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ABSTRACT 

 

DYNAMIC MODELLING AND ANALYSIS OF SPLIT-TORQUE FACE-

GEAR SYSTEMS 

 

 

 

Aydoğan, Mustafa Özgür 

Doctor of Philosophy, Mechanical Engineering 

Supervisor : Prof. Dr. H. Nevzat Özgüven 

Co-Supervisor: Assoc. Prof. Dr. Zihni B. Sarıbay 

 

 

 

August 2022, 229 pages 

 

In this study it is aimed to develop a dynamic model for a face-gear drive system that 

accounts for all important physical parameters related to the operation to achieve an 

optimized split-torque face-gear based transmission system. With this new model, 

nonlinear dynamic response of a face-gear drive system is sought and dynamic 

stability and limit states of this structure are investigated. The main motivation for 

the current study is the recent development and utilization of face-gear drive systems 

in the helicopter industry. Face-gear drive systems are subject of many research 

studies for the past 30 years. However, mesh stiffness of the face-gear is not 

modelled accurately. In this study, a nonlinear dynamic model of a multi-mesh 

involute spur pinion driven face-gear split-torque drive system is developed. A 

lumped mass system consisting of five pinions and two face gears is constructed. 

The system has seven rotational degrees of freedom. All pinion and gear blanks are 

assumed to be rigid disks. The constructed split-torque model includes two input, 

two output and three idler gears. The mesh parameters, i.e., mesh stiffness and mesh 

damping, have time varying characteristics. The model includes clearance-type 

nonlinearity for backlash. The proposed model calculates the time varying mesh 
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stiffness of the gear pair from the generated point clouds of the face-gear and spur-

gear pair by using the finite strip method (FSM). The nonlinear equations of motion 

are solved with Harmonic Balance Method (HBM) for periodic steady state response 

of the system. The accuracy of the results is compared with direct numerical 

integration solutions. The stability is checked with Floquet Theory and bifurcation 

diagrams from Poincare Sections. The effects of mesh phasing between each pinion 

and face-gear engagement, the effect of static torque and the effects of backlash 

variations to the response of the system are sought. The effect of subharmonic motion 

on the dynamic response is demonstrated. Also, torque-split characteristics of the 

system has been sought. 

 

Keywords: Nonlinear Dynamics of Face-Gear Drive Systems, Nonlinear Gear 

Dynamics, Split-Torque, Helicopter Rotor Drive System, Finite Strip Method 
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ÖZ 

 

TORK-AYRIMLI ALIN-DİŞLİ SİSTEMİNİN DİNAMİK MODELLENMESİ 

VE ANALİZİ 

 

 

 

Aydoğan, Mustafa Özgür 

Doktora, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. H. Nevzat Özgüven 

Ortak Tez Yöneticisi: Doç. Dr. Zihni B. Sarıbay 

 

 

Ağustos 2022, 229 sayfa 

 

Bu çalışmada, alın-dişli sistemi yapıları için, operasyonda fiziksel olarak önemli olan  

tüm etkileri göz önüne alan, tork-ayrımlı sistemlerde kullanılacak gelişmiş bir 

dinamik analiz modeli geliştirilmesi amaçlanmıştır. Bu yeni model ile alın-dişli 

sisteminin, maruz kaldığı yüklemeler altındaki doğrusal olmayan tepkileri 

araştırılmış ve bu yapıların dinamik kararlılığını ve sınır durumlarını tahmin etmeye 

yönelik yeni ve etkili bir metot geliştirilmiştir. Bu çalışmadaki ana motivasyon 

kaynağı, alın-dişli ihtiva eden aktarma sistemlerinde son dönemlerde gözlenen 

gelişmeler ve bu sistemlerin helikopter sanayisindeki kullanımıdır. Son otuz yılda, 

alın-dişli aktarma sistemleri birçok araştırmanın konusu olmuştur. Ama, alın-dişli 

kavrama direngenliği tam olarak modellenememiştir. Bu çalışma için, çok yerden 

kavramalı evolvent düz-dişliler tarafından sürülen tork-ayrımlı alın-dişli sistemi için 

doğrusal olmayan bir dinamik analiz modeli geliştirilmiştir. Bunun için, beş düz-

dişli ve iki alın-dişli içeren bir toplu kütleli sistem kurulmuştur. Sistem, yedi dönme 

serbestlik derecesine sahiptir. Tüm dişli çarkların rijit disk olduğu varsayılmıştır. 

Kurulan tork-ayrımlı model, iki giriş, iki çıkış ve üç avare dişlisinden oluşmaktadır. 

Tüm kavrama parametreleri (kavrama direngenliği, kavrama sönümlemesi vs), 
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zamanla değişen özelliğe sahiptir. Diş boşlukları modele, açıklık-tipi doğrusal 

olmayan bir eleman olarak dahil edilmiştir. Önerilen metot, dişli çiftine ait zaman 

değişimli kavrama direngenliğini, alın-dişli ve düz-dişli geometrisinden türetilen 

nokta bulutlarını kullanarak, Sonlu Şerit Metodu ile hesaplamaktadır. Doğrusal 

olmayan hareket denklemleri, Harmonik Denge Metodu ile kararlı hal cevapları için 

çözülmüştür. Sonuçların doğruluğu, nümerik integral çözümleri ile 

karşılaştırılmıştır. Kararlılık, Floquet Teorisi ve Poincare kesitlerinden elde edilen 

çatallanma diyagramları ile gözden geçirilmiştir. Her bir düz-dişli ve alın-dişlinin 

birbirine geçmesi sırasındaki kavrama fazı, etki eden statik tork miktarı ve diş boşluk 

değişimlerinin, sistem tepkisine etkisi araştırılmıştır. Altharmonik hareketin sistem 

cevabına etkisi gösterilmiştir. Ayrıca, sistemin tork-ayrım karakteristiği 

incelenmiştir. 

 

Anahtar Kelimeler: Alın-Dişli Sistemlerinin Doğrusal Olmayan Dinamiği, Doğrusal 

Olmayan Dişli Dinamiği, Tork-Ayrımı, Helikopter Güç Aktarma Sistemleri, Sonlu 

şerit metodu 
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CHAPTER 1  

1 INTRODUCTION  

A face-gear drive system comprises an involute spur or a helical pinion meshing with 

a face-gear. This gear drive system is generally utilized to transform the torque 

between intersected and crossed shafts. An example of a face-gear drive meshing 

with a spur pinion is shown in Figure 1-1. A set of face gear drive systems with 

different shaft angles is shown in Figure 1-2. 

 

 
 

Figure 1-1 A face-gear and a spur pinion mesh 

 

The face-gear drive system enables weight reduction and volume saving by load 

sharing or torque-splitting capabilities [6-8]. Therefore, such drive systems are 

generally found in the helicopter or marine transmissions. An example of a 

helicopter's main gearbox incorporating a torque split among two face-gears at the 

engine input is given in Figure 1-3. 
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Figure 1-2  Face-Gear and spur pinion assemblies at different shaft angles 

 

Before 1990's, face-gear drive systems were known to be used for low-power 

applications. By then, helicopter companies started several researches for a light and 

reliable main rotor drive system having advanced capabilities of torque-split. Hence, 

face-gear drives become popular due to their several advantages  [1–3].  

 

 

 

Figure 1-3 Application of face-gear drive in helicopter transmission [25] 
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1.1 Introduction 

Split torque face-gear drive systems are typically driven by spur or helical pinions 

meshing with one or two face-gears, which are utilized to deliver power between 

intersecting shafts and reduce transmission weight by introducing torque sharing and 

torque splitting capabilities [4,5]. 

The face-gear drives have been investigated for helicopter transmission systems due 

to potential weight savings [2,3]. This drive train consists of an involute spur pinion 

meshing with a face gear, as shown in Figure 1-1. One of the first high-power face 

gear designs is named Cylkro Angular Face Gear Transmission [6,7].  

Different methods to generate the spur shaper and the face-gear tooth are presented 

in [8] and [9]. The design aspects and validation of face gears are presented in [10] 

and [11]. The benefits of the face gears are (i) reduced sensitivity to the bearing 

contact to gear misalignment, (ii) reduced level of noise due to a very low level of 

transmission error, (iii) more favorable power transfer from one tooth to another and 

(iv) tolerance to the assembly inaccuracies compared to the spiral bevel gears 

[12,13]. 

1.2 Literature Review 

1.2.1 Face-Gear Geometry 

The theory of face gears was not sufficiently developed for high-power applications 

until the first mathematical tooth modeling and the computational tooth contact 

analysis (TCA) work performed by Litvin et al. [14,15]. The tooth geometries of a 

spur pinion and a conjugate face-gear are defined using the gearing theory and 

differential geometry principles. The surface of the face gear is derived from the 

simulation of meshing with the spur shaper. The critical dimensions of the produced 

face gear are identified from the limiting conditions of the geometry. These are tooth 



 

 

4 

undercutting at the inner diameter and tooth pointing at the outer diameter. Hence, 

an exact tooth surface equation and tooth enveloping parameters are generated for 

mathematical modeling, contact analysis, and machine settings.  

Face gears are studied by several researchers. Litvin et al. [14] generated the surface 

of a face-gear by simulating the machine tool motions. He also studied tooth contact 

and bending stress analyses using the finite element method (FEM) [8,16]. Heath et 

al. performed experiments on tooth contact performances and failure modes of face-

gears [17], conducted split torque tests on a 250 hp face gear transmission with two 

inputs, two idlers system [4,5], and also performed tests to seek face-gear surface 

fatigue characteristics [18]. 

1.2.2 Mesh Stiffness and Dynamic Modelling 

There are a limited number of studies on dynamic analysis of the face-gear drive 

systems. These studies may be collected under two titles, namely, quasi-static or 

dynamic analysis of face-gear meshing with spur-pinion pair, and quasi-static or 

dynamic analysis of split-torque face-gear drive systems.  

Guingand et al. [19] presented a quasi-static analysis procedure for the load 

distribution among the face-gear pairs with experimental validation. The tooth root 

stresses and the resulting load sharing among the pairs are obtained with reasonable 

accuracy. The related deformations are calculated using FEA tools and the contact 

mechanics. Wang et al. [20] proposed a method for loaded tooth contact analysis of 

a face-gear pair, where bending and contact deformations are determined by FEA 

and Hertz theory. Load distribution under an applied torque among the tooth pairs is 

sought.  

Peng et al. [21] investigated the parametric instability characteristics of a face-gear 

pair. An annular Kirchhoff plate with a moving spring is utilized to model the drive 

system. Floquet theory is used to calculate the stability of the system. The mesh 

stiffness is obtained through the contact ratio calculated by Tregold's approximation. 
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The spur pinion is assumed to be rigid, and the mesh stiffness is taken as the face-

gear tooth stiffness. Later, this study (dynamic stability) was improved for a split-

torque multi-pinion face-gear drive system [22]. 

Hu et al. [23] studied the effect of the mesh stiffness variation on the dynamic 

behavior of a 6 DOF (degree of freedom) face-gear pair. The bifurcation diagrams 

of the pair's response according to the pinion speed are presented. Chen et al. [24] 

investigated the effect of profile modification on the dynamic behavior of a 6 DOF 

face-gear pair where support stiffness is also considered. They demonstrated the 

effect of the static load on the input pinion through bifurcation diagrams, which are 

plotted according to the input speed of the pinion. In [21–24], the instantaneous 

contact ratio is calculated via Tregold's approximation, and with these calculated 

values, the time-varying mesh stiffness is obtained by assuming it to be rectangular. 

Tang et al. [25] studied the effect of directional rotational radius variation on a face-

gear pair's dynamic response. A single degree of freedom time-varying rotational 

model is proposed using finite element method tools to obtain mesh stiffness. Hu et 

al. [26] proposed a fourteen degree-of-freedom (DOF) coupled translational and 

rotational dynamic model of a face-gear pair. The effects of backlash and the applied 

torque on the system's dynamic response are sought. The mesh stiffness of the pair 

is calculated by the finite element method as in the previous references. 

Aydogan et al. [27] proposed a nonlinear dynamic model for a multi-mesh face-gear 

split-torque system focusing on the effects of several mesh parameters (i.e., phasing, 

stiffness, backlash, and power values ) on the system response. 

Zhao et al. [28] studied quasi-static analysis of a torque-split face-gear drive system 

by a hybrid 3D finite element and lumped parameter model. The mesh stiffness of a 

pair is calculated by commercial software (ANSYS). The load sharing among the 

pinions is investigated by changing the support stiffness, the backlash, and the tooth 

number.  
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Feng et al. [29] proposed a geometric study of a face gear system with an involute 

helical pinion. The study does not give any mesh stiffness calculations. However, it 

refers to Ambarisha and Parker [30], which utilizes a 2D finite element model for a 

planetary set developed from a unique finite element-contact analysis solver 

specialized for gear dynamics, the Calyx package program. 

Liu and Zhang [31] performed a quasi-static analysis to investigate the effect of shaft 

angle for a face-gear pair. Loaded Tooth Contact Analysis (LTCA) is performed by 

commercial software (ABAQUS). Dong et al. [32] presented a quasi-static analysis 

of a split-torque face-gear drive system. The effect of the pinions' orientations, the 

number of idlers, and the load sharing among them are discussed. ABAQUS is 

utilized for TCA and mesh stiffness calculations. Later, Dong et al. [33] presented a 

semi-analytical method for the calculation of mesh stiffness of the face gear. 

Li and Zhao [34] studied the effects of rotational speed and a pinion's support 

stiffness on a face-gear pair's dynamic response. They presented the bifurcation 

characteristics of the pair's response concerning the change in the pinion's support 

stiffness and the rotational speed of the pinion. 

1.2.3 Split-Torque Systems 

Torque splitting is an important phenomenon in the helicopter industry due to its 

weight and volume saving advantage for a given reduction ratio. When torque is 

transmitted through several paths, the contact force between teeth becomes smaller, 

allowing smaller and lighter gears. In addition to weight saving, torque splitting 

allows redundancy; when any of the designed branches fails during operation, the 

required torque is transmitted through the intact paths [35].  

The first reduction stage splits the main torque into more than one parallel branch. 

Each branch may also be split into several branches at different reduction stages. 

Generally, before the last stage, the split torques are collected through a collector 
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gear, which drives the main rotor mast. Figure 1-4 shows the main transmission 

system for a typical Sikorsky CH-53 Helicopter [36,37], [37].  

 

 

a)        b) 

   

c)       d) 

Figure 1-4 Sikorksy CH-53 type helicopter split-torque main transmission, a) 

Helicopter full view, b) Motor and main transmission configuration, c) main 

transmission showing three motor input, d) the main transmission showing only one 

motor input 
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As seen from Figure 1-4 (d), torque coming from one engine is splitted into four 

branches at the second stage of reduction and then each of these branches are further 

split into two branches. Finally, they are collected on double herringbone that rotates 

the main rotor mast.  

As another example, the main transmission model of  MI‐ 26 helicopter is given in 

Figure 1-5. Similar to the previous example, torque provided by one engine is split 

into four and then into two branches and collected at two bull gears to turn the main 

rotor mast of the helicopter. In Figure 1-5-c, the power or torque distribution is drawn 

as a circuit diagram.  

 

 

a) 

                 

b)       c) 
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    d) 

Figure 1-5 MI‐ 26 type helicopter split-torque main transmission, a) Helicopter full 

view, b) main transmission showing two motor input, c) Closer view for main 

transmission showing two motor input, d) Torque distribution sketch as a circuit 

diagram  

 

The disadvantage of this design is that the torque must be distributed equally between 

the parallel branches. In other words, if it is not an intended design feature, the torque 

at every parallel split-torque stage should be split evenly. Uneven load sharing at any 

parallel branch leads to excessive load at that branch, which causes the related 

components at that load path (gear, shaft, spline, bearing etc.) to wear earlier than 

the components located at the lesser load carrying branch. 

In order to provide an even torque split, several methods have been proposed  [35], 

such as, 

 

a) Geared differentials: This method uses a differential mechanism similar to 

utilization in the automotive industry. A typical example of a planetary gear 

system is shown in Figure 1-6 [4], in which carrier rotates one branch and the 

ring gear drives the other branch, both of which drive a collector gear. The 

deviations from the intended geometry may lead to uneven load distribution. 

Tail-rotor 

First Engine Input 

Second Engine Input 

Main Rotor 
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This deviation is compensated by a small relative rotation of the sun gear and 

the ring gear [38]. 

 

 

Figure 1-6 Epicyclic torque splitter 

 

b) Pivoted systems: This method utilizes a floating pinion that finds a position 

to provide equal load share by seeking a position where tooth loads are equal. 

Irrespective of gear teeth errors or gearbox shaft misalignments, the input 

pinion will float and split torque between the two gears by a self-adjusting 

(or thrust-balancing) mechanism that moves the gears axially in response to 

excessive loads [38]. Figure 1-7 gives an example of a system in which axial 

thrust difference passes to a balance beam whose pivot motion induces 

sufficient angular motion to equalize the tooth loads [39]. 
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Figure 1-7 Split-torque helicopter transmission with two power-branches utilizes a 

self-adjusting system 

 

c) Quill shafts: This method utilizes an assembly, allowing torsional flexibility 

between the connected gears. A torsion divider with a separate gear and 

pinion, each supported on its bearings, are connected through the quill shaft, 

which allows torsional flexibility.  

Achieving an even torque split between the two paths requires the gear train 

to have an adequate amount of torsional compliance. Cumulative tooth 

spacing errors, housing deformations, and assembly backlash values are the 

main obstacles to achieving an equal percent torque split.  

Figure 1-8 shows a conventional quill shaft. Due to lower torsional 

compliance of the quill shaft, when one load path transmits more torque than 

the other one, the angular deviation between the input shaft and the output 

shaft increases, and this increase leads the shaft that transmits less torque to 

increase its load. Apart from conventional quill shafts, quill shafts based on 

elastomeric elements and spring elements also exit [35]. 
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Figure 1-8 Conventional quill shaft [35] 

 

Figure 1-9, as another quill shaft example, demonstrates the CH-53K 

helicopter one motor input stage mentioned above. The power from the 

engine at the 1st stage bevel pinion is split into two branches by the 2nd stage 

spur pinions, one of them is large, and the other is small. Each 2nd stage spur 

pinion further meshes with two 2nd stage spur gears. Since the torsional 

stiffness of the 1st stage gear shaft is very high, the torque split between the 

two 2nd stage spur pinions (large and small ones on the same shaft) becomes 

even. However, torque split between the 2nd stage spur gears that are in 

contact with the corresponding 1st stage spur pinions may not be even due to 

manufacturing errors, assembly tolerances, housing deformations, etc. By 

utilizing a torsionally soft quill shaft between each 3rd stage double 

herringbone pinions and 2nd stage spur gear, even torque split is achieved. 

Quill shafts have two spline meshes at both ends. The torsional windup angle 

of the quill shaft under a specified load level provides the required shaft 

flexibility for equal torque split [3,40,41].  
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Figure 1-9 Sikorsky CH-53K One Motor Input Stage 

 

d) Indexing or clocking: There is no special component in this method. It 

requires the component to be manufactured according to strict tolerances and 

is correctly assembled. The clocking angle is utilized as a design parameter 

to provide an equal torque split among the parallel paths. The gears are 

clocked to eliminate any cumulative tooth spacing errors and assembly 

backlash values in order to provide that all gears are in contact [42–44]. 

 

1st stage bevel gear 1st stage bevel pinion, 

engine input 

2nd stage spur pinion, large 
2nd stage spur pinion, 

small 2nd stage spur gears 

2nd stage spur gears 

3rd stage double 

herringbone pinions 

3rd stage 

double 
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Figure 1-10 Torque-split design with a dual power concept and clocking angle 

measurement [42] 

 

Face-gear related studies in the literature utilize the floating pinion and quill shaft 

concepts. References [45] and [46] give test results for dual input, single output split-

torque face-gear drive system with two idlers. The input pinion shafts utilize a 

cantilevered bearing mount arrangement. This component allows the pinions to float 

between the two face-gears and achieve a center of torque equilibrium. The test 

results show that using floating pinions in the face-gear system leads to a closely 

even torque split. 

Boeing Company studied a split-torque face-gear drive system. In order to impose 

the effect of the quill shaft, they assumed the input pinions to float freely [47]. To 

simulate this, a 2D ABAQUS model is developed that comprises very soft springs in 

"1" and "2" directions (0.5 lb/in) for the input pinions where the idlers are fixed in 

those directions, Figure 1-11.  
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Figure 1-11 The split-torque system and the corresponding FE model in ABAQUS 

 

The RDS-21 demonstrator gearbox of Sikorsky company employs two-stage face-

gear meshes, given in Figure 1-12. It splits input torque in the 1st stage through one 

spur pinion meshing with a 90° face-gear and a 52.85° face-gear simultaneously 

[48,49]. The output torque from each 1st stage face-gear is further split into two 

branches before they are collected on a 90° 2nd stage large collector face-gear through 

helical gears and quill shafts. The difference between the torque split ratios for this 

design is less than 1%. Precision grinding of the gear tooth (eliminating the 

associated errors on teeth) yielded a 6% difference [48]. The utilized quill shafts are 

depicted in Figure 1-13. 

 

 

 

 Figure 1-12 The RDS-21 demonstrator gearbox 
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Figure 1-13 Load-sharing quill shafts 

 

Reference [50] utilizes a floating pinion (drive pinion, labeled as 12, in Figure 1-14)  

carried by the power input shaft that meshes with two coaxial counter-rotating ring 

gears (upper and lower face gears, labeled as 15, 16 in Figure 1-14). The ability of 

the floating pinion to move in a direction parallel to the axis of the two ring gears 

(labeled as 15, 16 in Figure 1-14)  enables the torque transmitted by the pinion 

(labeled as 12 in Figure 1-14)  to be distributed equally between the two ring gears 

regardless of inevitable dimensional tolerances of the gearing, where at least one 

transmission pinion (idler pinion, labeled as 23 in Figure 1-14) is supported by 

elements flexible in a circumferential direction with respect to the ring gears. 

However, this solve the issue for a single-input system. For multiple input systems, 

having more than one idler pinion makes it challenging to split even torque with the 

fixed axes of rotation. Several factors such as the tooth thickness, the position of the 

pinions, operating conditions may affect the equal load distribution [50]. This is the 

mesh phasing during the operation. 
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Figure 1-14 Split-torque face-gear drive system 

 

The floating pinion, in fact, makes the pinion shaft a two-force member. The 

transmitted forces on the two force diametrically opposite meshing points on the 

pinion are forced to balance each other in order to accomplish even torque-split [51].  

 

1.3 Motivation, Scope and Objectives 

In the last three decades, there has been a significant increase in interest about 

research on main rotor drive systems in the helicopter industry to reduce the weight, 

to save volume while improving the efficiency and reliability.  

The application of face-gear drive become popular among some new helicopters 

mainly due to its advantage to split torque between multiple drives more efficiently. 

In addition, when compared to existing drive systems, the application has several 

advantages, as listed in Chapter 1.1. 
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Face-gear dynamics is an emerging topic, and the current trend of the investigations 

relies on commercial tools for stiffness calculations. Although using these models 

for a frozen design is advantageous, it is not easy to make parametric studies and 

evaluations of the gear train several times. Therefore, in this thesis, a novel nonlinear 

dynamic model of a multi-mesh spur pinion-driven face gear split-torque drive 

system is developed and adapted to be used in complex parametric studies.  

 

        

Figure 1-15 a) Example 3D model b) Produced tooth geometries  

 

The nonlinear dynamic model of a split-torque face-gear drive system is composed 

of two face-gears (one output, one idler) and five pinions (two idlers, two inputs, one 

output). One of the face-gears is considered connected to the main rotor mast of a 

typical helicopter, while the output pinion emulates the tail rotor shaft of the 

helicopter. Two input pinions are the power input locations to the system from 

motors. The mesh stiffness and damping have time-varying characteristics. The 

model includes clearance type nonlinearity as a backlash at all meshing locations. 

Each backlash value at these meshing locations will also be set separately. 

The dynamic model will utilize mesh stiffness values calculated through the exact 

face-gear tooth profile, which is based on the detailed theory of gearing and 

differential geometry of the face-gear. The bending contribution of the mesh stiffness 

will be calculated from the generated surface of the face gear and spur gear tooth. 
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The contact contribution will be calculated through the available analytical methods 

cited in the literature. The tooth will be modeled with Mindlin Plate Theory. In order 

to extract the compliance matrix at each meshing instant, the tooth surface will be 

discretized via Finite Strip Method. 

The nonlinear differential equations will be solved with Harmonic Balance Method 

(HBM) in conjunction with the Arc-Length Continuation Method to obtain the 

system's dynamic response and to capture the stiffening and the softening regions 

within the specified frequency range. All time-variant parameters will be expressed 

in discrete Fourier Series.  

Finally, several parametric studies will be performed to seek the effects of critical 

system parameters on the dynamic response of the proposed system. The potential 

design parameters will be proposed to be utilized in the system's preliminary and 

detailed design phases. 

1.4 Organization of the Thesis 

Chapter 1 presents a brief introduction to face-gear drive systems. A literature review 

is given in which the studies are grouped under the following titles, face-gear 

geometry, mesh stiffness, and dynamic modeling of face gears and split-torque 

systems. The motivation, scope, and objectives of this study are described. Finally, 

the organization of the thesis is portrayed. 

Chapter 2 describes tooth surface generation for a typical face gear and a spur-shaper 

from a point cloud by the theory of gearing. Then, the surface fitting procedure, 

which uses Non-Uniform Rational B-Splines (NURBS) curves to approximate the 

thickness at any location on the tooth surface, is presented. Unloaded Tooth Contact 

Analysis for a face-gear and spur-pinion is presented with some special case studies. 

Chapter 3 presents the stiffness calculations for a single gear tooth. Thin-Slice 

Method, Plate Models for Rayleigh-Ritz Approximation, Finite Strip Method (FSM), 

and Quasi-Prism Method (QPM) are investigated. For the bending contribution of 
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the mesh stiffness calculations, FSM is chosen for its advantages, and discretization 

is performed by this method. The tooth is assumed to possess the properties of a 

Mindlin Plate. For the contact contribution of the mesh stiffness, several analytical 

methods given in the literature are presented and compared with each other, i.e., 

Hertz's, Conry's, Cornell's, Palmgren's, Weber’s and Brewe&Hamrock’s method.  

Chapter 4 proposes a torsional mathematical model for multi-mesh split-torque face-

gear drive systems. The model has 7 degrees of freedom. The system parameters, i.e. 

mesh stiffness, and damping, have time-varying characteristics. Clearance type 

nonlinearity is imposed into the model to represent backlash.  

Chapter 5 demonstrates several parametric studies which investigate the effect of the 

orientation angle patterns of the pinions of a split-torque system, the effect of time-

variant parameters, and the effect of power values on the system's dynamic response. 

The resulted mesh phasing effects and the resulted torque-split characteristics are 

demonstrated. 

Finally, Chapter 6 summarizes the main findings of this study and discusses their 

applications for the design of split-torque face-gear drive systems. The potential 

critical design parameters for such systems in the preliminary and the detailed design 

phases are discussed. Currently, there is not any AGMA standard available for such 

systems. A discussion is performed here with the highlight of available AGMA 

standard for epicyclic gears and the results obtained with this thesis study. 
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CHAPTER 2  

2 FACE-GEAR AND PINION TOOTH SURFACE GENERATION 

2.1 Introduction 

Face-gear geometry is generated as a point cloud by transforming the spur gear 

(shaper) tooth profile into face-gear tooth profile by simulating the machine tool 

motions. The position vectors resulted from the equation of the shaper surface is 

transformed into the face-gear position vector by simple and well-defined three 

rotation around appropriate axes [8,13,15,16,52–56]. The first transformation is 

defined as the rotation of spur-gear around its own rotation axis. Second 

transformation is defined as the rotation between the spur shaper and face-gear 

rotation axes. Finally, the third transformation is defined as the rotation of face-gear 

around its own rotation axis. For the conjugate action of tooth profiles, the equation 

of meshing equation is satisfied. At all-time instants, surface normal at the point of 

contact must be perpendicular to the sliding velocity between the two meshing 

surfaces. On the other hand, two limiting criteria exist for surface generation of a 

face-gear; namely undercutting condition and pointing condition. The first criterion 

(limiting point for the surface generation) denotes the cutting region of the involute 

spur-gear shaper that is beyond the active conjugate region and should be avoided. 

Since undercutting point is a singular point, normal vector for the face-gear surface 

should be equal to zero at the prescribed singular point. The second criterion, 

pointing, denotes the location where the thickness of the tooth on the top surface 

becomes zero. Whole procedure for the surface generation is well-defined in  

[8,13,15,16,52–56]. 
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2.2 Surface Generation 

The cross-sectional view of face-gear spur shaper mesh is schematically illustrated 

in Figure 2-1. Here, ys-zs frame is a body fixed coordinate frame of the shaper, and 

z2 axis is the rotation axis of the face-gear. Symbols ras , rbs and  rps  are the addendum 

circle radius, pitch radius and base circle radius of the shaper, respectively. Rin , Rp 

and Rout are inner radius, mean pitch radius and outer radius of the face-gear, 

respectively. Furthermore, L1, Lp and L2 are the inner radius, mean pitch radius and 

outer radius to the pitch cone apex, respectively. O is the pitch cone apex and OI line 

is the pitch cone line. In this figure, γ is the shaft angle and calculated as
21  

, where γ1 is the pitch cone angle of the spur shaper and formulated as: 
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and γ2 is the face-gear pitch cone angle and formulated as: 
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where m2/s is the ratio of face-gear number of tooth (N2) to shaper number of tooth 

(Ns)  and shown as ss NNm /2/2   [14,15,57–61]. 
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Figure 2-1 Face-gear and spur shaper dimensions 

 

The geometric properties of a spur shaper are represented in Figure 2-2-a. The 

symbols θs and us are the shaper surface parameters. They are the surface coordinates 

in the curvilinear coordinate system. The parameter θs is an angle and us is a length. 

The parameter us is parallel to the zs direction in Figure 2-2. In this figure, θ0s is the 

half space width on the base cylinder [13,14]. The parametric surface equation of the 

spur shaper tooth surface as a function of θs and us is:  
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(2-3) 

 

 

where rbs is formulated as a function of pitch radius and pressure angle at the pitch 

point (α0) as: 

)cos( 0psbs rr 
 

(2-4) 
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The upper and lower (plus and minus) signs in the first row of Equation (2-3) 

correspond to left and right profiles, respectively. In addition to shaper surface 

equation, a mathematical coupling between the shaper parameters needs to be 

derived and used in the face-gear tooth dimension calculations. The equation of 

meshing is a scalar function of two shaper surface parameters (us, θs) and one shaper 

generalized motion parameter ( s ). Formulated as: 
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(2-5) 

 

where, γm = π-γ in radians and ms/g = 1/mg/s. The equation of meshing is a 

mathematical coupling between the shaper parameters (us , θs) and motion parameter 

( s ). To obtain the actual tooth form, critical dimensions of the face-gear must be 

identified. The critical dimensions dictates the value of the shaper parameters us , θs 

and s . The simultaneous solution of surface equations and equation of meshing 

with the satisfying parameters produce the actual tooth geometry. This procedure is 

called enveloping the surface contact lines. The face-gear tooth surface is called the 

envelope of the family of contact lines [13,15]. In Figure 2-3, the enveloping process 

is summarized. Here, mins  and maxs  are the angles of rotation of shaper that 

correspond to the start and end of the meshing cycle for single pair of teeth, 

respectively. These angles are calculated from simulation of meshing and enveloping 

process as explained in [13] and [15]. Calculated undercut and pointing dimensions 

of the face-gear identify usmin and usmax values.  The equation of meshing is then 

solved numerically to establish curvilinear coordinates of each contact line at each 

instant of meshing cycle. The calculated curvilinear coordinates are substituted in 

shaper and face-gear surface equations to produce the face-gear tooth form. These 

enveloped contact lines between shaper and the face-gear are numerically generated 

from simulation of meshing and presented in Figure 2-2-b, viewed at ys-zs plane. In 



 

 

25 

this simulation the mesh cycle starts from the base-circle-radius (rbs) of the shaper 

(point B) and ends at the addendum of the shaper (point A). The shaper tooth 

geometry is bounded with the rectangle A-A**-B-B**. The face-gear tooth is 

presented in Figure 2-2-c, where, the tooth-face-width is symbolized as fw. 

 

 

 

Figure 2-2 a) Spur shaper parameters [15]; b) Shaper from side view with contact 

lines; c) face-gear tooth 
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Figure 2-3 Flow diagram of face-gear modeling process 

 

Reorganizing the meshing Equation (2-5) after solving, the parameter us can be 

calculated as, 
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(2-6) 

2.2.1 Transformation of the Spur-Shaper Surface to the Face-Gear 

The position vector for the spur-shaper is transformed to the face-gear position vector 

through three rotations around appropriate axes. As mentioned above, this is defined 
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as the process of simulating the machine tool motions, as depicted in Figure 2-4. s  

and 2  are the rotational motion parameters of the spur-gear and the face-gear, 

respectively. 

 

  

Figure 2-4 Spur-shaper and face-gear assembly 

 

The first transformation is defined as the rotation of spur-gear around its own rotation 

axis and determined by the following expression, 
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(2-7) 

The second transformation is defined as the rotation between the shaper and face-

gear rotation axes and determined by the following expression,  
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(2-8) 

 

The third transformation is defined as the rotation of face-gear around its own 

rotation axis, and the corresponding transformation matrix is written as, 
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(2-9) 

 

The resulting transformation matrix is written as the product of all three matrices as, 

 

2 2 2( , )s s a af fsM M M M    (2-10) 

As it is seen from the equation above, the total transformation matrix is a function of 

the rotational motion parameters s and 2 , where the angle between spur and face-

gears   is a constant parameter. Also, between two motion parameters, the following 

relation may be written, 
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(2-11) 

 

where Ns and N2 are the teeth numbers of the shaper and the face-gear, respectively. 

Then, after appropriate substitutions, the transformation matrix can be written as a 

function of s  only as;  
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2 2 2 s( , ) ( )s s sM M    (2-12) 

2.2.2 Face-Gear Surface Equations 

The spur-shaper surface given in Equation (2-3) may also be written as, 
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(2-13) 

 

Similarly, the face-gear’s surface equation may be expressed as, 
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(2-14) 

 

Different from the surface equation of the spur-gear, the rotation parameter  is added 

to the equation due to the transformation.  In terms of spur-shaper parameters and 

the total transformation matrix, Equation (2-46) may also be expressed as, 

 

2 s 2 s( , , ) ( ) ( , )s s s s s sr u M r u     (2-15) 
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2.2.3 Limiting Conditions of Surface Generations 

The undercutting condition and the pointing condition are the two limiting factors 

for surface generation of a face-gear, as mentioned in the introduction of this chapter. 

The undercutting criteria constructs a region at the bottom of the tooth, beyond which 

conjugate action does not work (the blue region in Figure 2-5). And the pointing 

criteria determines the location where the thickness of the top surface becomes zero. 

This also fixes the outer radius of the face-gear. 

 

 

Figure 2-5 Undercut regions on face-gear tooth surface and pointing 

undercut regions 

pointing 
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Figure 2-6 The undercut definition, [62] 

Sliding Velocity: 

The meshing teeth of a gear-pair at a contact point is given in Figure 2-7. 𝑣1  and  𝑣2  

are the peripheral velocities, 𝑣1𝑛 and 𝑣2𝑛 are the normal velocities, 𝑣1𝑡 and 𝑣2𝑡 are 

the tangential velocities of the driven and the driver gears. 𝑣𝑠 is called as the sliding 

velocity which plays an important role in generating the surface profiles of the teeth 

and may be expressed as,  
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where, the peripheral velocities are calculated as,  
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Figure 2-7 One point of interest at the contact line of the meshing teeth [63], [56] 

 

Surface Normal: 

The term 𝑛𝑠⃗⃗⃗⃗   is the unit normal vector of the surface, and it may be defined as the 

cross product of the directional derivatives over a surface in space, as given in Figure 

2-8. It can be calculated as, 
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Figure 2-8 Surface normal and the directional derivatives over the specified 

surface 

 

Equation of Meshing: 

For the conjugate action of tooth profiles, the following equation should be satisfied, 
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(2-19) 

 

which is therefore called as the “equation of meshing”. At all-time instants, surface 

normal at the point of contact must be perpendicular to the sliding velocity between 

the two meshing surfaces. As mentioned above, sliding velocity is the difference 

between the peripheral velocities. Since the normal velocities of the two surfaces 

must be equal both in direction and magnitude, the sliding velocity may also be 

defined as the difference between rolling velocities.  
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2.2.3.1 Calculations for Undercutting 

This criterion (limiting point for the surface generation) denotes the cutting region 

of the involute spur-gear shaper that is beyond the active conjugate region, and this 

region is to be avoided. Since the undercutting point is a singular point, normal vector 

for the face-gear surface should be equal to zero at the prescribed singular point,  
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(2-20) 

Therefore, the points of undercut region may be detected with the above equation. 

Litvin [8,13–15,52,53], proposes another method for detecting the undercutting 

points which can be expressed with the following formula,  
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where first term is the velocity of the contact point in its relative motion over the 

generating surface (spur-shaper) and the second term is the sliding velocity. Both 

vectors are defined with components of coordinate system that is rigidly connected 

to the generating surface. Equation (2-21) may also be written as in the following 

form; 
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(2-22) 

For detecting the undercut region, differentiated form of Equation (2-19) and 

equation (2-22) should be satisfied simultaneously. Therefore, the time-

differentiated form of equation of meshing given in (2-19) may be written as, 
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Writing equations (2-22) and (2-23) in matrix form yields, 
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(2-24) 

By solving the Equation (2-24), the undercut region is determined. 

2.2.3.2 Calculations for Pointing 

Pointing denotes the location where the thickness of the tooth on the top surface 

becomes zero, as depicted in Figure 2-5. For this, the two tooth surfaces of the face-

gear and the spur-pinion may intersect at a point A, as shown in Figure 2-9.  

For determining the location where the pointing occurs, firstly, the pressure angle α 

of the pointed teeth is determined. From Figure 2-9, the following expression can be 

written, 
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bs sNM r   (2-27) 

*

a bsO N r  
(2-28) 

  

 

Figure 2-9 Cross section of tooth profiles of spur-shaper and the face-gear at the 

pointing cross section, cross section 2 depicted in Figure 2-11 [13] 

 

Substituting Equations (2-26), (2-27) and (2-28) into Equation (2-25) yields, 
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where  . Then, separating the vector equation into two scalar equations yields, 
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The following expressions may be derived from Figure 2-9 and Figure 2-10, 
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where 
psr  and os  are expressed as, 
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Substituting Equations (2-32) and (2-33) into Equations (2-30) and (2-31), and 

eliminating  yields, 
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where  denotes the pressure angle at the pointing location. 

 

Figure 2-10 Cross section of tooth profiles of spur-shaper and the face-gear at any 

cross section before the pointing, cross section 1 depicted in Figure 2-11 [13] 

 

Secondly, L2 is calculated by using the value of the pressure angle at the pointing 

location. Using the Equation ((2-47), the length, given in Figure 2-9, may be 

expressed as, 
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From Figure 2-11, L2 is written as, 
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Figure 2-11 Cross sections Π1 and Π2, [13] 

 

Substituting Equation (2-35) into Equation (2-36) yields, 
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Assuming p

s , p

s  and p

su are the corresponding values of the parameters s , s  and 

su  where the pointing is achieved, then the parameter L2 may be formulated as the z 

component of the spur-shaper, as depicted in Equation (2-3), (2-6) and (2-50), and 

can be written as, 
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 is also the outer radius of the face-gear. Rewriting Equation (2-13) for only the x 

and y components of the face-gear at the location of pointing yields, 
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(2-39) 

 

Therefore, solving the two equations simultaneously for p

s and p

s gives the 

pointing location. 

An example is shown in Figure 2-12. Here, spur shaper number of teeth (Ns ) is 20, 

gear module (mo) is 5.08 mm or  diametral pitch (Pd) is 5 (1/inch). Face-gear number 

of teeth (N2 ) is 120, and the shaft angle ( ) is 90˚. The resulting face-gear tooth form 

is presented in Figure 2-13. 

The critical dimensions of the face-gear drives can be assessed by two approaches. 

The first approach is based on the conversion of usmin and usmax values into face-gear 

coordinates as presented in [15]. The second approach is reading the coordinates of 

the minimum and maximum values in y2 direction, specified in Figure 2-13. This 

approach requires further coordinate transformations and more computation time. 

Hence, the first approach is more convenient for parametric studies and repetitive 

calculations; however, the method still requires complex numerical calculations and 

computer time. Depending on gear parameters these two methods may show up to 

5% difference both in inner and outer radii.  
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Figure 2-12  Enveloped us , θs and s parameters with Ns = 20, N2 = 120,  = 90˚, 

mo = 5.08 mm 

 

 

 

Figure 2-13 a) Shaper tooth space, b) Face-gear tooth flank in their local coordinate 

frames 

 

The numerical method used in this chapter is compared to the published face-gear 

data to estimate the accuracy of the model. The references are listed at the last 

column of Table 2-1. The numbers of teeth, shaft angle and gear module are 
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presented in the first four columns of Table 2-1, respectively. Here, the critical 

dimensions are extracted from the minimum and maximum values of the respective 

y2 coordinates of the tooth forms shown in Figure 2-14. In this table, the shaper 

pressure angle (0) is 25˚ for Case-1, and 20˚ for the rest. Shaper is positioned at 90˚ 

shaft angle () in Cases from 1 to 4. Case 5 has 80˚ shaft angle. Calculated inner and 

outer radii and their percentile difference (εin and εout) from the references are also 

listed in Table 2-1. Both inner and outer radii are in a good correlation (less than 5% 

difference) with the published data. The inner radius results vary from 0.4% to 4% 

for  = 90˚, and -1.7% for  = 80˚.  The outer radius varies from 0.2% to 1.5% for  

= 90˚, and 4.6% for  = 80˚. These variations can be caused due to using different 

numerical techniques, different initial value assumptions, or different step sizes used 

in the numerical calculations in each reference and this study. 

 

Table 2-1  Comparison to selected literature 

Case Ns N2  (˚) mo (mm) Rin (mm) Rout (mm) εin  % εout % Ref. 

1 28 160 90 6.35 469 558.1 0.4 0.2 [13] 

2 20 100 90 2.54 117.6 140.2 -4.0 1.5 [15] 

3 19 71 90 4.00 131.2 157 -2.0 -1.1 [64] 

4 28 107 80 3.175 161 182.2 -1.7 4.6 [65] 

 

 



 

 

43 

 

Figure 2-14 Face-gear tooth forms from viewed on y2-z2 plane 

 

2.3 Derivation of analytical formulas 

In this section, the dimensions L1, L2, Rin, Rout, fw are derived using geometric 

relations presented in Figure 2-1 and Figure 2-2. The dimensions of the shaper and 

the face-gear are shown in Figure 2-1. The important coordinates of the shaper and 

the face-gear are labeled in Figure 2-15-a and b. Figure 2-15-b is the illustration of 

the shaper tooth from the side view. 
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Figure 2-15 a) Face-gear & spur shaper relations and b) shaper tooth dimensions 
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2.3.1 Inner Radius Formulation 

In Figure 2-15-a, QP  line is perpendicular to OT  line and parallel to SB , TA  lines. 

Also, UB  line is parallel to zs axis and perpendicular to PM line. Triangles OSB and 

OB*B share a common hypotenuse which is OB  line and its length is: 

 

)sin(/ 1bsrOB   (2-40) 

 

Here, rbs is the length of *BB  line. Hence, the relationship for the length L1 (Figure 

2-1) is: 

 

)cos())sin(/( 111   bsrL  (2-41) 

 

where, L1 is the length of OB* line in Figure 2-15. The face-gear inner radius (Rin) is 

derived from OBS triangle where the length of SB  line is the corresponding 

dimension. Equation (2-41) is rearranged as )cot( 1bsr  and reformulated by using 

Equation (2-1) as: 
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(2-42) 

  

Consecutively, the inner radius length is )sin( 21 LSB   and rearranged as to give 

the radius as: 

)sin()cot( 21   bsin rR  (2-43) 
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where, γ2 is calculated from Equation (2-2). The face-gear inner radius is then 

reformulated as a function of shaper number of tooth (Ns), pressure angle at the pitch 

circle (α0), diametral pitch (Pd) and pitch cone angles (γ1 and γ2) as: 

 

)sin()cot(
2
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d

s

in
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(2-44) 

 

and redefined with Equations (2-1) and (2-2) in its final form as: 
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(2-45) 

2.3.2 Outer Radius Formulation 

Similar to inner radius formulation, the outer radius of the face-gear is calculated 

from OTA and OA*A triangles. Here, the common hypotenuse is OA  line and its 

length is 

 

 )sin(/ 1

* AAOA  (2-46) 

  

Here, ras is the addendum radius and is equal to the length of *AA  line. Limiting 

length for outer radius is: 

 

)cot( 12  asrL  (2-47) 

  

where, the addendum radius is calculated from arr psas   , and dPa /1 . Hence: 
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)cot()
1

2
( 12 

dd

s

PP

N
L  

(2-48) 

 

The term cot(γ1) is already formulated in Equation (2-1). By substituting this term 

into Equation (2-48), L2 can be expressed in terms of Ns, Pd, m2/s, and γ as: 
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(2-49) 

 

Finally, the outer radius is calculated from OTA triangle as:  

 

)sin( 22 LRout   (2-50) 

 

By replacing γ2 with Equation (2-2), the outer diameter formula as a function of Ns, 

Pd, m2/s, and γ is presented in its final form as: 
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2.3.3 Face Width Formula 

Finally, the face width of a face-gear generated by a spur shaper is the difference 

between limiting dimensions L1 and L2. Simply, formulated from L2 - L1 as: 
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As a specific case, the face width of the face-gears with 90˚ shaft angle is calculated 

from: 
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(2-53) 

 

2.4 Unloaded Tooth Contact Analysis 

Unloaded Tooth Contact Analysis (UTCA) is performed over meshing teeth in order 

to obtain the contact paths on the gear surfaces and calculate the transmission error. 

Besides manufacturing errors, using pinion other than shaper with different tooth 

number, shaft angle misalignment, axial displacement of the pinion, micro 

modifications (i.e. profile and face-width modifications) can also lead to 

transmission errors in the drive systems [65,66]. 

For the face-gear drives, except the micro modifications over the surface of the tooth, 

misalignments along any axis and also shaft angle does not lead to any significant 

transmission errors, which is considered to be an advantage of the face-gear drives. 

For the localization of the bearing contact, two approaches are generally suggested 

[67,68] one is double crowning of the pinion and the other is using a pinion having 

less teeth number than the shaper-pinion of the face-gear.  

In this chapter, the second approach is utilized, and coupled with shaft and pinion 

position misalignments. Three case studies have been performed in order to validate 
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the developed surface generation code and calculate the resulted unloaded static 

transmission errors. The cases studies are taken from [67], [68]. For all three cases, 

face-gear generated by an involute shaper with a tooth number of Ns=28 and a 

diametral pitch of Pd=8, driven by an involute spur-pinion with a tooth number of 

N1=25. The tooth number of the face-gear is N2=108, 

In Case-1, no axial and shaft misalignments are imposed (q=0 mm, =0 º). The 

shaper-pinion and the utilized spur-pinion tooth number difference is taken as 3 (Ns-

N1=3). 

In Case-2, a misalignment along rotational axis of the spur-pinion has been imposed 

(q=0.1 mm). No shaft misalignment is imposed ( =0 º). The shaper-pinion and the 

utilized spur-pinion tooth difference is taken as 3 (Ns-N1=3). 

In Case 3, a shaft misalignment is imposed ( =0.04 º). Along rotational axis of the 

spur-pinion an axial misalignment has been imposed (q=0.1 mm). The shaper-pinion 

and the utilized spur-pinion tooth number difference is taken as 3 (Ns-N1=3). 

2.4.1 Procedure for the Unloaded Tooth Contact Analysis 

 are the spur-pinion’s surface geometry parameters and   are the spur-shaper’s surface 

geometry parameters. If the parameters 1  and 2  represent the rotational degree of 

freedom of the spur-pinion and the face-gear, respectively, then the following 

relations exists between them 

1
2 2 1

2

N

N
      

(2-54) 

where 2  defines the static transmission error, N1 and N2 are the tooth numbers of 

pinion and the face-gear, respectively. If, on the other hand, the parameters s  and 

2  represent the rotational degree of freedom of the spur-shaper and the face-gear, 

respectively, then the following relation exists between them 
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2
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0 s
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    

(2-55) 

where and are the tooth numbers of pinion and the face-gear respectively. Note that, 

due to perfect conjugate action, the resulting transmission error is zero. 

For the unloaded tooth contact analysis, generally, the perfect conjugate tooth 

geometry (which is the shaper pinion here) and the modified tooth geometry (which 

is the driving spur-pinion here) are compared by equating the surface geometries and 

the surface normal of both pinions to each other. Equation (2-56) represents the tooth 

surfaces and their surface normals. 
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(2-56) 

 

1fr and 
1fn  belong to the driving spur-pinion and 

2fr  and 
2fn belong to the 

generated face-gear geometry. Equation (2-56) gives 6 nonlinear equations, but only 

5 of them are independent due to the fact that 
1fn  and 

2fn  are unit vectors.  

By the help to the surface formulations given by Equation (2-3) and (2-15), and the 

transformation matrices given in Equation (2-7), (2-8) and (2-9), Equation (2-56) is 

reformulated as, 
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(2-57) 
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     2 s s 2 s 2 s, , ( , )f s af m a sn M M n              (2-58) 

 

where E is the shortest distance between pinion-gear axes, q is the axial displacement 

of the face-gear, is the change of the shaft angle, B is the center distance defined as,  

 

   0cosbs bB r r    (2-59) 

The five unknowns 1u , 1 , 1 , s , and s  are solved by increasing 2  incrementally 

(rotation degree of freedom of the face-gear), and the unloaded static transmission 

error 2 is obtained. Matlab® “fsolve” function is utilized as a nonlinear solver. The 

utilized procedure is described in [13,14,55,68–70]. 

 

 

 

 

 

 

 

Figure 2-16 Assembly of a face-gear drive, mating surfaces of spur-pinion  

and face-gear 

2.4.2 The Obtained Results and Discussion 

The unloaded static transmission error results are displayed in Figure 2-17, Figure 

2-18 and Figure 2-19 for Case-1, Case-2 and Case-3, respectively.  
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As depicted in Figure 2-17, utilization of spur-pinion having different number of 

tooth from the spur-shaper used to generate the surface geometry of the face-gear, 

does not create any transmission error. The shaper-pinion and the utilized spur-

pinion tooth number difference was taken as 3 (Ns-N1=3). 

Figure 2-18 demonstrates that utilization of spur-pinion having different number of 

tooth from the spur-shaper, and also addition of an axial misalignment along 

rotational axis of the spur-pinion (q=0.1 mm), again does not create any transmission 

error. 

 

 

Figure 2-17 Unloaded Static Transmission Error, Case-1 
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Figure 2-18 Unloaded Static Transmission Error, Case-2 

 

Finally, Figure 2-19 shows that defining a shaft misalignment with  =0.04º to the 

face-gear system, in addition to the imposed axial misalignment and using different 

number of tooth for spur-pinion, does not create any transmission error.  
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Figure 2-19 Unloaded Static Transmission Error, Case-3 

 

In Figure 2-20, the resulting transmission errors of all cases are plotted together. The 

face-gear drive system is less sensitive to transmission error caused by imposed 

misalignments of shaft and pinion position along its axis; the calculated values in 

arcseconds (1/3600th of a degree) are almost zero.  
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Figure 2-20 Unloaded Static Transmission Error, Case-1, 2 and 3 

 

 

 

Figure 2-21 Contact points on face-gear, for all three cases, 3D view 
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Figure 2-21 and Figure 2-22 demonstrate the contact points on the face-gear tooth 

surface. It is noted that, using a spur-pinion with different number of tooth from the 

shaper-pinion leads to point contact rather than the line contact, as in the case of 

shaper-pinion driven face-gear.  

 

 

 

Figure 2-22 Contact points on face-gear, for all three cases, view along yz-axis 

 

2.5 Model for The Face-Gear Thickness Variation 

After the surface of the face-gear is generated as a point cloud, whole surface is 

approximated via NURBS (Non-Uniform Rational B-Splines) functions [71,72]. 
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This is a necessary step to estimate the thickness throughout the generated surface of 

the face-gear and the spur-pinion. By this approximation, a continuous thickness 

variation along the face width and along the profile direction of the gears is achieved 

within the Finite Strip Elements established for the discretization, which is detailed 

in Chapter 3. A typical generated point cloud and a FSM discretization is shown in 

Figure 2-23. 

 

 

Figure 2-23 a) Point cloud extracted for a typical face-gear and b) the assigned 

finite strip elements 

 

NURBS method is a piecewise parametric approximation for a curve or a surface. 

To be generated shape is defined by a set of control points, blending functions and 

knots. The control points are used to define the general shape while the blending 

functions and the knots are used to control how much each point influences the 

generated shape. NURBS curves are more popular among the CAD system 

developers compared to with other parametric and non-parametric curves due its 

several advantages. They easily represent geometrical shapes in a very compact 

form. The utilized formulation is given in Appendix A.  

Figure 2-24 shows the involute profile of the spur-shaper which has the properties 

given in  
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Table 2-2. The profile is approximated by utilizing NURBS in one dimension. The 

red dots are taken from the point cloud data, and the continuous line represents the 

results of the NURBS approximation.  

 

Table 2-2  Input parameters 

Parameter Ns  N2 

Number of teeth 28 108 

Diametral pitch 1/inch) 8  

Pressure angle (˚) 20  

Face-width (inch) 1.33  

 

 

 

Figure 2-24 Original spur-gear involute profile and the data generated via NURBS 

curves, with p=3 and 101 control points along the x axis  

 

Figure 2-25, on the other hand, shows the face-gear surface generated with the spur-

pinion specified in Table 2-2, and the data generated via NURBS curves. The red 
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dots are taken from the point cloud data where the blue dots are the taken from the 

NURBS curves. The fillet region is also accurately fit by the NURBS curves. 

 

 

Figure 2-25 The point cloud for the original face-gear surface and the fillet, and 

data generated via NURBS curves with p=3, discretizing face-width direction by 9 

grids and profile direction by 8 grids
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CHAPTER 3  

3 MESH STIFFNESS CALCULATIONS  

Mesh stiffness is an important parameter for the dynamic analysis of the gear drive 

systems since it varies with the load position and affects the load distribution among 

the other tooth pairs in contact.  

In literature, the mesh stiffness calculations may be classified into three categories: 

analytical, finite element based, and experimental [25]. Experimental methods give 

accurate values, but they need repetitive measurements from different kinds of (or 

from a specific kind of) gear specimen, which costs a lot [73]. Finite element models 

are generally less expensive and more efficient but require more modelling and 

computational time than the other methods.  

There is no analytical solution to the mesh stiffness for a face-gear because of the 

tooth surface's complex geometry and the variation of the tooth thickness (and the 

pressure angle) along the tooth face-width direction. Several studies on the spur, 

helical, and face gears are based on mesh stiffness calculated from a uniform cross-

section cantilevered beam assumption [22,25,74]. 

 

 

Figure 3-1 Uniform cantilever beam assumption for the mesh stiffness 
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For analytical calculation of the mesh stiffness of any type of gear, mainly the 

following contributors are taken into account; bending deformation, shear 

deformation, axial compression, the flexibility of fillet and foundation, and local 

compliance due to contact forces [75–85]. Generally, it is assumed that all contact 

takes place along the line of action, and the rims of the gears are assumed to be solid 

[86].   

In literature, tooth bending and shear deflections of any kind of gear are computed 

by using a Rayleigh-Ritz solution of a tapered plate model [82], a beam model 

[73,76–78,86,87], or a finite element solution of a tapered beam model [80].  

Load Distribution Program [88] uses a cantilevered tapered plate model using the 

Rayleigh-Ritz method, first developed by Yakubek [89] and implemented by Yau 

[90]. This model proves very reliable for use on the pinion, where the geometry is 

constant across the face width and does not change as a function of the face width. 

Hertzian deflections [85] and deflection of the tooth base [82] are the additional tooth 

deflection components that have to be added to the total stiffness or compliance 

appropriately. 

This chapter investigates several methods for calculating bending and contact 

contributors of the mesh stiffness.  

3.1 Stiffness Calculations for One-Tooth 

3.1.1 Bending Stiffness Contribution 

The following methods are utilized in the literature for a tooth's bending stiffness. 

These methods, except the Finite Element Method (2D or 3D), are investigated in 

this chapter.  

 Thin Slice Method (1D) 

 Rayleigh-Ritz Approximation (2D) 
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 Finite Strip Method (2D) 

 Finite Prism Method (3D) 

 Finite Element Method (2D or 3D) 

3.1.1.1 Thin Slice Method (TSM) 

In this method, the tooth is divided into several slices, as depicted in Figure 3-2, and 

their stiffness values are extracted independently. Compliance due to bending, shear, 

axial load, base rotation, and compliance due to contact deformation is calculated 

and then added together to obtain one tooth's total stiffness.  

  

Figure 3-2 A face-gear tooth with several slices along its face width [91] 

 

In order to have the effect of the accurate tooth profile in the stiffness values, 

especially for the face-gear, the interested tooth has to be sliced into an adequate 

number of slices. This is because the section profile varies along the face width. For 

the spur-shaper, on the other hand, the profile remains constant. Figure 3-3-a shows 

a TSM model of a spur gear with n uncoupled slices, whereas Figure 3-3-b shows 

the coupled version. 
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Figure 3-3 a) Uncoupled and b) coupled thin slices of a gear [91] 

 

For instance, for an n sliced gear tooth, the uncoupled stiffness matrix due to 

bending, shear, base rotation, axial load, and contact deformation is written as, 
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whereas the coupling terms between those slices are formulated as,   
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and total stiffness matrix is written as, 

b)a)
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TK K   (3-3) 

 

Börner suggests an empirical formula for the coupling stiffnesses based on 

measurements and several finite element models for an involute gear [26]. In his 

formulation, the coupling stiffness between the ith and (i+1)th slice is given as, 
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(3-4) 

 

where sb is the face width of the slice, nm is the normal module, ik is the calculated 

stiffness of the slice, 1ik   and is the calculated stiffness of the adjacent slice. 

Application of this method to a spur gear geometry for a straight loading and an 

oblique loading are given in the following sections. The bending stiffness 

formulation for a slice is given in Appendix B. 

 

3.1.1.1.1 Results and Comparison with FEM for Straight Loading 

An example tooth is modelled with 40 slices along the face width. Each slice has ten 

segments along the profile for an arbitrarily loaded case. The results are compared 

with the 3D FE model result. 
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Figure 3-4 Spur Gear straight loading on the tip 

 

The FE result is displayed in Figure 3-4. The deflections of the slices are shown in 

Figure 3-5. The TSM model approximates the FE results with a maximum error of 

4.1%. 

 

 

Figure 3-5 Comparison of thin slice method results with the FE results for 

straight loading  
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3.1.1.1.2 Results and Comparison with FEM for Oblique Loading 

The same FE and TSM models are also used for another arbitrarily loaded case. Here, 

an oblique loading on the tooth's surface is given in Figure 3-6-a, and the FE result 

is displayed in Figure 3-6-b. 

 

 

 

Figure 3-6 a) Spur gear oblique loading on the conjugate surface, b) FE 

displacement results 

The deflections of the points where the load is applied are shown in Figure 3-5. The 

gear is sliced into 40 slices, but only eight have been loaded; therefore, only the 

deflections of these loaded slices are depicted in Figure 3-5. The TSM model 

approximates the FE results with a maximum error of 15.6 %. 

 

a)

b)
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Figure 3-7 Comparison of thin slice method results with the FE results for 

oblique loading  

3.1.1.2 Rayleigh-Ritz Approximation 

For the deflection study of a tooth, the Kirchoff plate theory is employed and solved 

through the Rayleigh-Ritz approximation method. The results have been compared 

with the values obtained from the FE model run within the Nastran package program. 

The equation of motion is derived from the energy equations. Eigenfunctions for a 

cantilever-free beam are utilized as shape functions along the longitudinal axis. 

Similarly, eigenfunctions for a free-free beam are utilized along the transverse axis. 

The derived formulations are given in the Appendix C. The generated code is 

developed in the Mathcad package program. 

A uniform plate (Figure 3-8-a), a one-axis trapezoidal plate (Figure 3-8-b), and a 

two-axes trapezoidal plate (Figure 3-8-c) are constructed.  
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Figure 3-8 Utilized plate types a) a uniform plate, b) one-axis trapezoidal plate,  

c) two-axes trapezoidal plate 

In the energy equations, the plate type is varied through the thickness function 

specified in Equations (3-5), (3-6), (3-7), and (3-8).  

3.1.1.2.1 Uniform Plate 

For a uniform plate, as depicted in Figure 3-8-a, the thickness does not vary across 

the x and y-axes of the plate. The thickness variation is imposed into the energy 

equation as follows; 

 

(x, y)h t  (3-5) 

 

The plate is modelled as a cantilevered Kirchoff plate along one longitudinal side via 

Rayleigh-Ritz approximation, where the transverse shear effects are neglected. In 

order to compare the results with those of the FE model, an example case is modelled 

and solved in MSC Patran/Nastran as a bending plate. The following arbitrarily 

selected loaded cases are solved; 

 Case-1, a uniform pressure loading of 2000 N/mm2 is applied to the plate 

a) b) c)
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 Case-2, a uniform distributed line loading of 11000 N/mm along the 

longitudinal axis 

 Case-3, a point load line loading of 1000 N at the point (x,y)=(a,b/2) 

For Case-1, the FE model gives the maximum deflection as 0.0328 mm, as depicted 

in Figure 3-9, whereas the Rayleigh-Ritz approximation with seven shape functions 

in both directions gives 0.0312 mm. The error is calculated as 0.488%.  

 

 

Figure 3-9 FEM results for uniform bending plate, uniform pressure loading 

 

For Case-2, the maximum deflection for a uniform distributed line loading of 11000 

N/mm is obtained from the Nastran package program as 0.942 mm, as depicted in 

Figure 3-10. The Rayleigh-Ritz approximation with eight shape functions in both 

directions gives the maximum deflection as 0.0924 mm. The error is calculated as 

1.91 %.  
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Figure 3-10 FEM results for uniform plate, loading along a line 

 

For Case-3, the maximum deflection for a point load line loading of 1000 N at the 

point (x,y)=(a,b/2) is obtained from the FE model as 0.107 mm, as shown in Figure 

3-11. The maximum deformation calculated by the Rayleigh-Ritz approximation 

with seven shape functions in both directions is 0.126 mm. The error is calculated as 

17 %.  

 

,  

Figure 3-11 FEM results for uniform plate, point load 
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3.1.1.2.2 One-axis Trapezoidal Plate: 

For a one-axis trapezoidal plate, as shown in Figure 3-8-b, the thickness varies across 

the x or y-axes of the plate, and this thickness variation is imposed into the energy 

equation as, 

 

(x) t 1 x

x
h c

a

 
  

 
 (3-6) 

or 

(y) t 1 y

y
h c

b

 
  

 
 (3-7) 

 

where t is the thickness parameter, xc  and yc  are the taper ratio specifying the 

thickness variation along the plate x-axis or y-axis, respectively, a is the length of 

the longitudinal side and b is the length of the transverse side of the plate.  

The same plate model given at 3.1.1.2.1 is utilized. The plate is loaded with a uniform 

pressure of 2000 N/mm2 for an arbitrarily loading case. As shown in Figure 3-12, 

the maximum deflection for a uniform pressure loading of 2000 N/mm2 is obtained 

as 0.0394 mm at the point (x,y)=(a,b/2). On the other hand, the maximum deflection 

from the Rayleigh-Ritz approximation with five shape functions in both directions is 

calculated as 0.0399 mm. The error is calculated as 1.2 %. 
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Figure 3-12 FEM results for one-axis tapered plate model, pressure loading 

3.1.1.2.3 Two-axis Trapezoidal Plate: 

For a two-axes trapezoidal plate, as shown in Figure 3-8-c, the thickness varies along 

both the x and y axes of the plate, and this variation is imposed into the energy 

equation as follows; 

 

(x, y) t 1 x y

x y
h c c

a b

 
   

 
 (3-8) 

 

where and are the taper ratios specifying the thickness variation along the plate x-

axis or y-axis, respectively.  

The same plate model given at 3.1.1.2.1 is solved with the thickness function given 

in Equation (3-8). The plate is loaded with a uniform pressure of 2000 N/mm2 for an 

arbitrarily loading case. 

In Figure 3-13 below, deformation results obtained from Nastran are displayed; the 

maximum deflection is obtained from Nastran as 0.104 mm. On the other hand, the 

maximum deformation calculated by the Rayleigh-Ritz approximation is 0.0979 

mm, with two shape functions in both directions, and 0.1004 mm, with seven shape 
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functions in both directions. The error is calculated for seven shape functions in both 

directions as 3.8%.  

 

 

Figure 3-13 FEM results for two-axis tapered plate model, uniform pressure 

loading 

3.1.1.3 Finite Strip Method 

The finite strip method (FSM) is a numerical method that compares favorably with 

the finite element method (FEM) in terms of run-time, storage of stiffness, load, and 

resulting output matrices. FSM combines the idea of the analytical Kantorovich-

Vlassov's method and the FEM technique [92]. It is a semi-analytical finite element 

modelling using continuous functions to satisfy the boundary conditions in one 

direction of the plate and finite element discretization in the other direction. Thus, 

the two-dimensional plate problem reduces to a one-dimensional problem [93]. A 

typical plate discretized with n finite strip elements is shown in Figure 3-14. 

FSM can be classified into two categories that differ in selecting the shape functions 

for the longitudinal axis of the plate problem, namely [94],  

 Semi-analytical FSM (SFSM) 

 Numerical FSM (NFSM). 

 

SFSM uses a function series (beam eigenfunctions, orthogonal polynomial series) 

that satisfy a finite strip's end conditions in the longitudinal direction. In the 
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orthogonal direction, simple polynomials are utilized. Sample sine and cosine 

functions defined over the width of a finite strip element are plotted in Figure 3-15 

and Figure 3-16, respectively. 

 

 

Figure 3-14 A plate discretized with n finite strip elements 

 

 

 

Figure 3-15 Sine functions for seven harmonics for SFMS 
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Figure 3-16 Cosine functions for seven harmonics for SFSM 

 

However, SFSM has some disadvantages while defining the concentrated forces, 

multiple spans, and discrete supports at strip ends [92]. Since sine and cosine series 

are continuously differentiable everywhere, this property causes problems when 

there is an abrupt change in any property (i.e., thickness) or the presence of any 

concentrated loads, or internal supports, because second or third derivatives will be 

discontinuous [92].  

 

 

Figure 3-17 B3 spline functions, for NFSM, specified for a free variable at the 

boundary of the problem 

 

Therefore, to overcome these difficulties, NFSM is proposed by several authors. 

NFSM utilizes spline functions instead of Fourier series. Sample B3 spline functions 
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defined over the width of a finite strip element are plotted in  Figure 3-17 and Figure 

3-18 for free and fixed variables at the boundary of the plate, respectively. 

 

 

Figure 3-18 Spline functions for NFSM, specified for a fixed variable at the 

boundary of the problem 

 

FSM become the subject of many researches, several of them are given in the review 

article [95]. Some of them are directly related to gear tooth modelling by using FSM 

[96]. For the face-gear and the spur pinion, the utilized strip element formulation is 

given at Chapter 3.2. 

 

 

Figure 3-19 A finite strip element 

 

The following cases are solved for a uniform thickness plate. For Case-1, 2, and 3, 

the plate is loaded with arbitrary uniform pressure, simply supported on both long 

sides (along x=0 and x=b) and free on the short sides (along y=0 and y=b). SFSM is 
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utilized. Along the long side, appropriate shape functions are imposed by the Fourier 

series with seven harmonics. The short side of the strip element is taken as, 

  

 2-noded at Case-1, as depicted in Figure 3-20-a, 

 3-noded at Case-2, as depicted in Figure 3-20-b 

 4-noded at Case-3, as depicted in Figure 3-20-c 

 

For Case-4, NFSM is utilized. Along the long side, appropriate shape functions are 

imposed with B3 splines. The short side of the strip element is taken as, 

 

 2-noded at Case-4, as depicted in Figure 3-20-a. 

 

The deflection results for Case-1, 2, and 3 are tabulated in  Table 3-1. The deflections 

are also demonstrated in Figure 3-22. As shown in the table, the results are 

comparable with the MSC Nastran model of the plate. As node number increases 

along the plate's short side, the error is reduced for the displacement values at the 

free edges and the specified arbitrary point on the first strip element. 

 



 

 

77 

 

Figure 3-20 a) 2-noded, b) 3-noded, c) 4-noded Finite Strip Element with the 

appropriate polynomials, [97] 
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Table 3-1  Comparison of FE and FSM deflection results for Case-1, Case-2, and 

Case-3 

 

At the free edges (mm) 

(x=0, y=b/2 on 1st strip) 

In the middle (mm) 

(x=a, y=b/2 on 2nd strip) 

At an arbitrary point 

(mm), at the edge of strip 

1 

(x=a, y=b/2 on 1st strip) 

 SFSM MSC-

Nastran 

Error 

(%) 

SFSM MSC-

Nastran 

Error 

(%) 

SFSM MSC-

Nastran 

Error 

(%) 

Case-1 7.29 

7.88 

7.4 6.40 

6.39 

-0.25 6.48 

6.63 

2.25 

Case-2 7.68 2.4 6.48 -1.5 6.57 0.84 

Case-3 7.74 1.6 6.48 -1.4 6.58 0.80 

 

The deflection results for Case-4 are tabulated in  Table 3-2. The deflections are also 

demonstrated in Figure 3-22. Even with four strip elements, the error is less than 1%. 

This demonstration shows the power of the Finite Strip Method for the cases for 

uniform or slightly varying cross sections. 
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Table 3-2  Comparison of FE and FSM deflection results for Case-4 

 At the free end of the plate 

(mm) 

(x=0, y=b on 1st strip) 

In the middle (mm) 

(x=a, y=b/2 on 2nd strip) 

 NFSM MSC-

Nastran 

Error 

(%) 

NFSM MSC-

Nastran 

Error 

(%) 

Case-4 7.29 7.88 4.0 22.47 22.6 -0.56 

 

 

 

Figure 3-21 Comparison for deflection Case-4, a) MSC Nastran FE Model with 50 

CQUAD elements, b) 2-noded FSM Model with four strip elements, c) 3-noded 

FSM Model with four strip elements, d) 4-noded FSM Model with four strip 

elements 

 

a) b)

c) d)
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Figure 3-22 Comparison for deflection Case-4, a) MSC Nastran FE Model with 50 

CQUAD elements, b) 2-noded FSM Model with four strip elements 

3.1.1.4 Finite Prism and Quasi Prism Method 

Analysis of a structure with 3D FEM costs and sometimes is unnecessary for the 

structures with a constant or a nearly constant shape in one direction, and simple 

boundary conditions. The Finite Prism Method (FPM) yields good results with a 

much smaller number of input data and compares favorably with FEM in terms of 

run time. A typical FPM and QPM elements are depicted in Figure 3-23-a and Figure 

3-23-b, respectively. 

As Finite Strip Method (FSM), FPM also combines the idea of the analytical 

Kantorovich-Vlassov's method and the FEM technique [92]. FPM can be considered 

as a special form of 3D FEM concerning the shape of displacements along a given 

direction [98]. FPM does not use polynomial displacement functions in all three 

directions for the elementwise discretization. It incorporates polynomial 

displacement functions only in two directions. Along the third direction, it uses 

continuous functions which satisfy the boundary conditions without any elementwise 

discretization.  

 

a) b)
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Figure 3-23 Prismatic solids discretized in two dimensions a) with FPM and b) 

with QPM [99] 

 

Similar to FSM, FPM can also be classified into two categories that differ in selecting 

the shape functions for the longitudinal axis of the plate problem. 

Semi-analytical FPM uses a function series (beam eigenfunctions, orthogonal 

polynomial series) which satisfies the end conditions of a prism-like structure a priori 

in the longitudinal direction and simple polynomials in the remaining orthogonal 

directions [98]. Numerical FPM combines Fourier expansions along the prismatic 

direction and 2D solid elements for discretizing the transverse cross-section [100]. 

The method is suitable for analyzing prismatic solid structures that do not have 

significant changes in transverse cross sections. The method have been utilized by 

several authors for the analysis of different structures [101–107].  

The finite Quasi-Prism Method (QPM), on the other hand, is a valuable method for 

modelling structures that are only partially prismatic shapes or which have prismatic 

shapes within them [108–110]. A quasi-prism element is a three-dimensional 

element. It is utilized for the analyses of the parts in which the cross-section remains 

constant or nearly constant for the length of the element. It resembles the FPM 

a) b)
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element but differs in that, along all axode curves, depicted in Figure 3-24, the 

geometry is approximated with higher order Chebyshev functions [108] in all three 

dimensions. Element formulations for both methods have been given in Appendix 

D. 

 

 

Figure 3-24 A typical QPM element with axodes, [108]  

 

The following arbitrarily loading cases are solved. 

 Case-1, an arbitrary unit point load is applied to a constant cross-section 

plate, which is modelled by FPM,  

 Case-2, an arbitrary uniformly distributed line load along a straight line 

applied to a constant cross-section plate, which is modelled by FPM,  

 Case-3, an arbitrary uniformly distributed line load along a straight line 

applied to a variable cross-section plate, which is modelled by QPM. 
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Figure 3-25 a) The element numbering and b) the node numbers for the 2D 

discretization 

 

For all cases, eight 8-noded iso-parametric elements have been utilized for the 

modelling, which is formulated in Appendix D. The two ends of the plate are simply 

supported. The following discretization in the xz plane is performed. The element 

numbers and corresponding node numbers and their connectivity information are 

given in Figure 3-25. Figure 3-26-a and Figure 3-26-b show a plate modelled with 

finite prism elements and a plate modelled with quasi prism elements, respectively. 

 

 

 

 

 

 

a) b) 
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Figure 3-26 a) The prism with a constant cross-section along the longitudinal axis 

(FPM), b) the prism with a variable cross-section along the longitudinal axis (QPM) 

 

Case-1: Constant cross section, ends simply supported, point load is applied, 

depicted in Figure 3-27 

 

 

Figure 3-27 Application of point load, constant cross-section 

a) b) 
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Figure 3-28 shows the FPM results and the Abaqus 3D FEM results at the upper left 

corner of element 1, varying the number of utilized harmonics and gauss integration 

points. Note that position 0.6 is the load application point. 

 

 

Figure 3-28 FPM comparison with 3D FEM, element 1, location [1,-1] (location is 

depicted in Figure D-1)  

 

Figure 3-29 shows the FPM results and the Abaqus 3D FEM results at the upper left 

corner of element 2, varying the number of utilized harmonics and gauss integration 

points. FPM gives a very good approximation at the specified locations. 
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Figure 3-29 FPM comparison with 3D FEM, element 3, location [1,-1] ] (location 

is depicted in Figure D-1)  

 

In Figure 3-30, for a fixed number of harmonics, increasing the gauss points in the 

integration process yields better results for all positions, except at the load 

application point. As it can be seen by examining both Figure 3-30 and Figure 3-31 

that increasing both utilized harmonics and gauss integration points will decrease the 

error. 
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Figure 3-30 FPM comparison with 3D FEM, element 1, location [1,-1], number of 

utilized harmonics is 8, number of gauss points varies  

 

As seen from Figure 3-31, especially for the load application point, as harmonics are 

increased, better results are obtained for a fixed number of gauss points. 

 

Figure 3-31 FPM comparison with 3D FEM, element 1, location [1,-1], gauss 

point  is 6, number of the utilized harmonics varies 
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Figure 3-32 and Figure 3-33 compares the results for element 7 and element 5, 

respectively, for several gauss points and harmonics with the Abaqus 3D FEM data. 

 

 

Figure 3-32 FPM comparison with 3D FEM, element 7, location [-1,1], number of 

gauss points, and number of utilized harmonics vary 

 

 

Figure 3-33 FPM comparison with 3D FEM, element 5, location [-1,1], number of 

gauss points, and number of utilized harmonics vary 
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Case-2: Constant cross-section, ends simply supported, line load is applied along a 

straight line, depicted in Figure 3-34. 

  

Figure 3-34 Application of line load, constant cross-section; stress distribution, 

and deformation results 

 

 

Figure 3-35 FPM comparison with 3D FEM, constant cross-section, line load 

application, element 1, location [-1,-1], gauss point  is 4, harmonics 6 
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Figure 3-36 FPM comparison with 3D FEM, constant cross-section, line load 

application, element 3, location [-1,-1], gauss point  is 4, harmonics 6 

 

 

Figure 3-37 FPM comparison with 3D FEM, constant cross-section, line load 

application, element 1, location [1,-1], gauss point  is 5, harmonics 6 
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Case-3: Variable cross-section, ends simply supported, line load is applied along a 

straight line 

 

  

Figure 3-38 a) 3D FE model and application of line load, b) ABAQUS results 

 

Figure 3-39, Figure 3-40, Figure 3-41, and Figure 3-42 compare the deflections 

obtained by the Abaqus 3D model and the variable cross-section FPM (QPM) for 

elements 1, 3, 5, and 7, respectively. The utilized gauss points for the integral 

calculations are four, and the utilized harmonics along the cross-section are taken as 

five or six.  The figures show that utilizing six harmonics with four gauss points for 

the variable cross-section case is not enough to get accurate results. Increasing them, 

on the other hand, will significantly increase the computational time. In Case-1 and 

Case-2, four gauss points incorporating five or six harmonics were enough to catch 

accurate plate deflection results. 
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Figure 3-39 Comparison with 3D FEM, variable cross-section, line load 

application, element 1, location [1,-1], gauss point  is 4, with harmonics 5 or 6 

 

 

Figure 3-40 Comparison with 3D FEM, variable cross-section, line load 

application, element 3, location [1,-1], gauss point  is 4, with harmonics 5 or 6 

 



 

 

93 

 

Figure 3-41 Comparison with 3D FEM, variable cross-section, line load 

application, element 5, location [1,-1], gauss point  is 4, with harmonics 5 or 6 

 

 

Figure 3-42 Comparison with 3D FEM, variable cross-section, line load 

application, element 7, location [1,-1], gauss point  is 4, with harmonics 5 or 6 
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3.1.1.5 Discussion on the methods for the bending stiffness 

The TSM yields good results compared to models created via the finite element 

method. It saves considerable computational time and appears to be the most 

straightforward method. However, since each slice is independent of each other, the 

main problem is finding the coupling stiffness between those slices. In literature, 

these stiffness values are generally calculated by several 3D FE runs, by which an 

empirical formula is generated for the coupling between the adjacent slices, and this 

coupling term is added to the uncoupled stiffness matrix of the gear, as in the 

Börner’s empirical formula, given in Equation (3-4). This formula will be model 

dependent and will not apply to a specific geometry.  

 

 

Figure 3-43 a) Double axis-trapezoidal tapered plate b) Face-gear  

 

Then, one should calculate the coefficient C of Börner's equation, which will require 

several FE runs and increase computational time.  

double-axis tapered plate face-gear

isometric view

top view
top view

isometric view
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The Rayleigh-Ritz approximation for the Kirchoff plate works very well. It has been 

incorporated for different loading conditions and obtained comparable results with 

the FE models run within the Nastran package program. Also, with imposing 

thickness variation along both x and y axes, any geometry may be modelled via this 

method. Figure 3-43 shows the double-axis trapezoidal tapered plate and face-gear 

profiles. In order to model the thickness variation on the face-gear's tooth surface, 

the thickness Equation (3-8) must be derived analytically or numerically for a typical 

face-gear.  

Finite Prism Method gives accurate results obtained via 3D FE model with a 

favorable number of gauss points for the integrals and five or six harmonic functions 

along the cross-section. However, the face-gear’s surface geometry varies along the 

face width and therefore has to be modelled by a varying cross-section prism 

element, which is, in fact, the Quasi-Prism element. On the other hand, the Quasi-

Prism Method does not give accurate results for the same amount of gauss points and 

harmonics. In order to catch the deflection of the varying cross section, the gauss 

point and the harmonics incorporated along the face width have to be increased. This 

will lead to increased computational time. In addition, both FPM and QPM a priori 

require modelling a 2D finite element model. They, therefore, require the 

connectivity information of the nodes on this 2D model to be provided, which will 

increase the computational time. 

The study in this chapter is performed to select an efficient, less time-consuming, 

and the most straightforward stiffness calculation method for parametric studies. The 

FSM appears to be the most advantageous method among the others. It does not a 

priori require any 2D or 3D element formulation since it is an extension of a 1D 

beam element. The second dimension is introduced by B3 splines or the Fourier 

series, which are appropriately formed according to the plate boundary conditions in 

the problem. The Mindlin plate theory can easily be applied to finite strip elements. 

As discussed in Chapter 2, a variable thickness strip element can also be incorporated 

to increase the method's accuracy with a small number of strip elements. 
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3.1.2 Contact Stiffness Contribution 

Contact deformation between the meshing gear teeth is a contributing deflection to 

the total deflection. In literature, apart from utilization of sophisticated hybrid FE 

package programs, the following analytical methods are utilized for calculating this 

deformation [111]. Except Brewe&Hamrock's method, all equations assume line 

contact between the meshing gears.  

 Hertz's Equation, 

 Conry's Equation 

 Cornell's Equation 

 Palmgren's Equation 

 Weber's Equation 

 Brewe&Hamrock's Equation 

The formulations for the listed methods are given in Appendix E. 

3.1.2.1 Comparison of the Methods 

For the case tabulated in Table 3-3, the contact stiffness values are calculated for the 

load levels F=500N, F=1000N, F=1500N, F=2000N according to Palmgren’s, 

Weber/Banascheck’s and Brewe&Hamrock’s equations.  

Table 3-3  Input values 
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Figure 3-44 to Figure 3-47 show the contact stiffness values of the contact points 

located on four different contact lines (at four different instants of a mesh cycle) of 

the conjugate action between the face-gear and the spur-pinion, specified in Table 

3-3. The values are comparable for the bottom surface of the face-gear’s tooth. But 

as contact line approaches to top surface of the tooth, Brewe&Hamrock’s method 

gives higher values than the values calculated by Palmgren and Weber/Banascheck 

Method. 

 

 

Figure 3-44 Contact stiffness a) at the first contact line, by b) Weber/Banascheck, 

c) Palmgren, d) Brewe&Hamrock, for various load levels 

a) b)

c)

d)
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Figure 3-45 Contact stiffness a) at the fifth contact line, by b) Weber/Banascheck, 

c) Palmgren, d) Brewe&Hamrock, for various load levels 

 

 

Figure 3-46 Contact stiffness a) at the sixth contact line, by b) Weber/Banascheck, 

c) Palmgren, d) Brewe&Hamrock, for various load levels 

a) b)

c) d)

a) b)

c) d)
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Figure 3-47 Contact stiffness a) at the twenty fifth (last) contact line, by b) 

Weber/Banascheck, c) Palmgren, d) Brewe&Hamrock, for various load levels 

 

3.2 Mesh Stiffness Calculations for a Face-Gear and Spur-Pinion 

3.2.1 Introduction 

In this study, for the mesh stiffness calculations of the face-gears, semi-analytic FSM 

(Finite Strip Method) is utilized. The face-gear and the spur gear teeth are discretized 

through FSM using Mindlin Plate Theory. As shape functions of the finite strip 

elements, B3-splines are utilized for the longitudinal length of a strip element, and 

4-noded simple polynomials are utilized along the short length of the strip element.  

 

The thickness along the face-width and also along the profile direction is generally 

varied with a linear function for the defined strip element. In this study, the 

mentioned thickness values along both dimensions are approximated via NURBS 

(Non-Uniform Rational B-Splines) functions [71], as mentioned in the previous 

chapter. By this method, the tooth of the face-gear is defined as a surface in space, 
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which provides a continuous thickness variation within the finite strip element. The 

analytical model is validated via finite element analysis. 

Figure 3-48 shows a typical face-gear tooth surface with its fillet, discretized into 

eight finite strip elements. First, the point cloud is generated for the face-gear tooth’s 

surface, as depicted in Figure 3-48-a. Then, the boundaries of the tooth are 

calculated. The boundaries of the tooth are shown in Figure 3-48-b and Figure 3-48-

c, with and without the generated point cloud, respectively. The tooth is discretized 

into several elements, as shown in Figure 3-48-d and Figure 3-48-e. Finally, the 

stiffness matrix and the load vector for each discretized element are calculated to be 

assembled in a global stiffness matrix and in a global load vector. 

 

The face gear tooth has a significant fillet at the base of part of the tooth. Therefore, 

the fillet of the face-gear is also included in the FSM element, however compliance 

due to foundation is not taken into account. The bending contribution is calculated 

through Finite Strip Method (FSM) whereas the contact contribution is not taken into 

account. In addition, the face gear has a different cross section at each point along 

the face width, and a single cross-section model cannot hold for the entire face width. 

Therefore, the face-gear will be sliced into several parts through its face width, their 

compliances will be calculated separately and finally they will be averaged to get an 

averaged stiffness value along the contact lines. The thickness of the tooth also is 

varied in the element formulation. In other words, each strip element has a variant 

thickness value. A typical face-gear tooth modelled with 8 finite strip elements along 

the profile direction, and with seven B3 spline-functions along the tooth profile 

direction is depicted in Figure 3-49. 
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Figure 3-48 a) Generated point cloud for the face-gear tooth profile and its fillet 

surface, b) the boundaries of the tooth with the point cloud, c) the boundaries of the 

tooth d) the discretized tooth into eight strip elements, e) the resulted finite strip 

elements 
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Figure 3-49 a) A typical curved finite strip discretization, isometric view, b) view 

in yz plane, c) the grids, six nodes along the profile direction (utilizing 7 cubic B3-

spline functions) and four-noded element formulation along the face-width 

direction 
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3.2.2 Application of Finite Strip Method to Mindlin Plate Theory with 

Cubic B-Splines 

The formulation utilized for the FSM discretization of Mindlin Plate by cubic B-

spline is given below. For a finite strip element with n nodes, the resulted 

displacement vector is defined as [96,112–114], 

 

1 1
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where the vector δ  is given as, 

 

 
T

x xw  δ  (3-10) 

 

and the shape function matrix 
m

iΛ is for the mth harmonic of the ith node and given 

as 
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(3-11) 

 

The generalized strain vector for a straight strip element is defined as, 
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and for a curved strip element it is defined as, 
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The stiffness matrix corresponding to the mth harmonic of the ith nodal line and the 

nth harmonic of the jth nodal line is calculated as,  

 

 ,

,

T
m n m m

i j i ik dxdy         B D B  (3-14) 

 

where the strain matrix 
m

iB  for the mth harmonic of the ith nodal lines is defined as, 
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Similarly, the stiffness matrix for a curved finite strip element is given as, 

 

 ,

,

T
m n m m

i j i ik rd dr         B D B  (3-16) 

 

and the corresponding strain matrix 
m

iB  for the mth harmonic of the ith nodal lines is 

given as, 
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The utilized four-noded shape functions, which are defined along the face-width 

direction of the tooth, are expressed with the following equations and they are plotted 

for a length b in Figure 3-50. 
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Figure 3-50 The four-noded polynomial shape functions of the finite strip element 

for the face-width direction of the tooth 

 

The elasticity matrix D is defined as, 
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(3-18) 

 

where  may be taken as 6/5 for rectangular cross section [97]. The force vector for 

the mth harmonic of the ith nodal line for a straight finite strip element can be defined 

as 

m m

i i q dxdy   f S  (3-19) 

 

and similarly, for a curved strip element, the force vector can be defined as 
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m m

i i q rd dr   f f  (3-20) 

where q specifies the transverse force. 

The utilized cubic B3-spline with equally placed sections, which is defined with the 

following formula, is plotted for a length a is given in Figure 3-51. 
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(3-21) 

 

Figure 3-51 The cubic B3-spline functions for equally spaced sections along the 

length a 
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The tooth is assumed to be clamped from its bottom-land, which specifies that all 

three degree of freedoms are set to zero at the specified location

 0, 0, 0x yw     . In order to satisfy this boundary condition, the cubic-

splines curves are modified as,  
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(3-22) 

 

which gives the new series as in Figure 3-52. 

 

 

Figure 3-52 The utilized cubic B3-spline functions for the strip element along the 

cantilevered side to free side of the toot (profile direction) 
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3.2.3 Combining the stiffnesses of the meshing pairs 

Figure 3-53 shows one pair of meshing face-gear and spur-pinion pair at a time 

instant. A unit load is applied to all contact points on a specific contact line and a 

compliance matrix is constructed for the specified time instant. The mesh stiffness 

for that time instant, as depicted in Figure 3-54, is calculated.  

 

 

Figure 3-53 Meshed surfaces of a face-gear and its shaper at a time along a contact 

line a) at the meshing position b) a separated view of the case in a) 

 

 

 

 

 

 

 

 

 

 

Figure 3-54 Averaged stiffness along the contact line 
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In the application of the face-gears, contact ratio is greater than 2. This means that 

there exist time periods when three pairs come to contact at the same time. Figure 

3-55 shows a time instant at which three meshing pairs exist. The mesh stiffness has 

to be calculated with the appropriate combination of them. For this, the time instants 

where two pairs or three pairs are in contact have to be calculated.  

 

Figure 3-55 Face-gear tooth pairs in contact 

 

The Figure 3-56 to Figure 3-61 demonstrate the instances where two or three Tooth 

Pairs (TP) make contact. The input parameters for this case study are given below: 

 

Table 3-4  Input parameters 

Parameter Spur Pinion Face Gear 

Number of teeth 23 103 

Module (mm) 3.175  

Pressure angle (˚) 20  

Shaft angle (˚) 90  
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Figure 3-56 demonstrates the instant where TP 1 makes first contact while TP -1 and 

TP 0 are already in contact. This case is named as Case [-1 0 1], and rotation angle 

is read as 0=0.4826 radians. 

 

Figure 3-56 Tooth pairs -1, 0 and 1 are in contact, Case [-1 0 1] 

 

Figure 3-57 demonstrates the instant where TP -1 just leaves the contact area while 

TP 0 and TP 1 are already in contact. This case is named as Case [0 1], and rotation 

angle is read as 1=0.3466 radians. 

 

 

Figure 3-57 Tooth pairs 0 and 1 are in contact, Case [0 1] 
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Figure 3-58 demonstrates the instant where TP 2 makes first contact while TP 0 and 

TP 1 are already in contact. This case is named as Case [0 1 2] and rotation angle is 

read as v2=0.2516 radians. 

 

 

Figure 3-58 Tooth pairs 0, 1 and 2 are in contact, Case [0 1 2] 

 

Figure 3-59 demonstrates the instant where TP 0 first leaves the contact area while 

TP 1 and TP 2 are already in contact. This case is named as Case [1 2], and rotation 

angle is read as 3=0.1046 radians. 

 

 

Figure 3-59 Tooth pairs 1 and 2 are in contact, Case [1 2] 
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Figure 3-60 demonstrates the instant where TP 3 makes first contact while TP 1 and 

TP 2 are already in contact. This case is named as Case [1 2 3], and rotation angle is 

read as 4=0.0176 radians. 

 

 

 

Figure 3-60 Tooth pairs 1, 2 and 3 are in contact, Case [1 2 3] 

 

And finally, Figure 3-61 demonstrates the instant where TP 1 first leaves the contact 

area while TP 2 and TP 3 are already in contact. This case is named as Case [2 3] 

and rotation angle is read as  s=-0.1124 radians. 

 

 

 

Figure 3-61 Tooth pairs 1 and 2 are in contact, Case [1 2] 
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The rotation angle values in Table 3-5, specifies the instances when tooth pairs make 

contact for the first time and lose contact from their pairs for the first time. The 

difference between the values of 6  and 1  specifies the period of the variation of 

mesh stiffness for the tooth pair (TP 1), which is  1 6 0.5950    radians. Setting 

1 0  , and knowing that 
1 6 0.5950    radians corresponds to 25 contact lines, 

the contact line correspondents for each six time instants are calculated accordingly. 

 

Table 3-5  Rotation angles and corresponding time instants for TP1 

 

Time instant i  i(rad) 1i(rad) Contact line 

correspondent 

case [-1 0 1] 1 0.4826 0 1 

case [0 1] 2 0.3466 0.136 6.71 

case [0 1 2] 3 0.2516 0.231 10.70 

case [1 2] 4 0.1046 0.378 16.88 

case [1 2 3] 5 0.0176 0.465 20.53 

case [2 3] 6 -0.1124 0.595 26 

 

 

Table 3-6 summarizes the instants that tooth pairs mesh or lose contact in terms of 

contact lines; for the current case, 25 contact lines are taken into account. "0" denotes 

the instant when toot pair makes contact, "25" denotes the time when tooth pair loses 

contact, and other intermediate values portrays the location of the contact on the 

tooth surface accordingly, in terms of the available contact lines. 
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Table 3-6  Instants when the tooth pairs mesh or lose contact 

 

 TP 1 TP 0 TP 1 TP 2 TP 3 

case [-1 0 1] 19.2 9.11 1   

case [0 1] 26 15.8 6.7   

case [0 1 2]  19.8 10.7 1  

case [1 2]  26 16.8 7.17  

case [1 2 3]   20.5 10.8 1 

case [2 3]   26 16.2 6.4 

 

Figure 3-62 gives the resulting mesh stiffness of the gear pair specified in Table 3-4. 

 

 

Figure 3-62 Total Mesh stiffness 

 

3.2.4 Determining the Appropriate Strip Elements 

Application of a point force creates local singularity, and the deformation of the 

application point brings significant error. Refining the mesh size also worsens the 

situation. For the bending contribution of the displacement of a contact point on tooth 
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surface, in 3D FE model, the deflection of the point on the opposite side of the tooth 

is taken into account. The following tooth surface is generated through the developed 

Matlab code and exported to Abaqus FE package software.  

 

 

Figure 3-63 a) Generated tooth geometry, b) 3D FE model in ABAQUS 

The generated tooth is discretized with 3D finite element type of C3D10 of Abaqus. 

The generated number of nodes is 200614, and the created number of elements is 

137970. The point load is applied at the pointing side (outer side) of the tooth, as 

seen in Figure 3-64 and at the inner side of the tooth, as seen in Figure 3-65. 

The deformation due to bending is sought, but due to nature of the point load this 

value cannot be read from the obtained result at the application point. 

The same tooth is discretized using 4, 5, 8, 12, 16, 23, and 44 finite strip elements, 

and the point force is applied at the same location. The deformation is taken at the 

nodal point that corresponds to the application point and the nearby nodal line within 

the same element. These deformation values are averaged, and the resulting values 

are plotted below. As the number of the strip elements is increased, the resulting 

value converges to the value obtained from the 3D Abaqus FE model, as shown 

Figure 3-64 and Figure 3-65. Two arbitrarily loaded case studies are performed: 

 Case-1: A unit load is applied at the depicted location in Figure 3-64. 

 Case-2: A unit load is applied, at the depicted location in Figure 3-65. 

a) b)
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Table 3-7 and Table 3-8 summarize the comparison of the result obtained by 3D 

Abaqus model discretized with 137970 C3D10 elements formed by 200614 nodes, 

with those obtained by using the 1D FSM model discretized with 44 strip elements 

with 133 nodes. The error for Case-1 is around 0.2 %, whereas the error for Case-2 

is around 9.8%. These results clearly show the power of FSM method. 

 

Table 3-7  Comparison of FSM results with 3D FEM ABAQUS results, Case-1 

 

 Deformation (mm) 

Abaqus Software 9.7145*10^-5 

FSM with 4 strips 3.6557 

FSM with 5 strips 4.3555 

FSM with 8 strips 5.4632 

FSM with 12 strips 8.1888 

FSM with 16 strips 9.7400 

FSM with 23 strips 9.7383 

FSM with 44 strips 9.7333 
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Figure 3-64 Averaged deformation vs number of finite strip elements, Case-1 

 

Table 3-8  Comparison of FSM results with 3D FEM ABAQUS results, Case-2 

 

 Deformation (mm) 

Abaqus Software 1.1754x10^-5 

FSM with 4 strips 1.1187x10^-5 

FSM with 5 strips 1.1604x10^-5 

FSM with 8 strips 1.2292x10^-5 

FSM with 12 strips 1.2605x10^-5 

FSM with 16 strips 1.2744x10^-5 

FSM with 23 strips 1.2849x10^-5 

FSM with 44 strips 1.2849x10^-5 
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Figure 3-65 Averaged deformation vs number of finite strip elements, Case-2
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CHAPTER 4  

4         MATHEMATICAL MODELS AND DYNAMIC ANALYSIS OF FACE-

GEARS 

4.1 Non-linear Dynamic Model for a Split-Torque Face-Gear Drive System 

A non-linear dynamic model of the multi-mesh face-gear split-torque drive system 

shown in Figure 1-15 is developed. Here, the dynamic model is a lumped mass 

system consisting of five pinions and two face gears. The system has seven rotational 

degrees of freedom with all rigid gear bodies. This system has two inputs, two 

outputs, and three idler gears. The mesh stiffness is established by FSM utilizing the 

actual spur pinion and face-gear tooth geometries presented in [27]. The enveloping 

procedure for the surface generation of a face-gear, the mesh stiffness calculation 

procedure, and the dynamic analysis procedure are depicted in Figure 4-2.  

 

         

Figure 4-1 a) Example 3D model  b) Produced tooth geometries 
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Figure 4-2 Flow diagram for the dynamic analysis of the drive system 

 

 

Figure 4-3 Split-torque face-gear drive system 

 

The split-torque system consists of one Upper Face Gear (UFG) as output and one 

Lower Face-Gear (LFG) as an idler. Between them, there exist five pinions, two of 

which are inputs (P1, P3), one is output (P2), and the remaining two are idler pinions 

(P4, P5), as shown in Figure 4-3.   

In this transmission system, P1 and P3 may be considered as the input of the drive 

system, and power input from these pinions is split and then transmitted to UFG and 
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LFG. UFG is connected to the main output shaft, while LFG serves as an idler in the 

torque transfer path. Similarly, P2 is the pinion connecting to the secondary output 

shaft, which collects torque from UFG and LFG, and drives the secondary output 

shaft. LFG collects the split torques from P1 and P3. Then, it transmits some portions 

to P2, and some portions directly to UFG through the idler pinions P4 and P5, as 

shown in Figure 4-4.  

 

 

Figure 4-4 Power flow of the split-torque system 

 

4.1.1 Mathematical Model 

The developed torsional dynamic model for the given system is depicted in Figure 

4-5. The dynamic model of a split-torque face-gear drive system resembles a 

planetary gear system, as studied in [115–118]. 
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Figure 4-5 Dynamic model for the split-torque system 

The equations of motion of the non-linear model may be given as follows:  

For face-gears 1 and 2 (jth gear), 

               
5

1

, 1,2gj gj gji ji ji ji ji gj

i

I t t c t p t k t g p t T t j 


     (4-1) 

For pinions 1 to 5 (ith pinion), 

 

               
2

1

, 1..5pi pi pji ji ji ji ji pi

j

I t t c t p t k t g p t T t i 


     (4-2) 

where piI and giI are the mass moment of inertias of the pinions and the gears, 

respectively;  piT t  and   gjT t are the torque loads on the pinions and face gears, 

respectively;  jic t  is the time-variant mesh damping between jth gear and ith 

pinion;  jik t  is the time-variant mesh stiffness between jth gear and ith pinion; 
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 gji t  and   pji t  are the directional rotational radii of the ith pinion and the jth 

face-gear, respectively.  

Since the constructed system is a pure rotational system, only the rotational 

displacements are taken into account; therefore, the directional rotational radii are 

expressed as, 

 

     

     

( ),

( )

pi pi pi pi

gi gi gj gi

t n t r t

t n t r t

 

 

  

  
 (4-3) 

where  pin t  and  gjn t   are the unit normal vectors of the mesh point of the ith 

pinion and jth face gear, respectively;  pir t  and  gjr t are the position vectors of 

the mesh point, pi  and gj  are the unit vectors along the ith pinion and jth the face-

gear rotational axis, respectively. 

The expression for the dynamic transmission error (DTE) between the ith pinion and 

the jth face-gear is: 

 

   ( ) ( ) ( )ji pji pi gji git t t t t       as 1..5i   and 1,2j   (4-4) 

 

The gear mesh displacement between the ith pinion and the jth face-gear is: 

 

  ji( ) e (t)ji jip t t   as 1..5i   and 1,2j   (4-5) 
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where 
jie (t)  is the static transmission error (STE) between the ith pinion and the jth 

face-gear due to geometrical errors of the gear teeth profile. The gear mesh 

displacement combines STE and DTE. 

The piecewise-linear displacement function between the ith pinion ad the jth face-gear 

is, 
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 (4-6) 

 

where 2 jib is the total gear backlash between the ith pinion and the jth face-gear. 

Equations (4-1) and (4-2) are non-dimensionalized by utilizing a characteristic 

frequency c  and a characteristic length cb  by imposing the following equations; 
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(4-8) 

Using equations (4-7) and (4-8), with the chain rule,  jip t  may be calculated as, 
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(4-9) 
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So,   jip t  is expressed as: 

     
1

ji ji c c ji

c

p t p t b p t


   
(4-10) 

Also, stiffness and damping terms are re-written as the product of their mean values 

and time-variant parts as: 

 

   ji ji jik t km k t ,    ji ji jic t cm c t  (4-11) 

 

where 
jikm  and 

jicm  are the mean,  jik t and  jic t  are the time-variant parts of the 

stiffness and damping terms, respectively. Also, using the definition of  
jib   given in 

Equation (4-7), Equation (4-6) is nondimensionalized as: 
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 (4-12) 

 

Finally, using the definition given in Equation (4-8),  gj t  may be expressed as; 

 

     
1

gj gj gj

c

dt
t t t

dt
  


   

(4-13) 

so,  gj t  and  gj t  may be expressed as, 
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   gj c gjt t   ,    2

gj c gjt t    (4-14) 

 

Substituting the parameters given in Equations through (4-7)-(4-11), Equations (4-1) 

and (4-2) become nondimensionalized as,  

 

              
5

2

1

2 (t) , 1,2gj gji ji ji gji ji ji g j

i

t t p t t k t g t f t j   


   

  

(4-15) 
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1
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j

t t p t t k t g t f t i   


     (4-16) 

where, 
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4.1.2 Mesh Phasing 

There are ten meshing locations between the pinions and the face gears, as shown in 

Figure 4-5. Mesh-1 is taken as the reference meshing position. Concerning this 

meshing location, appropriate phase differences are imposed on all remaining 

meshes according to their gear-set arrangement type, whether a split-torque or an 

idler arrangement. 

The STE for all specified mesh locations is defined as,  

 

   
1

sin
NE

ji

ji r ji

r

e t E r t r


     
(4-20) 

 

where 
ji

rE  and ji  are the rth harmonic amplitude and the phase difference of the 

mesh between the ith pinion and the jth face-gear. All gears are assumed to be 

identical. Therefore, no additional phase is introduced into Equation (4-20), for the 

sake of simplicity. Hence, the only phase between any two meshing locations is the 

ji  term in Equation (4-20).  

There are two types of gear-set arrangements, which are classified according to the 

imposed loading condition [118]. At the first arrangement, given in Figure 4-6,  Gear 

2 (G2) is the input, Gear 1 (G1) and Gear 3 (G3) are the outputs. This is known as the 

split-torque arrangement. At the second case, G3 (output) is driven by G1 (input) 

through G2 (idler), which is named as the idler arrangement.  
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                    Figure 4-6 Split-torque and idler arrangements 

For the split-torque system, the following phase difference relations are utilized for 

the phasing between pinion-gear engagements, according to their arrangement types, 

discussed above; 

 

 1 1 , 1..5i g iN i      (4-21) 

 2 , 1..5i pN i      (4-22) 

 

where Ng is the face-gear number of teeth, Np is the spur pinion tooth number, as 

tabulated in Table 4-1.  is the angle between the lines connecting the centers of 

the meshing gears.   is specified as:  

 





 


0, split torque arrangement

2, idler arrangement
 

(4-23) 
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The orientations of all gears are arranged with respect to P1, as shown in Figure 4-7. 

The orientation of the pinions and corresponding phase differences are tabulated in 

Table 4-1. 

 

 

 

Figure 4-7 Orientation of the pinions on the face-gear 
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Table 4-1 Phase differences between the meshes 

Mesh 

 

Mesh 

location 

Middle 

gear 

teeth 

numbe

r  

Orientation 

angle () 

Mesh 

phase 

difference 

(ji) 

Arrangement 

type (between 

the ith mesh and 

the reference 

mesh) 

     

Mesh-1 UFG and P1 Ng 0 0 reference mesh 

Mesh-2 UFG and P2 Ng 1 N2*1+ idler 

Mesh-3 UFG and P3 Ng 2 N2*2+0 split torque 

Mesh-4 UFG and P4 Ng  N2*3+ idler 

Mesh-5 UFG and P5 Ng  N2*4+ idler 

Mesh-6 P1 and LFG Np  N1*+11 split torque 

Mesh-7 P2 and LFG Np  N1*+12 split torque 

Mesh-8 P3 and LFG Np  N1*+13 split torque 

Mesh-9 P4 and LFG Np  N1* +14 split torque 

Mesh-10 P5 and LFG Np  N1*+15 split torque 

 

The calculated phases for each mesh location also apply to the corresponding mesh 

stiffness, where they are taken out of phase at the related meshing location. Thus, the 

mesh stiffness equation for all specified mesh locations is defined as,  

 

   
1

1 sin
NK

ji

ji r ji

r

k t r t r 


        
(4-24) 
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where 
ji

r  and ji  are the rth harmonic amplitude and the phase difference of the 

mesh between the ith pinion and the jth face-gear.  

4.1.3 Effect of Directional Rotational Radius 

Directional rotational radius is calculated at each contact point of the meshing teeth. 

It specifies the moment arm of the distributed force due to the applied total torque of 

the pinion and the gear. It has time-varying characteristics when the surface 

geometry is complex, as in bevel or hypoid gears [119]. Tang et al. [120] studied the 

effect of this parameter on the dynamic response of the system. However, both 

analytical and numerical calculations reveal that the directional rotational radii for a 

face-gear and a mating spur-pinion do not vary with time. Equation (4-3) shows this 

parameter as time-variant for a general case. However, it is not taken as time-variant 

throughout the dynamic analysis. The analytical calculations are performed with the 

Mathematica package program and are given in Appendix F. The obtained 

expressions for  pi t and  gi t  are,  

 

 pi bst r   (4-25) 

  

       cos cos singi bs m s os s m st r u           (4-26) 

 

where os   is the parameter that specifies the tooth spacing, and may be given as 
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 0
2

os

s

inv
N


    

(4-27) 

where us and θs are the generalized coordinates that specify the shaper involute tooth 

profile, α0 is the pressure angle and Ns is the tooth number of the spur-shaper. The 

curvilinear coordinate us is parallel to the zs direction of the fixed cartesian coordinate 

shown in Figure 4-8, and θs is the rolling angle.  

 

 

           Figure 4-8 Involute profile of the shaper   

 

As specified in Chapter 2, for the conjugate action of tooth profiles (that is to say, 

surface normal at the point of contact is perpendicular to the sliding velocity between 

the two meshing surfaces at all time instants), the equation of meshing should be 

satisfied, 
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      / /0 1 cos sin cosbs s g m s s g m s os sr m u m          (4-28) 

 

Taking  cos s os s     from Equation (4-25) and inserting it into Equation (4-26) 

yields, 

 

 
  

 
 

/

/

1 cos
cos sin

sin

bs s g m

gi bs m m s

s s g m

r m
r u

u m


  




    

(4-29) 

which simplifies to  

/

gbs
gi bs

s g s

Nr
r

m N
     

(4-30) 

Equations (26) and (4-29) give the directional rotational radius for the spur and the 

face-gear, respectively. As it can easily be seen, they do not have any time-varying 

components. gi  is equal to the product of the base circle radius of the spur pinion 

and the reduction ratio. 

4.1.4 Solution Method 

The non-linear equations of motion are solved by using the Harmonic Balance 

Method (HBM) together with Arc-Length Continuation Method [121] in obtaining 

the periodic steady-state response of the system in the frequency domain. The results 

are compared with the time simulation results obtained with Runga Kutta numerical 

solution method. The STE and the mesh stiffness are expressed with only the first 

harmonics terms. The torque values are assumed to be constant.  

For seeking the solution by HBM in conjunction with the Arc-Length Continuation 

Method, similar to the harmonic expressions for the mesh stiffness and STE as in 
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Equations (4-20) and (4-24), the time and displacement varying parameters of the 

system (i.e. mesh damping, rotational dofs of the disks, DTE, gear mesh 

displacement) are also expressed as in the following form 

 

      0 2 2 1

1

cos sin
N

ji ji ji

ji r r

r

t r t r t






        (4-31) 

where  ji t  represents any of these parameters between the ith pinion and the jth 

face-gear, 0

ji  is the bias term, 2

ji

r and 2 1

ji

r are the coefficients of sine and cosine 

terms of the rth harmonic, respectively. 

The RMS value of the gear mesh displacement is plotted with respect to 

dimensionless frequency. The RMS of gear mesh displacement between the jth face-

gear and ith pinion is calculated as, 

 

 
1 2

2 2

2 2 1

1

R
rms

ji ji r ji r

r

p 



 
          

 
  (4-32) 

 

where 2ji r and 2ji r are the Fourier coefficients of the thr  harmonic of  jip t .  

4.2 Non-linear Dynamic Model For A Face-Gear and Spur Pinion Pair 

When i and j are set to 1 in Equations (4-15) and (4-16), the formulation for a face-

gear and a spur pinion pair is obtained. Figure 4-9 shows the dynamic model of the 

pair model. Re-writing the mentioned equations for i=1 and j=1 yield, 
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Figure 4-9 Dynamic model for a pair of face-gear and a spur-pinion 

 

              
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where, 
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(4-37) 

  

The parameters specified in Equations (4-3) through (4-14) are also valid for the 

face-gear spur-pinion pair case, i.e., when i=1 and j=1. 
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CHAPTER 5  

5 PARAMETRIC STUDIES 

5.1 Case Studies for a Pair of Face-Gear and Pinion 

The non-linear equation of motion is solved together with the Harmonic Balance 

Method (HBM) and Arc-Length Continuation Method [121] for the periodic steady-

state response of the system in the frequency domain. The results are compared with 

the time simulation results obtained with Runga-Kutta numerical method. The STE 

and the mesh stiffness variations are expressed with only their first harmonics terms. 

The torque values are assumed to be constant. The input parameter list for the four 

cases is given in Table 5-1. 

Using the SDOF system of the gear pair, some parametric studies are performed to 

seek the effect of backlash and the applied torque. 

 

 

Table 5-1  Parameters of the gear pair 
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5.1.1 Effect of Backlash 

Case-1 

RMS values of the gear mesh displacement between the face-gear and the pinion for 

several backlash values are shown in Figure 5-1, for Case-1. The solution is obtained 

with Harmonic Balance Method (HBM) coupled with Arc-Length Continuation 

Method utilizing three harmonics. The nonlinearity in the SDOF system is the 

backlash value between the gear teeth. Firstly, the backlash value is set to zero (or 

the backlash nonlinearity is not taken into account), and the Linear Time Variant 

(LTV) version of the system with the parameters given in Table 5-1 is obtained. 

Figure 5-1 shows this LTV version of Case-1.  

 

 

Figure 5-1 Comparison of the RMS values of the response (gear mesh 

displacement between face-gear and the pinion) for Case-1, increasing backlash 

from bc =5 μm to 200 μm, frequency range ω=0.01ωc to ω=1.4ωc 

 

Then the effect of the backlash value on the response of the system is investigated. 

The backlash value is varied from 1 μm to 200 μm (in the increasing arrow direction), 

as depicted in Figure 5-1, for the specified torque values. The response for the LTV 
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shows no signs of hardening or softening spring effect, as expected. However, with 

bc=1 μm to bc=34 μm, both hardening and softening effects are observed for each bc 

values. 

Figure 5-2 shows the same results given in Figure 5-1, but for only 5 μm, 15 μm, 25 

μm, 33 μm, 34 μm and the values larger than 34 μm together with the LTV system 

response. The softening spring (separation and single sided impact) and then 

hardening spring (separation and double-sided impact) effect is clearly depicted in 

Figure 5-2, for the bc values less than 34 μm. However, for bc≥34 μm, hardening 

effect disappears. This is due to fact that, the deflection of the tooth is not enough to 

cover the clearance specified by the total backlash value, 2bc.  

 

 

Figure 5-2 Comparison of the RMS values of the response (gear mesh 

displacement between face-gear and the pinion) for Case-1, for the backlash values 

bc =5, 15, 25, 33 μm and 34 μm, frequency range ω=0.01ωc to ω=2.5ωc 

 

It can easily be observed that the RMS of the gear mesh displacement values for the 

specified frequency range are the same for the backlash values 34 μm to 200 μm. 

This depicts that increasing the backlash beyond 34 μm does not change the system's 
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dynamic response, for the specified static torque values. The hardening spring effect 

vanishes at a bc value between 33 μm and 34 μm. 

Case-2 

The system in Case-2 is the same as the system given in Case-1, but only the 

reference backlash value is different, as depicted in Table 5-1. The RMS values of 

the gear mesh displacement between the face-gear and the pinion for several 

backlash values are depicted in Figure 5-3, for Case-2. Figure 5-3 demonstrates the 

effect of increasing the backlash value from 1 μm to 200 μm (in the arrow direction) 

on the system's response. The results for 10, 15, 20, 25, 33, 44 μm and 200 μm are 

plotted together with the LTV system response. For the LTV system, the clearance 

is set to zero, as mentioned in the previous case. The response of the system is the 

same for the backlash values 34 μm to 200 μm, which means increasing the backlash 

beyond 34 μm does not change the system's dynamic characteristics.  

 

 

Figure 5-3 Comparison of the RMS values of the response (gear mesh 

displacement between face-gear and the pinion) for Case-2, for the backlash values 

bc =10, 15, 20, 25, 33μm and for all values between 34 μm and 200 μm, frequency 

range ω=0.01ωc to ω=2.5ωc 
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The transition between the double-sided and single-sided impacts occurs between 

the backlash values of 33 μm and 34 μm. Figure 5-3 also shows the system's response 

for several backlash values between 33μm and 34μm. The transition happens in the 

circled area; as backlash increases from 33 μm to 34 μm, the bulge closes and 

disappears when backlash equals 34 μm.  

Case 3 

The RMS values of the gear mesh displacement between the face-gear and the pinion 

for several backlash values are plotted for Case-3 in Figure 5-4.  

 

 

Figure 5-4 Comparison of the RMS values of the response (gear mesh 

displacement between face-gear and the pinion) for Case-3, for the backlash values 

bc =10, 15, 25, 35, 45, 50, 55 μm and for all values between and 60 μm and 200 μm, 

frequency range ω=0.01ωc to ω=2.5ωc 

 

This figure demonstrates the effect of increasing the backlash value from 1 μm to 

200 μm (in the arrow direction) on the system's response. Figure 5-4 shows the results 

for 10 μm, 15 μm, 25 μm, 35 μm, 45 μm, 60 μm and 200 μm together with the LTV 
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system response. It can easily be seen that the results are the same for the backlash 

values 60 μm to 200 μm. Hence, the backlash does not change the system's dynamic 

response after 60 μm. 

Case-4 

The same system given in Case-3 with a reduced static torque value is considered in 

Case-4. The RMS values of the response between the face-gear and the pinion for 

several backlash values are calculated. The solution is obtained with the harmonic 

balance method (HBM) utilizing three harmonics.  

 

 

Figure 5-5 Comparison of the RMS values of the response (gear mesh 

displacement between face-gear and the pinion) for Case-4, for the backlash values 

bc =5 μm, 7 μm, 13 μm, 17 μm, 23 μm, and for all values between and 24 μm and 

200 μm, frequency range ω=0.01ωc to ω=2.5ωc 

 

Figure 5-5 demonstrates the effect of increasing the backlash value from 1 μm to 200 

μm (in the arrow direction) on the system's response. The results for 5, 7, 13, 17, 23, 

24 μm, and 200 μm, together with the LTV system response are given in Figure 5-5. 

The results are the same for the backlash values 24 μm to 200 μm. Increasing the 

backlash after the value of 24 μm, does not change the system characteristics. 
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Comparing the results in Case-3 and Case-4 shows that the response levels in Case-

3 are higher than the levels in Case-4. This is an expected result due to high static 

torque values. In Case-3, the transition from double-sided impact to single-sided 

impact occurs around the backlash value of 60 μm. In Case-4, this value is calculated 

to be around 24 μm, as given in Figure 5-4 and Figure 5-5. The static torque applied 

in Case-3 causes enough deflection to cover the clearance; therefore, double-sided 

tooth impact can be seen up to 60 μm backlash value. In Case-4, on the other hand, 

the torque value is less than the torque in Case-3. Therefore, enough deflection for 

the double-sided impact is not created, and the amount of clearance avoids the 

double-sided impact. The system characteristics cannot be altered by increasing the 

backlash value beyond 24 μm. 

 

5.1.2 Effect of Static Torque 

Figure 5-6 and Figure 5-7 show the response between the face-gear and the pinion 

for several torque values, for the system given in Case-4. The effect of increasing 

torque value is investigated with the torque values from Tg=1.0 T to 100 T (in the 

arrow direction), where T is a reference torque value. The results for 1.0 T, 10 T, 20 

T, 30 T, 40 T, 50 T, 60 T, 70 T, 80 T, 90 T, and 100 T are given in Figure 5-7. 

Figure 5-6 shows the results for only 1.0 T, 20 T, 50T, 70T, and 100T. As the torque 

value increases, the amplitude of the response, at which the softening (single-sided 

impact) and hardening (double-sided impact) starts, increases, as depicted in the 

figure. This phenomenon occurs due to the static deflection caused by the applied 

torque values. As it is increased, a large amplitude of the dynamic response is needed 

to separate the tooth. The given backlash value is not large enough to avoid double-

sided impact; hence, both single and double-sided impacts occur at each torque level, 

as shown in Figure 5-6 and Figure 5-7. 
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Figure 5-6 Comparison of the RMS values of the response (gear mesh 

displacement between face-gear and the pinion) for Case-4, increasing reference 

torque values for bc =20 μm, frequency range ω=0.01ωc to ω=2.5ωc 

 

 

 

Figure 5-7 Comparison of the RMS values of the response (gear mesh 

displacement between face-gear and the pinion) for Case-4, increasing reference 

torque values from 1.00 T to 100 T, for bc =20 μm, frequency range ω=0.01ωc to 

ω=2.5ωc 
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5.1.3 Effect of Damping and Static Torque on Subharmonic Response 

For the system Case-1 given in Table 5-1, the existence of the subharmonic is 

investigated for different damping and static torque values. The damping coefficient 

is varied between 1600 N.s/m to 3250 N.s/m, and its effect on the gear mesh 

displacement is investigated. 

In a geared system, damping can be affected by many parameters such as structural, 

viscous characteristics, frictional and bearing losses, and churning losses. In this 

section, the details of the damping physics are not investigated. A reasonable 

approximation of the damping values is made. The damping values are taken as 

varying between 1600 N.s/m and 3250 N.s/m, which correspond to viscous damping 

ratios of 0.038 and 0.076, respectively, being consistent with the values frequently 

used in literature, [122–124]. The gear mesh displacement between the face-gear and 

the pinion is calculated by HBM using five super-harmonics together with ½ 

subharmonic. The results are compared with the time simulation results obtained 

with Runga-Kutta numerical method for the damping value of 1600 N.s/m.  

Figure 5-8 shows the effect of damping on the subharmonic peaks observed around 

the frequency range ω=1.5ωc and ω=2.1ωc. The response curves are plotted for 

several damping values. For the damping values of 1600 N.s/m and 1800 N.s/m, the 

dynamic response curves do not form a closed curve at the specified frequency range. 

However, beginning from the value 2400 N.s/m, the dynamic response curve forms 

a closed curve. As the damping is increased, the size of this curve becomes smaller. 

A similar result is obtained by varying the applied torque value. The applied torque 

is increased for the same system, and the response curves are obtained. Figure 5-9 

gives the gear mesh displacement for several torque values. As depicted in the figure, 

the closed curves for the subharmonic resonance peaks tend to vanish as the applied 

torque increases. 
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Figure 5-8 Comparison of the RMS values of the response (gear mesh 

displacement between face-gear and the pinion) for the damping values, 1600 

N.s/m time simulation (o), 1600 N.s/m HBM solution (─), 1800 N.s/m HBM 

solution (─), 2400 N.s/m HBM solution (─), 2500 N.s/m HBM solution (─), 3000 

N.s/m HBM solution (─), 3250 N.s/m HBM solution (─),for the frequency range 

ω=0.1ωc to ω=2.5ωc 

 

 

Figure 5-9 Comparison of the RMS values of the response (gear mesh 

displacement between face-gear and the pinion) for the torque values, Tg=1.00T 

(─), Tg=1.05T (─), Tg=1.10T (─), Tg=1.15T (─), Tg=1.18T (─), Tg=1.20(─), for the 

frequency range ω=0.1ωc to ω=2.5ωc 
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5.2 Case Studies for Split-Torque Face-Gear Drive System 

5.2.1 Effect of Orientation Angle Pattern 

The non-linear equations of motion are solved together with the Harmonic Balance 

Method (HBM) and Arc-Length Continuation Method [121] for the periodic steady-

state response of the system in the frequency domain. The results are compared with 

the time simulation results obtained with Runga-Kutta numerical method.  

 

Table 5-2  Parameters of the system 

Parameter Symbol Value 

Number of teeth, face-gear Ng 103 

Number of teeth, spur-gear Np 23 

Module (mm) mn 3.175 

Pressure angle (°) ac 20 

Moment of inertia, jth face-gear (kg.m2) Igj 0.1392 

Moment of inertia, ith spur-gear (kg.m2) Ipi 0.0300 

Total Gear Backlash, between the ith pinion 

and jth face-gear (m) 

 2bji  80 

Input power (kW) Tp3, Tp5 750 

Secondary output power (kW)  Tp2 250 

Primary output power (kW) Tg1 1250 

Mean value of the mesh stiffness (N/m) 
jikm  4.5x108 

Mean value of the mesh damping (N.s/m) 
jicm  3000 

STE, for all mesh locations 
1

jiE  0.075 
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The STE and the mesh stiffness variations are expressed with only their first 

harmonics terms. The torque values are assumed to be constant. The input parameters 

for this case study are listed in Table 5-2. 

For seeking the solution by HBM in conjunction with the Arc-Length Continuation 

Method, similar to the harmonic expressions for the mesh stiffness and STE as in 

Equations (4-20) and (4-24), the time and displacement varying parameters of the 

system (i.e., mesh damping, rotational dofs of the disks, DTE, gear mesh 

displacement) are also expressed as in the following form 

 

      0 2 2 1

1

cos sin
N

ji ji ji

ji r r

r

t r t r t






        (5-1) 

 

where  ji t  represents any of these parameters between the ith pinion and the jth 

face-gear, 0

ji  is the bias term, 2

ji

r and 2 1

ji

r are the coefficients of sine and cosine 

terms of the rth harmonic, respectively. 

The RMS value of the gear mesh displacement is plotted with respect to 

dimensionless frequency. The RMS value of gear mesh displacement between the jth 

face-gear and ith pinion is calculated as, 

 

 
1 2

2 2

2 2 1

1

R
rms

ji ji r ji r

r

p 



 
          

 
  (5-2) 

 

where 2ji r and 2ji r are the Fourier coefficients of the thr  harmonic of  jip t .  

Due to the non-linear nature of the system, the response may include many harmonic 

and sub-harmonic components. To further clarify, an example case study is presented 
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below for a system defined in Table 5-2, where input pinion orientation angles of P1 

and P3 are 45° with respect to P2 axis, while idler pinions P4 and P5 are at 30° with 

respect to P2 axis. In order to evaluate the level of accuracy of the HBM solution, the 

harmonic content is firstly investigated with 3-harmonics in this numerical case 

study. The RMS values of the gear mesh displacements at ten meshing positions 

generated by HBM and the time simulation results are shown in Figure 5-10 for 

comparison. While comparing the results with the time simulation results, 

particularly at specific frequency ranges, it can be observed that the 3-harmonic 

HBM solution becomes insufficient to express the exact solution. For these 

frequency ranges, the harmonic content of the solution is altered to comprise some 

sub-harmonic content. Solving this highly non-linear case becomes computationally 

too expensive for parametric studies. Hence, reasonable approximations are made 

for accurate and meaningful evaluations.   

 

 

Figure 5-10 Comparison of RMS value of the gear mesh displacements at ten 

meshing locations, 3-harmonic HBM (—), and time simulation (o) 
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For simplicity, to seek the effect of the orientation pattern of the pinions among the 

face gears, only the response at the Mesh-10 is explained here. Figure 5-11 

demonstrates the RMS value of the response between the LFG and the idler pinion 

P5. HBM solution and time simulation are given in the same plot. As shown in the 

figure, the 3-harmonics HBM solution fits well with the time simulation results. 

However, particularly between ω=1.0 ωc and ω=2.0 ωc, the response differs from the 

time simulation results at some frequency values due to the sub-harmonic content of 

the system response. This phenomenon is typical because the drive system has non-

linear mesh stiffnesses varying both with displacement and time. With a specific 

phase, as discussed in the following section, these sub-harmonics may be excited 

about a given frequency range. To evaluate this phenomenon, the frequency content 

of the system's dynamic response is assumed to have 1/2 sub-harmonic together with 

the fundamental harmonic. The obtained solution between the frequencies ω =1.02 

ωc and ω=1.92 ωc, is shown in Figure 5-11. A large portion of the time data within 

the specified frequency range is approximated pretty accurately with the given HBM 

solution.  

 

 

Figure 5-11 Comparison of the RMS values of the response (gear mesh 

displacement between lower face gear and one of the idler pinions), 3-harmonic 

HBM (—), 1-harmonic HBM with ½ sub-harmonic solution (—) between 1.00 ωc 

and 1.92 ωc, and the time simulation results (o) 
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At ω=1.65 ωc, the time series and the power spectrum at the specified frequency are 

presented in Figure 5-12, along with phase projection and Poincare map. Here, phase 

projection shows the gear mesh displacement and the time derivative of the gear 

mesh displacement, while the Poincare map presents the phase projection at discrete 

time values ti=t0+k(2πω/ωc), where t0=0, i=0,1,2,…). The power spectrum shows that 

the gear mesh displacement between the idler pinion and the UFG comprises two 

main frequencies; the fundamental frequency and ½ sub-harmonic. As shown in 

Figure 5-12-d, two points on Poincare map indicate that the dynamic response is a 

period-2 motion. Phase projection shows a closed orbit, which indicates a periodic 

motion. It does not cross itself because ½ sub-harmonic content of the response is 

dominant, as depicted in the power spectrum. Thus, the given HBM solution fits well 

with the time data; since the frequency content is consistent with the assumed HBM 

solution. 

 

 

Figure 5-12 (a) Time series (b) power spectrum, (c) Phase projection, (d) Poincare 

section, at ω=1.65 ωc 

 

Similarly, at ω=1.16 ωc, as seen from the power spectrum of the time series given in 

Figure 5-13, the frequency content seems to be rich in 1/4, 2/4, ¾, 5/4, 6/4, and 7/4 

sub-harmonics, while assumed HBM solution contains of only ½ sub-harmonic and 
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the fundamental harmonic. Therefore, seeking a solution with the fundamental 

harmonic and ½ sub-harmonic is not enough to approximate the exact solution 

around those frequencies. Besides, the Poincare map of the steady-state portion of 

the time simulation forms a smooth curve with many points, indicating that the 

dynamic response may be a quasiperiodic motion [125,126]. Hence, it is difficult to 

approximate the exact solution by HBM with these many sub-harmonic frequency 

contents.  

 

 

Figure 5-13 (a) Time series (b) power spectrum, (c) Phase projection, (d) Poincare 

section, at ω=1.16 ωc  

 

The parametric study is performed to seek the effect of orientation angle pattern 

which dictates mesh phasing among pinions on the system's dynamic response. Here, 

2 sets of 3 different configurations are solved with HBM utilizing 3-harmonics for 

ω=0 and ω=2.5ωc and utilizing ½ sub-harmonic for ω=1.4ωc and ω=2.5ωc, reducing 

the computational time drastically compared to the time simulation. In the first set 

(Set-1), the idler pinions P4 and P5 are set at 90° with respect to each other (at 45° 

with respect to P2), while the input pinions P1 and P3 are set at 45° (Case-1), by 60° 

(Case-2) and by 90° (Case-3) with respect to P2. In the second set (Set-2), the idler 

pinions P4 and P5 are set at 60° with respect to each other (at 30° with respect to P2), 

while the input pinions P1 and P3 are set at 45° (Case-4), by 60° (Case-5) and by 90° 
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(Case-6) with respect to P2. The basic orientations of the gears are presented in 

Figure 5-13.  

 

 

Figure 5-14 Visual representation of the Case Study Sets, a) Set-1 of the 

parametric study, b) Set-2 of the parametric study 

 

Table 5-3 Orientation angles of the pinions 

CASE 1 2  

1 45° 90° 180° 270° 

2 60° 120° 195° 285° 

3 90° 180° 225° 315° 

4 45° 90° 195° 255° 

5 60° 120° 210° 270° 

6 90° 180° 240° 300° 
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The orientation angles of the six cases are summarized in Table 5-3. HBM results 

for Set-1 are presented in Figure 5-15. Non-linear behavior is observed as single-

sided and double-sided tooth impacts with the given system parameters for all three 

cases around ω=0.74 ωc and ω=0.89 ωc. As can be seen, Case-3 has the lowest 

response amplitude when compared with the other two cases between the 

dimensionless frequencies ω=1.2ωc and ω=2.5ωc. Time-varying mesh stiffness leads 

to the parametric excitation which reveals itself as super-harmonic resonance peaks 

at ω=0.37 ωc and ω=0.47ωc. Unlike the previous two configurations, in Case-3, no 

subharmonic motions are observed. However, Case-3 gives the maximum amplitude 

around ω=0.89ωc. 

 

 

Figure 5-15 The RMS values of the gear mesh displacement between LFG and P5 

for Set-1; (—) Case-1, (---) Case-2, (−∙−) Case-3 

 

Similarly, Figure 5-16 demonstrates the RMS value of the response between the LFG 

and one of the idler pinions (P5) for Set-2 (Case-4, 5, and 6) for comparison. Case-6 

depicts no subharmonic motions, while the other two cases clearly show 

subharmonic resonance peaks between ω=1.4ωc and ω=2.3ωc. At ω=0.38ωc and 

ω=0.5ωc, super-harmonic resonance peaks are observed due to parametric excitation. 

Case-6 gives the maximum amplitude around ω=0.89ωc. 
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Figure 5-16 The RMS values of the gear mesh displacement  between LFG and P5 

for Set-2; (—) Case-4, (---) Case-5, (−∙−) Case-6 

 

As seen in Figure 5-15 and Figure 5-16, the response levels for Case-3 and Case-6 

are the lowest among all six cases for the specified frequency range ω=1.0ωc and 

ω=2.5ωc.  

In Case-3 and Case-6, the sub-harmonics around ω=1.5 ωc vanish due to the feasible 

orientation of the pinions compared to the other cases. These feasible orientations 

enable proper phase differences between the non-linear teeth meshing parameters. 

Therefore, with the proper phase differences, sub-harmonic resonance does not 

occur. However, since the meshing parameters (stiffness, damping) vary with 

displacement and time, proper phase differences can only be calculated with a 

comprehensive parametric non-linear analysis of a given drive system.  

The phase values at the meshing locations are prescribed in Table 3. As an example, 

in Case-1 and 4, the non-linear restoring and damping forces at Mesh-1 are in phase 

with the forces at Mesh-4, and forces at Mesh-3 are in phase with the forces at Mesh-

5.  
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Therefore, considering Mesh-10 as an example, the phase at which the torque is split 

from P3 to LFG becomes exactly equal to the phase at which the torque is transferred 

from LFG to UFG through the pinion P5. 

Also, the phase at which the torque is split to UFG or LFG through the input pinion 

P1 becomes exactly equal to the phase at which the energy is being dissipated during 

the torque transfer through P5 at Mesh-5 and Mesh-10. 

With these proper phase differences, the drive system achieves a steady-state motion, 

and the nonlinearity limits the amplitude to a finite value whose frequency is exactly 

one-half the frequency of the excitation [127]. Therefore, a sub-harmonic motion is 

observed. 

On the other hand, in Case-3 and 6, the phase at which the torque is transferred from 

any of the input pinions to LFG is not exactly equal to the phase at which the torque 

is transferred from P5 to UFG. Therefore, a sub-harmonic resonance does not occur.  

 

 

Figure 5-17 The RMS values of gear mesh displacement between LFG and P5 for 

Set-2, the regions of unstable points between ω=1.0ωc  and ω=2.4ωc; Case-4, (—) 

3-harmonic HBM, (∙∙∙) 1-harmonic HBM with ½ sub-harmonic; Case-5 (—) 3-

harmonic HBM, (∙∙∙) 1-harmonic HBM with ½ sub-harmonic; Case-6 (—) 3-

harmonic HBM, (∙∙∙) 1-harmonic HBM with ½ sub-harmonic, (∙) stable solution, (*) 

unstable solution 
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Here, a numerical Floquet Theory [21,22] approach is used to substantiate the 

stability of the drive system through the obtained HBM solution. This approach 

easily depicts the regions where the sub-harmonic resonance occurs. Then, this 

phenomenon may be avoided with a proper orientation of the pinions. Figure 5-17 

focuses on the response obtained for the Set-2 between ω=1.0ωc  and ω=2.0ωc with 

only 3-harmonics. It demonstrates the regions on the frequency axis where the drive 

system has at least one positive eigenvalue, making it unstable. These regions are 

also consistent with the HBM solution obtained with ½ sub-harmonic. Case-4 and 

Case-5 have unstable points for the prescribed frequency range, whereas, for Case-

6, these points become stable. 

 

 

Figure 5-18 Bifurcation diagrams for the RMS values of gear mesh displacement 

between LFG and P5 for Set-2, a) Case-4, b) Case-5, c) Case-6 

 

In order to validate the results, the bifurcation diagrams for the specified drive 

systems in Set-2 are generated by cascading the Poincare sections taken from the 

time simulation data obtained for all excitation frequencies in the range ω=1.0ωc and 

ω=2.0ωc and shown in Figure 5-18. To concentrate on the pure steady state 

conditions, the time simulation between 125 to 250 cycles is considered in this 

investigation. As depicted in Figure 5-18, Case-4 and Case-5 have several regions of 

period-2, period-3, period-4 motion. The diagram also reveals quasiperiodic or 



 

 

160 

chaotic regions for some frequency ranges, depicted with many points. However, 

Case-6 has only period-1 motion in the given frequency range. For Case-4, the 

diagram reveals many points for ω=1.16 ωc and only two points for ω=1.65ωc, as 

shown in Figure 5-12 and Figure 5-13. 

In some cases, not using sub-harmonics in the HBM solution gives misleading 

results. On the other hand, utilizing sub-harmonics and super harmonics together in 

the HBM solution increases the computational time. The regions of sub-harmonic 

resonances, on the other hand, are located and defined by the Floquet Theory as 

unstable regions in the system response. Hence, even if ½ sub-harmonic is omitted 

to reduce the computational time, the HBM results with 3-harmonics coupled with 

the Floquet Theory may be utilized to locate and then avoid these sub-harmonic 

resonances in the system response.  

5.2.2 Effect of Time-Variant Parameters 

5.2.3 Effect of Power Values and Torque-Split Amounts 

A split-torque system utilized in high-torque applications such as helicopter and 

marine transmission systems is given in Chapter 1. Transmitting the torque through 

several paths brings many advantages to the system. Several methods were 

mentioned in Chapter 1 for providing an even torque split between the split branches. 

One of the popular methods was the quill shaft method, which introduced additional 

torsional flexibility between the connected gears. 

The developed model in this study is a split-torque system, as depicted in Figure 4-4. 

Power coming from two input pinions is divided into two paths, upper face-gear 

(UFG) and lower face-gear (LFG). The power directed to LFG is again re-collected 

at the UFG through the idler gears. The load transmitted by the idlers to the UFG is 

the portion of input torque transmitted from the input pinions to the LFG and then to 

the idlers.  
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Shaft compliance plays an essential role in the torsional dynamics of the drive 

systems. This chapter introduces torsional flexibility to the input pinions P1 and P3, 

which simulates a quill shaft.  

 

 

Figure 5-19 Modified dynamic model of the split-torque face-gear drive system 

 

The equations of motion for the developed torsional dynamic model were given 

through Equations (4-1) and (4-2) in Chapter 4. Re-writing Equation (4-1) here for 

UFG and LFG in Figure 5-19 yields,  

 

               
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,gj gj gji ji ji ji ji gj

i

I t t c t p t k t g p t T t 


    (5-3) 

 

where j 1..2.  

By introducing the quill shafts as torsional springs at the input pinions and modifying 

the Equation (4-2) only for the input pinions yields,  
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where 1,3i  . 

Finally, re-writing the Equation (4.2) here for the idler pinions gives 
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where 2,4,5i  . 

At any time instant, the fraction of the torque transmitted to the UFG through the ith 

pinion's mesh is defined as, 

 

,

i

tpui

i i

tpu tpl

W
UTS

W W



 (5-6) 

 

where iUTS  is the Upper Torque Split, iLTS  is Lower Torque Split, 
i

tpuW  is 

tangential load transmitted at ith pinion to UFG, 
i

tplW  is the tangential load 

transmitted at ith pinion to LFG, at any time instant, as depicted in Figure 5-20. 
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Figure 5-20 Wtpu
i and Wtpl

i at the ith pinion 

 

The fraction of torque transmitted to the LFG through the ith pinion's mesh is defined 

with the following formula, 

1i iLTS UTS   (5-7) 

 

The system specified as Case-1 in Chapter 1.2.1 is solved for calculating torque-split 

ratios. When the flotation is not permitted, the pinion's torque split ratios become as 

depicted in Figure 5-21.  

 

Pi
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i
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Figure 5-21 Torque split ratios for the pinions in the face-gear drive system 

 

Away from the resonant frequency, 70 percent of the input torque is directly 

transmitted to UFG, and around 30 percent of the input torque is transmitted to LFG 

through the input pinions P1 and P3.  

Around the resonant frequency, the torque sharing approaches 60 percent through 

UFG and 40 percent through LFG. 

The output pinion P2 collects most of its torque from the LFG around the resonant 

frequency. This ratio becomes at most 89 percent through LFG and 11 percent 

through UFG. 

On the other hand, idler pinions P4 and P5 transmit all the power from LFG to UFG. 

Hence, a torque-split ratio of 50 percent is achieved. 

In order to simulate the floating pinion case, the support stiffness values for the input 

pinions are altered with the scale factors SF=1.0, SF=0.5, SF=0.1, SF=0.05, and 

SF=0.01 with respect to the mesh stiffness value, where the mesh stiffness value is 

assumed to be 1.0. 

UTS

LTS

UTS

LTS

UTS

LTS
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Figure 5-22 Torque split ratios for the input pinion P1 

 

Figure 5-22 and Figure 5-23 show the torque split ratios of the input pinions P1 and 

P3, respectively. The split ratios are plotted for several SF values. By the reduction 

in SF, the floating action of the input pinions is allowed. As SF is reduced, an even 

torque split is achieved. The torque split ratios UTS and LTS for each input pinion 

approach to 0.5, which denotes the even torque split. In Figure 5-22 and Figure 5-23, 

when SF=0.01, UTS and LTS values become 0.503 and 0.496, respectively, where 

the torque split ratios differ less than 1%. 

SF increases

SF increases
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Figure 5-23 Torque split ratios for the input pinion P3 

 

Figure 5-24 shows the torque split ratios for the output pinion P2. For this pinion, 

LTS is calculated to be 0.8 while LTS is calculated to be 0.2 for SF=0.01. Even torque 

split for this pinion is not intended since P2 is connected to a low torque consuming 

drive train such as a helicopter tail gearbox. Compared with the input pinions, the 

torque level is lower than P1 and P3. Therefore, the strength of the output gear is not 

critical to have 80 percent of the load from LFG and 20 percent from UFG. In this 

study, all five pinions' macro geometry is assumed to be identical. However, the face-

width of the output pinion P2 may be reduced to achieve an appropriate torsional 

stiffness for an even torque split ratio at the UFG and LFG.  

Finally, the idlers take power from LFG and transmit it to UFG. Therefore, the 

torque-split ratio remains 0.5 throughout all investigated frequencies for both UTS 

and LTS. Figure 5-25 shows the UTS and LTS values for the idler pinions P4 and P5. 

SF decreases

SF decreases
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Figure 5-24 Torque split ratio for the output pinion P2 

 

 

Figure 5-25 Torque split ratios for the idler pinion P4 and P5 

SF decreases

SF decreases
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Figure 5-26 shows the achieved torque split ratios before and after introducing an 

additional torque stiffness for simulating the quill shaft connected to the input 

pinions P1 and P3.  

 

 

Figure 5-26 Achieved torque split ratios for the specified system 

.
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CHAPTER 6  

6 CONCLUSION AND FUTURE WORK 

6.1 Summary & Conclusion 

In this thesis it is aimed to develop a torsional non-linear dynamic model for a multi-

mesh involute spur pinion-driven face-gear split-torque drive system which utilizes 

the exact face-gear tooth geometries employing the theory of gearing and differential 

geometry. For this purpose, a lumped mass system consisting of five pinions and two 

face gears was constructed. The system has seven rotational degrees of freedom. All 

pinion and gear blanks are assumed to be rigid disks. The constructed split-torque 

model includes two inputs, two outputs, and three idler gears. The model includes 

clearance-type nonlinearity for backlash. The non-linear time-variant equations of 

motions are solved with HBM coupled with the Arc-Length Continuation Method to 

obtain the system's periodic steady-state response. HBM results are compared with 

direct numerical integration solutions to validate the accuracy. 

The developed model may be considered as a second-stage reduction to the main 

transmission system and then may be connected to a planetary gear set at the third 

stage for the final reduction. Before that, there may be two nose gear-boxes as the 

first stages. According to engine speed, the face-gear system can also be used as the 

Main Gear Box (MGB) of a helicopter with or without planetary. 

In order to reduce the computational time during the parametric studies, the HBM 

with Arc-Length Continuation Method is utilized with 3-harmonics and ½ sub-

harmonic. The comparison of the frequency domain solution obtained with the direct 

numerical integration results shows that, except for some frequency ranges where 

several sub-harmonic resonances are excited simultaneously, the method gives exact 

results. Numerical Floquet Theory is applied to validate the system's stability 
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obtained by three harmonics HBM solutions. Bifurcation diagrams for the specified 

frequency ranges are generated by cascaded Poincare Sections established from time 

domain simulations. 

Macro geometry of the face-gear surface is generated by transforming the tooth 

profile of a spur gear shaper into the face-gear tooth profile by simulating the 

machine tool motions. Mesh stiffness is calculated via the finite strip method. 

Unloaded tooth contact analysis is performed without any profile or face-width 

modifications on the tooth surface. The generated tool is also capable of calculating 

the transmission error with these modifications.  

Several methods have been investigated for the mesh stiffness calculations, namely, 

Thin Slice Method (1-D), Rayleigh-Ritz Method (1.5D), Finite Strip Method (1.5D), 

Finite Prism Method (2.5D), and Quasi-Prism Method (2.5D). The results are 

compared with the ones obtained from MSC Patran-Nastran and Abaqus models. 

The Finite Strip Method (FSM) is selected to calculate the mesh stiffness due to its 

feasible adaptation for parametric studies. Mindlin Plate Theory is used for the tooth 

model. As mentioned above, the tooth is discretized using Finite Strip Method, and 

since FSM utilizes simple polynomials along the face-width direction and adjusted 

B3 spline curves (according to cantilevered boundary condition) along the tooth 

profile, the discretization is performed as if the tooth is a 1D element. Hence, the 

element formulation, the connectivity of the elements, and the solving process 

become simpler than a 2D or 3D finite elements. The NURBS curves fit the surfaces 

of both the face-gear and the spur gear. This surface fit approximation generates a 

variable thickness finite strip element. Generally, constant thickness finite strip 

element is utilized for discretization. In order to achieve an acceptable level of 

accuracy, the element number has to be increased. However, even with a small 

number of elements, accurate results are obtained with a variable thickness element.  

A dynamic model for a face-gear and spur-gear pair is developed, and some 

parametric studies are performed. The effect of backlash, the static torque, and the 

damping on the gear mesh displacement are investigated. The hardening and 
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softening stiffness effects are demonstrated for several backlash and torque levels. It 

is observed that the hardening stiffness effect disappears at a specific backlash value, 

and only softening stiffness effect remains. This phenomenon happens because the 

resulting amplitude of the dynamic response becomes insufficient to cover the 

resulting deflection due to the applied static torque and the imposed backlash 

clearance. This phenomenon also dictates that the system characteristics cannot be 

altered by increasing the backlash beyond some specific value. The effect of 

damping on the dynamic response is also sought. For some specific damping ratios, 

subharmonic resonance peaks and closed curves (islands) are observed for a 

frequency range. As the damping ratio increases, these closed curves become smaller 

and smaller and then vanish. The same phenomenon is also observed for some static 

torque values. As the static torque is increased, these closed curves of subharmonic 

response become smaller and finally vanish. 

A dynamic model for a multi-mesh split-torque face-gear drive system is 

constructed, and some parametric studies are performed to search the effect of 

orientation angle pattern (mesh phasing among pinions) and power values (or static 

torque values).  

The effects of mesh phasing on the system response are studied with the established 

fully coupled comprehensive mathematical models of face-gear tooth geometry, 

mesh stiffness, and non-linear dynamics. In this investigation, the mesh phasing 

defines the position of one tooth pair relative to the other pairs in contact in a mesh 

cycle. It is observed that, by altering the pinion positions, the drive system's response 

characteristics are significantly changed. For instance, when the input pinions are 

positioned at 180° angles to each other, the subharmonic resonance peaks around 

ω=1.4ωc and ω=1.72ωc vanish. Around the fundamental harmonic, the gear mesh 

displacement increases as expected. In cases where the idler pinions are positioned 

at 60° angles, the response levels decrease around the fundamental harmonic, 

compared to the cases where they are positioned at 90° angles. Thus, it is evident 

that achieving proper phase differences between the meshing teeth by altering pinion 

positions is a critical design parameter in the preliminary design phase of the split-
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torque face-gear drive systems from dynamics perspective. The presented non-linear 

dynamic model enables to carry out various parametric studies while capturing the 

mesh stiffness from the face-gear tooth geometry.  

Achieving an even torque-split ratio between the upper and the lower face gears 

through the input pinions is investigated. For this purpose, the floating pinion case 

is implemented as a shaft torsional spring, and then several cases for different support 

stiffness values have been studied. As expected, the floating pinion achieves the even 

torque split case for the input pinions. On the other hand, uneven torque split may 

also be an intended design feature, according to system demands. 

There is an AGMA standard for epicyclic (planetary) gear trains. The main design 

topics are well established and well defined in this standard. Thus, a designer utilizes 

and chooses the critical design parameters from various parameters, i.e., tooth 

geometry, sufficient backlash and pressure angle requirement, meshing 

requirements, arrangements of the sun, ring, and planet gears, and load sharing ratio 

among the gears. Currently, there is no standard (AGMA, ISO, DIN) for the face-

gear or split-torque face-gear drive systems. Hence, some of the critical design 

parameters, i.e., position of idler gears, position of input gears, shaft compliance, are 

investigated to be utilized in the system's preliminary and detailed design phases. 

The potential design parameters (such as pressure angle, shaft angle, number of teeth 

etc.) may also be utilized for the same purpose. 

In summary, this thesis proposes a physics and theory of gearing based evaluation 

method of face-gear drives without relying on any commercial FEA software 

packages by establishing accurate tooth and mesh stiffness calculations utilized in 

non-linear dynamics of single-pair mesh and split-torque configurations. 

6.2 Future Work 

The torsional dynamic model can be extended to include the coupling between axial 

and the radial degrees of freedom of the face-gear and pinion with the shaft and 
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bearing. Furthermore, the face-gear and the spur pinion webs can be modelled as 

deformable bodies with Kirchoff or Mindlin Plate Theory. Their contribution can 

also be added to the gear tooth deflection as a foundation effect.  

A more detailed STE function is recommended to be developed from the related gear 

macro and micro geometries. A new DTE function should be modeled and 

investigated based on the proposed STE. 

The mesh damping in the model can be improved to include the frictional, bearing, 

and churning losses. The structural and viscous characteristics can be investigated 

by proper tests, and then the results can be implemented in the model developed in 

this thesis. 

Finally, the validation of the developed models with tests can be conducted starting 

from linear and non-linear dynamic cases. The preparation of the test benches in the 

laboratory environment is very critical. Hence, they should be dynamically well 

isolated from the test specimen. Three vital points in the establishment of a proper 

test stand should be paid attention to; i) the design and production of the test bench; 

ii) the design and production of the test specimen by which the predicted non-linear 

effects are to be observed, and finally; iii) the test execution. The test specimen 

should be accurate enough to avoid all disturbances affecting the test data to be 

compared with the analytical model.
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APPENDICES 

A. NURBS Approximation 

NURBS curves are generally given by [72], 
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NURBS surfaces are generally given by, 
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For the NURBS curve formulation, assume that  kQ  is a given set of points, or 

point cloud; then, 
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where k=1,2,3,…n. 
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Equation (A-3) has to be calculated for every data point in order to solve for the 

coefficients Pi, where 

 

1, 1nu for k   (A-4) 
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NURBS basis functions are given as, for p=0, 
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and for 1p  ,  
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where, 
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1 1... 0pu u    (A-9) 

... 1m p mu u    (A-10) 
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Here, n is the number of control points, p is the degree of the NURBS basis function, 

m is the number of values in the knot vector and specified as,  

 

1.m n p    (A-12) 
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B. Thin Slice Method 

The following formulation is utilized for the bending compliance calculation for a 

slice of TSM element [81]. 

 

 

Figure B-1 A slice for an involute profile 

 

Bending Deflection of the ith segment due to forcing at jth position of a slice: 

 

 
 

 
 

3 2

, ,

cos cos

3 2

j j j jw

i j i i i j

i i

W W
q T T L

EI EI

 
     (B-1) 

 

where jW  is the applied force, j  is the angle of the force with the vertical axis, iT  is 

thickness of the ith segment, E is the Young's modulus, iI is the area moment of 
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inertia of the ith segment,  ,i jL  is the distance between the ith segment and the jth load 

application point. 

Bending Deflection due to moments: 
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Shear Deformation: 
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Axial Compression: 
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Total Deformation: 
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C. Rayleigh-Ritz Approximation 

 

Figure C-1 A slice for an involute profile 

 

Let the following parameters are defined as, 

 w is the transverse deflection of the plate 

 u is the stretching deflection along x axis 

 v is the stretching deflection along y axis 

 h is the thickness of the plate 

 E is the modulus of elasticity of the isotropic plate material 

 a is the length of the plate 

 b is the width of the plate 

 υ is the Poisson's ratio 

 

Formulation For a Kirchoff Plate [128]: 

The virtual strain energy of the plate can be expressed as, 
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The potential energy due to virtual loads, such as pressure loading over plate surface, 

can be expressed in variational form as, 

 

 

(C-2) 

Since the total potential energy functional is [128], 
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then, it can be expressed as, 
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The Von-Karman strains of the plate may be defined as [128–132], 
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Setting the strains in transverse directions zero yields,  

 

 
(C-6) 

 

Taking the variations of the strain expressions yield, 
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(C-9) 

 

Substituting the strain variations into the virtual potential energy expression yields, 

 

 

(C-10) 

 

 

 

The terms Nxx, Nyy and Nxy, namely the membrane forces, are generated during the 

out of plane deflection of the plate. As the plates deflects, these terms become 

dominant, with the strain formulas given below,  
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Also, Mxx, Myy, Myz  are defined as, 
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It is assumed that, during the deflection of the plate, no transverse shear develops. 

Therefore, the term Nxy is assumed to be zero (Kirchoff plate model where shear 

energy is considered to be negligible). Also, it is assumed that, ux and vy are equal 

to zero. This final assumption also denotes imposing δux and δvy are equal to zero. 

After these assumptions, dropping the neglected terms, the virtual potential energy 

expression becomes; 
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and, similarly, after dropping the neglected terms, Nxx and Nyy become, 
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Inserting Equations (C-12), (C-14) and (C-15) into the virtual potential energy 

expression given in Equation (C-13) yields 
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Since,  

 

(C-17) 

 

then, Equation (C-16) may be re-written as, 
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Here it may be stated that the interested plate is classified as thick plate rather that 

thin plate, so terms Nxx, Nyy and Nxy, the membrane forces, can be eliminated from 

the equations. Assuming a solution in the form, 
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where N and M represent the utilized shape functions along longitudinal and 

transverse axis, respectively. The forcing matrix is written as, 
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D. Finite Prism Method and Quasi-Prism Method 

The following formulation is utilized for the Element formulation of a Finite Prism 

Method. as detailed in references [99,113,114]. 

 8-noded isoparametric element is utilized for the formulation of a FPM element. 

 

  

Figure D-1 8-noded isoparametric element 

 

The shape functions are used to interpolate the coordinates from the nodal 

coordinates as [99,113,114]; 
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D-1 

 

where the shape functions can be written as, 
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𝐶1(𝜉, 𝜂) = 1 4 (1 − 𝜉) (1 − 𝜂) (−𝜉 − 𝜂 − 1)⁄  

𝐶2(𝜉, 𝜂) = 1 4 (1 + 𝜉) (1 − 𝜂) (𝜉 − 𝜂 − 1)⁄  

𝐶3(𝜉, 𝜂) = 1 4 (1 + 𝜉) (1 + 𝜂) (𝜉 + 𝜂 − 1)⁄  

   𝐶4(𝜉, 𝜂) = 1 4 (1 − 𝜉) (1 + 𝜂) (−𝜉 + 𝜂 − 1)⁄  

𝐶5(𝜉, 𝜂) = 1 2 (1 − 𝜂) (1 + 𝜉) (1 − 𝜉)⁄  

𝐶6(𝜉, 𝜂) = 1 2 (1 + 𝜉) (1 + 𝜂) (1 − 𝜂)⁄  

𝐶7(𝜉, 𝜂) = 1 2 (1 + 𝜂) (1 + 𝜉) (1 − 𝜉)⁄  

𝐶8(𝜉, 𝜂) = 1 2 (1 − 𝜉) (1 + 𝜂) (1 − 𝜂)⁄  

D-2 

 

For simply support end conditions, 𝑢 = 𝑤 =  
𝜕𝑣

𝜕𝑦
= 0 at y=0 and y=b; the following 

displacement functions are assumed, 
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Figure D-2 A general prism to be modelled with FPM 

The stiffness matrix is calculated as 

 

          [K𝑖𝑗]𝑚𝑛 = ∫
[𝐵𝑖]𝑚

𝑇[𝐷][𝐵𝑗]𝑚𝑑𝑉 D-4 

 

where material matrix is given as 
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and strain displacement relation may be expressed as, 
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  
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where the derivatives of the shape functions may be calculated by applying the chain 

rule as 

 

           

𝜕𝐶𝑖
𝜕𝜉

=
𝜕𝐶𝑖
𝜕𝑥

𝜕𝑥

𝜕𝜉
+
𝜕𝐶𝑖
𝜕𝑧

𝜕𝑧

𝜕𝜉
 

𝜕𝐶𝑖
𝜕𝜂

=
𝜕𝐶𝑖
𝜕𝑥

𝜕𝑥

𝜕𝜂
+
𝜕𝐶𝑖
𝜕𝑧

𝜕𝑧

𝜕𝜂
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Writing in matrix form yields, 

 

          

{
 

 
𝜕𝐶𝑖
𝜕𝜉
𝜕𝐶𝑖
𝜕𝜂}
 

 

=

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑧

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑧

𝜕𝜂]
 
 
 
 

{

𝜕𝐶𝑖
𝜕𝑥
𝜕𝐶𝑖
𝜕𝑧

} = [𝐽] {

𝜕𝐶𝑖
𝜕𝑥
𝜕𝐶𝑖
𝜕𝑧

} D-8 
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where J is referred to as the Jacobian matrix. Utilizing the Equation (D-1), Jacobian 

can be written as, 

 

          [𝐽] =

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑧

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑧

𝜕𝜂]
 
 
 
 

= ∑

[
 
 
 
 
𝜕𝐶𝑖
𝜕𝜉

𝑥𝑘
𝜕𝐶𝑖
𝜕𝜉

𝑧𝑘

𝜕𝐶𝑖
𝜕𝜂

𝑥𝑘
𝜕𝐶𝑖
𝜕𝜂

𝑧𝑘]
 
 
 
 8

𝑘=1
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and for a 8-noded element, this yields, 

 

          =

[
 
 
 
 
𝜕𝐶1
𝜕𝜉

𝜕𝐶2
𝜕𝜉

𝜕𝐶3
𝜕𝜉

𝜕𝐶4
𝜕𝜉

𝜕𝐶5
𝜕𝜉

𝜕𝐶6
𝜕𝜉

𝜕𝐶7
𝜕𝜉

𝜕𝐶8
𝜕𝜉

𝜕𝐶1
𝜕𝜂

𝜕𝐶2
𝜕𝜂

𝜕𝐶3
𝜕𝜂

𝜕𝐶4
𝜕𝜂

𝜕𝐶5
𝜕𝜂

𝜕𝐶6
𝜕𝜂

𝜕𝐶7
𝜕𝜂

𝜕𝐶8
𝜕𝜂 ]
 
 
 
 

[
 
 
 
 
 
 
 
𝑥1 𝑧1
𝑥2 𝑧2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8

𝑧3
𝑧4
𝑧5
𝑧6
𝑧7
𝑧8]
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Finally, the global derivatives can be expressed as 

 

          {

𝜕𝐶𝑖
𝜕𝑥
𝜕𝐶𝑖
𝜕𝑧

} = [𝐽]−1

{
 

 
𝜕𝐶𝑖
𝜕𝜉
𝜕𝐶𝑖
𝜕𝜂}
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and the area of the defined element can be re-written as  

 

          𝑑𝑥𝑑𝑧 = det (𝐽)𝑑𝜉𝑑𝜂 D-12 
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substituting Equation (D-12) into Equation (D-4) yields, 

 

          

[K𝑖𝑗]𝑚𝑛

= ∫ ∫ ∫ [𝐵𝑖]𝑚
𝑇[𝐷][𝐵𝑗]𝑛det (𝐽)𝑑𝜉𝑑𝜂𝑑𝑦

+1

−1

+1

−1

𝑎

0
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The following formulation is utilized for element formulation of a Finite-Quasi 

Prism Element. Details can be found in references [109,110]. 

The displacement functions is written as  

 

          

u(𝜉, 𝜂, 𝜁) = ∑∑𝑢𝑖𝑗𝐶𝑖(𝜉, 𝜂)𝑇𝑗(𝜁)

𝑐ℎ𝑜

𝑗=0

𝑛𝑜𝑑

𝑖=1

 

v(𝜉, 𝜂, 𝜁) =∑∑𝑣𝑖𝑗𝐶𝑖(𝜉, 𝜂)𝑇𝑗(𝜁)

𝑐ℎ𝑜

𝑗=0

𝑛𝑜𝑑

𝑖=1

 

w(𝜉, 𝜂, 𝜁) =∑∑𝑤𝑖𝑗𝐶𝑖(𝜉, 𝜂)𝑇𝑗(𝜁)

𝑐ℎ𝑜

𝑗=0

𝑛𝑜𝑑

𝑖=1
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where, nod is the number of the nodes, and cho is the order of the utilized Chebyshev 

function. The shape functions are used to interpolate the coordinates from the nodal 

coordinates as 

 

          x(𝜉, 𝜂, 𝜁) =∑∑𝑥𝑖𝑗𝐶𝑖(𝜉, 𝜂)𝑇𝑗(𝜁)

𝑐ℎ𝑜

𝑗=0

𝑛𝑜𝑑

𝑖=1

 D-15 
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y(𝜉, 𝜂, 𝜁) = ∑∑𝑦𝑖𝑗𝐶𝑖(𝜉, 𝜂)𝑇𝑗(𝜁)

𝑐ℎ𝑜

𝑗=0

𝑛𝑜𝑑

𝑖=1

 

z(𝜉, 𝜂, 𝜁) = ∑∑𝑧𝑖𝑗𝐶𝑖(𝜉, 𝜂)𝑇𝑗(𝜁)

𝑐ℎ𝑜

𝑗=0

𝑛𝑜𝑑

𝑖=1

 

 

 

 

Figure D-3 Mapping from pyhsical system to element in natural coordinate system  

 

8-noded iso-parametric element is selected for the xy plane and therefore same shape 

functions are assumed, as already given in Equation (D-2). For the longitudinal axis, 

however, modified Chebyshev polynomials are utilized. 
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Figure D-4 Chebyshev functions 

 

 

Figure D-5 Modified Chebyshev functions 
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Along each node at the xy plane, towards the end of the longitudinal axis z, curve fit 

is performed for all three dimensions x, y, z with Chebyshev polynomials. By 

performing this, the prism is cut for sections in order to seek the variation along the 

prism axis. So, the variation in coordinates x, y, z is formulated as follows 

 

          

x(𝜉, 𝜂, 𝜁) =∑𝑥𝑘𝑚𝑇𝑚(𝜁)

𝑐ℎ𝑜

𝑗=0

 

y(𝜉, 𝜂, 𝜁) =∑𝑦𝑘𝑚𝑇𝑚(𝜁)

𝑐ℎ𝑜

𝑗=0

 

z(𝜉, 𝜂, 𝜁) =∑𝑧𝑘𝑚𝑇𝑚(𝜁)

𝑐ℎ𝑜

𝑗=0

 

 

D-16 

 

The total shape functions definition for a 3D node becomes, 

 

          

[𝑁𝑖𝑚]

= [
𝐶𝑖(𝜉, 𝜂)𝑇𝑚(𝜁) 0 0

0
0

𝐶𝑖(𝜉, 𝜂)𝑇𝑚(𝜁)
0

0
𝐶𝑖(𝜉, 𝜂)𝑇𝑚(𝜁)

]. 
D-17 

 

 

Strain matrix can be expressed as 
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           

 

 

 

   

   

   

( , ( ))
0 0

( , ( ))
0 0

( , ( ))
0 0

( , ( )) ( , ( ))
0

( , ( )) ( , ( ))
0

( , ( )) ( , ( ))
0

i m

i m

i m

i m

i m i m

i m i m

i m i m

C x y T z

x

C x y T z

y

C x y T z

z
B

C x y T z C x y T z

z y

C x y T z C x y T z

z x

C x y T z C x y T z

x x

 
 

 
 
 

 
 
 

 
  
 

  
  
 
  
  
 
   

 D-18 

 

 

The stiffness matrix can be calculated as 

 

          

[K𝑖𝑗]𝑚𝑛

= ∫ ∫ ∫ [𝐵𝑖]𝑚
𝑇[𝐷][𝐵𝑗]𝑛det (𝐽)𝑑𝜉𝑑𝜂𝑑

+1

−1

+1

−1

+1

−1

𝜁 

D-19 
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E. Contact Stiffness Methods 

Hertz's Equation: 

Hertz's deflection formula specified for two cylinders in contact is given as follows 

[133]  

 

2

1 22 22(1 ) 2
ln ln

3
c

D D
C

fE b b





     
      

    
 

(E-1) 

 

2

1 2

1 2

2 (1 ) D
1.6

(D )

P D
b

fE D





 

(E-2) 

where, 

 

 b is the half contact width, 

 f facewidth 

 E  modulus of elasticity 

   poisson's ratio 

 P  contact force 

 
1D diameter of the first gear 

 
2D diameter of the second gear 

 

Conry's Equation: 

Conry's equation represents a linear expression for the Hertzian contact deflection 

[111]. The deflection is given as  
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2(1 )
7.96c

fE





  

(E-3) 

and the compliance is calculated as, 

 

2(1 ) P
7.96cC

fE


  

(E-4) 

 

where  

 f facewidth 

 E  modulus of elasticity 

   poisson's ratio 

 P  contact force 

  

Cornell's Equation: 

Cornell's equation does not take into account the contact width, location of the 

contact point, and the magnitude of the applied load [76]. The deflection is given as 

 

2(1 ) P
4.55c

fE





  

(E-5) 

 

and then the compliance can be calculated as 
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2(1 )
4.55cC

fE


  

(E-6) 

 

where  

 f facewidth 

 E  modulus of elasticity 

   poisson's ratio 

 P contact force 

 

Palmgren's Equation: 

Palmgren's semi-empirical equation was developed for contacting cylinders in roller 

bearings [134]. It is further modified to the following form [135], and the compliance 

is obtained as  

 

0.9 0.8 0.1

1.37
cC

E f P
  

(E-7) 

 

where  

 f facewidth 

 E  modulus of elasticity 

 P  contact force 

 

This equation does not need any iteration loop for the contact force. It is independent 

of the location of the contact force along the tooth surface.  
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Weber's Equation: 

Weber proposed a closed form approach for the calculation of the contact deflection 

of the two gear teeth [136]. The equation for the deflection when the both gears are 

of the same material is written as  

 

 

2
1 224(1 ) P

ln
2 1

c

h h

fE b

 


 

  
   

    

 

(E-8) 

 

The compliance can be calculated as 

 

 

2
1 224(1 )

ln
2 1

c

h h
C

fE b

 

 

  
   

    

 

(E-9) 

A 

nd the half contact width b can be expressed as  

 

 

2

1 2

1 2

8 (1 )P R R
b

fE R R









 

(E-10) 

 

and the other necessary calculations are listed as follows 
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1 1

2 2

1 1

2 1

1 2

1 1 1

2 2 2

'

1

'

2

'

1

'

2

sin( ) tan( )

sin( ) tan( )

1 2 cos( )

1 2 cos( )

L B L

L B L

L L

L L

L L

L L

L L L

r R R

r R R

h h

h h

 

 





  

  

  

 

 





 

 

 

 (E-11) 

 

where  

 f  facewidth 

 E  modulus of elasticity 

   poisson's ratio 

 P  contact force 

 
1Lh thickness of the gear 1 at the contact point 

 
2Lh thickness of the gear 2 at the coıntact point 

 
1h distance from contact point to the center line of the gear 1 

 
2h  distance from contact point to the center line of the gear 1 

 
1R radius of curvature at the contact point, gear 1 

 
2R  radius of curvature at the contact point, gear 2 
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Figure E-1 Two gears in contact [75] 

 

This formula is developed particularly for gear teeth that are in contact, therefore it 

is more accurate than the previous formulas. But, the calculation of this deflection 

needs the load at the specified contact point to be calculated first, and therefore it 

increases computational effort.  
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Brewe&Hamrock's Equation: 

The classical Hertz solution for two elastic bodies in contact requires complex 

integral calculations. This equation, however, presents a simplified formula for 

calculating the Hertzian contact deflection in two elliptically shaped elastic solids 

that are in point contact. The ellipticity and the complete elliptic integrals of the first 

and second kind are expressed as a function of radius of curvature in the principal x-

plane and y-plane [137–142]: 

 

1
2 32 3 2

2 2

9 1

2
c

F

k R E




 

   
   
   

 

(E-12) 

 

and 

0.5968
1.0003

y xR R
    (E-13) 

1.5277 0.6023ln
y

x

R

R
    (E-14) 

1 1 1

x yR R R
   (E-15) 

1 2

1 1 1

x x yR r r
   (E-16) 

 

where 

 

 1 1,x yr r principal radii of gear 1 
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 2 2,x yr r principal radii of gear 2 

 E  modulus of elasticity 

   poisson's ratio 

 
xR effective radius of curvature in the principal x-plane 

 yR  effective radius of curvature in the principal y-plane 

 R curvature sum 

   complete elliptic integral of the first kind expression by method of 

least squares 

   complete elliptic integral of the first kind expression by method of 

least squares 

 k ellipticity (ratio of semimajor to semiminor axis) expression by 

method of least squares 

 

 

 

Figure E-2 two elliptically shaped elastic solids in contact, [137–142]  
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F. Mathematica Symbolic Code for The Directional Rotational Radius 

(*SHAPER SURFACE and SURFACE NORMAL*) 

rs[us,s]:={rbs*(Sin[os+s]-sCos[os+s]),-

rbs*(Cos[os+s]+s*Sin[os+s]),us}; 

ns[us,s]:=Cross[D[rs[us,s],s],D[rs[us,s],us]]*1/(rbs *s); 
 

(*PINION SURFACE and SURFACE NORMAL*) 

r1[u1,1]:={rb1*(Sin[o+1]-1Cos[o+1]),-

rb1*(Cos[o+1]+1*Sin[o+1]),u1}; 

n1[u1,1]:=Cross[D[r1[u1,1],1],D[r1[u1,1],u1]]*1/(rb1*1); 
 

(*TRANSFORMATION MATRIX for the PINION NORMAL*) 

Lf1[1]:={{Cos[1], -Sin[1],0},{Sin[1],Cos[1],0},{0,0,1}}; 
 

(*ROTATED SURFACE NORMAL for THE PINION*) 

nf1[1,1]:=Simplify[MatrixForm[Lf1[1].n1[u1,1]]]; 
 

(*TRANSFORMATION MATRIX for the rotation around z axis*) 

Tz[_]:={{Cos[], -Sin[],0},{Sin[],Cos[],0},{0,0,1}}; 
 

(*TRANSFORMATION MATRIX for the rotation around x axis*) 

Tx[_]:={{1,0,0},{0,Cos[], -Sin[]},{0,Sin[],Cos[]}}; 
 

(*TRANSFORMATION MATRIX for the rotation of FACE-GEAR*) 

Mf2[2p_]:=MatrixForm[{{Cos[2p], -

Sin[2p],0},{Sin[2p],Cos[2p],0},{0,0,1}}]; 
 

(*TRANSFORMATION MATRIX for SHAPER to FACE_GEAR*) 

M2s[2]:=MatrixForm[Tz[-2].Tx[m].Tz[s]]; 
 

(*ROTATED PINION SURFACE *) 

rf1[u1,1,1]:=Lf1[1].r1[u1,1]; 
 

(*GENERATED FACE-GEAR SURFACE*) 

r2[s,s]:=M2s[2].rs[us,s]; 
 

(*ROTATED FACE-GEAR SURFACE*) 

rf2[2p,s,s]:=Mf2[2p_].r2[s,s]; 
 

(*TRANSFORMATION MATRIX of SURFACE NORMAL for SHAPER to 

FACE-GEAR*) 

L2s[2]:=M2s[2]; 
 

(*TRANSFORMATION MATRIX for the rotation of SURFACE NORMAL 

of FACE-GEAR*) 
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Lf2[2p]={{Cos[2p], -

Sin[2p],0},{Sin[2p],Cos[2p],0},{0,0,1}}; 
 

(**) 

Simplify[MatrixForm[Lf2[2p].n2[s,s]]]; 
(**) 

n2[s,s]:=L2s[2].ns[us,s]; 
(**) 

nf2[2p,s,s]:=Simplify[MatrixForm[Lf2[2p].n2[s,s]]]; 
(**) 

Mf2[2p].M2s[2].rs[us,s]; 
 

(*Subscript[, os]=/(2*Subscript[N, s])-(tan[Subscript[, 

s]]-Subscript[, s]) 

Subscript[, o]=/(2*Subscript[N, 1])-(tan[Subscript[, 1]]-

Subscript[, 1])*) 
 

(*UNIT NORMAL VECTOR ALONG ROTATING AXIS*) 

nj={0,0,1}; 

 

(*DIRECTIONAL ROTATIONAL RADIUS FOR THE SPUR GEAR (OR 

SHAPER)*) 

(*----------------------------------------------------------

--*) 

p=Simplify[MatrixForm[ns[us,s].(njrs[us,s])]]; 

p 
 -rbs 

  

 (*DIRECTIONAL ROTATIONAL RADIUS FOR THE FACE GEAR*) 

(*----------------------------------------------------------

--*) 

 g=Simplify[MatrixForm[n2[s,s].(njr2[s,s])]] 

 (_{ 

   {Cos[2] Cos[s]+Cos[m] Sin[2] Sin[s], Cos[m] Cos[s] 

Sin[2]-Cos[2] Sin[s], -Sin[m] Sin[2]}, 

   {-Cos[s] Sin[2]+Cos[m] Cos[2] Sin[s], Cos[m] Cos[2] 

Cos[s]+Sin[2] Sin[s], -Cos[2] Sin[m]}, 

   {Sin[m] Sin[s], Cos[s] Sin[m], Cos[m]} 

  }_).{-Cos[os+s],-Sin[os+s],0}.{0,0,1}((_{ 

      {Cos[2] Cos[s]+Cos[m] Sin[2] Sin[s], Cos[m] 

Cos[s] Sin[2]-Cos[2] Sin[s], -Sin[m] Sin[2]}, 

      {-Cos[s] Sin[2]+Cos[m] Cos[2] Sin[s], Cos[m] 

Cos[2] Cos[s]+Sin[2] Sin[s], -Cos[2] Sin[m]}, 

      {Sin[m] Sin[s], Cos[s] Sin[m], Cos[m]} 

     }_).{rbs (Sin[os+s]-Cos[os+s] s),-rbs 

(Cos[os+s]+Sin[os+s] s),us}) 



 

 

223 

 g 

  =Simplify[(_{ 

      {Cos[2] Cos[s]+Cos[m] Sin[2] Sin[s], Cos[m] 

Cos[s] Sin[2]-Cos[2] Sin[s], -Sin[m] Sin[2]}, 

      {-Cos[s] Sin[2]+Cos[m] Cos[2] Sin[s], Cos[m] 

Cos[2] Cos[s]+Sin[2] Sin[s], -Cos[2] Sin[m]}, 

      {Sin[m] Sin[s], Cos[s] Sin[m], Cos[m]} 

     }_).{-Cos[os+s],-Sin[os+s],0}.{0,0,1}((_{ 

         {Cos[2] Cos[s]+Cos[m] Sin[2] Sin[s], Cos[m] 

Cos[s] Sin[2]-Cos[2] Sin[s], -Sin[m] Sin[2]}, 

         {-Cos[s] Sin[2]+Cos[m] Cos[2] Sin[s], Cos[m] 

Cos[2] Cos[s]+Sin[2] Sin[s], -Cos[2] Sin[m]}, 

         {Sin[m] Sin[s], Cos[s] Sin[m], Cos[m]} 

        }_).{rbs (Sin[os+s]-Cos[os+s] s),-rbs 

(Cos[os+s]+Sin[os+s] s),us})]; 

 g 
 

 -rbs Cos[m]-Cos[os+s+s] Sin[m] us
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