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ABSTRACT

COMPARATIVE STUDY ON EXPLICIT INTEGRATION ALGORITHMS
FOR STRUCTURAL DYNAMICS

Cakir, Dilara
Master of Science, Civil Engineering
Supervisor : Prof. Dr. Ozgiir Kurg

August 2022, 87 pages

Conventional explicit integration algorithms used to solve structural dynamic
problems may require too small time increments to satisfy the stability requirements
in the presence of high-frequency modes. The requirement to have a too small time
increment can cause extending the solution time above the tolerable limit. In this
study, three different explicit integration algorithms found in the literature are
compared in terms of stability, accuracy, and run-time. The examined integration
methods are a two-step integration algorithm, a mass scaling method, and an
unconditionally stable explicit algorithm. The performance of each algorithm has
been discussed by implementing them in MATLAB and solving various structural
dynamic problems. Obtained results are then compared with the solutions of
Newmark’s explicit integration algorithm, which is considered the reference solution

method.

Keywords: Explicit Integration Algorithms, Structural Dynamics, Time History
Analysis



0z

YAPISAL DINAMIK PROBLEMLERI iCiN BELIRTIK ENTEGRASYON
ALGORITMALARI UZERINE KARSILASTIRMALI BiR CALISMA

Cakir, Dilara
Yiiksek Lisans, insaat Miihendisligi
Tez Yoneticisi: Prof. Dr. Ozgiir Kurg

Agustos 2022, 87 sayfa

Yapisal dinamik problemlerini ¢ozmek icin kullanilan geleneksel belirtik
entegrasyon algoritmalari, yiiksek frekans modlarinin varliginda kararlilik
gereksinimlerini karsilamak icin ¢ok kii¢clik zaman adimlar1 gerektirebilir. Zaman
adimlarinin ¢ok kiiciik olmasi gerekliligi, ¢6zlim siiresinin tolere edilebilir sinirin
iizerine ¢ikmasina neden olabilir. Bu ¢alismada, literatiirde bulunan ti¢ farkli belirtik
entegrasyon algoritmalart kararlilik, dogruluk ve c¢alisma siiresi agisindan
karsilastirilmistir. Incelenen yontemler; iki asamali bir entegrasyon algoritmasi, bir
kiitle modifikasyon yontemi ve kosulsuz olarak kararli bir belirtik algoritmadir.
Incelenen her bir algoritmanin basarimi, bu ¢alisma icin MATLAB yazilimi
kullanilarak gelistirilmis bir zaman tanim alani analiz programinda uygulanarak ve
cesitli dinamik problemler ¢oziilerek tartisilmistir. Elde edilen ¢oziimler, referans
coziimleme icin se¢ilmis olan Newmark belirtik entegrasyon algoritmasi ile

karsilastirilmistir.

Anahtar Kelimeler: Belirtik Entegrasyon Algoritmalari, Yapisal Dinamik, Zaman

Tanim Alani1 Céziimlemesi
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Numerical integration algorithms are usually utilized to solve the equation of motion
for structural dynamics problems. These algorithms are based on dividing the
problem into discrete time steps and moving forward with step-by-step direct
integration. Such algorithms can be classified as explicit and implicit integration
algorithms. If the algorithm needs the state of the structural system at the current and
the following time step to find the state of the system at the following time step, it is
called an implicit integration algorithm. On the other hand, explicit algorithms utilize
the state of the current time step to compute the system's state for the following time
step. In a nonlinear problem, the system’s state changes as the structure deforms. In
other words, the structural properties of a system can only be computed for the
known, current time step. Therefore, equilibrium iterations are required to solve
nonlinear problems with implicit integration algorithms at every time step as it
requires the structural properties for the following time step. As the explicit
algorithms use known structural properties of the current time step, it doesn’t need
additional equilibrium iterations. This property makes explicit integration algorithms
computationally very attractive, especially in nonlinear structural dynamics

problems.

While using an explicit integration algorithm to solve a dynamic problem, there is a
limit on the magnitude of the time increment to obtain a solution. The step must be
smaller than a certain limit to satisfy the numerical stability; otherwise, the solution
diverges. Due to the conditional stability of the explicit algorithms, the critical time

increment to satisfy numerical stability could be so small that obtaining results at an



acceptable solution time may not be possible, especially when the structure contains
spurious high-frequency modes. When the low-frequency modes dominate the
response, the high-frequency modes are out of concern. For these systems, high-
frequency modes are considered spurious high-frequency modes. In order to filter
out the spurious high-frequency mode and consequently improve the method's
stability, numerical dissipation is commonly applied to explicit integration schemes.
However, using larger time increments with improved stability criteria may not
always work in favor of accuracy. In fact, the presence of high-frequency modes can

severely damage the accuracy of the solution (Noh & Bathe, 2013).

The accuracy of the solution obtained by numerical integration methods cannot be

directly guaranteed with any time increment. To have an accuracy of the results at a
L . Toni
reasonable level, the rule of thumb for the time increment is At = % , where Ty,in

is the minimum period of the system (Song et al., 2022). For the explicit integration
methods selecting a time increment for the solution is an optimization problem
between the solution time and accuracy within the stability range. The accuracy of
the explicit integration methods should also be studied, along with improving the

numerical stability limit and the solution time.

The conditional stability drawback of the explicit integration methods, especially in
the presence of high-frequency modes, requires a quest for a scheme that promises
reasonable solution time without compromising accuracy. The research question
herein is which explicit integration approach promises the shortest solution time at
the desired accuracy level. Any improvements to increase the numerical stability
limit without compromising the accuracy of explicit algorithms would significantly

reduce the computational time for solving nonlinear structural dynamics problems.



1.2 Related Work

Using different forms of numerical dissipation to eliminate spurious high-frequency
modes is the basis of several methods found in the literature to improve the stability
limit for explicit integration algorithms. One of the numerical dissipation techniques
studied in literature is modifying the system mass matrix. Adjusting the mass matrix
affects the system's natural frequency since it directly influences inertia (Soares &
GroBeholz, 2018). Two main approaches are commonly employed for mass
modification. The first one is directly increasing the material density. However,
having an artificially high mass density can force a dynamic problem to behave as a
quasi-static one (Askes et al., 2011). The second approach to modifying the system
mass matrix is scaling the system stiffness matrix and adding it to the mass matrix
(Askes et al., 2011). With this method, the mode shapes of the system remain
unchanged while the high frequencies are reduced (Macek & Aubert, 1995). If time
increment is not considered while scaling the stiffness matrix, the convergence may
not be guaranteed (Soares & Grofleholz, 2018). Accordingly, Soares & Grof3eholz,
(2018) proposed an explicit integration scheme in which the stiffness and damping
matrices are scaled by considering time increments and added to the system’s mass
matrix. This integration scheme was nothing but a stabilized version of the central

difference method with a modified mass matrix.

The central difference method is one of the most widely used explicit integration
methods in the literature because it has the largest time step stability limit among
other second-order accurate explicit methods. Since it doesn’t include algorithmic
dissipation, the solution accuracy can be severely impaired in the presence of high-

frequency modes (Noh & Bathe, 2013).

The explicit integration algorithms found in the literature can be classified as single-
step, multi-step, and multi-sub-step. Having a multi-step or multi-sub-step algorithm
instead of a single-step algorithm can significantly improve the stability limit and

numerical accuracy (Li et al., 2021). Multi-step algorithms use the solutions of the



previous few steps in the scheme (Zhang et al., 2022). Two-step and three-step
algorithms are contributed to multi-step integration scheme studies by Yang et al.
(2020). The proposed two-step integration scheme is based on two previous
accelerations. To find the next displacement (u,,;) and velocity (i,41), the
employed accelerations are ii,, and ii,,_,. For the three-step scheme, the employed
accelerations are, ii,, il,_1, and ii,,_,. Ifthree previous accelerations are used in the
integration scheme instead of two previous accelerations, a more accurate integration

method can be obtained (Yang et al., 2020).

In multi-sub-step schemes, the time interval is split into a few sub-steps, and the
equation of motion is solved at each sub-step. Multi-sub-step schemes allow broader
stability regions compared to single-step methods (Zhang et al., 2022). The Noh-
Bathe Method (Noh & Bathe, 2013) and Kim-Lee method (Kim et al., 2018) are
examples of multi-sub-step algorithms found in the literature. Both are second-order
accurate methods and have a wide stability range of numerical stability limits. The
main difference between the Kim-Lee Method and the Noh-Bathe Method is the
requirement of computing the initial acceleration vector. The Kim-Lee Method does
not require the computation of the initial acceleration vector throughout the entire
procedure. On the other hand, to start the integration procedure, additional
preparation to compute the initial acceleration vector from the given initial

displacement and velocity is required in the Noh-Bathe Method (Kim et al., 2018).

While most of the explicit integration methods found in the literature are
conditionally stable, an unconditionally stable explicit integration algorithm is
proposed by Chang, (2002). The characteristic equation presented after the stability
analysis of this algorithm gives the same characteristic equation as the constant
average acceleration method to guarantee that all roots are smaller than one.
Consequently, it is unconditionally stable for linear systems (Chang, 2002).
However, conducting matrix inversion is necessary for this proposed method. The
necessity of the matrix inversion increases the computational efforts of the algorithm.

When the performance of the proposed algorithm was tested in nonlinear problems,



it was seen that the method's stability depends on the instantaneous degree of
nonlinearity. The instantaneous degree of nonlinearity is defined as the ratio of the
system’s stiffness in the following time step over the initial stiffness of the system.
The algorithm is unconditionally stable for instantaneous stiffness softening systems
where the instantaneous degree of nonlinearity is smaller than 1. However, it is
conditionally stable for hardening systems where the instantaneous degree of

nonlinearity is greater than 1 (Chang, 2010).

The other important aspect of explicit integration algorithms is the order of accuracy.
Most integration algorithms are developed based on the Taylor series expansion or
the weighted residual method. Accuracy will be compromised when the high-order
terms are truncated in the Taylor series expansion as well as the weighted residual
method (Yang et al., 2020). Extending the numerical stability limit with certain
numerical dissipation method are not adequate if the level of accuracy is not within
an acceptable limit. The necessity of higher-order accuracy of an algorithm becomes
essential at this point. The solution should be obtained with larger time increments
from higher-order accurate algorithms without compromising accuracy (Fung,

2003).

Many studies have provided a wide stability region for the explicit integration
algorithms using different approaches like mass scaling, multi-sub step, or matrix
inversion. Presented algorithms are usually compared to counterparts developed
using similar approaches in these studies. Explicit integration algorithms that are
developed with different approaches have not been compared in terms of accuracy
and stability limits. On the other hand, according to the author’s knowledge, such
algorithms are not compared considering the run-time and accuracy. Hence a
comparative study is conducted to compare the stability limits, accuracy, and run

times of mass scaling, multi-sub-step, and matrix inversion algorithms.



1.3 Objective and Scope

The main objective of this study is to compare different types of existing explicit
integration algorithms that propose methods for improving the numerical stability
limits. The basis of comparison is computational efficiency and accuracy in
structural dynamics problems. For this purpose, a new finite element analysis
program is developed to perform time history analysis in the MATLAB environment.
Four different explicit integration algorithms are implemented: The Noh-Bathe
method, the stabilized CD method with mass scaling, Chang’s method, and the Noh-
Bathe method with mass scaling. The Noh-Bathe method and mass scaling
technique are attractive for this study because they are used in commercial finite
element analysis software ADINA and ABAQUS, respectively. The usual
characteristic of an explicit algorithm is conditional stability and Chang’s method
promises to eliminate this main drawback of the explicit integration method.
Therefore, Chang’s method is included in the performance comparison to see how
much is gained with unconditional stability and how much is lost with matrix

inversion, in terms of computational cost.

The performance of these four explicit integration methods is compared in terms of
accuracy, stability, and run-time. While only linear problems are considered, the
algorithms are implemented so that they also work for nonlinear problems. In other
words, computational simplifications that could be done for linear problems are
excluded. This way, the conclusions of this study would be indicative of the
performance of these algorithms for nonlinear problems. The performance and
robustness of these methods are tested by solving various dynamic problems
modeled with different finite elements under various time-dependent loading

conditions.

For the accuracy comparison, errors in results are computed from each examined
method with different time increments with respect to the reference accurate solution

obtained from Newmark’s explicit integration method. For the reasonable accuracy



of the reference solution, the selected time increment for the reference solution is

taken as smaller than the rule of thumb value, i.e., At = %.

For the solution time comparison, errors computed for accuracy comparison are used
to list the required time increment for each algorithm to reach a certain accuracy
level. The solution time of the algorithms is compared while they show the same

accuracy level.

14 Thesis Outline

The outline of this work is given as follows. After this introduction, the theory of
time history analysis and the presentation of formulas of the explicit integration
algorithms is presented in Chapter 2. Brief information regarding mass scaling and
a stabilized central difference method with mass scaling is presented in Chapter 3.
Then the implementation of the time history analysis with explicit integration
algorithms and various finite elements into the platform developed in the MATLAB
environment is explained in Chapter 4. In Chapter 5, verification problems are solved
with the developed program to verify the implementation of the explicit integration
algorithms. The obtained results are compared with the analytical solution. Case
studies follow the verification problems in Chapter 6. Benchmark problems are
solved with the four explicit integration algorithms: the Noh-Bathe Method, the
stabilized CD method with mass scaling, Chang’s Method, and the Noh-Bathe
method with mass scaling. Results from these four explicit integration algorithms are
compared in terms of stability, accuracy, and run-time. Finally, in Chapter 7, results

obtained from these case studies are discussed, and possible future work is presented.






CHAPTER 2

EXPLICIT INTEGRATION METHODS

2.1 Introduction

This chapter presents brief information on the time history analysis and the
corresponding explicit integration algorithms. In addition to the explicit Newmark
integration method, the details of the Noh-Bathe Method, and Chang’s Method are
presented. Numerical stability analyses and discussions are also presented for each

integration method.

2.2 Time History Analysis

Time history analysis is performed to see the structure's response in time under time-
dependent loading. The equation of motion for the solution of the dynamic response
is derived from the total potential energy functional written considering the virtual

displacement method as given in Equation 2-1.
51_[ :5Wint_5Wext (2-1 )

Considering an element with a volume of V" and surface area of S, internal and

external energy can be written as in Equation 2-2 and Equation 2-3, respectively.
Wine = [({8u}’ p{ it} + {6u} c{it} + {5€} {a})dV (2-2)
§Wexe = [ 6u' FAV + [{5u}{®}dS + T, (6u}Tp; (23)

In Equation 2-2, p,c, a,du, §€ indicate mass density, damping parameter, stress
vector, virtual displacement, and corresponding virtual strain vectors, respectively.
In Equation 2-3, F, ®, p indicate, body forces, surface traction, and concentrated

load vectors, respectively.



Based on the finite element discretization, expressions in Equation 2-4 are obtained.
{u} = [N]{d} u=[Nld {ii} = [N]{d} e=[Bld (24)

In the above expressions, NV and d denote shape functions and nodal degree of

freedoms, respectively.

Inserting expressions in Equation 2-4 into total potential energy functional will yield

Equation 2-5.

3d” ([ p[NIT[N1dV{d} + [ c [N]"[N]dvd + [[B]" {6}dV — [[N]" {F}dV —
JINT" {®}dS — ¥ {p}) = 0 (2-5)

For an arbitrary virtual displacement, 8d , Equation 2-5 yields Equation 2-6.

J pINT"[N]av{d} + [ c [N]"[N]dVd + [[B]" {c}dV — [[N]" {F}dV —
JINT {®}dS — 37 {p}; = 0 (2-6)

The more compact form of Equation 2-6 can be written in terms of element consistent

mass and damping matrices are presented in Equation 2-7,

[ml{d} + [c]{d} + {r"™} = {r**} (2-7)
Where,
[m] = [ p[N]"[N]aV (2-8)
[c] = [c[N]"[N]aV (2-9)
{r"} = [[BI" {o}aV (2-10)
{re*} = [IN]"{F}dV + [[N]" {®}dS + XL {p} (2-11)

For structures having multi degrees of freedom, each element’s mass and damping
matrices are assembled yielding [M] and [C], respectively. Then the equation of

motion in global form becomes:

[MI{D} + [C]{D} + {R™} = {R®*} (2-12)

10



23 Numerical Integration

The form of the equation of motion presented in Equation 2-12 can be solved using
numerical direct integration algorithms. The response history is calculated using
step-by-step integration in time at the discrete points divided by time increments, At.
Numerical methods that are used to solve dynamic problems can be explicit or
implicit. Explicit methods calculate the state of the system at a later time from the
state of the system at the current time, whereas implicit methods calculate the state
of the system at a later time by solving an equation involving both the current state
of the system and the later one. In the case of a nonlinear problem, since the system's
stiffness may change from one time step to the next, the tangent stiffness is unknown
at the later state of a system. Therefore, equilibrium iterations are required for the
solution at each time step. In terms of computational efficiency, explicit integration
algorithms can be considered well-suited for nonlinear problems since the unknown
state of the system is calculated from the system's current state with the known
tangent stiffness. Hence, explicit integration algorithms do not require equilibrium

iterations. However, one drawback of explicit algorithms is their stability condition.

Most of the explicit integration algorithms are conditionally stable. In other words,
there is a limit on the magnitude of the time increment. The solution diverges for
time increments that are larger than the limit value. Using smaller time increments
for a stable solution may significantly increase the analysis time. Hence, the need for
increasing the speed of analysis leads to improving the stability limit on the time
increment. In the literature, there are different approaches for increasing the stability
limit for explicit integration algorithms. Within the scope of this study, two different
approaches are implemented and compared: the Noh-Bathe method (Noh & Bathe,
2013), and Chang’s method (Chang, 2002). First, the basic explicit integration

method, Newmark’s explicit integration algorithm is discussed.
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2.3.1 Newmark’s Explicit Integration Method

Newmark’s explicit integration method is based on the following equations:
Upsr = Up + U AL+, (2-13)

Upsr = Uy +5UeAt + U, A (2-14)

Uil (M + % c) =Py, — (CU, + KU, + KU,At) — (% cU, + ATtZKUt)
(2-15)
where K, M, and C are stiffness, mass, and damping matrices; P, external force

vector, U , U, and U are displacement, velocity, and acceleration vectors,

respectively.

2.3.2 The Noh-Bathe Method

A two-sub-step explicit time integration scheme has been proposed to solve the
structural system’s displacement, velocity, and acceleration response by Noh &
Bathe (2013). A parameter, p, has been introduced to identify the time step sizes for
the first and second sub-step. The system response is calculated considering a time
interval, At consists of two sub-steps. The time increment for the first and second

sub-step is pAt and (1 — p)At, respectively, where p € (0,1) (Noh & Bathe, 2013).

The proposed integration scheme by Noh & Bathe (2013) to solve Equation 2-12 is

as follows,

First sub-step,
[M]EPAt 1} + [C]EHPAL{ T } + [K]HHPAL{ U } =P At (R} (2-16)

“PAYY = YUY+ [pAt] (U} +[pAt]? (U} (2-17)
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HPADY = (0} + 3 [pae] (D) (2-18)
ety = SRy 4 L [par) PRl (2-19)

Second sub-step,
[M]EHAEC 0} + [C]E24( 0} + [K]E+26{ U } =4+ 2¢ R (2-20)
ety = PR + [(1 - p)Ae] PO + 2 [(1 - p)A2S P (2-21)
CHLg} = PO} 4 2 [(1 - p)at] P (2-22)
DY = TAOY + (L - p)AL (g0 (U3 + qn PN + @ D) (223)

where,

HPALE Y = (1 — §)PPAL(TY) + s HU) (2-24)
LHALC T = (1 — s)EHALOY + sTPAY DY (2-25)

M, K, and C are mass, stiffness, and damping matrices, respectively and R represents
the external force vector. Also, U , U, and U are displacement, velocity, and
acceleration vectors, respectively. g, q1,q, and s parameters are dependent on the
selected p value. Selected p value and dependent parameters affect the stability and

accuracy characteristics of the method (Noh & Bathe, 2013).

2.3.3 Chang’s Method

Chang’s method is an unconditionally stable explicit algorithm (Chang, 2002). In

other words, there is no stability limit for the magnitude of the time increment.

For a multi-degree of freedom system, the formulation of the proposed algorithm by

Chang (2002) can be expressed as,
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[MI{U}¢4ac + [C]{U}HM +{r}eeae = {Ferac (2-26)
{U}esar = (U + BL(AO{U}, + B, (A6)* (U}, (2-27)
{0} eene = U+ A0 ({0} + (U} eae) (2-28)

where M and C are mass and damping matrices; r and f are internal force vector and

external force vector, U , U, and U are displacement, velocity, and acceleration

vectors, respectively.

p1 and 3, coefficients are defined as,
1 -1 1 2y-1p |7° 1 -1
Br=[1+3AOMC+2 (MM Ko| “x[1+2(anM'c|  (2:29)
1 1 _ 1 _ -1
B, =(5) [1+30OMC +2 (A0 M K, | (2-30)
where I is the identity matrix and K|, is the initial system stiffness matrix.

24 Stability Limits of the Explicit Integration Methods

24.1 Newmark’s Explicit Method

Newmark’s explicit integration method is a conditionally stable explicit algorithm.

The stability condition for Newmark’s method is given as follows,

2

At < (2-31)

Wnmax

where Wy, pmqy 1S the maximum natural frequency of the system.
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2.4.2 The Noh-Bathe Method

The maximum stability limit of the Noh-Bathe method is presented in Equation 2-32
(Noh & Bathe, 2013). In this equation (), indicates wyAt,, where At is the critical

time increment for numerical stability and w, is the maximum natural frequency of

the system.
2 _ 1 -
" = am (2-32)
where,
y=0.25-0.5(1 —p)q, (2-33)
_ 1-2p _
T = 2 (2:34)
05<p<2-42 (2-35)

Noh, G, & Bathe, K. J., indicates that p is related to the amount of the numerical
dissipation in the high frequencies when p = 0.5, no numerical dissipation occurs
and when p = 2 — /2, the maximum numerical dissipation occurs. The maximum
critical time increment for the stability is obtained when p value equals 0.5. By
increasing p value within a defined range, a convergence in the solution can be
obtained just below the stability limit, and the accuracy of the solution will be

improved. The suggested value for p is 0.54 (Noh & Bathe, 2013).

243 Chang’s Method

The characteristic equation of the proposed algorithm is given as follows (Chang,

2002):

2 2-0507 _ )
A(2-E=51+1)=0 (2-36)
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Since this characteristic equation is the same as the characteristic equation of the
average acceleration method, Chang’s Method has the numerical properties of the
average acceleration method, and consequently, the proposed algorithm by Chang is

unconditionally stable.
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CHAPTER 3

MASS SCALING

3.1 Introduction

This chapter presents brief information on mass scaling and the corresponding
explicit integration algorithm, the stabilized CD method with mass scaling.
Numerical stability analyses and discussions are also given for this integration

method.

3.2 Mass Scaling

Mass scaling can be performed by directly increasing the density of the material or
scaling the system stiffness matrix and adding it to the system mass matrix. Mass
scaling can be applied to any algorithm to increase its stability. With mass scaling
instead of the original mass matrix of the system an increased mass matrix is used.
An increase in the mass matrix results in a decrease in the maximum frequency of
the system and consequently increases the critical time increment requirement for
the stability of the algorithm. Since an increased mass matrix instead of the original
system’s mass matrix is used in the solution of the equation of motion, this method
is an approximation, and the error in results can be larger than the methods without
mass scaling. On the other hand, this approach can be useful when the accuracy target
is not too precise since the approach enables the use of larger time increments outside
of the stability range of the algorithm without mass scaling. A stabilized version of
the central difference method with a mass scaling technique (Soares & Grof3eholz,
2018) is included in this comparative study. Also, the proposed mass scaling by,
Soares & GroBeholz (2018) is applied to the Noh-Bathe method to increase its

stability limit, and its performance is studied.
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3.21 The Stabilized Central Difference Method with Mass Scaling (MS)

In this method, the stability of the standard central difference method is enhanced by
modifying the system mass matrix (Soares & GroBeholz, 2018). The modified mass

matrix is given in Equation 3-1.
[M]' = [M] + 0.5At[C] + aAt?[K] (3-1)

In Equation 3-1, M, C, K, At and a are, system mass matrix, damping matrix, system

stiffness matrix, and integration constant, respectively.

Acceleration and velocity can be computed according to the standard central

difference method as in Equations 3-2 and 3-3.

U} = 25 (U} erae — 2{UY + (U}e-ne) (32)
{U}t = ﬁ({u}t+At - {U}t—At) (3-3)

By inserting the modified mass matrix, Equation 3-2 and 3-3 into the equation of

motion given in Equation 2-12, the following expression for the displacement

solution is obtained.

{U}erar = 2{U} — {U}_p¢ + ([M] + At[C] + aAt?[K]) "' (At*({F}¢ — {P}) —
At[C]({U}e — {U}t-ae)) (3-4)

where, F and P are external force and internal force vectors, U , U, and U are

displacement, velocity, and acceleration vectors, respectively.

3.2.2 Stability Limit of the Stabilized Central Difference Method with
Mass Modification

The spectral radius of this algorithm, obtained from the stability analysis (Soares &
GroBeholz, 2018) in the case where complex eigenvalues are presented is shown in

Equation 3-5.
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2 M+aAt2KT
M+aAt2Kr+AtC

Y (3-5)

If
C? —4MK' — 2AtCK' — 4aAt’K;K' + At’K? < 0 (3-6)

It can be seen from Equation 3-5 that the spectral radius is smaller than 1 when C #
0, and it is equal to 1 when C = 0. For this method, the undamped vibration case is

the most critical case for numerical stability.

For an undamped system, where M =1, K; = K' = w?, and Q = wAt, the

numerical stability condition is obtained as in Equation 3-7.

y=—1—(a—025° <0 (3-7)

Equation 3-7 can be ensured when a = 0.25. To have more accurate numerical
technique, a smaller “a” value is suggested with the use of the following expression

where a € (0,0.25) (Soares & GroBeholz, 2018).

a = 0.25 tanh (0.250At) (3-8)

where w is the maximum natural frequency of the system. By using the proposed a,

the stability of the method is guaranteed.
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CHAPTER 4

IMPLEMENTATION

4.1 Introduction

In this study, a finite element analysis program is developed in the MATLAB
environment to compare the run-time of different explicit time integration methods
for time history analysis. The program can solve the displacement, velocity, and
acceleration responses with time history analysis, including the Noh-Bathe method,
the stabilized central difference (CD) method with mass scaling (MS), Chang’s
method, and the Noh-Bathe method with mass scaling (MS) as explicit solution
algorithms. In addition to these methods, the Newmark explicit integration method
is also implemented and is used as a reference case while comparing the run-time

and accuracy of other explicit integration methods.

The finite element program has a finite element library including 2D frame, 4-node
incompatible membrane, and 8-node brick elements. These elements can be used in

various structural models where the performance of explicit algorithms is studied.

In this chapter, the implementation of the time history analysis with explicit
integration algorithms and finite elements is presented. All integration algorithms
perform stiffness matrix calculations within each time step to mimic the solution

approach for nonlinear problems, although the structural problem is linear.
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4.2 Time History Analysis

The main algorithm for the time history analysis is presented in Figure 4.1. The
analysis starts by taking inputs for geometry and material properties, finite element
type, loading properties, and analysis options like damping ratio, time increment,
and initial and final time. For all dynamic problems, initial conditions are considered
as Uy, vy and a, are equal to 0. According to the finite element type utilized in the
structural model, the element stiffness and lumped mass matrices are assembled to
form system stiffness, K, and mass matrices, M. If the value of the damping ratio &

is nonzero, the Rayleigh damping matrix, C, is calculated.

As the damping, structural stiffness, and mass matrices are computed, the analysis is
initiated by calling the subroutine for the chosen explicit integration algorithm. This
explicit integration algorithm then calculates displacement, velocity, and

acceleration responses.
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Figure 4.1 Flow Chart for Time History Analysis
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4.2.1 Newmark’s Explicit Method

The main steps of Newmark’s explicit method are presented in Figure 4.2.

Newmark’s explicit integration method takes K, M, and C matrices as input.
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Figure 4.2 Flow Chart for Newmark’s Explicit Method

The algorithm presented in Figure 4.2 starts with the initialization of the
displacement, velocity, and acceleration vectors at t = 0. Before the time stepping

is started, M’ is calculated as M + 0.5AtC. For an undamped system M’ is diagonal
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and for the computational efficiency, the acceleration vector is computed by element-
by-element division instead of matrix inversion. The time stepping loop continues
until the final time is reached. The output of this subroutine is the displacement,

velocity, and acceleration responses and the run-time.

4.2.2 The Noh-Bathe Method

The main steps of the Noh-Bathe Method are presented in Figure 4.3. The inputs for
this function are structural stiffness matrix K, lumped system mass matrix M,

Rayleigh damping matrix C, time step size, final time, and “p” value. “p” value is

taken as 0.54 for all problems in this study.
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Figure 4.3 Flow Chart for the Noh-Bathe Method

As it is presented in Figure 4.3, the algorithm starts with the initialization of the
displacement, velocity, and acceleration vectors at t = 0. After computing the
integration constants, the loop for time stepping begins. Inside the time stepping

loop, when ¢t equals to t + At, primarily the external force vector is computed for
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t=t and t =t + At. In the first sub-step, the displacement, acceleration, and
velocity vectors at the time equal to ¢+ pAt is computed in order using
displacement, acceleration, and velocity vectors at the time equal to t. Then second
sub-step is started. In second sub-step, by using the displacement, acceleration, and
velocity vectors at the time t = t + pAt computed in the first sub-step, displacement,
acceleration, and velocity at t = At, is computed. The time stepping loop continues
until the final time is reached. The output of this subroutine is the displacement,

velocity, and acceleration responses and the run-time.

Integration constants for the Noh-Bathe Method, used above, are given as follows:

_ (1-2p)

q: = 2(-p) q4z = 0.5 —pqy ) do= —q1—q2+ 05
a, = pAt , a, = 0.5(pAt)? , a, = %

2
az; = (1 —p)At , a, = 0.5((1 - p)At) , as = qoas
ag = (0.5+q)a; a; = 4,03

(4-1)
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4.2.3 Chang’s Method

The main steps of Chang’s Method are presented in Figure 4.4. The algorithm of
Chang’s method takes K, M, and C matrices as input.

The algorithm presented in Figure 4.4 starts with the initialization of the
displacement, velocity, and acceleration vectors at t = 0. As the next step, f; and
[, coefficients whose calculation required the matrix inversion is computed. Then,
the time stepping begins. For an undamped system, MM is diagonal and for the
computational efficiency, the velocity vector is computed by element-by-element
division instead of matrix inversion. The time stepping loop continues until the final
time is reached. The output of this subroutine is the displacement, velocity, and

acceleration responses and the run-time.

29



Solution Method=
Chang’s Method

YES
v

Initialize displacement(u), velocity (v),
and acceleration (a) vectorzat =0

A\

Calculate [, and 2

C=07 NO—» | MM = (M + 0.5A¢C) 7!

Caleulate External Force Vector (f 1+.a0)

v
Uy pe = g + Bilteg + A ey

AA = (M(v, + 0.50ta,) + 0.5A8(fronr — Kuteon,))
v

BB = (frone — Coppnr — Kup )

Cc=07 NC-

» | v =MM x AA
v
YES
=l — =1

v

—— =it | —

=1

v

ar.u: (1) =BB(1) | M{ii)
Veoar(d) SAA(D [ MiL) ¥
v o i = Number of DOF
@r.nc (i) =BB (1) [ M{ii) ?
v
o i = Number of DOF

v

NO 3 =:i:1:=1

YES
v

Cet Output
Gat Displ t, Valocity, A ionFasponss
Get Run-Time of the Function of the 8slected Solution
Meathod

Figure 4.4 Flow Chart for Chang's Method
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4.2.4 The Stabilized Central Difference Method with Mass Scaling (MS)

The main steps of the stabilized central difference (CD) method with mass scaling
(MS), are presented in Figure 4.5. The algorithm takes the maximum natural
frequency w;qx, K, M, and € matrices as input. w,,,, 1S used to compute the

integration constant a as proposed by Soares & Grof3eholz (2018).
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Modification
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The algorithm presented in Figure 4.5 starts with the initialization of the
displacement, velocity, and acceleration vectors at t = 0 and t = At. Displacement,
velocity, and acceleration vectors at ¢ = 0 and t = At are taken as 0. The stability-
related constant a using the maximum natural frequency of the system is computed.
Then, mass scaling is performed and the inverse of the scaled mass matrix is
calculated and kept before time stepping. Time stepping begins after mass scaling.
When t =t + At, the external and internal force vectors at t = t are computed.
Displacement at t + At is calculated by matrix multiplication with the pre-computed
inverse scaled mass matrix. To solve displacement at t + At , the displacement at
t =t and t =t — At is used. Then with known displacement at t = t, t =t + At
and t = t — At, acceleration and velocity at t = t + At is solved. The time stepping
loop continues until the final time is reached. The output of this subroutine is the

displacement, velocity, and acceleration responses and the run-time.

4.2.5 The Noh-Bathe Method with Mass Scaling (MS)

The main steps of the Noh-Bathe method with mass scaling are presented in Figure
4.6. The inputs for this function are structural stiffness matrix K, lumped system
mass matrix M, Rayleigh damping matrix C, time step size, final time, and “p” value
and maximum natural frequency w;,qx. ®Wmax 18 Used to compute the integration

constant a as proposed by Soares & Grofieholz (2018).
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The algorithm presented in Figure 4.6 is the Noh-Bathe method with the addition of
mass scaling proposed by Soares & GroB3eholz (2018). The stability-related constant
a using the maximum natural frequency of the system is computed. Then, mass
scaling is performed and the inverse of the scaled mass matrix is calculated and kept
before time stepping. Time stepping begins after mass scaling. The first and second
substep run similarly to the classical Noh-Bathe method. However, since the used
mass matrix is non-diagonal due to mass scaling, matrix multiplication with the
inverse of the pre-calculated scaled mass matrix is used to compute acceleration. The
time stepping loop continues until the final time is reached. The output of this
subroutine is the displacement, velocity, and acceleration responses and the run-time.
Matrix multiplication due non-diagonality of the scaled mass matrix is expected to

increase the computational cost compared to the classical Noh-Bathe method.

4.3 Finite Element Library

The analysis program has three types of finite elements: 2D frame element, 4-node

incompatible membrane element, and 8-node brick element.

4.3.1 2D Frame Element

2D frame element has two nodes and 3 degrees of freedom at each node ass presented
in Figure 4.7. The stiffness matrix of this frame element is the combination of truss
and beam element formulations so that it can undergo axial and bending
deformations. This element doesn’t consider shear deformations. The stiffness
matrix and lumped mass matrices are presented in Equations 4-2 and 4-3,
respectively. A small rotational mass is introduced by multiplying mass density with

10 to eliminate “division by zero error” during the analysis.
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Figure 4.7 2-Node Frame Element
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4.3.2 Incompatible Membrane Element

Quadrilateral membrane elements with bilinear shape functions suffer from the shear
locking deficiency. When these elements undergo bending deformation, the shape
functions cannot represent the true bent shape of the element. Because of this reason,
they behave extremely stiff under bending deformations. To improve this deficiency,

higher-order general interpolation terms are to the displacement field definition in
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addition to the bilinear terms (Ns to Ng in Equation 4-5). Such an element is called

incompatible membrane element in this study (Cook, 2007).

For the plane stress problem where o,, = 0, displacements are assumed to be

uniform through the thickness of the element. The in-plane displacements consist of

two components, and deformation in the z-direction is nonzero due to Poisson’s

Ratio and can be obtained from in-plane displacements.
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Figure 4.8 4-Node Quadrilateral Membrane
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Ns=(1-%8) ; Ne =(1-1?)
N, =(1-8) ; Ng =(1-n%

(4-5)

4.3.3 Brick Element

3D Brick element with 8-node is implemented. It has 3 degrees of freedom for
translation in X, Y, and Z directions at each node. 3D brick elements are basically
an extension of the bilinear membrane. The element displacement field of the 3D
solid element is similar to the bilinear membrane with the addition of translation in

the z-direction (Cook, 2007).
ux
u= {uy} (4-6)

Uy

The implemented 3D solid element is a trilinear element since its shape functions

are the product of three linear functions.
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Figure 4.9 8-Node Brick Element
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CHAPTER 5

VERIFICATION PROBLEMS

5.1 Introduction

This chapter presents verification of the implemented explicit integration algorithms.
One of the verification problems is a single degree of freedom problem under
constant loading. The second verification problem is a frame under impulse loading
(Cook, 2007). Solving these problems aims to verify the implementation of explicit
integration algorithms. For both problems, obtained results are compared with

analytical solutions.

5.2 SDOYF Problem

A single-degree-of-freedom problem is presented in Figure 5.1. The system's
stiffness is 3240 kN/m, and the mass is 18 kg. The applied load is constant in time
and equals to 0.1 kN.

y P, kN
A = 4
i L =10m w P(t)=P,for t=0
= _ P(t)
5 E=25GPa ' Pol P —01kN
/| I=00108 m*
/ > [, 5erc
/| m =18kg
/ ........... Y

Figure 5.1 Single Degree of Freedom Problem

The problem presented in Figure 5.1 is modeled as a cantilever with a single 2D

frame element. Restraints are introduced in translation-x and rotation-z directions at
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the free end of the element. The time increment used for all explicit integration
algorithms to solve this problem is At = 10~ 5sec. The reason for usin a small time
step for this verification problem is not to have accuracy problems due to the selected
time step. For the Noh-Bathe Method, the integration constant “p” is taken as p =
0.54. For the stabilized CD method with mass modification, the integration constant

a” is calculated with the maximum natural frequency, w,, = 4.24 rad/sec as a =

2.65x107%,

5.2.1 Undamped System

The analytical solution of the undamped single degree of freedom system is given in

Equation 5-1.
u(t) = (us)o(1 — cos wy t) (5-1)

(use)o = = (5-2)

where w,, is the natural frequency of the system.

In Figure 5.2, the displacement response of the SDOF system is presented. The
plotted solutions are obtained from the Noh-Bathe method, the Stabilized CD
Method with mass scaling (MS), Chang’s method, the Noh-Bathe method with mass

scaling (MS), and the analytical solution.

42



0 60 T T &ﬂ
\ [ 9 o9 e o
1r e e .‘ “_ .l' | -
L gl 8% %o
2| ® | r o\ [ 1
¢ /| @ | e [
g-3r \ | \ é { 9 ¢ 1
. ] (%) \ I \ / \
e £ 1 \ { \ | \
£ \ i e | ‘ ~‘ '-
% -4 \ | \ é 6 o o
S \ \ [ ._
E,l @ je é) ' \ \
N @ @0 [
@ P e B
of @ & ¥ |
7F —a— Analytical Solution —b—- Chang's Method i
- Newmark's Explicit Method The Stabilized CD Method(MS)
- The Noh-Bathe Method === "*" The Noh-Bathe Method(MS)

_8 1 1 1 1 1 1 1 1 1
0 0.005 001 0015 002 0.025 003 0035 004 0045 0.05

Time, sec

Figure 5.2 Displacement Response of the Undamped SDOF System

The data points for displacement response at every 100 steps are recorded for the
displacement plot shown in Figure 5.2. Figure 5.2 shows that the displacement

responses from all algorithms match the analytical solution.

5.2.2 Damped System

The analytical solution for the damped single-degree-of-freedom system is presented

below.
u(t) = (ust)o [1 — e~Sont (cos wpt+ \/%fzsin Wp t)] (5-3)
(uge)o = =2 (5-4)

Wp = W1 — &2 (5-5)
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where ¢ is the damping ratio and w,, is the natural frequency of the system.

In Figure 5.3, the displacement response from the Noh-Bathe method, the Stabilized
CD Method with mass scaling (MS), Chang’s method, the Noh-Bathe method with

mass scaling (MS), and the analytical solution with a damping ratio, ¢ = 0.05 is

presented.
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Figure 5.3 Displacement Response of Damped SDOF System

The data points at every 100 steps are recorded for the displacement plot shown in
Figure 5.3. Figure 5.3 shows that the displacement responses from all algorithms

match the analytical solution.
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5.3  Frame Under Impulse Loading

Figure 5.4 presents a frame problem under impulse loading (Cook, 2007). The
loading is applied to the right end of the frame in the X direction.

J 2m P(t

2
E =200 GPa
A=0.01m? P.kN  Po=100kN
I =8.33x10"%m* i P(t) = Py fort < 0.05sec

p = 7860 kg/m?

P(t) =0 fort > 0.05sec

> t, sec
0.01

3m

P

i___.x

Figure 5.4 Frame Under Impulse Loading

The problem shown in Figure 5.4 is discretized by 2D frame elements with a size of
0.125 m. Model information is presented in Table 5.1. Table 5.1 shows that accurate
results can be obtained by using time increments smaller than 6.01x107° sec. For
the reference solution, the problem is modeled in LARSA 4D by using beam
elements with zero shear area. Linear time history analysis is performed in LARSA

4D environment to obtain reference displacement response.
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Table 5.1 Model Information

i Number of DOF 120
{ WDpin 20.78 rad/sec
E W max 104545.5  rad/sec
! Atynax accurate
_ Thin 6.01E-06 sec
~ 10

The stability requirement of the algorithms to solve this problem is presented in
Table 5.2. Chang’s method is unconditionally stable, and the stabilized CD method
with mass scaling is also stable for all time increments. For the stabilized CD method
(MS), the stability-related parameter a is between 0 and 0.25 for all time increments
when the recommended equation is used to calculate this parameter Soares &
GroBeholz (2018). The stability limit of the Noh-Bathe method is approximately 1.9

times larger than the stability limit of Newmark’s explicit method.

Table 5.2 Stability Requirements

Method Atoritical
Newmark's Explicit Method 1.91E-05 sec
The Stabilized CD Method (MS) * € [O'O'ZS]A' tsmble for all
Chang's Method Unconditionally Stable
The Noh-Bathe Method, p=0.54 3.58E-05 sec

In Table 5.3, the displacement results at the x =1 m on the horizontal portion of the
frame element in the translation y direction are presented at discrete times. The
results are obtained by using time increments as 1x10~®sec for all algorithms and

in the LARSA 4D model.
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Table 5.3 Displacement Results

The Noh- The
At — 10-6s0c LARSA N;V;g‘li‘crl't‘s The 8oM" Bathe  Chang's  Stabilized
4D Method Method Method Method CD Method
(MS) (MS)
Time, sec Displacement, m

0.01 -0.0042 -0.0042 -0.0042 -0.0042 -0.0042 -0.0042
0.02 -0.0018 -0.0018 -0.0018 -0.0018 -0.0018 -0.0018
0.03 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020
0.04 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
0.05 -0.0049 -0.0050 -0.0050 -0.0050 -0.0050 -0.0050
0.06 -0.0064 -0.0063 -0.0063 -0.0063 -0.0063 -0.0063
0.07 -0.0129 -0.0128 -0.0128 -0.0128 -0.0128 -0.0128
0.08 -0.0059 -0.0059 -0.0059 -0.0059 -0.0059 -0.0059
0.09 -0.0082 -0.0082 -0.0082 -0.0082 -0.0082 -0.0082
0.1 -0.0118 -0.0119 -0.0119 -0.0119 -0.0119 -0.0119
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Figure 5.5 presents the displacement response plots drawn with data points at every
107° sec. The results for this displacement plots are also obtained by using time

increments as 1x10~®sec for all algorithms and in the LARSA 4D model.
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Figure 5.5 Displacement Response Comparison

Table 5.3 and Figure 5.5 shows that the results obtained from all algorithms at
discrete times are matched with the reference solution obtained from the LARSA 4D

model, meaning that implementations of all algorithms are verified.
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5.4  Convergence Rate of Algorithms

In Figure 5.6, the relative displacement errors are plotted for different time steps for

each integration algorithm. The slope of each plot is considered to be the

convergence rate. These plots are drawn using the results obtained from the frame

problem under impulse loading. All algorithms are run when At = 1x1078sec, At =

1x10~7sec, At = 1x10%sec, and At = 1x10 °sec. The displacement results at

x=1 m in translation y direction at t=0.001 sec obtained from each algorithm are

compared with the reference solution, and errors are calculated. The reference

solution for the errors presented in Figure 5.6 is obtained from Newmark’s explicit

method when the time increment is used as 1x10~° sec.
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Figure 5.6 Convergence Rate of Algorithms

Figure 5.6 shows that the convergence rates of all algorithms are very close to each

other. Still, the results obtained from the Noh-Bathe method are closer to the

reference explicit algorithm’s results.
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5.5  Summary of Results

In this chapter, the first verification problem shows that the results obtained from
implemented algorithms match the analytical solution for a damped and undamped
single-degree-of-freedom system. In the second verification problem, a frame
structure is analyzed and the displacement responses are compared with the results
obtained from LARSA 4D model. The second verification problem shows that the
displacement results from all algorithms’ discrete times match the reference results

obtained from the LARSA 4D results.

The convergence rate of implemented algorithms is calculated using the frame under
the impulse loading model, and all algorithms’ convergence rate is found to be close
to each other. The Noh-Bathe method gives closer results to the reference solution

for the tested time increments.
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CHAPTER 6

CASE STUDIES

6.1 Introduction

In this chapter, various dynamic problems are solved to compare the stability,
accuracy, and run-time of the examined explicit integration algorithms. The first case
study is a simple cantilever under vertical impulse. The cantilever is modeled in two
ways by using, membrane, and brick elements. The aim of solving this problem is to

compare the performance of the solution of the algorithms for a simple system.

The second case study is 3D clamped solid problem. The solid is modeled with 8-
node brick elements. The solid is clamped from all edges; hence it has a very stiff
behavior in the axial direction. This benchmark problem aims to push the examined
explicit integration methods beyond their accuracy and stability limits. A mesh study
is performed in this problem to increase degrees of freedom and see many high-

frequency modes.

The third case study, moving load on a three-span road bridge, is analyzed with
membrane elements to see the explicit integration algorithms' performance on a real-

life problem.

The variety in loading types and used element formulation is intentionally provided
in selected benchmark problems to see the applicability of all examined methods for
different types of structural dynamic problems. This preference also supported the
precision of the conclusions regarding the robustness of the studied explicit

integration methods.

Accuracy comparison is performed for a certain time range for each problem. The

errors in results are computed with respect to reference results. The reference results
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(Xref) are obtained from the Newmark’s Explicit Integration Method with a time

step smaller than At = T;”—Om. In this chapter, errors are calculated as follows:
error % = | —<| x 100 (6-1)
ref

where x is the result obtained from the examined integration algorithm.

6.2 Case Study 1: Simple Cantilever Under Vertical Impulse

In Figure 6.1, a simple cantilever problem is presented. The modulus of elasticity
and density of the 2 m cantilever are 200 GPa and 7840 kg/m’, respectively. The
cross-section of the cantilever is a 0.2 m x 1 m rectangle. At the free end of the
cantilever, 100 kN force is applied vertically. The loading is removed at t =

0.05 sec.

v p

A E=2006Pa PO

= 7840 kg/m?

: p 9/ PN  Po=100kN
? P(t) =P, fort =0.05sec
/) P
e 1m 0 P(t) =0 fort > 0.05sec
/
s

/ »f,

? ............ % e 0.05 see

' + ket

2m 0.2m

Figure 6.1 Simple Cantilever Under Vertical Impulse

Discretization of the simple cantilever under vertical impulse is presented in Table
6.1. The simple cantilever problem is modeled with 4-Node Membranes and 8-Node
Brick elements. Model 1 and Model 2 presented in Table 6.1 correspond to 4-Node
Membrane and 8-Node Brick models, respectively. Table 6.1 also shows the total
number of degrees of freedom, the system’s minimum and maximum natural
frequencies, and the maximum time increment for the accurate reference results,

which corresponds to the minimum period of the system over 10. In this case study,
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the goal was to see the effect of the element formulation on the performance of

implemented explicit integration algorithms.

Table 6.1 Discretization of Case Study 1

Model 1: 4-Node Membrane

/
Number of DOF 24 ///
@ pin 1099.5767  rad/sec /// ®
Omax 19945.09  rad/sec 7 h
Atmar accurate 3.1502E-05  sec j
_ fmin /
~ 10
0.5mx0.5m

Model 2: 8 -Node Brick

Number of DOF 72
Womin 501.5008  rad/sec
Wonax 49888.3519 rad/sec
At ax accurate 1.2594E-05 sec
— _min
~ 10

0.5mx0.5mx0.2m

In Table 6.2 the stability requirements of implemented explicit integration
algorithms are presented. The a value for the Stabilized CD Method (MS) is
calculated from the recommended equation (Soares & Grof3eholz, 2018). The
calculated a value is always between [0.0.25], meaning that the algorithm is stable
for all At. The critical time increment for Newmark’s Explicit Method and the Noh-
Bathe Method are calculated and presented in Table 6.2. Chang’s Method is

unconditionally stable.

Table 6.2 Stability Requirements of the Integration Methods in Case Study 1

Model 1: 4-Node Membrane Model 2: 8- Node Brick

Method Atcritical Atcritical
Newmark's Explicit Method 1.00E-04 sec 4.01E-05 sec
The Stabilized CD Method (MS) ae€ [0,0.25]A,tstable for all ace€ [0,0.25]A,tstable for all
Chang's Method Unconditionally Stable Unconditionally Stable
The Noh-Bathe Method, p=0.54 1.88E-04 sec 7.51E-05 sec
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Table 6.1 and Table 6.2 show that by changing the used element from 4-node
membranes to 8-node solid elements, the maximum natural frequency of the system
increased with the increase in the number of degrees of freedom. This causes a
smaller time step required for the stability of the Newmark’s Explicit Method and
the Noh-Bathe Method in the model with 8-node solid elements. Table 6.2 also
shows that the critical time increment for the stability of the Noh-Bathe method is

approximately 1.9 times larger than Newmark’s explicit method.

The time history analysis is performed on the developed finite element analysis
program between t equal to 0 and t equal to 0.016 sec. For the accuracy comparison,
7 test runs using different At values are performed for the 4-node membrane model.
The time increments for test runs of the 4-node membrane model are At =
1x107%sec, At =5x10"%sec, At = 1x10"3sec, At =5x10"%sec, At=
1x10*sec, At = 1.5x10 *sec, and At = 2x10 *sec for Test 1, Test 2, Test 3,
Test 4, Test 5, Test 6, and Test 7, respectively. For the 8-node brick model, 8 test
runs using different At values are performed. The time increments for test runs of
the 8-node brick model are At = 1x10 ®sec, At = 2.5x10 °sec, At = 5x10 °sec,
At = 7.5x107%sec, At = 1x10 %sec, At = 2.5x10 >sec, At = 5x10 °sec, and
7.5x10 >sec for Test 1, Test 2, Test 3, Test 4, Test 5, Test 6, Test 7, and Test 8

respectively.

Table 6.3 and Table 6.4 show maximum displacements in the y direction at “node
10” obtained for the analyzed time range from all test runs reported for both
membrane and brick models. Table 6.3 and Table 6.4 also show the time when the
maximum displacement in the y direction at “node 10” is obtained, and the
displacement error and phase difference with respect to the accurate reference
solution obtained from Newmark’s Explicit Method. For the reference solution, the

used time increment is At = 1 x 107% sec which is a smaller time step than the time

Tmin
10

step obtained from the rule of thumb, presented in Table 6.1. The displacement

error is calculated by dividing the difference between the obtained value and the
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reference value by the reference value, taking the absolute of the ratio, and
multiplying it by 100. The phase difference is calculated by taking the absolute
difference between the reference value and the obtained value. The displacement
response plots from all algorithms for all test runs can be seen in Figure A.1 and

Figure A.2 in Appendix A.

Table 6.3 shows that in Model 1, the displacement error from the Noh-Bathe method
is zero in Test 1, Test 2, and Test 3, and this algorithm is unstable in Test 7. Table
6.4 shows that, in Model 2, the displacement error from the Noh-Bathe method is
zero in Test 1, Test 2, Test 3, and Test 4. The time increment in Test 3, in Model 1,
is 1.33 times larger than the time increment in Test 4, in Model 2. The displacement
error from the stabilized CD method with mass scaling (MS) is zero up to Test 2 in
both Model 1 and Model 2. The time increment in Test 2, in Model 1, is two times
larger than the time increment in Test 2, in Model 2. The displacement error in
Chang’s method is zero at Test 1 in Model 1 only. These results show that good
accuracy can be achieved from all algorithms in the 4-node membrane model (Model
1) with greater time increments than the time increment required for good accuracy
in the 8-node brick model (Model 2). This validates the increase in the number of

degrees of freedom causing smaller time increments required for good accuracy.

The comparison shows that explicit integration algorithms have different accuracy
characteristics and may yield different maximum displacement errors with different
time increments. The solution time of algorithms is compared by using the largest
possible time increments that give a closer maximum displacement error to the
selected allowable maximum displacement error. The analyzed time range is kept
fixed for all algorithms between 0-0.016 sec. The solution time comparison for case

study 1 is presented in Table 6.5 and Table 6.6.

55



Table 6.3 Accuracy Comparison from Case Study 1 — Model 1

Model 1: 4-Node Membrane

Time Increment, Max. Corresponding| Displacement Phase
Method sec Displacement, m| Time, sec Error,% Difference, sec
Newmark's Explicit(REF) 1.00E-06 -1.7557E-04 0.014236 |REFERENCE |REFERENCE
The Stabilized CD MethodMS)|  1.00E-06 -1.7557E-04 0.014236 0.000 0.00E+00
Test 1 Chang's Method 1.00E-06 -1.7557E-04 0.014236 0.000 0.00E+00
The Noh - Bathe Method 1.00E-06 -1.7557E-04 0.014236 0.000 0.00E+00
The Stabilized CD Method(MS)|  5.00E-06 -1.7557E-04 0.014240 0.000 4.00E-06
Test 2 Chang's Method 5.00E-06 -1.7556E-04 0.014235 0.006 1.00E-06
The Noh - Bathe Method 5.00E-06 -1.7557E-04 0.014235 0.000 1.00E-06
The Stabilized CD Method(MS)|  1.00E-05 -1.7558E-04 0.014240 0.006 4.00E-06
Test 3 Chang's Method 1.00E-05 -1.7555E-04 0.014230 0.011 6.00E-06
The Noh - Bathe Method 1.00E-05 -1.7557E-04 0.014240 0.000 4.00E-06
The Stabilized CD Method(MS)|  5.00E-05 -1.7594E-04 0.014250 0.211 1.40E-05
Test 4 Chang's Method 5.00E-05 -1.7568E-04 0.014300 0.063 6.40E-05
The Noh - Bathe Method 5.00E-05 -1.7570E-04 0.014250 0.074 1.40E-05
The Stabilized CD Method(MS)|  1.00E-04 -1.7636E-04 0.014300 0.450 6.40E-05
Test 5 Chang's Method 1.00E-04 -1.7666E-04 0.014300 0.621 6.40E-05
The Noh - Bathe Method 1.00E-04 -1.7543E-04 0.014200 0.080 3.60E-05
The Stabilized CD Method(MS)|  1.50E-04 -1.7707E-04 0.014400 0.854 1.64E-04
Test 6 Chang's Method 1.50E-04 -1.7671E-04 0.014400 0.649 1.64E-04
The Noh - Bathe Method 1.50E-04 -1.7540E-04 0.014250 0.097 1.40E-05
The Stabilized CD Method(MS)|  2.00E-04 -1.7690E-04 0.014400 0.758 1.64E-04
Test 7 Chang's Method 2.00E-04 -1.7439E-04 0.014400 0.674 1.64E-04
The Noh - Bathe Method 2.00E-04 UNSTABLE | UNSTABLE | UNSTABLE | UNSTABLE
Table 6.4 Accuracy Comparison from Case Study 1 — Model 2
Model 2: 8 -Node Brick
Time Max. Corresponding| Displacement Phase
Method Increment, sec | Displacement, m| Time, sec Error,% Difference, sec
Newmark's Explicit(REF) 1.00E-06 -1.5923E-04 0.013554 |REFERENCE |REFERENCE
The Stabilized CD Method(MS)|  1.00E-06 -1.5923E-04 0.013554 0.000 0.00E+00
Test 1 Chang's Method 1.00E-06 -1.5924E-04 0.013554 0.006 0.00E+00
The Noh - Bathe Method 1.00E-06 -1.5923E-04 0.013554 0.000 0.00E+00
The Stabilized CD Method(MS)|  2.50E-06 -1.5923E-04 0.013555 0.000 1.00E-06
Test 2 Chang's Method 2.50E-06 -1.5924E-04 0.013555 0.006 1.00E-06
The Noh - Bathe Method 2.50E-06 -1.5923E-04 0.013555 0.000 1.00E-06
The Stabilized CD Method(MS)|  5.00E-06 -1.5922E-04 0.013555 0.006 1.00E-06
Test 3 Chang's Method 5.00E-06 -1.5927E-04 0.013560 0.025 6.00E-06
The Noh - Bathe Method 5.00E-06 -1.5923E-04 0.013555 0.000 1.00E-06
The Stabilized CD Method(MS)|  7.50E-06 -1.5921E-04 0.013552 0.013 2.00E-06
Test 4 Chang's Method 7.50E-06 -1.5931E-04 0.013567 0.050 1.30E-05
The Noh - Bathe Method 7.50E-06 -1.5923E-04 0.013552 0.000 2.00E-06
The Stabilized CD Method(MS)|  1.00E-05 -1.5919E-04 0.013550 0.025 4.00E-06
Test 5 Chang's Method 1.00E-05 -1.5934E-04 0.013570 0.069 1.60E-05
The Noh - Bathe Method 1.00E-05 -1.5922E-04 0.013560 0.006 6.00E-06
The Stabilized CD Method(MS)|  2.50E-05 -1.5919E-04 0.013550 0.025 4.00E-06
Test 6 Chang's Method 2.50E-05 -1.5889E-04 0.013650 0.214 9.60E-05
The Noh - Bathe Method 2.50E-05 -1.5915E-04 0.013550 0.050 4.00E-06
The Stabilized CD Method(MS)|  5.00E-05 -1.5874E-04 0.013650 0.308 9.60E-05
Test 7 Chang's Method 5.00E-05 -1.5901E-04 0.013600 0.138 4.60E-05
The Noh - Bathe Method 5.00E-05 -1.5887E-04 0.013550 0.226 4.00E-06
The Stabilized CD Method(MS)| 7.50E-05 -1.5893E-04 0.013650 0.188 9.60E-05
Test 8 Chang's Method 7.50E-05 -1.5955E-04 0.013650 0.201 9.60E-05
The Noh - Bathe Method 7.50E-05 -1.5884E-04 0.013650 0.245 9.60E-05
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Table 6.5 Solution Time Comparison from Case Study 1 — Model 1

Model 1: 4-Node Membrane

Max. Allowable Displacement Error 0.000 %
Method Time Max. Displacement, Displacement
Increment, sec m Error, %
The Stabilized CD (MS) 5.00E-06 -1.7557E-04 0.000
Chang's Method 1.00E-06 -1.7557E-04 0.000
The Noh-Bathe Method 1.00E-05 -1.7557E-04 0.000

At=5.00E-06 sec | 0.0103

The
Stabilized
CD (MS)

At = 1.00E-06 sec 0.1054

Chang's
Method

At = 1.00E-05 sec | 0.0079

The Noh
Bathe
Method

0 002004006008 0.1 0.12
Elapsed Time, sec

Analysis Time Range = 0-0.016 sec
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Table 6.6 Solution Time Comparison from Case Study 1 — Model 2

Model 2: 8 -Node Brick

Max. Allowable Displacement Error 0.006 %
The Stabilized CD (MS) 5.00E-06 -1.5922E-04 0.006
Chang's Method 2.50E-06 -1.5924E-04 0.006
The Noh-Bathe Method 1.00E-05 -1.5922E-04 0.006

At=5.00E-06 sec | 0.0235

The
Stabilized

Method CD (MS)

At =2.50E-06 sec 0.1939

Chang's

At = 1.00E-05 sec | 0.0182

The Noh -
Bathe
Method

0 0.05 0.1 0.15 02 025
Elapsed Time, sec

Analysis Time Range = 0-0.016 sec

Table 6.5 shows that in Model 1, the allowable maximum displacement error is
reached with the Noh-Bathe method by using 2 times and 10 times larger time
increments than the stabilized CD method with mass scaling (MS) and Chang’s
method, respectively. Table 6.6 shows that in Model 2, the allowable maximum
displacement error is reached with the Noh-Bathe method by using 2 times and 4
times larger time increments than the stabilized CD method with mass scaling (MS)
and Chang’s method, respectively. Although the stabilized CD method and Chang’s
method are stable with large time increments, when high accuracy is aimed, the
required time increment for these methods is within the stability limit of the Noh-
Bathe method. Table 6.5 and Table 6.6 shows that the Noh-Bathe method is the

fastest, and Chang’s method is the slowest.
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6.3 Case Study 2: Clamped 3D Solid

In Figure 6.2, a clamped 3D solid problem is presented. The modulus of elasticity
and density of the rectangle solid are 28 GPa and 2400 kg/m?, respectively. The size
of the rectangle solid is 22 m x 22 m x 2.75 m. A time-dependent loading is applied
to the middle node of the rectangle in the x direction. At time equals 1, loading is
removed. High-frequency responses are aimed in this in-plane vibration study to see
the effect of the change in time increment on the accuracy of the maximum

displacement result seen in the analyzed time range.

P(t)
6
= 4 2
= P(t 4=(1—(2t—1)°) fort<il
a2 /\L‘[ 0 fort=1
0
[i] 0.5 1 15 2
time, sec
E =28 GPa

p = 2400 kg/m?

All 4 edges
are clamped.
22m

22m

Figure 6.2 Clamped 3D Solid under Vertical Impulse

Discretization of the clamped 3D solid is presented in Table 6.7. The 3D solid is
modeled by using 8-node brick elements. In Model 1, 4x4 mesh is used where the
size of each element is 5.55 m x 5.55 m x 2.75 m. In Model 2, 8x8 mesh is used
where the size of each element is 2.75 m x 2.75 m x 2.75 m. In Model 3, 16x16 mesh
is used where the size of each element is 1.375 m x 1.375 m x 2.75 m. Table 6.7 also
shows the total number of degrees of freedom, the system’s minimum and maximum

natural frequency, and the maximum time increment for the accurate reference
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results, which corresponds to the minimum period of the system over 10. The goal
was to see the effect of the mesh size on the performance of implemented explicit

integration algorithms.

Table 6.7 Discretization of Case Study 2

Model 1: 4x 4 8y
TR RN .
Number of DOF 54 Z
Wnin 268.3592 rad/sec / v
P 2256.6748  rad/sec / /
At ax accurate 2.7843E-04 sec j 4
_ Ytmin o ' ;
10 7 \WMiddle Nod
/ 7
/,
/] ¥, .
T T T T T T T X
proer X 555mx555mx2.75m
Model 2: 8x 8 ¥y
AU Y
Number of DOF 294
Woin 207.0125  rad/sec
Wonax 2436.769  rad/sec

Atmax accurate 2.5785E-04 S€C

min

i, /n'x lode

Athththhthhthh bbb bbb hay

AN SSRRRRRNRNRNNNNNRNNNNY

~ 10
AU USSR R NN RN RSN EEERNENN x
—x 275mx275mx2.75m
Model 3: 16 x 16 vy
AN AN SRR »
Number of DOF 1350 2
Wpmin 186.4596  rad/sec 2 :
7 %
Wpmax 4932.5719  rad/sec 7 7
At ax accurate 1.2738E-04 sec f/
_ fmin 2 - [‘ ;
= ’ Fi A 7712
10 g
7 7
7
AARER AU R SRR AN X
b X 1.375mx 1.375mx2.75m

In Table 6.8, stability requirements for implemented explicit integration methods are

presented. The a value for the stabilized CD method with mass scaling (MS) is
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calculated from the recommended equation (Soares & Grof3eholz, 2018). The
calculated a value is always between [0.0.25], meaning that the algorithm is stable
for all At. The critical time increment for Newmark’s explicit method and the Noh-
Bathe method are calculated and presented in Table 6.8. Chang’s method is

unconditionally stable.

Table 6.8 Stability Requirements of the Integration Methods in Case Study 2

Model 1: 4 x 4 Model 2: 8 x 8 Model 3: 16 x 16
Method Atcritical Atcritical Atcritical
. -~
Newmark's Explicit 8 86E-04 sec 8.21E-04 sec 4.05E-04 sec
Method
The Stabilized CD Method ¢ € [0,0.25], stable a € [0,0.25], a € [0,0.25],
(MS) for all stable for all stable for all
At At At
\ Unconditionally Unconditionally Unconditionally
Chang's Method Stable Stable Stable
The Noh-Bathe Method, 1.66E-03 sec 1.54E-03 sec 7.59E-04 sec

p=0.54

Table 6.7 show that with increased refinement, the number of degrees of freedom is
increased and the maximum natural frequency of the system is increased. When the
system has higher frequencies due to refined mesh size, the maximum time
increment required for accurate results is smaller than in less refined systems.
Similarly, Table 6.8 shows that Newmark’s explicit method and the Noh-Bathe
method require a smaller critical time increment for stability in Model 3, which is
the most refined model. Table 6.8 also shows that the critical time increment for the
stability of the Noh-Bathe method is approximately 1.9 times larger than Newmark’s

explicit method.

Table 6.9, Table 6.10, and Table 6.11 show the maximum displacements in the x
direction at the “middle node” from all models’ test runs. Table 6.9, Table 6.10, and
Table 6.11 also present the corresponding time when the maximum displacement in
the x direction at the “middle node” is obtained, and the displacement error and phase
difference with respect to the reference solution obtained from Newmark’s explicit

method. For the reference solution, the used time increment is At = 1 x 10™* sec
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Tmin

which is a smaller time step than the time step obtained from the rule of thumb, o

presented in Table 6.7. The displacement error is calculated by dividing the
difference between the obtained value and the reference value by the reference value,
taking the absolute of the ratio, and multiplying it by 100. The phase difference is
calculated by taking the absolute difference between the reference value and the
obtained value. The displacement response plots from all algorithms for all test runs
can be seen in Figure A.3, Figure A.4 and Figure A.5 in Appendix A. In this case
study, the modified Noh-Bathe method with mass scaling (MS) is included in the
performance comparison. The expectation is obtaining results with this modified
algorithm by using time increments which make the classical Noh-Bathe method

unstable.

The time history analysis is performed on the developed finite element analysis
program between t equal to 0 and t equal to 2 sec. For the accuracy comparison, 8
test runs using different At values are performed for Model 1, Model 2, and Model
3. The time increments for test runs of Model 1 and Model 2 are At = 1x10™*sec,
At = 2.5x107*sec, At = 5x10"*sec, At = 7.5x10 *sec, At = 1x10 3sec, At =
1.5x10 3sec, At = 2x1073sec and At = 2.5x10 3sec for Test 1, Test 2, Test 3,
Test 4, Test 5, Test 6, Test 7, and Test 8, respectively. The time increments for test
runs of Model 3 are At = 1x10™*sec, At = 7.5x10 *sec, At = 8x10 *sec, At =
8.5x10 *sec, At =9x10 *sec, At = 1x10"3sec, At = 1.5x10"3sec, and
1.75x10 3sec for Test 1, Test 2, Test 3, Test 4, Test 5, Test 6, Test 7, and Test 8

respectively.

Table 6.9 shows that in Model 1 the Noh-Bathe method with mass scaling is stable
within the range of the classical Noh-Bathe method. When the mesh density is
increased, the effect of mass scaling is observed. Table 6.10 shows that in Model 2,
the Noh-Bathe method with mass scaling is stable when using about 1.6 times larger
time increment than the critical time increment for the classical Noh-Bathe method.

Similarly, Table 6.11 shows that in Model 3, the Noh-Bathe method with mass
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scaling is stable when using about 1.1 times larger time increment than the critical

time increment for the classical Noh-Bathe method.

Table 6.9 Accuracy Comparison from Case Study 2 — Model 1
Model 1: 4 x 4

Time Increment. Max. Corresponding | Displacement Phase
Method sec Displacement. m|  Time, sec Error% Di fference. sec
Newmark's Explicit(REF) 1.00E-04 3.4406E-08 0.4895 REFERENCE | REFERENCE

The Stabilized CD Method(MS) 1.00E-04 34406E-08 04895 0.000 0.00E+00
Test 1 The Noh - Bathe Method(MS) 1.00E-04 34409E-08 04895 0.009 0.00E+00
Chang's Method 1.00E-04 34414E-08 04899 0.023 4.00E-04
The Noh - Bathe Method 1.00E-04 34409E-08 04895 0.009 0.00E+00
The Stabilized CD Method(MS) 2.50E-04 34396E-08 04893 0.029 2.50E-04
Test 2 The Noh - Bathe Method(MS) 2.50E-04 34414E-08 04898 0.023 2.50E-04
Chang's Method 2.50E-04 34409E-08 04913 0.009 1.75E-03
The Noh - Bathe Method 2.50E-04 34409E-08 04893 0.009 2.50E-04
The Stabilized CD Method(MS) 5.00E-04 3A393E-08 0.4890 0.038 5.00E-04
Test 3 The Noh - Bathe Method(MS) 5.00E-04 34429E-08 04925 0.067 3.00E-03
Chang's Method 5.00E-04 34414E-08 0.5045 0.023 1.50E-02
The Noh - Bathe Method 5.00E-04 34403E-08 04885 0.009 1.00E-03
The Stabilized CD Method(MS) 7.50E-04 34420E-08 04913 0.041 1.75E-03
Test 4 The Noh - Bathe Method(MS) 7.50E-04 3A4388E-08 04868 0.052 2.75E-03
Chang's Method 7.50E-04 34388E-08 04973 0.052 7.75E-03
The Noh - Bathe Method 7.50E-04 34394E-08 0.5123 0.035 2.28E-02
The Stabilized CD Method(MS) 1.00E-03 34425E-08 0.5050 0.055 1.55E-02
Test 5 The Noh - Bathe Method(MS) 1.00E-03 3A374E-08 0.5010 0.093 1.15E-02
Chang's Method 1.00E-03 34427E-08 0.5010 0.061 1.15E-02
The Noh - Bathe Method 1.00E-03 34414E-08 0.5110 0.023 2.15E-02
The Stabilized CD Method(MS) 1.50E-03 34477E-08 0.5040 0.206 145E-02
Test 6 The Noh - Bathe Method(MS) 1.50E-03 3A314E-08 04890 0.267 5.00E-04
Chang's Method 1.50E-03 3A428E-08 0.5055 0.064 1.60E-02
The Noh - Bathe Method 1.50E-03 34382E-08 04980 0.070 8.50E-03
The Stabilized CD Method(MS) 2.00E-03 34432E-08 04860 0.076 3.50E-03

Test 7 The Noh - Bathe Method(MS) 2.00E-03 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
Chang's Method 2.00E-03 34442E-08 04840 0.105 5.50E-03

The Noh - Bathe Method 2.00E-03 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
The Stabilized CD Method(MS) 2.50E-03 34520E-08 04825 0331 7.00E-03

Test § The Noh - Bathe Method(MS) 2.50E-03 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
Chang's Method 2.50E-03 3A499E-08 04800 0270 9.50E-03

The Noh - Bathe Method 2.50E-03 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
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Table 6.10 Accuracy Comparison from Case Study 2 — Model 2

Model 2: 8 x 8
Time Increment, Max. Corresponding | Displacement Phase
Method sec Displacement, m Time, sec Error,% Difference, sec
Newmark's Explicit(REF) 1.00E-04 4.2799E-08 0.4848 REFERENCE | REFERENCE

The Stabilized CD Method(MS) 1.00E-04 4.2801E-08 0.4849 0.005 1.00E-04
Test 1 The Noh - Bathe Method(MS) 1.00E-04 4.2808E-08 0.4851 0.021 3.00E-04
Chang's Method 1.00E-04 4.2800E-08 0.4859 0.002 1.10E-03
The Noh - Bathe Method 1.00E-04 4.2807E-08 0.4850 0.019 2.00E-04
The Stabilized CD Method(MS) 2.50E-04 4.2805E-08 0.4965 0.014 1.17E-02
Test 2 The Noh - Bathe Method(MS) 2.50E-04 4.2814E-08 0.4860 0.035 1.20E-03
Chang's Method 2.50E-04 4.2829E-08 0.5078 0.070 2.30E-02
The Noh - Bathe Method 2.50E-04 4.2802E-08 0.4845 0.007 3.00E-04
The Stabilized CD Method(MS) 5.00E-04 4.2817E-08 0.4965 0.042 1.17E-02
Test 3 The Noh - Bathe Method(MS) 5.00E-04 4.2804E-08 0.5030 0.012 1.82E-02
Chang's Method 5.00E-04 4.2817E-08 0.4885 0.042 3.70E-03
The Noh - Bathe Method 5.00E-04 4.2809E-08 0.4960 0.023 1.12E-02
The Stabilized CD Method(MS) 7.50E-04 4.2825E-08 0.5078 0.061 2.30E-02
Test 4 The Noh - Bathe Method(MS) 7.50E-04 4.2780E-08 0.4958 0.044 1.10E-02
Chang's Method 7.50E-04 4.2816E-08 0.5033 0.040 1.85E-02
The Noh - Bathe Method 7.50E-04 4.2817E-08 0.4950 0.042 1.02E-02
The Stabilized CD Method(MS) 1.00E-03 4.2813E-08 0.4990 0.033 1.42E-02
Test 5 The Noh - Bathe Method(MS) 1.00E-03 4.2759E-08 0.4960 0.093 1.12E-02
Chang's Method 1.00E-03 4.2847E-08 0.4980 0.112 1.32E-02
The Noh - Bathe Method 1.00E-03 4.2818E-08 0.4940 0.044 9.20E-03
The Stabilized CD Method(MS) 1.50E-03 4.2821E-08 0.4905 0.051 5.70E-03
Test 6 The Noh - Bathe Method(MS) 1.50E-03 4.2713E-08 0.4920 0.201 7.20E-03
Chang's Method 1.50E-03 4.2837E-08 0.5025 0.089 1.77E-02
The Noh - Bathe Method 1.50E-03 4.2791E-08 0.4920 0.019 7.20E-03
The Stabilized CD Method(MS) 2.00E-03 4.2849E-08 0.5000 0.117 1.52E-02
Test 7 The Noh - Bathe Method(MS) 2.00E-03 4.2701E-08 0.4940 0.229 9.20E-03
Chang's Method 2.00E-03 4.2856E-08 0.5000 0.133 1.52E-02

The Noh - Bathe Method 2.00E-03 UNSTABLE UNSTABLE | UNSTABLE | UNSTABLE
The Stabilized CD Method(MS) 2.50E-03 4.2892E-08 0.5025 0.217 1.77E-02
Test 8 The Noh - Bathe Method(MS) 2.50E-03 4.2704E-08 0.4950 0.222 1.02E-02
Chang's Method 2.50E-03 4.2905E-08 0.5100 0.248 2.52E-02

The Noh - Bathe Method 2.50E-03 UNSTABLE UNSTABLE | UNSTABLE | UNSTABLE
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Table 6.11 Accuracy Comparison from Case Study 2 — Model 3

Model 3: 16 x 16
Time Max. Corresponding | Displacement Phase
Method Increment, sec |Displacement, m Time, sec Error,% Difference, sec
Newmark's Explicit(REF) 1.00E-04 5.1353E-08 0.4893 REFERENCE | REFERENCE

The Stabilized CD MethodMS)|  1.00E-04 5.1350E-08 0.4896 0.006 3.00E-04
Test 1 The Noh - Bathe Method(MS) 1.00E-04 5.1352E-08 0.4896 0.002 3.00E-04
Chang's Method 1.00E-04 5.1353E-08 0.4898 0.000 5.00E-04
The Noh - Bathe Method 1.00E-04 5.1351E-08 0.4996 0.004 1.03E-02
The Stabilized CD MethodMS)|  7.50E-04 5.1371E-08 0.5040 0.035 1.47E-02
Test 2 The Noh - Bathe Method(MS) 7.50E-04 5.1303E-08 0.5025 0.097 1.32E-02
Chang's Method 7.50E-04 5.1397E-08 0.4965 0.086 7.20E-03
The Noh - Bathe Method 7.50E-04 5.1378E-08 0.4988 0.049 9.45E-03
The Stabilized CD Method(MS)|  8.00E-04 5.1364E-08 0.5064 0.021 1.71E-02
Test 3 The Noh - Bathe Method(MS) 8.00E-04 5.1299E-08 0.4992 0.105 9.90E-03
Chang's Method 8.00E-04 5.1365E-08 0.4872 0.023 2.10E-03

The Noh - Bathe Method 8.00E-04 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
The Stabilized CD MethodMS)|  8.50E-04 5.1367E-08 0.4854 0.027 3.95E-03
Test 4 The Noh - Bathe Method(MS) 8.50E-04 5.1292E-08 0.4956 0.119 6.25E-03
Chang's Method 8.50E-04 5.1367E-08 0.4981 0.027 8.80E-03

The Noh - Bathe Method 8.50E-04 UNSTABLE UNSTABLE | UNSTABLE UNSTABLE
The Stabilized CD MethodMS)|  9.00E-04 5.1385E-08 0.4959 0.062 6.60E-03

Test 5 The Noh - Bathe Method(MS) 9.00E-04 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
Chang's Method 9.00E-04 5.1388E-08 0.4995 0.068 1.02E-02

The Noh - Bathe Method 9.00E-04 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
The Stabilized CD Method(MS) 1.00E-03 5.1380E-08 0.4990 0.053 9.70E-03

Test 6 The Noh - Bathe Method(MS) 1.00E-03 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
Chang's Method 1.00E-03 5.1366E-08 0.5020 0.025 1.27E-02

The Noh - Bathe Method 1.00E-03 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
The Stabilized CD MethodMS)|  1.50E-03 5.1373E-08 0.5040 0.039 1.47E-02

Test 7 The Noh - Bathe Method(MS) 1.50E-03 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
Chang's Method 1.50E-03 5.1408E-08 0.4965 0.107 7.20E-03

The Noh - Bathe Method 1.50E-03 UNSTABLE UNSTABLE | UNSTABLE UNSTABLE
The Stabilized CD MethodMS)|  1.75E-03 5.1403E-08 0.4935 0.097 4.20E-03

Test 8 The Noh - Bathe Method(MS) 1.75E-03 UNSTABLE UNSTABLE UNSTABLE UNSTABLE
Chang's Method 1.75E-03 5.1398E-08 0.5058 0.088 1.65E-02

The Noh - Bathe Method 1.75E-03 UNSTABLE UNSTABLE UNSTABLE UNSTABLE

The solution time of algorithms is compared by using the largest possible time

increments that give the closest maximum displacement error to the selected

allowable maximum displacement error. The analyzed time range is kept fixed for

all algorithms between 0-2 sec. The solution time comparison for case study 2 is

presented in Table 6.12, Table 6.13, and Table 6.14.
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Table 6.12 Solution Time Comparison from Case Study 2 — Model 1

Model 1: 4 x 4

Max. Allowable Displacement Error 0.023 %
Method Incr;rr:lrzlft, sec Displal\c/le;:ent, m Dl}slll)'lrzz)cr?t’]/oent
The Stabilized CD (MS) 2.20E-04 3.4398E-08 0.023
Chang's Method 5.00E-04 3.4414E-08 0.023
The Noh-Bathe Method 1.00E-03 3.4414E-08 0.023
The Noh Bathe Method (MS) 2.50E-04 3.4414E-08 0.023

At=10.00022 sec 0.051013

The Stabilized
CD (MS)

At=10.0005 sec 0.062781

Chang's
Method

At=0.001 sec | 0.015203

The Noh -

Method(MS) Bathe Method

At=10.00025 sec 0.076595

The Noh -
Bathe

0 0.02 004 006 0.08 0.1
Elapsed Time, sec

Analysis Time Range = 0-2 sec
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Table 6.13 Solution Time Comparison from Case Study 2 — Model 2

Model 2: 8 x 8

Max. Allowable Displacement Error 0.248 %
Method Incr:r;rzlft, sec Displal\c/[e?l.ent, m Dl}slll)'lti)crirf’l/f:nt
The Stabilized CD (MS) 2.50E-03 4.2892E-08 0.217
Chang's Method 2.50E-03 4.2905E-08 0.248
The Noh-Bathe Method 1.00E-03 4.2818E-08 0.044*
The Noh-Bathe Method(MS) 2.50E-03 4.2704E-08 0.222

At=0.0025 sec | 0.085255

The Stabilized
CD (MS)

]
[=]
=
=
%  At=10.0025 sec 0.36746
[=1¥]
g
=)
QL
=
=3
@ g
= §  At=0001 sec 0.16187
Z =
@
=
o
=A%)
=)
=8 At=00025 sec | 0.082626
(=
<3
2=
=

0 0.1 0.2 0.3 0.4
Elapsed Time, sec

Analysis Time Range = 0-2 sec

*The closest displacement error to the selected maximum allowable displacement error seen from the
classical Noh-Bathe method in test runs when the used time increment is within the stability limit of the
classical Noh-Bathe method. For the classical Noh-Bathe method, the displacement error cannot be increased
by around 0.2% by increasing time increment due to the stability requirement of this method.
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Table 6.14 Solution Time Comparison from Case Study 2 — Model 3

Model 3: 16 x 16

Max. Allowable Displacement Error 0.107 %
Time Max. Displacement
Method Increment, sec  Displacement, m Error, %
The Stabilized CD (MS) 1.75E-03 5.1403E-08 0.097
Chang's Method 1.50E-03 5.1408E-08 0.107
The Noh-Bathe Method 7.50E-04 5.1378E-08 0.049*
The Noh-Bathe Method(MS) 8.00E-04 5.1299E-08 0.105
]
5]
N o~
E (7]
= € AL= 000175 sec | 3.6434
©“A
v U
E
N
o0 &
g < At=0.0015 sec 222177
o=
=]
2
=
o QL
Z = At=0.00075 sec | 5.7335
¥
EE
aal
1 6\
Sz
<228  At=0.0008 sec 10.325
a2
-
0 5 10 15 20 25
Elapsed Time, sec

Analysis Time Range = (-2 sec

*The closest displacement error to the selected maximum allowable displacement error seen from the
classical Noh-Bathe method in test runs when the used time increment is within the stability limit of the
classical Noh-Bathe method. For the classical Noh-Bathe method, the displacement error cannot be increased

by around 0.1% by increasing time increment due to the stability requirement of this method.
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Table 6.12 shows that in Model 1 when the target is the high accuracy level, around
0.02%, the fastest algorithm is the classical Noh-Bathe Method. To reach this high
accuracy level, algorithms with mass scaling require smaller time increments.
Moreover, the non-diagonal scaled mass matrix increases the computation time.
Therefore, both stabilized CD method with mass scaling (MS) and the Noh-Bathe
method with mass scaling (MS) are slower than the classical Noh-Bathe Method,

when high accuracy level is expected.

Table 6.13 shows that in Model 2 the target accuracy level is around ten times lower
than in Model 1, around 0.2%. When a relatively low accuracy level is selected in
Model 2, larger time increments can be used for the algorithms with mass scaling
and Chang’s method. The classical Noh-Bathe method cannot show the selected low
accuracy level since the time increment cannot be increased due to the stability
requirement of this method. When a lower accuracy level is preferred, the solution
times of the stabilized CD method and the Noh-Bathe method with mass scaling are

very close and the fastest.

Table 6.14 shows that Model 3 is the most refined model among created 3 models.
The accuracy change with increased time increment is seen more clearly in this
model. In Model 3, for the target accuracy level, the solution time is 5 times lower
than in Model 1. In the less refined model, Model 2, a similar accuracy level is seen
from all algorithms using the same time increment. However, in the more refined
model, Model 3, the selected accuracy level is reached in the stabilized CD method
with mass scaling using around 2.2 times larger time increment than the Noh-Bathe
method with mass scaling. Also, the selected accuracy level is seen in Chang’s
method by using around 1.9 times larger time increment than the Noh-Bathe method
with mass scaling. Similar to the results of Model 2, a larger time increment cannot
be utilized for the classical Noh-Bathe method for a lower accuracy level since the
time increment cannot be further increased due to the stability requirement of this
method. In Model 3, the stabilized CD method with mass scaling is the fastest

algorithm.
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6.4 Case Study 3: Moving Load on Three-Span Road Bridge

Figure 6.3 presents a three-span road bridge problem under 30 m/sec moving load

with a magnitude of 5 kN.

5kN
Al |
'.. "

0.4m s ¢ 20m o 20m 1 20m &

E = 32 GPa 10m 10m
p = 2400 kg/m3

' '%ﬁ ' ?m
Figure 6.3: Three-Span Road Bridge Problem

Table 6.15 presents the discretization of the three-span road bridge with quadrilateral
membranes. 2.5 m x 2.5 m quadrilateral elements are used to mesh the structure
model. The “node 30” is located at x = 32.5 m. Table 6.15 also shows the total
number of degrees of freedom, the system’s minimum and maximum natural
frequencies, and the maximum time increment for the accurate reference results,
which corresponds to the minimum period of the system over 10. This case study

aims to see the performance of algorithms in a real-life problem.
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Table 6.15 Discretization of Case Study 3

HEEEEE HEBEEE HEEEEE

3
P rx

Number of DOF 126
Womin 75.0825 rad/sec
Wmax 2917.6327  rad/sec
Tonin 2.15E-04 sec
Atax accurate = W

In Table 6.16, stability requirements for implemented explicit integration methods
are presented. The a value for the stabilized CD method with mass scaling (MS) is
calculated from the recommended equation (Soares & Grof3eholz, 2018). The
calculated a value is always between [0.0.25], meaning that the algorithm is stable
for all At. The critical time increment for Newmark’s explicit method and the Noh-
Bathe method are calculated and presented in Table 6.16. Chang’s method is

unconditionally stable.

Table 6.16 Stability Requirements of the Integration Methods in Case Study 3

Method Ateritical
Newmark's Explicit Method 6.85E-04 sec
The Stabilized CD Method (MS) * € [O'O'ZS]A' tsmble for all
Chang's Method Unconditionally Stable
The Noh-Bathe Method, p=0.54 1.28E-03sec

Table 6.16 shows that the critical time increment for the stability of the Noh-Bathe

method is approximately 1.9 times larger than Newmark’s explicit method.
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In Table 6.17, maximum displacements in the x direction at “node 30 observed
within the analyzed time range from all test runs are reported for all models. Table
6.17 also shows the corresponding time when the maximum displacement in the x
direction at “node 30 is observed, and the displacement error and phase difference
with respect to the accurate reference solution obtained from Newmark’s explicit

method. For the reference solution, the used time increment is At = 1 x 107° sec
S . . . Y
which is a smaller time step than the time step obtained from the rule of thumb, %

presented in Table 6.15. The displacement error is calculated by dividing the
difference between the obtained value and the reference value by the reference value,
taking the absolute of the ratio, and multiplying it by 100. The phase difference is
calculated by taking the absolute difference between the reference value and the
obtained value. The displacement response plots from all algorithms for all test runs

can be seen in Figure A.6 and Figure A.7 in Appendix A.

In this case study, Newmark’s explicit method is included in the performance
comparison. The high accuracy is the target, therefore, the tested time increments
within the stability of Newmark’s method. The time history analysis is performed on
the developed finite element analysis program between t equal to 0 and t equal to 2
sec. For the accuracy comparison, 13 test runs using different At values are
performed. The time increment used in the first test run is At = 1x10~>sec and the
used time increment is increased 1x10~5sec for each test run up to Test 10 and it is

increased 1x10 *sec between Test 11 and Test 13.
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Table 6.17 Accuracy Comparison of Algorithms from Case Study 3

Time Increment, | Max. Displacement,| Corresponding | Displacement |Phase Difference,
Method sec Time, sec Error, % sec
Newmark's Explicit(REF) 1.00E-05 2.0 1.7344 REFERENCE | REFERENCE
The Stabilized CD Method(MS) 1.00E-05 2.0 1.7344 0.005 0.00E+00
Test1 Chang's Method 1.00E-05 20 1.7344 0.010 0.00E+00
The Noh - Bathe Method 1.00E-05 2.0 1.7344 0.005 0.00E+00
Newmark's Explicit 2.00E-05 2.077 1.7344 0.005 0.00E+00
Test2 [The Stabilized CD Method(MS) 2.00E-05 2.077 1.7344 0.005 0.00E+00
Chang's Method 2.00E-05 207 1.7344 0.029 0.00E+00
The Noh - Bathe Method 2.00E-05 2.077 1.7344 0.005 0.00E+00
Newmark's Explicit 3.00E-05 2.0 1.7343 0.01% 1.00E-04
Test 3 [The Stabilized CD Method(MS) 3.00E-05 20 1.7343 0.019 1.00E-04
Chang's Method 3.00E-05 2.0 1.7345 0.058 1.00E-04
The Noh - Bathe Method 3.00E-05 20 1.7344 0.000 0.00E+00
Newmark's Explicit 4.00E-05 2.077 1.7343 0.034 1.00E-04
[The Stabilized CD Method(MS) 4.00E-05 2.077 1.7343 0.034 1.00E-04
Test4 Chang's Method 4.00E-05 207 1.7346 0111 2.00E-04
The Noh - Bathe Method 4.00E-05 2.077 1.7343 0.000 1.00E-04
Newmark's Explicit 5.00E-05 2.0 1.7342 0.058 2.00E-04
Test5 [The Stabilized CD Method(MS) 5.00E-05 20 1.7343 0.053 1.00E-04
Chang's Method 5.00E-05 2.0 1.7347 0.188 3.00E-04
The Noh - Bathe Method 5.00E-05 2.0 1.7343 0.005 1.00E-04
Newmark's Explicit 6.00E-05 2.0 1.7341 0.082 3.00E-04
Test6 [The Stabilized CD Method(MS) 6.00E-05 20 1.7342 0.072 2.00E-04
Chang's Method 6.00E-05 207 1.7333 0.111 1.10E-03
The Noh - Bathe Method 6.00E-05 2.077 1.7343 0.010 1.00E-04
Newmark's Explicit 7.00E-05 2.0 1.7340 0.101 4.00E-04
_ [The Stabilized CD Method(MS) 7.00E-05 20 1.7341 0.091 3.00E-04
Test7 Chang's Method 7.00E-05 2.0 1.7335 0.029 9.00E-04
The Noh - Bathe Method 7.00E-05 20 1.7342 0.014 2.00E-04
Newmark's Explicit 8.00E-05 2.07 1.7339 0.106 5.00E-04
Test§ The Stabilized CD Method(MS)  8.00E-05 2.07 1.2340 0.106 4.00E-04
Chang's Method 8.00E-05 2.07 1.7338 0.005 6.00E-04
The Noh - Bathe Method $.00E-05 207 17342 0.019 2.00E-04
Newmark's Explicit 9.00E-05 20 1.7338 0.091 6.00E-04
Test© [The Stabilized CD Method(MS) 9.00E-05 2.0 1.7338 0.106 6.00E-04
Chang's Method 9.00E-05 20 1.7339 0.029 5.00E-04
The Noh - Bathe Method 5.00E-05 20 1.79342 0.024 2.00E-04
Newmark's Explicit 1.00E-04 2.0782E-06 1.7336 0.053 8.00E-04
Test10  |Lhe Stabilized CD Method(MS) 1.00E-04 2.0791E-06 1.7338 0.096 6.00E-04
Chang's Method 1.00E-04 2.0768E-06 1.7340 0.014 4.00E-04
The Noh - Bathe Method 1.00E-04 2 0777E-06 1.7342 0.029 2.00E-04
Newmark's Explicit 2.00E-04 2.0799E-06 1.7330 0.135 1.40E-03
Tl The Stabilized CD MethodMS)  2.00E-04 2.0812E-06 1.7336 0.197 8.00E-04
Chang's Method 2.00E-04 2.0751E-06 1.7328 0.096 1.60E-03
The Noh - Bathe Method 2.00E-04 2.078BE-06 1.7338 0.082 6.00E-04
Newmark's Explicit 3.00E-04 2.0816E-06 1.7325 0217 1.90E-03
Test 12 [The Stabilized CD Method(MS) 3.00E-04 2.0797E-06 1.7334 0.125 1.00E-03
Chang's Method 3.00E-04 2.0825E-06 1.7337 0260 7.00E-04
The Noh - Bathe Method 3.00E-04 2.0792E-06 1.7337 0.101 7.00E-04
Newmark's Explicit 4.00E-04 2.0698E-06 1.7380 0351 3.60E-03
Test 13 The Stabilized CD MethodMS)  4.00E-04 2.0804E-06 1.7332 0.15% 1.20E-03
Chang's Method 4.00E-04 2.0840E-06 1.7340 0332 4.00E-04
The Noh - Bathe Method 4.00E-04 2.0797E-06 1.7332 0.125 1.20E-03

The solution time of algorithms is compared by using the largest possible time
increments that give closer maximum displacement error to the selected allowable
maximum displacement error. The analyzed time range is kept fixed for all

algorithms between 0-2 sec. The solution time comparison for case study 3 is
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presented in Table 6.18. In this case study, Newmark’s explicit method is also

included in the solution time comparison.

Table 6.18 Solution Time Comparison from Case Study 3

Max. Allowable Displacement Error 0.019 %
Method Increr[‘nllrerellft, sec Displal\c/[(:fl.ent, m Dlls*lll)'lriz)crirf’l/f:nt
The Stabilized CD (MS) 3.00E-05 2.0775E-06 0.019
Chang's Method 1.00E-04 2.0768E-06 0.014
The Noh-Bathe Method 8.00E-05 2.0775E-06 0.019
Newmark's Explicit 3.00E-05 2.0775E-06 0.019

At=0.00003 sec 1.9748

The
Stabilized
CD (MS)

Chang's
Method

At=0.00008 sec | 1.2581

The Noh -
Bathe
Method

At=0.00003 sec 4.9376

At=0.0001 sec
12581
|

Newmark's
Explicit

0 1 2 3 4 5 6
Elapsed Time, sec

Analysis Time Range = (-2 sec

Table 6.18 shows that the largest time increment used to obtain the selected accuracy
level is for Chang’s method, yet, the largest used time increment in this comparison
can make this algorithm faster than Newmark’s explicit method but not make it faster
than other methods. The selected accuracy level is a high-accuracy level and this

causes a smaller time step required for the stabilized CD method with mass scaling
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(MS) than the Noh-Bathe method. Consequently, the Noh-Bathe method is a faster
algorithm than the stabilized CD method for high accuracy level. Table 6.18 also
shows that a smaller time step is required for Newmark’s explicit method than the
Noh-Bathe method to achieve the same accuracy level. For the preferred accuracy
level, Newmark’s method is approximately 3.9 times slower than the Noh-Bathe

method.

6.5  Summary of Results

The summary of the solution times obtained from all case studies is presented in
Table 6.19. Table 6.19 shows that when a low level of accuracy is preferred (smaller
than 0.023%), the Noh-Bathe method is the fastest algorithm. When a higher
displacement error is required (smaller than 0.25%), the stabilized CD method is the

fastest algorithm.

Table 6.19 Summary of Solution Times

Solution Max. Allowable

Case Study Fastest Method R Displacement
Time, sec o
Error, %

Case Study 1 — Model 1 The Noh-Bathe Method 0.0079 0.000

Case Study 1 — Model 2 The Noh-Bathe Method 0.0182 0.006

Case Study 2 — Model 1 The Noh-Bathe Method 0.0152 0.023
The Stabilized CD (MS) 0.0852

Case Study 2 —Model 2 =~ e e 0.248
The Noh-Bathe Method (MS) 0.0826

Case Study 2 — Model 3 The Stabilized CD (MS) 3.6434 0.107

Case Study 3 The Noh-Bathe Method 1.2581 0.019
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The summary of the stability requirements obtained from all case studies is presented
in Table 6.20. Table 6.20 shows that the critical time increment for the stability of
the Noh-Bathe method is approximately 1.9 times larger than Newmark’s explicit
method in all case studies. Also for all case studies, Chang’s method is
unconditionally stable and the stabilized CD method is stable for all time increments
because the stability-related parameter, a, is calculated with suggested equation

(Soares & GroBeholz, 2018) and it is always between 0 and 0.25.

Table 6.20 Summary of Stability Requirements

Case Study Wmax> 1ad/sec At iticals S€C
Newmark's Explicit The Noh-Bathe
Method Method, p=0.54
Case Study 1 — Model 1 19945.09 1.00E-04 1.88E-04
Case Study 1 — Model 2 49888.35 4.01E-05 7.51E-05
Case Study 2 — Model 1 2256.67 8.86E-04 1.66E-03
Case Study 2 — Model 2 2436.77 8.21E-04 1.54E-03
Case Study 2 — Model 3 4932.57 4.05E-04 7.59E-04
Case Study 3 2917.63 6.85E-04 1.28E-03
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71

CONCLUSIONS AND FUTURE WORK

Conclusions

The main conclusions of this study within the view of the test cases examined are

summarized below:

The best performance in terms of solution time is observed in the Noh-Bathe
method when high-level accuracy is required for all the test cases. Although
the stabilized CD method with mass scaling and Chang’s method is stable for
large time increments, using larger time increments did not produce highly
accurate results. In fact, in the case studies, for the same level of accuracy,
the smaller time step is required for the stabilized CD method with mass
scaling when compared with the Noh-Bathe method.

The stability limit of the classical Noh-Bathe method can be increased with
mass scaling proposed by Soares & Grofleholz (2018). The classical Noh-
Bathe method gives highly accurate results within its stability limit. When a
low accuracy level is preferred, the Noh-Bathe method with mass scaling, the
stabilized CD method with mass scaling, and Chang’s method can be used
with larger time increments. The stabilized CD method is the fastest
algorithm for a low-accuracy target.

All algorithms are robust and have a consistent convergence rate. They all

produce acceptable results for different types of structures and loading cases.
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7.2 Future Work

In this study, the solution algorithms are implemented in a way to simulate the
nonlinear solution procedure by including terms with stiffness matrix into the time
stepping loop. This approach gave an idea about the solution methods in terms of
solution times in the case of a nonlinear problem where the stiffness matrix has to be

updated at each time step.

Solution accuracy and the range of stability of the methods can change when the
problem is nonlinear. Chang’s method is unconditionally stable with only a certain
degree of nonlinearity (Chang, 2010). To compare all methods, actual nonlinear
benchmark problems should be analyzed in terms of accuracy and stability in

nonlinear cases.
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A. Appendix - Displacement Response Plots

Displacement Responses of Case Study 1 - Model 1 are presented in Figure A.1.
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Figure A.1 Displacement Responses of the Case Study 1 - Model 1
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Displacement Responses of Case Study 1 - Model 2 are presented in Figure A.2.
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Figure A.2 Displacement Responses of the Case Study 1 - Model 2
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Displacement Responses of Case Study 2 - Model 1 are presented in Figure A.3.
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Figure A.3 Displacement Responses of the Case Study 2 - Model 1
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Displacement Responses of Case Study 2 - Model 2 are presented in Figure A .4.

-8 -8
%10 Test1 %10 Test2
4.32 T T T 4.32 - : .
- Newmark's Explicit Method At = 0.0001 sec
y =
Newmark's Explici Method £t = 0.0001 sec The Stabilized CD Method(MS) At = 0.00025 sec
The Stabilized CD Method(MS) At = 0.0001 sec The Noh-Bathe Method(MS) At = 0.00025 sec
£ 43 The Noh-Bathe Method(MS) At = 0.0001 sec € 431 _ The Noh-Bathe Method At = 0 0002'5 oo
- == == The Noh-Bathe Method At = 0.0001 sec B | R— Chang's Method At = 0 00025.sec:
% -------- Chang's Method At = 0.0001 sec % 9 .
£ £
g 4.28 .3 A !“ e 4.28
g ANAYAWS g
g A TRAYAW: 2
0426 ‘f i Y] tF 8426t .,
A BNAY A, i
apal ¥ | _ i E N | .
0.46 0.48 0.5 0.52 0.54 046 048 0.5 0.52 0.54
Time, sec Time, sec
8 -8
%10 Test 3 =10 Test 4
4.32 T T T 4.32
; — — Newmark's Explicit Method At = 0.0001 sec
Newmark's Explicit Method At = 0.0001 sec The Stabilized CD Method(MS) At = 0.00075 sec
The Stabilized CD Method(MS) At = 0.0005 sec The Noh-Bathe Method(MS) At = 0.00075 sec
4.3 The Noh-Bathe Method(MS) At = 0.0005 sec 43 e — The Noh-Bathe Method At = 0.00075 sec
== == The Noh-Bathe Method At=0.0005sec | | = 45 ||liceeesss Chang's Method At = 0.00075 sec
-------- Chang's Method At = 0.0005 sec -

Displacement, m
.
2~}

[==}
Displacement, m
s
[
©

4.24
0.48 046 048 0.5 0.52 0.54
Time, sec Time, sec
-8 -8
%10 Test5 %10 Test6
4.32 4.32
Newmark's Explicit Method At = 0.0001 sec Newmark's Explicit Method At = 0.0001 sec
The Stabilized CD Method(MS) At = 0.001 sec The Stabilized CD Method(MS) At = 0.0025 sec
£ 43¢ The Noh-Bathe Method(MS) At = 0.001 sec £ 43 The Noh-Bathe Method(MS) At = 0.0025 sec 1
.E" == = The Noh-Bathe Method At =0.001 sec .E" """" Chang's Method At = 0.0025 sec
8 & ”
3 @ 4281 Tl i
s} &1 . .t
g & 5 \i f‘ [\\ :
a @ i W 3%
(=] 0 426 F HAk Vi EF]
f\ [ oM
424 15 ‘

0.48 0.5 - 0.46 0.48 0.5
Time, sec Time, sec

Figure A.4 Displacement Responses of the Case Study 2 - Model 2
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Displacement Responses of Case Study 2 - Model 3 are presented in Figure A.S.
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54



Displacement Responses of Case Study 3 are presented in Figure A.6.
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Displacement Responses of Case Study 3 are presented in Figure A.7.
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Figure A.7 Displacement Responses of the Case Study 3 — B

87



	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Problem Definition
	1.2 Related Work
	1.3 Objective and Scope
	1.4 Thesis Outline

	2 EXPLICIT INTEGRATION METHODS
	2.1 Introduction
	2.2 Time History Analysis
	2.3 Numerical Integration
	2.3.1 Newmark’s Explicit Integration Method
	2.3.2 The Noh-Bathe Method
	2.3.3 Chang’s Method

	2.4 Stability Limits of the Explicit Integration Methods
	2.4.1 Newmark’s Explicit Method
	2.4.2 The Noh-Bathe Method
	2.4.3 Chang’s Method


	3 MASS SCALING
	3.1 Introduction
	3.2 Mass Scaling
	3.2.1 The Stabilized Central Difference Method with Mass Scaling (MS)
	3.2.2 Stability Limit of the Stabilized Central Difference Method with Mass Modification


	4 IMPLEMENTATION
	4.1 Introduction
	4.2 Time History Analysis
	4.2.1 Newmark’s Explicit Method
	4.2.2 The Noh-Bathe Method
	4.2.3 Chang’s Method
	4.2.4 The Stabilized Central Difference Method with Mass Scaling (MS)
	4.2.5 The Noh-Bathe Method with Mass Scaling (MS)

	4.3 Finite Element Library
	4.3.1 2D Frame Element
	4.3.2 Incompatible Membrane Element
	4.3.3 Brick Element


	5 VERIFICATION PROBLEMS
	5.1 Introduction
	5.2 SDOF Problem
	5.2.1 Undamped System
	5.2.2 Damped System

	5.3 Frame Under Impulse Loading
	5.4 Convergence Rate of Algorithms
	5.5 Summary of Results

	6 CASE STUDIES
	6.1 Introduction
	6.2 Case Study 1: Simple Cantilever Under Vertical Impulse
	6.3 Case Study 2: Clamped 3D Solid
	6.4 Case Study 3: Moving Load on Three-Span Road Bridge
	6.5 Summary of Results

	7 CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future Work

	REFERENCES
	A. Appendix - Displacement Response Plots




