result, the main findings are listed as follows: 

• The material distribution of FG beams directly affects the natural 

frequencies, mode shapes, and deformations of the beam; therefore, it can be 

optimized to control the vibration characteristics of structures in the design 

process. 

• The first and third harmonic responses occur when a non-rotating beam is 

modeled with large deformation nonlinearity. The nonlinearity creates a 

hardening effect on the beam(due to the stretching force developed), and the 

frequency curve shifts towards higher frequencies. 

• SCT generates accurate results without the need for a high number of 

polynomials. However, for studying higher natural frequencies, it is 

necessary to have more polynomials. Due to material property variations, a 

rule of thumb for determining required polynomial numbers could not be 

generated. In such scenarios, a convergence study of the natural frequencies 

should be performed. 
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• Depending on the material property distribution, a specific number of 

Chebyshev polynomials may not be adequate to obtain a precise frequency 

response, even though it is enough to determine natural frequencies. Due to 

one-to-one mapping of SCT, the number of polynomials may not generate 

enough discretization points to model the beam correctly. 

• When a rotating beam is considered, bias terms, first harmonic, second 

harmonic, and third harmonic responses occur. However, the third harmonic 

response becomes negligible compared to other ones. Bias term and second 

harmonic response occur due to the nonlinear quadratic force, whereas cubic 

nonlinear force affects first and third harmonic responses. 

• Due to the different types of nonlinear forces, the material property variations 

can result in hardening or softening behavior depending on FGM variables 

in the case of rotating beams. These variables can be utilized as design 

parameters to determine and optimize the structure’s vibration 

characteristics. Additionally, it can be used to identify the points where 

nonlinear vibration behavior is close to linear behavior. 

• The rotation speed of the beam has a significant effect on the nonlinear 

behavior. Increasing speed results in lower nonlinear effect and vibration 

responses. 

6.2 Future Works 

In this thesis study, nonlinear vibrations of the FG beams are studied. As future work, 

the study might be expanded for FG plate and shell structures which involve more 

complicated equations of motion. Additionally, more complex boundary conditions 

can be considered in the study. Furthermore, the method can be combined with 

material property estimation techniques to obtain more real-life case FG variations.  

Another suggestion of future work would be the study to identify nonlinear behavior 

change for rotating beams. As given in Figure 5.5, the nonlinear behavior might be 

shaped by he variation parameters of the FG material. A study to determine the points 
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where the structure exhibits linear vibration characteristics would be important for 

advanced vibration technologies. 

Additionally, a reverse study may be conducted for the identification of FG beam 

properties. In SCT, property variation of the FG material is embedded into the inner 

product matrix V, as described in Chapter 4.1.2. Experimental methods can be used 

to find the frequency response of an unidentified FG structure. Then SCT can be 

employed to find the matched frequency response with the experimental method and 

define the V matrix. From the V matrix, material property variations can be 

identified. 
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APPENDICES 

A. Calculation of Operation Matrices of SCT 

Forward and Backward Transformation Matrix 

Forward and backward transformation matrices can be written as 

    = Fa Γ y  A.1 

  =
B

y Γ a  A.2 

 

The relation given in A.2 can be opened in the form given below. And the BΓ  matrix 

can be constructed according to Chebyshev expansion.  
F

Γ can be written as the 

inverse of BΓ . 
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A.3 

 

Derivation Matrix 

The derivatives of Chebyshev polynomials exhibit the relation shown below. 
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This can be written in the matrix form such as 
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0 0

1 1

2 2

3 3

0 1 0 3
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A.5 

 

The 4x4 matrix is the derivation matrix. This can be implemented in an algorithm 

for bigger systems. However, the derivative matrix should be divided by 2 1

2

l l−
 in 

order to make it applicable to the beam system. 

Definite Integral Vector 

The definite integral of a function can be written with Chebyshev polynomials as  

 2 2 2

1 1 1

T

0 10 1( ( )) ...( )
l l l

l l l
y d T xx x a dx a T xx d= + + =   v a  

A.6 

 

Here v is the definite integral vector and a is the coefficient vector of expanded 

polynomials. A relation for the elements of the vector can be written respectively, 

 2

1
1 ( )

l

k k
l

v T x dx+ =   
A.7 

 

When the definite integrals are calculated with respect to k values, a recursive 

formula is derived such as 

 
2
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2
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( ) 1
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l

k
l

l l

T x dx k
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A.8 

 

Inner Product Matrix 

Inner product can be conscructed as stated in Eq. 3.27. According to this structure, 

the values of any two functions f(x) and g(x) at N Gauss-Lobatto points are written 

as fN and gN. Product of interpolated functions has order of 2N and can be expressed 

as 

 
2 2N N=f S f  A.9 
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S2 can be constructed as 

  
22 B F;

N NN NS = Γ I Ο Γ  A.10 

 

 

2B N
Γ is the 2N x 2N backward transformation matrix. andN NI   Ο  N x N identity and 

zero matrices. Consequently, the inner product of f(x) and g(x) functions can be 

written as, 

 2

1

T T

2 ,2 2( ) ( )
l

N N N d N N
l

f x g x dx = f Vg = f v g  
A.11 

 

In the above equation, 
,2d Nv is a matrix that has the elements of 

2

T

2 F NNv Γ  

multiplication on its diagonals. As a result, inner product matrix can be defined as 

given below. 

 T

2 ,2 2d NV = S v S  A.12 

 

When more functions are involved in the inner product operation as described in Eq. 

4.14, the multiplication order incerases to 3N. In this case, inner product operation 

can be written as 

 2

1

T( ) ( ) ( )
l

N h N
l

f x g x h x dx = f V g  
A.13 

 

Equations A.9, A.10 and A.12 are redifined accordingly such as.  

 
3 3N N=f S f  A.14 

 

  
33 B F; ;

N NN N NS = Γ I Ο Ο Γ  A.15 

 

,3d Nv  has the elements of 
3

T

3 F NNv Γ on its diagonals whereas 
,3d Nh has the values of 

3Nh . Finally, Vh  is written such as 
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3 ,3 ,3 3h d N d NV = S v h S  A.16 

 

B. Operator Matrices/Vectors Used in Chapter 5 

In this part, the details of the differential operator matrices and vectors introduced 

in subsection 5.1 are given 
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C. Matrix/Vector Elements Used in Chapter 5 

Following the SCT, the details of the system matrices developed in Chapter 5.1 are 

given below. For each matrix/vector, element representation is shown and 

subsequently, the nonzero elements are defined. 
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Where 
yI and zI are the second moment of cross-sectional area with respec to y1 and 

z1 axes, and Iv  is a vector of ones. Additionally, the matrices in the nonlinear forcing 

functions are expressed as given below 
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D. Material Variation Profiles 

The material distributions of FG beams considered in Chapter 4 and 5 are plotted in 

this section. The distributions considered in Chapter 4 (denoted by Equations 4.25-

4.28) are plotted in Figure D.1 and Figure D.2.  

 

Figure D.1 Young modulus and density distributions of the FG beam used in 

Chapter 4 

The area and moment of inertia distributions depend on ch and cb whereas density 

and young modulus distributions doesn’t. Consequently, area and moment of inertia 

are plotted with respect to various ch and cb values. 

For FGM parameters used in Chapter 5, including a,b,c and ρ, the obtained profiles 

are shown in Figure D.3 based on the variation of the volume fraction of the 

inclusions along the beam. In this figure, the volume fraction VB are depicted for 

different sets of FGM parabeters along the beam. 
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Figure D.2 Area and moment of inertia distributions of the FG beam used in 

Chapter 4 

 

Figure D.3 The volüme fraction VB along the beam as functions of FGM 

parameters a, b, c and ρ. a)FGM B  b)FGM A 

 

 

 


