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ABSTRACT

DYNAMIC MODELLING AND ANALYSIS OF SPLIT-TORQUE FACE-
GEAR SYSTEMS

Aydogan, Mustafa Ozgiir
Doctor of Philosophy, Mechanical Engineering
Supervisor : Prof. Dr. H. Nevzat Ozgiiven
Co-Supervisor: Assoc. Prof. Dr. Zihni B. Saribay

August 2022, 229 pages

In this study it is aimed to develop a dynamic model for a face-gear drive system that
accounts for all important physical parameters related to the operation to achieve an
optimized split-torque face-gear based transmission system. With this new model,
nonlinear dynamic response of a face-gear drive system is sought and dynamic
stability and limit states of this structure are investigated. The main motivation for
the current study is the recent development and utilization of face-gear drive systems
in the helicopter industry. Face-gear drive systems are subject of many research
studies for the past 30 years. However, mesh stiffness of the face-gear is not
modelled accurately. In this study, a nonlinear dynamic model of a multi-mesh
involute spur pinion driven face-gear split-torque drive system is developed. A
lumped mass system consisting of five pinions and two face gears is constructed.
The system has seven rotational degrees of freedom. All pinion and gear blanks are
assumed to be rigid disks. The constructed split-torque model includes two input,
two output and three idler gears. The mesh parameters, i.e., mesh stiffness and mesh
damping, have time varying characteristics. The model includes clearance-type

nonlinearity for backlash. The proposed model calculates the time varying mesh



stiffness of the gear pair from the generated point clouds of the face-gear and spur-
gear pair by using the finite strip method (FSM). The nonlinear equations of motion
are solved with Harmonic Balance Method (HBM) for periodic steady state response
of the system. The accuracy of the results is compared with direct numerical
integration solutions. The stability is checked with Floquet Theory and bifurcation
diagrams from Poincare Sections. The effects of mesh phasing between each pinion
and face-gear engagement, the effect of static torque and the effects of backlash
variations to the response of the system are sought. The effect of subharmonic motion
on the dynamic response is demonstrated. Also, torque-split characteristics of the

system has been sought.

Keywords: Nonlinear Dynamics of Face-Gear Drive Systems, Nonlinear Gear
Dynamics, Split-Torque, Helicopter Rotor Drive System, Finite Strip Method
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TORK-AYRIMLI ALIN-DIiSLi SISTEMININ DINAMIK MODELLENMESI
VE ANALIZIi

Aydogan, Mustafa Ozgiir
Doktora, Makina Miihendisligi
Tez Yoneticisi: Prof. Dr. H. Nevzat Ozgiiven
Ortak Tez Yoneticisi: Dog. Dr. Zihni B. Saribay

Agustos 2022, 229 sayfa

Bu calismada, alin-disli sistemi yapilari i¢in, operasyonda fiziksel olarak 6nemli olan
tim etkileri goz Oniine alan, tork-ayrimli sistemlerde kullanilacak gelismis bir
dinamik analiz modeli gelistirilmesi amaglanmistir. Bu yeni model ile alin-disli
sisteminin, maruz kaldig1 yiiklemeler altindaki dogrusal olmayan tepkileri
arastirtlmis ve bu yapilarin dinamik kararliligini ve siir durumlarini tahmin etmeye
yonelik yeni ve etkili bir metot gelistirilmistir. Bu calismadaki ana motivasyon
kaynagi, alin-disli ihtiva eden aktarma sistemlerinde son donemlerde gozlenen
gelismeler ve bu sistemlerin helikopter sanayisindeki kullanimidir. Son otuz yilda,
alin-digli aktarma sistemleri birgok arastirmanin konusu olmustur. Ama, alin-disli
kavrama direngenligi tam olarak modellenememistir. Bu calisma icin, ¢ok yerden
kavramal1 evolvent diiz-disliler tarafindan siiriilen tork-ayrimli alin-disli sistemi i¢in
dogrusal olmayan bir dinamik analiz modeli gelistirilmistir. Bunun i¢in, bes diiz-
disli ve iki alin-disli igceren bir toplu kiitleli sistem kurulmustur. Sistem, yedi donme
serbestlik derecesine sahiptir. Tiim disli ¢arklarin rijit disk oldugu varsayilmistir.
Kurulan tork-ayrimli model, iki giris, iki ¢ikis ve {i¢ avare dislisinden olugmaktadir.

Tiim kavrama parametreleri (kavrama direngenligi, kavrama soniimlemesi vs),
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zamanla degisen 6zellige sahiptir. Dis bosluklart modele, aciklik-tipi dogrusal
olmayan bir eleman olarak dahil edilmistir. Onerilen metot, disli ¢iftine ait zaman
degisimli kavrama direngenligini, alin-digli ve diiz-disli geometrisinden tiiretilen
nokta bulutlarin1 kullanarak, Sonlu Serit Metodu ile hesaplamaktadir. Dogrusal
olmayan hareket denklemleri, Harmonik Denge Metodu ile kararli hal cevaplari i¢in
¢Ozililmiistiir.  Sonuglarin  dogrulugu, niimerik integral ¢ozimleri ile
karsilastirtlmistir. Kararlilik, Floquet Teorisi ve Poincare kesitlerinden elde edilen
catallanma diyagramlari ile gézden gegirilmistir. Her bir diiz-disli ve alin-dislinin
birbirine gegmesi sirasindaki kavrama fazi, etki eden statik tork miktar1 ve dis bosluk
degisimlerinin, sistem tepkisine etkisi arastirilmistir. Altharmonik hareketin sistem
cevabimna etkisi gosterilmistir. Ayrica, sistemin tork-ayrim karakteristigi

incelenmistir.

Anahtar Kelimeler: Alin-Disli Sistemlerinin Dogrusal Olmayan Dinamigi, Dogrusal
Olmayan Disli Dinamigi, Tork-Ayrimi, Helikopter Gli¢ Aktarma Sistemleri, Sonlu

serit metodu
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CHAPTER 1

INTRODUCTION

A face-gear drive system comprises an involute spur or a helical pinion meshing with
a face-gear. This gear drive system is generally utilized to transform the torque
between intersected and crossed shafts. An example of a face-gear drive meshing
with a spur pinion is shown in Figure 1-1. A set of face gear drive systems with

different shaft angles is shown in Figure 1-2.

Figure 1-1 A face-gear and a spur pinion mesh

The face-gear drive system enables weight reduction and volume saving by load
sharing or torque-splitting capabilities [6-8]. Therefore, such drive systems are
generally found in the helicopter or marine transmissions. An example of a
helicopter's main gearbox incorporating a torque split among two face-gears at the
engine input is given in Figure 1-3.



Figure 1-2 Face-Gear and spur pinion assemblies at different shaft angles

Before 1990's, face-gear drive systems were known to be used for low-power
applications. By then, helicopter companies started several researches for a light and
reliable main rotor drive system having advanced capabilities of torque-split. Hence,

face-gear drives become popular due to their several advantages [1-3].

Rotor shaft output

Sun gear

NOTAR™
output

)

Combining gear

Driving spur pinion

Face-gears
Engine input

Figure 1-3 Application of face-gear drive in helicopter transmission [25]



1.1 Introduction

Split torque face-gear drive systems are typically driven by spur or helical pinions
meshing with one or two face-gears, which are utilized to deliver power between
intersecting shafts and reduce transmission weight by introducing torque sharing and

torque splitting capabilities [4,5].

The face-gear drives have been investigated for helicopter transmission systems due
to potential weight savings [2,3]. This drive train consists of an involute spur pinion
meshing with a face gear, as shown in Figure 1-1. One of the first high-power face

gear designs is named Cylkro Angular Face Gear Transmission [6,7].

Different methods to generate the spur shaper and the face-gear tooth are presented
in [8] and [9]. The design aspects and validation of face gears are presented in [10]
and [11]. The benefits of the face gears are (i) reduced sensitivity to the bearing
contact to gear misalignment, (ii) reduced level of noise due to a very low level of
transmission error, (iii) more favorable power transfer from one tooth to another and
(iv) tolerance to the assembly inaccuracies compared to the spiral bevel gears
[12,13].

1.2 Literature Review

121 Face-Gear Geometry

The theory of face gears was not sufficiently developed for high-power applications
until the first mathematical tooth modeling and the computational tooth contact
analysis (TCA) work performed by Litvin et al. [14,15]. The tooth geometries of a
spur pinion and a conjugate face-gear are defined using the gearing theory and
differential geometry principles. The surface of the face gear is derived from the
simulation of meshing with the spur shaper. The critical dimensions of the produced

face gear are identified from the limiting conditions of the geometry. These are tooth



undercutting at the inner diameter and tooth pointing at the outer diameter. Hence,
an exact tooth surface equation and tooth enveloping parameters are generated for

mathematical modeling, contact analysis, and machine settings.

Face gears are studied by several researchers. Litvin et al. [14] generated the surface
of a face-gear by simulating the machine tool motions. He also studied tooth contact
and bending stress analyses using the finite element method (FEM) [8,16]. Heath et
al. performed experiments on tooth contact performances and failure modes of face-
gears [17], conducted split torque tests on a 250 hp face gear transmission with two
inputs, two idlers system [4,5], and also performed tests to seek face-gear surface

fatigue characteristics [18].

1.2.2 Mesh Stiffness and Dynamic Modelling

There are a limited number of studies on dynamic analysis of the face-gear drive
systems. These studies may be collected under two titles, namely, quasi-static or
dynamic analysis of face-gear meshing with spur-pinion pair, and quasi-static or

dynamic analysis of split-torque face-gear drive systems.

Guingand et al. [19] presented a quasi-static analysis procedure for the load
distribution among the face-gear pairs with experimental validation. The tooth root
stresses and the resulting load sharing among the pairs are obtained with reasonable
accuracy. The related deformations are calculated using FEA tools and the contact
mechanics. Wang et al. [20] proposed a method for loaded tooth contact analysis of
a face-gear pair, where bending and contact deformations are determined by FEA
and Hertz theory. Load distribution under an applied torque among the tooth pairs is

sought.

Peng et al. [21] investigated the parametric instability characteristics of a face-gear
pair. An annular Kirchhoff plate with a moving spring is utilized to model the drive
system. Floquet theory is used to calculate the stability of the system. The mesh

stiffness is obtained through the contact ratio calculated by Tregold's approximation.



The spur pinion is assumed to be rigid, and the mesh stiffness is taken as the face-
gear tooth stiffness. Later, this study (dynamic stability) was improved for a split-

torque multi-pinion face-gear drive system [22].

Hu et al. [23] studied the effect of the mesh stiffness variation on the dynamic
behavior of a 6 DOF (degree of freedom) face-gear pair. The bifurcation diagrams
of the pair's response according to the pinion speed are presented. Chen et al. [24]
investigated the effect of profile modification on the dynamic behavior of a 6 DOF
face-gear pair where support stiffness is also considered. They demonstrated the
effect of the static load on the input pinion through bifurcation diagrams, which are
plotted according to the input speed of the pinion. In [21-24], the instantaneous
contact ratio is calculated via Tregold's approximation, and with these calculated

values, the time-varying mesh stiffness is obtained by assuming it to be rectangular.

Tang et al. [25] studied the effect of directional rotational radius variation on a face-
gear pair's dynamic response. A single degree of freedom time-varying rotational
model is proposed using finite element method tools to obtain mesh stiffness. Hu et
al. [26] proposed a fourteen degree-of-freedom (DOF) coupled translational and
rotational dynamic model of a face-gear pair. The effects of backlash and the applied
torque on the system's dynamic response are sought. The mesh stiffness of the pair

is calculated by the finite element method as in the previous references.

Aydogan et al. [27] proposed a nonlinear dynamic model for a multi-mesh face-gear
split-torque system focusing on the effects of several mesh parameters (i.e., phasing,

stiffness, backlash, and power values ) on the system response.

Zhao et al. [28] studied quasi-static analysis of a torque-split face-gear drive system
by a hybrid 3D finite element and lumped parameter model. The mesh stiffness of a
pair is calculated by commercial software (ANSYS). The load sharing among the
pinions is investigated by changing the support stiffness, the backlash, and the tooth

number.



Feng et al. [29] proposed a geometric study of a face gear system with an involute
helical pinion. The study does not give any mesh stiffness calculations. However, it
refers to Ambarisha and Parker [30], which utilizes a 2D finite element model for a
planetary set developed from a unique finite element-contact analysis solver

specialized for gear dynamics, the Calyx package program.

Liu and Zhang [31] performed a quasi-static analysis to investigate the effect of shaft
angle for a face-gear pair. Loaded Tooth Contact Analysis (LTCA) is performed by
commercial software (ABAQUS). Dong et al. [32] presented a quasi-static analysis
of a split-torque face-gear drive system. The effect of the pinions' orientations, the
number of idlers, and the load sharing among them are discussed. ABAQUS is
utilized for TCA and mesh stiffness calculations. Later, Dong et al. [33] presented a

semi-analytical method for the calculation of mesh stiffness of the face gear.

Li and Zhao [34] studied the effects of rotational speed and a pinion's support
stiffness on a face-gear pair's dynamic response. They presented the bifurcation
characteristics of the pair's response concerning the change in the pinion's support

stiffness and the rotational speed of the pinion.

123 Split-Torque Systems

Torque splitting is an important phenomenon in the helicopter industry due to its
weight and volume saving advantage for a given reduction ratio. When torque is
transmitted through several paths, the contact force between teeth becomes smaller,
allowing smaller and lighter gears. In addition to weight saving, torque splitting
allows redundancy; when any of the designed branches fails during operation, the

required torque is transmitted through the intact paths [35].

The first reduction stage splits the main torque into more than one parallel branch.
Each branch may also be split into several branches at different reduction stages.

Generally, before the last stage, the split torques are collected through a collector



gear, which drives the main rotor mast. Figure 1-4 shows the main transmission
system for a typical Sikorsky CH-53 Helicopter [36,37], [37].

ENGINE

ENGINE

lllll

Hi

:}
Qﬂﬂnﬂﬁmum||||||m1'|uu'unm||mih|]|ﬂ

///////// e
m\\m\\\\\\llﬂ\\\\\///////m\\\\\/ A
\\\\\\\\\\\\\\\W///é?:h Ny

ENGINE UERl

Figure 1-4 Sikorksy CH-53 type helicopter split-torque main transmission, a)
Helicopter full view, b) Motor and main transmission configuration, ¢) main
transmission showing three motor input, d) the main transmission showing only one

motor input



As seen from Figure 1-4 (d), torque coming from one engine is splitted into four
branches at the second stage of reduction and then each of these branches are further
split into two branches. Finally, they are collected on double herringbone that rotates

the main rotor mast.

As another example, the main transmission model of MI- 26 helicopter is given in
Figure 1-5. Similar to the previous example, torque provided by one engine is split
into four and then into two branches and collected at two bull gears to turn the main
rotor mast of the helicopter. In Figure 1-5-c, the power or torque distribution is drawn

as a circuit diagram.
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Figure 1-5 MI- 26 type helicopter split-torque main transmission, a) Helicopter full
view, b) main transmission showing two motor input, ¢) Closer view for main
transmission showing two motor input, d) Torque distribution sketch as a circuit
diagram

The disadvantage of this design is that the torque must be distributed equally between
the parallel branches. In other words, if it is not an intended design feature, the torque
at every parallel split-torque stage should be split evenly. Uneven load sharing at any
parallel branch leads to excessive load at that branch, which causes the related
components at that load path (gear, shaft, spline, bearing etc.) to wear earlier than

the components located at the lesser load carrying branch.

In order to provide an even torque split, several methods have been proposed [35],

such as,

a) Geared differentials: This method uses a differential mechanism similar to

utilization in the automotive industry. A typical example of a planetary gear
system is shown in Figure 1-6 [4], in which carrier rotates one branch and the
ring gear drives the other branch, both of which drive a collector gear. The

deviations from the intended geometry may lead to uneven load distribution.



This deviation is compensated by a small relative rotation of the sun gear and

the ring gear [38].

Figure 1-6 Epicyclic torque splitter

b) Pivoted systems: This method utilizes a floating pinion that finds a position

to provide equal load share by seeking a position where tooth loads are equal.
Irrespective of gear teeth errors or gearbox shaft misalignments, the input
pinion will float and split torque between the two gears by a self-adjusting
(or thrust-balancing) mechanism that moves the gears axially in response to
excessive loads [38]. Figure 1-7 gives an example of a system in which axial
thrust difference passes to a balance beam whose pivot motion induces

sufficient angular motion to equalize the tooth loads [39].
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Figure 1-7 Split-torque helicopter transmission with two power-branches utilizes a

self-adjusting system

c) Quill shafts: This method utilizes an assembly, allowing torsional flexibility

between the connected gears. A torsion divider with a separate gear and
pinion, each supported on its bearings, are connected through the quill shaft,
which allows torsional flexibility.

Achieving an even torque split between the two paths requires the gear train
to have an adequate amount of torsional compliance. Cumulative tooth
spacing errors, housing deformations, and assembly backlash values are the
main obstacles to achieving an equal percent torque split.

Figure 1-8 shows a conventional quill shaft. Due to lower torsional
compliance of the quill shaft, when one load path transmits more torque than
the other one, the angular deviation between the input shaft and the output
shaft increases, and this increase leads the shaft that transmits less torque to
increase its load. Apart from conventional quill shafts, quill shafts based on

elastomeric elements and spring elements also exit [35].
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Figure 1-8 Conventional quill shaft [35]

Figure 1-9, as another quill shaft example, demonstrates the CH-53K
helicopter one motor input stage mentioned above. The power from the
engine at the 1% stage bevel pinion is split into two branches by the 2" stage
spur pinions, one of them is large, and the other is small. Each 2" stage spur
pinion further meshes with two 2" stage spur gears. Since the torsional
stiffness of the 1% stage gear shaft is very high, the torque split between the
two 2" stage spur pinions (large and small ones on the same shaft) becomes
even. However, torque split between the 2" stage spur gears that are in
contact with the corresponding 1% stage spur pinions may not be even due to
manufacturing errors, assembly tolerances, housing deformations, etc. By
utilizing a torsionally soft quill shaft between each 3™ stage double
herringbone pinions and 2" stage spur gear, even torque split is achieved.
Quill shafts have two spline meshes at both ends. The torsional windup angle
of the quill shaft under a specified load level provides the required shaft
flexibility for equal torque split [3,40,41].
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Figure 1-9 Sikorsky CH-53K One Motor Input Stage

d) Indexing or_clocking: There is no special component in this method. It

requires the component to be manufactured according to strict tolerances and
is correctly assembled. The clocking angle is utilized as a design parameter
to provide an equal torque split among the parallel paths. The gears are
clocked to eliminate any cumulative tooth spacing errors and assembly

backlash values in order to provide that all gears are in contact [42-44].
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Figure 1-10 Torque-split design with a dual power concept and clocking angle

measurement [42]

Face-gear related studies in the literature utilize the floating pinion and quill shaft
concepts. References [45] and [46] give test results for dual input, single output split-
torque face-gear drive system with two idlers. The input pinion shafts utilize a
cantilevered bearing mount arrangement. This component allows the pinions to float
between the two face-gears and achieve a center of torque equilibrium. The test
results show that using floating pinions in the face-gear system leads to a closely

even torque split.

Boeing Company studied a split-torque face-gear drive system. In order to impose
the effect of the quill shaft, they assumed the input pinions to float freely [47]. To
simulate this, a 2D ABAQUS model is developed that comprises very soft springs in
"1" and "2" directions (0.5 Ib/in) for the input pinions where the idlers are fixed in

those directions, Figure 1-11.
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Figure 1-11 The split-torque system and the corresponding FE model in ABAQUS

The RDS-21 demonstrator gearbox of Sikorsky company employs two-stage face-
gear meshes, given in Figure 1-12. It splits input torque in the 1% stage through one
spur pinion meshing with a 90° face-gear and a 52.85° face-gear simultaneously
[48,49]. The output torque from each 1% stage face-gear is further split into two
branches before they are collected on a 90° 2" stage large collector face-gear through
helical gears and quill shafts. The difference between the torque split ratios for this
design is less than 1%. Precision grinding of the gear tooth (eliminating the
associated errors on teeth) yielded a 6% difference [48]. The utilized quill shafts are

depicted in Figure 1-13.

Figure 1-12 The RDS-21 demonstrator gearbox
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Figure 1-13 Load-sharing quill shafts

Reference [50] utilizes a floating pinion (drive pinion, labeled as 12, in Figure 1-14)
carried by the power input shaft that meshes with two coaxial counter-rotating ring
gears (upper and lower face gears, labeled as 15, 16 in Figure 1-14). The ability of
the floating pinion to move in a direction parallel to the axis of the two ring gears
(labeled as 15, 16 in Figure 1-14) enables the torque transmitted by the pinion
(labeled as 12 in Figure 1-14) to be distributed equally between the two ring gears
regardless of inevitable dimensional tolerances of the gearing, where at least one
transmission pinion (idler pinion, labeled as 23 in Figure 1-14) is supported by

elements flexible in a circumferential direction with respect to the ring gears.

However, this solve the issue for a single-input system. For multiple input systems,
having more than one idler pinion makes it challenging to split even torque with the
fixed axes of rotation. Several factors such as the tooth thickness, the position of the
pinions, operating conditions may affect the equal load distribution [50]. This is the
mesh phasing during the operation.
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Figure 1-14 Split-torque face-gear drive system

The floating pinion, in fact, makes the pinion shaft a two-force member. The
transmitted forces on the two force diametrically opposite meshing points on the

pinion are forced to balance each other in order to accomplish even torque-split [51].

1.3 Motivation, Scope and Objectives

In the last three decades, there has been a significant increase in interest about
research on main rotor drive systems in the helicopter industry to reduce the weight,
to save volume while improving the efficiency and reliability.

The application of face-gear drive become popular among some new helicopters
mainly due to its advantage to split torque between multiple drives more efficiently.
In addition, when compared to existing drive systems, the application has several

advantages, as listed in Chapter 1.1.
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Face-gear dynamics is an emerging topic, and the current trend of the investigations
relies on commercial tools for stiffness calculations. Although using these models
for a frozen design is advantageous, it is not easy to make parametric studies and
evaluations of the gear train several times. Therefore, in this thesis, a novel nonlinear
dynamic model of a multi-mesh spur pinion-driven face gear split-torque drive

system is developed and adapted to be used in complex parametric studies.

Figure 1-15 a) Example 3D model b) Produced tooth geometries

The nonlinear dynamic model of a split-torque face-gear drive system is composed
of two face-gears (one output, one idler) and five pinions (two idlers, two inputs, one
output). One of the face-gears is considered connected to the main rotor mast of a
typical helicopter, while the output pinion emulates the tail rotor shaft of the
helicopter. Two input pinions are the power input locations to the system from
motors. The mesh stiffness and damping have time-varying characteristics. The
model includes clearance type nonlinearity as a backlash at all meshing locations.

Each backlash value at these meshing locations will also be set separately.

The dynamic model will utilize mesh stiffness values calculated through the exact
face-gear tooth profile, which is based on the detailed theory of gearing and
differential geometry of the face-gear. The bending contribution of the mesh stiffness
will be calculated from the generated surface of the face gear and spur gear tooth.
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The contact contribution will be calculated through the available analytical methods
cited in the literature. The tooth will be modeled with Mindlin Plate Theory. In order
to extract the compliance matrix at each meshing instant, the tooth surface will be
discretized via Finite Strip Method.

The nonlinear differential equations will be solved with Harmonic Balance Method
(HBM) in conjunction with the Arc-Length Continuation Method to obtain the
system's dynamic response and to capture the stiffening and the softening regions
within the specified frequency range. All time-variant parameters will be expressed

in discrete Fourier Series.

Finally, several parametric studies will be performed to seek the effects of critical
system parameters on the dynamic response of the proposed system. The potential
design parameters will be proposed to be utilized in the system's preliminary and
detailed design phases.

1.4 Organization of the Thesis

Chapter 1 presents a brief introduction to face-gear drive systems. A literature review
is given in which the studies are grouped under the following titles, face-gear
geometry, mesh stiffness, and dynamic modeling of face gears and split-torque
systems. The motivation, scope, and objectives of this study are described. Finally,

the organization of the thesis is portrayed.

Chapter 2 describes tooth surface generation for a typical face gear and a spur-shaper
from a point cloud by the theory of gearing. Then, the surface fitting procedure,
which uses Non-Uniform Rational B-Splines (NURBS) curves to approximate the
thickness at any location on the tooth surface, is presented. Unloaded Tooth Contact

Analysis for a face-gear and spur-pinion is presented with some special case studies.

Chapter 3 presents the stiffness calculations for a single gear tooth. Thin-Slice
Method, Plate Models for Rayleigh-Ritz Approximation, Finite Strip Method (FSM),
and Quasi-Prism Method (QPM) are investigated. For the bending contribution of
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the mesh stiffness calculations, FSM is chosen for its advantages, and discretization
is performed by this method. The tooth is assumed to possess the properties of a
Mindlin Plate. For the contact contribution of the mesh stiffness, several analytical
methods given in the literature are presented and compared with each other, i.e.,

Hertz's, Conry's, Cornell's, Palmgren's, Weber’s and Brewe&Hamrock’s method.

Chapter 4 proposes a torsional mathematical model for multi-mesh split-torque face-
gear drive systems. The model has 7 degrees of freedom. The system parameters, i.e.
mesh stiffness, and damping, have time-varying characteristics. Clearance type

nonlinearity is imposed into the model to represent backlash.

Chapter 5 demonstrates several parametric studies which investigate the effect of the
orientation angle patterns of the pinions of a split-torque system, the effect of time-
variant parameters, and the effect of power values on the system's dynamic response.
The resulted mesh phasing effects and the resulted torque-split characteristics are

demonstrated.

Finally, Chapter 6 summarizes the main findings of this study and discusses their
applications for the design of split-torque face-gear drive systems. The potential
critical design parameters for such systems in the preliminary and the detailed design
phases are discussed. Currently, there is not any AGMA standard available for such
systems. A discussion is performed here with the highlight of available AGMA

standard for epicyclic gears and the results obtained with this thesis study.
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CHAPTER 2

FACE-GEAR AND PINION TOOTH SURFACE GENERATION

2.1 Introduction

Face-gear geometry is generated as a point cloud by transforming the spur gear
(shaper) tooth profile into face-gear tooth profile by simulating the machine tool
motions. The position vectors resulted from the equation of the shaper surface is
transformed into the face-gear position vector by simple and well-defined three
rotation around appropriate axes [8,13,15,16,52-56]. The first transformation is
defined as the rotation of spur-gear around its own rotation axis. Second
transformation is defined as the rotation between the spur shaper and face-gear
rotation axes. Finally, the third transformation is defined as the rotation of face-gear
around its own rotation axis. For the conjugate action of tooth profiles, the equation
of meshing equation is satisfied. At all-time instants, surface normal at the point of
contact must be perpendicular to the sliding velocity between the two meshing
surfaces. On the other hand, two limiting criteria exist for surface generation of a
face-gear; namely undercutting condition and pointing condition. The first criterion
(limiting point for the surface generation) denotes the cutting region of the involute
spur-gear shaper that is beyond the active conjugate region and should be avoided.
Since undercutting point is a singular point, normal vector for the face-gear surface
should be equal to zero at the prescribed singular point. The second criterion,
pointing, denotes the location where the thickness of the tooth on the top surface
becomes zero. Whole procedure for the surface generation is well-defined in
[8,13,15,16,52-56].
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2.2 Surface Generation

The cross-sectional view of face-gear spur shaper mesh is schematically illustrated
in Figure 2-1. Here, ys-zs frame is a body fixed coordinate frame of the shaper, and
Z» axis is the rotation axis of the face-gear. Symbols ras, ros and rps are the addendum
circle radius, pitch radius and base circle radius of the shaper, respectively. Rin, Rp
and Rout are inner radius, mean pitch radius and outer radius of the face-gear,
respectively. Furthermore, L1, Lp and L2 are the inner radius, mean pitch radius and
outer radius to the pitch cone apex, respectively. O is the pitch cone apex and Ol line

is the pitch cone line. In this figure, y is the shaft angle and calculated as y = y, + y,

, Where y1 is the pitch cone angle of the spur shaper and formulated as:

m,,. +COS (2-1)
7/1 — Cotl( 2/s 7}

siny

and y2 is the face-gear pitch cone angle and formulated as:

) —cot™ 1+m,,, cosy (2-2)
i m2/s Sin}/

where mys is the ratio of face-gear number of tooth (N2) to shaper number of tooth
(Ns) and shown as m,,, = N, /N, [14,15,57-61].
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Figure 2-1 Face-gear and spur shaper dimensions

The geometric properties of a spur shaper are represented in Figure 2-2-a. The
symbols fsand us are the shaper surface parameters. They are the surface coordinates
in the curvilinear coordinate system. The parameter 6 is an angle and us is a length.
The parameter us is parallel to the zs direction in Figure 2-2. In this figure, 6os is the
half space width on the base cylinder [13,14]. The parametric surface equation of the

spur shaper tooth surface as a function of s and us is:

+r, [sin(6, +6,,) -6, -cos(b, +6,,)] (2-3)
r.(ug, 8,) =< -1 [cos(b, + b,,) + 6, -sin(6, + 6,,)]
u

S

where rps is formulated as a function of pitch radius and pressure angle at the pitch

point (ao) as:

Fos = s COS(2%,) (2-4)
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The upper and lower (plus and minus) signs in the first row of Equation (2-3)
correspond to left and right profiles, respectively. In addition to shaper surface
equation, a mathematical coupling between the shaper parameters needs to be
derived and used in the face-gear tooth dimension calculations. The equation of
meshing is a scalar function of two shaper surface parameters (us, &s) and one shaper

generalized motion parameter (¢, ). Formulated as:

fi (us’es’ws) = rbs '(1_ms/g Cosym)_ (2'5)
Ug -mg,, -siny,, -cos(p, +6,, +6,)=0

where, ym = z-y in radians and mgg = 1/mgs. The equation of meshing is a
mathematical coupling between the shaper parameters (us , 6s) and motion parameter

(¢, ). To obtain the actual tooth form, critical dimensions of the face-gear must be

identified. The critical dimensions dictates the value of the shaper parameters us , 6s

and ¢, . The simultaneous solution of surface equations and equation of meshing

with the satisfying parameters produce the actual tooth geometry. This procedure is
called enveloping the surface contact lines. The face-gear tooth surface is called the
envelope of the family of contact lines [13,15]. In Figure 2-3, the enveloping process

iIs summarized. Here, ¢, and ¢, are the angles of rotation of shaper that

correspond to the start and end of the meshing cycle for single pair of teeth,
respectively. These angles are calculated from simulation of meshing and enveloping
process as explained in [13] and [15]. Calculated undercut and pointing dimensions
of the face-gear identify Usmin and usmax values. The equation of meshing is then
solved numerically to establish curvilinear coordinates of each contact line at each
instant of meshing cycle. The calculated curvilinear coordinates are substituted in
shaper and face-gear surface equations to produce the face-gear tooth form. These
enveloped contact lines between shaper and the face-gear are numerically generated

from simulation of meshing and presented in Figure 2-2-b, viewed at ys-zs plane. In
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this simulation the mesh cycle starts from the base-circle-radius (ros) of the shaper
(point B) and ends at the addendum of the shaper (point A). The shaper tooth
geometry is bounded with the rectangle A-A™-B-B™. The face-gear tooth is
presented in Figure 2-2-c, where, the tooth-face-width is symbolized as fu.

a)

Bos22

0s 0s

Xs

I‘bs

rPs

Figure 2-2 a) Spur shaper parameters [15]; b) Shaper from side view with contact

lines; c) face-gear tooth
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Figure 2-3 Flow diagram of face-gear modeling process

Reorganizing the meshing Equation (2-5) after solving, the parameter us can be

calculated as,

(-1+m,, -cosy,) (2-6)

Uy =Ty -
M -sin(y,, )-cos(¢, + Gy +6,)

S

2.2.1 Transformation of the Spur-Shaper Surface to the Face-Gear

The position vector for the spur-shaper is transformed to the face-gear position vector

through three rotations around appropriate axes. As mentioned above, this is defined
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as the process of simulating the machine tool motions, as depicted in Figure 2-4. ¢,
and ¢, are the rotational motion parameters of the spur-gear and the face-gear,

respectively.

Figure 2-4 Spur-shaper and face-gear assembly

The first transformation is defined as the rotation of spur-gear around its own rotation

axis and determined by the following expression,

cos(-¢4,) sin(-¢4,) O (2-7)
M =| —sin(-¢,) cos(-¢4,) O
0 0 1

The second transformation is defined as the rotation between the shaper and face-

gear rotation axes and determined by the following expression,
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1 0 0 (2-8)
« =0 cos(y) sin(y)
0 —sin(y) cos(y)

M

The third transformation is defined as the rotation of face-gear around its own

rotation axis, and the corresponding transformation matrix is written as,

cos(4,) sin(4,) (2-9)

0
M,, =| —sin(¢,) cos(g,) O
0 0 1

The resulting transformation matrix is written as the product of all three matrices as,

M25(¢2’¢s)= MZaManfs (2-10)

As it is seen from the equation above, the total transformation matrix is a function of

the rotational motion parameters ¢, and ¢, , where the angle between spur and face-

gears y is a constant parameter. Also, between two motion parameters, the following

relation may be written,

N, (2-11)

where Nsand N> are the teeth numbers of the shaper and the face-gear, respectively.
Then, after appropriate substitutions, the transformation matrix can be written as a

function of ¢, only as;
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MZS (¢2’¢s) = M25(¢5) (2_12)

2.2.2 Face-Gear Surface Equations

The spur-shaper surface given in Equation (2-3) may also be written as,

X, (u,,6.) (2-13)

r (U, 6,) =< Y (ug, 6,)
z,(u,,6,)

Similarly, the face-gear’s surface equation may be expressed as,

XZ(us’Hs ! ¢s) (2-14)
(U, 0, 4) =1 ¥, (U, 0, 4,)
ZZ(US’HS'¢S)

Different from the surface equation of the spur-gear, the rotation parameter is added
to the equation due to the transformation. In terms of spur-shaper parameters and

the total transformation matrix, Equation (2-46) may also be expressed as,

U, 6, 6) =My (A1 (U, 6,) (2-15)
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2.2.3 Limiting Conditions of Surface Generations

The undercutting condition and the pointing condition are the two limiting factors
for surface generation of a face-gear, as mentioned in the introduction of this chapter.
The undercutting criteria constructs a region at the bottom of the tooth, beyond which
conjugate action does not work (the blue region in Figure 2-5). And the pointing
criteria determines the location where the thickness of the top surface becomes zero.

This also fixes the outer radius of the face-gear.

undercut regions

Contact Lines

pointing

Figure 2-5 Undercut regions on face-gear tooth surface and pointing

30



Figure 2-6 The undercut definition, [62]

Sliding Velocity:

The meshing teeth of a gear-pair at a contact point is given in Figure 2-7. v; and v,
are the peripheral velocities, v,, and v,,, are the normal velocities, v;, and v,, are
the tangential velocities of the driven and the driver gears. v; is called as the sliding
velocity which plays an important role in generating the surface profiles of the teeth

and may be expressed as,

—g2) — — (2-16)

- 7 = (2-17)
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Tooth surface

Figure 2-7 One point of interest at the contact line of the meshing teeth [63], [56]

Surface Normal:

The term 7., is the unit normal vector of the surface, and it may be defined as the
cross product of the directional derivatives over a surface in space, as given in Figure
2-8. It can be calculated as,

ors (u,6,) . ors (us,6,) (2-18)
- ou, 06,
Cjors(u,6,) ors(u,.6,)
au, 00,
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Figure 2-8 Surface normal and the directional derivatives over the specified

surface

Equation of Meshing:

For the conjugate action of tooth profiles, the following equation should be satisfied,

f(u,6,.4)=n-v, =0 (2-19)

which is therefore called as the “equation of meshing”. At all-time instants, surface
normal at the point of contact must be perpendicular to the sliding velocity between
the two meshing surfaces. As mentioned above, sliding velocity is the difference
between the peripheral velocities. Since the normal velocities of the two surfaces
must be equal both in direction and magnitude, the sliding velocity may also be

defined as the difference between rolling velocities.
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2.2.3.1  Calculations for Undercutting

This criterion (limiting point for the surface generation) denotes the cutting region
of the involute spur-gear shaper that is beyond the active conjugate region, and this
region is to be avoided. Since the undercutting point is a singular point, normal vector

for the face-gear surface should be equal to zero at the prescribed singular point,

o o, @20
ou, 6,

S

n, =

Therefore, the points of undercut region may be detected with the above equation.
Litvin [8,13-15,52,53], proposes another method for detecting the undercutting

points which can be expressed with the following formula,

(2-21)

where first term is the velocity of the contact point in its relative motion over the
generating surface (spur-shaper) and the second term is the sliding velocity. Both
vectors are defined with components of coordinate system that is rigidly connected
to the generating surface. Equation (2-21) may also be written as in the following

form;

A @22

ou, dt o6, dt  °

For detecting the undercut region, differentiated form of Equation (2-19) and
equation (2-22) should be satisfied simultaneously. Therefore, the time-
differentiated form of equation of meshing given in (2-19) may be written as,
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i (u,0,4) _of du, & d0, o dg, (2-29)
dt ou, dt 06, dt  og, dt

Writing equations (2-22) and (2-23) in matrix form yields,

or, o, 2 (2-24)
au, o6, |fu)_| "

o of {62}_ i)

u. 06, Og,

By solving the Equation (2-24), the undercut region is determined.

2.2.3.2  Calculations for Pointing

Pointing denotes the location where the thickness of the tooth on the top surface
becomes zero, as depicted in Figure 2-5. For this, the two tooth surfaces of the face-

gear and the spur-pinion may intersect at a point A, as shown in Figure 2-9.

For determining the location where the pointing occurs, firstly, the pressure angle o
of the pointed teeth is determined. From Figure 2-9, the following expression can be

written,

O 'N+NM+MA=0_A (2-25)

where

[MA| - 4, (2-26)
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Figure 2-9 Cross section of tooth profiles of spur-shaper and the face-gear at the

pointing cross section, cross section I, depicted in Figure 2-11 [13]

Substituting Equations (2-26), (2-27) and (2-28) into Equation (2-25) yields,

"2 7 2-29
I, -e( 2]+rbs'95e(”+“)+/15-e(2 ): ( )

S

Oa*A‘ .

where . Then, separating the vector equation into two scalar equations yields,
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- 2-30
oA (2-30)

a

[ cos(a +377[j + 1,6, cos(7 + ) + A cos(% + aj =—

. (2-31)

[ sin(a+3§]+ 1.6, sin(z +a) + A sin(%+a}

The following expressions may be derived from Figure 2-9 and Figure 2-10,

s = s cos(e,) (2-32)
a, = acos[iJ

M
0=a-0

S 0s

where 1 and 6, are expressed as,

P N, (2-33)
P 2P,
T .
0. =———Inv
0s 2N (ao)

S

Substituting Equations (2-32) and (2-33) into Equations (2-30) and (2-31), and

eliminating vyields,

(2-34)

a—sin(— Y= _inv(a,)
N, cos(er,)” 2N,
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where denotes the pressure angle at the pointing location.

Oa Ys

Qg

Pitch circle

Ls

Figure 2-10 Cross section of tooth profiles of spur-shaper and the face-gear at any
cross section before the pointing, cross section Iy depicted in Figure 2-11 [13]

Secondly, L2 is calculated by using the value of the pressure angle at the pointing
location. Using the Equation ((2-47), the length, given in Figure 2-9, may be

expressed as,

—_—
*

_ r, N,cos(ea,) (2-35)
cos(er) 2P, cos(x)

a

From Figure 2-11, L is written as,

o (2-36)

a

> tan(z,)
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Figure 2-11 Cross sections IT1 and Iz, [13]

Substituting Equation (2-35) into Equation (2-36) yields,

B N, (2-37)
2P, cos(e) tan(y,)

2

Assuming 6.”, ¢.° and u,"” are the corresponding values of the parameters 6, , ¢, and
u, where the pointing is achieved, then the parameter L, may be formulated as the z

component of the spur-shaper, as depicted in Equation (2-3), (2-6) and (2-50), and
can be written as,

L, =u,(6".4.") (2-38)

is also the outer radius of the face-gear. Rewriting Equation (2-13) for only the x

and y components of the face-gear at the location of pointing yields,
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{xzp (usp,HS”,qﬁS”)} B { 0 } (2-39)
y, (. 67,47 (L

Therefore, solving the two equations simultaneously for 6."and ¢, gives the

pointing location.

An example is shown in Figure 2-12. Here, spur shaper number of teeth (Ns ) is 20,
gear module (mo) is 5.08 mm or diametral pitch (Pg) is 5 (1/inch). Face-gear number
of teeth (N2 ) is 120, and the shaft angle () is 90°. The resulting face-gear tooth form

is presented in Figure 2-13.

The critical dimensions of the face-gear drives can be assessed by two approaches.
The first approach is based on the conversion of Usmin and uUsmax values into face-gear
coordinates as presented in [15]. The second approach is reading the coordinates of
the minimum and maximum values in y. direction, specified in Figure 2-13. This
approach requires further coordinate transformations and more computation time.
Hence, the first approach is more convenient for parametric studies and repetitive
calculations; however, the method still requires complex numerical calculations and
computer time. Depending on gear parameters these two methods may show up to

5% difference both in inner and outer radii.
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Figure 2-12 Enveloped us, 0s and ¢ parameters with Ns = 20, N> = 120, y=90°,
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Figure 2-13 a) Shaper tooth space, b) Face-gear tooth flank in their local coordinate

frames

The numerical method used in this chapter is compared to the published face-gear
data to estimate the accuracy of the model. The references are listed at the last

column of Table 2-1. The numbers of teeth, shaft angle and gear module are
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presented in the first four columns of Table 2-1, respectively. Here, the critical
dimensions are extracted from the minimum and maximum values of the respective
y2 coordinates of the tooth forms shown in Figure 2-14. In this table, the shaper
pressure angle (ao) is 25° for Case-1, and 20° for the rest. Shaper is positioned at 90°
shaft angle (») in Cases from 1 to 4. Case 5 has 80° shaft angle. Calculated inner and
outer radii and their percentile difference (&in and eout) from the references are also
listed in Table 2-1. Both inner and outer radii are in a good correlation (less than 5%
difference) with the published data. The inner radius results vary from 0.4% to 4%
for y=190°, and -1.7% for y=80°. The outer radius varies from 0.2% to 1.5% for y
=90°, and 4.6% for y = 80°. These variations can be caused due to using different
numerical techniques, different initial value assumptions, or different step sizes used

in the numerical calculations in each reference and this study.

Table 2-1 Comparison to selected literature

Case Ns N y() Mo (Mm)  Rin(Mm) Rouw(Mm) &n% eut%  Ref.

1 28 160 90 6.35 469 558.1 0.4 0.2 [13]
2 20 100 90 2.54 117.6 140.2 40 15 [15]
3 19 71 90 4.00 131.2 157 20 -11 [64]
4 28 107 80 3.175 161 182.2 -1.7 46 [65]
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Figure 2-14 Face-gear tooth forms from viewed on y,-z, plane

2.3 Derivation of analytical formulas

| I ! | | !
-180-170 -160-150-140-130-120

In this section, the dimensions Li, L2, Rin, Rout, fw are derived using geometric

relations presented in Figure 2-1 and Figure 2-2. The dimensions of the shaper and

the face-gear are shown in Figure 2-1. The important coordinates of the shaper and

the face-gear are labeled in Figure 2-15-a and b. Figure 2-15-b is the illustration of

the shaper tooth from the side view.

a) T “ . St n
Q B
S \\\ t] pt e a 7
\\\ ¥ \_’P
Vs N 7 P / B Rout'RpZ A
U y y \\\\ A ““ fw
*»yz\—»“ 7>_‘ ‘I 2
R e e
o == > Z,
B A

Figure 2-15 a) Face-gear & spur shaper relations and b) shaper tooth dimensions
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23.1 Inner Radius Formulation

In Figure 2-15-a, QP line is perpendicular to OT line and parallel to SB, TA lines.

Also, UB line is parallel to zs axis and perpendicular to PM line. Triangles OSB and

OB’B share a common hypotenuse which is OB line and its length is:

OB=r,, /sin(y,) (2-40)

Here, rps is the length of BB” line. Hence, the relationship for the length L1 (Figure
2-1) is:

L, = (ry /sin(y,))-cos(y,) (2-41)

where, L; is the length of OB™ line in Figure 2-15. The face-gear inner radius (Rin) is
derived from OBS triangle where the length of SB line is the corresponding
dimension. Equation (2-41) is rearranged as r,, cot(y,) and reformulated by using

Equation (2-1) as:

LN, cos(a,) (mz,s +c037/] (2-42)
= .

2P, siny
Consecutively, the inner radius length is SB = L, sin(y,) and rearranged as to give

the radius as:

Ry, = Ty COt(yy)-sin(y;) (2-43)
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where, y. is calculated from Equation (2-2). The face-gear inner radius is then
reformulated as a function of shaper number of tooth (Ns), pressure angle at the pitch

circle (ao), diametral pitch (Pg) and pitch cone angles (y1 and y2) as:

_ N, cos(a,) (2-44)

R cot(y,) sin(y,)

" 2P,

and redefined with Equations (2-1) and (2-2) in its final form as:

R = N, cos(a,) Myss £0057 ) cinl cot w (2-45)
2Ry siny m,,, siny

2.3.2 Outer Radius Formulation

Similar to inner radius formulation, the outer radius of the face-gear is calculated

from OTA and OA*A triangles. Here, the common hypotenuse is OA line and its

length is

OA=AA" /sin(y,) (2-46)

Here, ras is the addendum radius and is equal to the length of aa™ line. Limiting

length for outer radius is:

L2 =Ty COt(yl) (2'47)

where, the addendum radius is calculated from r,, =r  +a ,and a=1/P,. Hence:
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N 1 (2-48)
L, =(—+—)-cot
2 (2Pd Pd) (71)

The term cot(y1) is already formulated in Equation (2-1). By substituting this term

into Equation (2-48), L> can be expressed in terms of Ns, Pg, m2ss, and y as:

(2-49)
L, = N, +i . m2,5_+cos;/
2P, P, siny

Finally, the outer radius is calculated from OTA triangle as:

Rou = Ly 8IN(y,) (2-50)

By replacing y» with Equation (2-2), the outer diameter formula as a function of Ns,

P4, mass, and y is presented in its final form as:

N m,,. +COS _ 14+m,,. coS (2-51)
Rout = ° +i . M -SIN COt_1 —+ 2/5_ 4
2P, P, siny m,, siny

2.3.3 Face Width Formula

Finally, the face width of a face-gear generated by a spur shaper is the difference

between limiting dimensions L; and L2. Simply, formulated from L - Ly as:
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‘¢ (N, +2—N, cos(a,))( m,,, +cosy (2-52)
" 2P, siny

As a specific case, the face width of the face-gears with 90° shaft angle is calculated

from:

¢ m,, (N, +2—N_ cos(a,)) (2-53)
" 2P,

2.4 Unloaded Tooth Contact Analysis

Unloaded Tooth Contact Analysis (UTCA) is performed over meshing teeth in order
to obtain the contact paths on the gear surfaces and calculate the transmission error.
Besides manufacturing errors, using pinion other than shaper with different tooth
number, shaft angle misalignment, axial displacement of the pinion, micro
modifications (i.e. profile and face-width modifications) can also lead to

transmission errors in the drive systems [65,66].

For the face-gear drives, except the micro modifications over the surface of the tooth,
misalignments along any axis and also shaft angle does not lead to any significant

transmission errors, which is considered to be an advantage of the face-gear drives.

For the localization of the bearing contact, two approaches are generally suggested
[67,68] one is double crowning of the pinion and the other is using a pinion having

less teeth number than the shaper-pinion of the face-gear.

In this chapter, the second approach is utilized, and coupled with shaft and pinion

position misalignments. Three case studies have been performed in order to validate
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the developed surface generation code and calculate the resulted unloaded static
transmission errors. The cases studies are taken from [67], [68]. For all three cases,
face-gear generated by an involute shaper with a tooth number of Ns=28 and a
diametral pitch of P4=8, driven by an involute spur-pinion with a tooth number of
N1=25. The tooth number of the face-gear is N>=108,

In Case-1, no axial and shaft misalignments are imposed (=0 mm, Ay=0 °). The
shaper-pinion and the utilized spur-pinion tooth number difference is taken as 3 (Ns-
N1=3).

In Case-2, a misalignment along rotational axis of the spur-pinion has been imposed
(9=0.1 mm). No shaft misalignment is imposed (4y =0 ). The shaper-pinion and the

utilized spur-pinion tooth difference is taken as 3 (Ns-N1=3).

In Case 3, a shaft misalignment is imposed (Ay =0.04 °). Along rotational axis of the
spur-pinion an axial misalignment has been imposed (g=0.1 mm). The shaper-pinion

and the utilized spur-pinion tooth number difference is taken as 3 (Ns-N1=3).

24.1 Procedure for the Unloaded Tooth Contact Analysis

are the spur-pinion’s surface geometry parameters and are the spur-shaper’s surface
geometry parameters. If the parameters ¢ and ¢, represent the rotational degree of
freedom of the spur-pinion and the face-gear, respectively, then the following

relations exists between them

2_
M= (254)

2

where Ag, defines the static transmission error, N1 and N2 are the tooth numbers of
pinion and the face-gear, respectively. If, on the other hand, the parameters ¢, and

¢, represent the rotational degree of freedom of the spur-shaper and the face-gear,

respectively, then the following relation exists between them
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N (2-55)

where and are the tooth numbers of pinion and the face-gear respectively. Note that,

due to perfect conjugate action, the resulting transmission error is zero.

For the unloaded tooth contact analysis, generally, the perfect conjugate tooth
geometry (which is the shaper pinion here) and the modified tooth geometry (which
is the driving spur-pinion here) are compared by equating the surface geometries and
the surface normal of both pinions to each other. Equation (2-56) represents the tooth

surfaces and their surface normals.

Mo (w,6.4)=1,,(4.6,.4;) (2-56)
N (6. 8) =np, (4.6,.65)

r,and n,, belong to the driving spur-pinion and r,, and n,, belong to the
generated face-gear geometry. Equation (2-56) gives 6 nonlinear equations, but only

5 of them are independent due to the fact that n,, and n,, are unit vectors.

By the help to the surface formulations given by Equation (2-3) and (2-15), and the
transformation matrices given in Equation (2-7), (2-8) and (2-9), Equation (2-56) is

reformulated as,

E
rf2(¢s’!es’¢s): B +Maf (7m +A7/)'MZa(_¢s,)'r2(us’6’s’¢s) (2_57)
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Ny (,6.068) =My (7 +A7)-M,, (=4))-n, (6., 4) (2-58)

where E is the shortest distance between pinion-gear axes, g is the axial displacement

of the face-gear, is the change of the shaft angle, B is the center distance defined as,

B=(r, —1,)cos(c) (2-59)

The five unknowns u,,,, ¢/, ¢., and 6, are solved by increasing ¢, incrementally

(rotation degree of freedom of the face-gear), and the unloaded static transmission

error Ag, is obtained. Matlab® “fsolve” function is utilized as a nonlinear solver. The

utilized procedure is described in [13,14,55,68-70].

Figure 2-16 Assembly of a face-gear drive, mating surfaces of spur-pinion

and face-gear

24.2 The Obtained Results and Discussion

The unloaded static transmission error results are displayed in Figure 2-17, Figure
2-18 and Figure 2-19 for Case-1, Case-2 and Case-3, respectively.

50



As depicted in Figure 2-17, utilization of spur-pinion having different number of
tooth from the spur-shaper used to generate the surface geometry of the face-gear,
does not create any transmission error. The shaper-pinion and the utilized spur-
pinion tooth number difference was taken as 3 (Ns-N1=3).

Figure 2-18 demonstrates that utilization of spur-pinion having different number of
tooth from the spur-shaper, and also addition of an axial misalignment along
rotational axis of the spur-pinion (q=0.1 mm), again does not create any transmission

error.

10 TRAMSMISSION ERROR
E T T T T T T T T
—#— CASE 1: Ns-N1=3, g=0 mm, gamma=0 degrees
4+ i
2 - -
S ol ]
]
]
= | i
= 2
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1

_8 1 1 1 1 1 1 1
-01 -0.08 -006 -0.04 -0.02 0 0.02 0.04 0.06 0.08
LR rad

Figure 2-17 Unloaded Static Transmission Error, Case-1
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Dy rad

Figure 2-18 Unloaded Static Transmission Error, Case-2

Finally, Figure 2-19 shows that defining a shaft misalignment with Ay =0.04° to the
face-gear system, in addition to the imposed axial misalignment and using different

number of tooth for spur-pinion, does not create any transmission error.
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x 10" TRANSMISSION ERROR

—®— CASE3: Ns-N1=3, g=0.1mm, gamma=0.04 degrees

Ad,, arcsec

Figure 2-19 Unloaded Static Transmission Error, Case-3

In Figure 2-20, the resulting transmission errors of all cases are plotted together. The
face-gear drive system is less sensitive to transmission error caused by imposed
misalignments of shaft and pinion position along its axis; the calculated values in

arcseconds (1/3600th of a degree) are almost zero.
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Figure 2-20 Unloaded Static Transmission Error, Case-1, 2 and 3

CONTACT POINTS

—#— CASE 1: Ns-N1=3, g=0 mm, gamma=0 degrees
—@— CASE 2: Ns-N1=3, g=0.1mm, gamma=0 degrees
—C— CASE 3: Ns-N1=3, g=0.1mm, gamma=0.04 degrees

Figure 2-21 Contact points on face-gear, for all three cases, 3D view
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Figure 2-21 and Figure 2-22 demonstrate the contact points on the face-gear tooth
surface. It is noted that, using a spur-pinion with different number of tooth from the

shaper-pinion leads to point contact rather than the line contact, as in the case of
shaper-pinion driven face-gear.
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Figure 2-22 Contact points on face-gear, for all three cases, view along yz-axis

25 Model for The Face-Gear Thickness Variation

After the surface of the face-gear is generated as a point cloud, whole surface is
approximated via NURBS (Non-Uniform Rational B-Splines) functions [71,72].
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This is a necessary step to estimate the thickness throughout the generated surface of
the face-gear and the spur-pinion. By this approximation, a continuous thickness
variation along the face width and along the profile direction of the gears is achieved
within the Finite Strip Elements established for the discretization, which is detailed
in Chapter 3. A typical generated point cloud and a FSM discretization is shown in
Figure 2-23.

Figure 2-23 a) Point cloud extracted for a typical face-gear and b) the assigned
finite strip elements

NURBS method is a piecewise parametric approximation for a curve or a surface.
To be generated shape is defined by a set of control points, blending functions and
knots. The control points are used to define the general shape while the blending
functions and the knots are used to control how much each point influences the
generated shape. NURBS curves are more popular among the CAD system
developers compared to with other parametric and non-parametric curves due its
several advantages. They easily represent geometrical shapes in a very compact

form. The utilized formulation is given in Appendix A.

Figure 2-24 shows the involute profile of the spur-shaper which has the properties

givenin
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Table 2-2. The profile is approximated by utilizing NURBS in one dimension. The
red dots are taken from the point cloud data, and the continuous line represents the

results of the NURBS approximation.

Table 2-2 Input parameters

Parameter Ns N2

Number of teeth 28 108
Diametral pitch 1/inch) 8

Pressure angle (%) 20

Face-width (inch) 1.33

237

Figure 2-24 Original spur-gear involute profile and the data generated via NURBS
curves, with p=3 and 101 control points along the x axis

Figure 2-25, on the other hand, shows the face-gear surface generated with the spur-
pinion specified in Table 2-2, and the data generated via NURBS curves. The red
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dots are taken from the point cloud data where the blue dots are the taken from the

NURBS curves. The fillet region is also accurately fit by the NURBS curves.
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® * data generated via NURBS curves
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Figure 2-25 The point cloud for the original face-gear surface and the fillet, and
data generated via NURBS curves with p=3, discretizing face-width direction by 9

grids and profile direction by 8 grids
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CHAPTER 3

MESH STIFFNESS CALCULATIONS

Mesh stiffness is an important parameter for the dynamic analysis of the gear drive
systems since it varies with the load position and affects the load distribution among

the other tooth pairs in contact.

In literature, the mesh stiffness calculations may be classified into three categories:
analytical, finite element based, and experimental [25]. Experimental methods give
accurate values, but they need repetitive measurements from different kinds of (or
from a specific kind of) gear specimen, which costs a lot [73]. Finite element models
are generally less expensive and more efficient but require more modelling and

computational time than the other methods.

There is no analytical solution to the mesh stiffness for a face-gear because of the
tooth surface's complex geometry and the variation of the tooth thickness (and the
pressure angle) along the tooth face-width direction. Several studies on the spur,
helical, and face gears are based on mesh stiffness calculated from a uniform cross-

section cantilevered beam assumption [22,25,74].

Figure 3-1 Uniform cantilever beam assumption for the mesh stiffness
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For analytical calculation of the mesh stiffness of any type of gear, mainly the
following contributors are taken into account; bending deformation, shear
deformation, axial compression, the flexibility of fillet and foundation, and local
compliance due to contact forces [75-85]. Generally, it is assumed that all contact
takes place along the line of action, and the rims of the gears are assumed to be solid
[86].

In literature, tooth bending and shear deflections of any kind of gear are computed
by using a Rayleigh-Ritz solution of a tapered plate model [82], a beam model
[73,76-78,86,87], or a finite element solution of a tapered beam model [80].

Load Distribution Program [88] uses a cantilevered tapered plate model using the
Rayleigh-Ritz method, first developed by Yakubek [89] and implemented by Yau
[90]. This model proves very reliable for use on the pinion, where the geometry is
constant across the face width and does not change as a function of the face width.

Hertzian deflections [85] and deflection of the tooth base [82] are the additional tooth
deflection components that have to be added to the total stiffness or compliance

appropriately.

This chapter investigates several methods for calculating bending and contact

contributors of the mesh stiffness.

3.1 Stiffness Calculations for One-Tooth

3.1.1 Bending Stiffness Contribution

The following methods are utilized in the literature for a tooth's bending stiffness.
These methods, except the Finite Element Method (2D or 3D), are investigated in
this chapter.

e Thin Slice Method (1D)
e Rayleigh-Ritz Approximation (2D)
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e Finite Strip Method (2D)
e Finite Prism Method (3D)
e Finite Element Method (2D or 3D)

3.1.1.1  Thin Slice Method (TSM)

In this method, the tooth is divided into several slices, as depicted in Figure 3-2, and
their stiffness values are extracted independently. Compliance due to bending, shear,
axial load, base rotation, and compliance due to contact deformation is calculated

and then added together to obtain one tooth's total stiffness.

Figure 3-2 A face-gear tooth with several slices along its face width [91]

In order to have the effect of the accurate tooth profile in the stiffness values,
especially for the face-gear, the interested tooth has to be sliced into an adequate
number of slices. This is because the section profile varies along the face width. For
the spur-shaper, on the other hand, the profile remains constant. Figure 3-3-a shows
a TSM model of a spur gear with n uncoupled slices, whereas Figure 3-3-b shows

the coupled version.
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Figure 3-3 a) Uncoupled and b) coupled thin slices of a gear [91]

For instance, for an n sliced gear tooth, the uncoupled stiffness matrix due to

bending, shear, base rotation, axial load, and contact deformation is written as,

'k, 0 -~ 0 O] (3-1)
0k, . 0 0
K=|: "
0 0 k., O
10 0 0 k|

whereas the coupling terms between those slices are formulated as,

. -n 0 0 0 o] (G2
XN Lt X X . 0 0 0
0 X Xot X3 0 0 0
X=| : :
0 0 0 . o Xns + Xn-2 —Xn-2 0
0 0 0 - ~Xnoo Xn2t X —Xna
L 0 0 0 —Xna Zn i

and total stiffness matrix is written as,
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K, =K+X (3-3)

Borner suggests an empirical formula for the coupling stiffnesses based on
measurements and several finite element models for an involute gear [26]. In his

formulation, the coupling stiffness between the i™ and (i+1)" slice is given as,

%] k. +k. (3-4)

where b, is the face width of the slice, m, is the normal module, kis the calculated

stiffness of the slice, k;,, and is the calculated stiffness of the adjacent slice.

Application of this method to a spur gear geometry for a straight loading and an
oblique loading are given in the following sections. The bending stiffness

formulation for a slice is given in Appendix B.

3.1.1.1.1 Results and Comparison with FEM for Straight Loading

An example tooth is modelled with 40 slices along the face width. Each slice has ten
segments along the profile for an arbitrarily loaded case. The results are compared
with the 3D FE model result.
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Figure 3-4 Spur Gear straight loading on the tip

The FE result is displayed in Figure 3-4. The deflections of the slices are shown in
Figure 3-5. The TSM model approximates the FE results with a maximum error of
4.1%.
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Figure 3-5 Comparison of thin slice method results with the FE results for

straight loading
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3.1.1.1.2 Results and Comparison with FEM for Oblique Loading

The same FE and TSM models are also used for another arbitrarily loaded case. Here,
an oblique loading on the tooth's surface is given in Figure 3-6-a, and the FE result
is displayed in Figure 3-6-b.

Translational. Magn

default_Fringe
Max 2 T4-003 @Nd 2743
Min 0. @Nd 1

Figure 3-6 a) Spur gear oblique loading on the conjugate surface, b) FE

displacement results

The deflections of the points where the load is applied are shown in Figure 3-5. The
gear is sliced into 40 slices, but only eight have been loaded; therefore, only the
deflections of these loaded slices are depicted in Figure 3-5. The TSM model

approximates the FE results with a maximum error of 15.6 %.
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Figure 3-7 Comparison of thin slice method results with the FE results for

oblique loading

3.1.1.2  Rayleigh-Ritz Approximation

For the deflection study of a tooth, the Kirchoff plate theory is employed and solved
through the Rayleigh-Ritz approximation method. The results have been compared
with the values obtained from the FE model run within the Nastran package program.
The equation of motion is derived from the energy equations. Eigenfunctions for a
cantilever-free beam are utilized as shape functions along the longitudinal axis.
Similarly, eigenfunctions for a free-free beam are utilized along the transverse axis.
The derived formulations are given in the Appendix C. The generated code is

developed in the Mathcad package program.

A uniform plate (Figure 3-8-a), a one-axis trapezoidal plate (Figure 3-8-b), and a

two-axes trapezoidal plate (Figure 3-8-c) are constructed.
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Figure 3-8 Utilized plate types a) a uniform plate, b) one-axis trapezoidal plate,

c) two-axes trapezoidal plate

In the energy equations, the plate type is varied through the thickness function
specified in Equations (3-5), (3-6), (3-7), and (3-8).

3.1.1.2.1 Uniform Plate

For a uniform plate, as depicted in Figure 3-8-a, the thickness does not vary across
the x and y-axes of the plate. The thickness variation is imposed into the energy

equation as follows;

h(x,y) =t (3-5)

The plate is modelled as a cantilevered Kirchoff plate along one longitudinal side via
Rayleigh-Ritz approximation, where the transverse shear effects are neglected. In
order to compare the results with those of the FE model, an example case is modelled
and solved in MSC Patran/Nastran as a bending plate. The following arbitrarily

selected loaded cases are solved;

e Case-1, a uniform pressure loading of 2000 N/mm? is applied to the plate
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e Case-2, a uniform distributed line loading of 11000 N/mm along the
longitudinal axis

e (Case-3, a point load line loading of 1000 N at the point (x,y)=(a,b/2)

For Case-1, the FE model gives the maximum deflection as 0.0328 mm, as depicted
in Figure 3-9, whereas the Rayleigh-Ritz approximation with seven shape functions
in both directions gives 0.0312 mm. The error is calculated as 0.488%.
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2.52-002
2.40-002)
2.18-002)
1.97-002
1.75-002
1.53-002
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it 0b-Jun-14 09:46 67

fatic Subcase_2, Displacements, Translational, Ma

1.06-002
8.74-003
6.55-003
437003
278-00

default_Fringe
Max 3.28-002 @Nd 6
Min 0. @Nd 56

Figure 3-9 FEM results for uniform bending plate, uniform pressure loading

For Case-2, the maximum deflection for a uniform distributed line loading of 11000
N/mm is obtained from the Nastran package program as 0.942 mm, as depicted in
Figure 3-10. The Rayleigh-Ritz approximation with eight shape functions in both
directions gives the maximum deflection as 0.0924 mm. The error is calculated as
1.91 %.
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Figure 3-10 FEM results for uniform plate, loading along a line

For Case-3, the maximum deflection for a point load line loading of 1000 N at the
point (x,y)=(a,b/2) is obtained from the FE model as 0.107 mm, as shown in Figure
3-11. The maximum deformation calculated by the Rayleigh-Ritz approximation
with seven shape functions in both directions is 0.126 mm. The error is calculated as
17 %.

1.07-001
-1411:27:10 9.99-002
9.28-002
8.67-002
7.86-002
7.14-002
6.42-002
5.71-002
5.00-002
4.28-002
3.67-002
2.868-002
2.14-002
1.43-002)

714003
default_Fringe :
Max 1.07-001 @Hd 6
Min 0. @nd 56

case_3. Displacements, Translational. Magnitude, (NON-LAY

Figure 3-11 FEM results for uniform plate, point load
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3.1.1.2.2 One-axis Trapezoidal Plate:

For a one-axis trapezoidal plate, as shown in Figure 3-8-b, the thickness varies across
the x or y-axes of the plate, and this thickness variation is imposed into the energy

equation as,

h(x) = t(l— c, 2] (3-6)

or

o) =t[1-c, @)

where tis the thickness parameter, C, and c, are the taper ratio specifying the

thickness variation along the plate x-axis or y-axis, respectively, a is the length of

the longitudinal side and b is the length of the transverse side of the plate.

The same plate model givenat 3.1.1.2.1 is utilized. The plate is loaded with a uniform
pressure of 2000 N/mm? for an arbitrarily loading case. As shown in Figure 3-12,
the maximum deflection for a uniform pressure loading of 2000 N/mm? is obtained
as 0.0394 mm at the point (x,y)=(a,b/2). On the other hand, the maximum deflection
from the Rayleigh-Ritz approximation with five shape functions in both directions is

calculated as 0.0399 mm. The error is calculated as 1.2 %.
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Figure 3-12 FEM results for one-axis tapered plate model, pressure loading

3.1.1.2.3 Two-axis Trapezoidal Plate:

For a two-axes trapezoidal plate, as shown in Figure 3-8-c, the thickness varies along
both the x and y axes of the plate, and this variation is imposed into the energy

equation as follows;

h(x,y) :t(l—cxg—cy %j (3-8)

where and are the taper ratios specifying the thickness variation along the plate x-

axis or y-axis, respectively.

The same plate model given at 3.1.1.2.1 is solved with the thickness function given
in Equation (3-8). The plate is loaded with a uniform pressure of 2000 N/mm? for an

arbitrarily loading case.

In Figure 3-13 below, deformation results obtained from Nastran are displayed; the
maximum deflection is obtained from Nastran as 0.104 mm. On the other hand, the
maximum deformation calculated by the Rayleigh-Ritz approximation is 0.0979

mm, with two shape functions in both directions, and 0.1004 mm, with seven shape
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functions in both directions. The error is calculated for seven shape functions in both

directions as 3.8%.

Figure 3-13 FEM results for two-axis tapered plate model, uniform pressure
loading

3.1.1.3  Finite Strip Method

The finite strip method (FSM) is a numerical method that compares favorably with
the finite element method (FEM) in terms of run-time, storage of stiffness, load, and
resulting output matrices. FSM combines the idea of the analytical Kantorovich-
Vlassov's method and the FEM technique [92]. It is a semi-analytical finite element
modelling using continuous functions to satisfy the boundary conditions in one
direction of the plate and finite element discretization in the other direction. Thus,
the two-dimensional plate problem reduces to a one-dimensional problem [93]. A

typical plate discretized with n finite strip elements is shown in Figure 3-14.

FSM can be classified into two categories that differ in selecting the shape functions
for the longitudinal axis of the plate problem, namely [94],

e Semi-analytical FSM (SFSM)
e Numerical FSM (NFSM).

SFSM uses a function series (beam eigenfunctions, orthogonal polynomial series)

that satisfy a finite strip's end conditions in the longitudinal direction. In the
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orthogonal direction, simple polynomials are utilized. Sample sine and cosine
functions defined over the width of a finite strip element are plotted in Figure 3-15

and Figure 3-16, respectively.

Figure 3-14 A plate discretized with n finite strip elements
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Figure 3-15 Sine functions for seven harmonics for SFMS
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Figure 3-16 Cosine functions for seven harmonics for SFSM

However, SFSM has some disadvantages while defining the concentrated forces,
multiple spans, and discrete supports at strip ends [92]. Since sine and cosine series
are continuously differentiable everywhere, this property causes problems when
there is an abrupt change in any property (i.e., thickness) or the presence of any
concentrated loads, or internal supports, because second or third derivatives will be

discontinuous [92].

0.8

0.8

Figure 3-17 B3 spline functions, for NFSM, specified for a free variable at the

boundary of the problem

Therefore, to overcome these difficulties, NFSM is proposed by several authors.
NFSM utilizes spline functions instead of Fourier series. Sample B3 spline functions
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defined over the width of a finite strip element are plotted in Figure 3-17 and Figure
3-18 for free and fixed variables at the boundary of the plate, respectively.

0.5,

0.3

Figure 3-18 Spline functions for NFSM, specified for a fixed variable at the
boundary of the problem

FSM become the subject of many researches, several of them are given in the review
article [95]. Some of them are directly related to gear tooth modelling by using FSM
[96]. For the face-gear and the spur pinion, the utilized strip element formulation is

given at Chapter 3.2.

Figure 3-19 A finite strip element

The following cases are solved for a uniform thickness plate. For Case-1, 2, and 3,
the plate is loaded with arbitrary uniform pressure, simply supported on both long
sides (along x=0 and x=b) and free on the short sides (along y=0 and y=b). SFSM is
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utilized. Along the long side, appropriate shape functions are imposed by the Fourier

series with seven harmonics. The short side of the strip element is taken as,

e 2-noded at Case-1, as depicted in Figure 3-20-a,
e 3-noded at Case-2, as depicted in Figure 3-20-b
e 4-noded at Case-3, as depicted in Figure 3-20-c

For Case-4, NFSM is utilized. Along the long side, appropriate shape functions are
imposed with B3 splines. The short side of the strip element is taken as,

e 2-noded at Case-4, as depicted in Figure 3-20-a.

The deflection results for Case-1, 2, and 3 are tabulated in Table 3-1. The deflections
are also demonstrated in Figure 3-22. As shown in the table, the results are
comparable with the MSC Nastran model of the plate. As node number increases
along the plate's short side, the error is reduced for the displacement values at the
free edges and the specified arbitrary point on the first strip element.
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Figure 3-20 a) 2-noded, b) 3-noded, ¢) 4-noded Finite Strip Element with the
appropriate polynomials, [97]
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Table 3-1 Comparison of FE and FSM deflection results for Case-1, Case-2, and
Case-3

At an arbitrary point
At the free edges (mm) | In the middle (mm) (mm), at the edge of strip

1
(x=0, y=b/2 on 1%t strip) | (x=a, y=b/2 on 2" strip)

(x=a, y=b/2 on 1% strip)

SFSM MSC- Error | SFSM MSC- Error | SFSM | MSC- Error
Nastran Nastran Nastran

(%) (%) (%)

Case-1 | 7.29 7.4 6.40 -0.25 | 6.48 2.25
7.88 6.39 6.63

Case-2 | 7.68 2.4 6.48 -15 | 6.57 0.84

Case-3 | 7.74 1.6 6.48 -14 | 6.58 0.80

The deflection results for Case-4 are tabulated in Table 3-2. The deflections are also
demonstrated in Figure 3-22. Even with four strip elements, the error is less than 1%.
This demonstration shows the power of the Finite Strip Method for the cases for

uniform or slightly varying cross sections.
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Table 3-2 Comparison of FE and FSM deflection results for Case-4

At the free end of the plate ]
In the middle (mm)
(mm)

(x=0, y=b on 1% strip) (x=a, y=b/2 on 2" strip)

NFSM | MSC- Error | NFSM | MSC- Error

Nastran Nastran
astra (%) astra (%)

Case-4 | 7.29 7.88 4.0 2247 | 226 -0.56

a)
735+000)

Palran 2010 64-Bit 14-Jan-16 112440 3 354000]
Fiingo: Dofaull AT Static:Subcaso. Dispiacemonts, Transiational Magnitude, (NON-LAYERED) 6:25+000)
Deform Default, Al Stalic Subcase. Displacemerts, Translabonal,, (NON-LA 6:30+000
5784000
5254000
4734000
1000~ 4.20+000f

> 353+000)
315+000)

23+000)
2.10+000)
1 53+000)
1.05+000]
5.25-00]

0

default_Finge
Max 7.88+000 @Nd 10€
Min 0. @Hd 1
default_Deformation
Max 7.08+000 @K 10E

%

Figure 3-21 Comparison for deflection Case-4, a) MSC Nastran FE Model with 50
CQUAD elements, b) 2-noded FSM Model with four strip elements, c) 3-noded
FSM Model with four strip elements, d) 4-noded FSM Model with four strip

elements
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b)

Deformed Plate

Figure 3-22 Comparison for deflection Case-4, a) MSC Nastran FE Model with 50
CQUAD elements, b) 2-noded FSM Model with four strip elements

3.1.14 Finite Prism and Quasi Prism Method

Analysis of a structure with 3D FEM costs and sometimes is unnecessary for the
structures with a constant or a nearly constant shape in one direction, and simple
boundary conditions. The Finite Prism Method (FPM) yields good results with a
much smaller number of input data and compares favorably with FEM in terms of
run time. A typical FPM and QPM elements are depicted in Figure 3-23-a and Figure
3-23-D, respectively.

As Finite Strip Method (FSM), FPM also combines the idea of the analytical
Kantorovich-Vlassov's method and the FEM technique [92]. FPM can be considered
as a special form of 3D FEM concerning the shape of displacements along a given
direction [98]. FPM does not use polynomial displacement functions in all three
directions for the elementwise discretization. It incorporates polynomial
displacement functions only in two directions. Along the third direction, it uses
continuous functions which satisfy the boundary conditions without any elementwise

discretization.
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Figure 3-23 Prismatic solids discretized in two dimensions a) with FPM and b)
with QPM [99]

Similar to FSM, FPM can also be classified into two categories that differ in selecting
the shape functions for the longitudinal axis of the plate problem.

Semi-analytical FPM uses a function series (beam eigenfunctions, orthogonal
polynomial series) which satisfies the end conditions of a prism-like structure a priori
in the longitudinal direction and simple polynomials in the remaining orthogonal
directions [98]. Numerical FPM combines Fourier expansions along the prismatic
direction and 2D solid elements for discretizing the transverse cross-section [100].
The method is suitable for analyzing prismatic solid structures that do not have
significant changes in transverse cross sections. The method have been utilized by

several authors for the analysis of different structures [101-107].

The finite Quasi-Prism Method (QPM), on the other hand, is a valuable method for
modelling structures that are only partially prismatic shapes or which have prismatic
shapes within them [108-110]. A quasi-prism element is a three-dimensional
element. It is utilized for the analyses of the parts in which the cross-section remains

constant or nearly constant for the length of the element. It resembles the FPM
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element but differs in that, along all axode curves, depicted in Figure 3-24, the
geometry is approximated with higher order Chebyshev functions [108] in all three
dimensions. Element formulations for both methods have been given in Appendix
D.

Note: The higher order interpolation is
carried outalong the axode.

Figure 3-24 A typical QPM element with axodes, [108]

The following arbitrarily loading cases are solved.

e Case-1, an arbitrary unit point load is applied to a constant cross-section
plate, which is modelled by FPM,

e Case-2, an arbitrary uniformly distributed line load along a straight line
applied to a constant cross-section plate, which is modelled by FPM,

e Case-3, an arbitrary uniformly distributed line load along a straight line

applied to a variable cross-section plate, which is modelled by QPM.
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Figure 3-25 a) The element numbering and b) the node numbers for the 2D

discretization

For all cases, eight 8-noded iso-parametric elements have been utilized for the
modelling, which is formulated in Appendix D. The two ends of the plate are simply
supported. The following discretization in the xz plane is performed. The element
numbers and corresponding node numbers and their connectivity information are
given in Figure 3-25. Figure 3-26-a and Figure 3-26-b show a plate modelled with
finite prism elements and a plate modelled with quasi prism elements, respectively.
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a) b)

Figure 3-26 a) The prism with a constant cross-section along the longitudinal axis

(FPM), b) the prism with a variable cross-section along the longitudinal axis (QPM)

Case-1: Constant cross section, ends simply supported, point load is applied,

depicted in Figure 3-27

V)
O

me.adb  Abaqus/Standard 6.13-1  FriJul 10 09:25:15 GTB Yaz Saati 2015

e ackon Scale Faccor: » 1. 20%-00

Figure 3-27 Application of point load, constant cross-section
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Figure 3-28 shows the FPM results and the Abaqus 3D FEM results at the upper left
corner of element 1, varying the number of utilized harmonics and gauss integration

points. Note that position 0.6 is the load application point.

FPM comparison with 3D FEM element 1. at location [1.-1]. force application point

[ e ! IILLELOREELEeeR bereean e

L B= Abaqus 30 FEM data
| —H—FPM data, gauss point=9, harmonic=8
—&—FPM data, gauss point=5, harmonic=8
FPM data, gauss point=6, harmonic=8
—— FPM data, gauss point=6, harmonic=6
FPM data, gauss point=5, harmonic=6
FPM data. gauss point=4, harmonic=6
—&—FPM data, gauss point=4, harmonic=5
H H H —H—FPM data, gauss point=5, harmonic=9
e i A —#—FPM data, gauss point=5, harmonic=12 |-._........_._. [
; H H H —F— FPM data, gauss point=5, harmonic=10
—+—FPM data, gauss point=6, harmonic=12
—+—FPM data, gauss point=5, harmonic=16
—8—FPM data, gauss point=6, harmonic=16
T

deformation, mm

00 \ I I | . :
0 01 02 03 04 05 06 o7 08 03 1
position along the prism axis, -

Figure 3-28 FPM comparison with 3D FEM, element 1, location [1,-1] (location is
depicted in Figure D-1)

Figure 3-29 shows the FPM results and the Abaqus 3D FEM results at the upper left
corner of element 2, varying the number of utilized harmonics and gauss integration

points. FPM gives a very good approximation at the specified locations.

85



FPM comparison with 30 FEM, element 2, at location [1.-1]
oo T ! ! T ! ! ! T !

0.04 mmmsmmem e i i - B et —

| == Abaqus 30 FEM data
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Figure 3-29 FPM comparison with 3D FEM, element 3, location [1,-1] ] (location
is depicted in Figure D-1)

In Figure 3-30, for a fixed number of harmonics, increasing the gauss points in the
integration process yields better results for all positions, except at the load
application point. As it can be seen by examining both Figure 3-30 and Figure 3-31
that increasing both utilized harmonics and gauss integration points will decrease the

error.
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FPM comparison with 3D FEM, & harmonics with different gauss points, element 1. at location [1,-1], force application point
0.09
T T T T T T T
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0.07
0.06
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deformation, mm
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Figure 3-30 FPM comparison with 3D FEM, element 1, location [1,-1], number of

utilized harmonics is 8, number of gauss points varies

As seen from Figure 3-31, especially for the load application point, as harmonics are

increased, better results are obtained for a fixed number of gauss points.

FPM comparison with 3D FEM. 6 gauss points with different harmonics, element 1, at location [1.-1], force application point
0.09
I I I I I I I

deformation, mm

: Abaqus 3D FEM data
B HE FPM data, gauss paint=6, harmonic=8 |3 T R T N
—7— FPM data, gauss point=8, harmonic=6 T
H —+—FPM data. gauss point=6, harmonic=12
0.01 ===~ e —E—FPM data, gauss point=6, harmonic=16 |1 =-=""=====-===f---=----oe

i i i
01 02 03 04 05 06 07 08 09
position along the prism axis, -

Figure 3-31 FPM comparison with 3D FEM, element 1, location [1,-1], gauss

point is 6, number of the utilized harmonics varies
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Figure 3-32 and Figure 3-33 compares the results for element 7 and element 5,

respectively, for several gauss points and harmonics with the Abaqus 3D FEM data.

FPM comparison with 30 FEM element 7, at location [-1,1]
T

0.035 [ P .

003

0.025

[ == Asaqus 30 FEM data
—&— FPM data, gauss point=9, harmonic=8 -
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—=— FPM data, gauss point=6,
FPM data, gauss point=5, harmonic=6
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—B— FPM data, gauss point=5, harmonic=9 |
—%—FPM data, gauss point=5, harmonic=12
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0.3 04 05 0.6 07 0.8 0.9
position along the prism axis, -

Figure 3-32 FPM comparison with 3D FEM, element 7, location [-1,1], number of

gauss points, and number of utilized harmonics vary

FPM comparison with 30 FEM element 5, at location [-1,1]
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Figure 3-33 FPM comparison with 3D FEM, element 5, location [-1,1], number of

gauss points, and number of utilized harmonics vary
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Case-2: Constant cross-section, ends simply supported, line load is applied along a

straight line, depicted in Figure 3-34.

ng.odb  Abaqus/Standard 6.13-1 Sun Jul 26 02132:31 GTB Yaz Saati 2015

Figure 3-34 Application of line load, constant cross-section; stress distribution,

and deformation results

FPM comparison with 3D FEM element 1, at location [-1.-1], force application point

T T T
: Abaqus 30 FEM data
H —&—FPM data, gauss point=4, harmonic=6

defarmation, mm

0.1 02 03 04 05 0.6 07 0.8 0.9
position along the prism axis, -

Figure 3-35 FPM comparison with 3D FEM, constant cross-section, line load
application, element 1, location [-1,-1], gauss point is 4, harmonics 6

89



aerarmanon, mm

deformation, mm

FPM comparison with 30 FEM.element 3, at location [-1.-1]. force application point
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Figure 3-36 FPM comparison with 3D FEM, constant cross-section, line load

application, element 3, location [-1,-1], gauss point is 4, harmonics 6

FPM comparison with 3D FEM,element &, at location [-1.-1], force application point
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Figure 3-37 FPM comparison with 3D FEM, constant cross-section, line load

application, element 1, location [1,-1], gauss point is 5, harmonics 6
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Case-3: Variable cross-section, ends simply supported, line load is applied along a

straight line

0DB: Job-1.0db  Abaqus/Standard 6.13-1 Mon Jan 18 15:58:16 GTB Standart Saati 2016

o e s
o B

oo -3301a.04

Figure 3-38 a) 3D FE model and application of line load, b) ABAQUS results

Figure 3-39, Figure 3-40, Figure 3-41, and Figure 3-42 compare the deflections
obtained by the Abaqus 3D model and the variable cross-section FPM (QPM) for
elements 1, 3, 5, and 7, respectively. The utilized gauss points for the integral
calculations are four, and the utilized harmonics along the cross-section are taken as
five or six. The figures show that utilizing six harmonics with four gauss points for
the variable cross-section case is not enough to get accurate results. Increasing them,
on the other hand, will significantly increase the computational time. In Case-1 and
Case-2, four gauss points incorporating five or six harmonics were enough to catch

accurate plate deflection results.
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FPM comparison with 3D FEM, element 1, at location [-1,-1], force application point
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Figure 3-39 Comparison with 3D FEM, variable cross-section, line load

application, element 1, location [1,-1], gauss point is 4, with harmonics 5 or 6

FPM comparison with 30 FEM element 3, at location [-1.-1], force application point
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Figure 3-40 Comparison with 3D FEM, variable cross-section, line load

application, element 3, location [1,-1], gauss point is 4, with harmonics 5 or 6
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FPM comparison with 3D FEM element 5, at location [-1,-1], force application point
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Figure 3-41 Comparison with 3D FEM, variable cross-section, line load

application, element 5, location [1,-1], gauss point is 4, with harmonics 5 or 6

FPM comparison with 3D FEM, element 7, at location [-1,-1) force application point
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Figure 3-42 Comparison with 3D FEM, variable cross-section, line load

application, element 7, location [1,-1], gauss point is 4, with harmonics 5 or 6
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3.1.1.5  Discussion on the methods for the bending stiffness

The TSM vyields good results compared to models created via the finite element
method. It saves considerable computational time and appears to be the most
straightforward method. However, since each slice is independent of each other, the
main problem is finding the coupling stiffness between those slices. In literature,
these stiffness values are generally calculated by several 3D FE runs, by which an
empirical formula is generated for the coupling between the adjacent slices, and this
coupling term is added to the uncoupled stiffness matrix of the gear, as in the
Borner’s empirical formula, given in Equation (3-4). This formula will be model

dependent and will not apply to a specific geometry.

double-axis tapered plate face-gear

=)=

isometric view . L
isometric view

S

top view top view

Figure 3-43 a) Double axis-trapezoidal tapered plate b) Face-gear

Then, one should calculate the coefficient C of Borner's equation, which will require

several FE runs and increase computational time.
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The Rayleigh-Ritz approximation for the Kirchoff plate works very well. It has been
incorporated for different loading conditions and obtained comparable results with
the FE models run within the Nastran package program. Also, with imposing
thickness variation along both x and y axes, any geometry may be modelled via this
method. Figure 3-43 shows the double-axis trapezoidal tapered plate and face-gear
profiles. In order to model the thickness variation on the face-gear's tooth surface,
the thickness Equation (3-8) must be derived analytically or numerically for a typical
face-gear.

Finite Prism Method gives accurate results obtained via 3D FE model with a
favorable number of gauss points for the integrals and five or six harmonic functions
along the cross-section. However, the face-gear’s surface geometry varies along the
face width and therefore has to be modelled by a varying cross-section prism
element, which is, in fact, the Quasi-Prism element. On the other hand, the Quasi-
Prism Method does not give accurate results for the same amount of gauss points and
harmonics. In order to catch the deflection of the varying cross section, the gauss
point and the harmonics incorporated along the face width have to be increased. This
will lead to increased computational time. In addition, both FPM and QPM a priori
require modelling a 2D finite element model. They, therefore, require the
connectivity information of the nodes on this 2D model to be provided, which will

increase the computational time.

The study in this chapter is performed to select an efficient, less time-consuming,
and the most straightforward stiffness calculation method for parametric studies. The
FSM appears to be the most advantageous method among the others. It does not a
priori require any 2D or 3D element formulation since it is an extension of a 1D
beam element. The second dimension is introduced by B3 splines or the Fourier
series, which are appropriately formed according to the plate boundary conditions in
the problem. The Mindlin plate theory can easily be applied to finite strip elements.
As discussed in Chapter 2, a variable thickness strip element can also be incorporated

to increase the method's accuracy with a small number of strip elements.
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3.1.2

Contact deformation between the meshing gear teeth is a contributing deflection to
the total deflection. In literature, apart from utilization of sophisticated hybrid FE
package programs, the following analytical methods are utilized for calculating this

deformation [111]. Except Brewe&Hamrock's method, all equations assume line

Contact Stiffness Contribution

contact between the meshing gears.

Hertz's Equation,
Conry's Equation
Cornell's Equation
Palmgren's Equation
Weber's Equation

Brewe&Hamrock's Equation

The formulations for the listed methods are given in Appendix E.

3.121

For the case tabulated in Table 3-3, the contact stiffness values are calculated for the
load levels F=500N, F=1000N, F=1500N, F=2000N according to Palmgren’s,

Weber/Banascheck’s and Brewe&Hamrock’s equations.

Comparison of the Methods

Table 3-3 Input values

Design Parameters Symbol CASE1
Number of teeth, spur Ns 28

Number of teeth, face-gear Ng 116

Module {mm) m 3.175
Pressure angle (%) g 20
Shaftangle (") T 90

Density of steel (kg/m’) P 7830
backlash value bc 20

STE {pm) e 10
Reference torque values, [Tg; Tpl M.m [86.0763 ; 20]
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Figure 3-44 to Figure 3-47 show the contact stiffness values of the contact points
located on four different contact lines (at four different instants of a mesh cycle) of
the conjugate action between the face-gear and the spur-pinion, specified in Table
3-3. The values are comparable for the bottom surface of the face-gear’s tooth. But
as contact line approaches to top surface of the tooth, Brewe&Hamrock’s method

gives higher values than the values calculated by Palmgren and Weber/Banascheck
Method.

a) b) Contact Stiffness values for Weber/Banaschek
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Figure 3-44 Contact stiffness a) at the first contact line, by b) Weber/Banascheck,

c) Palmgren, d) Brewe&Hamrock, for various load levels
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Figure 3-45 Contact stiffness a) at the fifth contact line, by b) Weber/Banascheck,

a)

c¢) Palmgren, d) Brewe&Hamrock, for various load levels
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Figure 3-46 Contact stiffness a) at the sixth contact line, by b) Weber/Banascheck,

c) Palmgren, d) Brewe&Hamrock, for various load levels
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Figure 3-47 Contact stiffness a) at the twenty fifth (last) contact line, by b)

Weber/Banascheck, c) Palmgren, d) Brewe&Hamrock, for various load levels

3.2 Mesh Stiffness Calculations for a Face-Gear and Spur-Pinion

3.21 Introduction

In this study, for the mesh stiffness calculations of the face-gears, semi-analytic FSM
(Finite Strip Method) is utilized. The face-gear and the spur gear teeth are discretized
through FSM using Mindlin Plate Theory. As shape functions of the finite strip
elements, B3-splines are utilized for the longitudinal length of a strip element, and

4-noded simple polynomials are utilized along the short length of the strip element.

The thickness along the face-width and also along the profile direction is generally
varied with a linear function for the defined strip element. In this study, the
mentioned thickness values along both dimensions are approximated via NURBS
(Non-Uniform Rational B-Splines) functions [71], as mentioned in the previous

chapter. By this method, the tooth of the face-gear is defined as a surface in space,
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which provides a continuous thickness variation within the finite strip element. The

analytical model is validated via finite element analysis.

Figure 3-48 shows a typical face-gear tooth surface with its fillet, discretized into
eight finite strip elements. First, the point cloud is generated for the face-gear tooth’s
surface, as depicted in Figure 3-48-a. Then, the boundaries of the tooth are
calculated. The boundaries of the tooth are shown in Figure 3-48-b and Figure 3-48-
¢, with and without the generated point cloud, respectively. The tooth is discretized
into several elements, as shown in Figure 3-48-d and Figure 3-48-e. Finally, the
stiffness matrix and the load vector for each discretized element are calculated to be

assembled in a global stiffness matrix and in a global load vector.

The face gear tooth has a significant fillet at the base of part of the tooth. Therefore,
the fillet of the face-gear is also included in the FSM element, however compliance
due to foundation is not taken into account. The bending contribution is calculated
through Finite Strip Method (FSM) whereas the contact contribution is not taken into
account. In addition, the face gear has a different cross section at each point along
the face width, and a single cross-section model cannot hold for the entire face width.
Therefore, the face-gear will be sliced into several parts through its face width, their
compliances will be calculated separately and finally they will be averaged to get an
averaged stiffness value along the contact lines. The thickness of the tooth also is
varied in the element formulation. In other words, each strip element has a variant
thickness value. A typical face-gear tooth modelled with 8 finite strip elements along
the profile direction, and with seven B3 spline-functions along the tooth profile

direction is depicted in Figure 3-49.

100



Figure 3-48 a) Generated point cloud for the face-gear tooth profile and its fillet

surface, b) the boundaries of the tooth with the point cloud, c) the boundaries of the
tooth d) the discretized tooth into eight strip elements, e) the resulted finite strip

elements
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Figure 3-49 a) A typical curved finite strip discretization, isometric view, b) view
in yz plane, c¢) the grids, six nodes along the profile direction (utilizing 7 cubic B3-
spline functions) and four-noded element formulation along the face-width
direction
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3.2.2 Application of Finite Strip Method to Mindlin Plate Theory with
Cubic B-Splines

The formulation utilized for the FSM discretization of Mindlin Plate by cubic B-
spline is given below. For a finite strip element with n nodes, the resulted
displacement vector is defined as [96,112-114],

R & : 3-9
3= > Al| 65 39
m=1 i=1 m
0
where the vector 6 is given as,
s=[w 6, 6] (3-10)

and the shape function matrix A" is for the m™ harmonic of the i node and given

as

NS 0 0 11
A"=| 0 NS 0 (3-11)
0 0 NS

The generalized strain vector for a straight strip element is defined as,
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)

o0

o | _00. 00, (00, 26, ,a_W_ex,a_W_e (3-12)
ox oy oy ox ) ox oy 7

and for a curved strip element it is defined as,

§
. aer1_1[%%}_1(6@+r%_@],5‘_"’_gﬂla‘_"’_gﬂ (3-13)
or’r oA ) rloa  or or roi

The stiffness matrix corresponding to the m™ harmonic of the i nodal line and the

n™ harmonic of the j™ nodal line is calculated as,
ke = [ [[Br] [D][ By Jdxdy (3-14)

where the strain matrix B! for the m™ harmonic of the i nodal lines is defined as,

0 —%Sm 0
oy
0 0 —Ni6Sm
0z
. 3-15
[BH: 0 _Iasm _%m (3-15)
0z oy
%Sm -NS, 0
oy
IaSm 0 _NiSm
0z
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Similarly, the stiffness matrix for a curved finite strip element is given as,

k= [ [[Br] [D][B JrdAdr (3-16)

and the corresponding strain matrix B for the m™ harmonic of the i nodal lines is

given as,

o -MNig 0
or

0o NS s

[Br]=| o _NSd N NI (3-17)

r or r

Nis NS 0

or

NSsd 0 -N;S

The utilized four-noded shape functions, which are defined along the face-width
direction of the tooth, are expressed with the following equations and they are plotted

for a length b in Figure 3-50.
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Figure 3-50 The four-noded polynomial shape functions of the finite strip element
for the face-width direction of the tooth

The elasticity matrix D is defined as,

Et

D=
24(1+v)

- 2t?/(1-v)
20t? /(1-v)
0
0
0

2t%/(1-v)
0
0
0

2ut’/-v) 0 O

0 0
t* 0
0 12/
0 0

0
0
0

0

12/a |

(3-18)

where « may be taken as 6/5 for rectangular cross section [97]. The force vector for

the m™™ harmonic of the i nodal line for a straight finite strip element can be defined

as

and similarly, for a curved strip element, the force vector can be defined as

" :”S{"-q-dxdy
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f" = [ [f"-q-rdAdr (3-20)

where q specifies the transverse force.

The utilized cubic B3-spline with equally placed sections, which is defined with the

following formula, is plotted for a length a is given in Figure 3-51.

0 z<(i-2)h
(z—(@i-2)h)’ (i-2)h<h<(i-Dh
5 = h +3h2(_z—(i —1)h)+3h(z_—(i —Dh? —3(z_—(i ~Dh)? for _(i -Dh £_< ih (3-21)
h®+3h?((i+1)h-2z) +3h((i+)h-2z)* -3((i +)h - 2)? ih<z<(i+)h
((i+2)h-z)° (i+Dh<z<(i+2)h
0 (i+2h<z
S 1 So 81 82 83 84 Ss S6

-~
-
4
i
v
N

M—h —»€—h —€— h —»«—h —»a«—h —=

o
¥

Figure 3-51 The cubic B3-spline functions for equally spaced sections along the

length a
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The tooth is assumed to be clamped from its bottom-land, which specifies that all

three degree of freedoms are set to zero at the specified location

(w=0, 0,=0, 0, =0). In order to satisfy this boundary condition, the cubic-

splines curves are modified as,

S, =
S,=S,-4S, (3-22)
S =5-3,

which gives the new series as in Figure 3-52.

Figure 3-52 The utilized cubic B3-spline functions for the strip element along the

cantilevered side to free side of the toot (profile direction)
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3.2.3 Combining the stiffnesses of the meshing pairs

Figure 3-53 shows one pair of meshing face-gear and spur-pinion pair at a time
instant. A unit load is applied to all contact points on a specific contact line and a
compliance matrix is constructed for the specified time instant. The mesh stiffness

for that time instant, as depicted in Figure 3-54, is calculated.

Figure 3-53 Meshed surfaces of a face-gear and its shaper at a time along a contact

line a) at the meshing position b) a separated view of the case in a)

Figure 3-54 Averaged stiffness along the contact line
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In the application of the face-gears, contact ratio is greater than 2. This means that
there exist time periods when three pairs come to contact at the same time. Figure
3-55 shows a time instant at which three meshing pairs exist. The mesh stiffness has
to be calculated with the appropriate combination of them. For this, the time instants

where two pairs or three pairs are in contact have to be calculated.

Figure 3-55 Face-gear tooth pairs in contact

The Figure 3-56 to Figure 3-61 demonstrate the instances where two or three Tooth

Pairs (TP) make contact. The input parameters for this case study are given below:

Table 3-4 Input parameters

Parameter Spur Pinion Face Gear
Number of teeth 23 103
Module (mm) 3.175

Pressure angle () 20

Shaft angle (*) 90
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Figure 3-56 demonstrates the instant where TP 1 makes first contact while TP -1 and

TP 0 are already in contact. This case is named as Case [-1 0 1], and rotation angle

is read as ¢p=0.4826 radians.
TP 3
-6
- 65
—197 <75 -
04 02 o 02 04 06 0s ; M
14 16

12

TP 2
P 1

™ -1 T 0 T

Figure 3-56 Tooth pairs -1, 0 and 1 are in contact, Case [-1 0 1]

Figure 3-57 demonstrates the instant where TP -1 just leaves the contact area while
TP 0 and TP 1 are already in contact. This case is named as Case [0 1], and rotation

angle is read as ¢=0.3466 radians.

™ 2
™ -1 T 0 ™ 1 x T
s 0 05 ’

1 15

Figure 3-57 Tooth pairs 0 and 1 are in contact, Case [0 1]
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Figure 3-58 demonstrates the instant where TP 2 makes first contact while TP 0 and
TP 1 are already in contact. This case is named as Case [0 1 2] and rotation angle is

read as v2=0.2516 radians.

P 2
7P -1 T 0 TP 1 P 3
A4
-145 —
45—
155 —|
A6—]
-165 —
47—
yaE
475 —]|
18—
-7
85—
/hf?5
W@

05 1

15

Figure 3-58 Tooth pairs 0, 1 and 2 are in contact, Case [0 1 2]

Figure 3-59 demonstrates the instant where TP O first leaves the contact area while
TP 1 and TP 2 are already in contact. This case is named as Case [1 2], and rotation

angle is read as ¢=0.1046 radians.

A 05 o

05 1

Figure 3-59 Tooth pairs 1 and 2 are in contact, Case [1 2]
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Figure 3-60 demonstrates the instant where TP 3 makes first contact while TP 1 and
TP 2 are already in contact. This case is named as Case [1 2 3], and rotation angle is
read as #=0.0176 radians.

-15 -1 -05 ] 05 1

Figure 3-60 Tooth pairs 1, 2 and 3 are in contact, Case [1 2 3]

And finally, Figure 3-61 demonstrates the instant where TP 1 first leaves the contact
area while TP 2 and TP 3 are already in contact. This case is named as Case [2 3]

and rotation angle is read as ¢s=-0.1124 radians.

Figure 3-61 Tooth pairs 1 and 2 are in contact, Case [1 2]
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The rotation angle values in Table 3-5, specifies the instances when tooth pairs make

contact for the first time and lose contact from their pairs for the first time. The

difference between the values of ¢, and ¢, specifies the period of the variation of
mesh stiffness for the tooth pair (TP 1), which is ¢ —¢, =0.5950 radians. Setting

¢ =0, and knowing that o, —a, =0.5950 radians corresponds to 25 contact lines,

the contact line correspondents for each six time instants are calculated accordingly.

Table 3-5 Rotation angles and corresponding time instants for TP1

Time instant i gi(rad) ¢i1—gi(rad)  Contact line
correspondent
case [-1 0 1] 1 0.4826 0 1
case [0 1] 2 0.3466 0.136 6.71
case [01 2] 3 0.2516 0.231 10.70
case [1 2] 4 0.1046 0.378 16.88
case [12 3] 5 0.0176 0.465 20.53
case [2 3] 6 -0.1124 0.595 26

Table 3-6 summarizes the instants that tooth pairs mesh or lose contact in terms of
contact lines; for the current case, 25 contact lines are taken into account. "0" denotes
the instant when toot pair makes contact, 25" denotes the time when tooth pair loses
contact, and other intermediate values portrays the location of the contact on the

tooth surface accordingly, in terms of the available contact lines.
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Table 3-6 Instants when the tooth pairs mesh or lose contact

TP1 TPO TP1 TP2 TP3
case[-101] 192 911 1
case [0 1] 26 158 6.7
case [01 2] 198 107 1
case [1 2] 26 16.8 7.17
case [1 2 3] 205 108 1
case [2 3] 26 16.2 6.4

Figure 3-62 gives the resulting mesh stiffness of the gear pair specified in Table 3-4.

at the center of contact line, (N/m)

slifness

3.24

Figure 3-62 Total Mesh stiffness

Determining the Appropriate Strip Elements

100

Application of a point force creates local singularity, and the deformation of the
application point brings significant error. Refining the mesh size also worsens the

situation. For the bending contribution of the displacement of a contact point on tooth
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surface, in 3D FE model, the deflection of the point on the opposite side of the tooth
is taken into account. The following tooth surface is generated through the developed

Matlab code and exported to Abaqus FE package software.

Figure 3-63 a) Generated tooth geometry, b) 3D FE model in ABAQUS

The generated tooth is discretized with 3D finite element type of C3D10 of Abaqus.
The generated number of nodes is 200614, and the created number of elements is
137970. The point load is applied at the pointing side (outer side) of the tooth, as

seen in Figure 3-64 and at the inner side of the tooth, as seen in Figure 3-65.

The deformation due to bending is sought, but due to nature of the point load this
value cannot be read from the obtained result at the application point.

The same tooth is discretized using 4, 5, 8, 12, 16, 23, and 44 finite strip elements,
and the point force is applied at the same location. The deformation is taken at the
nodal point that corresponds to the application point and the nearby nodal line within
the same element. These deformation values are averaged, and the resulting values
are plotted below. As the number of the strip elements is increased, the resulting
value converges to the value obtained from the 3D Abaqus FE model, as shown
Figure 3-64 and Figure 3-65. Two arbitrarily loaded case studies are performed:

e Case-1: A unit load is applied at the depicted location in Figure 3-64.
e Case-2: A unit load is applied, at the depicted location in Figure 3-65.
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Table 3-7 and Table 3-8 summarize the comparison of the result obtained by 3D
Abaqus model discretized with 137970 C3D10 elements formed by 200614 nodes,
with those obtained by using the 1D FSM model discretized with 44 strip elements
with 133 nodes. The error for Case-1 is around 0.2 %, whereas the error for Case-2

is around 9.8%. These results clearly show the power of FSM method.

Table 3-7 Comparison of FSM results with 3D FEM ABAQUS results, Case-1

Deformation (mm)

Abaqus Software 9.7145*%10"-5
FSM with 4 strips 3.6557
FSM with 5 strips 4.3555
FSM with 8 strips 5.4632
FSM with 12 strips ~ 8.1888
FSM with 16 strips ~ 9.7400
FSM with 23 strips ~ 9.7383

FSM with 44 strips ~ 9.7333
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Figure 3-64 Averaged deformation vs number of finite strip elements, Case-1

Table 3-8 Comparison of FSM results with 3D FEM ABAQUS results, Case-2

Deformation (mm)

Abaqus Software 1.1754x10"-5
FSM with 4 strips 1.1187x10"-5
FSM with 5 strips 1.1604x10"-5
FSM with 8 strips 1.2292x10"-5
FSM with 12 strips ~ 1.2605x10"-5
FSM with 16 strips ~ 1.2744x10"-5
FSM with 23 strips ~ 1.2849x10"-5

FSM with 44 strips ~ 1.2849x10"-5
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Figure 3-65 Averaged deformation vs number of finite strip elements, Case-2
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CHAPTER 4

MATHEMATICAL MODELS AND DYNAMIC ANALYSIS OF FACE-
GEARS

4.1  Non-linear Dynamic Model for a Split-Torque Face-Gear Drive System

A non-linear dynamic model of the multi-mesh face-gear split-torque drive system
shown in Figure 1-15 is developed. Here, the dynamic model is a lumped mass
system consisting of five pinions and two face gears. The system has seven rotational
degrees of freedom with all rigid gear bodies. This system has two inputs, two
outputs, and three idler gears. The mesh stiffness is established by FSM utilizing the
actual spur pinion and face-gear tooth geometries presented in [27]. The enveloping
procedure for the surface generation of a face-gear, the mesh stiffness calculation
procedure, and the dynamic analysis procedure are depicted in Figure 4-2.

Figure 4-1 a) Example 3D model b) Produced tooth geometries
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Figure 4-2 Flow diagram for the dynamic analysis of the drive system

P,

Figure 4-3 Split-torque face-gear drive system

The split-torque system consists of one Upper Face Gear (UFG) as output and one
Lower Face-Gear (LFG) as an idler. Between them, there exist five pinions, two of

which are inputs (P1, P3), one is output (P2), and the remaining two are idler pinions
(P4, Ps), as shown in Figure 4-3.

In this transmission system, P1 and Ps may be considered as the input of the drive

system, and power input from these pinions is split and then transmitted to UFG and
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LFG. UFG is connected to the main output shaft, while LFG serves as an idler in the
torque transfer path. Similarly, P is the pinion connecting to the secondary output
shaft, which collects torque from UFG and LFG, and drives the secondary output
shaft. LFG collects the split torques from Py and Ps. Then, it transmits some portions
to P, and some portions directly to UFG through the idler pinions P4 and Ps, as

shown in Figure 4-4.

Figure 4-4 Power flow of the split-torque system

41.1 Mathematical Model

The developed torsional dynamic model for the given system is depicted in Figure
4-5. The dynamic model of a split-torque face-gear drive system resembles a

planetary gear system, as studied in [115-118].

123



Figure 4-5 Dynamic model for the split-torque system

The equations of motion of the non-linear model may be given as follows:

For face-gears 1 and 2 (j* gear),

150 (0)+ X 2 (O)fes (D)8, (0)+K,(D)a (p, (D)} =Ty (). =12 @)

! Piépi (T)+ Zzlﬂ_‘pji (t_){éji (t) ﬁji (T)+k; (T)g ( P (t_))} :-rpi (t)i=1.5 (42

wherel ;and | are the mass moment of inertias of the pinions and the gears,
respectively; 'rpi (t_) and 'rgj (t_)are the torque loads on the pinions and face gears,
respectively; C; (t_) is the time-variant mesh damping between j" gear and i

pinion; k; (T) is the time-variant mesh stiffness between j gear and ™ pinion;

124



24 (T) and A (T) are the directional rotational radii of the i pinion and the j"

face-gear, respectively.

Since the constructed system is a pure rotational system, only the rotational
displacements are taken into account; therefore, the directional rotational radii are

expressed as,
"o () =1, (T)- (& < (1)), (4-3)

where fi;(T) and fi;(t) are the unit normal vectors of the mesh point of the i*"
pinion and j*" face gear, respectively; F; (T) and F, (T')are the position vectors of

the mesh point, Epi and égj are the unit vectors along the i pinion and j" the face-

gear rotational axis, respectively.

The expression for the dynamic transmission error (DTE) between the it pinion and

the ji face-gear is:

5, (1) =255(0) 0, (T)+ 25 (€) 6, (T) as i=1.5 and j=1,2 (4-4)

The gear mesh displacement between the i pinion and the jt" face-gear is:

P, (T)=8,®)+8,(t) as i=1.5 and j=1,2 (4-5)
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where € ;(t) is the static transmission error (STE) between the i" pinion and the jt"

face-gear due to geometrical errors of the gear teeth profile. The gear mesh
displacement combines STE and DTE.

The piecewise-linear displacement function between the i pinion ad the j™ face-gear
is,

(T)]<b, (49

where 25ji is the total gear backlash between the i*" pinion and the j™ face-gear.

Equations (4-1) and (4-2) are non-dimensionalized by utilizing a characteristic

frequency o, and a characteristic length b, by imposing the following equations;

pji (t) = ﬁji (t_) . = M - éJ'i (t_) ) 6ji (4'7)

t dt 1 df_ 1 (4-8)
o, dt o d° o

. dpji(t_)dt_ d ﬁjl(t_) 1 dl_),.(t_) 1 (4-9)
Pu(V)="F o "t (—J_ ot b,
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So, bii (t) is expressed as:

p; (1) =p; (t)wi =b.a,p; () (4-10)

C

Also, stiffness and damping terms are re-written as the product of their mean values

and time-variant parts as:

(4-11)

—
N—
1

=
3
=~
—
—
N—
iyl
—
—|
N—
|
o
3
o
—
~+
N—

lzii (

where km,; and cm; are the mean, k;; (t)and c; (t) are the time-variant parts of the

stiffness and damping terms, respectively. Also, using the definition of Eji givenin

Equation (4-7), Equation (4-6) is nondimensionalized as:

g; (t)=1 0 [p, (1) <b, (4-12)

(4-13)
50, 9, () and &, (T) may be expressed as,
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6, (T)=ad, (1), 4, (1) =04, (1) (4-14)

g

Substituting the parameters given in Equations through (4-7)-(4-11), Equations (4-1)

and (4-2) become nondimensionalized as,

Oy (1) + 51 {Za’gji (D)€@ by (1) + @y (1) ki () g (t)} =f;(t).i=12  (4-15)

0, (f)+é{2@pﬁ ()5 () By (1) + @y (1) ki (1) 95 (t)} =f,(t),i=15  (4-16)

where,
fgi(t)zgjz(lt_)’ fpj(t):zziz(lt_) (4-17)
_ Zgji (t)éji (t)bca)c _ /iji (t_)éji (t_)bca’c 4-18
Soi (M= w1 42w, (t) em®= w120, (1) (4-18)
oy (1) z( ;"2(:_) lzmjibc]2 , @ (1) = &l (a)t_gl m__jibc (@19)
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4.1.2 Mesh Phasing

There are ten meshing locations between the pinions and the face gears, as shown in
Figure 4-5. Mesh-1 is taken as the reference meshing position. Concerning this
meshing location, appropriate phase differences are imposed on all remaining
meshes according to their gear-set arrangement type, whether a split-torque or an

idler arrangement.

The STE for all specified mesh locations is defined as,

e, (t)= NZE: E)sin(rQt+re;) (4-20)

ji
r=1

where E and ©; are the r' harmonic amplitude and the phase difference of the

mesh between the i pinion and the j" face-gear. All gears are assumed to be
identical. Therefore, no additional phase is introduced into Equation (4-20), for the

sake of simplicity. Hence, the only phase between any two meshing locations is the

®; term in Equation (4-20).

There are two types of gear-set arrangements, which are classified according to the
imposed loading condition [118]. At the first arrangement, given in Figure 4-6, Gear
2 (Go) is the input, Gear 1 (G1) and Gear 3 (Ga) are the outputs. This is known as the
split-torque arrangement. At the second case, Gs (output) is driven by G1 (input)

through G2 (idler), which is named as the idler arrangement.
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Split-torque arrangement Idler arrangement

Figure 4-6 Split-torque and idler arrangements

For the split-torque system, the following phase difference relations are utilized for
the phasing between pinion-gear engagements, according to their arrangement types,

discussed above;

O, =N, (o, +7), i=1.5 (4-21)

®, =N, (7+y),i=1.5 (4-22)

where Ng is the face-gear number of teeth, Ny is the spur pinion tooth number, as
tabulated in Table 4-1. « is the angle between the lines connecting the centers of

the meshing gears. 7 is specified as:

{O, split—torque arrangement (4-23)
}/ =

7/2, idler arrangement
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The orientations of all gears are arranged with respect to Py, as shown in Figure 4-7.
The orientation of the pinions and corresponding phase differences are tabulated in
Table 4-1.

Figure 4-7 Orientation of the pinions on the face-gear
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Table 4-1 Phase differences between the meshes

Middle Arrangement
ear Mesh type (between
Mesh Mesh 9 Orientation phase yp “th
location teeth angle (a) difference the i" mesh and
numpe 2ng€ (e o the reference
r (&) mesh)
Mesh-1 UFGand P1  Ng 0 0 reference mesh
Mesh-2 UFGand P, Ng a N2 *ou+7m idler
Mesh-3 UFGandP; Ng a N2*o2+0 split torque
Mesh-4 UFGandPs Ng az No*ous+7 idler
Mesh-5 UFGandPs Ng s N2*oLg+7 idler
Mesh-6 P,and LFG Np P N:*m+ @11 split torque
Mesh-7 P,and LFG Np P N:*n+®1,  split torque
Mesh-8 Psand LFG Np T Ni*n+@1s  split torque
Mesh-9 P,and LFG  Np T Ni*+@1  split torque
Mesh-10 Psand LFG Np n Ni*m+@1s  split torque

The calculated phases for each mesh location also apply to the corresponding mesh

stiffness, where they are taken out of phase at the related meshing location. Thus, the

mesh stiffness equation for all specified mesh locations is defined as,

k; (t)=1+ NZK:K:' sin(rQt+re; +7)

r=1
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where Krji and © ji are the r'" harmonic amplitude and the phase difference of the

mesh between the i pinion and the j™ face-gear.

4.1.3 Effect of Directional Rotational Radius

Directional rotational radius is calculated at each contact point of the meshing teeth.
It specifies the moment arm of the distributed force due to the applied total torque of
the pinion and the gear. It has time-varying characteristics when the surface
geometry is complex, as in bevel or hypoid gears [119]. Tang et al. [120] studied the
effect of this parameter on the dynamic response of the system. However, both
analytical and numerical calculations reveal that the directional rotational radii for a
face-gear and a mating spur-pinion do not vary with time. Equation (4-3) shows this
parameter as time-variant for a general case. However, it is not taken as time-variant
throughout the dynamic analysis. The analytical calculations are performed with the

Mathematica package program and are given in Appendix F. The obtained

expressions for A (€)and A (t) are,

7 (D) =1 (4-25)

A (F)=—1, cos(y,)—cos(g + 6, +6,)sin(y,)u, (4-26)

where 6, is the parameter that specifies the tooth spacing, and may be given as
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T (4-27)
0, = m—'nV(%)

S

where us and s are the generalized coordinates that specify the shaper involute tooth
profile, ao is the pressure angle and Ns is the tooth number of the spur-shaper. The
curvilinear coordinate us is parallel to the zs direction of the fixed cartesian coordinate
shown in Figure 4-8, and 6s is the rolling angle.

Pitch circle

/

/ Base circle

The

-
%

Figure 4-8 Involute profile of the shaper

As specified in Chapter 2, for the conjugate action of tooth profiles (that is to say,
surface normal at the point of contact is perpendicular to the sliding velocity between

the two meshing surfaces at all time instants), the equation of meshing should be
satisfied,
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0=r, (1-m, cos(y,))—um,,sin(y,)cos(4 +0, +6,) (4-28)

Taking cos(g, +6,, +6,) from Equation (4-25) and inserting it into Equation (4-26)

yields,

_ e (1-m,g cos(7,,)) (4-29)
Ag =—1,, €OS(7, ) — o sgin(;/m) sin(y,, ) u
which simplifies to
I N, (4-30)

Equations (26) and (4-29) give the directional rotational radius for the spur and the

face-gear, respectively. As it can easily be seen, they do not have any time-varying
components. /Tgi is equal to the product of the base circle radius of the spur pinion

and the reduction ratio.

41.4 Solution Method

The non-linear equations of motion are solved by using the Harmonic Balance
Method (HBM) together with Arc-Length Continuation Method [121] in obtaining
the periodic steady-state response of the system in the frequency domain. The results
are compared with the time simulation results obtained with Runga Kutta numerical
solution method. The STE and the mesh stiffness are expressed with only the first

harmonics terms. The torque values are assumed to be constant.

For seeking the solution by HBM in conjunction with the Arc-Length Continuation

Method, similar to the harmonic expressions for the mesh stiffness and STE as in
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Equations (4-20) and (4-24), the time and displacement varying parameters of the
system (i.e. mesh damping, rotational dofs of the disks, DTE, gear mesh

displacement) are also expressed as in the following form

NX
25 () =X+ (X cos(rQt)+ X}, , sin(rQt)) (4-31)

r=1

where . (t) represents any of these parameters between the i" pinion and the j"
n

face-gear, X/' is the bias term, XJ! and XJ! , are the coefficients of sine and cosine

terms of the r' harmonic, respectively.

The RMS value of the gear mesh displacement is plotted with respect to
dimensionless frequency. The RMS of gear mesh displacement between the j" face-

gear and i pinion is calculated as,

2
pgirmS) = {i[Pjin T + [Pji2r+l}2} (4-32)
r—1

where P, and P, are the Fourier coefficients of the r" harmonic of p; (t).

4.2  Non-linear Dynamic Model For A Face-Gear and Spur Pinion Pair

When i and j are set to 1 in Equations (4-15) and (4-16), the formulation for a face-
gear and a spur pinion pair is obtained. Figure 4-9 shows the dynamic model of the

pair model. Re-writing the mentioned equations for i=1 and j=1 yield,
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Figure 4-9 Dynamic model for a pair of face-gear and a spur-pinion

égl (t) + {2 Wy11 (t)gll(t) Puy (t) + @y, (t)2 K, (t) O (t)} = fgl (t) (4-33)
épl (T)+ {prn (1)) P () + @y (t)2 (o (t )} fa(t) (4-34)

where,

_Tu(D) Tu() (4-35)
- Tull)

1 t)b, u(P)Cu (T (4-36)
é/gll(t) 9 (zl) () a) 7§p11() P ( )Cl( )

@ 1 20(t) o120, (1)

(4-37)

The parameters specified in Equations (4-3) through (4-14) are also valid for the

face-gear spur-pinion pair case, i.e., when i=1 and j=1.
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CHAPTER 5

PARAMETRIC STUDIES

5.1 Case Studies for a Pair of Face-Gear and Pinion

The non-linear equation of motion is solved together with the Harmonic Balance
Method (HBM) and Arc-Length Continuation Method [121] for the periodic steady-
state response of the system in the frequency domain. The results are compared with
the time simulation results obtained with Runga-Kutta numerical method. The STE
and the mesh stiffness variations are expressed with only their first harmonics terms.
The torque values are assumed to be constant. The input parameter list for the four

cases is given in Table 5-1.

Using the SDOF system of the gear pair, some parametric studies are performed to

seek the effect of backlash and the applied torque.

Design Parameters Symbol Case-1 Case-2 Case-3 Case-4

Mass moment of inertia of pinion (kg.m?) L 0.001 0.001 0.00127 0.00127
Mass moment of inertia of face-gear (kg.m®) |L 0.08 0.08 0.134 0.134

Mesh Stiffness, mean value (N/m) k 1201076 120%1076 436.36%106  [436.36*10°6
Mesh Stiffness ratio, alternating to mean k. 0.405 0.405 0.1458 0.1458
Reference backlash value b, 20 50 20 20

STE (mm) E 10 10 10 10

Reference torque values, [Tg; Tp] N.m [86.0769 ; 20] [86.0762 ; 20] [3073.73 ; 800]|[86.076% ; 20]

Table 5-1 Parameters of the gear pair

139



5.1.1 Effect of Backlash

Case-1

RMS values of the gear mesh displacement between the face-gear and the pinion for
several backlash values are shown in Figure 5-1, for Case-1. The solution is obtained
with Harmonic Balance Method (HBM) coupled with Arc-Length Continuation
Method utilizing three harmonics. The nonlinearity in the SDOF system is the
backlash value between the gear teeth. Firstly, the backlash value is set to zero (or
the backlash nonlinearity is not taken into account), and the Linear Time Variant
(LTV) version of the system with the parameters given in Table 5-1 is obtained.

Figure 5-1 shows this LTV version of Case-1.

increasing
backlash

4 b=33um

! | | |
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Figure 5-1 Comparison of the RMS values of the response (gear mesh
displacement between face-gear and the pinion) for Case-1, increasing backlash
from b =5 um to 200 um, frequency range w=0.01wc to w=1.4cwc

Then the effect of the backlash value on the response of the system is investigated.
The backlash value is varied from 1 um to 200 um (in the increasing arrow direction),

as depicted in Figure 5-1, for the specified torque values. The response for the LTV
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shows no signs of hardening or softening spring effect, as expected. However, with
bc=1 um to be=34 um, both hardening and softening effects are observed for each b

values.

Figure 5-2 shows the same results given in Figure 5-1, but for only 5 um, 15 um, 25
um, 33 um, 34 um and the values larger than 34 um together with the LTV system
response. The softening spring (separation and single sided impact) and then
hardening spring (separation and double-sided impact) effect is clearly depicted in
Figure 5-2, for the bc values less than 34 um. However, for be>34 um, hardening
effect disappears. This is due to fact that, the deflection of the tooth is not enough to

cover the clearance specified by the total backlash value, 2b.

T I
55 —LTV system

. — =NTV system with b:=5 pm
50 oy~ NTV system with bC=15 sm
", I NTV system with b =25 um
4.5 -_.-’ i NTV system with b_=33 um
i3 ——NTV system with b =34 um
4 :." i NTV system with b >34 um

0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 2.2 24

Figure 5-2 Comparison of the RMS values of the response (gear mesh
displacement between face-gear and the pinion) for Case-1, for the backlash values
be =5, 15, 25, 33 um and 34 um, frequency range w=0.01wc t0 w=2.5a0c

It can easily be observed that the RMS of the gear mesh displacement values for the
specified frequency range are the same for the backlash values 34 um to 200 um.

This depicts that increasing the backlash beyond 34 um does not change the system's
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dynamic response, for the specified static torque values. The hardening spring effect

vanishes at a b value between 33 wm and 34 um.
Case-2

The system in Case-2 is the same as the system given in Case-1, but only the
reference backlash value is different, as depicted in Table 5-1. The RMS values of
the gear mesh displacement between the face-gear and the pinion for several
backlash values are depicted in Figure 5-3, for Case-2. Figure 5-3 demonstrates the
effect of increasing the backlash value from 1 um to 200 wm (in the arrow direction)
on the system's response. The results for 10, 15, 20, 25, 33, 44 um and 200 um are
plotted together with the LTV system response. For the LTV system, the clearance
is set to zero, as mentioned in the previous case. The response of the system is the
same for the backlash values 34 um to 200 wm, which means increasing the backlash
beyond 34 wm does not change the system's dynamic characteristics.

25
l —LTV system
- - NTV system with bc=10 pum
NTV system with bc=15 pum
2 . K '\‘ NTV system with b =20 um
Y NTV system with b =25 ym
/ ——NTV system with bc>=33 pum and bc<34 pum
71 B ——NTV system with b >=34 ym

ms
P11

05

wlw

Figure 5-3 Comparison of the RMS values of the response (gear mesh
displacement between face-gear and the pinion) for Case-2, for the backlash values
bc =10, 15, 20, 25, 33 wm and for all values between 34 um and 200 um, frequency

range w=0.01w t0 w=2.5w¢
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The transition between the double-sided and single-sided impacts occurs between
the backlash values of 33 um and 34 um. Figure 5-3 also shows the system's response
for several backlash values between 33um and 34um. The transition happens in the
circled area; as backlash increases from 33 pum to 34 um, the bulge closes and

disappears when backlash equals 34 pm.
Case 3

The RMS values of the gear mesh displacement between the face-gear and the pinion

for several backlash values are plotted for Case-3 in Figure 5-4.

9 T T
—LTV system
——NTV system with b =10 um

——NTV system with b =15 um
NTV system with b =25 um [

[
c
c
——NTV system with bC
[
c
c
C

=35 um
——NTV system with b =45 um

NTV system with b =50 ;m
——NTV system with b =55 um
——NTV system with b >=60 um

E = increasing
Q 4+ backlash

0 0.5 1 15 2 25

wlw

Figure 5-4 Comparison of the RMS values of the response (gear mesh
displacement between face-gear and the pinion) for Case-3, for the backlash values
bc =10, 15, 25, 35, 45, 50, 55 um and for all values between and 60 wm and 200 um,

frequency range w=0.01w¢ to w=2.5w¢

This figure demonstrates the effect of increasing the backlash value from 1 um to
200 um (in the arrow direction) on the system's response. Figure 5-4 shows the results
for 10 wm, 15 pm, 25 um, 35 um, 45 um, 60 wm and 200 um together with the LTV
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system response. It can easily be seen that the results are the same for the backlash
values 60 um to 200 um. Hence, the backlash does not change the system's dynamic

response after 60 um.
Case-4

The same system given in Case-3 with a reduced static torque value is considered in
Case-4. The RMS values of the response between the face-gear and the pinion for
several backlash values are calculated. The solution is obtained with the harmonic

balance method (HBM) utilizing three harmonics.

6 T T
—LTV system
NTV system with b =5 um

.......... NTV system with bz=7 pm o
..... NTV system with bc=13 pm
.......... NTV system with b =17 um | |

c

c

c

NTV system with b =23 um
——NTV system with b >=24 ym
- = =NTV system with b =20 ym |+

0 0.5 1 1.5 2 25

wlw

Figure 5-5 Comparison of the RMS values of the response (gear mesh
displacement between face-gear and the pinion) for Case-4, for the backlash values
be =5 um, 7 um, 13 um, 17 um, 23 um, and for all values between and 24 um and
200 um, frequency range w=0.01wc to w=2.5wc

Figure 5-5 demonstrates the effect of increasing the backlash value from 1 um to 200
um (in the arrow direction) on the system's response. The results for 5, 7, 13, 17, 23,
24 um, and 200 um, together with the LTV system response are given in Figure 5-5.
The results are the same for the backlash values 24 pm to 200 um. Increasing the

backlash after the value of 24 xm, does not change the system characteristics.
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Comparing the results in Case-3 and Case-4 shows that the response levels in Case-
3 are higher than the levels in Case-4. This is an expected result due to high static
torque values. In Case-3, the transition from double-sided impact to single-sided
impact occurs around the backlash value of 60 um. In Case-4, this value is calculated
to be around 24 um, as given in Figure 5-4 and Figure 5-5. The static torque applied
in Case-3 causes enough deflection to cover the clearance; therefore, double-sided
tooth impact can be seen up to 60 wm backlash value. In Case-4, on the other hand,
the torque value is less than the torque in Case-3. Therefore, enough deflection for
the double-sided impact is not created, and the amount of clearance avoids the
double-sided impact. The system characteristics cannot be altered by increasing the

backlash value beyond 24 um.

51.2 Effect of Static Torque

Figure 5-6 and Figure 5-7 show the response between the face-gear and the pinion
for several torque values, for the system given in Case-4. The effect of increasing
torque value is investigated with the torque values from T4=1.0 T to 100 T (in the
arrow direction), where T is a reference torque value. The results for 1.0 T, 10 T, 20
T,30T,40T,50T,60T,70T,80T,90 T, and 100 T are given in Figure 5-7.

Figure 5-6 shows the results for only 1.0 T, 20 T, 50T, 70T, and 100T. As the torque
value increases, the amplitude of the response, at which the softening (single-sided
impact) and hardening (double-sided impact) starts, increases, as depicted in the
figure. This phenomenon occurs due to the static deflection caused by the applied
torque values. As it is increased, a large amplitude of the dynamic response is needed
to separate the tooth. The given backlash value is not large enough to avoid double-
sided impact; hence, both single and double-sided impacts occur at each torque level,

as shown in Figure 5-6 and Figure 5-7.
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wlw
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Figure 5-6 Comparison of the RMS values of the response (gear mesh
displacement between face-gear and the pinion) for Case-4, increasing reference
torque values for be =20 wm, frequency range w=0.01w¢ 10 @=2.5wc

rms
P11

©/0, (dimensionless frequency)

Figure 5-7 Comparison of the RMS values of the response (gear mesh
displacement between face-gear and the pinion) for Case-4, increasing reference
torque values from 1.00 T to 100 T, for be =20 um, frequency range w=0.01w. to

w=2.5w¢
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5.1.3 Effect of Damping and Static Torque on Subharmonic Response

For the system Case-1 given in Table 5-1, the existence of the subharmonic is
investigated for different damping and static torque values. The damping coefficient
is varied between 1600 N.s/m to 3250 N.s/m, and its effect on the gear mesh

displacement is investigated.

In a geared system, damping can be affected by many parameters such as structural,
viscous characteristics, frictional and bearing losses, and churning losses. In this
section, the details of the damping physics are not investigated. A reasonable
approximation of the damping values is made. The damping values are taken as
varying between 1600 N.s/m and 3250 N.s/m, which correspond to viscous damping
ratios of 0.038 and 0.076, respectively, being consistent with the values frequently
used in literature, [122—-124]. The gear mesh displacement between the face-gear and
the pinion is calculated by HBM using five super-harmonics together with %
subharmonic. The results are compared with the time simulation results obtained
with Runga-Kutta numerical method for the damping value of 1600 N.s/m.

Figure 5-8 shows the effect of damping on the subharmonic peaks observed around
the frequency range w=1.5w¢ and w=2.1wc. The response curves are plotted for
several damping values. For the damping values of 1600 N.s/m and 1800 N.s/m, the
dynamic response curves do not form a closed curve at the specified frequency range.
However, beginning from the value 2400 N.s/m, the dynamic response curve forms

a closed curve. As the damping is increased, the size of this curve becomes smaller.

A similar result is obtained by varying the applied torque value. The applied torque
is increased for the same system, and the response curves are obtained. Figure 5-9
gives the gear mesh displacement for several torque values. As depicted in the figure,
the closed curves for the subharmonic resonance peaks tend to vanish as the applied

torque increases.
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Figure 5-8 Comparison of the RMS values of the response (gear mesh
displacement between face-gear and the pinion) for the damping values, 1600
N.s/m time simulation (0), 1600 N.s/m HBM solution (-), 1800 N.s/m HBM
solution (-), 2400 N.s/m HBM solution (=), 2500 N.s/m HBM solution (-), 3000
N.s/m HBM solution (), 3250 N.s/m HBM solution (-),for the frequency range
w=0.1wc¢ 10 =2.5w¢

increasing
torque

Figure 5-9 Comparison of the RMS values of the response (gear mesh
displacement between face-gear and the pinion) for the torque values, Tg=1.00T
(-), Tg=1.05T (), Tg=1.10T ( ), Tg=1.15T (-), Tg=1.18T (-), Tg=1.20(-), for the

frequency range w=0.1w¢ t0 w=2.5wc
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5.2  Case Studies for Split-Torque Face-Gear Drive System

521 Effect of Orientation Angle Pattern

The non-linear equations of motion are solved together with the Harmonic Balance
Method (HBM) and Arc-Length Continuation Method [121] for the periodic steady-
state response of the system in the frequency domain. The results are compared with

the time simulation results obtained with Runga-Kutta numerical method.

Table 5-2 Parameters of the system

Parameter Symbol Value
Number of teeth, face-gear Ng 103
Number of teeth, spur-gear Np 23
Module (mm) My 3.175
Pressure angle (°) ac 20
Moment of inertia, j face-gear (kg.m?) lgj 0.1392
Moment of inertia, i spur-gear (kg.m?) lpi 0.0300
Total Gear Backlash, between the i" pinion  2bj; 80

and j" face-gear (um)

Input power (kW) Tpa, Tps 750
Secondary output power (kW) T2 250
Primary output power (kW) Tg 1250
Mean value of the mesh stiffness (N/m) km;; 4.5x108
Mean value of the mesh damping (N.s/m) ~ ¢m; 3000
STE, for all mesh locations Elji 0.075
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The STE and the mesh stiffness variations are expressed with only their first
harmonics terms. The torque values are assumed to be constant. The input parameters

for this case study are listed in Table 5-2.

For seeking the solution by HBM in conjunction with the Arc-Length Continuation
Method, similar to the harmonic expressions for the mesh stiffness and STE as in
Equations (4-20) and (4-24), the time and displacement varying parameters of the
system (i.e., mesh damping, rotational dofs of the disks, DTE, gear mesh

displacement) are also expressed as in the following form

NX
23 (D) =XJ + (X cos(rQt)+XJ, , sin(rt)) (5-1)

r=1

where ¥; (t) represents any of these parameters between the i pinion and the j

face-gear, X/ is the bias term, XJ\ and XJ!  are the coefficients of sine and cosine

terms of the r" harmonic, respectively.

The RMS value of the gear mesh displacement is plotted with respect to
dimensionless frequency. The RMS value of gear mesh displacement between the j

face-gear and i pinion is calculated as,

R 2 2 y2
p™ Z{Z[Piizr] [ Pjara ] } 62

r=1

where P, and P ;,, are the Fourier coefficients of the r" harmonic of p; (t)

Due to the non-linear nature of the system, the response may include many harmonic

and sub-harmonic components. To further clarify, an example case study is presented
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below for a system defined in Table 5-2, where input pinion orientation angles of P;
and Pz are 45° with respect to P2 axis, while idler pinions P4 and Ps are at 30° with
respect to P, axis. In order to evaluate the level of accuracy of the HBM solution, the
harmonic content is firstly investigated with 3-harmonics in this numerical case
study. The RMS values of the gear mesh displacements at ten meshing positions
generated by HBM and the time simulation results are shown in Figure 5-10 for
comparison. While comparing the results with the time simulation results,
particularly at specific frequency ranges, it can be observed that the 3-harmonic
HBM solution becomes insufficient to express the exact solution. For these
frequency ranges, the harmonic content of the solution is altered to comprise some
sub-harmonic content. Solving this highly non-linear case becomes computationally
too expensive for parametric studies. Hence, reasonable approximations are made

for accurate and meaningful evaluations.

Figure 5-10 Comparison of RMS value of the gear mesh displacements at ten

meshing locations, 3-harmonic HBM (—), and time simulation (0)
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For simplicity, to seek the effect of the orientation pattern of the pinions among the
face gears, only the response at the Mesh-10 is explained here. Figure 5-11
demonstrates the RMS value of the response between the LFG and the idler pinion
Ps. HBM solution and time simulation are given in the same plot. As shown in the
figure, the 3-harmonics HBM solution fits well with the time simulation results.
However, particularly between w=1.0 @, and ©=2.0 w., the response differs from the
time simulation results at some frequency values due to the sub-harmonic content of
the system response. This phenomenon is typical because the drive system has non-
linear mesh stiffnesses varying both with displacement and time. With a specific
phase, as discussed in the following section, these sub-harmonics may be excited
about a given frequency range. To evaluate this phenomenon, the frequency content
of the system's dynamic response is assumed to have 1/2 sub-harmonic together with
the fundamental harmonic. The obtained solution between the frequencies @ =1.02
oc and ®=1.92 o, is shown in Figure 5-11. A large portion of the time data within
the specified frequency range is approximated pretty accurately with the given HBM

solution.

1.16 1.65

2.5 T

s
Pos

w /W,

Figure 5-11 Comparison of the RMS values of the response (gear mesh
displacement between lower face gear and one of the idler pinions), 3-harmonic
HBM (—), 1-harmonic HBM with % sub-harmonic solution (—) between 1.00 wc
and 1.92 wc, and the time simulation results (0)
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At v=1.65 w., the time series and the power spectrum at the specified frequency are
presented in Figure 5-12, along with phase projection and Poincare map. Here, phase
projection shows the gear mesh displacement and the time derivative of the gear
mesh displacement, while the Poincare map presents the phase projection at discrete
time values ti=to+k(2nw/w.), where to=0, 1=0,1,2,...). The power spectrum shows that
the gear mesh displacement between the idler pinion and the UFG comprises two
main frequencies; the fundamental frequency and '42 sub-harmonic. As shown in
Figure 5-12-d, two points on Poincare map indicate that the dynamic response is a
period-2 motion. Phase projection shows a closed orbit, which indicates a periodic
motion. It does not cross itself because 2 sub-harmonic content of the response is
dominant, as depicted in the power spectrum. Thus, the given HBM solution fits well

with the time data; since the frequency content is consistent with the assumed HBM

solution.
1t = 1 |
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Figure 5-12 (a) Time series (b) power spectrum, (c) Phase projection, (d) Poincare
section, at w=1.65 wc

Similarly, at ®=1.16 w., as seen from the power spectrum of the time series given in
Figure 5-13, the frequency content seems to be rich in 1/4, 2/4, %, 5/4, 6/4, and 7/4

sub-harmonics, while assumed HBM solution contains of only /2 sub-harmonic and
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the fundamental harmonic. Therefore, seeking a solution with the fundamental
harmonic and ' sub-harmonic is not enough to approximate the exact solution
around those frequencies. Besides, the Poincare map of the steady-state portion of
the time simulation forms a smooth curve with many points, indicating that the
dynamic response may be a quasiperiodic motion [125,126]. Hence, it is difficult to

approximate the exact solution by HBM with these many sub-harmonic frequency

contents.
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Figure 5-13 (a) Time series (b) power spectrum, (c) Phase projection, (d) Poincare
section, at w=1.16 wc

The parametric study is performed to seek the effect of orientation angle pattern
which dictates mesh phasing among pinions on the system's dynamic response. Here,
2 sets of 3 different configurations are solved with HBM utilizing 3-harmonics for
®=0 and ©=2.5w. and utilizing % sub-harmonic for v=1.4w. and ©=2.5w., reducing
the computational time drastically compared to the time simulation. In the first set
(Set-1), the idler pinions P4 and Ps are set at 90° with respect to each other (at 45°
with respect to P2), while the input pinions Py and Ps are set at 45° (Case-1), by 60°
(Case-2) and by 90° (Case-3) with respect to P». In the second set (Set-2), the idler
pinions P4 and Ps are set at 60° with respect to each other (at 30° with respect to P2),

while the input pinions Py and Ps are set at 45° (Case-4), by 60° (Case-5) and by 90°
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(Case-6) with respect to P>. The basic orientations of the gears are presented in
Figure 5-13.

a) CASE 1

b) CASE 4 CASE 5

Figure 5-14 Visual representation of the Case Study Sets, a) Set-1 of the
parametric study, b) Set-2 of the parametric study

Table 5-3 Orientation angles of the pinions

CASE a; az as a4
1 45° 90° 180° 270°
2 60° 120° 195° 285°
3 90° 180° 225° 315°
4 45° 90° 195° 255°
5 60° 120° 210° 270°
6 90° 180° 240° 300°
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The orientation angles of the six cases are summarized in Table 5-3. HBM results
for Set-1 are presented in Figure 5-15. Non-linear behavior is observed as single-
sided and double-sided tooth impacts with the given system parameters for all three
cases around v=0.74 w. and ©=0.89 w.. As can be seen, Case-3 has the lowest
response amplitude when compared with the other two cases between the
dimensionless frequencies w=1.2w. and ®=2.5w.. Time-varying mesh stiffness leads
to the parametric excitation which reveals itself as super-harmonic resonance peaks
at ©®=0.37 o¢ and ©=0.47w¢. Unlike the previous two configurations, in Case-3, no
subharmonic motions are observed. However, Case-3 gives the maximum amplitude

around w=0.89w..

rms
D25

Figure 5-15 The RMS values of the gear mesh displacement between LFG and P5
for Set-1; (—) Case-1, (---) Case-2, (——) Case-3

Similarly, Figure 5-16 demonstrates the RMS value of the response between the LFG
and one of the idler pinions (Ps) for Set-2 (Case-4, 5, and 6) for comparison. Case-6
depicts no subharmonic motions, while the other two cases clearly show
subharmonic resonance peaks between w=1.4w. and w=2.3w.. At ©®=0.38w. and
®=0.50¢, super-harmonic resonance peaks are observed due to parametric excitation.

Case-6 gives the maximum amplitude around v=0.89w..
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w/w.

Figure 5-16 The RMS values of the gear mesh displacement between LFG and P5
for Set-2; (—) Case-4, (---) Case-5, (——) Case-6

As seen in Figure 5-15 and Figure 5-16, the response levels for Case-3 and Case-6
are the lowest among all six cases for the specified frequency range w=1.0w. and

w=2.5w.

In Case-3 and Case-6, the sub-harmonics around w=1.5 w. vanish due to the feasible
orientation of the pinions compared to the other cases. These feasible orientations
enable proper phase differences between the non-linear teeth meshing parameters.
Therefore, with the proper phase differences, sub-harmonic resonance does not
occur. However, since the meshing parameters (stiffness, damping) vary with
displacement and time, proper phase differences can only be calculated with a

comprehensive parametric non-linear analysis of a given drive system.

The phase values at the meshing locations are prescribed in Table 3. As an example,
in Case-1 and 4, the non-linear restoring and damping forces at Mesh-1 are in phase
with the forces at Mesh-4, and forces at Mesh-3 are in phase with the forces at Mesh-
5.
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Therefore, considering Mesh-10 as an example, the phase at which the torque is split
from P3 to LFG becomes exactly equal to the phase at which the torque is transferred

from LFG to UFG through the pinion Ps.

Also, the phase at which the torque is split to UFG or LFG through the input pinion
Py becomes exactly equal to the phase at which the energy is being dissipated during

the torque transfer through Ps at Mesh-5 and Mesh-10.

With these proper phase differences, the drive system achieves a steady-state motion,
and the nonlinearity limits the amplitude to a finite value whose frequency is exactly
one-half the frequency of the excitation [127]. Therefore, a sub-harmonic motion is

observed.

On the other hand, in Case-3 and 6, the phase at which the torque is transferred from
any of the input pinions to LFG is not exactly equal to the phase at which the torque

is transferred from Ps to UFG. Therefore, a sub-harmonic resonance does not occur.

%
o]
Za

05w

1 1.1 12 1.3 1.4 15 1.6 1.7 1.8 1.9 2
w/w,

Figure 5-17 The RMS values of gear mesh displacement between LFG and Ps for
Set-2, the regions of unstable points between w=1.0w. and w=2.4w.; Case-4, (—)
3-harmonic HBM, (--*) 1-harmonic HBM with % sub-harmonic; Case-5 (—) 3-
harmonic HBM, (--*) 1-harmonic HBM with % sub-harmonic; Case-6 (—) 3-
harmonic HBM, (--) 1-harmonic HBM with % sub-harmonic, (-) stable solution, (¥*)
unstable solution
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Here, a numerical Floquet Theory [21,22] approach is used to substantiate the
stability of the drive system through the obtained HBM solution. This approach
easily depicts the regions where the sub-harmonic resonance occurs. Then, this
phenomenon may be avoided with a proper orientation of the pinions. Figure 5-17
focuses on the response obtained for the Set-2 between w=1.0w. and v=2.0w. with
only 3-harmonics. It demonstrates the regions on the frequency axis where the drive
system has at least one positive eigenvalue, making it unstable. These regions are
also consistent with the HBM solution obtained with % sub-harmonic. Case-4 and
Case-5 have unstable points for the prescribed frequency range, whereas, for Case-

6, these points become stable.
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Figure 5-18 Bifurcation diagrams for the RMS values of gear mesh displacement
between LFG and Ps for Set-2, a) Case-4, b) Case-5, ¢) Case-6

In order to validate the results, the bifurcation diagrams for the specified drive
systems in Set-2 are generated by cascading the Poincare sections taken from the
time simulation data obtained for all excitation frequencies in the range w=1.0w. and
®=2.0w. and shown in Figure 5-18. To concentrate on the pure steady state
conditions, the time simulation between 125 to 250 cycles is considered in this
investigation. As depicted in Figure 5-18, Case-4 and Case-5 have several regions of

period-2, period-3, period-4 motion. The diagram also reveals quasiperiodic or
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chaotic regions for some frequency ranges, depicted with many points. However,
Case-6 has only period-1 motion in the given frequency range. For Case-4, the
diagram reveals many points for ®=1.16 wc and only two points for ®=1.65wc, as

shown in Figure 5-12 and Figure 5-13.

In some cases, not using sub-harmonics in the HBM solution gives misleading
results. On the other hand, utilizing sub-harmonics and super harmonics together in
the HBM solution increases the computational time. The regions of sub-harmonic
resonances, on the other hand, are located and defined by the Floquet Theory as
unstable regions in the system response. Hence, even if %2 sub-harmonic is omitted
to reduce the computational time, the HBM results with 3-harmonics coupled with
the Floquet Theory may be utilized to locate and then avoid these sub-harmonic

resonances in the system response.

5.2.2 Effect of Time-Variant Parameters

523 Effect of Power Values and Torque-Split Amounts

A split-torque system utilized in high-torque applications such as helicopter and
marine transmission systems is given in Chapter 1. Transmitting the torque through
several paths brings many advantages to the system. Several methods were
mentioned in Chapter 1 for providing an even torque split between the split branches.
One of the popular methods was the quill shaft method, which introduced additional

torsional flexibility between the connected gears.

The developed model in this study is a split-torque system, as depicted in Figure 4-4.
Power coming from two input pinions is divided into two paths, upper face-gear
(UFG) and lower face-gear (LFG). The power directed to LFG is again re-collected
at the UFG through the idler gears. The load transmitted by the idlers to the UFG is
the portion of input torque transmitted from the input pinions to the LFG and then to
the idlers.
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Shaft compliance plays an essential role in the torsional dynamics of the drive
systems. This chapter introduces torsional flexibility to the input pinions P; and P3,

which simulates a quill shaft.

e 8.(7) T.(7)=0

Figure 5-19 Modified dynamic model of the split-torque face-gear drive system

The equations of motion for the developed torsional dynamic model were given
through Equations (4-1) and (4-2) in Chapter 4. Re-writing Equation (4-1) here for
UFG and LFG in Figure 5-19 yields,

where j=1..2.

By introducing the quill shafts as torsional springs at the input pinions and modifying

the Equation (4-2) only for the input pinions yields,
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where i=1,3.

Finally, re-writing the Equation (4.2) here for the idler pinions gives

where i =2,4,5.

At any time instant, the fraction of the torque transmitted to the UFG through the i

pinion's mesh is defined as,

UTS' = L (5-6)

where UTS' is the Upper Torque Split, LTS' is Lower Torque Split, W, ' is

tpu
tangential load transmitted at i™ pinion to UFG, thli IS the tangential load

transmitted at i™ pinion to LFG, at any time instant, as depicted in Figure 5-20.
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Figure 5-20 Wip' and W' at the it pinion

The fraction of torque transmitted to the LFG through the i pinion's mesh is defined

with the following formula,

LTS =1-UTS' (5-7)

The system specified as Case-1 in Chapter 1.2.1 is solved for calculating torque-split
ratios. When the flotation is not permitted, the pinion's torque split ratios become as

depicted in Figure 5-21.
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Figure 5-21 Torque split ratios for the pinions in the face-gear drive system

Away from the resonant frequency, 70 percent of the input torque is directly
transmitted to UFG, and around 30 percent of the input torque is transmitted to LFG
through the input pinions P; and Ps.

Around the resonant frequency, the torque sharing approaches 60 percent through

UFG and 40 percent through LFG.

The output pinion P> collects most of its torque from the LFG around the resonant
frequency. This ratio becomes at most 89 percent through LFG and 11 percent

through UFG.

On the other hand, idler pinions P4 and Ps transmit all the power from LFG to UFG.

Hence, a torque-split ratio of 50 percent is achieved.

In order to simulate the floating pinion case, the support stiffness values for the input
pinions are altered with the scale factors SF=1.0, SF=0.5, SF=0.1, SF=0.05, and
SF=0.01 with respect to the mesh stiffness value, where the mesh stiffness value is

assumed to be 1.0.
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Figure 5-22 Torque split ratios for the input pinion Py

Figure 5-22 and Figure 5-23 show the torque split ratios of the input pinions P1 and
Ps, respectively. The split ratios are plotted for several SF values. By the reduction
in SF, the floating action of the input pinions is allowed. As SF is reduced, an even
torque split is achieved. The torque split ratios UTS and LTS for each input pinion
approach to 0.5, which denotes the even torque split. In Figure 5-22 and Figure 5-23,
when SF=0.01, UTS and LTS values become 0.503 and 0.496, respectively, where

the torque split ratios differ less than 1%.
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Figure 5-23 Torque split ratios for the input pinion P3

Figure 5-24 shows the torque split ratios for the output pinion P>. For this pinion,
LTS is calculated to be 0.8 while LTS is calculated to be 0.2 for SF=0.01. Even torque
split for this pinion is not intended since P> is connected to a low torque consuming
drive train such as a helicopter tail gearbox. Compared with the input pinions, the
torque level is lower than Py and P3. Therefore, the strength of the output gear is not
critical to have 80 percent of the load from LFG and 20 percent from UFG. In this
study, all five pinions' macro geometry is assumed to be identical. However, the face-
width of the output pinion P> may be reduced to achieve an appropriate torsional

stiffness for an even torque split ratio at the UFG and LFG.

Finally, the idlers take power from LFG and transmit it to UFG. Therefore, the
torque-split ratio remains 0.5 throughout all investigated frequencies for both UTS

and LTS. Figure 5-25 shows the UTS and LTS values for the idler pinions P4 and Ps.
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Figure 5-24 Torque split ratio for the output pinion P
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Figure 5-25 Torque split ratios for the idler pinion P4 and Ps
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Figure 5-26 shows the achieved torque split ratios before and after introducing an

additional torque stiffness for simulating the quill shaft connected to the input

pinions P; and Ps.
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Figure 5-26 Achieved torque split ratios for the specified system
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1  Summary & Conclusion

In this thesis it is aimed to develop a torsional non-linear dynamic model for a multi-
mesh involute spur pinion-driven face-gear split-torque drive system which utilizes
the exact face-gear tooth geometries employing the theory of gearing and differential
geometry. For this purpose, a lumped mass system consisting of five pinions and two
face gears was constructed. The system has seven rotational degrees of freedom. All
pinion and gear blanks are assumed to be rigid disks. The constructed split-torque
model includes two inputs, two outputs, and three idler gears. The model includes
clearance-type nonlinearity for backlash. The non-linear time-variant equations of
motions are solved with HBM coupled with the Arc-Length Continuation Method to
obtain the system's periodic steady-state response. HBM results are compared with

direct numerical integration solutions to validate the accuracy.

The developed model may be considered as a second-stage reduction to the main
transmission system and then may be connected to a planetary gear set at the third
stage for the final reduction. Before that, there may be two nose gear-boxes as the
first stages. According to engine speed, the face-gear system can also be used as the

Main Gear Box (MGB) of a helicopter with or without planetary.

In order to reduce the computational time during the parametric studies, the HBM
with Arc-Length Continuation Method is utilized with 3-harmonics and % sub-
harmonic. The comparison of the frequency domain solution obtained with the direct
numerical integration results shows that, except for some frequency ranges where
several sub-harmonic resonances are excited simultaneously, the method gives exact

results. Numerical Floquet Theory is applied to validate the system's stability
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obtained by three harmonics HBM solutions. Bifurcation diagrams for the specified
frequency ranges are generated by cascaded Poincare Sections established from time

domain simulations.

Macro geometry of the face-gear surface is generated by transforming the tooth
profile of a spur gear shaper into the face-gear tooth profile by simulating the
machine tool motions. Mesh stiffness is calculated via the finite strip method.
Unloaded tooth contact analysis is performed without any profile or face-width
modifications on the tooth surface. The generated tool is also capable of calculating

the transmission error with these modifications.

Several methods have been investigated for the mesh stiffness calculations, namely,
Thin Slice Method (1-D), Rayleigh-Ritz Method (1.5D), Finite Strip Method (1.5D),
Finite Prism Method (2.5D), and Quasi-Prism Method (2.5D). The results are
compared with the ones obtained from MSC Patran-Nastran and Abaqus models.
The Finite Strip Method (FSM) is selected to calculate the mesh stiffness due to its
feasible adaptation for parametric studies. Mindlin Plate Theory is used for the tooth
model. As mentioned above, the tooth is discretized using Finite Strip Method, and
since FSM utilizes simple polynomials along the face-width direction and adjusted
B3 spline curves (according to cantilevered boundary condition) along the tooth
profile, the discretization is performed as if the tooth is a 1D element. Hence, the
element formulation, the connectivity of the elements, and the solving process
become simpler than a 2D or 3D finite elements. The NURBS curves fit the surfaces
of both the face-gear and the spur gear. This surface fit approximation generates a
variable thickness finite strip element. Generally, constant thickness finite strip
element is utilized for discretization. In order to achieve an acceptable level of
accuracy, the element number has to be increased. However, even with a small

number of elements, accurate results are obtained with a variable thickness element.

A dynamic model for a face-gear and spur-gear pair is developed, and some
parametric studies are performed. The effect of backlash, the static torque, and the

damping on the gear mesh displacement are investigated. The hardening and
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softening stiffness effects are demonstrated for several backlash and torque levels. It
is observed that the hardening stiffness effect disappears at a specific backlash value,
and only softening stiffness effect remains. This phenomenon happens because the
resulting amplitude of the dynamic response becomes insufficient to cover the
resulting deflection due to the applied static torque and the imposed backlash
clearance. This phenomenon also dictates that the system characteristics cannot be
altered by increasing the backlash beyond some specific value. The effect of
damping on the dynamic response is also sought. For some specific damping ratios,
subharmonic resonance peaks and closed curves (islands) are observed for a
frequency range. As the damping ratio increases, these closed curves become smaller
and smaller and then vanish. The same phenomenon is also observed for some static
torque values. As the static torque is increased, these closed curves of subharmonic

response become smaller and finally vanish.

A dynamic model for a multi-mesh split-torque face-gear drive system is
constructed, and some parametric studies are performed to search the effect of
orientation angle pattern (mesh phasing among pinions) and power values (or static

torque values).

The effects of mesh phasing on the system response are studied with the established
fully coupled comprehensive mathematical models of face-gear tooth geometry,
mesh stiffness, and non-linear dynamics. In this investigation, the mesh phasing
defines the position of one tooth pair relative to the other pairs in contact in a mesh
cycle. It is observed that, by altering the pinion positions, the drive system's response
characteristics are significantly changed. For instance, when the input pinions are
positioned at 180° angles to each other, the subharmonic resonance peaks around
o=1.4m and ®=1.72®¢ vanish. Around the fundamental harmonic, the gear mesh
displacement increases as expected. In cases where the idler pinions are positioned
at 60° angles, the response levels decrease around the fundamental harmonic,
compared to the cases where they are positioned at 90° angles. Thus, it is evident
that achieving proper phase differences between the meshing teeth by altering pinion

positions is a critical design parameter in the preliminary design phase of the split-
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torque face-gear drive systems from dynamics perspective. The presented non-linear
dynamic model enables to carry out various parametric studies while capturing the

mesh stiffness from the face-gear tooth geometry.

Achieving an even torque-split ratio between the upper and the lower face gears
through the input pinions is investigated. For this purpose, the floating pinion case
is implemented as a shaft torsional spring, and then several cases for different support
stiffness values have been studied. As expected, the floating pinion achieves the even
torque split case for the input pinions. On the other hand, uneven torque split may

also be an intended design feature, according to system demands.

There is an AGMA standard for epicyclic (planetary) gear trains. The main design
topics are well established and well defined in this standard. Thus, a designer utilizes
and chooses the critical design parameters from various parameters, i.e., tooth
geometry, sufficient backlash and pressure angle requirement, meshing
requirements, arrangements of the sun, ring, and planet gears, and load sharing ratio
among the gears. Currently, there is no standard (AGMA, ISO, DIN) for the face-
gear or split-torque face-gear drive systems. Hence, some of the critical design
parameters, i.e., position of idler gears, position of input gears, shaft compliance, are
investigated to be utilized in the system's preliminary and detailed design phases.
The potential design parameters (such as pressure angle, shaft angle, number of teeth

etc.) may also be utilized for the same purpose.

In summary, this thesis proposes a physics and theory of gearing based evaluation
method of face-gear drives without relying on any commercial FEA software
packages by establishing accurate tooth and mesh stiffness calculations utilized in
non-linear dynamics of single-pair mesh and split-torque configurations.

6.2 Future Work

The torsional dynamic model can be extended to include the coupling between axial

and the radial degrees of freedom of the face-gear and pinion with the shaft and
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bearing. Furthermore, the face-gear and the spur pinion webs can be modelled as
deformable bodies with Kirchoff or Mindlin Plate Theory. Their contribution can

also be added to the gear tooth deflection as a foundation effect.

A more detailed STE function is recommended to be developed from the related gear
macro and micro geometries. A new DTE function should be modeled and
investigated based on the proposed STE.

The mesh damping in the model can be improved to include the frictional, bearing,
and churning losses. The structural and viscous characteristics can be investigated
by proper tests, and then the results can be implemented in the model developed in
this thesis.

Finally, the validation of the developed models with tests can be conducted starting
from linear and non-linear dynamic cases. The preparation of the test benches in the
laboratory environment is very critical. Hence, they should be dynamically well
isolated from the test specimen. Three vital points in the establishment of a proper
test stand should be paid attention to; i) the design and production of the test bench;
i) the design and production of the test specimen by which the predicted non-linear
effects are to be observed, and finally; iii) the test execution. The test specimen
should be accurate enough to avoid all disturbances affecting the test data to be

compared with the analytical model.
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APPENDICES

A. NURBS Approximation

NURBS curves are generally given by [72],

n

>N, (uwP
i,p it _
C(U) — i:%] (A 1)
z Ni,p(U)Wi
i=1
NURBS surfaces are generally given by,

S(uyuy) =

n m

22 N ()N (U)W,

i=1 j=1

For the NURBS curve formulation, assume that {Qk} is a given set of points, or

point cloud; then,

Q :C(Uk):;Ni,p(Uk)WiPi (A-3)

where k=1,2,3,...n.
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Equation (A-3) has to be calculated for every data point in

coefficients Pi, where

order to solve for the

u,=1 for k=1 (A-4)
0, =0, for k=n (A-5)
_ A-6
Uk:Uk_l+M for k=2,3,..n-1 (A0)
where d =>'|Q, —Q|.
k=1
NURBS basis functions are given as, for p=0,
Lu <u<u,
N- u) = | i+l
1) { 0, otherwise (A-7)
and for p>1,
_ u-u ui+p+l_u
Ni,p(u) = Uy~ Ni,p—l(u)+ U Ni+1,p—l(u) (A-8)
where,
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ul =...U 1 = 0 (A-g)
U =.u =1 (A-10)

j+p+l ) (A_ll)

Here, n is the number of control points, p is the degree of the NURBS basis function,

m is the number of values in the knot vector and specified as,

m=n-+p+1. (A-12)

193



B. Thin Slice Method

The following formulation is utilized for the bending compliance calculation for a

slice of TSM element [81].

Y
| NG ")
segment ?
"7
]
Yi Z lej.d-l B
Ay,
l y X

W

T. —»
1

Figure B-1 A slice for an involute profile

Bending Deflection of the i segment due to forcing at j™" position of a slice:

T+ (1)L, (B-1)

where W, is the applied force, f; is the angle of the force with the vertical axis, T, is

thickness of the i segment, E is the Young's modulus, |is the area moment of
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inertia of the i"" segment, L, ; is the distance between the i" segment and the j*" load

application point.

Bending Deflection due to moments:

y WJ(L”.-cos(ﬂj)—Yj-sin(ﬂj))

2
= 2EI, ) (B-2)
W, ('—i,j -cos(ﬁj)—Yj -sin(ﬁj ))
+ Tl
El |
Shear Deformation:
. 24(L+v)WT cos(5)) (B-3)
;= EA
Axial Compression:
. WTsin(5) (B-4)
Q5= EA
Total Deformation:
Q' :(qwi,j +9", | +qsi’j)-cos(ﬁj)+q°i‘j -sin(ﬂj) (B-5)
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C. Rayleigh-Ritz Approximation

Figure C-1 A slice for an involute profile

Let the following parameters are defined as,

e W is the transverse deflection of the plate

e U is the stretching deflection along x axis

e Vs the stretching deflection along y axis

e his the thickness of the plate

e E is the modulus of elasticity of the isotropic plate material
e ais the length of the plate

e Db is the width of the plate

e v is the Poisson's ratio

Formulation For a Kirchoff Plate [128]:

The virtual strain energy of the plate can be expressed as,

U = [ [ (0,0, +0,,32,, + 20,0, Jdzdxdy (C-1)

A —-h/2
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The potential energy due to virtual loads, such as pressure loading over plate surface,

can be expressed in variational form as,

oV = ”q(x, y,t)-Sw-dxdy (C-2)

Since the total potential energy functional is [128],

M1=06U +6V =0 (C-3)

then, it can be expressed as,

h

2

J; (0,08, + 0,0, +20,0¢,,)dzdxdy — ” q(x, y,t)-owdxdy (C-4)
A

The Von-Karman strains of the plate may be defined as [128-132],

_ 1.2
£, =V, +5Wy —ZW,,

C-5
£, =U, +%WXZ—ZWXX (C-5)

&y =U, +V, +W, W, —27ZW,
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Setting the strains in transverse directions zero yields,

£, =&,=¢&,=0 (C-6)

Taking the variations of the strain expressions yield,

S, =0U +W OW —Z6W,, (C-7)
£, =06V, +W, oW, —Z6W,, (C-8)
S, = U, + OV, + W, SW, + W, SW, — 2Z6W,, (C-9)

Substituting the strain variations into the virtual potential energy expression yields,

é\/ :JI[NXX(5UX+WX5WX)+NW(5Vy+Wy5Wy) (C-lO)
A

+N,, (SU, +3V, +W,5W, + W, W,) — M, Sw, — M, Sw, —2M, Sw,, |dxdy

The terms Nxx, Nyy and Nyy, namely the membrane forces, are generated during the
out of plane deflection of the plate. As the plates deflects, these terms become
dominant, with the strain formulas given below,
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N, :E—hz(uX +lWx2+U(Uy +EWy2))
20— ¢ 2 2

Eh 1 1
N, =——(u(u, +=w?)+U, +=w,> (C-11)
vy 12(1_02)( ( X 2 ) y 2 y )
h
N, =§G(uy +V W W)
Also, My, Myy, My, are defined as,
3
Mxxz——Eh > (wxx+uwyy)
12(1-07)
Eh® C-12
M, =" (ow_+w (C-12)
» 12(1—02)( . W)
Eh?
o (ny)
12(1+v)

It is assumed that, during the deflection of the plate, no transverse shear develops.
Therefore, the term N,y is assumed to be zero (Kirchoff plate model where shear
energy is considered to be negligible). Also, it is assumed that, ux and vy are equal
to zero. This final assumption also denotes imposing oux and ovy are equal to zero.

After these assumptions, dropping the neglected terms, the virtual potential energy

expression becomes;
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v =] (NXX (wow, )+ N, (w,ow, )—M,, 5w,
A (C-13)
-M,, 6w, —2M, Sw, ) dxdy

and, similarly, after dropping the neglected terms, Nxx and Nyy become,

1 1
=——— (=W« _H)EWyZ) (C-14)

__ B 1. 10 (C-15)

Inserting Equations (C-12), (C-14) and (C-15) into the virtual potential energy
expression given in Equation (C-13) yields

Eh 1 1
oV :g[m(z X +1)2Wy )(W oW )

Eh 1 9,1 ,
+———(O=Wx"+=Wy")(W oW
2007y Vg W W, ow,)

_EN (C-16)
12(1_ )( +uwyy)5wXX

Eh’®
—— (oW, + W, )W
12(1—02)(U o Wy )W

Eh’
_ 12(1 )( )5wxy}dxdy
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Since,

5 Eh® (C-17)
C12(1-0?)

then, Equation (C-16) may be re-written as,

oV = D”[(%szwéwyz)(wxéwx)

+(U%Wx2+%Wy2)(Wy5Wy)
+H(W,y + W, )W, (C-18)
+H(OW,, + W, JOW,,

+2(1-)(W,, )Sw,, | dxdy

Here it may be stated that the interested plate is classified as thick plate rather that
thin plate, so terms Ny, Nyy and Ny, the membrane forces, can be eliminated from

the equations. Assuming a solution in the form,

M

w(ry) = > Y aXi@4G) (C-19)

j=1

yields,
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abolx dX dx, dY; dx, dY,
R, = | S :

% x dy dx dy

d?y. d?X 2X. d2y
+u(Xi dyzj dxszquddx)ileXp dy2q (C-20)

x.dZYJ' X 4, }d d
+Xi—— X, xdy
dy dy’

where N and M represent the utilized shape functions along longitudinal and

transverse axis, respectively. The forcing matrix is written as,

ab
Q= [(f-X(xi)-Y(y, j)-dxdy), (C-21)
00
where,
ab
Q= [ [(f-X(xi)-Y(y, j)-dxdy), for pressure load
00
ab
Q = ” (f-X(%,0)-Y ¥y, j)-dxdy), fora point load at (X, Y,)
00

. (C-22)
Q; =Y (Yo, j)j%x (x,1))-dx, fora distributed load along x axis at (x, y,)
0

b
Q; = X (X, i)J'%Y (y,]j)-dx, foradistributed load along y axis at (x,, y)
0
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D. Finite Prism Method and Quasi-Prism Method

The following formulation is utilized for the Element formulation of a Finite Prism
Method. as detailed in references [99,113,114].

8-noded isoparametric element is utilized for the formulation of a FPM element.

z =
® @ . J fdge 1 = +1
(-1 [7a.v
4 | wo
Edges = — [ ——] 6
¢ o "
(-, -~
| — Edges = +1
‘ (-1, -1 2((."”
S SEdger= ~1
o * g .

Figure D-1 8-noded isoparametric element

The shape functions are used to interpolate the coordinates from the nodal
coordinates as [99,113,114];

where the shape functions can be written as,
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GEM=1/40-HA-N(-n-1)
CEM=1/40+HA-nE-n-1)
GEM=1/40+H A+ E+n-1)
CEM=1/40-A+n) (=¢+n-1) .
Cs(EmM=1/2A-n) 1+ A -9)
Ce($m=1/2(1+8 A +n) (A —n)

GEmM=1/20+n) 1+ A =$)
Ce(Em) =1/2(1 =) A +m A —n)

For simply support end conditions, u = w = Z—; = 0 at y=0 and y=b; the following

displacement functions are assumed,

r 8
u= CrugmSin(ky,y)
k=

3

8

=<

Ckvkmcos (kmy) D-3

y

[y

k=

3

T

Z Ck kaSin (kmy)

W =
m=1k=

=
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Figure D-2 A general prism to be modelled with FPM

The stiffness matrix is calculated as

K] = f [Bilm' [DI[B;] dV

where material matrix is given as

1-v) 0 0 o0 00
0 (1-v) 0 o0 00
(D] = E 0 0 1-v) o 00
(1-v?) 00 0 (1/2-v) 0 0
00 0 0 (/2 -v) 0
L 0o 0 0 0 /2 vl

and strain displacement relation may be expressed as,
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_dcié:’z)sin(ka) 0
0 —C,(x,2)k,sin(k,y)
0 0
[B], = ~C, (x,2)k, cos(k,y) dCis;,Z)cos(kmy)
. dC‘(X’Z)cos(ka)
_ dc‘é:’z)sin(km)’) 0

0

0

i)

0

—C,(x,2)k, cos(k,y)

—dci(x’z)sin(kmy)

D-6

where the derivatives of the shape functions may be calculated by applying the chain

rule as

Writing in matrix form yields,

ac;
0¢
ac;
on

aCi _ aCl 0x

9 " axoz

(')Ci _ (')Cl 0x

m axon

az]
3

an
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ac;

0x
ac¢;

0z

aCi aZ
0z 0¢
(')Ci 82
0z on
aC;
_ 0x
Mac
0z

D-8



where J is referred to as the Jacobian matrix. Utilizing the Equation (D-1), Jacobian

can be written as,

[0x 0z] [9C; aC;

2 Az 8 |37 %k Z7%k

] = 9§ 0¢ :Z 9¢ 723

dx 0z £ aCl aCl

—_— —_— =1|— —_—

an n oy ko

and for a 8-noded element, this yields,

[0C, 9C, 9C; 9C, 9Cs 9C, AC;, ACq)
_|e¢ 9t e¢ 9t o¢ ot 09¢ o¢|
lac, ac, ac; ac, 9Cs 9C, 9C, Cg|
don oOon odn on On On On anJ

Finally, the global derivatives can be expressed as

(')Cl- aCl
x| _ -1 ) 06

dz

and the area of the defined element can be re-written as

dxdz = det(J)dédn
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substituting Equation (D-12) into Equation (D-4) yields,

K],

a +1 +1 D-13
- f f f [Bl"[D1[B;]_det()dédndy

0 J-1 Y-1

The following formulation is utilized for element formulation of a Finite-Quasi
Prism Element. Details can be found in references [109,110].

The displacement functions is written as

nod cho

WEN D = ) uyGEMTE)

i=1 j=0

nod cho

v(§n,¢) = z Z v C(EMT() D-14

i=1 j=0

nod cho

WD = ) wyGE T

i=1 j=0

where, nod is the number of the nodes, and cho is the order of the utilized Chebyshev

function. The shape functions are used to interpolate the coordinates from the nodal
coordinates as

nod cho

XEND =D ) xyGEMTE) D-15

i=1 j=0
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nod cho

yénd = Z Z ;€ (€, mT; ()

i=1 j=0
nod cho
26D =) ) 2 GEMTE)
i=1 j=0
AW
,
Ao L

Figure D-3 Mapping from pyhsical system to element in natural coordinate system

8-noded iso-parametric element is selected for the xy plane and therefore same shape

functions are assumed, as already given in Equation (D-2). For the longitudinal axis,

however, modified Chebyshev polynomials are utilized.

209



t(1,%)
Ex}
2.9
G0
?(J;_.x}

B(3.x)

ko

Figure D-4 Chebyshev functions

=y

Figure D-5 Modified Chebyshev functions
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Along each node at the xy plane, towards the end of the longitudinal axis z, curve fit
is performed for all three dimensions X, y, z with Chebyshev polynomials. By
performing this, the prism is cut for sections in order to seek the variation along the

prism axis. So, the variation in coordinates X, y, z is formulated as follows

cho

XEND) = ) X (@)

j=0

cho

y&nd = Zykam(O
i=0

; D-16

cho

261, = ) ZinTn(@)
j=0
The total shape functions definition for a 3D node becomes,
[Nim]
Ci (&, mMTm($) 0 0 D-17
0 0 Ci (&, mMTm(9)

Strain matrix can be expressed as
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| 3(Ci (%, Y) T, (2)

0 0
OX
. OC; (%, Y)Ta(2)) .
oy
. . O (% Y)Ta (@)
0z
0 G, (xy)T,(2)) 0(Ci(xY)T,(2))
0z oy
A(C, (%, y)T,(2)) 0 A(C, (%, y)T,(2))
oz OX
AC (% y)T.(2)) O(Ci(xY)T,(2) 0
OX OX

[Ki / mn

The stiffness matrix can be calculated as
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E. Contact Stiffness Methods

Hertz's Equation:

Hertz's deflection formula specified for two cylinders in contact is given as follows
[133]

Cc=2(1_02)(EHH(ZDlen(ZDZD (E-1)
fExr |3 b b
b:1.6\/2P(1—02)D1 D, (E-2)
fE(D,+ D,)

where,

e b isthe half contact width,
o f facewidth

e E modulus of elasticity

e » poisson’s ratio

e P contact force

e D, diameter of the first gear

e D, diameter of the second gear

Conry's Equation:

Conry's equation represents a linear expression for the Hertzian contact deflection

[111]. The deflection is given as
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(1-0?) (E-3)

0, =1.96
fE
and the compliance is calculated as,
Y E-4
C, = 7g9gd=0)P (E-4)
fE

where

o f facewidth

e E modulus of elasticity
e » poisson’s ratio

e P contact force

Cornell's Equation:

Cornell's equation does not take into account the contact width, location of the

contact point, and the magnitude of the applied load [76]. The deflection is given as

L-v*)P (E-5)

S, =455
fE

and then the compliance can be calculated as
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(-0 (E-6)

C, =455
fE

where

e f facewidth

e E modulus of elasticity
e, poisson’s ratio

e P contact force

Palmgren's Equation:

Palmgren's semi-empirical equation was developed for contacting cylinders in roller

bearings [134]. It is further modified to the following form [135], and the compliance

is obtained as

1.37 (E-7)
c ™ E08 £ 0801

where

e f facewidth

e E modulus of elasticity

e P contact force

This equation does not need any iteration loop for the contact force. It is independent

of the location of the contact force along the tooth surface.
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Weber's Equation:

Weber proposed a closed form approach for the calculation of the contact deflection
of the two gear teeth [136]. The equation for the deflection when the both gears are

of the same material is written as

2 (E-8)
s _40-v )P[In(z hlth_ v J
‘ fEx b 2(1—1))

The compliance can be calculated as

2 E-9
. _4(1—0)(”{2 hlhzl_ v J (E-9)
¢ fEx b 2(1-v)

A

nd the half contact width b can be expressed as

o \/8P(1—02)R1R2 (E-10)
~\ fEz(R +R,)

and the other necessary calculations are listed as follows
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where

r, =R sin(g, ) = Ry, tan(4, )
r, =R,sin(¢4, ) = Ry, tan(g,)

h,=1/2h_/cos(¢,)

h, =1/2h_ /cos(¢ ) (E-11)
¢.=0

¢, =94~

b, =9, =9

f facewidth

E modulus of elasticity
v poisson's ratio
P contact force

h,, thickness of the gear 1 at the contact point

hL2 thickness of the gear 2 at the cointact point

h, distance from contact point to the center line of the gear 1
h, distance from contact point to the center line of the gear 1
R, radius of curvature at the contact point, gear 1

R, radius of curvature at the contact point, gear 2
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Hertz Contact Width

Figure E-1 Two gears in contact [75]
This formula is developed particularly for gear teeth that are in contact, therefore it

is more accurate than the previous formulas. But, the calculation of this deflection

needs the load at the specified contact point to be calculated first, and therefore it
increases computational effort.

218



Brewe&Hamrock's Equation:

The classical Hertz solution for two elastic bodies in contact requires complex
integral calculations. This equation, however, presents a simplified formula for
calculating the Hertzian contact deflection in two elliptically shaped elastic solids
that are in point contact. The ellipticity and the complete elliptic integrals of the first
and second kind are expressed as a function of radius of curvature in the principal x-

plane and y-plane [137-142]:

oFr (1-07Y ] (£12)
O = 21,2
27°k°eR{ E
and
£=1.0003+ 0.5968 (E-13)
R, /R,
R, (E-14)
[ =1.5277 +O.6023InR—
i 1.1 (E-15)
R R R
1 1.1 (E-16)
X r-1>< r-2y
where

e 1, principal radii of gear 1
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* I, principal radii of gear 2

e E modulus of elasticity
e, poisson’s ratio
o R effective radius of curvature in the principal x-plane

e R, effective radius of curvature in the principal y-plane

e Rcurvature sum

e . complete elliptic integral of the first kind expression by method of
least squares

e [ complete elliptic integral of the first kind expression by method of
least squares

e k ellipticity (ratio of semimajor to semiminor axis) expression by

method of least squares

Plane 2

Flanes 2

Figure E-2 two elliptically shaped elastic solids in contact, [137-142]
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F. Mathematica Symbolic Code for The Directional Rotational Radius

(*SHAPER SURFACE and SURFACE NORMALY)

rs[us,0s] :={rbs* (Sin[0os+0s]-0sCos [0os+0s]), -
rbs* (Cos[00s+0s]+0s*Sin[0os+0s]) ,us};
ns[us,0s] :=Cross[D[rs[us,0s],0s],D[rs[us,0s],us]11*1/ (rbs *0s);

(*PINION SURFACE and SURFACE NORMALY)
rl1f{u,01]:={rbl*(Sin[00o+061]1-61Cos[00+01]), -

rbl* (Cos[00+01]1+01*Sin[00+01]),u1};
nifu,01]:=Cross[D[rl[u1,01]1,01]1,D[rl[u,01]1,u1ll*1/(rbl1*01);

(*TRANSFORMATION MATRIX for the PINION NORMAL¥)
Ler[¢1]:={{Cos[¢1l], -Sin[¢1l],0},{Sin[¢l],Cos[¢1]1,0},{0,0,1}};

(*ROTATED SURFACE NORMAL for THE PINION¥*)
ne [01,01] :=Simplify[MatrixForm[Le [¢1] .ni[us,01]1]1];

(*TRANSFORMATION MATRIX for the rotation around z axis¥*)
Tz[¢p ]:={{Cos[¢], -Sin[¢],0}, {Sin[¢],Cos[¢],0},{0,0,1}};

(*TRANSFORMATION MATRIX for the rotation around x axis¥*)
Tx[¢ ]:={{1,0,0},{0,Cos[¢], -Sin[¢]}, {0,Sin[¢],Cos[d]}};

(*TRANSFORMATION MATRIX for the rotation of FACE-GEARY)
Mez [p2p ] :=MatrixForm[{{Cos[$2p], -
Sin[¢2p], 0}, {Sin[¢2p],Cos[$2p],0},{0,0,1}}1;

(*TRANSFORMATION MATRIX for SHAPER to FACE_GEAR*)
Mos [92] :=MatrixForm[Tz [-02] .Tx[ym] .Tz[¢s]];

(*ROTATED PINION SURFACE *)
rfl(ul,01,¢1l] :=Le(¢0l].r1(u,01];

(*GENERATED FACE-GEAR SURFACEY*)
r2[0s,0s] :=Mos [02] .rs[Us,0s];

(*ROTATED FACE-GEAR SURFACE¥*)
rf2[¢2p,0s,0s] :=Me2 [¢2p ].r2[0s,¢s];

(*TRANSFORMATION MATRIX of SURFACE NORMAL for SHAPER to
FACE-GEARY)

Los [¢2] :=Mos [¢2] 7

(*TRANSFORMATION MATRIX for the rotation of SURFACE NORMAL
of FACE-GEARY)
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Le2 [¢2p]={{Cos [¢2p],

Sin[¢2p], 0}, {Sinl¢2p],Cos[¢2p],0},{0,0,1}};

(**)

Simplify[MatrixForm[Le [02p] .n2[0s,¢s111;

(**)

n,[0s,¢s] :=L2s [¢2] .ns[us, 0s];

(**)

ne [02p,0s,¢s] :=Simplify[MatrixForm|[Le [¢p2p] .n2[0s,0s]1]11;
(**)

Me2 [¢2p] .Mzs [¢2] .rs[us,0s];

(*Subscript [0, os]=n/(2*Subscript[N, s])-(tan[Subscriptl[a,
s]]-Subscript[a, s])
Subscript[0, o]l=mn/(2*Subscript[N, 1])-(tan[Subscript[a, 1]1]-

Subscriptla, 11)%*)

(*UNIT NORMAL VECTOR ALONG ROTATING AXIS*)
nj={0,0,1};

(*DIRECTIONAL ROTATIONAL RADIUS FOR THE SPUR GEAR (OR
SHAPER) *)

__*)
Ap=Simplify[MatrixForm[ns[us,0s]. (njlrs[us,0s])]1];

Ap
-rbs

(*DIRECTIONAL ROTATIONAL RADIUS FOR THE FACE GEARY*)

__*)
Ag=Simplify[MatrixForm[n,[0s,¢s]. (nj0dr2[0s,ds])]]
(_{
{Cos[02] Cos[¢s]+Cos[ym] Sin[$2] Sin[ds], Cos[ym] Cos[ds]
Sin[$2]1-Cos[¢2] Sin[ds], -Sin[ym] Sin[d2]},
{-Cos[¢s] Sin[d2]+Cos[ym] Cos[¢$2] Sin[¢s], Cos[ym] Cos[$2]
Cos[¢s]+Sin[¢2] Sin[¢s], -Cos[¢p2] Sin[ym]},
{Sin[ym] Sin[¢s], Cos[¢s] Sin[ym], Cos[ym]}
}_) .{-Cos[Bos+0s],-Sin[0os+0s]1,0}.{0,0, 1} 0((_{
{Cos[¢2] Cos[dps]+Cos[ym] Sin[$2] Sin[¢ds], Cos[ym]
Cos[¢s] Sin[¢2]-Cos[02] Sin[ds], -Sin[ym] Sin[$2]},
{-Cos[$s] Sin[$2]+Cos[ym] Cos[$2] Sin[¢ps], Cos[ym]
Cos[02] Cos[¢s]+Sin[¢2] Sin[¢s], —-Cos[¢2] Sin[ym]},
{Sin[ym] Sin[¢s], Cos[¢s] Sin[ym], Cos[ym]}
}_) .{rbs (Sin[Bos+0s]-Cos[0os+0s] Os),-rbs
(Cos[Bos+0s]+Sin[0os+0s] Os),us})
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rg
=Simplify [ (_{
{Cos[p2] Cos[dhs]+Cos[ym
Cos[¢s] Sin[¢2]-Cos[02] Sin]
{-Cos[¢s] Sin[$2]+Cos]|
Cos[02] Cos[¢s]+Sin[02] Sin]
{Sin[ym] Sin[¢s], Cosl[d

] Sin[¢2] Sin[ds], Cos[ym]
¢s1, -Sin[ym] Sin([¢2]1},
ym] Cos[¢2] Sin[¢s], Cos[ym]
¢s], -Cos[¢2] Sin[ym]},
s] Sin[ym], Cos[ym]}
}_) .{-Cos[0os+0s],-Sin[0os+0s],0}.{0,0, 1 0( (_{
{Cos[02] Cos[¢s]+Cos[ym] Sin[$2] Sin[¢s]
Cos[¢s] Sin[¢2]-Cos[02] Sin[ds], -Sin[ym] Sin[$2]
{-Cos[¢s] Sin[d2]+Cos[ym] Cos[¢$2] Sin[ds
Cos[02] Cos[¢s]+Sin[02] Sin[ds], -Cos[¢2] Sin[ym]
{Sin[ym] Sin[¢s], Cos[¢s] Sin[ym], Cos[ym]}
}_) .{rbs (Sin[0os+0s]-Cos[0os+0s] Os),-rbs
(Cos[Bos+0s]+Sin[0os+0s] Os),us}) 1;
rg

Cos [ym]

14

}
1, Cos[ym]
}

14

-rbs Cos[ym]-Cos[Bos+0s+ds] Sin[ym] us
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INTRODUCTION

A face-gear dnve consists of a spwr or helical pinion
meshing with a face-gear. They are utlized to transmit torque
between intersecting shafts and reduce the weight of
transmission by meorporating load sharng and torgque-spht
capabilities [1-2].

Fig. 1 A face-gear with a spur pinion

They were generally used for low power appheations.
However, the demands for weight and noise reduction of the
rotorcraft transmissions make the researchers to investigate the
face-gear drnves. The interest in the application of face-gear
drives in the high power helicopter transmissions has begun
with ART (Advanced Botorcraft Transmission) program [3].
The results were promusing and therefore motivated the
researchers to further mvestigate the face-gear transmission
systems for the helicopters. Twe lLghtweight helicopter
transmission examples (shown m Fig 2) utilizing face-gear
drves are presented m [4-5].

The advantages of the face-gear drive systems are listed as
reduced sensitivity of bearmg contact to gear musalipnment
rednced level of noise due to very low level of transmission
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ermor, more favorable power transfer from one tooth to another
and favorable assembly inaccuracy telerances compared to the

spiral bevel gears [1].
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Fig. 2 (a) RDS-21 Demonstrator Gearbox [4] (b) Apache
Block ITI [5]

Several researchers have studied face-gears; Litvin et al
generated surface of a face-gear by si ing the machine toal
motions [§], alse studied tooth contact and bending stress
analyses using finite element method (FEM) [7,8]; Heath et al.
performed experiments on tooth contact performances and
faihwe moedes of face-gears [9], conducted split torque tests on a
250 hp face gear transoussion with 2 mputs 2 idlers system [2],
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and also performed tests to seek face-pear surface fatigme
charactenistics [10].

Iuﬂuhhmma,ﬂm'emllm]bdmnnbuufsuxhesm
dynamic of face gear dnve systems. Chen et al
studied the effect of profile modification and mesh stiffness
variation on the dynamic behavior of face-gears [11, 12]. Tang
et al. stodied the effect of vanation of directional rotational
radms on face-gear dynammes [13]. However, m all these studies
a par of face-gear with a smple pimion was considered.
However, dynamic analysis of a face-gear dnive system
resembles to a planetary gear system, which is well studied [14-
7.

MATHEMATICAL MODEL

Inﬂnsgmdytheumlmrdynmmcmudelofamlh-mh
is developed. A lumped mass system consisting of five pimions
and two face-gears is comstructed The system has seven
rotational degrees of freedom All pinion and gear blanks are
assumed to be rigid disks. The constructed split-torque model
mns:ﬁsoftwnmpnts twnmﬂpmsmﬂﬂreemh'gws.'lhe

Fig. 3 Model of the split-torque face-gear drive system” Point
cloud and CAD mode]

The developed torsiomal dynammc model of the system is
showm in Fig_ 4.
B ; = m [

surface is i via NURBS (Mon-Uniform Rational B-
Splines) finctions [18, 19]. This enables a contiomous thickness
vaniation within the strip element along the face width and also

along the profile directions. From this extracted geometry, the
stiffness of the face-gear is calculated via Finite Strip Method
(FSM), which is a numerical method that compares favorably
with FEM m terms of nm-time, storage of stiffoess and load
matrices and the result outputs [20, 21].

SOLUTION AND RESULTS

The nonlinear equations of motion are solved with
Harmonic Balance Method (HBM) m order to obtan the
periodic steady state respomse of the system. The accuracy of
the results are compared with the direct mumerical mtegration
solutions (comparison of the results with HBM solution and
time simmulation are given m Fig. 5).

Fig. 5 Rms value of dynamic transnuission error (between lower
face gear and one of 1dler pinions), single harmomic HBM (-),
two harmonics HBM (), and time simulation {c)

Fig. 6 The effect of mesh phasing on dynamic transmission
emor (between upper face gear and output pinion)

To the best of the authors® knowledge, this is the first study
on the development of a nonlinear dynamic model for a nmlt-
mesh face-gear split-torque system The corrent work is focnsed
on the study of the effects of several parameters (mesh phasing,
mesh stiffness, backlash and power walues or stafic torgque
values etc.) on the system response. As an example, the effect of
mesh phasing on the total dynamic transmission error between
upper face-gear and the output pmion 15 demonstrated in Fig. 6.
The results may provide guidance in the preliminary design of
such pgear systems, im micro geometry modifications and
therefore in the mamufacturing machine seftings.
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