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Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde BOZDAĞI AKAR
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ABSTRACT

SELF-TRAINING FOR UNSUPERVISED DOMAIN ADAPTATION

Akkaya, İbrahim Batuhan

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Uğur HALICI

August 2022, 134 pages

Despite the outstanding performance of deep learning techniques, achieving high per-

formance generally demands large amounts of labeled data. Because of the labeling

costs, people consider utilizing public datasets or synthetic images with freely gen-

erated labels. Unfortunately, deep neural networks are notably sensitive to domain

misalignment. The methods to reduce domain misalignment are studied under do-

main adaptation (DA). Self-training, which selects a subset of the unlabeled data for

pseudo-labeling, has been exploited for DA methods lately. These studies usually ex-

ploit a confidence threshold to eliminate inaccurate pseudo-labels. Confidence-based

approaches rely on the low-density separation hypothesis, which assumes data is in-

dependent and identically distributed. However, the low-density separation hypoth-

esis for the target domain for the model trained in the source domain may not hold

since the source, and target domains do not share the same distribution. This situation

reveals the necessity of a pseudo-labeling metric specific to the target domain.

In this thesis, we propose several self-training-based unsupervised DA methods. We

evaluate our methods in different modalities such as visible and thermal spectrum, for

different tasks such as classification and semantic segmentation, and in different sce-
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narios such as classical and source-free DA. First, we propose a self-training guided

adversarial DA method to promote the generalization capabilities of adversarial DA

methods in thermal to RGB modalities. Then, as the main contribution of this thesis,

we design a metric learning approach defined in the target domain to enable better

guidance for self-training. We use our metric for semantic segmentation tasks in clas-

sical and source-free DA scenarios. The experimental results show the superiority of

the proposed metric and the effectiveness of the self-training.

Keywords: Domain adaptation, metric learning, self-training, adversarial training
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ÖZ

DENETİMSİZ ALAN UYARLAMA İÇİN KENDİ-KENDİNE ÖĞRENME

Akkaya, İbrahim Batuhan

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Uğur HALICI

Ağustos 2022 , 134 sayfa

Derin öğrenme tekniklerinin olağanüstü performansına rağmen, yüksek performansa

ulaşmak genellikle büyük miktarda etiketlenmiş veri gerektirir. Etiketleme maliyetleri

nedeniyle, insanlar halka açık veri kümelerini veya maliyetsizce oluşturulmuş etiket-

lerle sentetik görüntüleri kullanmayı düşünürler. Ne yazık ki, derin sinir ağları, alan

kaymasına karşı özellikle hassastır. Alan kaymasını azaltma yöntemleri, alan uyar-

laması (AU) altında incelenir. Sözde etiketleme için etiketlenmemiş verilerin bir alt

kümesini seçen kendi kendine eğitim yöntemleri, son zamanlarda AU yöntemleri için

kullanılmıştır. Bu çalışmalar genellikle yanlış sözde etiketleri ortadan kaldırmak için

bir güven eşiğinden yararlanır. Güvene dayalı yaklaşımlar, verilerin bağımsız ve aynı

şekilde dağıtıldığını varsayan düşük yoğunluklu ayırma hipotezine dayanır. Ancak,

kaynak ve hedef alanları aynı dağılımı paylaşmadığından kaynak alanında eğitilen

model için hedef alanda düşük yoğunluklu ayırma hipotezi geçerli olmayabilir. Bu

durum, hedef alanına özgü bir sözde etiketleme metriğinin gerekliliğini ortaya koy-

maktadır.

Bu tezde, birkaç kendi kendine eğitim tabanlı denetimsiz AU yöntemi öneriyoruz.
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Yöntemlerimizi görünür ve termal spektrum gibi farklı modalitelerde, sınıflandırma

ve semantik segmentasyon gibi farklı görevler için ve klasik ve kaynaksız AU gibi

farklı senaryolarda değerlendiriyoruz. İlk olarak, termal ve RGB modalitelerinde çe-

kişmeli AU yöntemlerinin genelleştirme yeteneklerini teşvik etmek için kendi ken-

dine eğitim rehberli bir çekişmeli AU yöntemi öneriyoruz. Ardından, bu tezin ana

katkısı olarak, kendi kendine eğitime daha iyi rehberlik sağlamak için hedef alanda

tanımlanan bir metrik öğrenme yaklaşımı tasarlıyoruz. Klasik ve kaynaksız AU se-

naryolarında anlamsal bölütleme görevleri için metriğimizi kullanıyoruz. Deneysel

sonuçlar, önerilen metriğin üstünlüğünü ve kendi kendine eğitimin etkinliğini göster-

mektedir.

Anahtar Kelimeler: Alan uyarlama, metrik öğrenme, kendi-kendine eğitim, çekişmeli

öğrenme
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Thesis

Deep learning techniques, which have gained popularity both in industry and academy,

have been widely used especially in the domains of computer vision and pattern

recognition in recent years [191]. And significant successes have been achieved in

these domains. As a specialized type of deep neural networks, convolutional neural

networks stand out with their hierarchical structure in terms of semantic feature ex-

traction from images. These features play a key role in achieving high performance

in almost all areas of computer vision, such as classification [191], semantic segmen-

tation [17], face detection [184] and recognition [160], human pose estimation [144],

and object tracking [1].

Many computer vision tasks require the output to be pixel-by-pixel dense labeling

for a given image. Semantic segmentation is an excellent example of dense image

labeling. The purpose of semantic segmentation is to assign a label to each pixel in

an image based on the object classes to which it belongs to. There are numerous uses

for semantic segmentation. It has made its way into practically all image and video-

related tasks. Image manipulation, 3D modeling, facial segmentation, the healthcare

industry and precision agriculture are some examples to use of semantic segmentation

[151].

The ability to model the appearance of a variety of objects in the scene, such as build-

ings, trees, roads, billboards and pedestrians, is required for scene understanding ap-

plications. The model must learn and comprehend the spatial relationships between

various items. Semantic segmentation makes it possible to distinguish different ob-
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jects in the scene [38]. Segmentation masks categorizing pedestrians crossing the

road, for example, will trigger the automobile to stop, whereas segmentation masks

classifying roads and lane markers will lead the car to continue on a specific path.

Aerial image processing is comparable to scene understanding, except it entails se-

mantic segmentation of the terrain from above [75]. This technology is quite valuable

when drones can spread out to examine different locations to locate people and ani-

mals in need of rescue in times of disaster, such as a flood. Medical image diagnosis

has also benefited from semantic segmentation [58]. Radiologists nowadays find it

quite valuable to classify anomalies on CT scans. CT scans and other medical im-

ages are highly complicated, making it challenging to spot irregularities. Semantic

segmentation can be used as a diagnostic tool to assess such images, allowing doctors

and radiologists to make critical treatment decisions.

Despite deep learning’s outstanding performance in computer vision, achieving high

performance demands large amounts of data. Obtaining labels are typically costly.

It is even harder for dense prediction tasks. Manually annotating a Cityscapes [28]

image, for example, takes roughly 90 minutes. The big data era provides us data in

many areas and applications. For example, the ImageNet dataset contains a total of

14,197,122 tagged images in 1,000 different classes, including classes such as vehi-

cles, goods, animal species. The GTA5 dataset [120] includes 24966 synthetic images

that have been annotated at the pixel level for 19 semantic classes. Besides, with the

development of simulation technologies, an unlimited number of labeled synthetic

images that are similar to the desired application can be created. As a result, people

consider utilizing many photo-realistic synthetic images with freely generated labels.

On the other hand, deep neural networks are notably sensitive to domain misalign-

ment. Any subtle unrealism in generated visuals will result in poor generalization to

real-world data. This phenomena is called the domain shift which may occur due to

some factors such as lighting, image quality, exposure change, and seasonal differ-

ences. It is considered that adapting the knowledge obtained from the source domain

to the target domain will be beneficial in terms of increasing the performance in real-

world applications. With this perspective, it is feasible to use domain adaptation

approaches.

Self-training is one of the first semi-supervised learning approaches, but it has gained
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favor recently [175]. The self-training selects a subset of the unlabeled data for

pseudo-labeling. The pseudo-labels are added to the labeled dataset and a model

is retrained with the extended labeled dataset. This training cycle is repeated a cou-

ple of iterations until the model converges. As a result, when self-training is im-

plemented, the challenge of deciding the subset of examples to pseudo-label arises.

The low-density separation hypothesis [14] assumes that the classifier taught at each

step makes most of its mistakes on observations near the decision boundary. Semi-

supervised learning research recommends that pseudo-labels be assigned only to un-

labeled data for which the present classifier has high confidence [153]. In an un-

supervised domain adaptation scenario, the source domain is labeled, and the target

domain is unlabeled, which shows similarity with the semi-supervised learning set-

tings. Recently, self-training has been adopted for UDA and has shown successful

results [195, 103, 196]. Therefore, in this thesis, the importance of domain adapta-

tion and the success of self-training approaches motivated us to focus on self-training

approaches in unsupervised domain adaptation.

1.2 Contributions of the Thesis

It is important to apply deep models to real-world problems. However, the models

trained with data from visible spectrum suffer from a performance bottleneck under

illumination changes. Thermal IR cameras are more robust against such changes,

and thus can be very useful for the real-world problems. In order to investigate ef-

ficacy of combining feature-rich visible spectrum and thermal image modalities, we

propose an unsupervised domain adaptation method which does not require RGB-

to-thermal image pairs. We employ large-scale RGB dataset MS-COCO as source

domain and thermal dataset FLIR ADAS as target domain to demonstrate results of

our method. Although adversarial domain adaptation methods aim to align the distri-

butions of source and target domains, simply aligning the distributions cannot guaran-

tee generalization to the target domain. To this end, we propose a self-training guided

adversarial domain adaptation method to promote generalization capabilities of ad-

versarial domain adaptation methods in chapter 3. To perform self-training, pseudo

labels are assigned to the samples on the target thermal domain to learn more general-
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ized representations for the target domain. Extensive experimental analyses show that

self-training guides adversarial-training for better alignment between domains. Our

proposed method achieves better results than the state-of-the-art adversarial domain

adaptation methods.

Deep learning approaches assume the training and test data are independent and iden-

tically distributed (IID). IID is a valid argument for a semi-supervised learning sce-

nario because both labeled and unlabeled data are sampled from the same domain.

Therefore, the trained model with the labeled data represents the unlabeled data,

making the low-density separation hypothesis practical [14]. However, there is no

IID assumption on the source and the target domain in an unsupervised domain adap-

tation scenario. Even though some parts of the distribution of the source and target

domains align, it is assumed that the marginal distribution is different, which is called

the domain gap. Therefore, the low-density separation hypothesis for the target do-

main for the model trained in the source domain may not hold. This situation reveals

the necessity of a pseudo-labeling metric specific to the target domain.

One approach to learning a metric in the target domain is to introduce a new head to

the neural network model and train it with target domain samples. As the name sug-

gests, in unsupervised domain adaptation, there is no label in the target domain. To be

able to train the new head, self-predictions can be used. However, only a few highly

confident predictions should be used since the model output contains false predic-

tions. SoftMax output is a commonly used confidence metric. However, Horiguchi

et. al. [64] show that if the size of the training dataset is small, deep metric learning

approaches perform better than SoftMax confidence.

Deep Metric Learning is a collection of approaches for measuring the similarity of

data samples. The goal is to learn an embedding space where similar data pairs stay

close together and different sample pairs stay away. Even though some works uti-

lized deep metric learning loss functions to align source and target domain features,

utilization of deep metric learning for self-training is an open question. In chapter 4,

we analyze the deep metric learning techniques to learn a metric space in the target

domain that can be used as a measure for pseudo-labeling.

We propose a pseudo-label selection method to improve self-training performance in
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unsupervised domain adaptation for semantic segmentation. To enhance the qual-

ity and diversity of the pseudo-labels, we develop a novel metric learning-based ap-

proach. Specifically, we train a metric learning network in the target domain that

learns the semantic similarity metric between pixels such that it learns a mapping to

form a dense cluster in feature space for each class, decreasing the intra-domain gap.

Finally, we filter the segmentation network’s prediction based on the similarity to the

class-proxy, which represents the class distribution in the target domain’s metric fea-

ture space. Experiments on GTAV-to-CityScapes and SYNTHIA-to-CityScapes have

shown the effectiveness of our method against existing state-of-the-art approaches.

Traditional UDA methods assumes that cross-domain data is accessible during model

training so that the domain discrepancy may be successfully assessed and eliminated.

Despite their success, it is easy to see how these strategies rely on the coexistence of

source and target data. Data is distributed on various devices nowadays, and most of

them contain private information, such as those on personal devices or from security

cameras. Traditional UDA approaches require access to the source data during the

learning process in order to adapt, which is inefficient for data transmission and may

breach data privacy policies. Due to data privacy and limited device memory con-

straints, many application cases cannot always match the basic assumption of UDA.

The mismatch between practical demand and the UDA setting drives a new research

area known as Source-free Domain Adaptation, in which only well-trained source

models are provided rather than well-annotated source data to enable adaptation to

the target domain. A few research studies have recently begun investigating this novel

scenario on cross-domain classification tasks, given that the source classifier has suf-

ficient information. As a common framework, they try to modify features for target

domain samples directly to adapt to the source classifier. However, when the source

domain data is unbalanced or insufficient, the frozen classifier becomes vulnerable

due to the source classifier’s weaker generalization. These methods have difficulty

adapting to a plethora of target features with much variance within the limited source

classification boundary. In a source-dissimilar set, this results in poor classification

performance.

Unsupervised source-free domain adaptation methods aim to train a model to be

used in the target domain utilizing the pretrained source-domain model and unla-

5



beled target-domain data, where the source data may not be accessible due to intel-

lectual property or privacy issues. These methods frequently utilize self-training with

pseudo-labeling thresholded by prediction confidence. In a source-free scenario, only

supervision comes from target data, and thresholding limits the contribution of the

self-training. In chapter 5, we utilize self-training with a mean-teacher approach for

source-free domain adaptation. The student network is trained with all predictions of

the teacher network. Instead of thresholding the predictions, the gradients calculated

from the pseudo-labels are weighted based on the reliability of the teacher’s predic-

tions. We propose a novel method that uses proxy-based metric learning to estimate

reliability. We train a metric network on the encoder features of the teacher network.

Since the teacher is updated with the moving average, the encoder feature space is

slowly changing. Therefore, the metric network can be updated in training time,

which enables end-to-end training. We also propose a metric-based online ClassMix

method to augment the input of the student network where the patches to be mixed

are decided based on the metric reliability. We evaluated our method in synthetic-

to-real and cross-city scenarios. The benchmarks show that our method significantly

outperforms the existing state-of-the-art methods.

1.3 Organization of the Thesis

This thesis is divided into six main chapters. The first chapter, Introduction, defines

the motivation for self-training for UDA and source-free UDA settings. The contri-

butions of the thesis are also presented in the introduction. In the second chapter,

we explain the concepts and approaches related to the methods proposed in this the-

sis for better comprehension. In order to show the effectiveness of the self-training

approaches in an UDA setting, we first focus on the classification task. Consider-

ing the lack of research in visible-to-thermal domain adaptation, we choose visible

and thermal domains for the adaptation scenario. We use self-training as a rectifier

to alleviate the negative transfer of the adversarial alignment. We propose the self-

training guided adversarial domain adaptation (SGADA) method for domain adapta-

tion from the visible spectrum to the thermal spectrum. The third chapter describes

our proposed SGADA method. Domain adaptation is valuable, especially in dense
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prediction tasks. Chapters four and five focus on employing self-training for domain

adaptation in semantic segmentation tasks as a dense prediction task. Pseudo-label se-

lection is crucial for a good performance in self-training. We observe that confidence-

based pseudo-label selection methods have some issues. As a solution, we propose

a metric learning based selection method. In the fourth chapter, a novel similarity-

based pseudo-label selection method (SPLS) is described, where we propose a target

domain-specific metric using a metric learning approach. The common self-training

approaches follow an iterative training strategy that requires training the same model

multiple times. It is desirable to have an end-to-end training strategy since the train-

ing of a deep model is often time-consuming. Therefore, we focus on improving our

self-training method by proposing an end-to-end self-training based domain adapta-

tion method for a significant source-free scenario that considers the source dataset is

unavailable due to privacy or intellectual property issues. The fifth chapter demon-

strates our self-training via metric learning for source-free domain adaptation of the

semantic segmentation (STVM) method. We propose a mean-teacher based method

for UDA in a source-free scenario. We utilize a model trained using the target domain

images using a metric learning approach to predict the reliability of the predictions

of the teacher model. The pseudo-labels are weighted based on reliability. Finally,

conclusions and future work are given in the sixth chapter.
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CHAPTER 2

LITERATURE SURVEY

This chapter presents the current literature on unsupervised domain adaptation, un-

supervised domain adaptation for semantic segmentation, and metric learning. In

the first section, we explain the unsupervised domain adaptation (UDA) problem and

present the notations and definitions. Then we explain the taxonomy and the state-of-

the-art methods. In the second section, we will focus on the semantic segmentation

task for UDA. First, we will explain the semantic segmentation techniques used in

evaluating the UDA methods and related works referenced by these methods. Then,

we will review the state-of-the-art methods and present some insights that we gained

from the modern approaches. In this chapter, we will describe a particular case of the

UDA for semantic segmentation called source-free UDA for semantic segmentation.

In the final section, we will explain the metric learning approaches we utilize in the

methods we propose in this thesis.

2.1 Unsupervised Domain Adaptation

Unsupervised domain adaptation is a special transfer learning technique that uses la-

beled data from one or more relevant source domains to perform tasks in the unlabeled

target domain. In other words, it is a learning technique that deals with the lack of

large amounts of labeled data.

In the literature, transfer learning methods are examined under three categories namely

inductive, transductive and unsupervised transfer learning. In inductive transfer learn-

ing, while the source and target areas are the same, the tasks are different. In trans-

ductive transfer learning, the source and target areas are different but the tasks are the
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same. In unsupervised transfer learning, both domains and tasks are different. Given

this classification, domain adaptation methods are included under the title of trans-

ductive transfer learning. Domain adaptation is a special transfer learning technique

that uses labeled data from one or more relevant source domains to perform the same

task in a target domain. It aims to transfer knowledge learned from source domain

to target domain with minimal performance loss to overcome domain shift. In other

words, as emphasized in the examples above, it is a learning technique that deals with

the lack of large amounts of labeled data. If no labaled data is available in the target

domain, it is called Unsupervised Domain Adaptation (UDA).

2.1.1 Notations and Definitions

Domain D is composed of feature space X (X = x1, ..., xn ∈ X ) and a marginal

probability distribution P (X). For a given domain D = X , P (X), Task T is com-

posed of a feature space Y and predictive function f(·). The predictive function can

be represented as conditional probability distribution P (Y |X).

In the light of these definitions, suppose we have two domains :

• Domain with sufficient labeled data: Source Domain Ds = Xs, P (X)s

• Domain without labeled data: Target Domain Dt = Xt, P (X)t

Domain adaptation is a transductive transfer learning approach. The tasks are the

same (Ts = Tt = T ) but the domains are different (Ds 6= Dt) in domain adaptation.

The aim of the unsupervised domain adaptation is to train a model that achieves high

performance on task T in the target domain. During training, both source domain Ds

and target domain Dt are utilized where we only have labels in the source domain.

2.1.2 Taxonomy of Domain Adaptation

In recent years, various shallow domain adaptation methods have been proposed to

solve a domain shift between source and target domains. For shallow domain adap-

tation, algorithms can be basically divided into two classes: sample-based domain
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adaptation [11, 27] and feature-based domain adaptation [45, 109, 40] methods. The

first class reduces the inconsistency by re-weighing samples in the source domain

based on the similarity to the target domain. Then, weighted source domain samples

are used for adaptation. For the second class, a common domain is trained from a

shared distribution of two data clusters. In this way, the model obtained becomes

usable for both domains.

Recently, Deep learning approaches have achieved very successful results in many

computed vision applications, which is also the case for domain adaptation studies.

Although some studies have shown that deep networks can learn more transferable

represents, Donahue et al. [31] have shown that the domain shift problem still affects

performance.

Methods in the domain adaptation literature are categorized as one-step and multi-

step domain adaptation. It is called a one-step if knowledge is transferred directly

from the source domain to the target domain, and multi-step domain adaptation if

knowledge transfer is performed by using one or more intermediate domains. If re-

cent deep learning-based methods are analyzed, it is seen that the researchers mostly

prefer the one-step domain adaptation approach. The reason is that deep neural net-

works usually have enough capacity to transfer knowledge across domains without

needing intermediate domains. Based on the input distribution of the source and tar-

get domain, the methods are categorized into two categories. If the input space of the

source and the target domains are the same, the methods are called homogeneous DA

methods. If they are different, the methods are called heterogeneous DA methods.

In computer vision applications, the input images are resized to a specific size as a

common approach. Therefore, the methods are usually studied under homogeneous

DA methods. The taxonomoy of the DA methods are shown in Figure 2.1.

One-step homogeneous domain adaptation methods are examined under three cat-

egories. Brief explanations of these approaches are given below with their sub-

categories.
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Figure 2.1: Taxonomy of Domain Adaptation

2.1.2.1 Discrepancy Based Methods

Discrepancy-based deep DA approach aim to reduce the domain shift by fine-tuning

the deep neural network with target data. It uses source data to train a base network,

then reuses the initial layers to build a target network. The target network’s remaining

layers are randomly initialized and trained with a loss based on disparity. Depending

on the size of the target dataset and its resemblance to the source dataset, the ini-

tial layers of the target network can be fine-tuned or frozen during training. These

methods have four sub-categories:

Class Critera The most fundamental training loss in deep DA is the class criterion.

The target model use the class label information as a guide to train the network after

pre-training it with source data. Therefore, it’s assumed that just a few labeled data

from the target dataset are accessible.

If there is labeled data in the target domain, soft label and metric learning techniques

are very effective in the target domain [148, 65, 59, 104]. If labeled data is not avail-

able, different techniques such as pseudo-labels [99, 172] and attributes [39, 148] can

be used in place of class labeled data.

Statistical Critera Although some discrepancy-based algorithms look for pseudo

labels, attribute labels, or other labels to replace labeled target data, many research

is focusing on learning domain-invariant representations by minimizing the domain

distribution disparity in unsupervised DA.
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The statistical criterion aims to reduce the domain shift by aligning the statistical dis-

tribution between the source and target domain features. The most common methods

for comparing and reducing distribution shift are maximum mean divergence (MMD)

[100, 172, 97, 99, 150], correlation alignment (CORAL) [136, 113], Kullback-Leibler

(KL) divergence, and H divergence.

Architectural Critera Other ways to reduce the distribution discrepancy is to opti-

mize the network’s architecture. The Architectural Criterion aims to learn more trans-

ferable features by modifying the architectures of deep networks. These techniques

include adaptive batch normalization (ABN) [87, 70, 86], weak-related weight [124],

domain guided dropout [166].

Geometric Criteria By integrating intermediary subspaces from the source to the

target domains, the geometric criteria mitigates domain shift. One can build interme-

diate subspaces by selecting a fixed or infinite number of subspaces along the path

from the source to the target domain to aid in the discovery of domain correlations.

The distribution is then aligned by projecting both source and target data to the re-

sulting intermediate subspaces [26].

2.1.2.2 Adversarial Based Methods

The use of generative adversarial networks, first proposed in 2014 [47], in different

domains of deep learning is increasing rapidly. Generative adversarial networks con-

sist of two networks, a generator and a discriminator. These two networks compete

with each other on a "minimax game". The generator network tries to produce data

similar to the real data to deceive the discriminator network. The discriminator net-

work tries to distinguish between generated and real data. As the training progresses,

the generative network becomes more successful in producing realistic data, and the

discriminator network becomes more successful in separating this data from the real

ones. The success of generative adversarial networks is also reflected in domain adap-

tation methods. The most advanced domain adaptation methods in classification have

generally used these approaches. These studies are divided into two groups called
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generative and non-generative methods.

Generative methods Using generative adversarial networks, synthetic data is gen-

erated in the target domain. Creating simulated instances that are comparable to target

instances is a common example [93, 9, 72]. The source image, as well as the noise

vector, are provided to the generative network as input to preserve the label informa-

tion in the source domain to generate images for the target domain to specific class.

Non-Generative methods These models consist of two networks, one is the dis-

criminator network that classifies whether the data is sampled from the source or the

target domain, and the other is a feature extractor network that will generate features

from the image given as an input. The feature extractor network is trained to ex-

tract indistinguishable features for the two domains, and the discriminator network is

trained to distinguish these features. It is aimed to reduce the domain shift with the

help of the adversarial training by generating more similar features [149, 148, 36, 37].

2.1.2.3 Reconstruction Based Methods

The reconstruction of target or source data is an auxiliary task that focuses on pro-

ducing a shared representation between the two domains while maintaining each do-

main’s individual properties. Reconstruction of source and/or target instances helps

to improve domain adaptation performance. Reconstruction networks ensure both the

authenticity of within-domain representations and the indistinguishability of cross-

domain representations. There are two types of reconstruction based methods namely

encoder-decoder based methods and adversarial methods.

Encoder-Decoder based methods Typically encoder-decoder based methods uses

autoencoder architecture for reconstruction. The autoencoder [60] converts an input

into a hidden representation, which it then decodes into a reconstructed version. Com-

monly, in the source and target domains, DA techniques based on encoder-decoder

reconstruction learn the domain-invariant representation using a shared encoder and

keep the domain-special representation with a reconstruction loss [10, 42, 41, 194].
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Adversarial methods Adversarial based methods share the same goal with encoder-

decoder based methods. Instead of autoencoder architecture, adversarial networks are

used. Image-to-image translation methods that uses cyclic-consistency loss is one of

the popular approach. The reconstruction error is measured as the difference between

the original image and the image resulting from the cyclic transformation using meth-

ods such as Dual GAN [177], Cycle GAN [192] and Disco GAN [78]. Compared to

encoder-decoder based methods, adversarial methods perform better.

2.1.3 State-of-the-art Methods

In this section, the up-to-date domain adaptation methods and the studies that form

the basis for these methods are explained.

The aim of domain adversarial neural network (DANN) [36, 37] is to integrate do-

main adaptation into the representation learning process. In this way, predictions can

be made on features that are both distinctive and domain-independent. The artifi-

cial neural network used in DANN [36, 37] consists of three components. These are

feature extractor, class label predictor and domain classifier networks. The feature

extractor network extracts features for subsequent neural networks. Label predic-

tor and domain classifier network use these features to make predictions in line with

their own tasks. There are two separate targets in the training. The first of these is to

determine the correct label of the image from the source domain. The second is to de-

termine whether the incoming image is from the target domain or the source domain.

The gradient descent method is used during training. The only non-standard compo-

nent of the proposed architecture is a gradient reversal layer placed before domain

classifier that leaves the input unchanged during forward propagation and inverts the

gradient value by multiplying it by a negative scalar during backpropagation. Thanks

to this layer, the feature extractor learns to create hard-to-classify features for the net-

work domain classifier. In this way, domain-independent features are obtained and

the performance is increased in the target domain. This study is one of the pioneering

studies of the adversarial domain adaptation class.

The ADDA method [149] consists of three training stages performed sequentially.

First of all, using the labeled data in the source domain, the feature extractor and
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classifier network are trained in the source domain. At the end of this stage, the

classifier network can perform a successful classification with the features created by

the source domain’s feature extractor network. After training in the source domain,

the second stage called adversarial adaptation is performed. At this stage, the net-

work parameters of the feature extractor trained on the source domain are fixed and

a feature extractor specific to the target domain is trained in an unsupervised manner.

During the training, the discriminator network described in the Generative adversarial

network architecture is used. Thanks to the adversarial training, the distributions of

the features coming from the target domain and source domain are aligned. In this

way, the classifier trained on the source domain can also be used on the source do-

main. The final stage of the ADDA method is the testing stage. The parameters of the

feature extractor trained in the source domain and the classifier trained in the target

domain are fixed. By using these two networks together, classification is made on the

target domain.

Although ADDA [149] and DANN [36] methods are applications that successfully re-

duce domain contrast using an adversarial metric and domain classifier, the vanishing

gradient problem is observed in these studies due to the characteristics of the metrics

used. The main contribution of [133] is to eliminate the problems encountered in

previous studies by using the advantages of the gradient properties of the Wasserstein

distance criterion [3] for domain adaptation. To solve the vanishing gradient problem,

it is proposed to replace the domain contrast criterion with the Wasserstein distance

criterion [3]. In this way, it has been argued that more stable gradient values will be

obtained even if the two distributions are far from each other. A network called ’Do-

main Critic’ is trained to estimate the Wasserstein distance between source and target

feature representations. Next, the feature extractor network is optimized adversarially

to minimize this estimated Wasserstein distance.

Saito et al. [127] argue that general domain discriminators do not take into account

task-specific cross-class decision boundaries. They argue that this leads to the uncer-

tainty of features near the class boundaries of feature extractor structures. In order

to solve the aforementioned problem, a method named Maximum Classifier Discrep-

ancy (MCD) is proposed. In MCD, there are two task-specific classifiers that follow

a common feature extractor. The discriminator is a combination of these two classi-
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fiers. The feature extractor is trained to minimize the discrepancy metric, while the

classifiers are trained to maximize the discrepancy of the predictions by two classifier

corresponding to the target sample.

Long et. al. [98] states that adversarial domain adaptation methods face two bottle-

necks. First, when data distributions contain complex and multimodal structures, ad-

versarial adaptation methods may have difficulty capturing these structures. Second,

when the discriminator information is ambiguous, it is risky to modulate domain dis-

criminators over this information. For the solution of these two bottlenecks, Long et

al. [98] proposed a conditional domain adaptation framework (CDAN). The discrim-

inator information passed inside the classifier outputs is used by CDAN to support

adversarial alignment.

CAN [186] proposes two mechanism for domain alignment each of which comple-

ments and improves the other. It takes the Domain Adversarial Neural Network

(DANN) [36, 37] method as baseline. CAN states that DANN learns domain un-

informative features. In addition to these features that DANN learned in its last layer

and are not informative about the domain, in this study, domain informative features,

which are representations in initial layers that provide information such as corners

and edges, are used to achieve a better visual recognition performance with domain

collaborative learning. In order to further increase the performance, Zhang et. al. pro-

poses the incremental version of the existing Collaborative and Adversarial Network

(CAN) structure, Incremental CAN (iCAN). In each iteration of iCAN, pseudo-labels

are assigned to the target samples. The CAN model is retrained with the expanded

training set with these new samples.

Drop to Adapt (DtA) [85] argue that the features obtained via the domain adversarial

training will not only be domain-independent but also non-discriminative for the class

labels since the domain discriminator aligns without considering the class labels. For

this reason, it is difficult to obtain optimal classification performance. In DtA, the

clustering assumption was taken as the basis. According to this assumption, decision

boundaries should be located in low-density regions of the feature space. Therefore,

the target model is trained by pushing the decision boundaries away from the features

of the target domain. Drop to Adapt (DTA) uses the adversarial dropout [110] method
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to apply the clustering assumption to the target domain. Adversarial dropout applied

in DTA is proposed element-wise for fully connected layers and channel-wise for

convolutional layers. In element-wise adversarial dropout neurons are removed inde-

pendently of spatial location, while in channel-wise adversarial dilution, all neurons

in a channel of feature map are removed.

Liu et al. [91] discussed that adversarial domain adaptation methods have various

problems. The most important of these problems, according to the domain adapta-

tion theory [6], is that in cases where the adaptability metric defined between source

and target domains is weak, it cannot guarantee learning a classifier with low target

error by minimizing the source error. Converting feature representations to be do-

main independent alter the original feature distributions that weakens the adaptability

metric. Therefore, the adversarial feature alignmend ias defined as risky and Trans-

ferable Adversarial Training (TAT) is proposed. TAT generates examples that can be

transferred to the category classifier and domain discriminator without changing the

feature representations.

Batch Spectral Penalization (BSP) [19] analyze how to learn transferable and dis-

criminable feature representations for deep domain adaptation. Transferability and

discriminability are criteria that characterize the goodness of feature representations

used in the domain adaptation problem. Transferability is the ability of features to

combine the differences between domains. Discriminability is the capability of fea-

ture representations being separated by a supervised classifier trained on them. In

addition to transferability, which was studied in previous domain adaptation studies

using adversarial learning, discriminability, which was not studied in previous stud-

ies, is examined in detail in this study. BSP states that adversarial domain adaptation

methods tend to improve transferability at the expense of worsening discriminabil-

ity. BSP proposes to penalize the largest singular values in order to increase feature

discriminability to solve this dilemma. The reason for this penalty is that large sin-

gular eigenvectors dominate the transferability of feature representations. By adding

the BSP method to the existing adversarial domain adaptation methods, it has been

shown by experimental studies that these methods help them learn both transferable

and discriminable representations.
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In adversarial domain adaptation studies, although the feature extractor is well trained

to generate domain-independent features of the source and target samples, the classi-

fier trained on the source samples cannot perform well on the target samples. Zhang et

al. [187] have tried to solve this problem by assigning pseudo-labels to target samples,

proposing the method named SymNet. SymNet is based on a symmetrical design of

the source and target task classifiers. In addition to this symmetric structure, there is

an extra classifier that shares neurons with the classifiers. Domain discrimination and

domain confusion loses are implemented by this additional classifier. In order to train

the SymNet structure, a two-level domain confusion loss-based adversarial learning

method is applied.

Xu et al. [171] defined two common restrictions in the adversearial domain adapta-

tion domain and suggested the domain mixup (DM-ADA) method to solve them. The

first of these limitations is that the separate sampling of source and target domains is

insufficient to ensure domain independence in the entire latent space. The second is

that the domain discriminator used in these methods distinguishes between real and

fake instances using only hard labels. In DM-ADA, a variation of VAE-GAN [83]

was applied to the domain adaptation problem. Mixup images obtained by pixel-

based merging of source and target domain images were used as inputs. The encoder

converts the source and target inputs into two separate hidden spaces. The feature

embeddings of these two domains are combined to create the blended features. After

this stage, the network is divided into two branches. In the first branch, source do-

main embeddings is used for object classification. In the other branch, the encoded

embeddings are decoded by the decoder. Thanks to the adversarial learning between

the decoder and the discriminator, domain independence is achieved at the category

level.

In adversarial domain adaptation methods, there may be a mod crash problem caused

by the seperate design of the task and domain classifiers. This problem leads to

limitations in aligning the distributions of features and categories on domains. The

DADA method [139] aims to align distributions jointly. Thus, in addition to previous

work, DADA provides an interaction between category and domain predictions.

In the M-ADDA [82] method, a domain adaptation technique based on metric learn-
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ing is proposed. This method consists of two stages. First, a metric learning is per-

formed on the source domain data using the triplet loss function. As a result of this

training, a metric learning results in which the features of the images with the same

label are close to each other and those with different labels are far from each other.

In other words, a space in which the same classes are clustered is learned. Then, with

the adversarial method mentioned in the ADDA method, the features of the target

and source domain are aligned. During this training, in addition to the adversarial

loss function, the magnet loss function, which was originally proposed in this study,

draws the features of the target domain to the closest cluster of the source domain.

The magnet loss function pulls the features towards the center of the nearest clus-

ter. While determining the center of the cluster, the Euclidean average of the features

belonging to a certain class is considered.

The PixelDA [9] method adapts the source domain images to appear as if they were

taken from the target domain, using a Generative adversarial network-based model.

While the model is trained to make the images in the source domain appear to be

sampled from the target domain, it is aimed to preserve the original content at the

same time. This approach has many advantages. The primary advantage is that the

task-specific network does not need to be retrained. The task-specific network can

be used as is, as images are aligned at the pixel level. The second advantage is to

increase the stability of the training. Neural networks are sensitive to initial param-

eters. In classical adversarial training, problems such as stability and mode collapse

can occur. However, in the PixelDA approach, adversarial training is guided by the

knowledge of the task-specific network and a more stable training is provided. A third

advantage is that unlike classical style transfer approaches, the style of the entire do-

main is transferred, not the style of a single image. All these advantages contribute to

increasing the success of the task in the target domain.

In DupGAN [66], a dual generative adversarial network structure is proposed for

domain independent feature learning and inter-domain conversion learning. This

method is called DupGAN for short. The DupGAN method consists of four parts,

an encoder, generator, and two classifiers. The encoder network learns representa-

tions of images from both domains. The generator converts the image representations

back into images using the code containing the network domain information. In other
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words, it learns the conversion between domains. In this method, discriminator net-

works are not used only for real and fake discrimination. They are also conditioned

to predict class information. An extra class for the discriminator network has been

added to detect fake images. In this way, the features created by the feature extractor

network also contain domain independent category information, which is important

to avoid negative transfer.

In the CyCADA [61] method, domain adaptation is performed at two levels, namely

pixel and feature levels. Adversarial domain adaptation techniques show higher per-

formance than classical methods. However, there are two factors that limits the per-

formance of adversarial methods. First of all, aligning marginal distributions does

not mean that they will be semantically consistent. For example, a feature that cor-

responds to a car in the target feature space can be aligned to the bicycle class in the

source domain feature space. Second, alignments in deep features may not be able

to model appearance differences at the pixel level. For this reason, aligning at two

levels at the same time will increase the domain adaptation performance. Image to

image translation methods such as CycleGAN [192] are able to create realistic im-

ages while preserving regional content in natural scenes. However, while developing

these methods, the network related to the task was not taken into account. For this

reason, such methods may not preserve semantic information. For example, a model

trained to translate numbers from Google Street View to handwritten numbers may

learn to translate a printed 8 to a handwritten 1. The proposed method aims to elim-

inate the mentioned problems by making domain adaptation at both pixel level and

feature level.

Some of the methods used in previous domain adaptation studies are to adapt the

source data to the target data either by image representation transformations or by

generating new source images. Some of the researchers using these methods have

used Generative adversarial networks to do this. Another method, which is similar

but inverse of these methods, transforms the target domain, which has little or no

labeled data, into the source domain. Russo et al. [125] argued that transforming

in both directions (from source to target and from target to source) within the same

architecture will produce more general and more consistent results. In the light of this

information, bidirectional image translation mapping and loss of class consistency
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are proposed in this study. In the SBADA-GAN structure proposed in this study, two

generative adversarial losses are used to enable generating target images from source

samples and source images from target samples. In addition, two classification losses

are used, one using the original source images and the other using the target view

source images together. In this structure, the source classifier is also used to label

target images with source view. It has been shown that such a pseudo-label regulates

the classifier. Also, a new semantic constraint on source images, class consistency

loss, is proposed. In the test phase, two trained classifiers were used on the original

target images and their source-like versions, respectively. Two estimates from these

were linearly integrated to form the final labels.

Generate To Adapt (GtA) [128] aims to learn an embedding robust to shifts between

source and target distributions. An adversarial image generation approach is proposed

to directly learn shared feature embedding using labeled data from the source and

unlabeled data from the target. Although there are already studies using adversarial

structures to solve the problem of domain adaptation, the fundamental contribution

of this paper is an adversarial image generation strategy for unsupervised domain

adaptation that effectively learns a joint feature space in which the distance between

source and target distributions is reduced.

2.2 Unsupervised Domain Adaptation for Semantic Segmentation (UDA-SS)

In this section, unsupervised domain adaptation for semantic segmentation (UDA-

SS) problem will be explained, and recent methods that try to solve this problem are

summarized. Several methods are proposed to address the domain shift in semantic

segmentation recently. Domain adaptation for semantic segmentation aims to train a

segmentation network that can make a reliable and accurate prediction of the dense

label for each image in the target domain. In the source domain, the ground-truth

labels are available along with images. In the target domain, only unlabeled images

exist.
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2.2.1 Semantic Segmentation Methods

Image segmentation is the practice of classifying each pixel in an image into a par-

ticular category and can thus be thought of as a pixel-by-pixel classification problem.

Segmentation techniques are divided into two categories: Semantic segmentation is

the first type. The method of categorizing each pixel as belonging to a specific label is

known as semantic segmentation. It is consistent across different occurrences of the

same object. For example, semantic segmentation assigns the same label to each ve-

hicle’s pixels if a picture contains two vehicles. Instance segmentation is the second

type. Instance segmentation differs from semantic segmentation in that each instance

of a particular object in the image is assigned a unique label.

Classic machine learning approaches such as Genetic Algorithm and K-means Clus-

tering [182] were utilized to handle the problem of image segmentation before the

advent of deep learning. However, like with other image-related research problems,

deep learning has outperformed previous algorithms and has become the standard for

semantic segmentation.

This section provides an overview of some of the important deep learning approaches

for semantic segmentation to better understand the recent domain adaptation of se-

mantic segmentation methods.

A CNN’s basic design comprises a few convolutional and pooling layers, followed by

a few fully linked layers. According to Fully Convolutional Network (FCN) [96], the

final fully connected layer can be conceived as doing a 1x1 convolution that spans the

entire region. As a result, the last dense layers can be substituted by a convolution

layer, and the outcome will be the same. Furthermore, the benefit of doing so is that

the input size does not have to be fixed.

When working with dense layers, the input size is fixed. Thus if a different size

input is required, it must be scaled. This constraint is removed when a dense layer

is replaced with convolution. Also, when a larger image is used as an input, the

result is a feature map rather than a class output, as is the case with a smaller image.

The final feature map shows the required class’s heatmap, with the object’s position

highlighted in the feature map. Because the feature map’s output is a heatmap of the
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required object, it is valuable information for segmentation.

One may want to use an interpolation technique to up-sample the feature map ac-

quired at the output layer because it is downsampled due to the set of convolutions

performed. FCN suggested utilizing deconvolution and learned upsampling to learn

non-linear upsampling. The network’s encoder is responsible for downsampling,

while the decoder is responsible for upsampling. This is a common trend in several

designs, with the encoder reducing the size and the decoder increasing the sample

rate. In an ideal scenario, we would not use pooling to downsample and maintain the

sample size constant throughout. However, this would result in a massive number of

parameters and would be computationally impossible.

Even though the output results were satisfactory, they may be seen rough and not

smooth. This is because downsampling by 32 times using convolution layers causes

information loss at the final feature layer. It is now exceptionally hard for the net-

work to perform 32x upsampling with this bit of data. FCN-32 is the name of this

architecture used in FCN.

The study presented two other architectures to handle this problem: FCN-16 and

FCN-8. The input from the previous pooling layer is combined with the final feature

map in FCN-16, and the network’s objective is now to learn 16x upsampling, which

is better than FCN-32. FCN-8 seeks to improve it by incorporating data from a prior

pooling layer.

U-net [121] is an another network for semantic segmentation built on top of a fully

convolutional network. It is designed to detect tumors in the lungs or brain for medic-

inal purposes. It has an encoder that down-samples the input images to a feature map

and a decoder that uses learned deconvolution layers to up-sample the feature map to

the input image size.

Because FCN downsamples an image as part of the encoder, it loses much information

that is difficult to recover in the encoder. FCN attempts to address this by including

input from pooling layers before the final feature layer. The U-Net architecture’s es-

sential contribution is the introduction of shortcut connections. It proposes feeding in-

formation to each upsampling layer in the decoder from the matching downsampling
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layer in the encoder, capturing more delicate information while keeping computation

minimal. Because the layers at the start of the encoder have more information com-

pared to later layers, they will help the decoder’s upsampling process by supplying

fine details corresponding to the input images, significantly boosting the results.

Deeplab [15] has offered a variety of approaches to improve previous results and ob-

tain finer output at reduced processing costs. The research suggests three primary

changes for enhancing final output: atrous convolutions, atrous spatial pyramidal

pooling, and conditional random fields.

The excessive shrinking caused by consecutive pooling processes is one of the pri-

mary issues with the FCN technique. The input image is downsampled by 32x due

to a series of pooling operations, then upsampled to obtain the segmentation result.

The loss of information caused by downsampling by 32x is critical for obtaining fine

output in a segmentation operation. Also, because additional factors are involved in

constructing a learned upsample, deconvolution to upsample by 32x is a memory and

computation-intensive operation.

DeepLab suggests employing atrous convolution, also known as hole convolution or

dilated convolution, to help utilize significant contexts with few parameters. Dilated

convolution fills the space between parameters by expanding the size of the filter via

inserting zeros. A term dilation rate is the number of zeros filled in between the filter

parameters.

When the rate is equal to 1, a convolution operation is nothing more than a standard

convolution. When the rate equals 2, a zero is put between each of the other param-

eters, giving the filter the appearance of a 5x5 convolution for a 3x3 convolution. It

is now possible to obtain the context of a 5x5 convolution with only 3x3 convolution

parameters. Similarly, the receptive field for rate 3 is 7x7.

The latest pooling layers in Deeplab are replaced with stride 1 instead of 2, lowering

the downsampling rate to only 8x. The larger context is then captured using a suc-

cession of atrous convolutions. The output labeled mask is downsampled by 8x for

training to compare each pixel. In order to provide an output of the same size for

inference, bilinear upsampling is utilized, which produces acceptable results at lower
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computational and memory costs because bilinear upsampling does not require any

parameters, unlike deconvolution for upsampling.

Pooling is a technique for lowering the number of parameters in a neural network

while also introducing an invariance property. The quality of a neural network unaf-

fected by minor input translations is known as invariance. The segmentation output

provided by a neural network is imprecise, and the borders are not precisely defined

due to the characteristic obtained with pooling. The paper recommends using a graph-

ical model called CRF to cope with this problem. A conditional random field is used

as a post-processing technique to help determine shaper borders and improve results.

It works by identifying pixels based on their labels and the labels of neighboring

pixels.

DeepLabv2 [16] is a DeepLab’s extension study. The critical change from DeepLabv1

is that it incorporates an extra design called Atrous Spatial Pyramid Pooling (ASPP).

SPPNet [53] established the concept of ASPP Spatial Pyramidal Pooling to capture

multi-scale information from a feature map. Previously, input images of various res-

olutions were supplied, and the computed feature maps were combined to obtain

multi-scale information, but this required more computation and time. Multi-scale

information can be obtained with a single input image using Spatial Pyramid Pool-

ing.

ASPP applies the concept of combining information from various scales to Atrous

convolutions. Kernels with different dilation rates are convolved with the input, and

the results are merged. The input is convolved with four 3x3 filters with dilation rates

of 6, 12, 18, and 24, and the outputs are concatenated as they all have the same size.

The fused output of 3x3 varying dilated outputs is processed via 1x1 convolution to

generate at the desired number of channels. Because the segmented image might be

any size in the input, ASPP’s multi-scale information aids in improving the outcomes.

Deeplab-v3 [16] added batch normalization and proposed multiplying the dilation

rate by 1, 2, and 4 inside consecutive Resnet layers. Image level features have also

been added to the ASPP module. Instead of bilinear upsampling 16x, Deeplab-v3+

proposed using a decoder. The decoder is inspired by the decoders used in designs like

U-Net, which leverage encoder layer information to improve the output. The encoder
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output is upsampled four times using bilinear upsampling, then concatenated with

the encoder’s features, which are upsampled four times following a 3x3 convolution.

This method outperforms straight 16x upsampling in terms of results.

2.2.2 State-of-the-art Domain Adaptation Methods

In this section, the up-to-date domain adaptation methods for semantic segmentation

and the studies that form the basis for these methods are explained.

Adapted representations frequently fail to capture pixel-level domain shifts, which

are critical in dense prediction tasks. Because there is no explicit limit set on the pre-

dictions in the target domain, aligning marginal distributions does not always result in

sufficient performance. A novel pixel-wise adversarial domain adaptation algorithm

is presented in CrDoCo [22]. The approach is made up of two key components: an

image-to-image translation network and two domain-specific task networks (one for

target and the other for source). While the original and translated images in two sep-

arate domains may have unique looks, CrDoCo ensures that the domain-specific task

network predictions is same.

The association between depth and semantics is more domain-invariant and suffers

less from domain shift than the wide difference between synthetic and actual images.

Chen et. al. [20] proposes a method for cross-domain semantic segmentation using

auxiliary geometry information obtained from virtual data. Geometric information is

used to reduce domain shift on two levels: on the input level, it is used to augment the

standard image translation network with geometric information to translate synthetic

data into realistic style; on the output level, it is used to build a task network that

performs semantic segmentation and depth estimation simultaneously.

AdvEnt [154] use an entropy loss and an adversarial loss to present a complimen-

tary domain adaptation technique. It reduces the entropy of target predictions by

aligning the target and source domains’ weighted self-information distributions with

adversarial domain adaptation technique. The self-information or "surprisal" is de-

fined as − logPx(h, w, c) for a given a pixel-wise class score Px(h, w, c). Entropy is
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effectively the expected evalue of self-information Ex(h, w). However, entropy min-

imization tend to favor simple classes. As a result, it can be advantageous to steer

the learning process using some prior knowledge. They achieve this by employing a

simple class-prior based on the distribution of classes across source labels. The class-

prior vector is calculated as an L1-normalized histogram of the number of pixels per

class over the source labels.

Unlike AdvEnt, Chen et. al. [18] propose a maximum squares loss to balance the

gradient of well-classified target samples to overcome the bias towards samples that

are easy to transfer when using entropy minimization.

The discriminator in output-level adversarial domain adaptation is not supervised to

capture various modes in the data distribution, and it may end up learning only low-

level distinctions across domains such as tone or texture. Tsai et al. [147] present an

unsupervised domain adaption technique for learning a better discriminator between

the two domains by intentionally discovering many modes (K modes are generated

using the K means procedure) in the structured output space of semantic segmenta-

tion.

Most previous research has treated semantic segmentation as the only mode of su-

pervision for source domain data, ignoring additional, potentially available variables

such as depth. Vu et. al. [155] believe that adding more depth-specific adaptation will

have complementary effects, bridging the performance difference between source and

target at test time. They achieve this by using an extra depth regression job to alter

the segmentation backbone so that the depth information is included into a specialized

deep architecture.

Semantic segmentation objects are separated into two types. Things (i.e. object in-

stances) have far larger changes in appearance among images of different domains

than stuff categories. To address the intra-class domain shift problem, Wang et.

al. [164] first propose a stuff and instance matching (SIM) approach. Second, they

present a self-supervised learning framework that works in conjunction with the sug-

gested SIM structure to enable label-level transferring, which improves performance

even further. They minimize the distance between each background class’s stuff rep-

resentation and the nearest intra-class source stuff feature representation for each tar-

28



get domain image. For the stuff representation for every background class, they aver-

age the features corresponding to the same background semantic class throughout the

width and height of the image. Because the ground truth lacks instance-level annota-

tions, they create the foreground instance mask by looking for disconnected regions

in the label map L for each foreground class.

Previous studies have focused on adapting models straight from source data to un-

labeled target data. Nonetheless, these methods ignore the significant distribution

gap among the target data which is called an intra-domain gap. Pan et al. [108]

proposed a two-step self-supervised domain adaptation technique to reduce both the

inter-domain and intra-domain gap. First, they apply the adversarial domain adapta-

tion approach to decrease the inter-domain gap. Then, using an entropy-based ranking

mechanism, they divide the target domain into an easy and hard split. They propose

using a self-supervised adaptation strategy from the easy to the hard split to reduce

the intra-domain gap.

The category-level joint distribution is not taken into account in the global align-

ment approach. CLAN [102] proposes a category-level adversarial network with the

goal of ensuring local semantic consistency throughout the global alignment process.

First, they find classes with features that are already well aligned between the source

and target domains, and they preserve this category-level alignment from adversar-

ial learning’s side effects. Second, they detect classes with differing distributions

of features between the two domains and increase the weight of the adversarial loss

during training. Generator G is separated into feature extractor E and two classifiers

C1 and C2. E extracts features from the images it receives. C1 and C2 classify the

features generated by E into pre-defined semantic categories like car, tree, and road.

Following the co-training approach, they use a cosine distance loss to ensure that the

weights of C1 and C2 are different. The final prediction map is created by adding the

two different predictions together.

A Semantic-wise Separable Discriminator (SS-D) [32] is a technique for adapting

semantic characteristics across target and source domains independently. It aims to

solve the problem of inconsistent adaptation in class-wise adversarial learning. To

create a more reliable separation, SS-D includes a progressive confidence technique.
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To balance the class-wise adversarial learning process, an efficient Class-wise Adver-

sarial loss Reweighting module (CA-R) is implemented, which causes the generator

to focus more on poorly adapted classes. Their advantages over state-of-the-art class-

wise adaptation techniques are two-folds. First, they use the downsampled pseudo

label to isolate various semantic characteristics from the full feature space, making

class-wise adaption independent. Second, during the adaptation phase, the progres-

sive confidence technique will reduce inaccurate adaption.

Images’ structural content is the most informative and decisive aspect in semantic

segmentation, and it may easily be transferred between domains. The DISE [13] uses

a series of common and private encoders to separate an image’s high-level, domain-

invariant structural information from its low-level, domain-specific texture informa-

tion. The method’s novelty is highlighted by the emphasis on deliberately regularizing

the common and private encoders toward capturing structure and texture information,

as well as the capacity to transform images from one domain to another for label

transfer. Adversarial learning is applied based on spatial contextual resemblances

between the source and target domains on segmentation map level.

Traditional image translation methods map the image directly from the source do-

main to the target domain, however the DLOW [46] proposes a method to generate

a series of intermediate domains that shift from the source domain to the target do-

main. Images can be translated into intermediate domains and then used to perform

domain adaptation. DLOW shows that using intermediate domain images, standard

domain adaptation methods can be improved to obtain superior performance in the

target domain. The conditional instance normalization layer is utilized to injects the

domainness variable into the image translation network. The domainness variable

is also utilized as discriminator weights to balance the output images’ relatedness to

distinct domains.

The quality of image-to-image translation is essential to the segmentation model. The

segmentation adaptionmodel and the image translation model can be trained alter-

nately and they improve to each other. BDL [88] proposes bidirectional learning to

train image translation and segmentation model. It utilize a self-supervised learning

(SSL) technique in training their segmentation adaption model in the forward direc-
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tion. And the translation model is iteratively improved by the segmentation adaption

model in the reverse way.

There are two drawbacks to using cycle-consistency in unsupervised domain adapta-

tion. First, redundant components such as a target-to-source generator and associated

computational cost are required. Second, when target data is limited compared to

source data, as is the case with unsupervised domain adaptation, cycle consistency

may be overly strong. One of the most successful strategies for domain adaptation

in categorization is the self-ensembling technique. Choi et. al. [25] propose a com-

putationally efficient and effective data augmentation strategy based on Generative

Adversarial Networks (GANs) for domain alignment. They use self-ensembling to

improve the performance of the segmentation network on the target domain using

those augmented images. They use a source encoder to generate content representa-

tion and a target encoder to extract style representation, based on the notion that an

image may be divided into two disentangled representations, content and style. They

use Adaptive Instance Normalization (AdaIN) on feature maps of source pictures to

correctly blend these two representations.

In order to manage low-level variability, sophisticated adversarial learning models

are ineffective. FDA [176] investigates if simple alignment of low-level statistics

between the source and target distributions can improve UDA performance without

requiring further training beyond the basic job of semantic segmentation. It simply

computes the (Fast) Fourier Transform (FFT) of each input image and inserts the low-

level frequencies of the target images into the source images before reassembling

the image for training, utilizing the original annotations in the source domain, via

the inverse FFT (iFFT). They use entropy minimization to regularize segmentation

network training. UDA becomes a semisupervised learning (SSL) problem since FDA

aligns the two domains. By averaging the model weights, the mean teacher enhances

semisupervised learning performance. FDA utilizes the mean teacher approachs to

improve the alignment performance.

Because of the source domain’s dominant data size, source-to-target translation in-

creases the bias in translated photos. Yang et. al. [173] propose a method that uses

image reconstruction to eliminate image translation bias and align cross-domain fea-
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ture representations. The goal of a reconstruction network is to rebuild both source

and target images using their predicted labels. This technique enforces cross-domain

features with the same label to be close to one another.

Kim et. al. [76] suggest a method for learning texture invariant representation for

better domain adaptation. They use a style transfer algorithm (Style-swap) to diver-

sify the texture of the original source dataset, and use an image translation technique

(CycleGAN) to translate the original source dataset. After that, their model goes

through two levels of training. They learn texture-invariant representation in stage 1

by training a segmentation model with the texture-diversified dataset. They fine-tune

the model to the texture of the target domain in stage 2 using the texture-invariant

representation.

PyCDA [89] is based on two previously studied technique: curriculum domain adap-

tation and self-training. It builds a pyramid curriculum that includes numerous prop-

erties related to the target domain. These attributes are mostly concerned with the

required label distributions among target domain images, image areas, and pixels. It

incorporates the self-training pseudo labels into the curriculum as the finest layer of

attributes about the target domain images.

One of the effective strategies for domain adaptation is self-ensembling. The mean-

teacher method is commonly used in existing cross-domain semantic segmentation

approaches. They use a consistency regularization on the target prediction of the

student and teacher models under various perturbations. Previous studies, on the

other hand, have not taken into account the accuracy of the predicted target samples,

which could hinder the learning process by providing the student model with inaccu-

rate guidance. More meaningful and trustworthy knowledge from the teacher model

would be conveyed to the student model by utilizing the target samples’ latent un-

certainty information. Zhou et. al. [190] propose a stochastic forward pass method

for capturing uncertainty. They do this by injecting a Gaussian noise into the target

predictions prior evaluating the uncertainty. They also employ dropout for weight

perturbation.

Even if two images are from separate domains, some parts, such as the car and road

region, have similar structures. Sun et. al. [137] propose a domain adaptation method
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to concentrate on these related areas in order to increase efficiency. They present

a hierarchical transfer learning system for learning real image segmentation from

synthetic images at three levels: pixel, region, and image. To assign greater weights to

synthetic image granularities that are similar to actual ones, three weighting networks

are learned together. They use hierarchical weighting networks to score similarity at

the pixel, region, and complete image levels, taking into consideration both local and

global information.

Although the method of aligning the two domains in latent feature space through ad-

versarial learning has made significant progress in image classification, it frequently

fails in semantic segmentation problems with overcomplex latent representations.

SIBAN [101] allows for significance-aware feature purification prior to adversarial

adaptation, making feature alignment easier and the adversarial training more stable.

Their method is based on the information bottleneck (IB) theory, which states that the

learned latent representation Z must produce a consistent prediction with the ground-

truth labels Y while containing the least mutual information I(X, Z) with the provided

input X. It is capable of balancing the information constraint across distinct classes in

order to preserve ultimate performance on datasets with classes that are uncommon.

Context dependency is critical for semantic segmentation, but its transferability re-

mains unclear. Yang et al. [174] propose a self-attention-based cross-attention mech-

anism to capture and adapt transferable context dependencies between two domains.

They build two cross-domain attention modules to modify context dependencies from

both spatial and channel views to achieve this goal. The spatial attention module, in

particular, captures the local feature relationships between each place in the source

and target images. The semantic dependencies between each pair of cross-domain

channel maps are modelled by the channel attention module. They selectively com-

bine context information from two domains to modify context dependencies.

2.2.3 Effective approaches for UDA-SS

The related works in UDA-SS show that the proposed methods show commonalities.

Most of the state-of-the-art methods follow a similar framework. An example data-

flow is illustrated in Figure 2.2. The effective approaches will be explained by the
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Figure 2.2: Unsupervised Domain Adaptation for Semantic Segmentation Common

Framework

help of this figure.

There are two data flows, correspond to the source and the target domain. The

dataflow of the image that belongs to the source domain is shown with blue lines

in the figure. This flow can be summarized as follows. Firstly, the image is translated

to the target domain with an image-to-image translation (IIT) method. Then the trans-

lated image is fed to the segmentation network. The semantic segmentation network

can be trained with ground-truth labels as if the images are sampled from the target

domain since ideally, the translated image matches to the marginal distribution of the

target domain. The dataflow of the image that belongs to the target domain is shown

with green lines in the figure. The segmentation map of the target image can be calcu-

lated directly by feeding it to the segmentation network. The segmentation network

is composed of feature extraction network (F ) and classification network (C). The

feature extraction network is used to learn representative features for segmentation

tasks. The two popular feature extraction backbone architectures are ResNet-101 and

VGG16. The classification network is used the upscale the feature map to the input

image size so that a segmentation map can be achieved. Even though two differ-

ent segmentation network is shown in the figure for source and target domain, they

usually share weights in recent works.
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The paths to calculate loss functions are shown with dashed orange lines. The typ-

ical loss function (Lsupervised ) for supervised learning is a standard pixel-wise cross-

entropy loss. The knowledge in the source domain can be acquired with this loss

function. In order to exploit images that belong to the target domain, several methods

are studied. The major approach is to use an adversarial training to align the features,

extracted from the two domains. The adversarial training achieved great success in

the domain adaptation task. Therefore, this method is widely studied by researchers.

The goal in adversarial training is to generate similar outputs to source domain image

when a target image is forwarded to the segmentation network. Alignment can be

done in three-level, namely pixel, feature, and output levels. The pixel-level align-

ment (Lpix_align) corresponds to image-to-image translation from the source domain

to the target domain. If the features extracted from the feature extraction network are

aligned, this approach is called a feature level alignment(Lfeat_align) . The output level

alignment (Lout_align) is applied to the output of the classification network. Most of

the methods use vanilla GAN loss to align features between domains. However, these

approaches may cause training instability and negative transfer. In order to solve

negative transfer and achieve better alignment across all segmentation classes, some

methods are proposed, such as class-conditional, region/pixel level, and discrimina-

tive patch alignment.

The most effective way of boosting the performance of the segmentation network is

to train it in a supervised manner in the target domain. However, it is not possible

due to a lack of labels in the target domain. Self-training aims to train network based

on the self-predictions. Self-training uses confident predictions of the segmentation

network as a ground-truth label and trains network with these labels in a supervised

manner. Curriculum learning splits target dataset based on the predictions of the

segmentation network. The easy data are trained first, which helps better convergence.

The disadvantage of self-supervised learning is that the overconfident mistakes and

propagated errors due to the generation of pseudo-labels lead erroneous training.

There are also some studies, that doesn’t fit the pipeline explained above. Infor-

mation bottleneck aims a significance-aware feature purification before the adver-

sarial adaptation in the feature extraction network F . Another approach is to use a

self-ensembling method. A self-ensembling is composed of a teacher and a student
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network, where the student is compelled to produce consistent predictions provided

by the teacher on target data. The teacher’s weights are updated by the student’s

with exponential moving average, generally. In this way, the teacher network learns

more domain-independent features gradually. Entropy minimization defines a loss

function that minimizes the entropy of the network prediction, which forces the net-

work to make more confident predictions. Context-aware domain adaptation uses

self-attention to detect context dependencies between source and target domain. It

adapts the transferable context with this cross-attention mechanism.

In summary, the main research goals of the domain adaptation for semantic segmen-

tation in the literature can be collected in four categories, which are listed as follows:

• Design image-to-image translation method which both preserves the semantic

content and better align to the distribution of target domain.

• Learn domain invariant representation by alignment on feature or output level

that can also avoid negative transfer.

• Learn domain invariant representation by non-adversarial methods like infor-

mation bottleneck, mean teacher and entropy minimization.

• Better self-training techniques that better decides confident predictions and ex-

ploit them. In this thesis, we focus on the self-training techniques.

2.2.4 Source-Free UDA-SS

Traditional unsupervised domain adaptation exploits information from both labeled

source data and unlabeled target data. However, data cannot be freely shared due to

Intellectual Property or privacy concerns in some applications such as medical image

processing. A new task called source-free domain adaptation for semantic segmen-

tation (SF-UDASS) is introduced recently to eliminate the problem. In source-free

scenarios, the annotated source dataset is unavailable. The task is to apply domain

adaptation using only the trained source model instead of the source data as well as

unlabeled target data.

During adaptation training, recovering and conserving the source knowledge learned
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by a source model is critical due to missing source data and unclear target pseudo-

labels. This is because the target model will vary from the source domain due to

the unclear supervision information in target pseudo-labels. SFDA [95] proposes

a solution. Knowledge transfer and model adaptation are two stages of the SFDA

framework. It employs a generator in the knowledge transfer stage to estimate the

source domain and synthesize fake samples that are similar to the real source data in

distribution, which is used to transfer domain knowledge from a well-trained source

model to a target model. Furthermore, the source model may predict proper labels on

a target domain. As a result, Liu et. al. [95] propose an intra-domain patch-level self-

supervision module (IPSM) based on entropy to use appropriately segmented patches

as self-supervision during the domain adaptation stage.

Fleuret et. al. [34] proposes a method that enforces confident predictions in target

domain under the feature noise. The model in training is initialized with the source

model. It uses multiple decoders and introduces feature noise with dropout. The

noise resilience is satisfied by uncertainty loss which is the squared difference of the

decoder outputs. The training stability is improved with entropy minimization and

self-training with threshold-based pseudo-labeling.

Many self-training approaches tend to fall into the "winner-takes-all" issue, where the

majority classes completely dominate the segmentation networks and the networks

fail to identify the minority classes since there is no supervision from the source do-

main data. You et. al. [178] propose a system that includes two mutually reinforcing

elements: positive and negative learning. To avoid "winner-takes-all," they use an

intra-class threshold to select the class-balanced pseudo-labeled predictions in posi-

tive learning. They offer a heuristic complementary label selection (HCLS) to create

the complementary label for each pixel in negative learning. The pixel’s complimen-

tary label specifies which category it does not belong to.

2.3 Metric Learning

Distance metric learning is a machine learning technique for autonomously creating

task-specific distance metrics from supervised data. The goal is to learn a transfor-
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mation from input image space to an embedding space where semantic similarity is

inversely proportional to the learned distance. Face recognition [94, 157, 156], few-

shot learning [138, 116], person re-identification [167, 56], representation learning

[181, 161], and visual tracking [84, 140] are just a few of the applications that it has

been used for. In terms of the loss function used, distance metric learning approaches

are divided into two groups [77]. These are pair and proxy-based approaches.

2.3.1 Pair-Based Approaches

Methods that utilizes a pairwise relationship in data are referred to as pair-based meth-

ods. They are defined in a dataset over tuples such as pair, triplet, and N-tuplet.

The most common loss function in pair-based approaches is triplet loss. An anchor

sample, a positive sample from the same class as the anchor, and a negative sample

from a different class make up a triplet. The embedding vector of anchors, positives,

and negatives is represented by za, zp, and zn, respectively.

2.3.1.1 Triplet Loss

Triplet loss enables the distance between anchor-positive and anchor-negative pairs

to be smaller by a defined margin αtriplet. As a distance metric in the loss, Euclidean

distance (ℓ2) or squared Euclidean distance (ℓ22) might be used. The triplet loss func-

tion is used to train the model, where d is a distance function over embedding vectors

generated by the neural network.

LTriplet =
∑

a,p,n⊂T

[d(za, zp)− d(za, zn) + αtriplet]+ (2.1)

A model’s collapsing risk is defined as the collection of all embedding vectors at the

same location. Because of hard negatives, there is a possibility of a model collapsing

in ℓ22 triplet loss [165]. Triplet with ℓ22 solves the collapsing model problem by min-

ing all triplets whose distance between anchor-negative and anchor-positive pairs is

greater than the distance between anchor-positive pair but falls within the set margin.

38



Although this mining, known as semi-hard mining, solves the collapsing problem, it

causes the hard triplet to be skipped, which is required to learn fine-grained details.

In addition, due to the mining procedure, triplet loss suffers from excessive training

complexity.

2.3.1.2 Multi-Similarity Loss

The Multi similarity (MS) loss develops a pair weighting framework in which the

weights are the partial derivative of the loss with respect to the similarity matrix entry.

Each distinction denotes the relative importance of the two pairs. It distinguishes

between three new types of similarity: self, positive relative, and negative relative.

These similarities provide the information needed to assess the pair’s significance.

Let’s look at three different similarities using a negative pair as an example. Neg-

ative pair cosine similarity is equivalent to self-similarity. To learn discriminative

space, a negative pair with a high self-similarity contains subtle distinctions. As a

result, negative pairs of this nature are given more weight. The disparity between

the self-similarity of the negative pair and that of other positive pairs is characterized

as positive relative similarity. When a positive pair gets away from a negative pair,

for example, positive relative similarity grows. Negative pairs with a high positive

relative similarity are difficult to differentiate from the anchor class. As a result, they

are given large weights as well. The discrepancy between the self-similarity of the

negative pair and that of other negative pairings is known as negative relative simi-

larity. When a pair has a high negative relative similarity, it suggests that it is more

informative than other negatives.

w−
ij =

1

eβ(λ−S(zi,zj)) +
∑

k∈Ni

eβ(S(zi,zk)−S(zi,zj))

w+
ij =

1

e−αms(λ−S(zi,zj)) +
∑

k∈Pi

e−αms(S(zi,zj)−S(zi,zk))

(2.2)

We obtain a new pair-based loss function, multi-similarity (MS) loss, whose partial

derivative with respect to S is the weights, when we combine pair mining and weight-

ing schemes into a single framework.
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LMS =
m
∑

i=1

{

1

αms

log

[

1 +
∑

k∈Pi

e−αms(S(zi,zk)−λ)

]

+
1

β
log

[

1 +
∑

k∈Ni

eβ(S(zi,zk)−λ)

]}

(2.3)

2.3.2 Proxy-Based Approaches

To see all possible combinations of samples that comprise a given type of tuple in

a dataset, pair-based losses require several iterations. Due to the mini-batch size

limitation, pair-based losses only cover tuples in the mini-batch, regardless of how

they are combined with instances from outside the mini-batch. As a result, seeing all

combinations is difficult because it necessitates locating all mini-batches that result

in all combinations.

Assume that data from a specific class is chosen at random and referred to as an an-

chor. Positive pair refers to a pair of samples from the same class of anchor, whereas

negative pair refers to samples from different class of anchor. Negative pairs gain in

value when their negative sample moves closer to the anchor, because closer negative

samples resemble the anchor and have distinguishing characteristics. This value is

calculated using negative hardness. As a result, mining harder negatives is a good

way to teach the network. The hard negatives, on the other hand, may lead the net-

work to collapse into a single point [165]. As a result, mining has an impact on not

only the pace of network convergence, but also the point at which the network con-

verges. Proxy-based loss replaces data-data relations with data-proxy relations, where

a proxy is defined as a trainable representative of a class. As a result, proxy-based

losses minimize the overall number of pair combinations, reducing mining effort. It

also allows for inter-batch interactions via proxies.

The proxies are data placeholders that express the distribution of classes. In general,

each class has just one proxy that corresponds to a single semantic class. However, for

a case like multi-modality, it is conceivable to have more than one proxy for a class to

increase intra-class variance. Although proxy losses can be employed in a variety of

loss formulations, they are most commonly used in Neighboring Component Analysis

(NCA) [44]. This goal is to increase the likelihood of instances from the same class
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being in the same region while reducing the likelihood of examples from different

classes being in the same neighborhood. It calculates the likelihood of zi and zj being

neighbors. NCA is typically formulated as a log-likelihood minimization task.

pij = −
∑

log
e−d(zi,zj)

∑

i 6=k e
−d(zi,zk)

(2.4)

2.3.2.1 Proxy Neighbor Component Analysis (ProxyNCA)

As a remedy to computational cost in pair based losses owing to many comparisons,

ProxyNCA [105] associates each data with its proxy to mimic pairwise associations.

By comparing each example to its proxy rather than all positive pairs, the proxy is

integrated into NCA loss. Each piece of data is drawn to its own proxy and repulsed

by others.

LProxyNCA = −
Nmb
∑

i=0

log

(

e−d(zi,p(zi))

∑

p−∈P\p(zi)
e−d(zi,p−)

)

(2.5)

2.3.2.2 ProxyNCA++

ProxyNCA++ is a version of ProxyNCA that has been enhanced. It has several im-

provements over ProxyNCA. To begin with, ProxyNCA++ considers the relationship

between data and all proxies when determining the likelihood of data being attributed

to one of the proxy. When compared to the ProxyNCA, which examines the distance

ratio to negative proxies, the sum of probability of data being allocated to each proxy

equals one. This attribute of ProxyNCA++ makes the loss more stable.

Secondly, ProxyNCA++ discovered that due to ℓ2-Normalization, proxies have a little

gradient. It improves the convergence of proxies by increasing the learning rate of

proxies as a solution. Proxies are updated at the same time as the embedding layer.

As a result, rapidly moving proxies enable stronger semantic class generalization.

Third, temperature scaling, which is utilized in soft-max, prevents the network from

becoming overconfident by transforming hard probabilities into soft probabilities dur-
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ing network calibration [50]. When a network is calibrated, the total number of

examples predicted with a certain confidence includes true predictions equal to the

confidence ratio times the total number of examples predicted with that confidence.

ProxyNCA++ searches for an acceptable temperature scaling coefficient in view of

this fact. This temperature scaling, on the other hand, is regarded as a gradient boost

that exaggerates the distance between data and its proxy.

LProxyNCA++ = −
Nmb
∑

i=0

log

(

e−D(zi,p(zi))/T

∑

p∈P e−D(zi,p)/T

)

(2.6)

Last but not least, ProxyNCA++ discovered that using layer normalization at the end

of backbone network and using global max pooling rather than global average pooling

improves classification accuracy.
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CHAPTER 3

SELF-TRAINING GUIDED ADVERSARIAL DOMAIN ADAPTATION FOR

THERMAL IMAGERY

Significant improvements have been made by using RGB images for image classi-

fication and detection problems [43, 54, 80, 118, 119] recently. The state-of-the-art

methods have been trained on large-scale RGB datasets such as MS-COCO [90], Im-

ageNet [29], Pascal-VOC [33], etc. However, low-lighting conditions hinder current

state-of-the-art deep learning methods trained on visible spectrum images from per-

forming well on computer vision tasks such as image classification, object detection,

etc. Since thermal IR cameras are more robust against these conditions, exploiting

them is useful for real-world applications. Therefore, usage of thermal IR cameras

has become more common in the tasks related to autonomous driving, military op-

erations, security surveillance, etc. Since such large-scale thermal datasets are not

publicly available, it still remains an important challenge to achieve same level of

performance on thermal image datasets. Therefore, exploiting complementary infor-

mation offered by visible spectrum images is a straightforward technique to improve

performance of the methods which work on thermal images for classification and

detection problems. Unfortunately, recent studies demonstrated that performance of

a deep model well-trained on visible spectrum images may significantly drop when

applying to thermal images [30, 49, 51, 69, 73].

Since deep networks are sensitive to domain shift, a deep model trained on a large

amount of labeled source domain data may fail at generalizing to unlabeled target

domain data which are not similar to source domain data. To overcome these is-

sues, unsupervised domain adaptation (UDA) aims to learn a model which maps both

domains into a common feature space without requiring image pairs. Among the
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(a) Input image (b) Source only

(c) Base method (d) Our method

Figure 3.1: Visualization of class activation maps on a target domain image using oc-

clusion sensitivity [183]. Given a person image (a), our proposed model (d) activates

semantically more meaningful parts of the image compared to our base method (c)

[149], while the model trained on only source domain images (b) misclassifies the

image as bicycle and activates wrong regions.

recent UDA methods, adversarial domain adaptation methods have become popular

[149, 36, 91, 98]. These approaches incorporate adversarial learning as a two-player

game similar to generative adversarial networks (GANs) [47]. Adversarial domain

adaptation methods utilize a domain discriminator to distinguish source domain from

target domain and a feature extractor to learn domain invariant representations to fool

the domain discriminator. By learning domain invariant feature representations, ad-

versarial domain adaptation methods assume that a classifier trained on source domain

features is able to successfully classify target domain samples as well.

In this chapter, we propose an unsupervised adversarial domain adaptation method to

align source and target domain distributions as described in Section 3.2. We employ

Adversarial Discriminative Domain Adaptation (ADDA) [149] method as our base

method. Although ADDA and other adversarial domain adaptation methods have

achieved successful results, these methods face a major generalization limitation.
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The limitation is that even though the distributions are aligned by learning domain

invariant representations with a feature extractor, theoretically, the classifier may not

work well on the target domain as shown in [6]. Therefore, learning discriminative

representations for the unlabeled target domain is a difficult problem.

Based on the assumption of self-training, a classifiers’ own high-confidence predic-

tions are correct [193]. Since we assume that the predictions are mostly correct,

exploiting the samples with high confidence values and retraining the classifier fur-

ther improves the performance of the classifier. To this end, recent adversarial domain

adaptation methods proposed to use pseudo-labels obtained from a classifier and re-

train the model using the pseudo-labeled samples [126, 169, 186]. With these in

mind, in this study, we propose a self-training guided adversarial domain adaptation

(SGADA) method to overcome the generalization problems of adversarial domain

adaptation methods (Figure 3.2). To perform self-training, pseudo labels obtained

after warm-up phase of our method are assigned to the samples on the target domain

to learn more generalized representations for the target domain. Pseudo-labels are

assigned if confidences of the classifier trained on source domain and the domain

discriminator reaches to threshold values for a target domain sample.

Our proposed method makes use of features obtained from visual spectrum images

to improve classification performance on thermal domain. Moreover, our method

does not need paired samples of RGB and thermal datasets. In order to train and test

our proposed method, we use large-scale RGB dataset MS-COCO [90] and thermal

imagery dataset FLIR ADAS [48]. We evaluate the proposed method quantitatively

and qualitatively. We demonstrate our methods’ success compared to the state-of-the-

art unsupervised domain adaptation methods in Section 3.3. The results show that

our method improves the performance of our base model and outperforms the state-

of-the-art methods. Moreover, Figure 3.1 depicts that given a thermal image, our

method classifies the image correctly by activating semantically more meaningful

regions compared to our base method ADDA [149] and the model trained only on

source domain data.

Effective classification for imbalanced data is an important field of research since

class imbalance exists in many real-world applications [12, 74]. Therefore, it is im-
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portant to address the class imbalance problem. In our experimental studies (Section

3.3), we show that class imbalanced datasets cause UDA methods to over-classify

the majority category. We show that our proposed method achieves better results

compared to the state-of-the-art UDA methods when class imbalance exists.

Our contributions are summarized as follows:

• We demonstrate the efficacy of combining visible spectrum and thermal image

modalities by using unsupervised domain adaptation without requiring RGB-

to-thermal image pairs.

• We propose a self-training guided adversarial domain adaptation method for

thermal imagery. In order to learn more generalized feature representations

for target thermal domain, we employ pseudo-labels generated by the classifier

trained on RGB images and the discriminator, and train our model with these

pseudo-labels.

• In order to demonstrate results of our method, we employ the large-scale RGB

dataset MS-COCO as source domain and the thermal dataset FLIR ADAS as

target domain. Extensive experimental analyses show that our proposed method

outperforms the state-of-the-art unsupervised domain adaptation methods.

3.1 Related Work

By using RGB images, deep neural networks have gained popularity on computer vi-

sion tasks such as object detection, classification etc. Although significant improve-

ments have been accomplished by using visible spectrum images, it still remains a

critical problem to train a deep model robust to real-world problems, e.g. low-lighting

conditions. To overcome these problems, thermal imagery has been used for object

detection and classification problems [51, 69, 130].

Some of recent studies investigated the effects of combining RGB and thermal images

to the performance on object detection problem [30, 51, 69, 73]. Since large-scale

thermal datasets are not publicly available, in this study, we exploit complementary

information offered by visible spectrum images to improve classification performance
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ŷ
t

LadvD(x
s
; x

t
;Fs;Ft)

LadvF (x
s
; y

s
;D)

LclsP (x
t
; ŷ
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Figure 3.2: An overview of our proposed self-training guided adversarial domain

adaptation (SGADA) method. Pseudo-labels generated after our methods’ warm-up

phase are assigned to target thermal images. Then, the target CNN Ft is trained using

the pseudo-labels. The classifier C and the source CNN Fs are reused from our base

model, and thus they are fixed. Target feature representations are learned by updating

parameters of the target CNN Ft with respect to losses generated by the discriminator

D and the classifier C. Blue boxes indicate fixed network parameters while red boxes

indicate trainable network parameters.

on thermal imagery without requiring RGB-to-thermal image pairs. We propose an

unsupervised domain adaptation method in order to investigate efficacy of combining

visible spectrum and thermal image modalities.

Numerous recent methods attempted to address domain adaptation problem. Re-

cently, Generative Adversarial Networks (GANs) [47] inspired the field of domain

adaptation, and thus deep adversarial domain adaptation methods have become pop-

ular [149, 9, 36, 91, 98].

Feature-level adversarial domain adaptation methods incorporate a domain discrimi-

nator to distinguish source and target domains while feature extractor learns features

to fool the discriminator. Ganin et al. [36] proposed a gradient reversal layer to learn

a feature extractor which generates features that maximize domain discriminator loss

while minimizing label prediction loss. More recently, Tzeng et al. [149] proposed a

method to learn a discriminative mapping of target images to source feature space by
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fooling a domain discriminator which distinguishes the encoded target images from

source samples. Many recent works employ adversarial training paradigm in their

domain adaptation procedure [91, 98]. Although feature-level adversarial domain

adaptation methods have accomplished successful empirical results, these methods

suffer from a major limitation. As shown in [6], even if a feature extractor is well

learned to generate domain invariant features, theoretically, the classifier may not

work well on the target domain. Therefore, learning discriminative representations

for the unlabeled target domain is considered difficult.

On the other hand, pixel-level adversarial domain adaptation methods translate source

domain data into target domain data or vice versa by using image-to-image transla-

tion [92]. Bousmalis et al. [9] proposed an approach to learn a transformation in

pixel-level from one domain to the other. Inspired by CycleGAN [192], Hoffman et

al. [61] proposed CyCADA to increase semantic consistency of the image transla-

tion to improve the pixel-level methods. Even though pixel-level adversarial domain

adaptation studies present remarkable results, image-to-image translation sometimes

performs poorly on the datasets which have objects with many complex structures.

To overcome the limitations of adversarial domain adaptation methods, recent studies

propose to directly deal with relationship between decision boundary and learned fea-

ture representations [85, 127]. Saito et al. [127] introduced to use a minimax training

method to push target feature distributions away. Lee et al. [85] proposed to exploit

adversarial dropout mechanism to learn more discriminative features by enforcing

cluster assumption [14]. However, our experimental studies show that these methods

and aforementioned adversarial domain adaptation methods have a drawback: Class

imbalanced datasets [12, 74] lead to a performance drop for these methods.

We employ a self-training guided adversarial domain adaptation method to deal with

the generalization problems of adversarial domain adaptation methods for thermal

imagery. To the best of our knowledge, there is no self-training guided domain

adaptation study in the literature of thermal image classification. Self-training is a

technique to assign pseudo-labels to unlabeled samples using predictions of a clas-

sifier and retrain the model including the pseudo-labeled samples. Based on the

assumption of self-training, a classifiers’ own high-confidence predictions are cor-
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rect [193]. Recent adversarial domain adaptation methods proposed to use pseudo-

labels [126, 169, 186]. In our experiments, we show that our self-training guided

method performs better than previous domain adaptation methods under class imbal-

ance problem by learning more generalized representations for target thermal domain.

3.2 Proposed Method

Our proposed self-training guided adversarial domain adaptation method is illustrated

in Figure 3.2. Before performing self-training, we extract pseudo-labels for the target

domain samples. The pseudo-label extraction mechanism is depicted in Figure 3.3.

First, a feature extractor Fs and a classifier C are trained on source domain using la-

beled source domain RGB images (Figure 3.3-(a)). This step is named as pre-training.

After this step, the classifier network C can successfully classify the source domain

images by exploiting the features which are extracted by the source Convolutional

Neural Network (CNN) Fs. After the training on the source domain, we perform the

second step: the warm-up phase for pseudo-label generation (Figure 3.3-(b)). In this

step, we fix the parameters of the feature extractor Fs trained on the source domain.

A target specific feature extractor Ft is learned in an unsupervised manner. By per-

forming this step, features extracted from the source domain and the target domain

are aligned with adversarial training. Therefore, we can use the classifier C trained

on the source domain to classify target domain samples. We perform aforementioned

two steps by following the training process of our base method ADDA [149]. In the

last step, we fix the parameters of the feature extractor Ft trained on the target do-

main, the classifier C trained on the source domain and the discriminator D. Then,

we obtain predictions from the classifier and confidences from both the classifier and

the discriminator for the target domain samples.

Once the predictions and the confidences are obtained, we utilize the predictions to

give pseudo-labels for target domain samples using the confidences obtained from the

classifier C and the discriminator D as shown in Figure 3.3-(c). We use prediction

of the classifier for a target sample if classifiers’ confidence value is higher than a

threshold and domain label prediction of discriminator is close to source domain. That
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Figure 3.3: Illustration of our pseudo-label generation mechanism.

is, we can use the prediction of the classifier if the discriminator incorrectly classifies

target samples. By using this pseudo-label selection mechanism, intuitively, we select

samples with feature representations which are close to data with known labels. Next,

as illustrated in Figure 3.2, we train our proposed method using extracted pseudo-

labels.

A general definition of unsupervised domain adaptation, and self-training guided ad-

versarial domain adaptation procedures of our proposed method are described in Sec-

tion 3.2.1 and 3.2.2, respectively.

3.2.1 Unsupervised Domain Adaptation

In the general definition of unsupervised domain adaptation (UDA) problem, we are

given ns labeled samples from a source domain Ds = {(xs
i , y

s
i )}ns

i=1 and nt unlabeled

samples from a target domain Dt = {(xt
j)}nt

j=1. The goal of UDA problem is to learn a

feature extractor Ft for the target domain and a classifier Ct which correctly classifies

the features. It is not possible to perform supervised training since there is no labeled

samples in the target domain. Therefore, UDA learns to adapt the source feature

extractor Fs and the source classifier Cs to be able to use them on target domain.
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3.2.2 Self-training Guided Adversarial Domain Adaptation (SGADA)

The task of adversarial domain adaptation methods is to adversarially align source

and target domain representations. For this purpose, adversarial domain adaptation

methods propose to reduce the gap between Fs(x
s) and Ft(x

t). Thus, the classifier

Cs trained on source domain can be applied to the representations on target domain,

and necessity to train a separate Ct can be eliminated. As a result, we obtain C =

Cs = Ct [149]. We employ the feature extractor Fs and the classifier C which

are learned during the warm-up phase. In this subsection, we elaborate our training

scheme shown in Figure 3.2.

We use the following loss function for the domain discriminator D which distin-

guishes source domain from target domain:

LadvD(x
s, xt,Fs,Ft) = − 1

ns

ns
∑

i=1

log[D(Fs(x
s
i ))]

− 1

nt

nt
∑

i=1

log[1−D(Ft(x
t
i))].

(3.1)

Given source images xs and target images xt, we update the parameters of the domain

discriminator D with respect to outputs of the feature extractors Fs and Ft. While

updating the parameters, we fix and reuse the source feature extractor Fs which is

trained in the pre-training step of our pseudo-label generation.

We employ two loss functions to train the target CNN Ft: adversarial loss LadvF and

self-training loss LclsP . The adversarial loss is formulated as follows:

LadvF (x
s, ys,D) =

1

nt

nt
∑

i=1

log[D(Ft(x
t
i))]. (3.2)

Note that we reuse the parameters of the source feature extractor Fs from the previous

step to initialize Ft.

We exploit pseudo-labeled target domain samples to perform self-training guided ad-

versarial learning. After the learning of the classifier C and the domain discriminator

D is completed during the warm-up phase, we obtain predictions from the classifier
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and confidences for these predictions. Given an unlabeled target domain sample, if

confidence of the classifier C is higher than pre-defined threshold and the domain

discriminator D classifies the sample as source domain, we include the sample dur-

ing our self-training guided adversarial domain adaptation step. Also, if the domain

discriminator D classifies the sample as target domain with a confidence lower than a

pre-defined threshold, we assign the pseudo-label ŷt generated by the classifier C to

the sample as well. By using n̂t pseudo-labeled samples on target domain, we aim to

train a target specific feature extractor (Figure 3.2). We use the new self-training loss

function for our proposed method:

LclsP (x
t, ŷt) =

1

n̂t

n̂t
∑

i=1

ℓce(C(Ft(x
t
i)), ŷ

t
i). (3.3)

The overall objective function to train our proposed method SGADA is defined as:

min
D

LadvD(x
s, xt,Fs,Ft)

min
Ft

LadvF (x
s, ys,D)

+λLclsP (x
t, ŷt),

(3.4)

where λ is a trade-off parameter. We set the trade-off parameter λ and thresholds

based on validation split (see Section 3.3.2 for further details).

3.3 Experiments

We perform extensive evaluations and compare our proposed method with several

state-of-the-art unsupervised domain adaptation methods.

3.3.1 Datasets

We prepare a new RGB-to-thermal domain adaptation setting for classification using

FLIR ADAS [48] as thermal dataset and MS-COCO [90] as visible spectrum dataset

for our experimental studies.
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Figure 3.4: The network architectures used for our experimental analyses.

FLIR ADAS [48] consists of 9,214 thermal images with bounding box annotations.

Each image has a resolution of 640 × 512 and obtained from FLIR Tau2 camera.

60% of the images are captured during daytime and the remaining 40% of the im-

ages are captured during night. The dataset provides both visible spectrum (RGB)

images and thermal images. We consider only the thermal images of the dataset for

our experiments. We use the training and test splits as suggested in the dataset doc-

umentation for our experiments. The objects in the dataset are classified into four

categories i.e. bicycle, car, dog, and person. However, the dog class has very few

annotations. Therefore, the dog class is not considered in our experimental studies.

We crop square images using bounding box annotations for objects. After objects are

extracted, we resize the images to 224 × 224. Finally, our thermal dataset consists

of 4,137 samples of bicycle, 43,734 samples of car, and 26,294 samples of person

images. Example images from FLIR ADAS dataset are shown in the second row of

Figure 3.5.

Our proposed method incorporates publicly available large-scale visible spectrum

datasets to improve classification performance on thermal dataset. Therefore, we

consider using an RGB dataset which includes the same classes as FLIR dataset [48]

(bicycle, car, and person). For this purpose, we use MS-COCO dataset [90] as our

visible spectrum dataset. In the first row of Figure 3.5, we show some example images

from MS-COCO dataset. MS-COCO dataset contains 91 object categories (airplane,

bicycle, bird, car, person, etc.). In total, there are 123,287 images and around 886,000
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Figure 3.5: Example images from MS-COCO dataset [90] and FLIR ADAS thermal

dataset [48].

bounding boxes. 118,287 of the images are for training while 5,000 of the images are

for validation split. We apply standard training and test splits as provided in the

dataset documentation for our experiments. We use only bicycle, car, and person

classes to match with our thermal dataset. We cropped the annotated objects with the

same procedure as applied to FLIR dataset. Once objects are extracted, we resize the

images to 224 × 224. Our visible spectrum image dataset extracted from MS-COCO

consists of 5,732 samples of bicycle, 38,453 samples of car, and 209,162 samples of

person images.

3.3.2 Implementation Details

For our experiments, we used same training procedure with ADDA [149]. For a

fair comparison with other methods, we employed ResNet-50 [54] pre-trained on

ImageNet [29] as backbone for all methods. Our network architectures are given in

Figure 3.4. The architecture of our feature extractors (source CNN Fs and target CNN

Ft) is the ResNet-50 without the last fully connected (FC) layer. In the figure, each

convolutional residual unit is depicted with the size of filters at the top and the outputs
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(a) Source only (c) SGADA-Cls (d) SGADA-Cls+Disc(b) ADDA [32]

PersonCarBicycle

Figure 3.6: The t-SNE visualization of network activations on target thermal domain

generated by source only model (a), our base method ADDA [149] (b), our pro-

posed method SGADA with classifier confidences only (c), and our proposed method

SGADA with classifier and discriminator confidences (d).

of each convolutional layer at the bottom. The notation k × k, n in the convolutional

layer blocks represents a filter of size k and n channel. The number on the top of the

convolutional layer blocks denotes the number of repetition for the unit. The domain

discriminator D consists of three FC layers: two consecutive hidden units of 500

neurons and the discriminator output. The classifier C has only one FC layer.

To train our method, we set batch size to 32. Number of epochs was set to 15 in our

experiments. Parameters were updated using ADAM optimization algorithm [79].

For pre-training of our method on source domain only, we set learning rate to 5e-

4. For adversarial adaptation step of our method, we set learning rate as 1e-5 and

discriminator learning rate as 1e-3. We used same learning rates as used in the pre-

vious step for self-training guided adversarial adaptation step of our method. We set

λ value as 0.7 and threshold value as 0.87 for our method with classifier confidences

only (SGADA-Cls). For our method with classifier and discriminator confidences

(SGADA-Cls+Disc), we used same learning rates as used in the previous step, and

λ value of 0.25, classifier threshold value of 0.79, and discriminator threshold value

of 0.87. We used the same experimental settings for training and testing. We exploit

classification accuracy to compare our proposed method with other methods. We

implemented our proposed method using PyTorch framework [112].
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3.3.3 Evaluation of SGADA

In our experiments, we select visual spectrum (RGB) domain as the source domain,

and thermal domain as the target domain. As a general practice in the field of do-

main adaptation, we denote source only as the target domain performance of a model

trained using only source domain images, and target only as that of a model trained

on the target domain. Performances of source only and target only models serve as

baselines for the lower and upper bound performances.

Table 3.1: Per-class classification performance comparison.

Method B
ic

yc
le

C
ar

P
er

so
n

A
ve

ra
ge

Source only 69.89 83.89 86.52 80.10

Pixel-DA [9] 62.53 89.99 76.73 76.42

DTA [85] 75.45 97.65 92.45 88.52

MCD-DA [127] 81.71 94.90 91.83 89.48

DANN [36] 78.16 95.07 96.24 89.82

CDAN [98] 78.16 97.10 94.82 90.03

ADDA [149] 86.67 96.95 89.10 90.90

SGADA (ours) 87.13 94.44 92.03 91.20

Target only 87.59 98.78 96.35 94.24

Quantitative Analysis. We compare our proposed method SGADA with several

state-of-the-art unsupervised domain adaptation methods: Unsupervised Pixel-Level

Domain Adaptation with Generative Adversarial Networks (Pixel-DA) [9], Drop to

Adapt (DTA) [85], Maximum Classifier Discrepancy for Unsupervised Domain Adap-

tation (MCD-DA) [127], Domain Adversarial Neural Network (DANN) [36], Condi-

tional Domain Adversarial Adaptation (CDAN) [98], and Adversarial Discriminative

Domain Adaptation (ADDA) [149]. Since these methods do not consider domain

adaptation problem for thermal datasets, there exist no reported results on their paper

for our dataset. Therefore, we trained and evaluated all these methods for our dataset.
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Table 3.2: Ablation studies of different pseudo-label selection scenarios for self-training guided adversarial domain adaptation.

Bicycle Car Person

Number of samples 3702 38657 21081

Classifier confidences only

Number of selected samples 3995 35494 20323

Number of correctly selected samples 2901 34905 18911

Accuracy of selected samples (%) 72.62 98.34 93.05

Discriminator confidences only

Number of selected samples 3598 36024 3800

Number of correctly selected samples 2874 35251 3549

Accuracy of selected samples (%) 79.88 97.85 93.39

Classifier and discriminator confidences together

Number of selected samples 3557 35123 3558

Number of correctly selected samples 2873 34558 3454

Accuracy of selected samples (%) 80.77 98.39 97.08
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Table 3.3: Ablation experiments.

Method B
ic

yc
le

C
ar

P
er

so
n

A
ve

ra
ge

SGADA-Cls 87.36 95.27 90.62 91.08

SGADA-Cls+Disc 87.13 94.44 92.03 91.20

Per-class domain adaptation performances are reported in Table 3.1. The results show

that our proposed method which uses classifier and discriminator confidences together

for self-training outperforms the state-of-the-art methods. Although DTA [85] and

DANN [36] perform well for car and person classes respectively, their performance

for bicycle class cannot reach the top performances since the number of samples for

bicycle class is much less than the other classes. On the other hand, our proposed

method achieves more balanced performance scores for all classes and outperforms

other methods. It is important to address this problem since datasets for real-world

problems usually include imbalanced classes [12, 74]. As shown in the table, our

proposed method achieves more balanced class-wise accuracies compared to our base

method ADDA [149], and furthermore our method increases the average accuracy

over our base method.

Qualitative Analysis. We visualize the feature representations on target thermal do-

main with t-SNE [152] for qualitative analysis in Figure 3.6. The features of source

only model on target domain can not be discriminated very well while ADDA [149]

discriminate some overlapping points in the feature space. Our proposed model which

uses only classifier confidences for self-training (SGADA-Cls) learns more discrimi-

native representations. As shown in the figure, our proposed model which uses classi-

fier and discriminator confidences together for self-training (SGADA-Cls+Disc) fur-

ther enlarges inter-class distances, especially for car and person classes.

Ablation Study. To evaluate the contributions of our proposed method, we perform

ablation studies. We examine effects of using classifier and/or discriminator confi-
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dences for pseudo-label selection. As described in Section 3.2, we select samples

using our base method. Table 3.2 shows three cases where we select target domain

samples using only the confidences of the classifier, using only the confidences of

the discriminator, and using the confidences of both the classifier and the discrimi-

nator. As shown in the table, if we utilize the discriminator confidences, the number

of selected samples for the person class decreases. Moreover, when we use both dis-

criminator and classifier confidences to select target domain samples, accuracy of the

pseudo-labels increases significantly for all classes. This results in better separation

of feature representations as depicted in Figure 3.6 (c)-(d). Furthermore, since accu-

racy of selected samples for all classes using classifier and discriminator confidences

is higher than the other cases, class imbalance of our proposed method (SGADA-

Cls+Disc) reduces compared to SGADA-Cls as shown in Table 3.3. And thus, the

overall accuracy of our proposed method surpasses SGADA-Cls, resulting in the best

overall performance.
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CHAPTER 4

A SIMILARITY-BASED PSEUDO-LABEL SELECTION METHOD FOR

DOMAIN ADAPTATION OF SEMANTIC SEGMENTATION

Semantic segmentation is one of the main computer vision tasks, aiming to assign

each pixel to a semantic class. Researchers devoted significant effort to this area in

recent years, leading to substantial progress. Recent approaches are driven by deep

neural networks trained by using large annotated datasets in a supervised manner

[96, 16]. However, manually annotating a large dataset with dense labels requires a

significant amount of human effort, making it costly. One alternative to manual an-

notation is using photo-realistic annotated images rendered from simulators or game

engines. However, the model’s performance drops significantly when the learned

source model is directly applied to the target data. The main cause of this problem is

the domain mismatch between the real and the synthetic data. Various domain adap-

tation techniques are proposed to address this problem. This study focuses on the case

where there is no label from the target domain called unsupervised domain adaptation

(UDA).

Recently, self-training methods are gaining popularity in the UDA of semantic seg-

mentation [103, 131, 195, 196]. In self-training approaches, one-hot pseudo-labels

are generated for target domain images based on the segmentation network’s predic-

tion, and the network is retrained with pseudo-labels, exploiting them for better align-

ment. The model is updated iteratively with pseudo-label generation and retraining

cycle until task performance converges. Even though self-training helps to decrease

the domain gap, false labels have an adverse effect on features. Several pseudo-label

selection strategies have been proposed to choose a proper subset of target prediction

to address this problem. Thresholding the cross-entropy response of the segmentation
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Figure 4.1: Comparison of our proposed method with a conventional pseudo-label

selection approach. We utilize similarity metric to class reference learned in the target

domain with a metric learning technique instead of prediction confidence.

network is one of the primary methods that assume the target samples with a larger

prediction probability have better accuracy.

Most of the UDA methods focus on the transfer of knowledge from the source to the

target domain. However, real-world target data have varied distribution due to several

factors such as weather conditions or architectural differences of cities. This phe-

nomenon is called the intra-domain gap. Even though the domain gap is significantly

reduced by UDA methods for some samples in the target domain, the others are not

well aligned with the source domain, leading to low confidence scores even though the

prediction is correct. When confidence-based pseudo selection methods are used in

self-training, a considerable amount of these samples are eliminated, therefore caus-

ing only a limited contribution to the domain alignment.

In this study, instead of using a confidence score, we propose a novel pseudo-label

selection method that evaluates correctness based on a similarity metric defined in

the target domain, as illustrated in Figure 4.1. Our method is a three-step domain

adaptation technique: 1) Similarity metric learning: We apply deep metric learning to
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the segmentation network’s encoder outputs. The primary purpose of metric learning

is to learn a transformation to map semantically similar samples closer and dissim-

ilar examples far away in a metric space so that the model forms a dense cluster in

the metric space for each class. Motivated by this, we introduce a metric network to

learn a similarity metric for each pixel. The triplet loss function is used as a train-

ing criterion that decreases the intra-domain gap in metric space. 2) Pseudo-label

generation: We generate pseudo-labels by filtering the network prediction, using the

distance to class-proxies, which are the vectors representing the classes in metric

feature space. To reduce the computation time, we computed class-proxies during

training with an outlier elimination mechanism. 3) Adversarial alignment: We use

an adversarial method to align source and target domain as well as supervised and

self-supervised losses calculated from source labels and target pseudo-labels, respec-

tively.

The proposed method, Similarity based Pseudo-Label Selection (SPLS), is evaluated

on large-scale rendered images to real image adaptation scenarios. Our method is

orthogonal to existing methods and can be easily generalized for further performance

gains. In summary, our main contributions are:

1. We propose a novel pseudo-label selection method based on a similarity metric.

2. We train a deep metric network to reduce the intra-domain gap in the target

domain.

3. We propose an online proxy calculation method that eliminates erroneous fea-

tures with an outlier elimination mechanism to increase the robustness of proxy

calculation and to reduce the computation time of our method.

4.1 Related Works

Unsupervised Domain Adaptation Unsupervised domain adaptation is widely stud-

ied in image classification [159]. Recently, adversarial learning based UDA methods

have achieved much progress in learning domain-invariant features [23, 37, 61, 85,

114, 146, 149]. Adversarial methods are composed of two neural networks, namely
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generator, and discriminator. For a given image, while the discriminator is trained to

classify the image domain, the generator learns to extract invariant features for the

source and the target domain to fool the discriminator. Despite their success in image

classification [146], the feature-level alignment methods usually fail in dense predic-

tion tasks due to over-complex representation. For the image segmentation task, the

efficacy of image [13, 22, 46, 61, 88, 176] or output level [13, 20, 102, 146, 154]

adversarial alignment is demonstrated. In previous studies, CyCADA [61] utilizes

an image-to-image translation method based on cyclic-consistency proposed in Cy-

cleGAN [192] along with semantic consistency to align domains at the image-level.

AdaptSegNet [146] proposes structured output space alignment to output level align-

ment. AdvEnt [154] improved output level alignment performance by exploiting the

entropy of pixel-level predictions.

Self Training Self-training approaches, commonly used in semi-supervised learn-

ing literature [153], are gaining popularity in UDA recently. The model is itera-

tively trained to utilize both the labels already available in the source domain and the

pseudo-labels generated by the trained network in the target domain. The standard ap-

proach is to use high-confident predictions as pseudo-labels. However, transferability

from the source to the target domain is different for each class, making the model

biased towards easy-to-transfer classes. Motivated by this, CBST [196] proposes a

class-balanced self-training, which utilizes a class-wise confidence score for filter-

ing target predictions. CRST combines CBST with diverse confidence regularizers,

resulting in a better performance [195]. IAST presents an instance adaptive pseudo-

label generation strategy to improve the quality of pseudo-labels [103]. All the pre-

vious studies employ prediction confidence as a correctness measure. However, real-

world data have a multi-modal distribution. While some samples are well aligned

with the source domain, others may not, leading to a low confidence score. Such

methods eliminate correct predictions with low confidence that limit self-training ef-

ficacy. The technique that we propose uses a similarity metric learned in the target

domain to select pseudo-labels.
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Metric Learning Deep metric learning is a widely studied topic in computer vision

that has various applications such as image retrieval [105], clustering [57], person

re-identification [24] and face recognition [132]. Triplet loss [24] and variants are

widely used in the metric learning literature. The main intent of deep metric learning

is to learn a transformation from feature space to metric space so that semantically

similar samples get closer and dissimilar samples become far away in predefined

norm space. Metric learning is usually used to learn a similarity between images or

patches. Unlike the common approach, Chen et al. [21] exploits pixel-wise metric

learning for video object segmentation, which can be modeled as an image retrieval

problem for interactive segmentation.

For the UDA task, metric learning is usually utilized in the image classification task.

It is used to align the source and the target domain by learning metric space that

semantically similar samples from both source and target domain are close to each

other [67, 82, 114, 179].

Our proposed method uses pixel-wise metric learning to determine a class-wise sim-

ilarity metric only in the target domain to guide pseudo-label selection.

4.2 Proposed Method

In this section, we present our similarity based pseudo-label selection (SPLS) ap-

proach to unsupervised domain adaptation problem for semantic segmentation. Let S

denote a source domain consisting of a set of images XS and corresponding label set

YS , and T is a target domain containing only unlabeled image set XT . The aim is to

train a segmentation network G that can make a reliable and accurate prediction of the

dense label for each image in the target domain T with the knowledge gained from

source domain S, in which supervised training is possible. The segmentation network

G is composed of two sub-networks called feature extraction ( F ) and classification

( C ) networks. The discriminator network ( D ) is utilized for adversarial training

alongside G. In addition to these, we introduce a simple metric learning network M

cascaded to F to form a similarity metric in the similarity metric learning phase.

65



Figure 4.2: The overview of the three stages of SPLS. The dataflow for the images that belong to the source and target domains are shown

with blue and green lines in the figure, respectively. The paths that calculate loss functions are shown with dashed lines. The segmentation

network ( G ) is composed of two sub-network called feature extraction ( F ) and classification ( C ) networks. The feature extraction

network is used to learn representative features for segmentation tasks, while the classification network is used to assign a class label for

each pixel using features extracted by F . The discriminator ( D ) predicts from which domain the input is sampled. D is exploited in

adversarial training. We introduce a simple metric learning network M cascaded to F . M learns a transformation to map semantically

similar samples closer and dissimilar examples far away in the target domain to form a dense cluster in metric space for each-class. The

gray boxes represent the networks whose parameters are fixed, while blue boxes represent those currently being updated. The orange boxes

annotated with L represent the loss functions.
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The dataflow of our proposed method is illustrated in Figure 4.2. In order to ad-

dress the domain gap, we combined self-supervised training with adversarial learn-

ing. The proposed method comprises three stages: similarity metric learning, pseudo-

label generation, and adversarial alignment. Our method aims at selecting pseudo-

labels using a similarity metric to minimize the intra-domain gap and retrain the seg-

mentation network with self-training. The metric learning network is trained with

a confidence-based pseudo-label to learn a similarity metric between classes in the

target domain. We select the normalized class threshold proposed in CBST [196] to

provide class balanced training in metric learning. The metric learning model learns a

transformation that brings semantically similar samples closer and pushes dissimilar

examples far away. With the help of that, we obtain semantically clustered features

for each class in the similarity metric space of the target domain, which decreases the

intra-domain gap. The class representatives in metric space called class-proxies, are

learned during M ’s training concurrently to reduce computation time. The pseudo-

labels are generated by filtering the segmentation network’s prediction. The selection

is based on the similarity distance of metric feature to class-proxies in the pseudo-

label generation phase. In the adversarial alignment phase, the segmentation network

is trained with an output-level adversarial alignment technique to decrease the domain

gap.

4.2.1 Similarity metric learning

In this study, we perform pixel-wise metric learning that learns the similarity between

pixels in target images. We utilize the triplet loss to train the M network. Three

samples, namely, an anchor, a positive, and a negative sample, contribute to metric

learning training. These three samples form a required sample set, which is called

a triplet: The anchor and the positive samples belong to the same class, while the

negative sample belongs to one of the other classes. The triplet loss encourages the

network to form a cluster such that positive samples are closer than negative samples

to the anchor. The loss function also introduces a margin between the positive and

the negative pairs to improve clustering performance. Formally, let f ∈ R
N is an N -

dimensional normalized feature vector on which a specified metric is to be appeared

for a specific pixel. The metric network takes features generated by feature extractor
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network F and produces a metric map m ∈ R
HxWxN . In the metric training phase, we

select a batch of triplets from the features of the single target image and train metric

network using triplet loss, represented as follows:

Lmet =
K
∑

i

max
{[

‖fai − fpi‖22 − ‖fai − fni‖22 + α
]

, 0
}

. (4.1)

In Equation 4.1, fa, fp, fn, K and α correspond to features of anchor, positive, nega-

tive pixels, batch size, and margin value, respectively.

In metric network training, anchor, positive and negative samples are selected using

confidence-based pseudo-labels. It is essential to select the correct triplet to train the

network since pseudo-labels contain erroneous labels. The straightforward approach

is to randomly select anchor and positive from the same class and randomly select

negative from one of the other classes. Although this strategy is simple and has low

complexity: It may lead to bad local minima due to false pseudo-labels. In FaceNet

[132], the authors proposed a semi-hard mining method. In semi-hard mining, the

negative sample is selected to be further than the positive sample but lies in the mar-

gin: ‖fa − fp‖22 < ‖fa − fn‖22 < ‖fa − fp‖22 + α. Note that, if the negative sample

is closer to the anchor than the positive sample, there is a possibility that it may be a

member of the same class as the anchor. Semi-hard selection methods contribute to

noise-robustness in metric learning. Therefore, we utilize semi-hard mining method

to select negative sample. False-labels in positive class also affect convergence. The

metric loss function motivates that the L2 norm between every sample in different

classes should be bigger or equal to the margin. If a sample is closer to anchor than

a margin, it can be considered a positive sample in an ideal condition. Motivated

by this, we selected the positive sample whose distance to the anchor is smaller than

half of the margin to improve positive sample confidence. In order to avoid bias to-

wards easy-to-transfer classes, the anchor sample is selected randomly from the least

selected class so far.
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4.2.2 Pseudo-label generation

Class-proxy is the feature vector representing class distribution in metric space. One

method to compute proxy features of the classes is to take the mean of all feature

vectors for each class after training. However, it requires the inference of all sam-

ples in the dataset after training, which is computationally expensive. In order to

reduce the computation time of our method, we propose an online proxy calculation

method. The proxy features of each class are updated during training on each iter-

ation. For a given image xT , the feature vector set for each class is selected with

respect to the pseudo-labels used for metric learning. Naturally, some premature or

erroneous features exist during the training, which can be considered as outlier. In

order to eliminate them, we calculate z-score for each feature in metric space, defined

as follows:

zi =
f i − µi

σi
, (4.2)

where µ and σ are the element-wise mean and standard deviation of features that

belong to the same class with f , respectively. We use the arithmetic mean of absolute

values of z, denoted as z̄, to decide which samples are the outlier. Then instance

proxy is calculated by taking the element-wise arithmetic mean of reliable features

whose z̄ value is below threshold θz. The element-wise exponential moving average

of instance proxies is used for updating proxy values during training to calculate final

class-proxies.

Pseudo-labels are selected based on the L2 distance between the feature of a pixel

and the proxy of the predicted class. Similar to confidence-based methods, we use

the class-wise metric threshold. Threshold values are also computed during training

with an exponential moving average of instance thresholds. Instance thresholds are

calculated so that θM percent of all pixels are selected for each class. If the distance is

smaller than the threshold, the prediction is accepted as reliable and used as a pseudo-

label.
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4.2.3 Adversarial alignment

For segmentation, the source domain S is defined by a source image space XS and

the corresponding label space YS . The segmentation network takes an image xS ∈
XS ⊂ R

H×W×3 with its associated label yS ∈ YS ⊂ R
H×W×C , where yS , H , W , and

C correspond to a one-hot vector for each pixel in the image, the image height, the

image width and the number of classes, respectively. The feature extractor generates

feature representation for the input image, and the classifier network estimates soft-

segmentation map corresponding class prediction probability for each class for each

pixel. In accordance with the Figure 4.2, the segmentation network can be represented

as G(xS) = C(F (xS)).

For a given image-label set from the source domain, G can be optimized in a super-

vised manner by cross-entropy loss:

Lsup(xS, yS) = −
∑

h,w

∑

c

y
(h,w,c)
S log(G(xS)

(h,w,c)). (4.3)

Supervised training in the source domain is practical if both train and test data are

sampled from the same distribution. However, this is not the case for several real-

life applications due to the domain gap between train and test data. To address this

problem, AdvEnt [154] proposed adversarial training on entropy maps. They ob-

served that the trained model produces low-entropy predictions for source-like im-

ages. To minimize entropy in the target domain, they proposed adversarial training

on weighted self-information I , where I(w,h,c) = −P (w,h,c) logP (w,h,c). In adversarial

training, a discriminator network denoted as D, is used to distinguish if the input be-

longs to the source or target domain, while a semantic segmentation network G tries

to generate a source-like self-information map to fool the discriminator. The training

objective to optimize G and D is as follows:

Ladv(xS, xT ) = −
∑

h,w

log(1−D(I(h,w,c)
s )) + log(D(I

(h,w,c)
T )). (4.4)

Self-training (ST) is a popular method in semi-supervised training. Recent studies

in unsupervised domain adaptation show the efficacy of ST in this field of study.
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The model is trained iteratively to achieve better alignment using pseudo-labels as a

ground-truth. The commonly used loss function is pixel-wise cross-entropy loss as

in supervised training from the source domain. The difference is that the pseudo-

labels are used instead of ground-truth, which is not available in the target domain.

In this study, we use pseudo-labels selected by similarity metric instead of prediction

confidence. The self-training loss is given as follows:

Lst(xT , ŷT ) = −
∑

h,w

∑

c

ŷ
(h,w,c)
T log(P

(h,w,c)
T ). (4.5)

Our complete loss function L for the semantic segmentation network (G) is composed

of supervised, self-supervised, and adversarial loss. The training objective for G and

M are given as:

G∗ =argmin
G

min
G

max
D

{Lsup + Lst + λadvLadv}

M∗ =argmin
M

Lmet. (4.6)

4.3 Experiments

In this section, we explain the experimental details and analyze the results of the

proposed method.

4.3.1 Experimental Details

4.3.1.1 Datasets

In the experiments, we evaluate two popular synthetic-to-real adaptation scenarios,

which are GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes settings. The Cityscapes

[28] is a real-world dataset composed of street-view images captured in 50 different

cities. It consists of 5000 images of resolution 2048 x 1024 with high-quality pixel-

level annotations. These images of street scenes were annotated with 19 semantic
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labels for evaluation. This dataset is split into training, validation, and test sets with

2975, 500, and 1525 images, respectively. The UDA methods for semantic segmen-

tation studies are evaluated on the validation set. The GTA5 [120] dataset consists of

24,966 synthetic images with pixel-level annotations of 33 categories. For training,

only 19 categories compatible with the Cityscapes dataset are used. The images are

the size of 1914 x 1052. SYNTHIA [122] is a dataset with synthetic images of urban

scenes and pixel-wise annotations. In UDA for semantic segmentation studies, re-

searchers adopt the SYNTHIA-RAND-CITYSCAPES subset, which contains 9,400

images of resolution 1280 x 760 compatible with the Cityscapes dataset categories.

The 16 common categories with CityScapes are used for training.

4.3.1.2 Implementation Details

In our implementations, we utilize the network architectures that are used in the Ad-

vEnt framework. Deeplab-v2 with ResNet-101 backbone network is employed for G

network, where F and C correspond to ResNet-101 and ASPP modules. The sam-

pling rate of the ASPP module is used as 6, 12, 18, and 24. ASPP module is also

used for metric learning network M with the same sampling rate. For discriminator

network D, the same architecture proposed in DCGAN [117] is used as in AdvEnt

[154].

The model is initialized with pre-trained weights of the ImageNet dataset. Before

training, we apply semantically regularized CycleGAN [192] based image translation

to source images, as proposed in BDL [88], for additional performance gain. The

translated images can be found in the BDL authors’ repository1.

The Pytorch framework [111] is employed in all implementations. Experiments are

done on a single NVIDIA RTX2080TI GPU with 11 GB memory. To optimize the G

network, SGD [8] optimizer is used with learning rate 2.5x10−4, weight decay 10−4,

and momentum 0.9. The Adam optimizer is used to train C and M networks with

learning rates 10−4 and 10−3, respectively. λadv is fixed to 0.001. All learning rates

are scheduled with a polynomial annealing procedure. The G and D networks are

trained for 120,000 iterations. The M network is trained for 5,000 iterations. The

1 https://github.com/liyunsheng13/BDL
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models are trained with a batch size of 1. The metric learning hyper-parameters,

feature size N , batch size K, margin α, z-score threshold θz are set to 128, 32, 1,

and 0.5, respectively. In order to train the metric network, the normalized class-wise

confidence threshold proposed in CBST[196] is used. Thresholds are determined so

that it equals to θT percentile of all prediction per class. θT is selected as 0.2 and

increased 0.05 at each iteration, following the procedure in CBST [196]. Instance

metric threshold percentile θM is selected as θT/2.

4.3.2 Results

We compare our method with the state-of-the-art methods on two challenging synthetic-

to-real domain adaptation tasks: GTAV-to-CityScapes and SYNTHIA-to-CityScapes.

The results obtained with DeepLabv2 [16] architecture with a Resnet-101 backbone

are reported for a fair comparison. We report the results in Table 4.1 and 4.2 in per-

class IoU and mean IoU.

AdaptSegNet [146], SIBAN [101], CLAN [102], AdvEnt [154], AllAboutStructure

[13], Intra-domain [108], and CrCDA [68] methods focus on adversarial alignment.

CBST [196], CRST [195], MaxSquare [18], and LSE+FL [135] methods use self-

training as a supervisory signal. SSF-DAN [32] and PatchAlign [147] methods use

adversarial training and self-training approaches together. BDL [88] uses an image-

translation module in addition to adversarial training and self-training to further re-

duce the domain gap.
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Table 4.1: Comparison with state-of-the-art on GTAV-to-CityScapes in terms of per-class IoUs and mIoU (%).
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AdaptSegNet[146] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

SIBAN[101] 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6

CLAN[102] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

AllAboutStructure[13] 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4

SSF-DAN[32] 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4

ADVENT[154] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

CBST[196] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

Intra-domain[108] 90.6 36.1 82.6 29.5 21.3 27.6 31.4 23.1 85.2 39.3 80.2 59.3 29.4 86.4 33.6 53.9 0.0 32.7 37.6 46.3

MaxSquare[18] 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 85.3 39.4 78.2 63.0 22.9 84.6 36.4 43.0 5.5 34.7 33.5 46.4

PatchAlign[147] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

CRST[195] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

LSE + FL[135] 90.2 40.0 83.5 31.9 26.4 32.6 38.7 37.5 81.0 34.2 84.6 61.6 33.4 82.5 32.8 45.9 6.7 29.1 30.6 47.5

BDL[88] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

CrCDA[68] 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6

SPLS 93.6 59.4 84.8 34.0 22.8 33.2 41.2 44.5 83.9 39.2 82.4 61.5 32.6 84.7 34.9 49.7 0.0 25.9 39.3 49.9

SPLS-MST 93.6 59.6 85.9 35.6 25.1 34.4 44.7 45.3 84.8 41.2 83.5 62.9 33.1 84.7 37.4 50.4 0.0 27.6 40.6 51.1
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Table 4.2: Comparison with state-of-the-art on SYNTHIA-to-CityScapes in terms of per-class IoUs and mIoU (%). The mIoU* column

denotes the mean IoU over 13 categories excluding those marked by *.
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SIBAN[101] 82.5 24.0 79.4 - - - 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 - 46.3

PatchAlign[147] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

AdaptSegNet[146] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

CLAN[102] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8

ADVENT[154] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

MaxSquare[18] 82.9 40.7 80.3 10.2 0.8 25.8 12.8 18.2 82.5 82.2 53.1 18.0 79.0 31.4 10.4 35.6 41.5 48.2

AllAboutStructure[13] 91.7 53.5 77.1 2.5 0.2 27.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 41.5 48.8

CBST[196] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.8

Intra-domain[108] 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9

LSE + FL[135] 82.9 43.1 78.1 9.3 0.6 28.2 9.1 14.4 77.0 83.5 58.1 25.9 71.9 38.0 29.4 31.2 42.5 49.4

SSF-DAN[32] 84.6 41.7 80.8 - - - 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 - 50.0

CrCDA[68] 86.2 44.9 79.5 8.3 0.7 27.8 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 43.0 50.0

CRST[195] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

BDL[88] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

SPLS 82.1 42.3 80.3 20.0 0.8 28.3 28.3 24.4 80.5 84.9 51.7 18.4 76.3 31.4 10.2 45.5 44.1 50.5

SPLS-MST 81.4 41.9 82.2 21.8 0.9 33.1 28.4 23.8 81.9 86.1 53.7 17.8 77.3 38.2 11.9 47.2 45.5 51.7
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Table 4.3: Results of ablation study on the GTA5-to-CityScapes

Method AT IT STconf STsim mIOU ∆

Source - - - - 36.6

AdvEnt
√

- - - 43.1 +6.5

AdvEntI2I
√ √

- - 45.7 +2.6

SPLSconf
√ √ √

- 48.5 +2.8

SPLS
√ √

-
√

49.9 +4.2

Our method exploits image translation, adversarial alignment, and self-training, sim-

ilar to the BDL method. Unlike BDL, we use adversarial entropy minimization pro-

posed in AdvEnt[154] instead of prediction alignment. To generate pseudo-labels,

we introduce a novel similarity-based selection mechanism. The similarity metric is

predicted with the M network, which is trained with confidence-based pseudo-labels

calculated by normalized class-wise threshold proposed in CBST [196]. We do not

train the image-translation network in our framework. The translated images pro-

posed by BDL are directly used as a source domain dataset in our method. Although

the translated images improve the mIoU score from 43.1% to 45.7%, meaning 2.6%

improvement for GTA5, it decreases mIoU* score from 46.8% to 46.2% for the SYN-

THIA dataset. To present consistent results, the translated images are also used in the

SYNTHIA experiments even though it performs worse than original images. We an-

ticipate that if original images were used in training, SPLS would perform better for

SYNTHIA dataset. In the Tables 4.1 and 4.2, SPLS, and SPLS-MST rows corre-

spond to the results of the proposed self-training via metric learning method, and its

multi-scale testing results, respectively. Our method achieves superior performance

compared to the state-of-the-art.

4.3.2.1 Ablation studies

We report the result of the ablation study in Table 4.3. In the table, AT , IT , STconf ,

STsim, mIOU , and ∆ correspond to adversarial training, image-translation, confidence-

based self-training, similarity-based self-training, mean intersection over union and

relative performance gain, respectively.
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Table 4.4: Results of component analysis on the GTA5-to-CityScapes

Method OE NM PM mIOU ∆

SPLS
√ √ √

49.9

- Outlier Elimination (OE) -
√ √

49.2 - 0.7

- Neg. Mining (NM)
√

-
√

48.5 - 1.4

- Pos. Mining (PM)
√ √

- 48.4 - 1.5

- All - - - 48.1 - 1.8

If G network is trained in a supervised manner using only the source dataset, it ob-

tains 36.6% of mIoU. When an adversarial alignment technique is utilized alongside

supervised learning, the model achieves 43.1% of mIoU, corresponding to 6.5% per-

formance gain with respect to the source-only version. As an adversarial alignment

technique, we utilize AdvEnt [154] in our framework. Unlike original work, we use

single-stage training instead of multi-stage training, resulting 0.7% performance drop

compared to original work, which is reported as 43.8% in the original study with the

multi-stage setting.

If the translated images are used as source domain images, the model, which we call

AdvEntI2I, achieves 45.7% of mIoU value, corresponding +2.6% performance gain

compared to AdvEnt. In SPLS, the novel similarity-based self-training is used over

the AdvEntI2I baseline. To present the effectiveness of our method, the results of two

different configurations, namely SPLSconf and SPLS, are presented in the Table 4.3.

Both methods are trained using image translation, adversarial alignment, and self-

training. The difference between the two models is that while the pseudo-labels used

in SPLSconf are calculated by thresholding with the normalized class-wise confidence

threshold proposed in CBST [196], the pseudo-labels that are used in SPLS are calcu-

lated by the proposed similarity-based method. Self-training using confidence-based

pseudo-labels gives a 2.8% increase over AdvEntI2I. On the other hand, self-training

using similarity-based pseudo-labels achieves 49.9% mIoU, which corresponds to a

4.2% and 1.4% increase over AdvEntI2I and SPLSconf, respectively. Besides, when we

apply multi-scale testing on SPLS, the combined result accomplishes 51.1% mIoU.

Our method contains three mechanisms against label and feature noise, namely out-
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Table 4.5: Class-wise and overall average accuracies of the pseudo-labels (%)

Pseudo-labels Confidence-based Similarity-based (Ours) Sim. accepts, Conf. rejects

Road 99.9 99.6 99.4

Sidewalk 80.1 93 89.3

Building 99.6 98.3 97.8

Wall 70 56.4 36.4

Fence 66.1 62.1 42.5

Pole 74.7 67.6 52.1

Light 94.4 85.3 78.5

Sign 94.6 90.6 85.3

Veg. 99.7 99.6 99.3

Terrain 81.6 74 61

Sky 99.5 98.6 98.1

Person 99.4 93.9 89.9

Rider 73.9 63.8 55

Car 99.9 99.3 98.9

Truck 79.6 22.6 18.2

Bus 44.5 52.4 51.1

Train 2.6 19.2 21.5

Mbike 80.6 69.1 62.4

Bicycle 87.6 74.9 68.1

Avg. Acc. 96.6 96.6 95.9
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lier elimination (OE), negative mining (NM), and positive mining (PM). In order to

analyze the effect of each component, we remove one of them at a time. Random

mining is used if any mining is removed, and the average of all features is used if out-

lier elimination is removed. The performance of each experiment setup is shown in

Table 4.4. The method achieves 49.2%, 48.5%, and 48.4% for removing OE, NM and

PM, respectively, while full training achieves 49.9%. If all components are removed,

the performance of the method drops to 48.1%.

4.3.2.2 Analysis

Our method proposes a pseudo-label selection method that decreases the intra-domain

gap in the pseudo-label selection stage, using a metric learning approach. The accu-

racy values of the pseudo-labels are presented in Table 4.5. The first and second rows

correspond to the confidence and similarity-based pseudo-labels, respectively. The

third row corresponds to the pseudo-labels that the similarity threshold accepts while

the confidence threshold rejects. Because the third row’s accuracy values are similar

to the second, this justifies that the pseudo-labels in that areas are valid, and metric

alleviates the intra-domain gap. In addition to that, even though similarity pseudo-

labels’ accuracy is similar to the confidence-based ones, the performance of SPLS is

better than SPLSconf. This is another indicator that the similarity-based pseudo-labels

are more diverse.

In Figure 4.4, we visually compared the outputs of the methods for which pseudo-

labels are selected by confidence-based and novel similarity-based approaches. The

prediction corresponding to buses in the second row is a good illustration of the

difference. While the low confidence predictions of the bus are eliminated by the

confidence-based method, the similarity-based method successfully assigns pseudo-

labels.

Recent self-training methods report that several iterations are required for maximum

performance. We observe a similar pattern when the pseudo-labels are generated

by a confidence-based method. SPLSconf method reached its maximum value on the

second iteration. On the contrary, our novel similarity-based method SPLS converged

on a single iteration, saving serious computational sources. Despite the lack of a
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Figure 4.3: Adaptation results for the SPLSconf and SPLS. From left to right, columns

correspond to input image, SPLSconf prediction, SPLS prediction and ground-truth.

theoretical guarantee, we observe the same behavior across the datasets.

In Figure 4.3, the results of SPLS is compared with SPLSconf. SPLS performs better

than SPLSconf in predicting confusing classes such as road/sidewalk, building/wall,

and light/sign since metric learning transforms semantic feature space to class-wise

clustered metric space, which creates dense clustering, leading to better supervisory

signal. SPLS method provides significant performance gain, especially for sign class

with 7.0% mIoU performance gain with respect to the closest method.
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Figure 4.4: Pseudo-Label comparison. From left to right, columns correspond to input image, confidence map, AdvEntI2I prediction,

confidence-based pseudo-label, similarity-based pseudo-label and ground-truth.
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CHAPTER 5

SELF-TRAINING VIA METRIC LEARNING FOR SOURCE-FREE

DOMAIN ADAPTATION OF SEMANTIC SEGMENTATION

Thanks to advances in deep learning, computer vision has made significant progress

in recent years. Deep learning networks trained in a supervised manner achieve high

performance even in challenging tasks that require dense prediction, such as seman-

tic segmentation [17, 16, 158, 189]. However, preparing a large dataset with dense

labeling is very laborious and expensive [28]. An approach to decrease the work-

force may be using public real [33, 28, 23] or synthetic datasets [120, 122]. However,

deep learning approaches assume the IID distribution of train and test sets. Since

the marginal distribution of the source domain and target domain are different, the

trained model suffers from performance degradation when the model is evaluated on

the target data. This problem is called the domain gap.

Recently, domain adaptation methods have been proposed to mitigate domain gap

[129, 32, 146, 2, 108, 170, 191]. Such methods use labeled source domain data and

unlabeled target domain data together when training the model. However, the source

domain data may not be accessible due to intellectual property (IP) or privacy issues in

some applications like medical imaging or autonomous driving. A possible solution

to this problem is using the model trained in the source domain instead of data. The

problem setting of using the source model and target data in order to decrease the do-

main gap is called source-free domain adaptation. In this study, we propose a method

for source-free domain adaptation of semantic segmentation called Self-Training via

Metric learning (STvM).

Self-training is widely used in both classical domain adaptation and source-free do-

main adaptation. Self-training is a training strategy in deep learning where the model
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Figure 5.1: Segmentation performance of the self-training when different percentile

of the predictions are used as pseudo-labels

fits the pseudo-labels predicted by itself. Most methods use prediction filtering to

decide pseudo-labels [196, 195, 103, 88]. In source-free domain adaptation, the only

supervision comes from the target dataset since the source dataset does not exist.

Therefore, the predictions of the target images should be exploited in training as much

as possible. However, using all predictions is not a good strategy since false predic-

tions give wrong supervision to the training, which decreases performance, as shown

in Figure 5.1. Therefore, instead of filtering them, we scale the gradients based on

the reliability of the prediction.

Neural networks may make overconfident false predictions for data far away from

training sets, such as out-of-distribution images [55]. The images belonging to the

target dataset are out-of-distribution images for the model trained in the source do-

main. Therefore, a good measure that is valid in the target domain is needed. To

this end, we propose a novel reliability measure defined in the target domain using

pixel-level proxy-based metric learning. A network called a metric network is trained

to predict a distance metric for each input image pixel, where pixels belonging to the

same class are close to each other and far away from the pixels from the other classes.

We adopt the proxy-based metric learning approach, where a proxy feature vector

is trained for each class. These features can be considered as class prototypes. The
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distance between the pixel feature and the proxy feature of the predicted class is used

to calculate reliability.

Recently, the ClassMix [107] data augmentation technique showed its effectiveness

in semi-supervised semantic segmentation tasks. It cuts half of the classes from one

image and pastes on another by also transferring class labels. However, the data is

unlabeled in a source-free domain adaptation setting which prevents using ClassMix

directly. Therefore, we propose a metric-based online ClassMix method. In training

time, we store a fixed-size patch buffer for each class separately. If the average metric

distance of a patch is lower than a threshold, it is added to the patch buffer and used

for mixing in training time.

In summary, our contributions are as follows:

• We propose a novel reliability metric that is directly learned in the target domain

using a proxy-based metric learning approach.

• Instead of filtering the prediction to decide pseudo-labels, we use all predictions

in self-training and scale the gradients based on the reliability metric.

• We propose a metric-based online ClassMix method to augment the input im-

age.

• STvM significantly outperforms state-of-the-art methods on GTA5-to-CityScapes,

SYNTHIA-to-CityScapes, and NTHU datasets.

5.1 Related works

Domain adaptation. Domain adaptation is a widely studied topic, especially for

image classification [159] and semantic segmentation [143]. Adversarial learning

[13, 62, 146, 20, 22, 25, 88] and self-training [18, 71, 103, 108, 185, 188, 195, 196]

approaches are commonly utilized in semantic segmentation. Adversarial methods

enforce the feature space of the source and target space to be aligned inspired by

the GAN framework [47], where the source and the target domains are discriminated

instead of real and fake samples. Adversarial learning is applied in image and fea-

ture levels. Some methods exploit the adversarial approach to the low-dimensional
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output space to facilitate adversarial learning. Self-training methods use confident

predictions as pseudo-labels, obtained by filtering-out noisy samples or applying con-

straints, and train in a supervised manner with them.

Source-free domain adaptation. Source-free domain adaptation applies domain

adaptation using only the trained source model instead of the source data as well as

unlabeled target data, where the source data cannot be freely shared due to Intel-

lectual Property of privacy concerns. The task is recently introduced by two works

[34, 95] concurrently. URMA [34] enforces confident predictions under the feature

noise. It uses multiple decoders and introduces feature noise with dropout. The noise

resilience is satisfied by uncertainty loss which is the squared difference of the de-

coder outputs. The training stability is improved with entropy minimization and

self-training with threshold-based pseudo-labeling. SFDA [95] introduces a data-

free knowledge distillation approach. It generates source domain synthetic images

that preserve semantic information using batch-norm statistics of the model and dual-

attention mechanism. They also use a self-supervision module to improve perfor-

mance. GtA [81] categorized the SF-UDA methods as a vendor and client-side strate-

gies, where vendor-side strategies focus on the improving source model for better

adaptation. They focus on improving the vendor side performance and propose mul-

tiple augmentation techniques to train different source models using the leave-one-out

technique on the vendor side.

Considering that it may not be possible to train the model on the vendor-side in

source-free scenario, we propose a client-side source free domain adaptation method

like SFDA and URMA, in which the source model is used as-is.

Metric learning. Deep metric learning (DML) is an approach to establish a distance

metric between data to measure similarity. It learns an embedding space where similar

examples are close to each other, and different examples are far away. It is a widely

studied topic in computer vision that has various applications such as image retrieval

[105], clustering [57], person re-identification [24] and face recognition [132]. In the

unsupervised domain adaptation literature, metric learning is mostly utilized in the

image classification task. The features of the semantically similar samples from both
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source and target domain are aligned to mitigate the domain gap [67, 82, 114, 179].

Commonly, the similarity metric between images or patches is trained in deep metric

learning. With a different perspective, Chen et al. [21] utilize pixel-wise deep metric

learning for interactive object segmentation, where they model the task as an image

retrieval problem. DML approaches are categorized into two classes based on the

loss functions, namely pair-based and proxy-based methods. While pair-based loss

functions [162, 163, 106, 134] exploit the data-to-data relations, the proxy-based loss

functions [105, 142, 115, 4] exploit data-to-proxy relations. Generally, the number of

proxies is substantially smaller than training data. Therefore, proxy-based methods

converge faster, and the training complexity is smaller than pair-based methods. They

are also more robust to label noise and outliers [77].

In STvM, we propose a proxy-based pixel-wise metric learning to estimate pseudo-

label reliability, trained by limited and possibly noisy pseudo-labels.

Mixing. Mixing is an augmentation technique that combines pixels of two train-

ing images to create highly perturbed samples. It has been utilized in classification

[7, 180, 63] and semantic segmentation [35, 107]. Especially in semi-supervised

learning of semantic segmentation, mixing methods, such as CutMix [180] and Class-

Mix [107], achieved promising results. While the former cut rectangular regions from

one image and paste them onto another, the latter use a binary mask belonging to some

classes to cut. DACS [145] adapts ClassMix [107] for domain adaptation by mixing

across domains.

5.2 Proposed method

In this section, we present our self-training via metric learning (STvM) approach for

unsupervised source-free domain adaptation problem that we used for semantic seg-

mentation. The source-free domain adaptation setting is composed of the following

components. Let DS is a labeled source dataset composed of source domain images

xS and corresponding pixel-wise labels yS , DS = {(xi
S, y

i
S)}NS

i=1 where NS is the

number of samples in DS . It is assumed that the source model is trained with DS in a

supervised manner so that it performs well in the source domain. Let DT is an unla-
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beled target dataset composed of target domain images, DT = {(xi
T )}NT

i=1 where NT

is the number of samples in DT . The source-free domain adaptation trains a model

using only the pretrained source domain model and an unlabeled target dataset DT .

Our method utilizes the mean teacher model. It consists of two segmentation net-

works called the teacher network T and the student network S . Both networks are

initialized with the source model enabling knowledge transfer from the source do-

main to the target domain. They are trained with target dataset DT in an unsupervised

manner.

5.2.1 Framework overview

The proposed method is illustrated in the Figure 5.2. We utilize the mean-teacher

approach to train a segmentation model. There are two data paths in STvM: One

belongs to the teacher and metric networks, and the other belongs to the student.

The teacher data path is responsible for training the metric network, generating the

pseudo-labels and the reliability map. An image belonging to the target dataset is

fed to the teacher network. The predictions of the teacher model are used as pseudo-

labels. In addition to that, the features generated by the feature extractor of the teacher

network are fed to the metric network to form metric features for each pixel of the

input image. The distance between the proxy feature of the predicted class and the

metric feature is used as a class similarity map. A proxy feature is a vector repre-

senting the class distribution in metric space. The class similarity map is converted to

a reliability score using the reverse sigmoid function. The metric network is trained

with a proxy-based metric learning approach using the highly confident predictions

of the teacher network.
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Figure 5.2: STvM comprises three networks, namely teacher, student, and metric network, represented as T , S , and M, respectively.

The teacher and the student network use the same segmentation network architecture. Each segmentation network is composed of feature

extractor F and classifier C. The metric network has the same architecture as C, trained to learn metric feature space. Inspired by the

mean-teacher approach, the student network is trained with a backpropagation algorithm. On the other hand, the parameters of the teacher

model are updated with the moving average of the parameters of the student model. The metric network M and proxy features are also

trained with a backpropagation algorithm.
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The student data path is responsible for the training of the student network using

pseudo-labels and reliability scores. Firstly, A photometric augmentation is applied

to the input image, then Metric-based Online ClassMix (MOCM) augmentation is

applied to the input image, the pseudo-labels, and the reliability map. The patches

that are used in MOCM are determined and stored to the patch buffer in training time

based on the metric similarity. The online patch update approach enables end-to-end

training of the student model. The student model is trained with a classical pixel-

wise cross-entropy loss function. However, the pixel-wise loss is multiplied with a

reliability score to scale gradients which suppress erroneous pseudo-labels and allow

under-confident accurate predictions to contribute to training.

5.2.2 Mean teacher with noisy student

The mean teacher method constitutes two networks called the teacher and the student

networks [141]. The parameters of the teacher network are updated by moving av-

erage of the student network parameters where the student network is updated with

backpropagation. The mean teacher approach can be integrated with the self-training

concept by generating the pseudo-labels from the teacher network and training the

student network with these pseudo-labels. In order to obtain pseudo-labels as accu-

rately as possible, we do not apply augmentation to the input of the student network.

The continuous update of the teacher network enables gradually improved pseudo-

labels during training. Xie et al. [168] showed that deliberately adding noise to the

student model leads to a better teacher model. Following the same principle, we

applied an input noise using photometric augmentation and MOCM.

For the segmentation task, the teacher network T takes an image xi
T ∈ XT ⊂

R
H×W×3 and generate a class probability distribution pT ∈ PT ⊂ R

H×W×C for each

pixel, where H , W , and C correspond to the image height, the image width and the

number of classes, respectively. The pseudo-label map ỹ ∈ R
H×W×C is a one-hot

vector for each pixel, where the channel corresponding to the maximum prediction

confidence is one and the others are zero.

The pixel-wise cross-entropy loss is a widely used criterion in semantic segmentation

tasks. We adapted the cross-entropy loss to train the student network. Different from
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the existing methods, all pseudo-labels are taken into account to train the student

network. However, the gradients computed by pseudo-labels are scaled based on the

label’s reliability. We multiply pixel-wise loss values with the gradient scaling factor

using Hadamard multiplication to scale the gradients. The gradient scaling factor

w(w,h) is a real-valued map taking values between 0 and 1, and it is calculated based

on the reliability metric, explained in section 5.2.3 in detail.

5.2.3 Reliability metric learning

The gradient scaling factor (w) plays an important role in the training of the student

model. It has a strong effect on the parameters of the student model since it manip-

ulates the gradients. In addition to that, the student model parameters directly affect

the teacher model’s performance and consequently the quality of the pseudo-labels.

Therefore, It is essential to estimate a good reliability metric in the target domain to

calculate the scaling factor. To this end, we proposed a novel reliability metric pre-

dicted by the metric network M. The metric network utilizes the same architecture

with the classifier C of the segmentation network. It takes the features of the feature

extractor network F of the teacher network T , and predicts a pixel-wise metric fea-

ture f ∈ R
H×W×Nf , corresponding one metric feature for each input image pixel.

The metric network M learns a transformation from the segmentation feature space

to the metric feature space, where the features of the pixels belonging to the same

class are pulled together, and those of the pixels belonging to different classes are

pushed away.

The metric learning methods commonly use two different relations to train the model,

namely pair-based and proxy-based relations. The pair-based methods use data-to-

data similarity to train the network, whereas the proxy-based network uses proxy-to-

data similarity. We exploit a proxy based relation in our study. The proxy feature

fp ∈ R
Nf is a vector that represents the distribution of a class of data points. We

assign a different proxy feature to each segmentation class since we want to estimate

how much the data point is associated with the predicted class. The proxy features

are defined as a trainable parameter just as the metric learning network parameters,

and it is trained concurrently with the metric network parameters.

91



Metric learning is a supervised learning method that requires class labels to be trained.

Since the proxy-based method is known to be trained with a small number of samples

[105, 142], we use a small subset of the predictions of the teacher network with high

confidence values to train the metric network. This subset is called the metric pseudo-

labels, and they are selected with class balanced thresholding strategy.

ỹh,w,c
M =











1

0

ph,w,c
T = max(ph,wT ) > τc

elsewhere
. (5.1)

Threshold values (τ ) are varied for each class. Class-balanced thresholding strategy

[196] selects a certain percentile (qM ) of the prediction confidences. We choose a

low percentile value to obtain highly confident predictions. Threshold values are

calculated in training time with the moving average of the percentile of the prediction

of the current frame.

One successful approach in proxy-based metric learning is to use neighborhood com-

ponent analysis (NCA) in training, where the samples are compared against proxies.

The proxy features and the metric network parameters are updated concurrently to

attract the feature of a sample to the corresponding proxy feature and repel from the

other proxy features. We apply a similar approach to train the metric network and

proxy features. A temperature scaling is an effective method. Teh et al. [142] show

that using small T values refine decision boundaries and help classify samples better.

Motivated by these, we utilize NCA with temperature scaling. We select an equal

number of samples in each class in ỹh,w,c
M to ensure balanced training. The metric

network is optimized the following loss function:

LM =
∑

h,w

[

− log

(

exp(−d(fh,w, fp) ∗ 1
T
)

∑

c exp(−d(fh,w, fpc) ∗ 1
T
)

)]

, (5.2)

where T is a temperature and d(x, y) is a normalized squared L2-Norm:

d(x, y) =
∑

i

(

xi

‖x‖ − yi
‖y‖

)2

(5.3)
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The same distance function is used in both training the metric network and calculating

the reliability score, which is used as the gradient scaling factor. The smaller the

distance gets, the more similar to the corresponding class it becomes. In order to

calculate the similarity, we first feed the features of the feature extractor network

of the teacher model to the metric network. The metric network outputs a metric

feature for each pixel of the input image of the teacher network. Then we generate the

similarity map by calculating the distance between the metric features and the proxy

feature of the class predicted by the teacher network. We propose a reverse sigmoid

function to transform similarity to the reliability, where α is sharpness constant, and

β is offset of the sigmoid function:

w(h,w) =
1

1 + e−α∗(β−d(fh,w,f̂p))
(5.4)

5.2.4 Metric-based online ClassMix

The noise injection to the input of the student model leads to a better generalization

for both the student and teacher model [168]. Data augmentation with photomet-

ric noise is a common approach in computer vision applications. Another effective

augmentation technique for classification and semantic segmentation is the mixing

method. The mixing methods combine pixels from two training images to create a

hıghly perturbed sample. ClassMix algorithm [107] is a mixing data augmentation

method that cuts half of the classes in the predicted image and pastes on the other

image.

The straightforward integration of the ClassMix method would be cutting half of

the classes based on the prediction of the teacher network and pasting on the input

of the student network. However, such an approach would not be beneficial since

the input of the student model is the same as of the teacher model’s input except

for the photometric noise. We propose a metric-based Online ClassMix (MOCM)

method that stores reliable patches in training time using metric distance and uses

these patches to mix the input data to overcome this problem.

We keep a patch buffer for each class separately. The patch buffers are fixed-sized and
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employ a first-in-first-out scheme that decreases the memory requirement and ensures

that always up-to-date patches are stored in the buffer. Unlike the standard ClassMix

approach, we use distances predicted by the metric network to proxy features to select

patches. If the average distance of the metric features to the corresponding class proxy

(f c
p) of a patch is smaller than a threshold (τMOCM ), the patch is added to the buffer

of the class c. The image, pseudo-label, and reliability map patch tuple is stored in

the buffer since the mixing operation occurs in both image and label space.

To utilize the stored patches, we first apply a photometric noise to the input image,

then apply the proposed MOCM method. We sample one patch from each NMOCM

classes randomly and paste them onto the image (xCM ), pseudo-label (ỹCM ), and

reliability map (wMOCM ). The training of the student network is performed by the

stochastic gradient descent in order to minimize the following loss function:

L =
1

H ×W

∑

[(

−
∑

c

ỹh,w,c
MOCM × log(T (xMOCM)h,w,c)

)

◦ wh,w
MOCM

]

.

(5.5)

5.3 Experiments

5.3.1 Datasets

We demonstrate the performance of STvM on three different source-to-target adapta-

tion scenarios which are GTA5-to-Cityscapes, Synthia-to-Cityscapes, and Cityscapes-

to-NTHU Cross-City.

The Cityscapes [28] dataset consists of 5000 real-world street-view images captured

in 50 different cities. The images have high-quality pixel-level annotations with a

resolution of 2048 x 1024. They are annotated with 19 semantic labels for semantic

segmentation. The Cityscapes is split into training, validation, and test sets contain-

ing 2975, 500, and 1525 images, respectively. The methods are evaluated on the

validation set following the standard setting used in the previous domain adaptation

studies. The GTA5 [120] is a synthetic dataset where images and labels are automat-
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ically grabbed from Grand Theft Auto V video game. It consists of 24,966 synthetic

images with the size of 1914 x 1052. They have pixel-level annotations of 33 cate-

gories. The 19 classes compatible with the Cityscapes are used in the experiments.

The Synthia1 [122] is also a synthetic dataset. It is composed of urban scene images

with pixel-level annotations. The commonly used SYNTHIA-RAND-CITYSCAPES

subset contains 9,400 images with a resolution of 1280 x 760. The dataset has 16

shared categories with the Cityscapes dataset. Cross-City [23] is a real-world dataset.

The images are recorded in four cities, which are Rome, Rio, Taipei, and Tokyo. The

dataset has 3200 unlabeled images as a training set and 100 labeled images for the test

set with the size of 2048 x 1024. Cross-City has 13 shared classes with the Cityscapes

dataset.

5.3.2 Implementation details

We utilize two different segmentation networks to make a fair comparison with the

previous unsupervised source-free domain adaptation for semantic segmentation meth-

ods. One is DeepLabV2 [16] with the ResNet-101 backbone, and the other is the

DeepLabV3 [17] network with the ResNet–50 backbone. The same architecture is

used for both the teacher (T ) and the student (S) networks. ResNet-101 and ResNet-

50 are used as feature extractor. The same architecture is used for the classifier (C)

and metric (M) networks, which is the corresponding ASPP module of DeepLabV2

and DeepLabV3.

We perform the experiments on a single NVIDIA RTX 2080 Ti GPU using the Py-

Torch framework [111]. We use the same parameters in the training of both DeepLabV2

and DeepLabV3. We resize the input image to 1024 × 512 and cropped 512 × 512

patch randomly in our experiments. The batch size is set to 2.

Both the student and the teacher network is initialized with the source model which is

trained in the source domain. The student network (S) is trained with the Stochastic

Gradient Descent (SGD) [8] optimizer with Nesterov acceleration. The initial learn-

ing rate is set to 2.5 × 10−4 and 2.5 × 10−3 for the feature extractor (F) and the

classifier (C), respectively. The momentum is set to 0.9, and the weight decay is set

1 This dataset is subject to the CC-BY-NC-SA 3.0
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to 5.0× 10−4. The teacher network is updated once in 100 iterations with the param-

eters of the student network, setting the smoothing factor as 1.0 × 10−3. The Adam

[79] optimizer is utilized for training the metric network (M) with the initial learning

rate of 3.0× 10−4. The learning rates of both optimizers are scheduled with polyno-

mial weight decay with the power of 0.9. All the networks are trained concurrently,

enabling end-to-end training.

As for the hyper-parameters, metric feature size Nf , metric temperature T , metric

pseudo-label threshold percentile qm and the patch buffer size are set to 128, 0.25, 0.2

and 50, respectively. The metric distance to reliability transformation parameters α

and β are set to 2 and 0.6. The metric distance threshold τMOCM is set to 0.8.

5.3.3 Results

We evaluated our proposed method STvM on two challenging synthetic-to-real and

one cross-city domain adaptation scenarios, namely GTA5-to-CityScapes, SYNTHIA-

to-CityScapes, and CityScapes-to-Cross-City settings. We compared our method with

the state-of-the-art methods, containing both classical and source-free methods. The

results, obtained with two network architectures, are given in Table 5.1, 5.2, and 5.3.

MST corresponds to multi-scale testing.

Classical domain adaptation methods, utilizing the labeled source-domain dataset

alongside the unlabeled target dataset, gain the advantage of better convergence than

source-free domain adaptation methods. Therefore, they usually perform better than

source-free settings.

STvM is a source-free domain adaptation method. The experimental results show

that our method outperforms the state-of-the-art methods in the same class by a large

margin. Specifically, It improves the performance of SRDA by 20% on the GTA5-

to-CityScapes dataset with DeepLabV2, SFDA by %14 on SYNTHIA-to-CityScapes

dataset with DeepLabV3, and SFDA by 13% on the GTA5-to-CityScapes dataset with

DeepLabV3. We observed that metric learning is a powerful tool for discriminating

confusing classes such as building/wall and light/sign. In addition, STvM shows

better or comparable performance with the classical domain adaptation methods.
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Table 5.1: Comparison with state-of-the-art on GTAV-to-CityScapes in terms of per-class IoUs and mIoU (%). SF represents if the method

is in the source-free setting.
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AdvEnt [154]

D
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V
2

✗ 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

Intra-domain [108] ✗ 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 45.8

MaxSquare [18] ✗ 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 85.3 39.4 78.2 63.0 22.9 84.6 36.4 43.0 5.5 34.7 33.5 46.4

LSE + FL [135] ✗ 90.2 40.0 83.5 31.9 26.4 32.6 38.7 37.5 81.0 34.2 84.6 61.6 33.4 82.5 32.8 45.9 6.7 29.1 30.6 47.5

BDL [88] ✗ 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

Stuff and Things [164] ✗ 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

Texture Invariant [76] ✗ 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2

FDA [176] ✗ 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.4

DMLC [52] ✗ 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1

URMA [34] ✓ 92.3 55.2 81.6 30.8 18.8 37.1 17.7 12.1 84.2 35.9 83.8 57.7 24.1 81.7 27.5 44.3 6.9 24.1 40.4 45.1

SRDA [5] ✓ 90.5 47.1 82.8 32.8 28.0 29.9 35.9 34.8 83.3 39.7 76.1 57.3 23.6 79.5 30.7 40.2 0.0 26.6 30.9 45.8

STvM (w/o MST) ✓ 91.4 52.9 87.3 41.5 33.3 35.9 40.8 48.5 87.3 49.2 87.4 62.2 9.3 87.1 45.5 58.7 0.0 47.4 59.8 54.0

STvM (w/ MST) ✓ 92.1 55.1 87.6 45.5 33.3 36.1 41.8 48.6 87.9 51.1 87.6 63.2 8.6 87.0 47.8 59.8 0.0 50.1 60.4 54.9

MinEnt [154]

D
ee

pL
ab

V
3

✗ 80.2 31.9 81.4 25.1 20.8 24.6 30.2 17.5 83.2 18.0 76.2 55.2 24.6 75.5 33.2 31.2 4.4 27.4 22.9 40.2

AdaptSegNet [146] ✗ 81.6 26.6 79.5 20.7 20.5 23.7 29.9 22.6 81.6 26.7 81.2 52.4 20.2 79.1 36.0 28.8 7.5 24.7 26.2 40.5

CBST [196] ✗ 84.8 41.5 80.4 19.5 22.4 24.7 30.2 20.4 83.5 29.6 82.3 54.7 25.3 79.2 34.5 32.3 6.8 29.0 34.9 42.9

MaxSquare [18] ✗ 85.8 33.6 82.4 25.3 25.0 26.5 33.3 18.7 83.2 32.9 79.8 57.8 22.2 81.0 32.1 32.6 5.2 29.8 32.4 43.1

SFDA [95] ✓ 84.2 39.2 82.7 27.5 22.1 25.9 31.1 21.9 82.4 30.5 85.3 58.7 22.1 80.0 33.1 31.5 3.6 27.8 30.6 43.2

STvM (w/o MST) ✓ 90.3 50.2 87.4 37.9 33.0 35.8 45.2 48.5 85.7 44.1 86.1 62.4 29.8 84.3 30.2 50.0 0.6 7.4 0.0 47.8

STvM (w/ MST) ✓ 90.8 50.7 87.7 40.9 32.0 36.1 47.2 48.6 85.9 43.3 87.0 62.9 31.5 85.2 34.6 54.0 0.6 7.8 0.0 48.8
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Table 5.2: Comparison with state-of-the-art on SYNTHIA-to-CityScapes in terms of per-class IoUs and mIoU (%). The mIoU* column

denotes the mean IoU over 13 categories excluding those marked by *. SF represents if the method is in the source-free setting.
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AdvEnt [154]

D
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✗ 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

MaxSquare [18] ✗ 82.9 40.7 80.3 10.2 0.8 25.8 12.8 18.2 82.5 82.2 53.1 18.0 79.0 31.4 10.4 35.6 41.5 48.2

Intra-domain [108] ✗ 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9

Texture Invariant [76] ✗ 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3

LSE + FL [135] ✗ 82.9 43.1 78.1 9.3 0.6 28.2 9.1 14.4 77.0 83.5 58.1 25.9 71.9 38.0 29.4 31.2 42.5 49.4

BDL [88] ✗ 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

Stuff and Things [164] ✗ 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1

FDA [176] ✗ 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5

DMLC [52] ✗ 92.6 52.7 81.3 8.9 2.4 28.1 13.0 7.3 83.5 85.0 60.1 19.7 84.8 37.2 21.5 43.9 45.1 52.5

URMA [34] ✓ 59.3 24.6 77.0 14.0 1.8 31.5 18.3 32.0 83.1 80.4 46.3 17.8 76.7 17.0 18.5 34.6 39.6 45.0

STvM (w/o MST) ✓ 71.7 31.0 83.7 0.2 0.1 35.8 34.7 37.9 84.8 87.5 53.6 23.0 85.8 46.7 26.9 52.6 47.2 55.4

STvM (w/ MST) ✓ 71.6 31.1 84.2 0.0 0.0 36.7 36.0 38.4 85.4 87.8 55.4 23.5 85.9 47.8 29.1 53.6 47.9 56.1

MinEnt[154]

D
ee

pL
ab

V
3

✗ 78.2 39.6 81.9 4.3 0.2 26.2 2.2 4.1 81.1 87.7 37.7 7.2 75.8 24.9 4.6 25.1 36.3 42.3

AdaptSegNet [146] ✗ 79.7 38.6 79.3 5.6 0.8 25.4 3.6 5.5 80.0 85.4 40.8 11.7 79.8 21.4 5.2 30.5 37.1 43.2

CBST [196] ✗ 81.4 44.2 80.4 7.9 0.7 25.6 5.2 12.4 81.4 89.5 39.7 10.6 82.1 21.9 6.3 32.9 38.9 45.2

MaxSquare [18] ✗ 81.0 39.8 82.6 8.7 0.5 23.2 6.6 12.4 85.3 90.1 39.9 8.4 84.7 19.4 10.2 33.4 39.1 45.7

SFDA [95] ✓ 81.9 44.9 81.7 4.0 0.5 26.2 3.3 10.7 86.3 89.4 37.9 13.4 80.6 25.6 9.6 31.3 39.2 45.9

STvM (w/o MST) ✓ 49.3 20.7 84.2 14.0 1.2 33.1 42.4 45.9 82.9 82.8 50.4 22.1 81.1 38.4 21.2 46.5 44.8 51.4

STvM (w/ MST) ✓ 45.9 19.8 84.5 15.3 1.3 33.7 44.6 46.5 83.3 84.0 51.3 23.1 80.9 40.7 24.8 47.2 45.4 52.1
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Table 5.3: Comparison with state-of-the-art on CityScapes-to-NTHU in terms of

mIoU (%). DL V2 and DL V3 represents DeepLabV2 with ResNet-101 backbone

and DeepLabV3 with ResNet-50 backbone, respectively.

Method N
et

w
or

k

R
om

e

R
io

T
ok

yo

T
ai

pe
i

M
ea

n

URMA [34]

D
L

V
2 53.8 53.5 49.8 50.1 51.8

STvM (w/o MST) 53.1 54.5 51.6 51.4 52.6

STvM (w/ MST) 54.2 56.8 52.7 53.4 54.3

SFDA [95]
D

L
V

3 48.3 49.0 46.4 47.2 47.7

STvM (w/o MST) 50.8 51.0 46.1 45.0 48.2

STvM (w/ MST) 51.2 52.6 46.4 46.0 49.0

5.3.3.1 Ablation study

In order to analyze the effect of each component on the performance, we present the

results of the ablation study in Table 5.4. We named the methods as Source, ST ,

STAug, STMT , STvMRaw, and STvM . Source is a model trained in source-domain

without any domain adaptation method is applied. ST model represents a network

trained with the self-training (ST) method using all pseudo-labels. Conforming the

common knowledge, the self-training boosts the performance of the source model by

+6.8%. STAugutilizes both self-training (ST) and photometric augmentation (Aug.)

to the input image. Injection of the photometric noise to the self-training provides

+2.1% improvement. STMT follows the mean teacher (MT) approach. All predıctıons

of the teacher network are used as pseudo-labels to train the student network. While

photometric augmentation is applied to the input of the student, no augmentation is

applied to the input of the teacher network. Enabling mean-teacher with self-training

by using all the predictions of the teacher model contributes +2.4%. As an extension

to the STMT , STvMRaw benefits from the metric network which is used to estimate

the reliability of the predictions of the teacher network. . gradient scaling (GS). The

metric network that generates reliability to scale gradients of the predictions improves

performance by +1.4% showing the effectiveness of the proposed method. STvM

also exploits the metric-based online ClassMix (MOCM). Using the metric distance in
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the generation of the patches improves performance significantly. Generating patches

and mixing with the input in training time using the reliability has a strong positive

impact on the performance by +4.7%.

Table 5.4: Ablation Study on GTAV-to-CityScapes

Name S
T

A
ug

.

M
T

M
G

S

M
O

C
M

mIoU ∆

Source - - - - - 36.6 -

ST ✓ - - - - 43.4 +6.8

STAug ✓ ✓ - - - 45.5 +2.1

STMT ✓ ✓ ✓ - - 47.9 +2.4

STvMRaw ✓ ✓ ✓ ✓ - 49.3 +1.4

STvM ✓ ✓ ✓ ✓ ✓ 54.0 +4.7

5.3.3.2 Hyper-Parameter analysis

In order to evaluate the influence of the hyper-parameters, we conduct experiments for

four different values of all hyper-parameters: MOCM threshold (τMOCM ), MOCM

patch per image (NMOCM ), metric feature size (Nf ), metric proxy temperature (T ),

metric pseudo-label quantile (qM ), reverse sigmoid alpha (α), reverse sigmoid beta

(β). The experimental results are given in Table 5.5. The parameter stated in the

name column is modified in the experiments. The default values are kept for the

rest. We observed that no parameter has a noteworthy impact on the performance

except large α and small NMOCM values. Assigning large α leads to a sharp decrease

in the reliability of the sample that limits the contribution of the samples that are

far away to the corresponding proxy. This is a desirable situation for the perfectly

trained metric network. However, the metric network is trained with highly-confident

predictions of the teacher network. Therefore, the metric network is overconfident

for the easy samples. If large α is selected, the student network is biased towards

easy samples. That decreases diversity and has a negative impact on performance.

Using a small NMOCM value decreases the complexity of the augmentation, limiting

the contribution of the proposed metric-based online ClassMix method.
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Table 5.5: HyperParameter Analysis on GTAV-to-CityScapes

Name Parameter Value / Performance

τMOCM 0.4 / 52.9 0.6 / 53.07 0.8 / 54.0 1.0 / 53.0

NMOCM 2 / 51.1 5 / 52.4 10 / 54.0 15 / 53.5

Nf 32 / 53.1 64 / 53.0 128 / 54.0 256 / 52.9

T 0.1 / 53.8 0.25 / 54.0 0.5 / 52.9 1.0 / 52.3

qM 0.1 / 52.6 0.2 / 54.0 0.3 / 53.5 0.4 / 53.3

α 1 / 53.1 2 / 54.0 4 / 51.3 8 / 50.0

β 0.5 / 53.0 0.6 / 54.0 0.7 / 53.6 0.8 / 53.8

5.3.3.3 Variance analysis

We made a variance analysis for our STvM and compared it to state-of-the-art meth-

ods. Following URMA [34], we conduct five experiments with different random

seeds, keeping the hyper-parameters in their default values. The mean and standard

deviations obtained for GTA5-to-CityScapes with DeepLabV2 are reported in Table

5.6. Experiments show that STvM shows robust performance with the lowest stan-

dard deviation among the state-of-the-art methods.

Table 5.6: Variance Analysis on GTAV-to-CityScapes

Method Performance Estimate Min

AdaptSegnet 39.68 ± 1.49 37.70

ADVENT 42.56 ± 0.64 41.60

CBST 44.04 ± 0.88 42.80

UMRA 42.44 ± 2.18 39.71

STvM 53.55 ± 0.25 53.26

5.3.3.4 Metric network evaluation

The metric network clusters classes in the metric feature space, providing a reliable

distance measure. The silhouette score is a widely used metric to calculate the good-
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ness of the clustering method. We utilize the silhouette score to evaluate the perfor-

mance of the metric network. Specifically, we computed the silhouette score [123]

for each pixel of each image of the validation set. The overall mean and the class-

wise mean silhouette scores of all validation set is presented in the Table 5.7. Note

that the clustering performance correlates with the segmentation performance, which

indicates the collaboration between the metric network and the segmentation network.

Table 5.7: Metric Evaluation

Name Class Mean Overall Mean

STMT 24.3 42.0

STvMRaw 30.1 48.3

STvM 33.5 49.1
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this theses, we propose several self-training based unsupervised domain adaptation

method. We evaluated our methods in different modalities such as visible and thermal

spectrum, for different tasks such as classification and semantic segmentation and in

different scenarios such as classical and source-free domain adaptation.

In chapter three, we propose a self-training guided adversarial domain adaptation

(SGADA) method in order to investigate the efficacy of combining visible spectrum

and thermal image modalities by using unsupervised domain adaptation. To over-

come the generalization problems of the current adversarial domain adaptation meth-

ods, we employ pseudo-labels obtained from a classifier trained on RGB images, and

train our method with these pseudo-labels. The discriminator confidence is also uti-

lized in the selection of pseudo-labels. In order to demonstrate results of our method,

we generate a new RBG-to-thermal classification dataset by cropping the object from

a large scale MS-COCO and FLIR ADAS dataset. MS-COCO dataset is used as a the

source domain and thermal dataset FLIR ADAS as the target domain.

Quantitative and qualitative results show that our proposed method achieves better

results than the state-of-the-art adversarial domain adaptation methods by learning

more generalized feature representations for the target thermal domain. Even though

existing methods show good performance in classes with many samples, SGADA

shows performance improvement in rare classes. Our method outperformed other

methods with respect to classwise average accuracy, indicating more balanced per-

formance across classes. Visual results generated by t-SNE show that the learned

features by SGADA are better separated, especially when classifier and discriminator

confidences are used together. Quantitative results also support the benefit of using
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these two confidences together. On the other hand, such an approach brings another

hyper-parameter, the threshold value for discriminator confidence, which may require

fine-tuning for other datasets. Our method can be improved with adaptive threshold-

ing mechanisms.

In chapter four, we presented SPLS, which proposes a similarity-based pseudo-label

selection method using metric learning for self-training in unsupervised domain adap-

tation of semantic segmentation. We first train a metric network to learn pixel-wise

similarity metrics in the target domain so that the distance between two pixels be-

longing to the same class is small. Secondly, we use the similarity metric to select

pseudo-labels to better utilize correct predictions with low confidence.

Comparative analyses show that using similarity metrics learned in the target domain

achieves superior performance to confidence-based pseudo-label selection methods,

and our method outperforms existing state-of-the-art domain adaptation methods.

SPLS performs better in predicting confusing classes since the metric learning ap-

proach shows better clustering performance. In addition, unlike confidence-based

methods, SPLS reached maximum performance in a single iteration in our experi-

ments. The self-training via metric learning proposed here for UDA is a general-

purpose method that can be used for any classification problem besides segmentation.

In chapter five, we proposed a self-training via metric learning (STvM) framework

utilizing the mean-teacher approach for the source-free domain adaptation method

of semantic segmentation. STvM learns a metric feature space in the target domain

using a proxy-based metric learning technique. In training time, a reliability score is

calculated for the teacher’s predictions by using the distance of the metric features

to the class-proxy features. The reliability score is used for scaling gradients and

generating object patches. The generated patches are used to augment the input of the

student network with the proposed Metric-based Online ClassMix (MOCM) method.

Unlike the standard approach in classical domain adaptation, the experimental results

show that utilizing all the predictions is beneficial for self-training for source-free do-

main adaptation. We show that gradient scaling helps mitigate the negative impact of

false positive pseudo-labels. Moreover, using learned metrics instead of confidence to

calculate the scale is more beneficial. This self-training strategy also facilitates under-
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confident positive samples to contribute to training. MOCM augmentation technique

highly perturbs the input image, facilitating more robust training. STvM significantly

outperforms state-of-the-art methods, and it is highly robust to the randomness in

training.

The metric network is the essential component of the STvM. It directly impacts

the performance since the gradient scaling factor, and the patch quality used in the

MOCM are calculated using the metric distance. Even though we use highly reli-

able predictions of the teacher network, over-confident false predictions may harm

the performance of the metric network. Therefore, better supervision would be ben-

eficial. Recently, self-supervised training techniques have shown promising results.

Note that metric learning does not need class labels but discriminative labels. There-

fore, we believe training the metric network with self-supervised training techniques

would help the overall performance.
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