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ABSTRACT

DYNAMIC MODELLING AND ANALYSIS OF SPLIT-TORQUE FACE-
GEAR SYSTEMS

Aydojan, Mustafa ¥zge¢r
Doctor of PhilosophyMechanical Engineering

Supervisor : Prof. DiH . Nevzat ¥zgg¢gven
Co-SupervisorAssoc Prof.Dr.Zi h n i B. Sarébay
August 2022229 pages

In this study it is aimed to develop a dynamic model for a-fgae drive system that
accounts for all important physical parameters related to the operation to achieve an
optimized splittorque facegear based transmission system. With this new model,
nonlinear dynamic response of a fagear drive system is sought and dynamic
stability and limit states of this structuaeeinvestigated. The main motivation for

the current study is the recent development and utilization ogaedrive systems

in the helicopter industry. Faegear drive systems are subject of many research
studies for the past 30 years. However, mesh stiffness of thegdaceis not
modelled accuratelyln this study, a nonlinear dynamic model of a maigsh
involute spur pinion drign facegear splittorque drive system is developed. A
lumped mass system consisting of five pinions and two face gears is constructed.
The system has seven rotational degrees of freedom. All pinion and gear blanks are
assumed to be rigid disks. The counsted splittorque model includes two input,

two output and three idler gears. The mesh parametersyegh stiffness and mesh
damping, have time varying characteristics. The model includes cledygace

nonlinearity for backlash. The proposed moddtwatesthe time varying mesh



stiffness of the gear pair from the generated point clouds of theyéereand spur

gear pair by using the finite strip method (FSM). The nonlinear equations of motion
are solved with Harmonic Balance Method (HBM) for peicedeady state response

of the system. The accuracy of the results is compared with direct numerical
integration solutions. The stability is checked with Floquet Theory and bifurcation
diagrams from Poincare Sectiofi$fie effects of mesh phasing betweantepinion

and facegear engagement, the effect of static torque and the effects of backlash
variations to the response of the system are sought. The effect of subharmonic motion
on the dynamic response is demonstrafddo, torquesplit characteristicsfahe

system has been sought.

Keywords: Nonlinear Dynamics of FaeBear Drive Systems, Nonlinear Gear
Dynamics, SpliTorque, Helicopter Rotor Drive System, Finite Strip Method
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TORK-AYRIMLIALIN -DKKkLK SKSTEMKNKN DKEMMESKMODE |
VE ANALKZK
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Bu - al & kdnawlai, il €themi yapélaré i-in, oper
tem et kil eri gayreémigae sastbeml drodek kul | a
di nami k analiz model:i gel i ktiriddmdii ame
sistem ni n, mar uz kal dej é yekl emel er al ter

arakteéereéel mék ve bu yapeéelareén dinamik kar :
y°neli k yeni ve et kil.i bir met ot gel i Kt
kaynaj-e&i knail gim eden aktarma sistemlerind

gel i kmeler ve bu sistemlerin helikopter
al-@ink | i aktarma sistemleri bir- oki kalriakt &
kavrama direngnmneondeljlienteame no lka ri ak Bu -al éi

kavr amal é -civioll ivleenrt tdgrzaafyé nedrelné kshe réepli esnt etna r

dojrusal ol mayan bir dinami k anal4z mode
di kIl i wea kKilki ialdggend ediir stispgleum kur ul mukt ur
serbestli k derecesine sahiptir. Tem di k|
Kurulantorkayr éml € model , i ki girik, iki -ekéx
Té¢em kavrama paratheteabeniijl(ik,avkamaama s
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zamanla dejiken ©°zellije sahiiptiirdojDiuss abock

ol mayan bir el eman ol arak dahil edi | mi ktir.
dej i ki ml i kavramdi dli ir einkgleinl,gzé o met r iasiémden t
nokta bulutlarénée kull anar ak, Sonlu kerit
ol mayan hareket denklemleri, Harmoni k Denge
-0zl meXanu-.l ar €n dojrul uju, neg meri k i nt

kar kél akt ér é FogekTeaisi ve Péirecareakesitiéihderkelde edilen

-atall anma diyagraml #ddleé bdexkbgigdden agpeni riln
birbirine ge-mesi séraséndaki kawtltaka fazeée,
deji kKimlerinin, sistem tepkisine etkisi ar a
cevabéna et ki si gesterifamiretm r karAxrnté&ca st i

incel enmi Ktir.

Anahtar KelimelerAl ®m k1 i Si st eml erinin Dorjisalusal Ol ma
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CHAPTER 1

INTRODUCTION

A facegear drive systermomprises amvolute spur oahelical pinionmeshing with

a facegear This gear drive system is generally utilized ttansformthe torque
between intersected and crossbafts An exampleof afacegear drive meshing
with a spur pinion is shown inFigure 1-1. A set of face gear drive systems with

different shaft angles is shownHgurel-2.

Figure 1-1 A face-gear and a spur pinion mesh

The facegear drive systenenables weight reductionand volume saving byoad
sharing or torquesplitting capabilities [68]. Therefore such drive systems are
generally found in the helicopter or marine transmissions. An example of a
helicopter's main gearbox incorporating a torque split among twegksaxes at the
engine input is given ikigurel-3.



Figure 1-2 FaceGear andgur pinion assemblies at different shaft angles

Before 1990's, dcegear drivesystems were known to be used for {power
applications. By then, helicopter companies started several researches for a light and
reliable main rotor drive system having advanced capabilities of temjiteHence,

facegear drives become popular dudheir several advantagd4r 3].

Rotor shaft output

Sun gear

30

NOTAR™
output

)

Combining gear

Driving spur pinion

Face-gears
Engine input

Figure 1-3 Application of facegear drive in helicopter transmission [25]



1.1 Introduction

Split torque facegear drive systems are typically driven by spur or helical pinions
meshing with one or two faagears, which are utilized to deliver power between
intersecting shafts and reduce transmission weight by introducing torque sharing and

torquesplitting capabilitie§4,5].

The facegear drives have been investigated for helicopter transmission systems due
to potential weight savings [2,3]. This drive train consists of an involute spur pinion
meshing with a face gear, assm in Figure1-1. One of the first higipower face

gear designs is named Cylkro Angular Face Gear Transmigsijn

Different methods to generate the spur shaper and theé&areaooth are presented

in [8] and[9]. The design aspects and validation of face gears are presefitédl in
and[11]. The benefits of the face gears are (i) reduced sensitivity to the bearing
contact to gear misalignment, (ii) reduced level of noise due to a very low level of
transmission error, (iii) more favorable power transfer from one tooth to another and
(iv) tolerance to the assembly inaccuracies compared to the spiral bevel gears
[12,13]

1.2 Literature Review

1.2.1 FaceGear Geometry

The theory of face gears was not sufficiently developed forigter applications

until the first mathematical tooth modeling and the computational tooth contact
analysis (TCA) work performed byitin et al.[14,15] The tooth geometries of a
spur pinion and a conjugate fagear are defined using the gearing theory and
differential geometry principlesthe surface of the face gear is derived from the
simulation of meshing with the spur shaper. The critical dimensions of the produced

face gear are identified from the limiting conditions of the geometry. These are tooth



undercutting at the inner diametand tooth pointing at the outer diameter. Hence,
an exact tooth surface equation and tooth enveloping parameters are generated for

mathematical modeling, contact analysis, and machine settings.

Face gears are studied by several researchers. LitvifiBtlajenerated the surface

of a facegear by simulating the machine tool motions. He also studied tooth contact
and bending stress ayses using the finite element method (FE8]16]. Heath et

al. performed experiments on tooth contact performances and failure modes of face
gearq17], conducted split torque tests on a 250 hp face gear transmission with two
inputs, two idlers systerf#,5], and also perfoned tests to seek fagear surface

fatigue characteristid4.8].

1.2.2 Mesh Stiffness and Dynamic Modelling

There are a limited number of studies on dynamic analysis of theyéacedrive
systems. These studies may be collected under two titles, namelystatiasor
dynamic analysis of faegear meshing with spypinion pair,and quasstatic or
dynamic analysis of spiibrque facegear drive systems.

Guingand et al[19] presented a quastatic analysis procedure for the load
distribution among the faegear pairs with experimental validation. The tooth root
stresses and the resulting load sharing among the pairs are obtained with reasonable
accuracy. The related deformations are calculated using FEA tools and the contact
mechanics. Wang et 4R0] proposed a method for loaded tooth contact analysis of

a facegear pair, where bending and contact deformatesesdetermined by FEA

and Hertz theory. Load distribution under an applied torque among the tooth pairs is

sought.

Peng et al[21] investigated the paranm& instability characteristics of a fagear
pair. An annular Kirchhoff plate with a moving spring is utilized to model the drive
system. Floquet theory is used to calculate the stability of the system. The mesh

stiffness is obtained through the contatio calculated by Tregold's approximation.



The spur pinion is assumed to be rigid, and the mesh stiffness is taken as-the face
gear tooth stiffness. Later, this study (dynamic stability) was improved for a split

torque multipinion facegear drive systa [22].

Hu et al.[23] studied the effect of the mesh stiffness variation on the dynamic
behavior of a 6 DOF (degree of freedom) fgear pair. The bifurcation diagrams

of the pair's response auxding to the pinion speed are presented. Chen g244l.
investigated the effect of profile modification on the dynamic behavior of a 6 DOF
facegear pair where support stiffness is also considered. They demonstrated the
effect ofthe stéic load on the input pinion through bifurcation diagrams, which are
plotted according to the input speed of the pinion[2iti 24], the instantaneous
contact rab is calculated via Tregold's approximation, and with these calculated

values, the tim&arying mesh stiffness is obtained by assuming it to be rectangular.

Tang et al[25] studied the effect of directional rotational radius variation on a face
gear pair's dymaic response. A single degree of freedom #iragying rotational

model is proposed using finite element method tools to obtain mesh stiffness. Hu et
al. [26] proposed a fourteen degrekfreedom (DOF) coupled translational and
rotational dynamic model offacegear pair. The effects of backlash and the applied
torgue on the system's dynamic response are sought. The mesh stiffness of the pair

is calculated by the finite element method as in the previous references.

Aydogan et al[27] proposed a nonlinear dynamic model for a rauéish facegear
split-torque system focusing on the effects of several mesh parameters (i.e., phasing,

stiffness, backlash, and power values ) on the system response.

Zhao & al.[28] studied quasstatic analysis of a torgtsplit facegear drive system

by a hybrid 3D finite element and lumped parameter model. The mdsestibf a

pair is calculated by commercial software (ANSYS). The load sharing among the
pinions is investigated by changing the support stiffness, the backlash, and the tooth

number.



Feng et al[29] proposed a geometric study of a face gear system with an involute
helical pinion. The study does not give any mesh stiffness calculatonsver, it
refers to Ambarisha and Park860], which utilizes a 2D finite element model for a
planetary set developed from a unique finite elercentact analysis solver

specialzed for gear dynamics, the Calyx package program.

Liu and Zhang31] performed a quasstatic analysis to investigate the effect of shaft
angle for a facgear pair. Loaded Tooth Contact Analysis (LTCA) is performed by
comnercial software (ABAQUS). Dong et 4B2] presented a quastatic analysis

of a splittorque facegear drive system. The effect of the pinions' orientations, the
number of idlers, and the load sharing among them are discussed. ABAQUS is
utilized for TCAand mesh stiffness calculations. Later, Dong €88l presented a

semtanalytical method for the calculation of mesh stiffness of the face gear.

Li and Zhao[34] studied the effects of rotational speed and a pinion's support
stiffness on a facgear pair's dynamic response. They presented the bifurcation
characteristics of the pair's response concerning thiegehin the pinion's support

stiffness and the rotational speed of the pinion.

1.2.3 Split-Torque Systems

Torque splitting is an important phenomenon in the helicopter industry due to its
weight and volume saving advantage for a given reduction ratio. Wheretsrqu
transmitted through several paths, the contact force between teeth becomes smaller,
allowing smaller and lighter gears. In addition to weight saving, torque splitting
allows redundancy; when any of the designed branches fails during operation, the

required torque is transmitted through the intact p§@bé

The first reduction stage splits the main torque into more than one parallel branch.
Ead branch may also be split into several branches at different reduction stages.

Generally, before the last stage, the split torques are collected through a collector



gear, which drives the main rotarast. Figure 1-4 showsthe main transmission
system for a typical Sikorsky GB3 Helicopte36,37], [37].
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Figure 1-4 Sikorksy CH53 type helicopter sphtorque main transmissiora)
Helicopter full view, b) Motor and main transmission configuratiot) main
transmission showing three motor inpditthe main transmission showing only one

motor input



As seen fromFigure 1-4 (d), torque coming from one engine is splitted into four
branches at the second stage of reduction and then each dirdred®es are further
split into two branches. Finallyhey are colleid on double herringbone that rotates

the main rotor mast.

As another example, the main transmission model of, A8l helicopter is given in
Figure1-5. Similar to the previous example, torque provided by one engine is split
into four and then into two branches and collected at two bull gears to turn the main
rotor mast of the helicopter. Figurel-5-c, the power or torque distribution is drawn

as a circuit diagram.
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First Engine Input

Tailrotor

}r

Main Rotor 11'

d) Second Engine Input

Figure 1-5MIZ 26 type helicopter sphtorque main transmissioa) Helicopter full
view, b) main transmission showing two motor inpuaj, Closer view for main
transmission showing two motor inpwt) Torque distribution sketch as a circuit

diagram

The disadvantage of this design is that the torque must be distributed equally between
the parallel branches. In other words, if it is notraanded design feature, the torque

at every parallel splitorque stage should be split evenly. Uneven load sharing at any
parallel branch leads to excessive load at that brambich causes the related
components at that load path (gear, shaft, splieatitg etg to wear earlier than

the components located at the lesser load carrying branch.

In order to providean even torquesplit, several methods have been propogs],

such as,

a) Geared differentials: This method uses a differential mechanism similar to

utilization in the automotive industry. A typical examplea planetary gear
system ishown inFigure1-6 [4], in which carrier rotates one branch and the
ring gear drives the other branch, both of whicive a collector gear. The

deviations from the intended geometry may lead to uneven load distribution.



This deviation is compensated dgmall relative rotation of the sun gear and

the ring geaf38].

Figure 1-6 Epicyclictorque splitter

b) Pivoted systemsThis method utilizes a floating pinion that finds a position

to provide equal load shalg seeling a position where tooth loads are equal.
Irrespective of gear teeth errors or gearbox shaft misalignments, the input
pinion will float and split torque between the two gears by aasilfsting

(or thrustbalancing) mechanism that moves the gears axialigsponse to
excessive load88]. Figurel-7 gives an example of a system in which axial
thrust difference passes to a balance beam whose pivot motion induces

sufficient angular motion to equalize the tooth |og3$.

10



Figure 1-7 Split-torque helicopter transmission with twowerbranches utilizea
selfadjusting system

c) OQuill shafts: This method utilizes an assembly, allowing torsional flexibility
between the connected gears. A torsion divideh witseparate gear and
pinion, each supported on its bearings, are connected through the quill shaft,
which allows torsional flexibility.

Achieving an even torque split between the two paths requires the gear train
to have an adequate amount of torsionanpliance. Cumulative tooth
spacing errors, housing deformations, and assembly backlash values are the
main obstacles to achieving an equal percent torque split.

Figure 1-8 shows a conventional quill shaft. Due to lower torsional
compliance of the quill shaft, when one load path transmits more torque than
the other one, the angular deviation between the input shaft and the output
shaft increases, and this increase leadsltaé that transmits less torque to
increase its load. Apart from conventional quill shafts, quill shafts based on

elastomeric elements and spring elements alsg3it

11
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Figure 1-8 Conventional quill shaff35]

Figure 1-9, as another quill shaft exae, demonstrates the CHBK
helicopter one motor input stage mentioned above. The power from the
engine at theistage bevel pinion is split into two branches by tHestage

spur pinions, one of them is large, and the other is small. P4stage spur
pinion further meshes with two"@stage spur gears. Since the torsional
stiffness of the % stage gear shaft is very high, the torque split between the
two 2" stage spur pinions (large and small ones on the same shaft) becomes
even. Howevertorque split between the"®stage spur gears that are in
contact with the corresponding &tage spur pinions may not be even due to
manufacturing errors, assembly tolerances, housing deformations, etc. By
utilizing a torsionally soft quill shaft betweeeach % stage double
herringbone pinions and'®stage spur geaeven torque split is achieved
Quill shafts have two spline meshes at both ends. The torsional windup angle
of the quill shaft under a specified load level provides the required shaft
flexibility for equal torque splif3,40,41]

12



1st stage bevel gea 1st stage bevel pinion,

~ N\ engineinput
2nd stage spur pinion, large
2nd stage spur pinion,

2nd stage spur gears
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3rd stage

¥ 2nd stage spur gears

double

3rd stage double

herringbone pinions

Figure 1-9 Sikorky CH-53K One Motor Input Stage

d) Indexing or clocking: There is no special component in this method. It

requires the component to be manufactured according to strict tolerances and
is correctly assembled. The clocking angle is utilized as a design parameter
to provide an equal torque split among the pargdeths. The gears are
clocked to eliminate any cumulative tooth spacing errors and assembly

backlash values in order to provide that all gears are in cqafiet4].

13



Figure 1-10 Torquesplit design with a dual power concept and clocking angle

measuremerjg2]

Facegear related studies in the literature utilize the floating pinion and quill shaft
concepts. Referencptb] and[46] give testresults for dual input, single output split
torque facegear drive system with two idler§he input pinion shafts utilize a
cantilevered bearing mount arrangemdimis componerallows the pinions to float
between the two faegears and achieva center oftorque equilibrium. The test
results show thatising floating pinions inthe face-gearsystemleads toa closely

even torque split.

Boeing Company studiea splittorque facegear drive systenin order to impose
the effect of the quill shaftheyassumd the input pinions to float freelj47]. To
simulate this, a 2D ABAQUS model is developed that comgvisey soft springs in

"1" and"2" directions (0.5 Ib/in) for the input pinions where the idlers are fixed in

those directios, Figure1-11.
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