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ABSTRACT

UTILIZATION OF EVENT BASED CAMERAS FOR VIDEO FRAME
INTERPOLATION

Kılıç, Onur Selim

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Aydın Alatan

August 2022, 71 pages

Video Frame Interpolation (VFI) aims to synthesize several frames in the middle of

two adjacent original video frames. State-of-the-art frame interpolation techniques

create intermediate frames by considering the objects’ motions within the frames.

However, these approaches adopt a first-order approximation that fails without infor-

mation between the keyframes. Event cameras are new sensors that provide additional

information in the dead time between frames. They measure per-pixel brightness

changes asynchronously with high temporal resolution and low latency. The algo-

rithms that use both the event-based information and the original frames overcome

the problem of first-order approximation. However, they still have issues related to

ghosting and the regions with insufficient events. This thesis aims to utilize visual

transformers efficiently to combine event-based information and RGB frames to cre-

ate better quality intermediate frames. The results show that the proposed video frame

interpolation technique surpasses the state-of-the-art methods.

Keywords: Event Based Cameras, Video Frame Interpolation

v



ÖZ

VİDEO ARADEĞERLEME İÇİN OLAY TABANLI KAMERALARIN
KULLANIMI

Kılıç, Onur Selim

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Ağustos 2022 , 71 sayfa

Video Karesi Aradeğerlendirmesi (VKA), orijinal videonun iki ardışık karesinin ara-

sında kareler sentezlemeyi amaçlar. Modern kare aradeğerlendirme teknikleri, nesne-

lerin hareketlerini dikkate alarak ara çerçeveler oluşturur. Ancak, bu yaklaşımlar, ana

kareler arasında bilgi olmadan başarısız olan birinci dereceden bir yaklaşımı benim-

ser. Olay temelli kameralar, kareler arasındaki ölü zamanda ek bilgi sağlayan yeni

sensörlerdir. Yüksek zamansal çözünürlük ve düşük gecikme ile piksel başına par-

laklık değişikliklerini eşzamansız olarak ölçerler. Hem olay temelli bilgiyi hem de

orijinal çerçeveleri kullanan algoritmalar, birinci dereceden yaklaşım probleminin üs-

tesinden gelir fakat gölgelenme ve olayların yetersiz olduğu bölgelerle ilgili sorunları

vardır. Bu tez, kaliteli ara çerçeveler oluşturmak için olay temelli bilgileri ve standart

görüntüleri görsel dönüştürücüleri ile birleştirmeyi amaçlamaktadır. Sonuçlar, ortaya

konulmuş olan tekniğin en güncel teknikleri geçtiğini göstermektedir.

Anahtar Kelimeler: Olay Temelli Kameralar, Video Kare Enterpolasyonu
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A graduate student at Caltech, Misha Mahowald, started to work with Prof. Carver

Mead in 1986 which was the first work to combine biological and engineering per-

spectives together on the stereo problem. In 1991, an image of a cat on the cover of a

popular science journal[2], obtained by the novel "Silicon Retina" showed the world

the exciting sight of neuromorphic engineering. Many researchers worldwide are still

trying to understand how the brain works and to build one on a computer chip.

Computers today consume much too much energy. They are not sustainable plat-

forms for the sophisticated artificial intelligence (AI) applications that are becoming

more popular in our lives. Until 2012, processing power consumption doubled ev-

ery twenty-four months; this has lately been reduced to every two months, which

is shown in Figure 1.1a. As shown in Figure 1.1b, a combination of smart archi-

tecture and software-hardware co-design has produced remarkable advancements. At

the research and development stage, even significant performance improvements have

been achieved, and it is expected that we can accomplish much more. Unfortunately,

traditional computer technologies will be unable to meet the demand in the near fu-

ture. This demand is particularly noticeable when the expensive cost of training for

the most complicated deep learning models is considered. Figure 1.1c shows the in-

creasing demand over the years. Alternative techniques are required. Fortunately, the

situation can be improved by drawing inspiration from biology, which takes a whole

different approach to memory and processing, storing information in a completely

different way or functioning directly on signals, and utilizing significant parallelism.
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(a) The four-decade growth in computing power re-

quirement.

(b) AI hardware efficiency over the years.

(c) Costs of training AI models.

Figure 1.1: Computational and cost requirements over the last few years [55].

Event cameras (event cameras and event-based cameras are used interchangeably)

are a type of sensor that tries to emulate the functioning of biological retinas, such

as [48], [70], [10], and [86], which aim to solve classical as well as new computer

vision and robotic tasks. Event cameras can deliver new levels of performance and
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efficiency in a wide range of applications which attracted both the academia and the

industry. This result is due to the advantages that they offer to tackle problems that

are difficult with standard frame-based image sensors. With their advanced hardware,

event cameras are very promising in problems such as high-speed motion estimation

[22], [26] or high dynamic range (HDR) imaging [75].

Event cameras are visual sensors that simply only record visual appearance changes in

the scene, in contrast to their conventional counterparts, which capture light radiance

at every point in the scene. See Figure 1.2 below.

Figure 1.2: Illustration of light capturing mechanism of event-based cameras [29].

Event cameras change the way in acquiring visual information. This change is due

to the fact that they do not use a clock that determines the instances in which the

camera takes an image. Instead, they work asynchronously to capture the light in

the changing areas of the scene. With their high temporal resolution, low latency (in

the order of microseconds), very high dynamic range (140dB vs. 60dB of standard

cameras), and low power consumption, event cameras are very useful in robotics and

wearable applications under challenging scenarios.

The main areas in which event cameras have advantages over other cameras include

real-time interaction systems, robotics, and wearable devices [20]in which Uncon-

trolled lightning conditions, latency, and power [50] are essential. Additionally, event

3



cameras are used for object tracking [21],[30], surveillance [49], monitoring, and

gesture recognition [64], [43], [3].

Event cameras are also used for depth estimation [79], [72], structured light 3D scan-

ning [9], [100], HDR image reconstruction [75], [18], [39] and Simultaneous Local-

ization and Mapping (SLAM) [40], [73], [92]. Latest research has shown that event

cameras can also be used for image deblurring [66] or star tracking [16], [15]. As

event cameras become more available for public use, the applications of event-based

cameras are becoming diverse.

As a different and exciting application, capturing high-resolution videos with high

frame rates often requires the use of professional high-speed cameras, which are out

of reach for most regular users. Modern mobile device manufacturers have attempted

to include more affordable sensors with comparable functionality into their systems,

but they are still limited by the enormous memory needs and high power consumption

associated with these sensors.

Video Frame Interpolation (VFI) solves this aforementioned problem by transforming

moderate frame rate sequences into high frame rate videos in post-processing. How-

ever, using only keyframes to construct intermediate frames is a suboptimal solution,

as the objects can move faster than the frame rate of the camera and cause motion blur

or ghosting artifacts. Event-based cameras are not as expensive as the high frame rate

cameras that are inaccessible to general users, and they provide valuable information

in between the deadtime between keyframes.

Our motivation is to use both the data from the event camera and the frames from a

standard low FPS imaging system to create high frame rate video sequences.

1.2 Scope of the Thesis

We first analyze some of the state-of-the-art video frame interpolation algorithms.

Some of these algorithms use only frames, and some use both frames and events. By

the results of these analyses, we present our method that will use both the events and

the frames effectively, namely Event Attention Video Frame Interpolation. Finally,

4



we present the conducted experiments and the comparison of our method to the state-

of-the-art video frame interpolation algorithms.

1.3 Outline of the Thesis

An overview of the event-based cameras and the preliminary experiments is presented

in Chapter 2. Chapter 3 and Chapter 4 explains the video frame interpolation tech-

niques that are using only frames and frames together with events, respectively. In

Chapter 5, the proposed method and conducted experiments are explained in detail.

Finally, Chapter 6 concludes this thesis with a summary and future works.
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CHAPTER 2

EVENT-BASED CAMERAS: FUNDAMENTALS AND PRELIMINARY

EXPERIMENTS

This chapter presents an overview of event-based cameras. Section 2.1 introduces the

operations of event-based cameras. Section 2.2 introduces the current methods that

are utilized to represent events. Section 2.3 explains the advantages and disadvan-

tages of event-based cameras. Finally, Section 2.5 presents the existing datasets and

simulators that are available for event-based vision in the literature.

2.1 Operation of Event-based Cameras

Event cameras, such as Dynamic Vision Sensor (DVS) [48], [44], [46], [47], [45],

respond to illumination changes in the scene asynchronously and separately for every

pixel, in contrast to conventional cameras, which capture entire pictures at a pace

determined by an external clock as in Figure 1.2 (e.g. 30 fps). Figure 2.1a shows

the basic circuit diagram of a general event-based camera and, Figure 2.1b shows

the relation between the log intensity and event generation model of an event-based

camera.

Since each event represents a change in the illumination (i.e. log intensity) of a preset

magnitude at a pixel at a particular time, the output of an event camera is a config-

urable data-rate series of digital "events" or "spikes". The spiking behavior of the

biological visual systems served as the inspiration for this mapping.

Every time a pixel delivers a signal, it learns the log intensity and constantly waits

for a deviation from this learned value of a suitable magnitude. The camera transmits

7



(a) General circuit diagram for an event-based camera.

(b) Generation of events from the illumination changes.

Figure 2.1: General hardware structure of DAVIS event-based camera [25].

an event, which is sent from the chip by the x, y position, the time t, and the 1-bit

polarity p of the change (i.e., illumination increase ("ON") or decrease ("OFF")), once

the variation surpasses a threshold.

Event cameras are data-driven sensors; the output they provide is based on how much

the scene is moving or changing in brightness. More events are produced per sec-

ond the quicker the motion. These sensors respond rapidly to visual information

since events are timestamped with microsecond precision and communicated with

sub-millisecond delay.

The incident light at a pixel results from surface reflectance and scene illumination.

If the amount of light is roughly constant, a change in log intensity indicates a shift

in reflectance. The displacement of objects within the field of sight is mostly the

8



reason for these variations in reflectance. The DVS illumination change events have

an invariance to scene lighting built into them due to this reason [48].

2.2 Representations of Event Data

There are several techniques of representing the events that are captured through an

event-based camera. Although there are many representation techniques, most of the

popular techniques use individual events, event count, and voxel grids.

Events are mostly obtained in the form of (xk, tk, pk), where x is the pixel location

of the event, p is the polarity, and t is the time stamp. Event-by-event processing

techniques make use of single events, including probabilistic filters, [26, 39, 40], and

spiking neural networks (SNNs) [78, 31]. Either the filter or SNN has extra infor-

mation that is combined asynchronously with the received event to generate an out-

put. This extra data could be obtained via more knowledge or built up from previous

events. Following are a few instances that use the individual events approach [26],

[39], [81], [95], and [68].

Event count representation creates an output by processing all of the events in a

spatio-temporal region (E .
= {ek}Ne

k=1). This encoding preserves the exact timing

and polarity information. In order to meet the presumptions of the algorithm (such

as constant movement speed for the packet), which change depending on the job, se-

lecting the proper packet size Ne is essential. The approaches in [79], [72], [76], and

[58] are some typical examples.

Each voxel in a voxel grid, which is a space-time (3D) histogram of events, corre-

sponds to a particular pixel and time period. By not collapsing the events onto a 2D

grid, this representation keeps the temporal features of the events more effectively.

If the polarity is utilized, the voxel grid is an intuitive discretization of a scalar field

formed on the picture plane, after the exclusion of events denoted by zero polarity

(polarity p(x, y, t) or brightness variation L(x, y, t)/t). The polarity of each event

might be distributed over its nearest voxels [75], [101], [74] or collected on a single

voxel [7], [93]. The former (interpolated voxel grid) offers sub-voxel precision while

both approaches quantize event timestamps.
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Figure 2.2: The visualization of voxel grid representation for 5 consecutive frames

with. The time between each consecutive frames is divided into 64 grids for this

example.

Figure 2.3: The visualization of voxel grid representation for 5 consecutive frames

with. The time between each consecutive frames is divided into 6 grids for this ex-

ample.
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Table 2.1: A comparison of several event representation techniques for event-based

camera data utilized in machine learning [5].

Event Representation Dimensions Description

Event Frame HxW Image of event polarities

Distance Transform HxW Image of spatial distance to active pixel

Graph-based UxV Graph of edges and vertices

Event Count 2xHxW Image of event counts

Surface of Active Events (SAE) 2xHxW Image of most recent timestamp

Voxel Grid BxHxW Voxel grid summing event polarities

Averaged Time Surfaces 2xHxW Image of average timestamp for window

Inceptive Time Surfaces 3xHxW Image of filtered timestamps & event count

Event Spike Tensor (EST) 2xBxHxW 4D grid of convolutions

TORE Volumes 2xKxHxW 4D grid of last K timestamps

Table 2.1 various numerous published methodologies and demonstrates the rapid in-

crease in representation complexity, where H and W are input height and width.

Most of these algorithms are designed for high-level tasks, including object identifi-

cation, image reconstruction, and optical flow. Large representations are commonly

used in certain scenarios, where H and W are the sensor height and widths. On the

other hand, smaller spatial patches of events are employed in low-level or event-level

applications, such as denoising or feature tracking. H and W in this example denote

the height and width of the patches centered around the event of interest, which are

substantially smaller than the sensor height/width.

In Table 2.1, "Event accumulation" or "event counting" segregate events within a tem-

poral frame, and events are counted for each polarity type to generate two pictures of

size H ×W . "Event frames" or "polarity summation," which computes the polarity

of events inside a specific time window, is a similar method. Graph-based approaches

convert events inside a temporal window into a network of nodes called U × V . This

compact representation provides for a decrease in CPU and memory resources while

maintaining the sparse nature of event cameras. Time surfaces on the Surface of Ac-

tive Events (SAE) [9] keep the timing for the most recent event at each pixel point

(for each polarity). This approach is not appropriate for slow-motion sequences or
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low-light imaging because event timing becomes imprecise or is interrupted by noise.

The fact that a single edge creates many events can be used to boost robustness. An

averaged time surface [85], in which each pixel value indicates the average event time

of events created within a temporal window, decreases the influence of noise appear-

ing in isolation. Inceptive time surface [4] is a time surface and polarity summation

hybrid technique. The Event Spike Tensor (EST) [28] is a polarity-separated version

of the voxel grid in [101], allowing any function to be performed per voxel rather than

only summing polarity information. TORE volumes are a dense event representation

that encodes a history of recent events.

In this thesis, we mainly utilized the interpolated voxel grids for two main reasons.

The first reason is that the event voxel representation is usable in deep neural net-

works as they are 3 dimensional matrices. Secondly, they store spatial and temporal

information quite effectively, assuming a sufficient number of grids. In Figure 2.2,

an example voxel grid is presented. In this figure, all of the events are separated to

64 grids by their time timestamps. Similarly, Figure 2.3 shows an example voxel grid

representation where the grid size is selected as 6. It should be noted that both of

these selections are only made for visualization purposes.

2.3 Pros and Cons of Event-based Cameras

Event cameras are superior to standard cameras for several reasons. First, pixels of

event cameras work independently, and waiting for a specific exposure time to take

the frame is unnecessary. In other words, every pixel sends the information as soon

as it receives a change. This property makes the latency of the event-based cameras

very low; i.e. every pixel can send new information within the order of milliseconds.

Secondly, event-based cameras have a high dynamic range compared to normal ones.

Generally, good quality standard cameras have 60 dB dynamic range, whereas most

of event-based cameras exceed 120 dB dynamic range. The reason is that the pho-

toreceptors of event-based cameras work on a logarithmic scale, and there is not a

single exposure time for all of the pixels like in standard cameras.

The third reason is that event cameras work with much lower power than standard
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cameras. As event cameras only detect changes in the scene, energy is only consumed

on the changing pixels. Most event cameras work in the range of 10 mW level, and

some other prototype event cameras even work with less than ten µW [3], [17], [83],

[96].

Additional to these advantages, event-based cameras work with microsecond resolu-

tion. In other words, events can be detected and stamped, theoretically, with a 1-MHz

clock. Given the requirement of the controllers for rapid response in autonomous

vehicles during emergency driving scenarios, this feature is hugely helpful in au-

tonomous vehicles.

Finally, the event-based cameras are almost unaffected by the motion blur or ghosting

effect. The motion blur issue arises when the motion of moving objects exceeds the

sampling frequency of the frame-based camera, causing the perception system to fail.

An event-based neuromorphic vision sensor can accurately detect dynamic motion

with no motion blur.

On the other hand, event-based cameras do not provide visual information in the

scene, since they only signal the changes as binary information. Moreover, if too

many events are created in the scene, the system might not be able to deliver this

information through its pipeline. Since the technology is new, typical imaging res-

olutions are relatively low, while the prices of event cameras can not compete with

CMOS or CCD counterparts.

In order to, investigate these advantages of event cameras better, we have conducted

some experiments that put forth these advantages. For that purpose, we have com-

pleted two main tests with an event camera (Inivation Davis346 Color) with the help

of some objects, a drone that can fly indoors, a drone that can fly outdoors at high

speeds, and a high-quality surveillance camera (Sony IMX385-HiSilicon 3519Av100)

to compete against the event-based camera. Figure 2.4, shows the cameras that are

utilized in these tests.
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(a) An image of Sony IMX385.
(b) An image of Inivation DAVIS346.

Figure 2.4: Cameras used in the preliminary experiments.

2.4 Preliminary Experiments by an Event-based Camera

Since event-based cameras are very rare, in order to present our experiences, some

simulations using such cameras will be given. The aim is to compare a standard

event-based camera with a conventional RGB camera with object detection capabil-

ity. For this purpose, the conventional RGB camera is utilized with a popular fore-

ground/background detector, namely Mixture of Gaussians (MoG) [77].

2.4.1 Tests With Small Fast-Moving Objects

In order to understand the effect of the small-sized, fast-moving objects in standard

and event-based cameras, we conducted tests with different contrast with respect to

the background. During these tests, we used several different colored balls that are

difficult to notice on a white background. In order to make the situation harder, the

balls are thrown at high speeds in front of both cameras. We placed the event-based

and state-of-the-art surveillance cameras toward the white wall and threw the balls

in the order from white to dark. Figure 2.5a shows the balls in the order (left to

right) they are thrown. Since the balls are moving quite fast, it is almost impossi-

ble for someone to detect them in the RGB videos. Therefore comparing the two

cameras qualitatively, we have used one of the most popular background subtraction

algorithms, namely Gaussian Mixture-based Background/Foreground Segmentation
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Algorithm (MoG2) [87], [71]. Figure 2.5b shows the output of MoG2 algorithm for

Figure 2.5a. Figure 2.5c shows the associated output of the event based camera.

It should be noted that the output of the event-based cameras is rendered at 30FPS for

visualization purposes. In other words, all the events for one-thirtieth of a second are

collected and displayed them in a 2-dimensional image for interpretation. It should be

noted this approach is performed for the events to be interpretable, as the event-based

cameras provide events with microsecond precision.

(a) RGB Image. (b) MoG2 algorithm output.

(c) Event-based camera output of Sony IMX385.

Figure 2.5: Test set up for small fast-moving objects.

Due to the similar color of the balls with respect to the background, it is challenging

to detect them, especially when they are moving at high speeds. The ghosting effect in

RGB images makes it almost impossible for the surveillance camera to detect a decent

visual capture of the balls. On the other hand, low-latency event-based cameras do not
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suffer from the ghosting effect much and create a clearer picture of moving objects.

Figure 2.6b shows the output of the MoG2 algorithm that has used the RGB data

taken from the surveillance camera, whereas Figure 2.6a shows the output of the

event-based camera. One can easily see that the event-based camera performs much

better than the surveillance camera with this setup.

(a) Event-based camera output.

(b) MoG2 algorithm output.

Figure 2.6: An typical output for fast-small moving object scenario by 2.6a event-

based camera and 2.6b RGB camera with MoG2 algorithm.

On the other hand, to understand the effect of moving larger objects in the scene,

we threw more oversized objects to compare the outputs of the two cameras. As
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the object sizes get larger, they become more visible to both cameras. However, the

RGB camera is still affected by the ghosting effect. Figure 2.7a demonstrates the

objects that are used in this test. We threw not only the tiny balls that were used in the

previous test but also a larger sphere-shaped object. Figure 2.7b and Figure 2.7c show

the output of the MoG2 algorithm fed with the image from the surveillance camera

and the output of the event-based camera, respectively. The test shows that, as the

object size gets larger, the RGB images that the surveillance camera grabs perform

better. However, the RGB camera can still detect the object in only two frames, and

the captured object silhouette is much worse than the one captured by the event-based

camera.

(a) The illustration of the objects that are thrown in this test.

(b) MoG2 algorithm output. (c) Event-based camera output.

Figure 2.7: An typical output for fast-larger moving object scenario by 2.7c event-

based camera and 2.7b RGB camera with MoG2 algorithm.
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2.4.2 Tests with Flying Drones

With the fast advancement of unmanned vehicles and the technology needed to build

them, the number of drones developed for military, commercial, or recreational rea-

sons grows exponentially with each passing day. When cameras or weaponry are

added to the drones, this arrangement offers serious privacy and security risks. As a

result, recognizing the position and characteristics of drones, such as speed and di-

rection, before an unpleasant event has become critical [41]. Addressing this issue,

we have also wanted to observe the performance of event-based cameras in drone

detection compared to a high-performance surveillance camera.

We have used two different drones that are developed for different purposes. One of

the drones (Diatone 2017 GT200S FPV Racing Drone) is mainly designed for outdoor

applications. This drone can reach speeds of 100 kilometers per hour and maneuver

quite rapidly. The other drone (Kingkong 90GT 90mm Brushless Mini FPV Racing

Drone), which is relatively smaller than the former one, is used mainly for indoor

applications and has better maneuvering ability. Still, both of the drones, when they

move close to the cameras, are considerably hard to detect, and they create a similar

scenario with the ball tests.

The main differences between the event-based and standard cameras are speed and

high dynamic range. The best way to better illustrate these differences is when trying

to catch a fast-moving object at night. For this purpose, in the first of our drone tests,

we arranged the lightning conditions to simulate night-time conditions and made the

drone pass very quickly in front of the cameras with the help of a professional drone

operator. Although the surveillance camera is one of the state-of-the-art cameras

to adjust its exposure, Figure 2.8a shows that the captured image of the drone is

poor. Figure 2.8b, which shows the output of the MoG2 algorithm, indicates that the

captured image of the drone is observed as a small line in the image, and it would be

almost impossible to interpret by any algorithm. Figure 2.8c displays the output of

the event-based camera. It is easily seen that the output of the event-based camera

creates a more clear picture of the indoor drone. The propellers can be distinguished

as different lines, and the drone can be easily separated from the background.
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(a) The captured RGB image.

(b) MoG2 algorithm output. (c) Event-based camera output.

Figure 2.8: A typical indoor drone test scenario.

Figure 2.9 shows the output images related to one of the outdoor drone tests. As it can

be observed from the images, as the drones pass away from the cameras, the drones

become more visible to both of the cameras. Figure 2.9a and Figure 2.9b display the

RGB and MoG2 output results. The drone can be separated from its surroundings

quickly in these images. Figure 2.9c illustrates the output of the event-based camera.

Similar to RGB and MoG2 results, the drone is clearly visible. In fact, the main

difference between the surveillance camera and the event-based camera is evident in

the videos of these tests. Within the videos, the movement of the drones is much more

traceable for event-based cameras if the events are rendered at a slower frame rate.
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(a) The captured RGB image.

(b) MoG2 algorithm output. (c) Event-based camera output.

Figure 2.9: A typical outdoor drone test scenario.

2.4.3 Discussion

Neuromorphic systems and event-based cameras are quite promising for any vision-

based real-life problem.

The performed tests to understand the advantages of event-based cameras over stan-

dard cameras in a better way indicate that the contrast of the object with respect to the

background, the object size, and their speed are three critical factors when capturing a

frame and detecting an object. Comparing the results of the indoor and outdoor drone
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tests, we have seen that these two factors are even more critical when challenging

lighting conditions. The smaller drone used for indoor tests was unrecognizable in

the standard camera due to its speed and size, as it was only observable in a small

number of frames. However, for the event-based camera, the drone has resulted in

a significant number of events, and the silhouette of the drone was much more vis-

ible compared to the standard surveillance camera. Similarly, the ball tests for the

white wall-white ball test have shown that for better interpretation in time, the frame

rate of the visual RGB camera must be increased with high quality. Therefore, we

have decided to examine the video frame interpolation (VFI) by using both the event

information and the images obtained from a standard camera.

It should be reminded event-based cameras have some disadvantages as well as good

properties. In other words, the event-based camera can not provide the color of the

objects that appear in the scene. This deficiency makes the problem of constructing

original frames from only the events an ill-posed problem. Hence, a novel approach

should be required to intelligently fuse RGB camera outputs with that of event cam-

eras.

2.5 Event-based Datasets and Event Camera Simulators

The number of event-based vision simulators and datasets is rapidly increasing. They

may be broadly divided into three groups: ones that focus on motion estimation

or image reconstruction (regression) tasks, those that target recognition (classifica-

tion) tasks, and those that target end-to-end human-labeled data, such as driving [33].

Datasets for object tracking, segmentation, optical flow, SLAM, and other techniques

are included in the first group. Datasets for recognizing objects and actions make up

the second group.

There are three datasets for optical flow: [100], [80], and [8]. Related to the difficulty

of obtaining ground-truth optical flow, [80] considers only flow in solely rotational

motion captured with an IMU, and hence the dataset lacks flow due to translational

(parallax) motion. [100], [8] datasets give optical flow as the motion field created

on the picture plane by camera motion and scenario depth (measured with a range
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sensor, such as an RGB-D camera, a stereo pair, or a LiDAR). Naturally, noise and

errors in the alignment and calibration of the several associated sensors might affect

ground truth optical flow.

(a) An example of a fire image in BS-ERGB

dataset.

(b) An example of a watermelon image in BS-

ERGB dataset.

(c) An example of an aquarium in BS-ERGB dataset.

Figure 2.10: Example images of BS-ERGB dataset. [89]

The datasets provided in [94], [59], [8], and [23] are mostly utilized pose estimation

and SLAM. The most widely used dataset is presented in [59], and it has been utilized

to evaluate visual odometry and visual-inertial odometry methods [92], [76], [58], etc.
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This dataset is also often used to test edge detectors and feature trackers.

The recognition datasets are generally smaller in size with respect to standard com-

puter vision datasets. They are made up of deck cards (4 classes), faces (7 classes),

handwritten numerals (36 classes), movements (rocks, papers, scissors) in dynamic

settings, vehicles, and other objects. Using saccade-like movements, neuromorphic,

versions of prominent frame-based computer vision datasets such as MNIST and Cal-

tech101 have been produced. In real-world circumstances, newer datasets [3], [85],

[57], are collected (not generated from frame-based data). These datasets have been

used to test event-based recognition algorithms.

On the other hand, the DVS emulators in [38], [27], and [59] are based on the operat-

ing principle of an ideal DVS pixel. The simulator creates the necessary sequence of

events, brightness images, and depth maps given a virtual 3D scene and the trajectory

of a moving DAVIS inside it. Since no extensive analysis of the noise and dynamic

impacts of existing event cameras has been conducted, the noise models employed

are currently simple and crude.

During the tests, we have used datasets with event-based information obtained from

an event-based camera rather than utilizing simulators to generate events. This is be-

cause the events generated by simulators do not necessarily generate proper events

with crucial information about the scene dynamics. Apart from the dataset that

we have collected by the drones and the balls, we have used BS-ERGB [89], HS-

ERGB[90] datasets. Figure 2.10 shows some examples of BS-ERGB dataset.

23



24



CHAPTER 3

VIDEO FRAME INTERPOLATION USING DEEP LEARNING METHODS

3.1 Introduction

High-resolution videos with high frame rates often demand the use of professional

high-speed cameras, which are unaffordable to consumers. Modern mobile device

manufacturers have attempted to include more cheap sensors with similar functional-

ity into their systems, but they still suffer from the massive memory needs and power

dissipation associated with these sensors.

Video Frame Interpolation (VFI) overcomes this issue by transforming videos with

moderate frame rates to high frame rate videos in post-processing. In principle, any

number of additional frames can be created between two key-frames in the input

video. Figure 3.1 shows an example of video frame interpolation to a sequence of

rider images.

Figure 3.1: An example to video frame interpolation [29].
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This chapter presents an overview of the video frame interpolation methods based on

deep learning techniques. These techniques utilize only keyframes to generate inter-

mediate frames. Traditional video frame interpolation techniques are introduced in

Section 3.3. Section 3.4 gives an outline of learning-based video frame interpolation

methods, where section 3.4.1 represents the algorithms that use one camera and multi-

ple key-frames and, Section 3.4.2 introduces algorithms that utilize multiple cameras.

Finally, Section 3.5 presents the state of the video frame interpolation algorithm that

we have used to develop our method.

3.2 Video Frame Interpolation

In applications such as consumer electronics, surveillance, video recovery, and video

post-processing, video frame interpolation is a crucial field of computer vision re-

search. By generating intermediate frames between successive input frames, VFI

seeks to raise the frame rate of a video sequence. This goal acquires exceptionally

smooth, precise motion to make animation fluent enough and minimize display mo-

tion blur. Large-scale diversified video footage may be used to uncover information

using advanced deep learning algorithms. These methods reveal intermediate motion

information and provide fresh possibilities for advancing video interpolation technol-

ogy.

3.2.1 Video Frame Interpolation Metrics

The main VFI metrics that are present in the literature are Peak Signal to Noise Ratio

(PSNR) and Structural Similarity Index Measure (SSIM).

3.2.1.1 Peak Signal to Noise Ratio

Peak signal-to-noise ratio (PSNR) is an engineering term describing the ratio of a

signal’s greatest strength to the power of corrupting noise which degrades the repre-

sentational accuracy of the signal. The mean squared error provides the most precise

definition of PSNR (MSE). Given a noisy approximate K of a noise-free m by n

26



polychromatic picture I , MSE is defined with 3.1.

MSE =
1

m× n× C

C−1∑
k=0

m−1∑
i=0

n−1∑
j=0

[I(k, i, j)−K(k, i, j)]2 (3.1)

Using this definition of MSE, the PSNR can be defined in dB as 3.2.

PSNR = 10× log10(
MAX2

I

MSE
) (3.2)

PSNR = 20× log10(
MAXI√
MSE

) (3.3)

PSNR = 20× log10(MAXI)− 10× log10(MSE) (3.4)

In equations 3.2, 3.3 and 3.4, MAXI corresponds to the maximum possible value of

the image. Generally, 8 bits are used per pixel where MAXI becomes 255.

3.2.1.2 Structural Similarity Index Measure

The perceived quality of digital photos and videos may be predicted using the struc-

tural similarity index measure (SSIM). SSIM is a tool for calculating how similar two

photos are to one another. The SSIM index is a complete reference metric, meaning

that the initial uncompressed or distortion-free picture serves as the baseline for the

measurement or prediction of image quality.

The SSIM index is calculated on various windows of an image. The distance between

two windows with common sizes N ×N is expressed as equation 3.5.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.5)

where:

µx : the average of x
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µy : the average of y

σ2
x : the variance of x

σ2
y : the variance of y

σxy : the covariance of x and y

c1 and c2 : two variables to prevent division by 0

3.3 Traditional Video Frame Interpolation Techniques

Most methods for motion-compensated frame interpolation in the literature employ

block-wise processing, where all of the pixels in a block are presumptively moving

in the same direction. As a result, all processing operations, such as motion estima-

tion, motion compensation, and occlusion handling, are carried out block-by-block.

Since block size has uncertain effects on motion prediction, a frequent strategy is

to start with a large block size and gradually reduce it. There are several different

motion estimating techniques, including complete search, pattern-based search, and

candidate-based prediction.

Block-wise true predict-and-update type motion estimation methods and conventional

search type motion estimation are two categories into which the block-wise motion

estimation techniques in the literature can be categorized. The full search method

offers the best performance compared to all other traditional search-type motion esti-

mation techniques. Therefore, typical motion estimation algorithms aim to minimize

performance degradation while reducing computational complexity.

Accurate motion vector estimation is necessary to achieve acceptable visual quality at

the interpolated frames. Since this requirement is not feasible in real-world settings,

motion compensation algorithms often seek to mask the visual errors brought on by

inaccurate motion vectors.
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3.4 Learning Based Video Frame Interpolation Methods

Learning based VFI techniques can be categorized into two: The first category is

the Frame-Based Interpolation Methods which solely depend on images taken by one

camera that takes images at a fixed frame rate. The second category, Multi Camera

Interpolation Methods, uses multiple cameras with different temporal characteristics.

3.4.1 Frame-Based Interpolation Methods

The frame-based interpolation techniques that use training data can be divided into

two main classes, which are warping-based and kernel-based techniques.

3.4.1.1 Warping Based Methods

Warping based methods [60, 36, 99, 61, 69] construct intermediate frames between

two successive keyframes by combining optical flow estimates [34, 54, 88] and image

warping [35].

These approaches, in particular, calculate optical flow and warp the input keyframe(s)

to the desired frame under the assumptions of linear motion and brightness con-

stancy across frames, while using ideas such as contextual information [60], visibil-

ity maps [36], spatial transformer networks [99], forward warping [61], or dynamic

blending filters [69] to enhance the results. While the majority of these methods

assume linear motion, several recent studies consider quadratic [98] or cubic mo-

tion [14]. Although these approaches can handle non-linear movements, they are

still constrained by their order and cannot handle arbitrary motion. To some extent,

the motion models remain quite simple. Figure 3.2 shows an example of an optical

flow construction. The timings that are shown at the top of the images stand for the

particular algorithm’s [34] execution time, and they change according to the image

sizes.
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Figure 3.2: The optical flow constructed by [34].

3.4.1.2 Kernel Based Methods

Kernel based methods [62, 63] bypass the warping-based techniques’ explicit motion

estimate and warping steps. They represent VFI instead as local convolution over

the input keyframes, with the convolutional kernel calculated from the keyframes.

This method is more resistant to motion blur and variations in lighting. Alternatively,

phase-based methods [56] models VFI as a phase shift estimation issue, with a neural

network decoder explicitly estimating the intermediate frame’s phase decomposition.

However, while these approaches may theoretically simulate any motion, due to the

locality of the convolution kernels, they do not scale to significant movements in

practice. Figure 3.3 shows an example kernel based method architecture [62].

Figure 3.3: An example kernel based algorithm [62]

3.4.2 Multi-Camera Interpolation Methods

Multi-camera interpolation methods aim to solve the large motion problem by aggre-

gating inputs from many frame-based cameras with varying spatio-temporal trade-

offs. The authors of [1], for example, merged low-resolution video with high-resolution

still photos, whereas [65] fused a low-resolution high-frame-rate video with a high-
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resolution low-frame-rate video. Both systems are capable of recovering the miss-

ing visual information required to reconstruct accurate object movements, but at the

expense of a bigger form factor, higher power consumption, and a larger memory

footprint.

3.5 Video Frame Interpolation Transformer [84]

A quite promising kernel-based video frame interpolation technique, Video Frame

Interpolation Transformer [84] is an algorithm published by Zhihao Shi et al. This

method mainly utilizes vision transformers (Please see Appendix A for common ar-

chitectures of vision transformers).

In contrast to traditional Transformers [12, 24, 13], where the fundamental modules

are mostly derived from the original NLP models [91], the suggested VFIT has three

distinct architectures to create photo-realistic and temporally-coherent frames.

To start with, the original Transformer [91] is built on a self-attention layer that inter-

acts with the pixels globally. Due to the quadratic complexity of this global operation

in terms of the number of variables, simply applying it to video frame interpolation

results in enormously high memory and computing costs due to the high-dimensional

structure of videos.

Several approaches [13, 11] work around this issue by splitting the feature maps into

patches and using each patch as a new element in self-attention. This technique,

however, cannot explain fine-grained relationships between pixels inside each patch,

which are required for synthesizing realistic features. Furthermore, it may introduce

edge artifacts around patch boundaries.

Video frame interpolation, on the other hand, incorporates Swin’s [52] local attention

technique into VFIT to handle the complexity issue while keeping the capacity to

simulate long-range dependencies via its shift-window approach.

The Video Frame Interpolation Transformer illustrates how, with proper refinement

and adaption, the local attention mechanism originally intended for image identifica-

tion can effectively increase video interpolation performance with fewer parameters.
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Second, the original local attention mechanism [52] is only appropriate for image

input and cannot be simply applied to the video interpolation task that involves an

extra temporal dimension.

To overcome this issue, video frame interpolation generalizes the idea of local at-

tention to the spatial-temporal domain, resulting in the video-compatible Spatial-

Temporal Swin attention layer (STS).

However, when employing large window dimensions, this simple addition might

cause memory concerns. In order to make the model more memory efficient, video

frame interpolation created a space-time separable form of STS [52, 53] known as

Sep-STS [84] by factoring in the spatial-temporal self-attention.

3.5.1 Architecture for Video Frame Interpolation Transformer [84]

The network that is proposed by the Video Frame Interpolation Transformer [84] can

be divided into two for our purposes. The first part is the encoder-decoder structure

that is used to extract spatio-temporal information from the keyframes. This part in-

cludes Separable Spatial-Temporal Swin (SepSTS) attention layers and convolutional

and deconvolutional layers. The second layer takes the features generated by the first

layer and utilizes frame synthesis blocks (SynBlocks) to create intermediate frames.

The overall structure of the network is presented in Figure 3.4.
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Figure 3.4: Overview of the proposed Video Frame Interpolation Transformer [84].

As shown in Figure 3.4, VFIT takes four images as its input and gives an output image

corresponding to a middle image of these four images. The first critical operation that
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those images go through is the encoder structure. Rather than the 3D convolutional

layers, SepSTS blocks the fundamental part of the encoder block. These blocks are

designed to utilize attention algorithms to extract spatial and temporal information in

a memory-saving manner.
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Figure 3.5: Separable Spatial-Temporal Swin (SepSTS) attention layers by [84].

The first step of a SepSTS block is layer normalization (LN). Then, there is a spatial

and temporal multi-head self-attention blocks (Please see appendix A). Finally, the

input is residually connected to the output of MSA blocks. Afterward, the output is

given to another LN and a multi-layer perception (MLP) in a residual manner to obtain

the output of SepSTS. It should be emphasized that MSA blocks are built differently

from standard attention techniques in order to improve memory efficiency.

After the encoder, there are three deconvolutional layers that generate the feature

maps that will be used by the frame synthesis blocks (SynBlocks). These blocks are

the essential blocks in VFIT for our proposed method, and they are a multi-frame

extension to AdaCoF [42].

Given an input feature map F l ∈ RC×T×H×W , the SynBlock predicts a frame that is a

down-sampled version of the input by l times. To aggregate the information from the

source frames, SynBlocks estimates a collection of generalized deformable kernels

[97].

First F l is unbinded at the temporal dimension to get T separate feature maps for all

input frames, denoted as F l
{−(⌊T

2
⌋−1),··· ,⌈T

2
⌉}, and for each frame t, F l

t ∈ RC×H×W .

Then these are fed into three small convolutional CNN’s to obtain per-pixel de-

formable kernels. The output of these three convolutional CNN’s are kernel weights

W l
t ∈ RK×H×W , horizontal offsets αl

t ∈ RK×H×W , and vertical offsets βl
t ∈ RK×H×W ,

where K is the number of sampling locations of each kernel. With these parameters,

the output of the deformable convolution is constructed as 3.6.
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Ol
t(x, y) =

K∑
k=1

W l
t (k, x, y)I

l
t(x+ αl

t(k, x, y), y + βl
t(k, x, y)) (3.6)

In equation 3.6, adaptive weights W are selected to aggregate neighboring pixels

around (x, y), similar to [97].

Finally, the output at scale l is generated by blending Ol
t of all frames with learned

masks. First, the feature maps F l
{−(⌊T

2
⌋−1),··· ,⌈T

2
⌉} are concatenated at the channel di-

mension and send to a small 2D CNN to produce T blending masks Bl
{−(⌊T

2
⌋−1),··· ,⌈T

2
⌉}.

At the last layer of the CNN, a softmax function is used to normalize the masks. Fi-

nally, the output of the SynBlock f l
syn is generated by:

Ol =
∑
t

Bl
t ·Ol

t. (3.7)

Considering the ideas of Video Frame Interpolation Transformer, we have shaped our

original network, which will also use events.

Based on the experimental results presented in [84] and based on some of our pre-

liminary tests, it was observed that VFIT algorithm generates quite remarkable inter-

polated frames with its proposed architecture. The deformable convolution approach,

which is explained in 3.6 is argued to be a critical factor in generating high-quality

intermediate frames. Since αl
t, β

l
t and W l

t parameters are estimated to determine sub-

pixel displacements for the interpolated frame, one can propose that those sub-pixel

displacements can be better estimated using event-based information.
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CHAPTER 4

VIDEO FRAME INTERPOLATION USING EVENT-BASED

INFORMATION

4.1 Introduction

This chapter presents an overview of the video frame interpolation methods that uti-

lize event-based information. Although the number of techniques is quite limited for

this purpose, these techniques mostly utilize keyframes and events generated by an

event-based camera to create intermediate frames. Section 4.2 gives an overview of

event-based algorithms, whereas Section 4.2.1 presents the only events approaches,

and Section 4.2.2 explains the algorithms that use both the events and the frames.

Finally, Section 4.3 explains one of the latest algorithms that use both the frames

and the events, TimeLens [90], which we have studied and shaped our architecture

accordingly.

4.2 Event-based Video Frame Interpolation

Event-based [48, 10] cameras are unique sensors that only report per-pixel intensity

changes rather than full-image intensity changes, and they perform these goals with

excellent temporal resolution and low latency on the scale of microseconds. The

output is an asynchronous stream of binary "events," which may be thought of as

a compressed version of the actual visual signal. These characteristics make them

suitable for VFI in highly dynamic scenarios (e.g., high-speed non-linear motion or

challenging illumination).
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4.2.1 Event-only VFI Approaches

Approaches using only events use GANs [93], RNNs [74, 75, 82] or even self-

supervised CNNs [67] to reconstruct high frame rate videos directly from a stream

of incoming events and can be viewed as a proxy for the VFI problem. However,

because integrating intensity gradients into an intensity frame is an ill-posed task, the

global contrast of the interpolated frames is typically miscalculated. Furthermore,

because the intensity edges of event cameras are only visible while they move, the

interpolation results are similarly motion-dependent.

4.2.2 Joint Event and Frame Based VFI Approaches

Some algorithms [66, 93] employ both streams of information since certain event

cameras, such as the Dynamic and Active Vision Sensor (DAVIS) [10], may simul-

taneously output the event stream and intensity images – the latter at low frame rates

and prone to the same difficulties as frame-based cameras (e.g. motion blur). These

studies often address VFI in connection with deblurring, denoising, super-resolution,

or other essential tasks. They generate intermediate frames by collecting and ap-

plying temporal brightness changes, denoted by events, from the input keyframes.

While these approaches can manage illumination variations and non-linear motion,

they nevertheless perform poorly when compared to frame-based systems, because

not all brightness changes are reliably logged as events due to the inherent instability

of the contrast threshold and sensor noise.

4.3 Time Lens [90]: Event-based Video Frame Interpolation

TimeLens [90] is a recent algorithm that uses both the events and the frames to inter-

polate images in between keyframes. There is also a successor of TimeLens, namely

TimeLens++ [89].

Kernel-based and warping-based methods are described in Sections 3.4.1.2 and 3.4.1.1.

TimeLens aims to combine both of these methods to create a structure that can use

them together. Therefore, TimeLens have three substructures to construct intermedi-
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ate images and another structure that combines the results. The workflow of the al-

gorithm is presented in Figure 4.1a. The main parts of the algorithm are the synthesis

block (Figure 4.1b), warping block (Figure 4.1d), warping refinement block (Figure

4.1e), and the block that combines the results of these three blocks, the attention-

based averaging block (Figure 4.1c).

(a) Overview of the proposed method. (b) Interpolation by synthesis module.

(c) Attention-based averaging module.

(d) Warping-based interpolation module.

(e) Warping refinement module.

Figure 4.1: The overall workflow of the TimeLens [90]. The figures show the loss

function that has used to train each module. Similar modules are in the same color

across the figures.

Given the left I0 and right I1 RGB keyframes and events sequences E0→τ and Eτ→1,

interpolation by synthesis block, directly regresses a new frame Î syn as shown in Fig-

ure 4.1b. On the other hand, warping-based interpolation block, shown in Figure

4.1d, estimates the optical flow Fτ→0 and Fτ→1 between the new frame Îτ and bound-

ary keyframes I0 and I1 using events Eτ→0 and Eτ→1 respectively. Then the computed

optical flows are used to warp the boundary keyframes in timestep τ using differen-

tiable interpolation [35], which in turn produces two new frame estimates Îwarp
0→τ and

Îwarp
1→τ . Warping refinement module computes refined interpolated frames, Î refine

0→τ and
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Î refine
1→τ , by estimating residual optical flow, ∆Fτ→0 and ∆Fτ→1 respectively, between

the warping-based interpolation results, Îwarp
0→τ and Îwarp

1→τ , and the synthesis result Î syn
τ .

It then proceeds by warping Îwarp
0→τ and Îwarp

1→τ for a second time using the estimated

residual optical flow, as shown in Fig. 4.1e. Finally, the attention averaging module,

shown in Fig. 4.1c, blends in a pixel-wise manner the results of synthesis Î syn
τ and

warping-based interpolation Î refine
0→τ and Î refine

1→τ to achieve final interpolation result Îτ .

4.3.1 Performed Ablation Studies for TimeLens Algorithm

Apart from the results given in TimeLens, we have conducted another ablation study

to understand the effect of each individual block. Table 4.1 shows the original paper’s

ablation study conducted on the Vimeo90k dataset. This dataset does not originally

contain event information. Thus, TimeLens have constructed events using an event

simulator to obtain synthetic events. This approach might not always be the best

approach to train/test a network based on mostly event information.

Table 4.1: Ablation study presented in TimeLens [90].

Module PSNR SSIM

Warping interpolation 26.68 0.926

Interpolation by synthesis 34.10 0.964

Warping refinement 33.02 0.963

TimeLens 35.83 0.976

In order to confirm the results of Table 4.1, we have conducted another ablation study

with the BS-ERGB dataset, which has actual event information from a real event-

based camera.

Table 4.2 shows the results of our ablation study. (Note that the last row of the table

is taken from [89]). The results we obtained are close to the results presented in

TimeLens++, and the effect of synthesis and warping refinement blocks are similar

to the ablation presented in TimeLens. From these tables, we argue that the event

information is not very well utilized as the warping and synthesis blocks have almost

similar effects on the output.
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Table 4.2: Our ablation study conducted on BS-ERGB dataset with image sizes 256×
256.

Module PSNR SSIM

Interpolation by synthesis 28.04 0.9223

Warping refinement 28.24 0.9195

TimeLens 28.63 0.9223

TimeLens [89] 28.56 -

Another deduction we have made from TimeLens and TimeLens++ is the influence

of image size on algorithm performance. The BS-ERGB dataset is presented in the

work TimeLens++. Although the TimeLens++ codes are not provided, the TimeLens

inference codes can be accessed on the TimeLens official website. The PSNR score

of TimeLens on the BS-ERGB dataset in TimeLens++ is 28, 56db. However, when

we run the same code for a full-sized 970× 625 image, the score drops to 23, 97dB.

Knowing this fact, we have conducted our experiments both with 256 × 256 images

and full-sized images.

We have reached several conclusions by examining the structure and the experiments

presented by TimeLens. The first observation is the usage of event voxel representa-

tion in a deep neural network. TimeLens uses event voxels efficiently to be fed into

warping and synthesis blocks. Secondly, TimeLens chose the number of grids in the

voxel grids as 5. Considering the performance of TimeLens with the other state-of-

the-art VFI algorithms, we see that TimeLens does not improve accuracies too much.

We have concluded that this inefficiency might be related to the number of grids in

voxels and should be investigated. Finally, the ablation study of TimeLens has shown

that the warping and the synthesis-based approaches perform similarly and may not

be the best way to utilize the event information for the VFI task.
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CHAPTER 5

PROPOSED METHOD

5.1 Motivation

Previous works have shown that using event-based information can improve video

frame interpolation performance. The two crucial important factors for the effective-

ness of event-based cameras on video frame interpolation are the following:

• Low Latency of Event-based Cameras: The event-based cameras have very

low latency; that is, each pixel might transmit new information in order of

milliseconds. As event-based cameras receive information quite fast, event

cameras can also fill the gap between the keyframes. Ordinarily, for the stan-

dard, the information between the keyframes of a video frame interpolation task

can only be retrieved by some assumptions about the movement of the object.

Event-based cameras, with their low latency, give valuable information on the

movements of objects.

• High Dynamic Range of Event-based Cameras: When compared to stan-

dard cameras, event-based cameras have a higher dynamic range. In general,

high-quality traditional cameras have a dynamic range of 60 dB; however, most

event-based cameras have a dynamic range of 120 dB. Therefore, event-based

cameras also supply information for the invisible places to standard cameras,

which helps to interpolate frames even in extreme lighting conditions.
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5.2 Key Observations

In order to benefit from the superior attributes of event-based cameras, we aim to

extract information from the sequential event-based information and combine it with

standard images. The possible advantages of using event-based cameras on video-

frame interpolation can be listed as follows:

• With their high-speed sensors, event cameras provide information about the

deadtime between keyframes that will reveal the motion of objects. Combined

with standard camera outputs, they can significantly increase video frame in-

terpolation performance significantly.

• Under challenging lighting conditions, the movements of the objects will be

more apparent to event-based cameras as they have a high dynamic range. With

the help of ordinary frame information, interpolated images can have even bet-

ter qualities than standard images.

5.3 Proposed Architecture

Based on the presented literature in the previous chapters, the following critical con-

clusions are deducted after examining the state-of-the-art video frame interpolation

algorithms, TimeLens [90] and Video Frame Interpolation Transformer [84].

• TimeLens uses event information as voxel grids, which enables events to be fed

into a standard neural network. Heuristically, we observe from Figure 2.2 that

using a voxel grid successfully extracts information from events. This image

shows the events between the 4 time slots divided into a 256-segment voxel

grid. However, TimeLens renders voxel grids only five segments long. Figure

2.3 shows a similar rendering example. Using small sized voxel grids, causes

the precious timestamp information in the events to be lost.

• TimeLens aims to use event information with synthesis and warping-based al-

gorithms. In the ablation study, we observed that the results of the two tech-

niques are similar to each other, and their effects on the results of the original
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algorithm are close. This shows that the information inside the events yields

similar results when extracted with both methods.

• TimeLens gives the results on the Vimeo90k [99] dataset by two different meth-

ods. The former was trained with completely synthetic events, and the lat-

ter network was trained with synthetic events and then fine-tuned with actual

events and frames collected with DAVIS. The output PSNR values are 30.57dB

and 32.49dB, respectively. The difference between the performances shows

that it is essential to use actual event-based camera outputs to train a network

that utilizes events.

• The results of TimeLens, which uses both events and keyframes, and Video

Frame Interpolation Transformer, which only uses keyframes, on the Vimeo90K

dataset are controversial. TimeLens, which has information about the deadtime

between keyframes, has a PSNR of 32.49dB. In contrast, Video Frame Interpo-

lation Transformer has a PSNR of 36.96dB. This result indicates that the event

information can be utilized more efficiently to construct intermediate frames.

• When we examined the Video Frame Interpolation Transformer, we understood

that the purpose of using the encoder-decoder structure is to predict the move-

ment between two key-frames. We questioned whether this network is quite

important when we have events.

• In the ablation study given by Video Frame Interpolation Transformer, we saw

that the performance decreased from 36.02dB to 35.82dB when the SepSTS

blocks currently used in the Encoder-Decoder structure were removed and re-

placed with Resblock [32]. We deduce from these experiments that the main

reason for the high performance of Video Frame Interpolation Transformer is

not the encoder-decoder structure used at the beginning but the SynBlocks [97]

used in the last part.

By the help of these observations, we designed our algorithm, Event Attention Video

Frame Interpolation. The general structure of our algorithm can be seen in Figure

5.1. We input 4 images, I−2, I−1, I1, I2, that are captured by a standard camera. Ad-

ditionally, we take the actual events related to these images’ four time periods and
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Figure 5.1: Events given to MSA and max pooling blocks.

construct voxel grids of length 256. The first event interval E−2→−1 and second event

interval E−1→0 are directly taken, but the third E0→1 ,and fourth E1→2 event intervals

are reversed in time and polarity. Note that the aim is to construct the intermediate

frame I0.

Figure 5.2: SynBlock architecture.

The proposed algorithm can be divided into two stages: The first stage consists of two

pooling layers and SmoothNet blocks. We first gave the event voxel representation

into a multi-head self-attention block with 16 heads. Then we used a max pooling op-

eration to extract all of the information from the voxel grid representations temporal

domain. We have decreased the temporal domain length by 2 and 4 and fed the down-

scaled and the original voxel representations into SmoothNets. SmoothNets consists

of three 3D convolutional layers. These blocks are used for the spatial smoothness

of event feature vectors before the second (spatial) pooling operation. For the spatial

pooling operation, we have directly used decimation blocks. The downscaling pa-
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rameters of the first and the second pooling operations are selected so that the result

gives 8 when multiplied.

The output of the second pooling layer is given to the second stage of our algorithm.

This stage fuses the events with the frames that are taken from the standard camera

by using Synthesis Blocks (SynBlocks) adapted from [84]. There are three SynBlock

in the second stage of our network. The operations of these SynBlocks are identical,

but they work on images with different spatial sizes.

Each SynBlock outputs an intermediate frame downscaled with l ∈ 0, 1, 2. The out-

puts of these three SynBlocks are combined to create the final output of our algorithm,

which is presented in equation 5.1 where fup stands for bilinear upscaling, and Ol is

an output of a SynBlock. This downscaling/upscaling structure, as shown in Figure

5.1, helps the network learn about fast-moving objects better.

Î l0 = fup(Î0) +Ol (5.1)

Now let us consider the inside of SynBlocks in this general structure for which we

have followed [84]. The input part of the SynBlocks starts with the unbinding op-

eration. In other words, the feature vectors F l are divided into four in the tempo-

ral dimension. Each of these four temporal parts passes three parallel convolutional

blocks generating four sisters of convolutional kernels. Each convolutional block that

is constructing these convolutional kernels is created by 2D convolutions operating

over event feature maps that produce deformable kernels for images. In other words,

these three kernels are weights W l
t ∈ RKxHxW , horizontal offsets, αl

t ∈ RKxHxW ,and

vertical offsets βl
t ∈ RKxHxW , the K stands for the number of sampling locations of

every kernel (An example sampling can (ûi, v̂i) = {(−1,−1), ..., (0, 0), ..., (1, 1)}).

Using these predicted kernels, the result of the deformable [97] convolution is reached

as given in equation 5.2.

Ol
t(x, y) =

K∑
n=1

W l
t (n, x, y)I

l
t(x+ αl

t(n, x, y), y + βl
t(n, x, y)) (5.2)

Thus, RGB frames are fused with the feature vectors coming from convolutional
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blocks by deformable convolution blocks introduced by [19] extended by [42] with

shareable weights. At the last phase of a SynBlock, Ol
t is blended with learned masks.

The masks are acquired by using standard convolutional neural networks on the fea-

ture map, which is the concatenation of the SynBlock input. The result of a SynBlock,

which is represented in Figure 5.2, is finally equated as given in equation 5.3.

Ol =
∑
t

Bl
t •Ol

t (5.3)

5.3.1 Training Details

While training our network, we have used Adamax optimizer with beta1 = 0.9 and

beta2 = 0.999, L1 loss and 6 batch size. We started the learning rate as 0.0008 and

halved it every eight epochs. We have used 2 RTX2080Ti GPUs to train our network,

for which one epoch took about 3 hours. For every network that we have proposed, we

have trained it for 24 epochs at least. The final PSNR and SSIM scores are obtained

after 26 epochs.

5.4 Experimental Results

To compare the results of our proposed method against the state-of-the-art video

frame interpolation techniques, we have conducted experiments on the BS-ERGB

dataset. We selected this dataset mainly because it contains events from an actual

event-based camera and images from a standard camera with relatively high reso-

lutions. Additionally, compared with other datasets like Vimeo90K, the BS-ERGB

dataset contains challenging image sequences that can cause algorithms using only

frames to struggle.

While performing our experiments, we have seen that changing the image sizes can

affect the PSNR values significantly. Therefore, we separated the results for full-sized

images and images downscaled to 256× 256.
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5.4.1 Test Results

Our overall test results are summarized in Tables 5.1 and 5.2 for downscaled and full-

sized images, respectively. Notice that the performance of TimeLens++ is left empty

in Table 5.2. This is because the source or the inference code of this algorithm is not

shared.

Table 5.1: Comparison of the proposed method in BS-ERGB dataset in low resolu-

tion.

Method Input Number of Parameters (M) PSNR (dB) SSIM

FLAVRFV [37] Frames 42.4 31.72 0.9469

DAIN [6] Frames 24.0 21.40 TBA

VFIT [84] Frames 29.0 32.08 0.9449

Timelens [90] Frames and Events 72.2 28.36 TBA

Timelens++ [89] Frames and Events 53.9 28.56 -

Proposed Frames and Events 1.8 32.23 0.9581

Table 5.2: Comparison of the proposed method in BS-ERGB dataset in full scale.

Method Input Number of Parameters (M) PSNR (dB) SSIM

FLAVRFV [37] Frames 42.4 27.642 0.8729

DAIN [6] Frames 24.0 TBA TBA

VFIT [84] Frames 29.0 28.00 0.8767

Timelens [90] Frames and Events 72.2 23.97 TBA

Timelens++ [89] Frames and Events 53.9 - -

Proposed Frames and Events 1.8 29.04 0.8771

Figures 5.3 and 5.4 show the parameters versus PSNR graphs. The former shows the

results for down-scaled images, and the latter shows the output for full sized images.
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Figure 5.3: Number of parameters versus PSNR graph for down scaled images.

Figure 5.4: Number of parameters versus PSNR graph for full scaled images.
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5.4.2 Ablation Studies

We have conducted a series of ablation studies to legitimize the proposed strategy.

First, we discarded the multi-head self-attention mechanism at the input stage of the

network. Then we have made use of Sep-STS layers proposed in [84] in the input

stage of the network. Finally, we have analyzed the effect of voxel-grid size on the

performance of the proposed algorithm.

As mentioned, event data already provides a piece of information about how the ob-

jects move in the scene. We have trained a network with no attention mechanism

(MSA) in the input stage. The sizes of every other block in the network were kept the

same, and the network was trained. The quantitative results are given in Table 5.3.

Table 5.3: Ablation study for multi-head self-attention.

Method PSNR (dB) SSIM

Without MSA 31.64 0.9496

Proposed 32.23 0.9581

Sep-STS blocks is first introduced in [84] for encoder part of the network from [42].

Sep-STS blocks are discrete transformer structures that partition spatial and transient

aspects for memory optimization purposes. We have changed the voxel grid size and

fed the voxel grids to the encoder and images to SynBlocks directly. Then we tested

the network, which can be seen in Figure 5.5. The qualitative results can be seen in

Table 5.4.

Table 5.4: Ablation study for the first stage of our proposed network.

Method PSNR (dB) SSIM

Sep-STS Encoder 31.19 0.9436

Proposed 32.23 0.9581
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Figure 5.5: Events given to SepSTS encoder block.

5.4.3 Discussion

Our experiments show that the proposed method is superior to state-of-the-art video

frame interpolation algorithms. For images with size 256× 256 our method increases

PSNR by 0.15dB and SSIM by 0.0132. For the full-scaled images of size 970× 625,

it increases PSNR by 1.04dB and SSIM by 0.004. Additionally, our network is very

lightweight when compared with state-of-the-art methods. Video Frame Interpolation

Transformer has the closest scores to our proposed method and has 29M parameters.

On the other hand, our network has only 1.8M parameters.

VFI results that are related to our preliminary experiments, which are conducted using

the available event-based camera, indicate that the timestamps between the events

and images should be as precise as possible. In other words, synchronization of

timestamps between two cameras by means of an imprecise, approximate approach

yields interpolated images with artifacts. In order to synchronize the timestamps of

these two cameras, a hardware implementation should be preferred.

We have investigated the performance of voxel grid size on the VFI performance. For

this purpose, we have conducted experiments with voxel-grid sizes of 16, 32, 64, 128

and 0.0008 learning rate. The performance results of these experiments yield 32.44, 32.05, 32.39, and32.23.

After obtaining a higher performance with a 16 voxel grid size, we have decided to

increase the learning rate to 0.0016 to see the effect of hyperparameters on the perfor-

mance. The performance for voxel-grid size 128 has increased to 32.56 from 32.23.
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Therefore, our experiments with different-sized voxel grids have shown that using a

larger grid size increases the VFI performance if proper hyperparameter tuning is per-

formed.

Considering our ablation study, the MSA layer that is used as the first layer in our net-

work increases the PSRN and SSIM performance by 0.59 and 0.0085, respectively.

This is because the temporal attention mechanism helps the network to focus on crit-

ical temporal dimensions of our voxel grids.

The ablation study on our max pooling and attention layers show that the SepSTS

blocks used to extract temporal and spatial information do not work as well as our

proposed method. Our technique boosts PSNR by 1.04 and SSIM by 0.0145.

Figures 5.6, 5.7, and 5.8 compare the qualitative results of TimeLens, Video Frame

Interpolation Transformer and our method. Our method is superior to the others in

scenarios where there are objects that have nonlinear and fast trajectories.
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(a) Ground truth image. (b) Our algorithms output.

(c) VFIT output. (d) TimeLens Output.

Figure 5.6: Comparison of 5.6a ground truth image, 5.6d TimeLens [90], 5.6c Video

Frame Interpolation Transformer [84] and 5.6b our result for a ball sequence.
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(a) Ground truth image. (b) Our algorithms output.

(c) VFIT output. (d) TimeLens Output.

Figure 5.7: Comparison of 5.7a ground truth image, 5.7d TimeLens [90], 5.7c Video

Frame Interpolation Transformer [84] and 5.7b our result for an elastic band se-

quence.
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(a) Ground truth image. (b) Our algorithms output.

(c) VFIT output. (d) TimeLens Output.

Figure 5.8: Comparison of 5.8a ground truth image, 5.8d TimeLens [90], 5.8c Video

Frame Interpolation Transformer [84] and 5.8b our result for a fire sequence.
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CHAPTER 6

CONCLUSIONS & FUTURE WORKS

6.1 Conclusions

In this thesis, we aimed to combine events from an event-based camera and images

from a standard imaging device for video frame interpolation. To be able to extract as

much information as possible from the events, we have searched for different event

representations and their performance on neural network architectures. Based on the

experimental results, event voxel representation is found the be the most suitable

method to represent events when the grid size is chosen sufficiently enough. Event

voxels are eligible to be utilized in deep neural networks and are easy to construct.

We examined various state-of-the-art video frame interpolation algorithms and based

our method on them. One of the most informative papers in the literature was Video

Frame Interpolation Transformer, which proved to be one of the best algorithms

for VFI. It constructs intermediate frames using only keyframes. VFIT utilizes an

encoder-decoder architecture that uses SepSTS blocks to obtain spatial and tempo-

ral information about the intermediate frames. We investigated this encoder-decoder

architecture’s necessity in the presence of events and found that it is unnecessary.

Additionally, VFIT uses SynBlocks to fuse information obtained from the encoder-

decoder block and the keyframes. We observed the eligibility of this algorithm to

combine event-based information and the keyframes.

We also examined TimeLens, which combines the information from event-based and

standard cameras. TimeLens uses both warping and synthesis-based approaches for

VFI. Comparing the results of TimeLens and VFIT, we have seen that the event infor-

mation could be used more efficiently by means of a different methodology. More-
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over, considering the training details and the ablation studies of TimeLens, we have

observed that the usage of a dataset which contains actual event-based information

is quite crucial for the performance of the network. Therefore, we have used the

BS-ERGB dataset, which contains relatively high-resolution real event information.

With the help of our literature observations, we have proposed Event Attention Video

Frame Interpolation (EA-VFI), which effectively combines events and keyframes. We

have utilized multi-head self-attention layers to extract temporal information from the

event voxels and SynBlocks to fuse event-based information and keyframes. Exper-

imental results have shown that the proposed method is superior to state-of-the-art

video frame interpolation techniques in PSNR and SSIM.

To sum up, we have utilized event information for video frame interpolation, ana-

lyzed state-of-the-art VFI methods, and proposed a network that works outstanding

in challenging scenarios.

6.2 Future Works

Looking at the results of our proposed method, we see that fast-moving objects some-

times lose color information. This result is expected as the event-based cameras do

not give information on the RGB scale colour change but only provide information on

the change of the scene. This problem may be handled with another fusion algorithm

that will be used before the SynBlocks. Furthermore, by predicting kernels tied to dif-

ferent time steps, our algorithm can be easily extended to multi-frame interpolation

or even arbitrary-time interpolation by taking time as an extra input.

56



APPENDIX A

ARCHITECTURE UTILIZED IN VIDEO FRAME INTERPOLATION

A.1 Vision Transformers

Transformer [91], an attention-based encoder-decoder, has already redefined natural

language processing (NLP). Inspired by such significant achievements, some pio-

neering work has recently been done in the computer vision (CV) field on employing

Transformer-liked architectures, which have demonstrated their effectiveness on fun-

damental CV tasks (classification, detection, and segmentation). Visual Transform-

ers have shown substantial performance increases over numerous benchmarks due to

their competitive modeling capabilities when compared to current Convolution Neu-

ral Networks (CNNs). Although this idea is not very commonly used in video frame

interpolation, it can also be utilized for this task.

A.1.1 Multi-Head Self/Cross Attention

The most critical structure of an attention mechanism is the (multi-head) self/cross

attention mechanism.

A single-head attention mechanism takes two input vectors, X ∈ Rnx×dx , Y ∈ Rny×dy .

These two vectors are then put through three linear layers to obtain three fundamental

vectors, key (K), query (Q), and value (V ). This is achieved by multiplying the vec-

tors X and Y with three matrices WQ ∈ Rdx×dk , WK ∈ Rdy×dk , and W V ∈ Rdy×dv

as given in equation A.1. Then, the vectors key and query dot product are found and

scaled by a predetermined number. Then, this number is given to a softmax function,

and it is multiplied by the vector V which can be found in equation A.2.
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Figure A.1: The structure of the attention mechanism. Left: Scaled Dot-Product

Attention. Right: Multi-Head Attention Mechanism [51].

Q = XWQ, K = YWK , V = YW V , (A.1)

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V, (A.2)

The equations A.1 and A.2 is actually stands for cross attention which aims to find

correlation between two different vectors. These equations can be turned into self-

attention by simply taking Y = X . In this case, the attention mechanism will focus

more on the elements that represent the input arrays. This attention mechanism can

simply be extended to multi head attention by using multiple WQ ∈ Rdx×dk , WK ∈
Rdy×dk , and W V ∈ Rdy×dv matrices. This type of attention mechanisms are presented

in Figure A.1 and the formulation can be found in equation A.3.

Qi = XWQi , Ki = XWKi , Vi = XW Vi ,

Zi = Attention(Qi, Ki, Vi), i = 1 . . . h,

MultiHead(Q,K, V ) = Concat(Z1, Z2, ..., Zh)W
O,

(A.3)

In equation A.3, where h is the head number, WO ∈ Rhdv×dmodel denotes the out-
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put projected matrix, Zi denotes the output vector of each head, WQi ∈ Rdmodel×dk ,

WKi ∈ Rdmodel×dk , and W Vi ∈ Rdmodel×dv are three different groups of matrices.

With the help of standard backpropagation algorithms, the weights are adjusted for

the specific task.
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