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ABSTRACT

PREDICTING THE ACADEMIC INFLUENCE AND TRENDING
RESEARCH TOPICS

Yükselen, Murat
Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Pınar Karagöz

Co-Supervisor: Assist. Prof. Dr. Alev Mutlu

September 2022, 88 pages

Predictions on academic research are thoroughly studied in the literature. In this the-

sis, we focus on two prediction problems in this domain. First we study the problem

of topic adoption prediction for an author within a social academic network. We

model the problem with an influence detection point of view, and propose that the

influence on the author is an important factor. Hence, we define a novel influencee

prediction based feature and developed an algorithm to calculate the influence prop-

agated towards the author. The effect of this feature is explored together with and

in comparison to other features used in the literature for the problem. The experi-

ments conducted on Arnet Miner data set show that accumulated influence on author

is effective for predicting topic adoption.

As a second problem, we try to enlarge our scope and generalize by focusing on

predicting the trending research topics from a collection of academic papers. Pre-

vious efforts model the problem in different ways and mostly apply classical ap-

proaches such as correlation analysis and clustering. There are also several recent

neural model based solutions, however they rely on feature vectors and additional
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information for the trend prediction. In this work, given a collection of publications

within the observation time window, we predict whether the use of a keyword will in-

crease, decrease or be steady for the future time window (prediction window). As the

solution, we propose a family of deep neural architectures that focus on generating

summary representations for paper collections under the query keyword. Due to the

sequence based nature of the data, Long Short-Term Memory (LSTM) module plays

a core role, but it is combined with different layers in a novel way. The first group of

proposed neural architectures consider each paper as a sequence of keywords and use

word embeddings to construct paper collection representations. In this group, the pro-

posed architectures differ from each other in the way year based and overall summary

representations are constructed. In the second group, each paper is directly repre-

sented as a vector and the use of different paper embedding techniques are explored.

The analyses of the models are performed on a variety of paper collections belong-

ing to different academic venues, obtained from Microsoft Academic Graph data set.

The experiments conducted against baseline methods show that proposed deep neural

based models achieve higher trend prediction performance than the baseline models

on the overall. Among the proposed models, paper embedding based models provide

better results for most of the cases.

Keywords: Information flow, Link prediction, Trend prediction, Keyword popularity

prediction, Deep learning, Document vector, Classification, Social networks
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ÖZ

AKADEMİK ETKİYİ VE ARAŞTIRMA KONULARININ EĞİLİMİNİ
TAHMİNLEME

Yükselen, Murat
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Pınar Karagöz

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Alev Mutlu

Eylül 2022 , 88 sayfa

Akademik çalışmalara ilişkin tahminleme literatürde kapsamlı bir şekilde incelen-

mektedir. Bu tezde bu alandaki iki tahmin problemine odaklanılmaktadır. İlk olarak,

bir sosyal akademik ağ içindeki bir yazar için konu benimseme tahminleme problemi

incelenmektedir. Sorun bir etki tespit bakış açısıyla modellenip ve yazar üzerindeki

etkinin önemli bir faktör olduğu önerilmektedir. Bu nedenle etki alımına dayalı yeni

bir özellik tanımlandı ve yazara yayılan etkiyi hesaplamak için bir algoritma gelişti-

rildi. Bu özelliğin etkisi, problem için literatürde kullanılan diğer özelliklerle birlikte

ve bunlarla karşılaştırılarak araştırıldı. Arnet Miner veri seti üzerinde yapılan deney-

ler, yazar üzerinde birikmiş etkinin, konunun benimsenmesini öngörmede etkili oldu-

ğunu göstermektedir.

İkinci problem olarak, bir akademik makale koleksiyonundan araştırma konularının

eğilimini tahmin etmeye odaklanarak kapsamımızı genişletmeye ve genelleştirmeye

çalışıyoruz. Önceki çalışmalar sorunu farklı şekillerde modellemekte ve çoğunlukla

korelasyon analizi ve kümeleme gibi klasik yaklaşımları uygulamaktadır. Ayrıca bir-
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kaç yeni sinir modeli tabanlı çalışma vardır, ancak bunlar eğilim tahmini için özel-

lik vektörlerine ve ek bilgilere ihtiyaç duyarlar. Bu çalışmada gözlem zaman dilimi

içinde bir yayın koleksiyonu verildiğinde, sonraki zaman dilimi (tahmin zaman di-

limi) için sorgulanan bir anahtar kelime kullanımının artacağı, azalacağı veya sabit

kalacağı tahminleniyor. Çözüm olarak sorgu anahtar kelimesi için yayın koleksiyon-

larından özet temsiller oluşturmaya odaklanan bir takım derin nöral mimarileri öne-

riyoruz. Verilerin sıra tabanlı yapısı nedeniyle Uzun Kısa-Süreli Bellek (LSTM) mo-

dülü temel bir rol oynar, ancak farklı katmanlarla yeni bir şekilde birleştirilir. Önerilen

nöral mimarilerin ilk grubu, her makaleyi bir anahtar sözcük dizisi olarak kabul eder

ve yayın koleksiyonu temsillerini oluşturmak için kelime temsilinden başlanır. Bu

grupta önerilen mimariler yıl bazlı ve genel özet temsillerin oluşturulma şekli bakı-

mından birbirinden farklıdır. İkinci grupta her yayın doğrudan bir vektör olarak temsil

edilir ve farklı doküman temsil tekniklerinin kullanımı araştırılır. Modellerin analiz-

leri Microsoft Academic Graph veri setinden elde edilen farklı akademik mekanlara

ait çeşitli yayın koleksiyonları üzerinde gerçekleştirilmiştir. Temel yöntemlere karşı

yapılan deneyler, önerilen derin sinir tabanlı modellerin genel olarak temel model-

lerden daha yüksek eğilim tahmin performansı elde ettiğini göstermektedir. Önerilen

modeller arasında yayın temsili tabanlı modeller çoğu durumda daha iyi sonuçlar ver-

mektedir.

Anahtar Kelimeler: Bilgi akışı, Bağlantı tahminleme, Eğilim tahminleme, Anahtar ke-

lime popülerlik tahminleme, Derin öğrenme, Doküman vektörü, Sınıflandırma, Sos-

yal ağlar
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CHAPTER 1

INTRODUCTION

Scientific topics evolve continuously and predicting their popularity and adoption

are valuable tools that perform analysis on community and individual levels respec-

tively. Predicting trends has always been an attractive ability in different domains.

From fashion to social media, analyzing the current condition and predicting the fu-

ture behavior brings advantages such as being the first or early adopter of the trend.

Furthermore, trend prediction can help policymakers to implement necessary actions.

Numerous research to predict trends has been conducted on several domains such as

financial markets [1, 2], public health issues [3], and environmental issues [4].

Social network analysis is concerned with analysing the structure of the network and

behaviour of individuals forming the network [5]. Although early studies in social

network analysis focused on building descriptive models, with increasing amount of

social network data, the research direction moved to building predictive models [6].

Such predictive models can be used in a variety of domains such as link prediction

for friend recommendation [7, 8], influence detection for advertisement domain [9],

and community detection for urban safety domain [10].

In this study, we work on academic social networks (also called scientific collabo-

ration networks [11]) with a predictive point of view. In academic social networks,

nodes represent entities such as authors and papers and edges represent relations such

as authoring a paper and co-authorship. There are various studies in the literature on

academic social networks aiming to predict collaboration patterns [12, 13, 14].

In academic research, data analytics and prediction techniques have been used in a

variety of different problems such as publication prediction, collaboration analysis
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and academic team formation [15, 16, 17]. As another important problem, predicting

the trend of the topics has several benefits for academic research community. Such

insights may help funding agencies to optimize their policies [18] and guide tech-

nology companies to shape their policies [19]. In addition, knowing future research

trends may help new researchers to plan their studies [20].

With the recent advancements in machine learning, deep learning based solutions

have been devised for prediction problems in variety of domains [21], also success-

ful results for various text mining and information extraction problems using recent

deep neural models have been published. Academic research topic trend prediction

problem has been studied earlier, but mostly through more conventional data mining

and machine learning approaches [22, 19]. There are recent efforts focusing on re-

search topic prediction [23, 24, 25] and topic trend prediction [26], but they rely on

hand-crafted features and additional information such as a semantic network, citation

information or influence among research fields and venues. There are also related

studies in the literature to detect hot topics [27] rather than trend prediction.

1.1 Motivation and Problem Definition

We study topic prediction both at the individual and the community level.

For individual level prediction, apart from the studies in the literature on academic

social networks aiming to predict collaboration patterns [12, 13, 14], we focus on

the problem of topic adoption, and propose a method to predict topic adoption of an

author. More specifically, given an author and a new topic for the author, we aim

to predict whether the author will publish a work on the given topic in the next time

frame.

At the community level, we approached the problem as topic trend prediction and

focused on popularity changes. In this work, we aim to explore whether deep neu-

ral architectures can be more effective in coping with topic trend prediction problem

without using hand-crafted features and external information. To this aim, we pro-

pose a set of novel neural models that use only the paper collections for processing.

In the first three architectures we focus on employing word representations within

2



different neural architectures. In the next three proposed models, we explore the use

of different paper representations within the proposed neural architecture.

We formulate the challenged problem, trend detection of academic research topics,

as predicting the trend of the keywords that describe topics. More specifically, we

assume that a research topic can be described as a set of keywords, and we aim to

predict the trend of a keyword. This assumption has been also used in related studies

such as [27], [28], and also topic modeling studies in general. We model the trend

prediction problem as a supervised learning problem with three labels such that given

a keyword, we aim to predict as to whether its use will increase, decrease or will stay

steady.

1.2 Proposed Methods and Models

Two main problems are attacked in this dissertation can be listed as topic adoption

prediction and topic popularity prediction.

For topic adoption prediction problem, we argue that the amount of influence accu-

mulated on the author for the given topic can affect the topic adoption. To this aim,

we propose a new feature, influencee score, and propose an algorithm to compute

this feature. The proposed algorithm is inspired from the influence detection method

given in [29], in which the amount of influence going out from an author to other

authors within social stream is computed. The effect of this new feature for topic

adoption prediction is analyzed within a multiple logistic regression model together

with and in comparison to the features given in [11]. Additionally, we compare the

performance against the baseline model of [11], as well.

In topic popularity prediction problem, our second focus, we modeled it as both re-

gression and classification problem where we try to predict any given keyword popu-

larity trend will increase, steady, or decline.

One can consider various ways to set the labels for increasing, decreasing, and steady

use of keywords. We define this behavior of trend in terms of frequency distributions.

For a given time window, the label is determined based on the past observation of the

3



frequency distribution of the keyword. More specifically, we can informally define

the keyword trend prediction problem as follows: Given a sequence of published

papers in temporal order for a venue and a query keyword, the aim is to predict the

trend label for the query keyword for the future time window.

The proposed neural architectures base on generating summary representations of the

observed publications (in the observation window) in order to generate trend predic-

tion of the query keyword (for the prediction window). Therefore input to the models

is paper collections and a query keyword, and output is a trend label prediction. Since

the textual data is represented as a sequence of tokens, Long Short-Term Memory

(LSTM) neural model is used as a core component of the architectures. However it is

combined with other modules (including other LSTM modules) in a novel setting for

the focused prediction problem.

We propose two groups of architectures on the basis of using word embedding or

paper embedding in the processing. Within the first group, we propose three architec-

tures, exploring the use of only year based summary (in Model 1), the use of both year

based and observation dimension (in Model 2), and the use of observation dimension

where year based summary is constructed by a convolution layer (Model 3). In the

second group of neural architectures, we use year based and observation dimension

summary representations, but this time, explore the use of different paper embedding

modules, LSTM based paper embedder module (Model 4), doc2vec [30] (Model 5)

and Specter [31] (Model 6).

We analyze the performance of the proposed methods on a collection of academic

papers from several well-known conferences along a timeline of 13 years. The anal-

ysis is conducted per venue for a collection of test query keywords. The selected

conferences have overlapping focus, but also each has its own theme and academic

community. Therefore, by venue based analysis we aim to predict the trend within

each theme and community. Additionally, we conduct trend prediction analysis by

combining the paper collection of all the venues. With this, we additionally explored

the prediction performance under a higher volume of publications and more evidence

for the trend to gain insight about the trend in a broader research field.
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1.3 Contributions and Novelties

Our contributions are as follows:

• Explored influence in social networks by focusing on the receiving end with

Influencee Score feature for topic propagation.

• An algorithm to calculate Influencee Score feature.

• Analysis of the proposed Influencee Score feature with respect to other com-

patible features.

• Formal definition of the research topic trend prediction is built on top of key-

word popularity prediction for a history of published papers collection.

• Proposed keyword and paper level deep neural network models in topic pop-

ularity prediction. Each model explores alternative representations of paper

summaries.

• Experiments to analyze the performance of models with respect to state of the

art document based models and baseline models.

• A qualitative analysis is given to explore the performance of the proposed mod-

els.

1.4 The Outline of the Thesis

In Chapter 2 an overview of the related studies are presented. In Chapter 3 informa-

tion flow in social networks are discussed and influencee score feature is examined.

In Chapter 4 topic popularity prediction is explored and deep neural models are eval-

uated at consuming the academic network content on keyword level and document

level. Finally, Chapter 5 discusses the findings of proposed techniques and evaluation

results with future directions.
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CHAPTER 2

RELATED WORK

In this chapter, related studies in the literature are given and their relations to our

works appearing in the following chapters are given.

In Section 2.1, we summarize the related studies in the literature on influence detec-

tion and social network analysis on scientific collaboration networks. Then studies

on academic trend prediction is summarized in Section 2.2. Finally in Section 2.3 the

document embedding related studies are briefly described.

2.1 Social networks and influence detection

In a social network, action correlations of the agents are studied and defined as a

result of social influence, homophily or confounding (environment) effects [32]. In

[33], homophily and influence are studied within various sociological aspects, from

relationship types to different sized communities. Network of ties, connections be-

tween individuals are affected heavily from homophily and in turn open to receive

more influence. Combined effects of social influence and homophily are studied in

large scale networks such Wikipedia and LiveJournal in [34]. Social influence and

homophily effects are investigated through randomization tests on first-order effects,

leaving second-order effects such as community and structural similarity as a future

work [35]. The problem of distinguishing social influence and homophily is stud-

ied in [36]. In [32], social influence is studied to be more identifiable among other

correlations.

In [12], collaboration patterns of authors in scientific papers are studied through sta-

7



tistical network features. It is reported that coauthor networks tend to include simple

collaboration patterns. The study in [13] extends the scientific collaboration network

structure with citation information in order to analyze topic modeling and evolution.

In [14], the authors further use the text content as well as the network structure. They

aim to track the popularity of the events and discover the evolution of the events

over time as event diffusion on Twitter and DBLP. In [37], individual collaboration

networks are studied in order to predict the evolution of collaboration. The study

focuses on social collaboration network under computer science field on a 25 year

time-window both at community level and individual level. In [29], the authors an-

alyze scientific collaboration network in order to predict topic adoption. The topic

similarity and co-author topic adoption are reported as features effective on topic

adoption prediction.

Information diffusion [38] is studied on various types of social networks such as

blogspace [39]. Through user behavior modeling on features such as neighborhood,

topic and recipient, in [40], communication flow predictability is studied on MySpace

network. In [41], the authors studied information diffusion on blogosphere data with-

out incorporating post contents. It is reported that information cascades mainly as a

tree. Feature implementations of the this work is also compatible with this observa-

tion. In [42], retweeting on Twitter is studied as an information diffusion problem for

behavior modeling. The authors use conditional random fields with features such as

content influence, network influence and temporal decay. Within scientific collabo-

ration network including author-topic interaction, the work in [43] studies group and

community growth and evolution. In [11], the authors aim to detect most influential

authors in the academic social network and propose a social stream based solution.

Our work in Chapter 3 shares several common properties with previous studies on

academic social networks. In addition to co-authorship network, we use textual con-

tent, as in [14], in limited to paper title and abstract. The most similar one among

such studies is the one in [11], challenging the same problem of topic adoption pre-

diction. However, the main difference of our work is that a novel feature is proposed.

In order to realize this new feature, we incorporate ideas from the literature on infor-

mation diffusion and influence detection. More specifically, the proposed algorithm

for computing our new feature has its roots from the solution given in [29], however
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the structure of the social stream is changed, and hence the proposed algorithm has

considerable differences. Since we have adopted several basics from the works in

[11] and [29], in Section 3.2 , we present further details for these two studies.

2.2 Studies on Academic Trend Prediction

Prediction tasks within the domain of academic research efforts have been an attrac-

tive problem to study. Citation recommendation [44], scientific document represen-

tations [31, 45], cascade prediction [46], and topic diffusion [47] are some of such

problems that are applied on academic collaboration networks and collections of aca-

demic publications. In this section, we particularly focus on those that study the

problem of trend forecasting and detection of emerging topics for academic studies.

The work in [22] challenges the problem of topic discovery and trend forecasting

from texts. As in our approach, the study uses token simplification methodologies,

but in a sentence level. The authors conduct association rule mining for topic dis-

covery. Afterwards, temporal topic correlation analysis is performed and ensemble

forecasting is used for topic trend prediction.

In [48], the authors focus on detecting emerging academic topics at early stage which

they call embryonic phase. The method is based on constructing evolutionary topic

co-occurence networks on a yearly basis and devising a clustering algorithm named

Advanced Clique Percolation Method (ACPM) for detecting clusters of the topics in

the evolutionary networks. After a post-processing step based on filtering among high

number of clusters, the clusters of the collaborating topics that extend in increasing

pace are denoted as emerging topics. The method is evaluated on a data set where the

debuting topics are manually annotated.

In [49], pairwise influence between venues are studied and trending topics, which

consists of topical words, are predicted for the next year’s venue. Each venue is han-

dled as a bag of words and topic embeddings are learned. Recurrent Neural Networks

(RNN) over venue vectors is utilized by further considering the influence between

them via the topic embeddings. The authors quantify venue to venue influence over

years and detect trending topical words. Trending topics are determined by compar-
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ing the word percentage increase with respect to previous years.

In [27], the authors assess paper content by extracting keywords through deepwalk

[50] and determine popular topics in the field by examining co-occurrences of de-

tected keywords. For keyword processing, they use the already constructed word2vec

embeddings for English papers. In the study, keyword extraction is performed with a

feature based approach.

The study in [28] also focuses on detecting emerging academic topics. The employed

method involves constructing temporal word2vec word embeddings from a collection

of academic papers belonging to a given time window and determining the increase

in the ranking of keywords. The experiments are conducted on paper collections of

two different venues, and the results are compared against trendy search queries and

increase in citations.

In [23], the authors aim to predict research concepts that will be investigated in the

next 5 years. They maintain scientific knowledge as an evolving network, called

SemNet, where nodes represent physical concepts and edges connect pairs of topics

both of which are studied in a research article. The authors employ a neural network

model to rank concepts by using 17 features of the network properties. With the help

of this ranking, the method suggests novel concept pairs that might be studied in the

next 5 years.

The study in [24] focuses on semantic consistency of research topics while predict-

ing the research topics. The papers are represented with one hot encoding of high

frequency tokens, where each one is considered as a topic. Additionally, a unified

semantic space is constructed to represent the scientific influence context of different

fields. The solution employed in the study is based on the use of multiple RNNs.

The authors of the study in [25] aim to discover emerging research topics. For this

purpose, a two-step approach is used such that firstly popularity scores of the topics

are predicted and then emerging topics are determined among them. Each topic is

represented by a set of features including term frequency (TF), inverse document

frequency (IDF) and the number of unique authors participating in the topic. Neural

network autoregression (NNAR) and LSTM are used as the predictive models.
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In [26], scientific research topic trend prediction problem is modeled as prediction

of token distributions over publication observations. Papers as well as research fields

are represented with one hot encoding of tokens. Additionally, influence graph of

publications is constructed by using the similarities between paper representations.

The authors use Graph Convolutional Network (GCN) in addition to LSTM in their

solution.

Among the related works, there are studies that use neural network based solution

such as in [49], [23], [25] and [26]. However there are basic differences in problem

definition and data modeling. In [49], the focus is on venue to venue influences

and the use of venue and topic embeddings. The study in [23] also differs from our

work in Chapter 4 since a scientific semantic network is employed and the analysis

is conducted on this network. Although the problem definition given in [23] has

similarity to the problem definition of our work, a wider time window of 5 years

is considered in [23] . In [25], topics are represented with feature vectors where

several of the features, such as Web of Science categories, are possibly extracted

from external resources. In [24] and [26], the problem modeling differ from our work

such that the papers and fields are represented by one hot encoding of the topics and

the influence among the fields is used for predicting the topic distributions. On the

other hand, in our approach we directly focus on predicting the trend of the keyword

by using only the publication history of the venues.

Topic modeling and generation is similar in [18] and [25] where they start with a

predefined set of topics. Then the approach in [18] uses clustering for 500 topics and

the study in [25] uses statistical techniques to generate topics with foreground and

background corpus. However model outputs are not compatible as the study in [18]

labels only bag of word topics to increase and decrease whereas the one in [25] ranks

the candidate bag of word topics. Experiments presented in [18] similarly utilize the

last 5 years as an observation window. The problem definition and model outputs are

similar in [19] and [26], they detect keyword set as conference topics for the next year

for all conferences in the experiments. Unfortunately this modeling is not compatible

with our experiments.
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2.3 Document Embedding Studies

In deep learning for NLP applications, it is a common practice to utilize semantic

vector space models to process tokens of a text. Deep learning models can learn

representation for given tokens by starting from random state and utilizing gradient

descent. Mainly word vectors are pre-trained on various general tasks with huge data

sets. Tasks that depend on word embeddings can then further fine tune the pre-trained

embeddings. There are several transfer learning approaches to facilitate fine tuning

[51].

Word analogy task described in [52], known as word2vec, enables similarity and ana-

logy calculations by vector operations. As a pre-trained embedding collection, GloVe

[53] is popularly used as it aims to solve the shortcomings of locality of skip-gram

based training. Main approach in GloVe is to incorporate global corpus with using

global co-occurrence counts. In this way, most frequent 400,000 word tokens are

trained on 42 billion token corpus.

Dynamic word2vec model is suggested in [54] to capture semantic meaning change

via learning temporal word embeddings. Experiments to discover semantic trajecto-

ries are run over news dataset from NYTimes labeled with news sections. The authors

consider word trends by investigating word vector norms across time.

Document vectors are also explored in our work in Chapter 4 with the main goal

to query with the help of word embedding. In [30], word2vec is further extended

to doc2vec in order to generate paragraph vectors. In [55], a similar approach to

doc2vec is followed and it is aimed to simplify document vector generation by avera-

ging word vectors. In the training phase, with the help of term frequencies, common

word vector values are heavily reduced to zero to make significant words to contribute

more to the resulting document vector.

Cite2vec [45] is a visualization system that learns word and referenced document em-

beddings through citation information via enhanced skip-gram approach. It enables

users to interactively search for word and document usages to explore a research field.

Specter [31] is a deep learning transformer model specialized for scientific papers,
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which uses citation information in training phase and can produce stable document

embedding afterwards.

In our work in Chapter 4, we use word embedding and document embedding ap-

proaches to obtain representations of either tokens or the papers, and use them in our

proposed neural architectures for trend prediction of query keyword.
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CHAPTER 3

INFUENCEE ORIENTED TOPIC PREDICTION:

INVESTIGATING THE EFFECT OF INFLUENCE ON THE AUTHOR

3.1 Introduction

Social network analysis is concerned with analysing the structure of the network and

behaviour of individuals forming the network [5]. Although early studies in social

network analysis focused on building descriptive models, with increasing amount of

social network data, the research direction moved to building predictive models [6].

Such predictive models can be used in a variety of domains such as link prediction

for friend recommendation [7, 8], influence detection for advertisement domain [9],

and community detection for urban safety domain [10].

In this chapter 1, we work on academic social networks (also called scientific collab-

oration networks [11]) with a predictive point of view. In academic social networks,

nodes represent entities such as authors and papers and edges represent relations such

as authoring a paper and co-authorship. There are various studies in the literature

on academic social networks aiming to predict collaboration patterns [12, 13, 14].

We focus on the problem of topic adoption, and propose a method to predict topic

adoption of an author. More specifically, given an author and a new topic for the

author, we aim to predict whether the author will publish a work on the given topic

in the next time slot. Yang et al. studied this problem in [11], and propose to use two

features, topic similarity, and social influence, in a regression based model. Social

1 Murat Yukselen, Alev Mutlu, and Pinar Karagoz. 2019. "Infuencee Oriented Topic Prediction: Inves-
tigating the Effect of Influence on the Author". In Proceedings of the 9th International Conference on Web
Intelligence, Mining and Semantics (WIMS2019). Association for Computing Machinery, New York, NY,
USA, Article 14, 1–9. https://doi.org/10.1145/3326467.3326488 Reprinted with respect to author rights on
https://authors.acm.org/author-services/author-rights
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influence denotes the co-authors of the author who already adopted the given topic,

and topic similarity denotes the similarity between the given topic and the topics that

are already adopted by the author.

In this work, we argue that the amount of influence accumulated on the author for

the given topic can affect the topic adoption. To this aim, we propose a new feature,

influencee score, and propose an algorithm to compute this feature. The proposed

algorithm is inspired from the influence detection method given in [29], in which the

amount of influence going out from an author to other authors within social stream

is computed. For computing influencee score, we invert the flow of the stream and

find the amount of influence towards the author from other authors through social

stream in a time line. The effect of this new feature for topic adoption prediction is

analyzed within a multiple logistic regression model together with and in comparison

to the features given in [11]. Additionally, we compare the performance against the

baseline model of [11], as well. The experiments reveal that the proposed feature

improves the prediction accuracy.

The contributions of this chapter can be summarized as follows:

• For topic adoption in scientific collaboration networks, we propose a new fea-

ture, influencee score (FInfSc).

• For computing the influencee score of an author, an algorithm is proposed.

• The effect of influencee score for topic adoption prediction is analyzed within

a multiple regression model.

The rest of the chapter is organized as follows. The background studies, which are

adopted in this work, are described in Section 3.2. Section 3.3 includes the detailed

description of the proposed feature and the algorithm for its computation. We present

the experiments and results in Section 3.4. Finally, the overview of the work and

future directions are given in Section 3.5.
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3.2 Background

This study is motivated by approaches presented in [29, 11] to predict topic adoption

of an author. In the subsequent sections we explain these studies in detail.

3.2.1 Efficient Influence Querying

In [29], authors propose a method to query influencers in dynamic social networks

in a context-sensitive and time-aware manner. Authors assume that social stream is

generated by propagating contents, represented as a bag of keywords, between users,

and user aj is influential on user ak if there is a significant content flow from aj to

ak. To calculate the influence score of aj on ak, authors propose a set of concepts as

summarized below:

• Valid flow (F): Flow of a keyword, Ki, from aj to ak is an ordered set of

nodes, aj, b1, . . . , br, ak, such that aj is the initiator of the keyword, there is a

directed edge between bi, bi+1, for all i = 1 . . . r - 1 and every node transmits

the keyword to its neighbor after receiving the keyword.

• Flow duration (δt): This metric indicates time elapsed between initiation of a

keyword Ki by aj and its transmission to ak.

• Decayed flow weight: δt indicates latency and large value of δt for Ki may

indicate decay in its significance in the flow F . To incorporate this assumption

into the model each flow is assigned with a weight given by 2−(λδt) where λ is

a decay factor.

• Aggregate flow path: Aggregate flow path for keyword Ki at time tc along

a particular path, P , is the sum of weights of all valid distinct flows of the

keyword along the same path. Two flows are considered distinct if the flows are

initiated at different times.

• Aggregate pairwise flow: Aggregate pairwise flow between aj and ak for key-

word Ki at time tc is the summation of the aggregate flow paths on every path

from aj to ak.
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• Atomic influence value: Atomic influence value of aj on ak is the summation

of all aggregate pairwise flow score of each keyword originated in aj and trans-

mitted to ak.

Authors implement the above mentioned concepts on a data structure called Flow

Path Tree, T . In T , root is null node, a path from root a leaf corresponds to a valid

flow, and each node is associated with a weight corresponding to flow weight from

root the that node. Algorithm 1 outlines the influencer score generation process.

Authors investigated performance of the proposed method on an academic social net-

work. In their setting, each node corresponds to an author and edges between nodes

are placed based on co-author relationship. Keyword set is constructed by extracting

uni-, bi-, and tri-grams of words appearing in the title and the abstract of the papers.

3.2.2 Topic Adoption Prediction for Authors

In [11], Yang et al. investigate the topic-following behavior of researchers and pro-

pose a topic-following model to predict topic of the next publication of a researcher.

Authors claim that social influence and homophily are driving factors of topic-following

for a researcher. In case of scientific collaboration network, social influence corre-

sponds to tending to adopt a topic that is most widely studied among researcher’s

co-authors and homophily corresponds to similarity of scientific publications. Au-

thors also argue in their study that assigning a weight for these factors is a difficult

task and build multiple regression model, with social influence score and homophily

score as independent variables, to predict topic adaption. The multiple regression

model is given in 3.1 where FSI and FTS are, respectively, special influence score

and homophily score of an author.

logit[π(x)] = α + β1FSI + β2FTS (3.1)

Social influence is calculated according to 3.2 where FSI(u, s, t) indicates the proba-

bility of researcher u will follow topic s in year t. In 3.2, N ′(u) indicates co-authors

of u who published on topic s before u, w(eu,v) is the weight of the edge between u
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Algorithm 1 Original UpdateFlowPaths algorithm

1: function UPDATEFLOWPATHS(ai, G(t),S, T ) ▷ ai: Originating Node, G(t):

Network, S: Social Stream, T : Flow-Path Tree

2: Receive the next message containing keyword K in social stream S originating

at node ai

3: Create singleton node ai in tree T as child root of node if it does not already

exists

4: C ← ai ▷ Set of candidate paths for expansion

5: Update weight of singleton path containing only node ai in tree T by 1

6: while C is not empty do

7: Delete the first path P from C and denote the first node of P by aj

8: for each ak /∈ P in V (t) with an incoming edge to aj do

9: if prefix of path ak
⊕

P exists in T and ak has propagated keyword K prior

to aj then

10: if the complete path ak
⊕

P exists in T then

11: Increment weight of last node of path ak
⊕

P by 1 in T
12: else

13: Create last node of P as child for prefix of path ak
⊕

P in T with weight

as 1

14: end if

15: Add ak
⊕

P to C

16: end if

17: end for

18: end while

19: end function
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and v and f(v, s, t− 1) indicates the influence from u’s neighbor v in t− 1.

FSI(u, s, t) =
∑

v∈N ′(u)

w(eu,v)∑
v∈N ′(u) w(eu,v)

× f(v, s, t− 1) (3.2)

Homophily score of an author, u, is calculated according (3.3). Topic similarity of

u’s and his/her co-authors’ publications, where u′ is aggregated paper counts of u and

U s
<t is the aggregated paper counts up to time t. Topic similarity of two authors, u and

v, is calculated based on cosine similarity given in (3.4) where u and v are vectors

and vi indicates number of publications by v in the ith topic.

FTS(u, s, t) = sim(u′, U s
<t) (3.3)

sim(u, v) = cosine(u, v) =
u · v

∥ u ∥∥ v ∥ (3.4)

To evaluate their model, authors consider publications in three-years intervals. To

predict topic of a paper published in year t, papers published in years [t− 3, t− 1] are

considered for feature calculations and observation is made in year [t, t+ 2] interval.

3.3 Proposed Method: Incorporating Influence Factor in Topic Prediction

In this study we propose a new feature, influence score, and present a model that

incorporates it together with social influence, and topic similarity. Effect of social

influence and topic similarity in topic adoption are discussed in [11] and are imple-

mented in a similar fashion in this study.

Incorporating influencee score in topic adoption is motivated by [29]. However, ideas

presented in [29] can not be applied directly as [29] provides mechanisms to capture

influencer score, i.e. I(u, ∗, keywords(s), t), while we are interested in influencee

score which is formulated in Equation (3.5). In this equation, u represents an author,

s represents a topic and t represent time. Function I(·) calculates the accumulated

influence on user u for topic s, represented by a set of keywords keywords(s), at time

t.
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FInfluenceeScore(u, s, t) = I(∗, u, keywords(s), t) (3.5)

Although the data structure to represent scientific collaboration network presented

in [29], namely Flow Path Tree - T , forms basis for influencee score calculation, it

can not be directly adopted in this study. In T , influencers appear under nodes repre-

senting keywords and ranked influencers appear 2 levels down from the virtual root

node and for efficiency issues nodes at deeper levels are pruned. In this study, we

are interested in influencee score and nodes representing influencees appear at deeper

levels of the tree, ideally at leaves. Hence, such a pruning mechanism avoids repre-

sentation of influencees. In order to overcome this limitation, the flow path tree is held

in reverse order and the modified algorithm consumes social stream backwards. Fig-

ure 3.1 illustrates the modified data structure where directed arrows between authors

(wy, wu) and (wv, wu) denote influence propagation aligned with time as it becomes

more recent near to influencee node wu under keyword node k1. Author nodes have

influence weights and timestamp for their last update. In that sense author wu will not

have any weight since we are interested in how much influence it receives.

When an influence emerges, influencer node receives weight for the timestamp. The

update incorporates decay in a way that when a timestamp changes, here we are

receiving older messages and timestamp decreases, weight is decayed according to

time delta and new weight is added. Delta of the timestamps between nodes is shown

as distance between author nodes in Figure 3.1. At step 1 for Streamt−1, author v and

y publish a paper at t−1 and because of their author graph Gt−1 it is a valid influence.

At step 2 for Streamt−2, it is understood that author y has influenced before, so node

wy’s weight is decayed and it is displaced to t− 2.

In Algorithm 2, τ tree is initialized layer by layer as virtual root node, keyword nodes,

authoru with zero weight, authoru’s friends authorv with zero weight. Reversed

stream of papers are then used to construct τ that holds information specifically to

answer how much influence authoru received. Updating the flow paths is described

in algorithm 3.

Influence is calculated as an accumulation of all paths from keyword nodes to leaves

where path score is summed by decayed weight with respect to author node times-
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�1
<latexit sha1_base64="s1bBO1qZRKoCH1FIHXwPOp/ciD0=">AAAB8nicbVC7SgNBFL0bXzG+4qOzGUwEq7CrhXYGLLSMYB6wWcPs7GwyZHZ2mZkV4pLPsLFQxFas/BI7S//EyaPQxAMXDuecy334CWdK2/aXlVtYXFpeya8W1tY3NreK2zsNFaeS0DqJeSxbPlaUM0HrmmlOW4mkOPI5bfr9i5HfvKNSsVjc6EFCvQh3BQsZwdpIbrnNTTbAt065UyzZFXsMNE+cKSmdf9x/X77vZbVO8bMdxCSNqNCEY6Vcx060l2GpGeF0WGiniiaY9HGXuoYKHFHlZeOVh+jQKAEKY2lKaDRWf3dkOFJqEPkmGWHdU7PeSPzPc1MdnnkZE0mqqSCTQWHKkY7R6H4UMEmJ5gNDMJHM7IpID0tMtPlSwTzBmT15njSOK85Jxb52SlUbJsjDPhzAEThwClW4ghrUgUAMD/AEz5a2Hq0X63USzVnTnl34A+vtB0CIlDs=</latexit>

Decay:

Timestamp:

wy
<latexit sha1_base64="eD6jYygYafDqSM+yxYmXXhN8xc8=">AAAB7HicbZA7SwNBFIXvxleMrxixshlMBKuwq4iWARvLCG4SSJYwO5lNhszOLjOzyrKktRJsLCJiYeMPsvPfOHkUmnhg4OOce5l7rx9zprRtf1u5ldW19Y38ZmFre2d3r7hfaqgokYS6JOKRbPlYUc4EdTXTnLZiSXHoc9r0h9eTvHlPpWKRuNNpTL0Q9wULGMHaWG7loZtWusWyXbWnQsvgzKFcK308ji8On+rd4lenF5EkpEITjpVqO3asvQxLzQino0InUTTGZIj7tG1Q4JAqL5sOO0InxumhIJLmCY2m7u+ODIdKpaFvKkOsB2oxm5j/Ze1EB1dexkScaCrI7KMg4UhHaLI56jFJieapAUwkM7MiMsASE23uUzBHcBZXXobGWdU5r9q3Trlmw0x5OIJjOAUHLqEGN1AHFwgweIYxvFrCerHerPdZac6a9xzAH1mfPxIZkRc=</latexit>

wy
<latexit sha1_base64="eD6jYygYafDqSM+yxYmXXhN8xc8=">AAAB7HicbZA7SwNBFIXvxleMrxixshlMBKuwq4iWARvLCG4SSJYwO5lNhszOLjOzyrKktRJsLCJiYeMPsvPfOHkUmnhg4OOce5l7rx9zprRtf1u5ldW19Y38ZmFre2d3r7hfaqgokYS6JOKRbPlYUc4EdTXTnLZiSXHoc9r0h9eTvHlPpWKRuNNpTL0Q9wULGMHaWG7loZtWusWyXbWnQsvgzKFcK308ji8On+rd4lenF5EkpEITjpVqO3asvQxLzQino0InUTTGZIj7tG1Q4JAqL5sOO0InxumhIJLmCY2m7u+ODIdKpaFvKkOsB2oxm5j/Ze1EB1dexkScaCrI7KMg4UhHaLI56jFJieapAUwkM7MiMsASE23uUzBHcBZXXobGWdU5r9q3Trlmw0x5OIJjOAUHLqEGN1AHFwgweIYxvFrCerHerPdZac6a9xzAH1mfPxIZkRc=</latexit>

wv
<latexit sha1_base64="TrtXx11mVKJlXqqusYwtmBi4VRU=">AAAB7HicbZC7SgNBFIbPJl5ivEXFymYxEazCrhZaBmwsI7hJIAlhdnI2GTI7u8zMRsKSZ7CxUMTW9/AVLAQrH0Unl0ITfxj4+P9zmHOOH3OmtON8Wpnsyuraem4jv7m1vbNb2NuvqSiRFD0a8Ug2fKKQM4GeZppjI5ZIQp9j3R9cTfL6EKVikbjVoxjbIekJFjBKtLG80l1nWOoUik7ZmcpeBncOxUr24/vt8AurncJ7qxvRJEShKSdKNV0n1u2USM0ox3G+lSiMCR2QHjYNChKiaqfTYcf2iXG6dhBJ84S2p+7vjpSESo1C31SGRPfVYjYx/8uaiQ4u2ykTcaJR0NlHQcJtHdmTze0uk0g1HxkgVDIzq037RBKqzX3y5gju4srLUDsru+dl58YtVhyYKQdHcAyn4MIFVOAaquABBQb38AhPlrAerGfrZVaaseY9B/BH1usPyhiSXw==</latexit>

wv
<latexit sha1_base64="TrtXx11mVKJlXqqusYwtmBi4VRU=">AAAB7HicbZC7SgNBFIbPJl5ivEXFymYxEazCrhZaBmwsI7hJIAlhdnI2GTI7u8zMRsKSZ7CxUMTW9/AVLAQrH0Unl0ITfxj4+P9zmHOOH3OmtON8Wpnsyuraem4jv7m1vbNb2NuvqSiRFD0a8Ug2fKKQM4GeZppjI5ZIQp9j3R9cTfL6EKVikbjVoxjbIekJFjBKtLG80l1nWOoUik7ZmcpeBncOxUr24/vt8AurncJ7qxvRJEShKSdKNV0n1u2USM0ox3G+lSiMCR2QHjYNChKiaqfTYcf2iXG6dhBJ84S2p+7vjpSESo1C31SGRPfVYjYx/8uaiQ4u2ykTcaJR0NlHQcJtHdmTze0uk0g1HxkgVDIzq037RBKqzX3y5gju4srLUDsru+dl58YtVhyYKQdHcAyn4MIFVOAaquABBQb38AhPlrAerGfrZVaaseY9B/BH1usPyhiSXw==</latexit>

wu
<latexit sha1_base64="5nPkKc0go5zwFWCQSEKkylFNm/w=">AAAB7HicbZC7SgNBFIbPGi8x3qJiZbOYCFZhVwstAzaWEdwkkCxhdnI2GTI7u8zMKmHJM9hYKGLre/gKFoKVj6KTS6GJPwx8/P85zDknSDhT2nE+raXc8srqWn69sLG5tb1T3N2rqziVFD0a81g2A6KQM4GeZppjM5FIooBjIxhcjvPGLUrFYnGjhwn6EekJFjJKtLG88l0nLXeKJafiTGQvgjuDUjX38f128IW1TvG93Y1pGqHQlBOlWq6TaD8jUjPKcVRopwoTQgekhy2DgkSo/Gwy7Mg+Nk7XDmNpntD2xP3dkZFIqWEUmMqI6L6az8bmf1kr1eGFnzGRpBoFnX4UptzWsT3e3O4yiVTzoQFCJTOz2rRPJKHa3KdgjuDOr7wI9dOKe1Zxrt1S1YGp8nAIR3ACLpxDFa6gBh5QYHAPj/BkCevBerZepqVL1qxnH/7Iev0ByJOSXg==</latexit>

wu
<latexit sha1_base64="5nPkKc0go5zwFWCQSEKkylFNm/w=">AAAB7HicbZC7SgNBFIbPGi8x3qJiZbOYCFZhVwstAzaWEdwkkCxhdnI2GTI7u8zMKmHJM9hYKGLre/gKFoKVj6KTS6GJPwx8/P85zDknSDhT2nE+raXc8srqWn69sLG5tb1T3N2rqziVFD0a81g2A6KQM4GeZppjM5FIooBjIxhcjvPGLUrFYnGjhwn6EekJFjJKtLG88l0nLXeKJafiTGQvgjuDUjX38f128IW1TvG93Y1pGqHQlBOlWq6TaD8jUjPKcVRopwoTQgekhy2DgkSo/Gwy7Mg+Nk7XDmNpntD2xP3dkZFIqWEUmMqI6L6az8bmf1kr1eGFnzGRpBoFnX4UptzWsT3e3O4yiVTzoQFCJTOz2rRPJKHa3KdgjuDOr7wI9dOKe1Zxrt1S1YGp8nAIR3ACLpxDFa6gBh5QYHAPj/BkCevBerZepqVL1qxnH/7Iev0ByJOSXg==</latexit>

k1
<latexit sha1_base64="fcpSn/BF4DeHV6PqRCJrYjXAYJM=">AAAB7HicbZC7SgNBFIbPJl5ivEXFymYxEazCrhZaBmwsI7hJIFnC7ORsMmR2dpmZFcKSZ7CxUMTW9/AVLAQrH0Unl0ITfxj4+P9zmHNOkHCmtON8Wrn8yuraemGjuLm1vbNb2ttvqDiVFD0a81i2AqKQM4GeZppjK5FIooBjMxheTfLmHUrFYnGrRwn6EekLFjJKtLG8yrDrVrqlslN1prKXwZ1DuZb/+H47/MJ6t/Te6cU0jVBoyolSbddJtJ8RqRnlOC52UoUJoUPSx7ZBQSJUfjYddmyfGKdnh7E0T2h76v7uyEik1CgKTGVE9EAtZhPzv6yd6vDSz5hIUo2Czj4KU27r2J5sbveYRKr5yAChkplZbTogklBt7lM0R3AXV16GxlnVPa86N2655sBMBTiCYzgFFy6gBtdQBw8oMLiHR3iyhPVgPVsvs9KcNe85gD+yXn8ATuuSDg==</latexit>

k1
<latexit sha1_base64="fcpSn/BF4DeHV6PqRCJrYjXAYJM=">AAAB7HicbZC7SgNBFIbPJl5ivEXFymYxEazCrhZaBmwsI7hJIFnC7ORsMmR2dpmZFcKSZ7CxUMTW9/AVLAQrH0Unl0ITfxj4+P9zmHNOkHCmtON8Wrn8yuraemGjuLm1vbNb2ttvqDiVFD0a81i2AqKQM4GeZppjK5FIooBjMxheTfLmHUrFYnGrRwn6EekLFjJKtLG8yrDrVrqlslN1prKXwZ1DuZb/+H47/MJ6t/Te6cU0jVBoyolSbddJtJ8RqRnlOC52UoUJoUPSx7ZBQSJUfjYddmyfGKdnh7E0T2h76v7uyEik1CgKTGVE9EAtZhPzv6yd6vDSz5hIUo2Czj4KU27r2J5sbveYRKr5yAChkplZbTogklBt7lM0R3AXV16GxlnVPa86N2655sBMBTiCYzgFFy6gBtdQBw8oMLiHR3iyhPVgPVsvs9KcNe85gD+yXn8ATuuSDg==</latexit>

root

Streamt�2
<latexit sha1_base64="3Ov2qY60xMEDI+eL0mlL9x8N3g4=">AAAB9XicbVC7SgNBFL3rM8ZX1NJmMBFsDLux0DJgYxnRPCBZw+xkNhky+2DmrhKW/IeNhSK2/oudf+NssoUmHhg4nHMu987xYik02va3tbK6tr6xWdgqbu/s7u2XDg5bOkoU400WyUh1PKq5FCFvokDJO7HiNPAkb3vj68xvP3KlRRTe4yTmbkCHofAFo2ikh8odZul+iue1aaVfKttVewayTJyclCFHo1/66g0ilgQ8RCap1l3HjtFNqULBJJ8We4nmMWVjOuRdQ0MacO2ms6un5NQoA+JHyrwQyUz9PZHSQOtJ4JlkQHGkF71M/M/rJuhfuakI4wR5yOaL/EQSjEhWARkIxRnKiSGUKWFuJWxEFWVoiiqaEpzFLy+TVq3qXFTt21q5bud1FOAYTuAMHLiEOtxAA5rAQMEzvMKb9WS9WO/Wxzy6YuUzR/AH1ucPjLmR0g==</latexit>

Streamt�2
<latexit sha1_base64="3Ov2qY60xMEDI+eL0mlL9x8N3g4=">AAAB9XicbVC7SgNBFL3rM8ZX1NJmMBFsDLux0DJgYxnRPCBZw+xkNhky+2DmrhKW/IeNhSK2/oudf+NssoUmHhg4nHMu987xYik02va3tbK6tr6xWdgqbu/s7u2XDg5bOkoU400WyUh1PKq5FCFvokDJO7HiNPAkb3vj68xvP3KlRRTe4yTmbkCHofAFo2ikh8odZul+iue1aaVfKttVewayTJyclCFHo1/66g0ilgQ8RCap1l3HjtFNqULBJJ8We4nmMWVjOuRdQ0MacO2ms6un5NQoA+JHyrwQyUz9PZHSQOtJ4JlkQHGkF71M/M/rJuhfuakI4wR5yOaL/EQSjEhWARkIxRnKiSGUKWFuJWxEFWVoiiqaEpzFLy+TVq3qXFTt21q5bud1FOAYTuAMHLiEOtxAA5rAQMEzvMKb9WS9WO/Wxzy6YuUzR/AH1ucPjLmR0g==</latexit>

t� 2
<latexit sha1_base64="U0ZqOeukcbss6GmWI0O6+j/86yQ=">AAAB7HicbZC7SgNBFIbPxluMt3jpbBYTwcawGwvtDFhoGcFNAskSZieTZMjs7DJzVohLnsHGQhFbSyufxM7SN3FyKTT6w8DH/5/DnHOCWHCNjvNpZRYWl5ZXsqu5tfWNza389k5NR4mizKORiFQjIJoJLpmHHAVrxIqRMBCsHgwuxnn9linNI3mDw5j5IelJ3uWUoLG8Ih6Xi+18wSk5E9l/wZ1B4fz97uvybS+ttvMfrU5Ek5BJpIJo3XSdGP2UKORUsFGulWgWEzogPdY0KEnItJ9Ohh3Zh8bp2N1ImSfRnrg/O1ISaj0MA1MZEuzr+Wxs/pc1E+ye+SmXcYJM0ulH3UTYGNnjze0OV4yiGBogVHEzq037RBGK5j45cwR3fuW/UCuX3JOSc+0WKg5MlYV9OIAjcOEUKnAFVfCAAod7eIQnS1oP1rP1Mi3NWLOeXfgl6/UbkuiRhg==</latexit>

t� 2
<latexit sha1_base64="U0ZqOeukcbss6GmWI0O6+j/86yQ=">AAAB7HicbZC7SgNBFIbPxluMt3jpbBYTwcawGwvtDFhoGcFNAskSZieTZMjs7DJzVohLnsHGQhFbSyufxM7SN3FyKTT6w8DH/5/DnHOCWHCNjvNpZRYWl5ZXsqu5tfWNza389k5NR4mizKORiFQjIJoJLpmHHAVrxIqRMBCsHgwuxnn9linNI3mDw5j5IelJ3uWUoLG8Ih6Xi+18wSk5E9l/wZ1B4fz97uvybS+ttvMfrU5Ek5BJpIJo3XSdGP2UKORUsFGulWgWEzogPdY0KEnItJ9Ohh3Zh8bp2N1ImSfRnrg/O1ISaj0MA1MZEuzr+Wxs/pc1E+ye+SmXcYJM0ulH3UTYGNnjze0OV4yiGBogVHEzq037RBGK5j45cwR3fuW/UCuX3JOSc+0WKg5MlYV9OIAjcOEUKnAFVfCAAod7eIQnS1oP1rP1Mi3NWLOeXfgl6/UbkuiRhg==</latexit>

t� 1
<latexit sha1_base64="UKKPIhWWaiPIgijki3bSwKfucrQ=">AAAB7HicbZC7SgNBFIbPxluMt3jpbBYTwcawq4V2Biy0jOAmgWQJs5NJMmR2dpk5K8Qlz2BjoYitpZVPYmfpmzi5FJr4w8DH/5/DnHOCWHCNjvNlZRYWl5ZXsqu5tfWNza389k5VR4mizKORiFQ9IJoJLpmHHAWrx4qRMBCsFvQvR3ntjinNI3mLg5j5IelK3uGUoLG8Ih67xVa+4JScsex5cKdQuPi4/75630srrfxnsx3RJGQSqSBaN1wnRj8lCjkVbJhrJprFhPZJlzUMShIy7afjYYf2oXHadidS5km0x+7vjpSEWg/CwFSGBHt6NhuZ/2WNBDvnfsplnCCTdPJRJxE2RvZoc7vNFaMoBgYIVdzMatMeUYSiuU/OHMGdXXkeqicl97Tk3LiFsgMTZWEfDuAIXDiDMlxDBTygwOEBnuDZktaj9WK9Tkoz1rRnF/7IevsBkWORhQ==</latexit>

t� 1
<latexit sha1_base64="UKKPIhWWaiPIgijki3bSwKfucrQ=">AAAB7HicbZC7SgNBFIbPxluMt3jpbBYTwcawq4V2Biy0jOAmgWQJs5NJMmR2dpk5K8Qlz2BjoYitpZVPYmfpmzi5FJr4w8DH/5/DnHOCWHCNjvNlZRYWl5ZXsqu5tfWNza389k5VR4mizKORiFQ9IJoJLpmHHAWrx4qRMBCsFvQvR3ntjinNI3mLg5j5IelK3uGUoLG8Ih67xVa+4JScsex5cKdQuPi4/75630srrfxnsx3RJGQSqSBaN1wnRj8lCjkVbJhrJprFhPZJlzUMShIy7afjYYf2oXHadidS5km0x+7vjpSEWg/CwFSGBHt6NhuZ/2WNBDvnfsplnCCTdPJRJxE2RvZoc7vNFaMoBgYIVdzMatMeUYSiuU/OHMGdXXkeqicl97Tk3LiFsgMTZWEfDuAIXDiDMlxDBTygwOEBnuDZktaj9WK9Tkoz1rRnF/7IevsBkWORhQ==</latexit>

Step 2

Streamt�1
<latexit sha1_base64="GrUjrdMfqI6KPYIPgs6dd0va1ZI=">AAAB9XicbVC7TgJBFL2LL8QXamkzEUxsJLs0WpLYWGKURwIrmR1mYcLsIzN3NWTDf9hYaIyt/2Ln3zgLWyh4kklOzjk3987xYik02va3VVhb39jcKm6Xdnb39g/Kh0dtHSWK8RaLZKS6HtVcipC3UKDk3VhxGniSd7zJdeZ3HrnSIgrvcRpzN6CjUPiCUTTSQ/UOs/QgxQtnVh2UK3bNnoOsEicnFcjRHJS/+sOIJQEPkUmqdc+xY3RTqlAwyWelfqJ5TNmEjnjP0JAGXLvp/OoZOTPKkPiRMi9EMld/T6Q00HoaeCYZUBzrZS8T//N6CfpXbirCOEEessUiP5EEI5JVQIZCcYZyaghlSphbCRtTRRmaokqmBGf5y6ukXa85ds25rVcadl5HEU7gFM7BgUtowA00oQUMFDzDK7xZT9aL9W59LKIFK585hj+wPn8AiomRzw==</latexit><latexit sha1_base64="GrUjrdMfqI6KPYIPgs6dd0va1ZI=">AAAB9XicbVC7TgJBFL2LL8QXamkzEUxsJLs0WpLYWGKURwIrmR1mYcLsIzN3NWTDf9hYaIyt/2Ln3zgLWyh4kklOzjk3987xYik02va3VVhb39jcKm6Xdnb39g/Kh0dtHSWK8RaLZKS6HtVcipC3UKDk3VhxGniSd7zJdeZ3HrnSIgrvcRpzN6CjUPiCUTTSQ/UOs/QgxQtnVh2UK3bNnoOsEicnFcjRHJS/+sOIJQEPkUmqdc+xY3RTqlAwyWelfqJ5TNmEjnjP0JAGXLvp/OoZOTPKkPiRMi9EMld/T6Q00HoaeCYZUBzrZS8T//N6CfpXbirCOEEessUiP5EEI5JVQIZCcYZyaghlSphbCRtTRRmaokqmBGf5y6ukXa85ds25rVcadl5HEU7gFM7BgUtowA00oQUMFDzDK7xZT9aL9W59LKIFK585hj+wPn8AiomRzw==</latexit>

Streamt�1
<latexit sha1_base64="GrUjrdMfqI6KPYIPgs6dd0va1ZI=">AAAB9XicbVC7TgJBFL2LL8QXamkzEUxsJLs0WpLYWGKURwIrmR1mYcLsIzN3NWTDf9hYaIyt/2Ln3zgLWyh4kklOzjk3987xYik02va3VVhb39jcKm6Xdnb39g/Kh0dtHSWK8RaLZKS6HtVcipC3UKDk3VhxGniSd7zJdeZ3HrnSIgrvcRpzN6CjUPiCUTTSQ/UOs/QgxQtnVh2UK3bNnoOsEicnFcjRHJS/+sOIJQEPkUmqdc+xY3RTqlAwyWelfqJ5TNmEjnjP0JAGXLvp/OoZOTPKkPiRMi9EMld/T6Q00HoaeCYZUBzrZS8T//N6CfpXbirCOEEessUiP5EEI5JVQIZCcYZyaghlSphbCRtTRRmaokqmBGf5y6ukXa85ds25rVcadl5HEU7gFM7BgUtowA00oQUMFDzDK7xZT9aL9W59LKIFK585hj+wPn8AiomRzw==</latexit><latexit sha1_base64="GrUjrdMfqI6KPYIPgs6dd0va1ZI=">AAAB9XicbVC7TgJBFL2LL8QXamkzEUxsJLs0WpLYWGKURwIrmR1mYcLsIzN3NWTDf9hYaIyt/2Ln3zgLWyh4kklOzjk3987xYik02va3VVhb39jcKm6Xdnb39g/Kh0dtHSWK8RaLZKS6HtVcipC3UKDk3VhxGniSd7zJdeZ3HrnSIgrvcRpzN6CjUPiCUTTSQ/UOs/QgxQtnVh2UK3bNnoOsEicnFcjRHJS/+sOIJQEPkUmqdc+xY3RTqlAwyWelfqJ5TNmEjnjP0JAGXLvp/OoZOTPKkPiRMi9EMld/T6Q00HoaeCYZUBzrZS8T//N6CfpXbirCOEEessUiP5EEI5JVQIZCcYZyaghlSphbCRtTRRmaokqmBGf5y6ukXa85ds25rVcadl5HEU7gFM7BgUtowA00oQUMFDzDK7xZT9aL9W59LKIFK585hj+wPn8AiomRzw==</latexit>

wy
<latexit sha1_base64="eD6jYygYafDqSM+yxYmXXhN8xc8=">AAAB7HicbZA7SwNBFIXvxleMrxixshlMBKuwq4iWARvLCG4SSJYwO5lNhszOLjOzyrKktRJsLCJiYeMPsvPfOHkUmnhg4OOce5l7rx9zprRtf1u5ldW19Y38ZmFre2d3r7hfaqgokYS6JOKRbPlYUc4EdTXTnLZiSXHoc9r0h9eTvHlPpWKRuNNpTL0Q9wULGMHaWG7loZtWusWyXbWnQsvgzKFcK308ji8On+rd4lenF5EkpEITjpVqO3asvQxLzQino0InUTTGZIj7tG1Q4JAqL5sOO0InxumhIJLmCY2m7u+ODIdKpaFvKkOsB2oxm5j/Ze1EB1dexkScaCrI7KMg4UhHaLI56jFJieapAUwkM7MiMsASE23uUzBHcBZXXobGWdU5r9q3Trlmw0x5OIJjOAUHLqEGN1AHFwgweIYxvFrCerHerPdZac6a9xzAH1mfPxIZkRc=</latexit>

wy
<latexit sha1_base64="eD6jYygYafDqSM+yxYmXXhN8xc8=">AAAB7HicbZA7SwNBFIXvxleMrxixshlMBKuwq4iWARvLCG4SSJYwO5lNhszOLjOzyrKktRJsLCJiYeMPsvPfOHkUmnhg4OOce5l7rx9zprRtf1u5ldW19Y38ZmFre2d3r7hfaqgokYS6JOKRbPlYUc4EdTXTnLZiSXHoc9r0h9eTvHlPpWKRuNNpTL0Q9wULGMHaWG7loZtWusWyXbWnQsvgzKFcK308ji8On+rd4lenF5EkpEITjpVqO3asvQxLzQino0InUTTGZIj7tG1Q4JAqL5sOO0InxumhIJLmCY2m7u+ODIdKpaFvKkOsB2oxm5j/Ze1EB1dexkScaCrI7KMg4UhHaLI56jFJieapAUwkM7MiMsASE23uUzBHcBZXXobGWdU5r9q3Trlmw0x5OIJjOAUHLqEGN1AHFwgweIYxvFrCerHerPdZac6a9xzAH1mfPxIZkRc=</latexit>
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Figure 3.1: Example flowpath tree

tamp. The effect of decay is similar to Katz measure [56]. This aggregation process

is given in Algorithm 4.

3.4 Experiments

3.4.1 Data Sets and Experimental Setting

To evaluate performance of the proposed topic adoption model a set of experiments

is conducted on data retrieved from Arnet Miner [57] and Microsoft Academic Graph

(MAG) [58].

MAG database is used retrieve papers to build a SVM to predict topic of a paper. To

this aim, we retrieved top 10 papers belonging to topics of algorithm and complexity,

classification, information retrieval, privacy and security, and text and web mining.

We retrieved uni-, bi-, and trigrams from titles and abstracts of the papers and used
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Algorithm 2 Influencee score fInfSc

1: function FEATUREINFSC(u, s, t) ▷ u: author, s: topic, t: time

2: Sreversed← filter the social stream S up to time t with keywords for s

3: τ ← a flow-path-tree for author u with all u’s neighbors are expanded with

weight 0

4: score← 0

5: for all p in Sreversed do ▷ p: paper as message

6: for all k in p.filteredKeywords do

7: for all v in p.authors do

8: updateFlowPathTree(τ , k, v, tp) ▷ tp: time of p

9: end for

10: end for

11: end for

12: return aggregatedScore(τ, t) ▷ Influence(∗, authoru, ∗, t) as in [29]

13: end function

Author Papers
Per Topic

Author Papers
Per Topic

Author Papers
Per Topic

Author Papers
Per Topic

Author Papers
Per Topic

Author Papers
Per Topic

Author Graph Author Graph Author Graph

Social Stream Social Stream Social StreamSocial StreamMicrosoft
Academic
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Papers with Topic

AMiner

Paper to Topic
mapping

SVM

Topics to Paper
training set

t t1 t2t-1t-2t-3

train

Feature InfSc

Feature SI

Feature TS Observation at t

Figure 3.2: Data flow of the features

these keywords to train SVM.

From Arnet Miner database we retrieved papers published between 2001 and 2011

and assigned their topic using our SVM model. In Table 3.1 we list the number

of papers retrieved from Arnet Miner [57] and give yearly tagged papers in their

respective columns.
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Algorithm 3 UpdateFlowPaths function
1: function UPDATEFLOWPATHTREE(τ , k, v, t)

2: Starting from keyword node k, traverse all open

3: for all author nodew as direct friend of influencee do

4: if nodew is v then

5: Increment weight incorporating decaying and return

6: end if

7: for all child nodex of nodew do

8: dfsPathUpdate(nodex, v, t)

9: end for

10: end for

11: end function

12: function DFSPATHUPDATE(nodex, v, t)

13: if t > tnodex then return

14: else if nodex is v and t is tnodex then

15: increment weight incorporating decay and return

16: else if v is friend of nodex then

17: append nodev to nodex with decayed weight and return

18: end if

19: for all already open nodey of nodex do ▷ these friends already conveyed

information to influencee

20: recurse with dfsPathUpdate(nodey, v, t)

21: end for

22: end function
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Algorithm 4 Aggregate Influencee score from τ

1: function AGGREGATEDSCORE(τ, t) ▷ τ : flow-path tree, t: time

2: score← 0

3: for all nodek in τ do

4: for all path p starting from nodek do

5: for all nodea in p do

6: add weightnodea ∗ decay(t, tnodea) to score

7: end for

8: end for

9: end for

10: return score

11: end function

12: function DECAY(t1, t2) return 2(−decayFactor∗(t1−t2)

13: end function

Although papers have topics, in our model network is based on authors and keywords.

For this purpose, for each topic we build a keyword dictionary that contains top 30

terms of the topic. To query the stream for a specific topic we use the topic’s keyword

dictionary. The statistics of the filtered stream is given in Table 3.2.

Figure 3.2 illustrates our experimental setting. The leftmost part visualizes the data

preparation step, data gathering and SVM training. The right part of the Figure 3.2

visualizes model training and prediction steps. For an author, say u, that has not

published any paper on topic s, his/her stream for the past three years is queried with

keyword(s) which is made up of top 30 keywords on the topic. Influence Score

feature needs yearly social streams and author graphs in computation. Similarly,

Feature Social Influence makes use of Author Graphs and yearly Author Paper Counts

per Topic. Feature Topic Similarity is simply calculated based on the cosine similarity

of user u with respect to all users on topic s up to time t. Observation result is a simple

lookup in 3 consecutive years whether u has a publication on that topic or not.

In order to analyze the effect of the features, various models are trained with Multiple

Logistic Regression having different set of features. Each model name is set such that

it expresses the set of features used. In that respect, mlr as a short name was used
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Table 3.1: Yearly paper counts per topic

Year Total Alg. C. Class. IR P.& Sec. W.& T. M.

2001 56783 19464 1678 3990 2448 5833

2002 62029 20262 2096 4458 2903 6358

2003 54874 18184 1900 3913 2528 5672

2004 61169 19635 2315 4402 3279 6034

2005 98203 31166 5036 6575 5591 8539

2006 121189 41547 6246 7991 5896 9894

2007 116194 36312 6496 7913 5778 10448

2008 128681 38931 7878 8754 6029 11124

2009 169575 50779 11545 10381 6967 13764

2010 139357 42951 8446 9060 5653 12555

2011 131262 41350 7553 8556 5078 12355

Table 3.2: Social Stream Paper Counts per Year for Influencee Score Calculation

Year count

2001 35447

2002 48473

2003 46550

2004 52027

2005 87755

2006 108749

2007 106364

2008 121537

2009 162249

2010 133040

2011 124158

in [11] as a model with two features: FSI and FTS . This work focused on adding

a third feature as FInfluencesScore (FInfSc). The experiments are conducted with a

balanced number of samples for training and test, as given in Table 3.3. The numbers
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Table 3.3: Training and test sample counts per topic

Alg. Class. Inf. Prv. & Web & Text

Complex. Retrvl. Sec. Mining

train 4043 4090 4115 4174 4153

test 1991 2067 2031 2034 2077

of positive and negative samples are balanced as well.

3.4.2 Experimental Results

For the selected topics, the parameters of each model are given in Tables 3.4, 3.5, 3.6,

3.7, and 3.8 respectively.

Table 3.4: Model parameters of Alg. and Complex. Topic

Model Feature Par. Value Std.Err. Wald sig.

FCE

intercept α 0.0427 0.0042 10.0701 0

FCE β1 0.7610 0.0014 532.3658 0

FSI + FTS

intercept α 0.0232 0.0040 5.6945 6.2524e-09

FSI β1 -0.0098 0.0078 -1.2601 0.1038

FTS β2 3.7651 0.0074 506.5743 0

FSI + FTS + FInfSc

intercept α -1.3639 0.0111 -121.9350 0

FSI β1 -0.0170 0.0242 -0.7022 0.2412

FTS β2 3.8134 0.0240 158.7485 0

FInfSc β3 0.0853 0.0109 7.8076 3.6637e-15

FTS

intercept α 0.0158 0.0029 5.3932 3.4766e-08

FTS β1 3.8065 0.0055 688.4928 0

FSI + FInfSc

intercept α -0.0411 0.0110 -3.7387 9.3618e-05

FSI β1 0.0127 0.0308 0.4128 0.3398

FInfSc β2 0.1062 0.0145 7.3054 1.6220e-13

FTS + FInfSc

intercept α -1.3688 0.0081 -167.9981 0

FTS β1 3.8420 0.0179 214.6297 0

FInfSc β2 0.0440 0.0069 6.3233 1.3570e-10
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Table 3.5: Model parameters of Classification Topic

Model Feature Par. Value Std.Err. Wald sig.

FCE

intercept α -2.0091 0.0029 -685.3135 0

FCE β1 1.0696 0.0022 465.7863 0

FSI + FTS

intercept α -2.5683 0.0046 -553.9986 0

FSI β1 0.0879 0.0184 4.7673 9.3854e-07

FTS β2 3.6437 0.0125 291.2114 0

FSI + FTS + FInfSc

intercept α -1.3941 0.0157 -88.3621 0

FSI β1 0.0737 0.0669 1.1013 0.1353

FTS β2 3.1679 0.0394 80.3719 0

FInfSc β3 0.0002 7.7684e-05 2.6408 0.0041

FTS

intercept α -2.5617 0.0034 -744.2074 0

FTS β1 3.6426 0.0093 390.2773 0

FSI + FInfSc

intercept α -0.0097 0.0100 -0.9700 0.1660

FSI β1 -0.0777 0.0676 -1.1488 0.1253

FInfSc β2 0.0012 8.0652e-05 16.0311 0

FTS + FInfSc

intercept α -1.5236 0.0116 -130.9340 0

FTS β1 3.3502 0.0291 114.9896 0

FInfSc β2 0.0004 5.5377e-05 7.3600 1.0191e-13
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Table 3.6: Model parameters of Information Retrieval Topic

Model Feature Par. Value Std.Err. Wald sig.

FCE

intercept α -1.4699 0.0038 -377.0467 0

FCE β1 0.9033 0.0021 419.0485 0

FSI + FTS

intercept α -1.5351 0.0064 -237.1857 0

FSI β1 -0.1394 0.0226 -6.1706 3.4505e-10

FTS β2 3.0390 0.0177 170.9132 0

FSI + FTS + FInfSc

intercept α -1.2779 0.0173 -73.5049 0

FSI β1 -0.1334 0.0647 -2.0618 0.0196

FTS β2 2.9658 0.0471 62.8816 0

FInfSc β3 0.3001 0.0131 22.8290 0

FTS

intercept α -1.5915 0.0047 -331.7382 0

FTS β1 3.1183 0.0132 234.7923 0

FSI + FInfSc

intercept α -0.0509 0.0104 -4.8885 5.2544e-07

FSI β1 -0.1832 0.0652 -2.8073 0.0025

FInfSc β2 0.3852 0.0136 28.1625 0

FTS + FInfSc

intercept α -1.3271 0.0127 -103.7753 0

FTS β1 2.9698 0.0346 85.7041 0

FInfSc β2 0.3566 0.0083 42.8263 0
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Table 3.7: Model parameters of Privacy and Security Topic

Model Feature Par. Value Std.Err. Wald sig.

FCE

intercept α -1.9830 0.0032 -610.0604 0

FCE β1 1.0433 0.0019 526.6821 0

FSI + FTS

intercept α -2.5836 0.0053 -486.2342 0

FSI β1 -0.0357 0.0168 -2.1268 0.0167

FTS β2 4.5032 0.0153 294.2476 0

FSI + FTS + FInfSc

intercept α -1.7229 0.0164 -104.9034 0

FSI β1 0.1734 0.0540 3.2111 0.0006

FTS β2 4.0029 0.0436 91.7938 0

FInfSc β3 1.7738e-05 1.2257e-06 14.4709 0

FTS

intercept α -2.5612 0.0039 -648.7085 0

FTS β1 4.4228 0.0114 385.7505 0

FSI + FInfSc

intercept α 4.3715e-10 0.0106 4.1060e-08 0.4999

FSI β1 1.0555e-09 0.0591 1.7842e-08 0.4999

FInfSc β2 2.3117e-05 1.3952e-06 16.5688 0

FTS + FInfSc

intercept α -1.3728 0.0123 -111.5988 0

FTS β1 3.1942 0.0328 97.1137 0

FInfSc β2 1.3715e-05 7.5793e-07 18.0959 0
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Table 3.8: Model parameters of Text and Web Mining Topic

Model Feature Par. Value Std.Err. Wald sig.

FCE

intercept α -1.3166 0.0040 -324.8517 0

FCE β1 0.8476 0.0021 390.1226 0

FSI + FTS

intercept α -1.4135 0.0063 -221.7997 0

FSI β1 -0.1682 0.0226 -7.4396 5.2069e-14

FTS β2 3.0144 0.0171 175.7761 0

FSI + FTS + FInfSc

intercept α -1.2157 0.0160 -75.7983 0

FSI β1 -0.3031 0.0597 -5.0707 2.0679e-07

FTS β2 2.9363 0.0427 68.6542 0

FInfSc β3 4.5301e-05 8.2357e-07 55.0053 0

FTS

intercept α -1.4237 0.0047 -300.9280 0

FTS β1 3.0240 0.0128 235.7353 0

FSI + FInfSc

intercept α -9.0498e-09 0.0098 -9.1708e-07 0.4999

FSI β1 -2.9751e-09 0.0599 -4.9587e-08 0.4999

FInfSc β2 5.7770e-05 8.4983e-07 67.9780 0

FTS + FInfSc

intercept α -1.2412 0.0120 -102.8170 0

FTS β1 2.9433 0.0324 90.5676 0

FInfSc β2 4.2191e-05 6.7121e-07 62.8586 0
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In the model parameter tables, Wald and significance values help to interpret the

feature contributions such that positive Wald value is considered worthy feature for

the model at hand. Similarly parameters with significance value smaller than 0.05

are also useful. In light of this information, model parameters can be interpreted as

follows: FTS is the most effective feature and FInfSc follows in second place.

Accuracy of the models per topic are given in Tables 3.9, 3.10, 3.11, 3.12, and 3.13

respectively. In terms of Fβ scores, proposed "FSI + FTS + FInfSc" model and the

feature FInfSc performed better in 4 out of 5 topics selected. β = 1.1 is used similar

to [11] favoring recall performance. Although Receiving Operational Characteristic

(ROC) [59] value is the highest in Algorithm and Complexity topic (Figure 3.3(a)),

Fβ score evaluates our model as subpar.

Table 3.9: Model performance of Algorithms and Complex.

model recall Fβ acc. prec. spec.

FCE 1 0.8845 0.7761 0.7761 0

FSI + FTS 1 0.8943 0.7929 0.7929 0

FSI + FTS + FInfSc 0.7136 0.7372 0.7368 0.7680 0.7071

FTS 1 0.8949 0.7940 0.7940 0

FSI + FInfSc 0.2235 0.3091 0.5299 0.5759 0.5188

FTS + FInfSc 0.6981 0.7273 0.7297 0.7662 0.6962

Table 3.10: Model performance of Classification

model recall Fβ acc. prec. spec.

FCE 0.4805 0.5042 0.7177 0.5362 0.7850

FSI + FTS 0.3019 0.4212 0.7629 0.8071 0.7571

FSI + FTS + FInfSc 0.7265 0.6695 0.6279 0.6114 0.6529

FTS 0.3052 0.4247 0.7653 0.8074 0.7598

FSI + FInfSc 0.4475 0.5084 0.5755 0.6087 0.5558

FTS + FInfSc 0.7111 0.6631 0.6302 0.6131 0.6541

ROC curves per topic are shown in Figure 3.3. As seen in the results Coauthor effect

feature performs better for Privacy & Security topic, Text & Web Mining and Infor-

32



Table 3.11: Model performance of Information Retrieval

model recall Fβ acc. prec. spec.

FCE 0.6845 0.6442 0.6850 0.6015 0.7579

FSI + FTS 0.6124 0.5724 0.5953 0.5305 0.6608

FSI + FTS + FInfSc 0.7898 0.6902 0.6120 0.5988 0.6416

FTS 0.6158 0.5709 0.5929 0.5245 0.6633

FSI + FInfSc 0.3813 0.4742 0.5992 0.6724 0.5703

FTS + FInfSc 0.7962 0.6927 0.6154 0.5986 0.6534

Table 3.12: Model performance of Privacy and Security

model recall Fβ acc. prec. spec.

FCE 0.6180 0.5751 0.7263 0.5304 0.8287

FSI + FTS 0.4116 0.5017 0.7581 0.6827 0.7754

FSI + FTS + FInfSc 0.8193 0.7007 0.6219 0.5963 0.6834

FTS 0.3983 0.4921 0.7570 0.6882 0.7721

FSI + FInfSc 1 0.6859 0.4970 0.4970 0

FTS + FInfSc 0.8030 0.6967 0.6200 0.6006 0.6642

Table 3.13: Model performance of Text and Web Mining

model recall Fβ acc. prec. spec.

FCE 0.7433 0.6628 0.6645 0.5861 0.7581

FSI + FTS 0.6644 0.6057 0.6014 0.5473 0.6666

FSI + FTS + FInfSc 0.8259 0.7001 0.6186 0.5912 0.6875

FTS 0.6725 0.6105 0.6037 0.5493 0.6708

FSI + FInfSc 0.8953 0.6940 0.5793 0.5456 0.7249

FTS + FInfSc 0.8395 0.7095 0.6245 0.5975 0.6961
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mation Retrieval topics. It is simply calculated as logarithm of one plus the number

of already active friends on the topic. Although this feature is performing very good

with respect to its simplicity, it is not taking into account the time aspect of author

interests and does not incorporate any decay and further links in the social network.

Proposed model including the feature Influencee Score (FInfSc) performs better in all

ROC curves.

3.5 Discussion

In this chapter, we investigate the effect of accumulated influence for topic adoption

prediction in a scientific collaboration network. We use the term influencee score to

denote the influence accumulated on an author for a given topic. We hypothesize that

the influence accumulated on an influencee for a topic may be effective on topic adop-

tion. The influencee score calculation method is inspired from influencer detection

work in [29]. We modify the influencer score calculation such that the social stream is

played backwards in order to accumulate the influence coming from various sources.

We incorporate the influencee score as a feature within the framework presented in

[11].

The experiments conducted on Arnet Miner data set show that the proposed feature,

FInfSc, improves the prediction performance, especially recall value, when used to-

gether with the features presented in [29]. The prediction performance is better when

FInfSc is used together with FTS only. Another interesting observation is that, on the

contrary to results reported in [11], FCE provides a good performance for most of the

topics especially in terms of specificity.

As a future work, further feature combinations can be explored to improve the pre-

diction performance. Another interesting enhancement direction is extending the sci-

entific collaboration network with additional elements such as publication venues.
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CHAPTER 4

PREDICTING THE TRENDING RESEARCH TOPICS BY DEEP NEURAL

NETWORK BASED CONTENT ANALYSIS

4.1 Introduction

Predicting trends has always been an attractive ability in different domains. From

fashion to social media, analyzing the current condition and predicting the future

behavior brings advantages such as being the first or early adopter of the trend. Fur-

thermore, trend prediction can help policymakers to implement necessary actions.

Numerous research to predict trends has been conducted on several domains such as

financial markets [1, 2], public health issues [3], and environmental issues [4].

In academic research, data analytics and prediction techniques have been used in a

variety of different problems such as publication prediction, collaboration analysis

and academic team formation [15, 16, 17]. As another important problem, predicting

the trend of the topics has several benefits for academic research community. Such

insights may help funding agencies to optimize their policies [18] and guide tech-

nology companies to shape their policies [19]. In addition, knowing future research

trends may help new researchers to plan their studies [20].

With the recent advancements in machine learning, deep learning based solutions

have been devised for prediction problems in variety of domains [21], also success-

ful results for various text mining and information extraction problems using recent

deep neural models have been published. Academic research topic trend prediction

problem has been studied earlier, but mostly through more conventional data mining

and machine learning approaches [22, 19]. There are recent efforts focusing on re-

search topic prediction [23, 24, 25] and topic trend prediction [26], but they rely on
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hand-crafted features and additional information such as a semantic network, citation

information or influence among research fields and venues. There are also related

studies in the literature to detect hot topics [27] rather than trend prediction.

In this chapter1, we aim to explore whether deep neural architectures can be more

effective in coping with topic trend prediction problem without using hand-crafted

features and external information. To this aim, we propose a set of novel neural mod-

els that use only the paper collections for processing. In the first three architectures

we focus on employing word representations within different neural architectures. In

the next three proposed models, we explore the use of different paper representations

within the proposed neural architecture.

We formulate the challenged problem, trend detection of academic research topics,

as predicting the trend of the keywords that describe topics. More specifically, we

assume that a research topic can be described as a set of keywords, and we aim to

predict the trend of a keyword. This assumption has been also used in related studies

such as [27], [28], and also topic modeling studies in general. We model the trend

prediction problem as a supervised learning problem with three labels such that given

a keyword, we aim to predict as to whether its use will increase, decrease or will stay

steady.

One can consider various ways to set the labels for increasing, decreasing, and steady

use of keywords. We define this behavior of trend in terms of frequency distributions.

For a given time window, the label is determined based on the past observation of the

frequency distribution of the keyword. More specifically, we can informally define

the keyword trend prediction problem as follows: Given a sequence of published

papers in temporal order for a venue and a query keyword, the aim is to predict the

trend label for the query keyword for the future time window.

The proposed neural architectures base on generating summary representations of the

observed publications (in the observation window) in order to generate trend predic-

tion of the query keyword (for the prediction window). Therefore input to the models

is paper collections and a query keyword, and output is a trend label prediction. Since

1 Murat Yukselen, Alev Mutlu and Pinar Karagoz, "Predicting the Trending Research Topics by Deep Neu-
ral Network Based Content Analysis," in IEEE Access, vol. 10, pp. 90887-90902, 2022, doi: 10.1109/AC-
CESS.2022.3202654. Reprinted with respect to author rights of IEEE Access.
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the textual data is represented as a sequence of tokens, Long-Short Term Memory

(LSTM) neural model is used a core component of the architectures. However it is

combined with other modules (including other LSTM modules) in a novel setting for

the focused prediction problem.

As stated earlier, we propose two groups of architectures on the basis of using word

embedding or paper embedding in the processing. Within the first group, we propose

three architectures, exploring the use of only year based summary (in Model 1), the

use of both year based and observation window summary (in Model 2), and the use

of both summaries where year based summary is constructed by a convolution layer

(Model 3). In the second group of neural architectures, we use year based and obser-

vation based summary representations, bu this time, explore the use of different paper

embedding modules, LSTM based paper embedder module (Model 4), doc2vec [30]

(Model 5) and Specter [31] (Model 6).

We analyze the performance of the proposed methods on a collection of academic

papers from several well-known conferences along a timeline of 13 years. The anal-

ysis is conducted per venue for a collection of test query keywords. The selected

conferences have overlapping focus, but also each has its own theme and academic

community. Therefore, by venue based analysis we aim to predict the trend within

each theme and community. Additionally, we conduct trend prediction analysis by

combining the paper collection of all the venues. This analysis provides insight about

the trend in a broader research field. By this way, we additionally explore the predic-

tion performance under a higher volume of publications and more evidence for the

trend.

The contribution of this chapter can be listed as follows:

• The research trend prediction analysis is formally defined through keyword

trend prediction over a history of published papers.

• A family of neural models is proposed for the defined problem. Each of the

proposed neural models explore alternative ways to generate and use represen-

tations of papers and paper collections with respect to the query keyword.

• The prediction performance of the models are analyzed in comparison to regres-
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sion and SVM based baseline techniques through a rich collection of academic

papers from 10 venues. The analysis also includes experiments on combined

paper collection of all venues to observe the trend prediction for a broader re-

search area and under a higher volume of paper collection.

• A qualitative analysis is given to present the trend predictions for query key-

words.

The chapter is organized as follows. In Section 4.2, preliminary information for the

proposed method is given. In Section 4.3, the problem definition and the proposed

methods are described. In Section 4.4, experiment setting and comparative predic-

tion performance analysis of the methods are presented. The chapter is concluded in

Section 4.5 with an overview of the work and the results, as well as the future work.

4.2 Preliminaries and Problem Definition

In this section, we define the basic concepts related to the problem and then give the

problem definition.

Definition 4.2.1 (Query Keyword) Query keyword q is a term or a token that has

significance for a research topic.

Definition 4.2.2 (Popularity) Popularity of a query keyword q for a given period

is the normalized frequency in a given time period. The normalization is achieved

through the cardinality of the set of papers P within the time period, denoted as

popularity(q, P ).

In our work, we consider the time period as one year. Hence we calculate the normal-

ized frequency of a query keyword per year.

Definition 4.2.3 (Observation window) Observation Window is a time range con-

sisting of certain number of consecutive time periods. The paper collection for an

observation window of length l is a list of paper collections < P1, ..Pl >, where each

Pi denotes a paper collection for the time period i.
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(a) Increase

(b) Steady

(c) Decrease

Figure 4.1: Illustration of the Keyword Trend Labels. First 5 years is Observation

window and last 3 years is Prediction window.

In our work, the observation window length is set as 5, on the basis of validation

analysis, and hence our observation window is 5 consecutive years.

Definition 4.2.4 (Prediction Window) Prediction window is a time range consisting
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of a certain number of consecutive time periods that follow the observation window.

The paper collection for a prediction window of length k is a list of paper collections

< P ′
1, ..P

′
k >, where each P ′

j denotes a paper collection for the time period j.

In our work, the prediction window length is set as 3 on the basis of validation analy-

sis. This expresses that the trend label prediction is made for the subsequent 3 years.

Now that we have defined the observation and the prediction windows, trend pre-

diction is made simply by identifying whether the popularity distribution of a given

query keyword for the prediction period will be either inside, below, or above the

distribution for the observation period.

Definition 4.2.5 (Observation Period Distribution) Observation period distribution

denotes the population value range avgobs ± stdobs. We define avgobs and stdobs as

follows. Given an observation window of length l and corresponding paper collec-

tion < P1, ..Pl >, and a query keyword q, for each Pi, we have a popularity value

popularity(q, Pi). We calculate the average and standard deviation of the popularity

values for the observation period, denoted as avgobs and stdobs, respectively.

Definition 4.2.6 (Query Keyword Labeling) Query keyword labeling consists of choos-

ing one of the labels Increase, Steady and Decrease. Given the prediction period

with length k and corresponding paper collection < P1, ..Pk >, avgpred denotes the

average popularity of the query keyword q for the prediction period. The label In-

crease denotes that avgpred > (avgobs + stdobs). Similarly, Decrease denotes that

avgpred < (avgobs − stdobs), and Steady expresses that avgpred lies within observa-

tion period distribution.

Figure 4.1 illustrates the trend labels on a sample case. In Figure 4.1a, the trend is

labeled as Increase since avgpred lies above the observation distribution. Similarly,

Figure 4.1b illustrates the Steady label and Figure 4.1c illustrates the Decrease label.

Labels Decrease, Steady and Increase are mapped to -1, 0, 1, respectively for the

regression model . Classification models assign the values 0, 1, 2 to these labels.

Definition 4.2.7 (Trend Prediction) Given a query keyword, trend prediction de-

notes predicting the label among Increase, Steady and Decrease for the prediction
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window.

Definition 4.2.8 (Problem Definition) Given an observation period with length l and

a corresponding paper collection < P1, ..Pl >, and a query keyword q, the challenged

problem is trend prediction of q for a prediction period of length k.

4.3 Proposed Methods

For keyword trend prediction we propose a family of deep neural models. We can

group the models in two, according to the way input is structured. In the first one,

we group the paper collection per year and feed it into the model as a long sequence.

We call these models as word embedding based models. The second group of models

take each paper as a separate input. These models are called as paper embedding

based models. We devise three models within each group. In the word embedding

based models, three different architectures are constructed to explore alternative was

to handle the long sequence of tokens. In the second group of models, we explore

the effect of three different alternatives to obtain paper embeddings on the prediction

performance.

Below is a list of components used in the proposed neural models. The architectures

include well-known modules, however they are combined in novel ways to be handle

the challenged problem.

Embedding: Embedding block maps a word or a paper to a vector.

LSTM: LSTM block is a recurrent module that consumes an array of vector and

outputs resulting vector.

Dense: Dense block connects each input to each output, forming densely connected

layer.

Lambda: Lambda block applies simple functions such as mapping and reducing

tensor dimensions. We basically use this module to be able to map to token stream of

a given year.

Reshape: Reshape block changes tensor dimensions, mostly to provide compatibil-

ity before concatenation.
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Concatenate: Concatenate block appends tensors together in specified dimension.

RepeatVector: RepeatVector block appends the same tensor to specified dimension

for a specified amount.

Conv1D: Conv1D is used to apply convolution on temporal dimension.

Dropout: Dropout layer randomly sets input units to 0 with a specified frequency.

GlobalMaxPooling1D: GlobalMaxPooling1D downsamples the input by taking the

maximum value over the time dimension.

TimeDistributed: TimeDistributed module allows to apply a layer to every temporal

slice of an input.

In the rest of this section, we firstly present how the input is structured for the pro-

posed neural models. Then we describe the proposed neural architectures within each

group.

4.3.1 Data Encoding for Neural Models

In the proposed deep neural models, the basic idea is that the model scans all the

papers in the observation window. Each paper in a given year is encoded as a series

of tokens obtained from the title and the abstract of the paper. Order of the papers is

arbitrary as long as they belong to the given year. A paper with index i in year year

is represented as given in Equation 4.1, with n title tokens and k abstract tokens.

Paperyear,i = titleyear,i,1, ..., titleyear,i,n,

abstractyear,i,1, ..., abstractyear,i,k
(4.1)

Depending on the model, either embedding of the tokens or the whole document is

constructed and used. the papers are stacked yearly as in Equation 4.2 and zeros are

padded to maxlen of the longest TokenStream.

TokenStreamyear = [paperyear,1, ..., paperyear,l] (4.2)

In the experiments, we set the observation window size as 5 due to the conducted

validation analysis and the number of years available in the data set. Therefore, the
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observation window is represented accordingly in Equation 4.3. However it can be

adjusted for any size of observation window.

Y earlyStreamyear =



TokenStreamyear−4

TokenStreamyear−3

TokenStreamyear−2

TokenStreamyear−1

TokenStreamyear


5×maxlen

(4.3)

For a query token on a given year, data samples used for training can be defined as

in Equation 4.4. Query is a single token keyword under consideration for prediction.

label belongs to set {-1, 0 , 1} for regression task or set {0, 1, 2} for classification

task.

x, y = [Y ear − Streamyear, query], label (4.4)

4.3.2 Word Embedding Based Neural Models

Models in this group process all the papers of a year in a concatenated form. Each

year’s paper tokens, which are terms cleaned up from title and abstract, are con-

catenated, and zero padding is applied to match shorter streams. In this group, we

construct three different models where they generate paper collection summary rep-

resentations in different ways.

Model 1: Year Summary based Model. In this model, the input is a 2-D token array

such that each year has its own stream, and all paper tokens in a year are concate-

nated. After token embeddings are obtained, Model 1 uses a shared Yearly Summary

module to process one-year stream to construct a year summary vector (shown in

Figure 4.22). As shown in the figure, the size of the input 2-D array to the models

is 5 years x 60919 tokens per year3. The embedding layer generates embeddings of

2 Model figures are generated via Netron application [60].
3 Note that the ? mark in the main input size in Figure 4.2 denotes the number of input batches
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vector size 50 for 21742 tokens. The LSTM module processes each of the year based

token sequences and generates year summary representations of size 32. The vectors

generated for each year in the observation window (5 years) are concatenated and fed

into the dense layers to generate the label prediction of the query keyword for the pre-

diction window. Reshape operation aligns query embedding result to LSTM results

for concatenation.

Model 2: Model with Observation Window Summary. Model 2 also takes a 2-D

token array (5 years x 60919 tokens) as input and uses a shared Yearly Summary mod-

ule to summarize collection of papers per year into a yearly summary vectors of size

32 (shown in Figure 4.3). Differently from Model 1, this model then uses another

LSTM module to generate 5-year summary vectors. Input to the second LSTM mod-

ule is a vector obtained by concatenation of the yearly summary vectors (in the first

Concatenate module in the figure) and it is further concatenated with the embedding

of the query keyword (RepeatVector module and the second Concatenate module).

The generated summary representation for the observation window (5-year summary

representation) of size 32 is then fed into Dense layers for the final output.

Model 3: Convolution based Year Summary Model. As in the previous models,

Model 3 takes a 2-D token array as input. This model differs from Model 2 such

that it uses shared convolution layer to generate yearly paper embeddings (given in

Figure 4.4). The convolution layer applies double 1D-convolution with kernel size 5

and 64 filters. After applying Dense layer, yearly summary vectors of size 114 are

obtained. The yearly summary vectors and also the query keyword embedding are

concatenated as in Model 2 to be given as input to LSTM layer. The rest of the model

is also the same as in Model 2, such that summary vector of size 32 is constructed as

the representation of the paper collection in the observation period, and then it is fed

into the Dense layer for the final output.
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Figure 4.2: Model 1: The architecture includes a shared LSTM module to process

paper collections per year, yearly embeddings are concatenated

4.3.3 Paper Embedding Based Models

The paper embedding based models consider a paper as a whole and process each pa-

per individually. Figure 4.5 shows the stages used in these models. Paper vectoriza-

tion phase takes word embeddings of a paper and produces a vector for the paper. For
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Figure 4.3: Model 2: The architecture includes a shared LSTM module for each year,

it includes another LSTM over all year results

paper embedding construction, we use three alternative methods: pre-trained LSTM

(Paper Embedder LSTM), doc2vec [30], and Specter [31]. After generating a paper

vector, LSTM module is utilized to generate the yearly summary vector. As the last

48



Figure 4.4: Model 3: The architecture includes a Convolution module for each year,

it has an LSTM module to process all year results
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Paper keyword embedding Paper vector Year summary PredictionLast 5 year summary

Query embeddings

Paper vectorization Year vectorization Year combination

Dense layer for prediction

Figure 4.5: Data flow for processing papers to a vector first

stage, another LSTM module is utilized to combine 5 yearly summary vectors with

repeated queries (as shown in the third step of the data flow in Figure 4.5). Its result

is fed into 3-layer densely connected module, and the final prediction is generated.

Paper Embedder LSTM module is trained beforehand to construct document level

representations. For the other two paper embedding based models, we use pre-

computed doc2vec and Specter vectors. Doc2vec [30] generates paragraph vectors

through training on word vectors. On the other hand, Specter [31] is a deep learning

transformer model specialized for scientific papers. It generates stable document vec-

tors, given the same collection, always generating the same vector. To obtain similar

stability with doc2vec, we used negative sampling.

Model 4: Paper Embedder LSTM based Model. Figure 4.6 illustrates the deep

learning architecture of Model 4. It takes a 3-D token array as input such that year di-

mension holds the year information in the observation window, and paper dimension

is made up of tokens of each paper, resulting with 3-D array of 5 years of observation

window x 410 papers per batch x 385 tokens per paper in our implementation. This

model uses a shared pre-trained Paper Embedder LSTM module (TimeDistributed

module in the figure) to convert all paper tokens into their paper embeddings of size

100. (Note that the TimeDistributed module includes an additional input of embed-

ding collections of size 16350 tokens x embedding size 50.) All yearly paper vectors

are fed into a shared Year Summary module (the first LSTM module in the figure) to

compute the representation of one-year summary of papers. This module generates

a vector of size 50. The input to the second LSTM module is the vector obtained

by concatenation of yearly summary vectors and the embedding of the query key-
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word. The second LSTM module is used for generating summary representation for

the collection within the observation window (5-year summary representation). The

resulting embedding is fed into dense layer to generate the trend prediction of the

query keyword.

Figure 4.6: Model 4: The model includes Paper LSTM module to generate paper

embeddings, LSTM module to generate one-year summary embeddings, and another

LSTM module to generate representation over the observation window.

Model 5: Doc2vec based Model. Model 5 takes a 3-D array as input such that year

dimension denotes the size of the observation window, paper dimension denotes the

size of papers in the batch and embedding dimension denotes the size of the doc2vec

embedding per paper, resulting with the array of 5 years x 410 papers x 50 in our

implementation. The paper vector is already trained with doc2vec implementation on

paper tokens that uses global pre-trained word embeddings. Therefore it is similar

to Model 4 except that it bypasses paper summary calculations by directly using a
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pre-computed doc2vec vector for each paper. Figure 4.7 shows the model of the ex-

periment.

Model 6: Specter based Model. Model 6 also takes a 3-D array as the input. It

is similar to Model 5 except that it uses Specter for constructing the paper vectors.

Figure 4.7 shows the model.

4.4 Experiments

In this section, we firstly describe the data set, data preparation steps, implementation

setup and baseline methods. Following this, we present the keyword trend prediction

experiments applied on ten data collections both for all labels and label-wise analy-

sis. Then validation analysis for paper embedding approaches used in the models is

presented. Lastly, we present the qualitative analysis conducted for trend prediction

on three of the venues.

4.4.1 Data Set and Experiment Setup

As the data set, we use a collection of papers obtained from Microsoft Academic

Graph [61]. It is an academic collaboration network data set containing papers with

year, title, abstract, list of authors, list of citations, and venue information. Addition-

ally, Microsoft Academic Graph associates each paper with the related fields of study.

Field of study is a hierarchic graph that includes topics and concepts. In our analysis,

we use year, title, abstract and venue information of the papers, and we consider the

fields of study as the keywords of a paper. Unfortunately Microsoft Academic Graph

product was shutdown at the end of 2021 which increased difficulty in data gathering

for academic research.

For the experiments, ten computer science venues and their papers published between

2001 and 2013 are selected. We consider that each venue has some differences in

focused themes and aim to discover trends within each venue. The venues are listed
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Figure 4.7: Model 5 & 6: The model includes Doc2Vec (in Model 5) or Specter

(in Model 6) for each paper, an LSTM module to generate one-year summary repre-

sentation, an another LSTM module to generate representation over the observation

window.

in alphabetical order in Table 4.1. The table also lists the number of papers for each

venue, and the average number of tokens in the title and abstract of the papers.
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Each entry in the data collection is a paper instance with year and keywords. Paper

title and abstract are considered as a whole text. Keywords are lemmatized by using

spaCy Python package4. Stopwords are also removed from keyword set.

To be used as query keywords in the training, validation and testing phases, top 500

keywords are chosen according to the frequency. For each year, we keep a balanced

keyword collection in terms of labels, and the number of instances per year is deter-

mined as at most 102 for manageable experiment run-time.

The data set for each venue is partitioned such that 70% is used in training, 15% is

used for development in training and hyper-tuning phase, and the remaining 15% is

used solely in testing. As an example, Figure 4.8 illustrates how the paper collection

between the years 2001 and 2013 are partitioned. Here, the blue squares depict the us-

age in the observation window and the orange ones depict the usage in the prediction

window. The label for a query keyword is determined as given in Definition 4.2.6.

Training data set contains 4 streams of data. For example, in the first stream (train

stream 1), labels of the training query keywords for the prediction window (window

of 2006-2008) is determined by using the paper collection in the observation window

(window of 2001-2005). As described in Definition 4.2.6, a single label is generated

for the prediction window per query keyword. The fifth stream is used as the valida-

tion data set. Test data stream uses the model constructed from the earlier streams and

the predictions of the test query keywords are generated for the prediction window of

2011-2013.

4.4.2 Implementation Setup

For the word embedding based models, we use pre-trained word embedding weights

from a ready source, GLoVe [53]. GloVe provides 400,000 words trained and has

different embedding sizes, which are 25, 50, 100, 200 and 300. In our experiments,

GLoVe 50 is used and we have observed that further training for fine tuning does

not change their weights. For doc2vec implementation, Gensim library [62] is used.

For Specter paper embedding model, implementation provided on Github 5 is used.

4 https://spacy.io/
5 https://github.com/allenai/specter
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Table 4.1: Selected venues in the data set

Abbr. Venue name
Paper

count

Avg.

tokens

AAAI Association for the Advancement of Artificial In-

telligence

6430 83

CIKM The Conference on Information and Knowledge

Management

3457 98

DSS Decision Support Systems 2166 90

ICDE International Conference on Data Engineering 2888 92

ICDM International Conference on Data Mining 3447 91

KDD Knowledge Discovery and Data Mining 3555 100

SIGIR International ACM SIGIR Conference on Research

and Development in Information Retrieval

2797 87

SIGMOD International Conference on Management of Data 2553 93

VLDB Very Large Data Bases 2828 102

WWW The Web Conference 3963 84

The proposed deep learning architectures, LSTM and CNN modules are developed

by using the Keras library [63].

4.4.3 Baseline Models

We adopted four baseline methods, two regression based and two classification based

ones. Linear regression and Support Vector Regression are used as the regression

based baseline methods. For classification based baseline methods, Logistic regres-

sion (with class labels) and Support Vector Classification are utilized. We selected

the baseline methods in order to see whether the challenged problem can be handled

by basic supervised learning approaches. Although there are several related studies

as summarized in Section 2.1, there are incompatibilities in problem definition and

data modeling, they are not directly comparable and hence not suitable as baseline.

All baseline methods are implemented by using scikit-learn [64] package.
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Figure 4.8: Illustration of data set splits and time windows

Baseline methods use the count of query tokens per year as their single feature.

Therefore, for an observation window of length 5, a sequence of 5 values consti-

tutes the input. This is formalized in Equation 4.5 in the form of a simple matrix.

TokenStreamt denotes a single array of all paper tokens belonging to year t. For

each training and test sample, corresponding BaselineY earlyStream is calculated.

BaselineY earlyStream(query, year) =

count(query, TokenStreamyear−4)

count(query, TokenStreamyear−3)

count(query, TokenStreamyear−2)

count(query, TokenStreamyear−1)

count(query, TokenStreamyear)


5×1

(4.5)

4.4.4 Keyword Trend Prediction Analysis

In the experiments, we evaluate the performance of the proposed models and the

baselines in terms of precision, recall, and F1-score. For F1-score, we follow macro

averaged setting as it gives equal weights to each class [65].

The methods in the result tables are grouped into three: the upper group contains the

baseline models, i.e., LinReg, SVR, LogReg, and SVC. The middle group contains

word embedding based models, Model 1, Model2, and Model 3, while the lower

group contains the paper embedding based models, Model 4, Model 5, and Model 6.
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For better readability, we colored the cells with top-3 results per venue, such that the

dark green cells indicate the best results, while the green and light green cells indicate,

respectively, the second best and third best results for a given data set. The NaN values

are observed for precision of baseline models. Cells with this value indicate that the

model has made no prediction for a label. The last column of the tables reports the

average metric results per method is reported in the column Venue Average.

In order to evaluate the trend prediction for a broader research area, we conducted

an additional analysis by combining the paper collections of all the venues. The last

column (named as All) in the tables include the result of this analysis.

In Table 4.2, the precision results are given. The results indicate that the baseline

models achieve the highest scores for 6 venues out of 10. However, vast number of

NaaN values for baseline models show that baseline models fail to learn some of the

labels. Word embedding models score the best precision results for two venues, which

is also the case for paper embedding based models. When the averaged precision

values are examined, paper embedding models (Model 6 and Model 5) score the

highest values followed by word embedding based model (Model 2 and Model 3).

For the precision under ALL venues, the gap between the prediction performance of

the proposed models and the baselines becomes more clear. In this analysis, it is

seen that the increase in the amount of evidence obtained in the observation window

positively affects the performance of the proposed neural models. The performance

results in all metrics increase compared to venue based results. In this analysis, Model

2 and Model 5 have the top two scores, respectively.

In Table 4.3, the recall results are reported. The baseline models and the word em-

bedding models achieve the highest score for four academic venues, while the paper

embedding based models achieve the highest scores for five of them. Logistic Regres-

sion performs better than the other baseline models, as it achieves the highest 3 scores

among 4 achieved by baseline models. When word embedding models are compared,

Model 1 scores the highest results for 3 venues. In case of paper embedding models,

Model 5 and Model 6 have a tie with two highest results. However, for average recall

values, the neural models perform better than the baseline models.
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Figure 4.9: Nemenyi post-hoc test result for Model F1 macro averaged score

For the recall obtained for ALL venues, as in the precision results, we see that the

proposed models provide much better performance than the baseline methods. In

recall analysis, again, Model 2 and Model 5 have the top two results.

In Table 4.4, we report the macro averaged F1-scores. As the results indicate, the

neural models achieve higher F1-scores compared to the baseline models. The base-

line models achieve the highest F1-score only for one venue (Logistic Regression for

VLDB). The paper embedding models perform better compared to word embedding

models. The paper embedding models record 6 top scores compared to 4 achieved by

the word embedding models.

For the F-1 scores under ALL venues, in parallel to the previous results, the proposed

models provide better trend prediction performance with a clear gap over the baseline

methods. In this analysis also, Model 2 and Model 5 give the best performance results.

4.4.5 Statistical Significance Analysis of F1-Score Results

As F1-score provides more insights about the results compared to recall and pre-

cision, we statistically analyze F1-scores. To this aim, we employe Iman-Davenport

test [66] and Nemenyi post-hoc test [67]. Iman-Davenport test is a non-parametric test
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to compare performance of multiple algorithms by their variance of ranks. The null

hypothesis of the test assumes that the algorithms do not differ. Nemenyi post-hoc

test is used to determine the statistically differing algorithms once the null hypothesis

of Iman-Davenport is rejected (p-value<0.05). In the graphical representation of Ne-

menyi post-hoc test, the algorithms are sorted by their ranks, and algorithms that do

not statistically differ are connected via vertical lines. The CD ruler in the graphical

representation indicates the critical difference. Two algorithms statistically differ if

the difference of their mean ranks exceeds the critical difference.

The Iman Davenport test returns p-value = 2.045e-12, which indicates that meth-

ods statistically differ. Figure 4.9 depicts Nemenyi post-hoc test results. As the figure

indicates, the neural models have higher average ranks compared to the baseline mod-

els. Model 5 statistically differs from all baseline models. Similarly, Model 2 also

statistically differs from all baseline models other than Logistic Regression.

4.4.6 Label-wise Keyword Trend Prediction Performance Analysis

Since predicting the topics having increasing trend has more value in practical use,

we further report and analyze the precision, recall, and F1-score values for the label

Increase. Table 4.5 reports the precision results. As the results indicate, the baseline

models fail to learn the Increase label for several data sets, as the corresponding result

is a NaN. Logistic Regression and SVC perform better than the other baseline models,

they fail to learn the Increase label only for one data set. The baseline models have the

highest precision score for six cases, while the neural models for eight cases. Among

the neural models, Model 2 and Model 4 achieve the highest results for two data sets.

Model 5 has the highest average recall value.

For the precision under ALL venues, the gap between the proposed models and the

baselines becomes even more clear emphasizing the advantage of the proposed mod-

els. As in the previous experiments onALL venues, the performance results in all met-

rics increase compared to venue based results. In this analysis, Model 6 and Model 2

have the top two results, respectively.

In Table 4.6, we report the recall results for label Increase. The results are analogous
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to those observed for the precision. Model 2 achieves the highest average recall result.

Among the neural models, Model 2 and Model 4 score two top results, however

Model 5 scores within the top three scores for each data set. Logistic Regression

performs better than the other baseline models. It achieves the highest recall score for

five data sets out of ten.

For the recall obtained for ALL venues, as in the precision results, we see that the

proposed models provide much higher recall performance than the baseline meth-

ods. In this analysis, differently from the precision results, Model 4 has the top rank,

whereas Model 5 and Model 6 both have the second-best recall performance for the

label Increase.

In Table 4.7, the macro averaged F1-scores for the Increase label are reported. As

seen in the table, the neural models ranks in top 3 for the most of the experiments

compared to the baseline models. Model 5 has the highest average F1-score, however

it does not achieve the highest score for any of the venues. Model 2 has the second

best average F1-score and achieves the highest scores for two of the venues.

For the F1-score obtained for ALL venues, as in the previous results, we see that the

proposed models show a clear advantage over the baseline methods. In this analysis,

Model 6 has the top rank, whereas Model 4 has the second-best F1-score performance

for the label Increase.

4.4.7 Statistical Significance Analysis of Label-wise Performance Results

We statistically analyze the F1-scores for the label Increase, as well. Iman Daveport

test gives p-value = 4.448e-11, which indicates that methods statistically differ. Fig-

ure4.10 depicts the Nemenyi post-hoc test results. As the result indicate, Model 2

has the highest mean average rank and statistically differ from Linear Regression and

SVR. Model 5 has the second best mean average rank and statistically differs from

Linear Regression and SVR. Logistic Regression, a baseline model, ranks better than

Model 1 and Model 3, however it does not statistically differ from the proposed neural

models.
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Figure 4.10: Nemenyi post-hoc test result for Label Increase F1 score

4.4.8 Validation Analysis for Paper Embedding

In order to validate the use of paper embedding approaches, we present an addition

analysis on a basic classification task by using the Paper Embedder LSTM, which is

used as a pre-trained LSTM in Model 4, doc2vec of Model 5 and the Specter of Model

6. The pre-training task uses all of the papers in the data collection. Each paper has

an associated field of study, represented as a one-hot vector for the top 100 field of

studies. The data set is divided into training, development and test, with the ratios

of 70%, 15%, and 15%, respectively. A multi-label classification task to predict the

field of the paper is applied. In the experiment, PaperEmbedderLSTM is trained on

all papers of the venues without any parameter learning.

As seen in Table 4.8, all paper embedding models provide satisfactory results for the

classification task, and the result of the Paper Embedder LSTM is comparable with

the other embedding models.
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Table 4.8: Field of Study Classification results on paper embeddings

Experiment Accuracy

PaperEmbedderLSTM 0.96937

doc2vec embeddings 0.96940

Specter embeddings 0.97056

Figure 4.11: Keyword plot for the ICDM

4.4.9 Qualitative Analysis

In order to present a qualitative analysis of the proposed method, we obtain the trend

predictions for a set of keywords for publications of the ICDM, VLDB and WWW

conferences by using Model 4. For all three conferences, the model is trained by the

publications in 2001 and 2013. The trend prediction is performed for the year 2010.

For each conference we sort the most frequent terms used and manually select the

top 50 relevant terms for the conference. Hence although there are overlaps, each

conference has its own set of keywords. The predictions are plotted against the real

trend values as given in Figure 4.11, Figure 4.12 and Figure 4.13 for ICDM, VLDB

and WWW, respectively.
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Table 4.9: Correctly predicted keywords for the ICDM

Decrease Steady Increase

computation bayes link

database complex model

frequency correlation multiple

mining dimensional prediction

rule filtering prior

speed gain scale

support relational social

variable vector

Figure 4.12: Keyword plot for the VLDB

In general, the keywords along the diagonal of the charts are those whose trends are

correctly predicted. In the figures, the region around the diagonal includes a high

number of keywords denoting the prediction success for all three venues.

For the ICDM conference, the correct prediction for the increase in the use of the term

scale is inline with the increasing efforts on big data. Similarly the correctly predicted
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Table 4.10: Correctly predicted keywords for the VLDB

Decrease Steady Increase

integration architecture graph

prototype community life

rule model processing

schema network single

tree platform synthetic

view retrieval

xml spatial

xquery sql

statistic

storage

trend for the term prediction in ICDM conference is in parallel with the increase in

analytics focused studies in the conference. An interesting observation is that that

there is a decrease in the trend of the keywords computational and speed, which are

correctly predicted. Although these keywords are closely related with the keyword

scale (scalability), the proposed method can determine the change in the language for

expressing similar concepts. Correctly predicted keywords for the venue ICDM are

given in Table 4.9.

For the VLDB conference, the trend prediction for the keywords synthetic appears to

be compatible with analytics focused studies and the increase in the use of synthetic

data sets. Although there is a slight mismatch between the predicted and the real trend

values, the keyword graph reflects the increase in the use of graph based modelling

and processing. On the other hand, the correctly predicted decrease for the terms

integration and schema shows the declining number of studies on such comparatively

classical and mature topics. Correctly predicted keywords of the venue are given in

Table 4.10.

The figure for the WWW conference shows a correct trend prediction for the term

scale, which is also a trending keyword for the ICDM conference. Additionally,

the predictions for the keywords social, network and community are inline with the
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Figure 4.13: Keyword plot for the WWW

Table 4.11: Correctly predicted keywords for the WWW

Decrease Steady Increase

browsing algorithm community

database collaborative entity

document communication model

html dynamic network

index feature platform

navigation graph scale

pagerank heterogeneous social

semantic machine time

web mobile

xml personalization

retrieve

scalable

www
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Table 4.12: Confusion matrices of the word embedding based models

ICDM predictions VLDB predictions WWW predictions

Label -1 0 1 -1 0 1 -1 0 1

Model1 -1 5 21 8 8 14 12 14 16 4

actual 0 2 27 5 5 19 10 9 17 8

labels 1 4 14 14 5 18 11 8 19 6

Model2 -1 9 13 12 13 9 12 10 16 8

actual 0 5 19 10 7 19 8 9 12 13

labels 1 5 11 17 8 18 8 7 8 18

Model3 -1 6 21 7 12 14 8 11 22 1

actual 0 4 23 7 8 20 6 8 21 5

labels 1 1 19 13 8 20 6 7 17 10

Table 4.13: Confusion matrices of the paper embedding based models

ICDM predictions VLDB predictions WWW predictions

Label -1 0 1 -1 0 1 -1 0 1

Model4 -1 14 10 10 10 16 8 15 14 5

actual 0 8 18 8 7 20 7 10 14 10

labels 1 4 15 14 8 17 9 6 21 7

Model5 -1 11 13 10 13 13 8 12 19 3

actual 0 6 20 8 10 17 7 8 17 9

labels 1 3 16 14 8 16 10 6 15 13

Model6 -1 7 20 7 9 21 4 9 22 3

actual 0 3 25 6 5 21 8 8 21 5

labels 1 0 20 13 4 26 4 7 17 10

increase in social network analysis related studies under WWW conference. Similar

to the analysis for VLDB, we observe a correctly predicted for the use of the terms

xml, semantic and index, which have a certain level of maturity. Correctly predicted

keywords are in Table 4.11.

The table 4.12 shows the confusion matrix of the word embedding based models
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whereas the table 4.13 shows for the paper embedding based models. For these re-

gression based models, the largest loss comes from false prediction of farthest labels

that are -1 (which represents label Decrease) and 1 (which represents label Increase).

It can be observed from the confusion matrices that these values are generally small.

Another observation is that the models can utilize each label for prediction but the

errors show they have a slight prediction tendency for 0 which is label Steady.

4.5 Discussion

In this chapter, we study the problem of predicting the trends in academic topics.

Main motivation of the study is to explore the use of deep neural architectures without

using hand-crafted features and additional information other than paper collections.

Instead of keyword frequency based approach, we keep track of the trends in terms of

change in the frequency distributions of keywords. Given a query keyword, we define

three labels, Increase, Decrease and Steady, denoting increase, decrease or no change

in the frequency distribution for the prediction time window. The proposed solution

scans the academic papers as a token sequence per year. We propose a family of deep

neural architectures that process the sequence of tokens for each year in the obser-

vation window. Due to this sequence based nature of the problem, LSTM module

has a core position in the proposed architectures, however it is combined with other

modules in a novel setting. In all the proposed models, generating representation/em-

bedding for year based summary of the paper collections and observation window

based summary of the collections have a crucial role. We can group the proposed ar-

chitectures in two, word embedding based and paper embedding based models. In the

first one, the proposed architectures differ from each other as to how these summaries

are constructed. For the second group, we explore the use of three different document

embedding approaches.

For the experiments, we use Microsoft Academic Network data set and conduct anal-

ysis for top keywords (in terms of frequency) extracted for ten computer science re-

lated venues. We can summarize the prominent observations from the experiments as

follows:
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• For the average of all the venues, paper embedding based models (Model 4,

5, and 6) tend to give the highest performance especially in terms of macro

averaged F1-score.

• In general, paper embedding based models (Model 4, 5, and 6) perform better

than the word embedding based models (Model 1, 2, and 3).

• When Model 1 and Model 2 are compared, it is seen that the generating sum-

mary representation of the paper collections for the observation period im-

proves the trend prediction performance considerably.

• When we compare similarly structured models, Model 2 and Model 3, it is

observed that applying CNN did not bring an advantage to generate year based

summary of the paper collections.

• Among the baseline methods, logistic regression gives higher prediction accu-

racy especially in venues AAAI, CIKM and VLDB. Although simple baseline

models tend to perform good in some venues, the average results of all venues

show that they fail to generate any prediction for some of the labels, as can be

seen as NaN in the results such as in Table 4.4.

• When trend prediction is performed by combining the paper collections of all

the venues used in the experiments, the gap between the prediction performance

of the proposed neural models and the baselines becomes more clear in favor

of the proposed models. Under higher volume of paper collections and more

amount of evidence, Model 2 provides the best scores. This gives a hint that

word embedding based representations become more effective compared to pa-

per embeddings as the size of the data collection increases. On the other hand,

for prediction of Increase label, Model 6 gives the best performance in terms

of precision and F1-score.

As the future work, one possible research direction is to work with text processing and

segmentation models. These can help performing queries beyond single keyword.

Neural model architectures can be further extended with attention techniques and

experimented upon.
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CHAPTER 5

CONCLUSION

Scientific research and academic collaboration venues fosters interaction between di-

verse fields and technique exchanges. Topics of the works presented evolve accord-

ingly and prediction techniques continue to be valuable tools for participants in all

levels.

In this dissertation, two complementary problems are chosen to study topic prediction

both at individual level and community level. At the individual level we explored the

area of information flow and modeled our problem on the receiving end for an author

to predict next topic adoption to explore. We complement that study with exploring

topic trend prediction for select venues or multiple venues as a whole.

First, we have examined the received influence with the concept influencee score

and constructed our hypothesis on received influence for a topic will effect the topic

adoption decision. Inspired by the work in [29], proposed influencee score calculation

addresses the efficiency by handling the social stream in backwards. This feature is

tested on the framework presented in [11] and Arnet Miner data is used to drive

these experiments. Our proposed feature boosts the outcome when combined with

the features present in [29]. Both the prediction and recall value benefited from the

new feature where recall values enjoyed the effect most.

Second, predicting the trends in academic topics problem is studied. Our main moti-

vation was to utilize deep learning architectures on scientific publication data without

the need of hand-crafted features. For this purpose, Microsoft Academic Graph data

is used and experiments are conducted on ten computer science venue data that is

basically paper title and abstracts. With this sequence data at hand, deep learning
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models utilized LSTM and convolution modules in various arrangements. Proposed

solutions can be grouped into 2 groups such as handling the data in keyword level via

word embedding vectors or paper level via document embedding vectors. In order to

baseline every experiment, only GloVe is used as the word embedding solution with-

out any further tuning during model learning. Document level proposed model is also

challenged against the Specter [31] and Doc2vec [30] implementations.

We have various observations on our experimental results for topic trend prediction

problem. In general and when averaged on the venue performances, paper embed-

ding based models (Model 4, 5, and 6) performed better than the word embedding

based models (Model 1, 2, and 3). When Model 1 and 2 compared, introduction

of yearly summaries improved the model performance. When comparing the use of

Convolutional Neural Network at the initial data handling levels between Model 2

and Model 3, no discriminative performance benefit observed. Although baseline

models can show higher performances in some venues, they can not express some

labels at all for other venues and averaged results fall behind. When the trend predic-

tion tested against with bigger dataset as all venues combined, our proposed neural

models achieve better results than baseline models when compared to single venue

experiments. Model 2 achieved best recall and F1-score results for venue averages

and in the last all venues combined experiment as can be seen in Table 4.3 and Table

4.4.

Some open problems that worth further investigation can be listed as follows:

• Introducing topic adoption features that incorporates venue information in sci-

entific collaboration networks.

• Topic popularity prediction can be extended with text processing and segmen-

tation models.

• Efficiency of different word vector representations can be explored.

• Attention based deep learning models can be explored to introduce new model

architectures

• Graph based algorithms can be studied and benchmarked against deep learning

models.
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• Effect of citation information inclusion or other academic social network prop-

erties can be explored.
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