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ABSTRACT

EXPLAINABLE RECOMMENDATIONS USING EXTRACTED TOPICS
FROM ITEM REVIEWS AND WORD MATCHING

Tunç, Mert

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Hande Alemdar

August 2022, 83 pages

Explanation in the recommendations is a crucial aspect in many applications to share

reasoning and context with the users in addition to the recommended item. In this the-

sis, an innovative method for generating explainable recommendations is designed,

implemented, and tested. The proposed design consists of extracting some phrases

from the user’s written review texts, assigning them to the users as preferences and

items as their features, and then generating recommendations using the similarities

between these assigned phrases. In such a design, since the recommendations are

made using phrases that are understandable by people, the exact same phrases can

be used to explain the reasoning behind the recommendations. Not many studies,

however, uses keyword extraction techniques and word vectorizers to generate rec-

ommendations. Due to the lack of work in the area, it is decided to study such an al-

gorithm that use keyword extraction and word vectorizers to uncover its capabilities.

To evaluate the proposed recommender design, alongside of calculating numerical

results for the quality of the recommender, a user study with 15 people is conducted.

These experiments showed that people like 55% of the recommendations generated

by the proposed method, while 58% of the explanations for the recommended items

are found meaningful.

v



Keywords: explainable recommendations, explainable machine learning, topic ex-

traction, KeyBERT, Yake

vi



ÖZ

AÇIKLAMALI ÖNERİLERİN KULLANICI YORUMLARINDAN
ÇIKARSANAN KELİMELER VE KELİME EŞLEME İLE ÜRETİMİ

Tunç, Mert

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Hande Alemdar

Ağustos 2022 , 83 sayfa

Ürün önerileri için sunulan açıklamalar, önerilen öğenın yanında kullanıcılarla ürün

ile ilgili ek bilgi sağlayan ve önerinin anlamlı bulunmasını sağlayan bir husustur. Bu

tezde, açıklanabilir ürün önerileri üretmek için yenilikçi bir yöntem tasarlanmış, uy-

gulanmış ve test edilmiştir. Önerilen tasarım, kullanıcı tarafından yazılan inceleme

metinlerinden bazı ifadelerin seçilmesi, bu ifadelerin kullanıcılara tercih, öğelere ise

özellikler olarak atanmasından, sonrasında bu atanan ifadelerin yakınlık değerleri kul-

lanılarak öneriler ve açıklamalar üretmeyi amaçlıyor. Bu tezde sunulan tasarımda,

ürün önerileri insanlar için anlaşılabilir kelime grupları üzerinden oluşturulduğundan,

yapılan önerileri açıklamak için aynı kelime gruplarını kullanmak da mümkün oluyor.

Öneri oluşturmak için anahtar kelime çıkarma tekniklerini ve kelime vektörleştirici-

lerini kullanan çok fazla çalışma yoktu, bu nedenle bu tezde bu teknikleri kullanan

bir algoritma ile çalışma yapılmak istendi. Bu tezde üzerinde çalışılan algoritmayı

değerlendirmek için, sayısal sonuçların hesaplanmasının yanı sıra 15 kişi ile kullanıcı

çalışması yapıldı. Bu deneyler, önerilen tasarım ile üretilen tavsiyelerin %55 kada-

rının insanlar tarafından beğenildiğini ve önerilen öğeler için yapılan açıklamaların

%58 kadarının anlamlı bulunduğunu göstermiştir.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

The trust built in the recommendations mainly depends on how well the user agrees

with the recommended items deserve to be recommended to them. That is, the qual-

ity of the recommendations is dependent on how well users can understand the given

decision to generate a specific recommendation. In this thesis, we experiment with

ways to generate recommendations to the users and, in addition to the recommenda-

tions themselves, we try to create a model that serves the reasons for its decisions to

the user by using some explanation words. This will hopefully contribute to the user’s

understanding of why the recommendations are made, which will increase the trust

on the recommender. [1] [2]

The primary motivation for this work is to extend and contribute to the literature by

studying a novel method for generating explainable recommendations using keyword

extraction and word matching techniques. More specifically, the objective is to ex-

periment with a recommender that uses text mining to gather information about the

users and the items and generate recommendations solely based on these features.

The proposed recommendation pipeline is designed to fetch the "keywords," which

will be the n-grams that can represent the users’ review texts best and combine them

to create profiles for both users and items. These profiles consisting set of n-grams are

then used for calculating similarities between users and items. The causes of these

similarities will also be served to the users as the explanations of why the specific

item is recommended since the the n-gram phrases that form the user and item pro-
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files are meaningful and understandable for humans.

To set an acceptable boundary for this thesis, no additional information for generat-

ing recommendations has been used, including the collaborative filtering algorithms.

This also allows evaluating the technique adequately since performance of it will be

solely based on the user review texts and user ratings.

We expect our recommendation pipeline to perform worse compared to the state-of-

the-art recommendation models since we will be using reduced information while

generating the recommendations. The loss of information compared to many state-

of-the-art models is due to the fact that the information we use is in a form that is

understandable by humans, contrary to mostly used latent factor representations. The

advantage of using such a representation will be the ability to serve the reasoning

behind why specific recommendations are offered to the users.

1.2 Contributions and Novelties

During this study, following contributions are proposed to the literature:

• At the time of the writing, there is no example of using keyword extraction

algorithms that we proposed to use for the generation of explainable recom-

mendations even though some similar efforts are shared. These include using

attention based models combined with sentiment analysis to similarly capture

what users liked or disliked about an item, or some Latent Dirichlet allocation

[3] based enhancements over classical recommenders to have some topics to

explain the recommendations.

• It is not common to use the exact same information for the generation of the

recommendation and the explanations in the literature. Instead, the information

used for explaining the recommendations are either a part of the recommender,

or used to explain the already generated recommendations. In our recommen-

2



dation pipeline, we utilize the exact same information for generating recom-

mendations and explanations.

• The algorithm we employed for filtering the generated keywords for the user

and item features is also novel, at least in the domain of the recommendations.

We simply compare the commonities of the words in our corpus of review text

with the word commonities in the English language, measured in a domain

agnostic way. We then filter the words that are meaningful in our domain by

checking if they are not that common in English.

• We use word vectorizers to match user and item feature words in this thesis and

these strategies are not widely used in the domain of recommendations. Still,

we can find some related works such as [4] and [5].

1.3 The Outline of the Thesis

In chapter 2, a literature review about generating explainable recommendations utiliz-

ing the user written review texts is presented. It is selected to follow a categorization

based on the underlying method for generating recommendations. All of the studies

selected for the literature review are also able to serve the explanations for their rec-

ommendations.

Following the literature review, the methodology of the proposed algorithm for gen-

erating explainable recommendations using keyword extraction on item reviews is

shared in detail in chapter 3. This chapter contains all parts of the pipeline supported

with some pseudo-codes, figures, and discussions around the decisions made.

In the chapter 4, alternative approaches and their effects on the pipeline steps have

been shared. The reasoning between the selection of the possible approaches has

been discussed and selected in light of the shared numerical studies. In this section,

the setup and results of the conducted user studies are also shared.

3



Considering all the work and the results gathered in chapter 4, discussion around the

validity of the proposed algorithm, its performance, and the takeaways have been

revealed in the chapter 5. In addition to these final notes, some ideas for future im-

provements on the success of the pipeline is also shared.
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CHAPTER 2

LITERATURE REVIEW

Above all categorization on how the recommender model is built, there are two ways

to generate explanations for the recommender systems: model-intrinsic and post-hoc

(also called model agnostic) strategies.

In the model-intrinsic explanations, the explanation is partially or solely the answer

of why the specific recommendation is made since the recommender is directly based

on the information shared by the explanation. In the latter case with the model agnos-

tic strategies, explanations are generated after the recommendation is made [6].

In this section, selected works from the literature that leverage user written review

texts for generation of the explanations of the recommended items are presented. We

group the literature by the family of the algorithm that the recommender and the

explanations is based on.

2.1 Latent factors based explainable recommendation models

Models that are based on predicting latent factors for generating recommendations is

the most popular family of algorithms because of their success on achieving high ac-

curacies. The challenge of creating explainable recommendations using these family

of algorithms is that they are working on latent features, meaning that the information

they use to recommend items does not have any meaning that we can directly infer

and thus serve to the users.
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To overcome this difficulty, some researchers such as Zhang et al. [7] introduced mod-

ifications that is also similar to what we propose; adding features that can be used in

explanation of the item to the recommendation features. In their work, these features

are extracted from free-format review texts via grammatical and morphological analy-

sis tools and tagged as positive or negative with sentiment analysis algorithms. These

features then converted into latent factors and used in the recommender. The similar

idea is further improved by a pipeline that is able frequently update the "aspects" that

have an influence on the user’s opinions on the items, as the authors of similar works

Zhang et al. [8] and Bauman et al. [9] stated.

There are some studies about detecting attention over the review text and generate

features that matters for the user. In the work of Chen et al. [10], these features are

also given to a latent factor based model, while in the proposal paper of Donkers et

al. [11], this idea is presented as a way to generate explanations to the users after

generating the recommendations.

In the articles above, the explanations were semi model-intrinsic, meaning that the

recommender models were fed with a subset of model features to enable the explana-

tions, but still there were other input features to the models that were not explained

with the recommended item.

2.2 Deep Learning based explainable recommendation models

In the scope of this thesis, no deep learning based solution is proposed but still, there

are some attention based approaches on deep learning based recommenders that are

somewhat related with the proposed strategy of keyword extraction.

In the work of Seo et al. [12] and Wu et al. [13], they used an attention based ap-

proach to gather the information and parts of the review texts for the items which are

the most influential for the ratings given to the item. Having the latent representations

of these for both items and users, they match the items with the users to generate rec-

ommendations. To serve the explanations for their recommendations, they highlight

6



the output of the attention model on the review texts given for the item.

2.3 Topic modeling based explainable recommendation models

In the work of Wu et al. [14], similar to what Zhang et al. [7], Zhang et al. [8] and

Bauman et al. [9] did, they tried to capture the user’s opinions about some aspects on

the domain. After having the aspects of the items and the opinions of the users about

these aspects, they used collaborative filtering to generate recommendations for the

users and using the item properties as some form of the explanation about the recom-

mended item.

In another work, done on the paper of McAuley et al. [15], their Matrix Factoriza-

tion [16] based model is supported with generated topics using LDA [3]. LDA is a

technique that generates and assigns some topics to the given document set. In the

paper, authors promptly state that using the assigned topics of the review texts during

the recommendation generation also improves the performance of the recommender

especially for the users with few reviews. They claim that the output of the LDA’s

generated topics are clean and easily interpretable so the recommendations can also

be explained with these topics if the topics are named manually beforehand.

2.4 Graph based explainable recommendation models

The problem that recommendation algorithms are trying to solve are widely thought

as graphs to have a better understanding over the modeling and for the ability to ac-

cess huge literature beyond the graph related problems [17].

In this work, even though we do not employ any graph based approach, some related

methodologies using similar techniques that are used in our proposed recommenda-

tion pipeline are found.

One of such works are presented by He et al. [18]. In their work, in addition to mod-

elling the recommendation problem as a knowledge graph, they also proposed using

7



extracted aspects to be able to generate explanations and better recommendations us-

ing collaborative filtering based methods. They extract the aspects for the users and

items from a sentiment based approach, and mention that they have also applied fil-

tering to the aspects that they gathered from the aspect extractor by the TF-IDF values

for the aspects. These aspects are then integrated to the knowledge graph and used to

serve explanations while generating recommendations.

In the work presented by Suzuki et al. [19], they similarly integrated item aspects

extracted from the review texts of the users to their knowledge graph for the ability

of explaining the generated recommendations. In their work, they define a predefined

set of categories and employ an algorithm called LARA [20] to fetch the opinionated

review texts about these aspects.

2.5 Model Agnostic models to explain recommendations

One exemplary work for generating post-hoc explanations, after recommendations

are made, through a MF based algorithm is presented on Abdollahi et al. [21]. In

this work, the authors mention a MF based recommender combined with a CF based

explanation generator as a way of achieving high accuracies on the recommendations

while being able to make some explanations. Different than the others, their expla-

nations are not based on the review text, and only give explanations on how other

similar users rated the recommended item. A very similar idea of using CF tech-

niques to explain the recommendations are presented by Heckel et al. [22] for their

knowledge-graph based recommender.

Donkers et al. [11] presents a noteworthy idea to generate explanations to the users

after generating the recommendations using an attention based text analysis model.

In their paper, researchers mention that a separate explanation model can be placed to

work with a recommender to explain the recommendations.
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CHAPTER 3

GENERATING EXPLAINABLE RECOMMENDATIONS USING

KEYWORD EXTRACTION FROM REVIEW TEXTS

In this thesis, we have designed and experimented with a recommender that can gen-

erate model-intrinsic explanations using keyword extraction and word vectorization.

For generating the recommendations, our proposed algorithm solely depends on the

features that are in the form of n-grams. Since these features are already in a form

that is understandable by humans, they can also be served with recommended items

as their explanations. As a direct consequence, the explanations generated for a rec-

ommended item directly reflects why that item is recommended to the user.

In the proposed algorithm for generating explainable recommendations using key-

word extraction from review texts, features of the recommender are generated us-

ing well known keyword extraction algorithms. Then, using word vectorizers, the

strengths of relations between users and items can be calculated, and the recommen-

dations are made based on the strengths of these matches.

In a way, our method can be viewed as a content-based recommendation algorithm,

but unlike many content-based recommendation algorithms,

• the content that the recommendations are generated based on is also mined from

the review texts in an unsupervised manner.

• we calculate and use a similarity distance between users and items, instead of

expecting an exact content match.
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3.1 An overview of the proposed algorithm

Figure 3.1: Proposed recommendation pipeline’s outline is illustrated. In each step,

the description of the step is given with the state of the flowing data.

3.2 Formal definition of the proposed algorithm

The input of the recommendation pipeline is a vector of (Ui, Ij, rij, Rij) where

• Ui is the distinctive user id

• Ii is the distinctive item id

• rij is the rating user Ui gave to item Ij on a scale of [1, 5]
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• Rij is the free format text, English review that user Ui has written to the item Ij

There are two outputs of the recommendation pipeline, with more focus being put on

the latter one in the scope of this thesis:

• Predicting if a given Ui liked an item Ij based on the information rik’s and Rik’s

given by the user Ui to any item Ik (other than Ij), and Rmj’s written to Ij by

any user Um (other than Ui).

• If the recommender decides to recommend item Ij to user Ui, explaining the

recommendation using Rix’s of user Ui and Ryj’s of item Ii.

Please note that the steps for generating these two different bits of information are the

same until the very end of the proposed pipeline.

In this section, the proposed pipeline will be discussed with the best options. Detailed

reports on the hyper-parameter optimizations and algorithms selections can be found

under chapter 4.

3.3 Keyword extraction from the user reviews

As the first step of the pipeline, the review texts, Rij’s, are converted to summarizing

phrases by keyword extraction algorithms. At the end of this step, we will have a

mapping from each review text Rij to its generated keywords, Kij . Extracted key-

words from the free format English texts will be stored as n-grams.

The generated set of K’s are then affiliated with the items as the items’ aspects and

affiliated with the users along with the rating given together with the review text as

the users’ interests. By affiliating users with the extracted keywords together with

their rating for the review, we aim to be able to distinguish between the aspects users

would like or not.

In this thesis, we have experimented with three different methods for extracting sum-

marized information from free format English texts: KeyBERT [23], Yake [24] [25]
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[26] and TF-IDF. These algorithms are fed with the texts of item reviews given by the

users and generate keywords of these texts.

3.3.1 KeyBERT

KeyBERT is a model built on top of Google’s well-known BERT model to generate

text summarization. It uses a small and pretrained version of the BERT encoder.

Internally, KeyBERT tries to find the n-grams that can be used to summarize the given

full text by creating a vector encoding of each n-gram in the text via BERT. It assumes

that the document can be represented as an average of these vectors. This average is

then compared with the individual BERT encodings of each of the n-grams of the

text. The most similar ones are expected to be the summary of the given text. [27]

3.3.2 Yake!

Yake is a model that relies on the statistical features extracted from texts. It is signif-

icantly faster compared to KeyBERT and serves better or equal extracted keywords

and overall performance according to the experiments we have conducted.

Yake is adopting a more classical approach for generating the keywords of the sen-

tences by employing a rating that is based on the structure of the sentences, term

frequencies, and co-occurrences.[24]

3.3.3 TF-IDF

TF-IDF is a classical algorithm for extracting keywords from a given corpus. TF-IDF

is used as a baseline algorithm, and it is observed that using KeyBERT or Yake! out-

performs the TF-IDF on keyword extraction.

In the Table 3.1, the outputs of KeyBERT and Yake, when given the abstract of this

thesis, is shared for demonstration purposes

At the end of the stage of keyword extraction, we have the extracted phrases from
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Table 3.1: Key phrases extracted from the abstract of this thesis using KeyBERT and

Yake with n-gram lengths limited to 1 and 2

Keyword Extractor n of n-grams Extracted Keywords

KeyBERT 1 recommender, recommendations, vectoriz-

ers, phrases, explanations, keyword, review,

liked

KeyBERT 2 recommender generate, generate recom-

mendations, generating recommendations,

explainable recommendations, recommen-

dations using, explanation recommenda-

tions, recommender user, recommender per-

forms

Yake 1 recommendations, phrases, reasoning, de-

sign, users, user, study, recommender

Yake 2 recommendations, important aspect, mar-

ketplace applications, phrases, share reason-

ing, generating recommendations, explain-

able recommendations, generate recommen-

dations

each review text in the training dataset.

3.4 Preparation for Similarity Calculation

3.4.1 Rearranging the user interests and item features

As a preparation for the match distance calculation using the extracted keywords, the

format of the data is rearranged for users and items. A list of the aspects of each item

is stored, while a map is stored for each user. The maps of users store the keywords

per the rating of the review that keyword is extracted. This way, we aim to distin-

guish between the preferable and non-preferable features for the users. In this step,

13



the features of the items with more than 40 elements are trimmed after these features

are sorted according to the returned confidence scores from the keyword extraction

algorithms. Main purpose of trimming features to have at most 40 elements is to re-

duce the training and test times of the recommendation pipeline. More discussion on

the required time for these operations are shared in the chapter 4.

These rearranged structures will be referred as the profiles of the users and items. The

profiles will be consisting of the extracted keywords in the forms of n-grams, struc-

tured as demonstrated in the algorithm 1.

Algorithm 1 Rearranging the user interests and item features
1: procedure REARRANGE_KEYWORDS(List < U, I, r, List < K >> ds)

2: user_interests←Map < U,Map < r, List < K >>>

3: item_aspects←Map < Item,List < K >>

4:

5: for row ← ds.rows do

6: Ui ← row.user

7: Ii ← row.item

8: ri ← row.rating

9: Ki ← row.keywords

10:

11: user_interests[Ui][ri].append(Ki)

12: item_aspects[Ii].append(Ki)

13:

14: .Trim user and item features to have at most 40 items

15: end for

16: return user_interests, item_features

17: end procedure

3.4.2 Selection of eligible words for explanation

Another critical step before calculating the match distances between items and users

is to eliminate the words from the calculation that carries little to no meaning in our
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domain. Since the recommender shouldn’t decide in accordance to words that carries

no information in our domain, we filter these words that are gathered from the key-

word extraction algorithms.

We observed that the meaningful words for a domain consist of the words that are

common on that domain but not common in the overall language.

This observation relies on the following sub-parts:

• Very common words hold no information. They are either too general, such as

"good" or stop words, such as "to"

• Very uncommon words hold information that we cannot utilize, such as "cac-

tus" (In an unrelated domain such as album recommendations), or some words

with typos such as "progvessive"

• Some somewhat-common English words still create some issues since they are

not common in our corpus and not meaningful in our domain. It would be

absurd to explain the recommendations in the music domain with the words

such as "keep" or "water."

These cases are demonstrated in the Figure 3.2.

To decide the thresholds for common and uncommon, two percentiles are tuned man-

ually for both the word frequency distribution on the training set corpus and the En-

glish language word frequency database [28].

Manually tuned percentiles are

• 97%+ words on the English language word frequency database is considered as

"common."

• 98%+ words on our training user reviews corpus are considered as "common."

Possible future work for improvements on the proposed approach are discussed in the

chapter 5
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Figure 3.2: An example of Venn diagram demonstrates some sample words by their

frequencies in English and our corpus on music album reviews. In this diagram,

the area representing the common words in the dataset that is not contained by the

common words in English denotes the words that are eligible for using in recommen-

dations and explanations.

3.5 Word Vectorizer

To derive the recommendations and the explanations, the pipeline requires a compo-

nent to numerically evaluate the strengths of the matches between the users and the

items. For this purpose, word vectorization techniques over the generated keywords

and cosine similarity over the encodings of the extracted phrases are used in the pro-

posed pipeline.

It is important to note that since the recommendations will be made directly over the

keyword similarities between users and items, the explanation step becomes trivial

when we score the similarities between item aspects and user interests. While reduc-
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ing the qualities of the recommendations (since we restrict ourselves to a finite subset

of human readable n-grams for each text), we gain the ability to perfectly explain the

reasons for the recommendations made by the proposed model.

In the following subsections, alternatives for the word vectorizers that are evaluated

during this work are briefly shared.

3.5.1 word2vec

Word2vec [29] is a model that uses neural networks to learn the associative relations

between the words in a corpus to map the words to vectors. These vectors, then, can

be used to encode the words.

Word2vec uses local statistics and co-occurrences of the words to adjust the encodings

of the words [29].

3.5.2 GloVe

GloVe is, similarly, an algorithm to generate vector encodings for words so that the

generated encoding vectors will have some linear properties.

Different from the word2vec, GloVe additionally uses global co-occurrence statistics

as well as still employing local co-occurrence statistics to generate the representations

of the n-grams [30].

In this work, instead of using transfer learning techniques on pre-trained word vector-

izer models, another model has been trained on the dataset to be used as a "fallback"

model in case the pre-trained model does not include the specific words in its corpus.

The pre-trained word vectorizer model is trained over the whole corpus instead of the

extracted keywords because of the word vectorizers’ context aware nature.

Transfer learning over the pre-trained versions of both word2vec and GloVe is pos-

sible, but you would need to have the internal model parameters, and these were not

provided with most of the pre-trained models found online. Instead of investing time
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on applying transfer learning over the pre-trained models, we have decided to im-

plement a strategy to fall back to the model that is trained from scratch considering

the very low rate of fallbacks and the small difference on the accuracies between the

model that is trained over our corpus and the pre-trained models.

For calculating the effect of using a fallback model instead of applying transfer learn-

ing techniques, the rates of the fallback are calculated. The rate of requiring the

fallback model was 0.64% in the dataset that is being used. This is the ratio of a

word encountered during the test phase of the algorithm that couldn’t be found on the

pre-trained models but found in the model I trained over the training set. Also, the

percentage of the cases in which the words on the test set couldn’t be found on either

the pre-trained model or our fallback model was 0.64%.

In the case when there is a representation of a word on the model I trained while

there is none in the pre-trained model, the loss in the accuracy is equal to the differ-

ence between the accuracy of my model and the pre-trained model. The effect of this

difference is negligible especially considering the very small percentage of the case

occurrence and the slight accuracy difference between the accuracy of the model I

trained and the pre-trained model.

For the selection of the word vectorizer algorithm, the effect of the selection to the

precision score of the recommender is calculated during the experiments. In these

experiments, it is observed that there is no significant difference between using Glove

or Word2Vec. In the presented state of this work, GloVe vectors are used as the word

vectorizer as an arbitrary choice.

It is worth noting that not using transfer learning techniques on the pre-trained word

vectorizers also hurt the performance of these models in a general sense since the

dataset we use has different dynamics of the words then the datasets that these models

are trained on. This discrepancy can be solved either with using a context aware word

vectorizer such as BERT [31], or fine-tuning the pre-trained models we use over our

dataset. These improvements are left as a future work and discussed in chapter 5.
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3.6 Match Distance Calculation

Algorithm 2 Match Distance Calculation - Mean of All
1: procedure MATCH DISTANCE(Ui, Ij)

2: X ← []

3: positive_interests← [] . Positive means keywords of R with r >= 4

4: negative_interests← []

5: item_aspects← []

6:

7: temp_distances← []

8: for positive_interest← positive_interests do

9: for item_aspect← item_aspects do

10: pair_dist← word2vec.dist(positive_interest, item_aspect)

11: temp_distances.append(pair_dist)

12: end for

13: end for

14: X[0]← mean(temp_distances)

15:

16: temp_distances← []

17: for negative_interest← negative_interests do

18: for item_aspect← item_aspects do

19: pair_dist← word2vec.dist(negative_interest, item_aspect)

20: temp_distances.append(pair_dist)

21: end for

22: end for

23: X[1]← mean(temp_distances)

24:

25: return X

26: end procedure
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Match distance calculation can be seen as the core of the proposed pipeline. In a

sense, all of the steps before the distance calculation has been done as a preparation

for having the ability to numerically evaluate the strength of a match between given

(Ui, Ij) pair.

As an output, the match distance calculation procedure produces a vector of two num-

bers for the relatedness of the item’s aspects to the positive and negative interests of

the user.

The returned vectors will form the features of the ML algorithm and will be used to

predict the user’s opinion on the given item.

Algorithm 2, named Mean of All, introduces the best performing distance function ac-

cording to the numerical comparisons made in the chapter 4. The proposed algorithm

compares each of the user’s interests with each of the item’s features via the cosine

similarity function provided by the word vectorizers. Recall that the profiles of users

and items are consist of n-grams generated through keyword extraction algorithms.

As drafted in the algorithm 2, taking the mean distances of all the preferences of the

user with all aspects of item provided the best results with a high significance com-

pared to the other algorithms we test. Experiments with the algorithms considering

a subset of these matches shown significant performance losses on precision of the

predictions of ML model.

More details on the selection of the distance function are shared in section 4.

3.7 Predicting user’s opinion on items based on the interest similarity vector

To map the similarity vectors to the recommendation predictions, we train a simple

ML model to act as a recommender.

The recommender is an ML model that needs to map two numeric values in the range

[0, 1] to {0, 1}. Outputs of the model is used as a signal for the pipeline to decide if

the item should be recommended or not, so the output 1 means that the item should

be recommended to the user.
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Figure 3.3: Mapping that the recommender should learn from. A good distance func-

tion is expected to generate distances that can be linearly relatable with the labels of

the recommender.

As it is demonstrated in Figure 3.3, there is a linear relationship between the outputs

of the distance function and the probability of a user liking an item. In the recom-

mender, in addition to the match distances of the user’s positive preferences with the

items’ aspects, we also use the match distances of the user’s negative preferences with

the item’s aspects. So the model is expected to learn the relation between the features

and the labels where the features are linearly correlated with the labels.

The best performing model for the described task was a Support Vector Machine

optimized for high precision on the positive label for the "recommend" signal. The

requirement for high precision on the positive values comes from the nature of gener-

ating recommendations. There is high toleration for predicting false negatives when

recommending items but much less tolerance for predicting false positives. Aiming

for high precision reduce the recall of the model and cause recommender to recom-

mend less items as a side effect. This is not an important concern when generating

recommendations.

Optimization of the prediction thresholds for achieving high precision on the positive

label is shared in detail in the chapter 4.

21



3.8 Generation of Explanations

For the generation of explanations, a slightly modified version of the match distance

calculation algorithm is used, which outputs similar user interests with corresponding

item aspects instead of returning the mean similarities between user’s positive and

negative preferences with the item’s features.

Algorithm 3 Generation of Explanations
1: procedure GENERATE EXPLANATIONS FOR A MATCH(Ui, Ij, k)

2: dists← []

3: for interest, rating ← Ui.interests do

4: if rating ≥ 4 then

5: for aspect← Ij.aspects if eligible_world(aspect) do

6: dists.append( tuple(cos(interest, aspect), interest, aspect) )

7: end for

8: end if

9: end for

10:

11: explanations← []

12: dists.sort()

13: while len(explanations) < k and len(dists) > 0 do

14: relation← dists.pop()

15: if relation.aspect not in explanations then

16: explanations.append( relation.aspect )

17: end if

18: end while

19: return explanations

20: end procedure

For demonstrating the strategy we employ for generating explanations, algorithm 3 is

shared. In this proposed algorithm, each of the distances between the user’s interests

and item’s features are calculated and saved for all pairs in a list together with user’s

interest and item’s feature. After this list is built, algorithm selects the smallest k
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distinct elements, and these are served to the user with the recommended item.

In the presented state of the work, k on the algorithm 3 is set to four.

3.9 Discussion on proposed pipeline

3.9.1 An example recommendation and explanation

In Figure 3.4, user has written reviews to Albums 1 and 2. The keyword extractor has

selected a set of 1-grams from these reviews, which includes the words relaxing and

interesting. Due to the similarity between the full set of n-grams that are extracted

from the user’s reviews and Album 3’s extracted n-grams, using the Mean of All dis-

tance calculation strategy, the recommender decides to recommend Album 3 to the

Test User.

After a recommend signal is generated via the recommender explained in the sec-

tion 3.7, an explanation for this recommendation is generated using the most similar

words of the user’s set of n-grams and the item’s set of n-grams.

The most similar words found in item’s n-grams are relaxing and enjoyable. These

words are used to explain why the item is recommended to the user.

3.9.2 Discussion on the performance of the proposed solution for generating

explanations

The proposed solution has some strong characteristics as well as some weak ones.

The generation of the explanations is solely based on unsupervised machine learn-

ing methods. This fact brings great flexibility to mine a set of labels for the items

and users without any effort in a domain agnostic way. These sets of labels gener-

ated from the reviews of users will be much more diverse and rich in comparison to

methodological classifications done by humans.
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This fact will help serving unique and authentic explanations for the recommended

items from a wide spectrum of phrases, but also result in using unrelated or absurd

words or phrases to serve explanations.

The success of the explanation words in the proposed pipeline heavily depends on the

quality of the written reviews by the community in the platform we train our pipeline,

and heavily relies on the success of the keyword extraction algorithms. During the

self-evaluation of the thesis, it is observed that many instances of false positives on

the recommendations and unsuccessful explanations are due to these two reasons.

Also, the unsupervised fashion of generating the labels for items and users ends up

with many labels that are generic for explaining items. In the above example, the sec-

ond explanation word enjoyable is an example for this case. Even a filtering mecha-

nism described in the section 3.4.2 is implemented and dramatically overcomes this

issue, there are still many such words that are eligible to get used in explanations.

As it is also observed in the user study in section 4.3.3, even though in average the

explanations are perceived as accurate and successful, a significant percentage of the

served explanations are found irrelevant to the recommended item. This shortcoming

is also discussed in the conclusion section 5

One other trade-off point was around the selection of n of n-grams of the keyword

extraction process. Using 1-grams, namely single words, for the text summarization

and profile creation for users and items causes the explanations to stay on the safer

side. All words have some meaning if they are used separately from the context. Still,

they can hold much less meaning compared to using several words together to explain

a recommendation. However, it is observed that when the n of n-grams is increased to

2 or 3, there is an increased chance of serving non-sense phrases as the explanations

of the items. In summary, it is observed that with an increase of n of n-grams, the

quality of the explanations of the best cases increases, but the worst cases decreases.

In the example Figure 3.5 from one of the user study participants’ recommendations,
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the trade-off discussed above is observed. In this example case, one of the positive

interests of the user is selected as monotonous and the recommendation of the album

is explained to the user with the phrases Relaxing background and Tedious household.

In the first phrase, we can observe that the Relaxing background serves more mean-

ing and a more precise explanation to the recommendation compared to its 1-gram

conjugate Relaxing; while the Tedious household is not an appropriate explanation

for explaining an album, even the recommender selected that phrase to be close to the

word monotonous.

In the same scenario presented in Figure 3.5, another critical shortcoming of the pro-

posed algorithm in this thesis can be observed: The word monotonous is selected by

the keyword extraction algorithm as a representative word for the user who wrote it,

but the user used that word as ".. not repetitive and monotonous". Since this word is

used on a highly rated review text, the extracted word monotonous is perceived as a

positive interest of the user while, in reality, it is a feature that the user does not like.

There may be some possible solutions for this issue that we discuss in the section 5.

In the chapter 4, results for comparing the recommenders that are serving 1-gram ex-

planations as well as serving explanations formed as 2-grams is presented and com-

pared. It is seen that a recommender using 1-gram explanations is liked more, but the

difference was very low and found to be statistically insignificant.
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Figure 3.4: An example scenario, taken from the user study, for a recommendation

to a user on our case study group with a recommender based on extracted 1-grams.

User is getting a recommendation based on the extracted keywords "relaxing" and

"interesting" in the shared case. The Album 3 is recommended due to its profile that

includes the keywords "relaxing" and "enjoyable".
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Figure 3.5: Another example scenario, taken from the user study, for a recommen-

dation to a user on our case study group generated with a recommender based on

extracted 2-grams. User is getting a recommendation based on the extracted key-

words "relaxing pieces" and "monotonous" in the shared case. The Album C is rec-

ommended due to its profile that includes the keywords "relaxing background" and

"tedious household".
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CHAPTER 4

EXPERIMENTAL EVALUATION

The presented work has two outputs that can be evaluated; the quality of the recom-

mendations and the quality of the explanations. These two outputs are generated by

the same pipeline; the words that are used in the explanation given an item and a

user are the words that the item has as aspects and also similar to the user’s interests.

These same set of n-grams are also used for generating match scores and recommen-

dations.

While selecting between alternative approaches for the parts of the proposed pipeline,

we have tried to pick the best options to improve the recommendation precision. Since

the rating prediction and the explanation generation use the exact same pipeline, op-

timizing the rating predictor also improves the quality of the explanations.

In this chapter, two kinds of experiments that are carried out in the scope of this thesis

are presented; numerical optimizations and a user study.

For optimizing the recommendation precision and selecting most of the components

of the proposed pipeline, numerical evaluation and optimizations are made. These

experiments are done on the dataset with a validation test split.

After having some optimized alternative recommendation pipelines with a very sim-

ilar performance on the test set performances, a user study is also conducted with 15

people to evaluate the quality of the recommendations and the explanations.

In the following sections, these experiments are explained in more detail.
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4.1 Dataset

This thesis’s evaluations have been made with the Amazon Reviews Dataset for the

category "CDs and Vinyl" [32]. This dataset is selected over many other alterna-

tives since it has enough data points and allows conducting a user study, and since it

is much easier to rate music album recommendations and explanations compared to

restaurants, books, movies, etc.

CDs and Vinyl category of the Amazon Reviews Dataset consist of 1, 443, 475 re-

views of 112, 391 users to 73, 713 items. About 86% of the reviews in the dataset are

positive (4+ stars).

Since the evaluation of the models on unbalanced datasets are harder, all of the graphs

and values on the test and validation sets are presented for two different sampling

strategies:

• Balanced sampling: 500 rows from each of the ratings has been randomly

selected in this sampling strategy. The final subset of data will consist of 2, 500

data points that equally include reviews from all ratings.

• Random sampling: In this sampling strategy, 15, 000 rows from the original

dataset have been selected randomly.

4.2 Hyper-parameter optimization and numerical evaluations

In this section, the emphasis will be on improving the quality of the recommenda-

tions.

In the proposed pipeline, the quality of the recommendations are dominated with the

following parameters, so the experiments will done over their selections:
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• Keyword extraction algorithm: We have experimented with Yake and Key-

BERT. Both of these algorithms support generating n-grams while summariz-

ing given texts. In this thesis, experiments with the following combinations are

presented:

– KeyBERT with 1-grams

– KeyBERT with 1 or 2-grams

– Yake with 1-grams

– Yake with 1 or 2-grams

• Distance function to calculate the match strengths between users and items:

Experiments with many alternative distance functions are completed, but for-

mally the following three are presented:

– Mean of All: returns the mean of distances between all interests and all

features of an item. Positive and negative interests are treated differently

and returned separately.

– Mean of Half: returns the mean of the half of the smallest distances be-

tween all interests of a user and all features of an item. Positive and neg-

ative interests are treated differently and returned separately.

– Three smallest: returns the mean of the three smallest distances between

all interests and all features of an item. Positive and negative interests are

treated differently and returned separately.

We provide the pseudo-codes of these algorithms in Appendix A

• Machine Learning algorithm that is used to predict if a user would like an

item: Experiments with a few algorithms are conducted, but in the correspond-

ing section, only the Support Vector Machine based classifier will be presented.

The mapping ML model should need to learn is a linear mapping, and the se-

lection of the ML algorithm was not very effective due to the uncomplicated

nature of the mapping. Most of the emphasis was on having high precision on

positive predictions because of the nature of our problem. More details will be

shared in the following subsection.
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4.2.1 Evaluation of distance functions

The distance function that calculates the distance between given user and an item is

the core of the pipeline. It plays a role in both recommendation and explanation gen-

eration.

Having a step to compare the distance functions without needing to compare ML

models improves the required time for conducting experiments and eliminates poten-

tial adverse effects from the ML model’s performance. Due to this preliminary eval-

uation step, ML model optimization pipeline can be run only for the best-performing

distance function and keyword extraction algorithm pairs.

In this work, experiments with three alternative match distance calculation algorithms

are made. Pseudo codes of these algorithms are shared under Appendix A.

To evaluate possible distance functions, Pearson and Spearman correlation coeffi-

cients between the output of the distance function and the ratio of the likes to all

reviews are calculated. These two coefficients indicate how strong the correlation is

between two variables.

Both of the correlation coefficients have the value range of [−1, 1]. Negative values

indicate negative correlation, and it is generally considered that values between 0.3 to

0.5 indicate a medium-strength correlation while values between 0.5 to 1 indicate a

strong correlation between the variables [33].

Our distance function should produce higher values if we know that a user does not

like an item and vice versa. To test and compare the performances of the distance

functions, we measure the strength of the negative correlation between the change of

percentage of the users liked items with the change of distances between users and

items.

Table 4.1 and Table 4.2 presents the calculated values of the Pearson Coefficient &

Spearman Coefficient values of the experimented distance function - keyword extrac-
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tion pairs. In Table 4.1, calculated coefficients are given for a balanced sample taken

from the dataset whereas in Table 4.2, same calculations are shared for a random sam-

ple taken from the dataset.

Each table presents Pearson & Spearman Coefficients in descending order by the ab-

solute value of the found correlation.

Table 4.1: Pearson and Spearman correlation coefficients for different distance func-

tions and keyword extractors on balanced sample

Distance function Keyword extractor Pearson Coefficient Spearman Coefficient

Mean of All yake1 -0.7922 -0.7763

bert1 -0.5213 -0.4307

bert2 -0.5259 -0.2920

yake2 -0.3898 -0.2328

Mean of Half yake1 -0.6220 -0.6540

bert2 -0.3694 -0.2794

bert1 -0.3108 0.0790

Three Smallest yake1 -0.2198 -0.2102

yake2 0.0398 0.3236

According to the numerical results presented on Table 4.1 and Table 4.2 for the cor-

relations between the rate of positive reviews by the distance function’s value, it can

be seen that Yake1, combined with the distance function Mean of All outperforms all

other combinations.

There are also other cases that show weaker correlation but these correlations are not

consistent in both balanced and random samples. For example, although Bert with

2-grams performs good on balanced dataset, it fails to produce results on randomly

sampled dataset that preserves the required correlation.

From the values on the Table 4.1 and 4.2, following generalizations can be concluded:
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Table 4.2: Pearson and Spearman correlation coefficients for different distance func-

tions and keyword extractors on random sample

Distance function Keyword extractor Pearson Coefficient Spearman Coefficient

Mean of All yake2 -0.4984 -0.6926

yake1 -0.4720 -0.5869

bert1 -0.2939 -0.2107

bert2 -0.0221 -0.1191

Mean of Half yake1 -0.1871 -0.3531

bert2 -0.0888 -0.1601

bert1 -0.0476 -0.0487

Three Smallest yake1 0.0836 0.1135

yake2 0.4657 0.3824

• Using 1-grams is better than using 2-grams: With an increase in the length of

the phrases we compare, the weights of the closer words will become less. Still,

using phrases will allow the pipeline to capture more context with the provided

explanation and might positively impact explanation performance.

• KeyBERT performs worse than Yake. Combining the results we took here with

the user studies, Yake is slightly better than KeyBERT on both recommendation

and explanation quality, especially when n of n-grams is more than 1.

Figure 4.1 shows the significant negative correlation of the Mean of All function using

Yake with 1-gram for keyword extraction. In subfigures (a) and (b), the negative

correlation is clearly visible inside the area of interest which is the ranges with high

values on the corresponding graphs (c) and (d).

Despite the fact that Yake with 1-grams shows significant correlation with the rate of

the positive reviews, there are other combinations showing meaningful correlation.

In the following experiments, other pipelines that shows good performance in this

experiment will be presented together with Yake using 1-grams. Correlation graphs

of the all tests presented on the Table 4.1 and Table 4.2 is presented in Appendix B.
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Figure 4.1: The graphs (a) and (b) in the left column visualizes the relation between

the percentage of the positive ratings for values distance function can take. In these

graphs, intensity of inclination to the right indicates that the distance function per-

forms well. In the right column, number of ratings per the calculated match distances

are presented. The figures (c) and (d) suggests that the range we are looking for a

correlation should be searched around the scores >> 0 due to the high number of

samples around these points.

The setup with Yake keyword extractor using 1-grams and distance function of Mean

of All is the best selection due to the high negative correlation between the two axes.
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4.2.2 Optimization of recommender

In the proposed pipeline, recommendations are made with a ML model that is trained

over the output of the distance function.

In our application, precision of the true predictions was the most important metric

to optimize. This is due to the fact that the generation of recommendations does not

require high recall for the true predictions and thus high overall accuracy but requires

high true class prediction precision.

To optimize the model with the highest possible precision for the true labels while

having a recall value that would not prevent our model to generate recommendations,

precision-recall graphs of the recommender for different keyword extraction algo-

rithms are generated. The optimal thresholds for deciding the predicted outputs label

are selected from the following graphs generated from the validation set, and the per-

formances of these thresholds in the test sets are presented.

This section presents one of the best performing models in terms of positive class

prediction precision. Other experiments and a complete picture for comparisons on

the validation and test sets for selecting sensitivity are shared in the Appendix C.

Parallel to what is found in the correlation experiments, the best model to receive

high precision on positive predictions is based on Yake with 1-grams, and the distance

function to calculate the match distances between users and the items is Mean of All.

Still, Yake with 2-grams and Bert with 1-grams, when using Mean of All strategy

performs very close to Yake with 1-grams. Their precision-recall graphs are presented

in Appendix C and a further comparison is presented under user study in section 4.3.3.

Figure 4.2 presents the best performing model, which is the pipeline using Yake with

1-grams as keyword extraction algorithm and Mean of All as its distance function. In

Table 4.3, the parameters used for the recommender is shared in detail.
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(a) Our model (b) SVD

Figure 4.2: In figure (a), precision-recall graphs of the recommender developed in the

thesis are presented, while in figure (b), precision-recall graphs of the well-established

matrix factorization based SVD model are presented [34], [35]. The top graphs are

generated on the balanced test set. Following them, the second graphs are generated

on a randomly sampled test set, and the last graph shows the required thresholds

for the corresponding points on the precision-recall graphs. In the precision-recall

graphs, the dashed gray lines represent the dummy predictor’s precision-recall values

that always predict 1. In the graphs, yellow bars represent the range where the true

class prediction thresholds are selected. Position of the yellow bar is selected from the

validation split, such that the precision is around its maximum value for a precision

that is greater than 0. This will result in the model being tuned to have high precision

values for positive predictions.
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Table 4.3: Hyper-parameter selections for the best recommendation pipeline using

Yake with 1-grams

Keyword Extractor

Algorithm Yake

Max number of features to extract 8

n of n-grams 1

SVM based Classifier

Confidence score for true class 0.99

Common word filter

Lower % on training set 98%

Upper % on English word frequencies 97%

Glove

Size of Latent Vectors 200

Window 5

Epochs on training data 100

Table 4.4 and Figure 4.3 summarizes the performance of the tuned recommender. The

presented evaluations are taken after the true class prediction threshold is tuned.

As it can be seen from Figure 4.2, trained ML model based on the extracted keywords

from user review texts is performing worse than a well-known matrix factorization

based model while performing better than dummy models on true class prediction

precision.

We expected this result since the methodology we use drastically reduces the amount

of information on the training set by extracting only a small number of words from the

review texts and making predictions based on these incomplete features. Still, seeing

that the best performing model performs significantly better than a dummy predictor

indicates that the model learns and generalizes well on the training set.
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Table 4.4: Prediction performance of the best recommender on test sets

(a) Test set with balanced sampling

precision recall support

False 0.63 0.93 1500

True 0.62 0.17 1000

Accuracy 0.63 2500

(b) Test set with random sampling

precision recall support

0.15 0.92 2047

0.94 0.20 12953

0.30 15000

Training and generation of predictions for the test set is done on a 2019 Macbook

Pro with 2.6 GHz CPU on a single core. The training process requires around 20

GBs of Memory when using the Amazon Cds and Vinyl review dataset consisting of

1,443,475 rows. [32] The whole training and predictions on the test set took 2.5 hours

on a single CPU core, excluding keyword extraction from review texts.

(a) balanced sample (b) random sample

Figure 4.3: Confusion matrices of the best recommender using Yake with 1-grams on

test sets with two sampling strategies.
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4.3 User Study

The work presented in this thesis aims to serve personalized explanations together

with the recommendations it generates. To evaluate the success of the explanations

and compare the success of recommendations to what we numerically calculated, we

have conducted a user study with 15 people.

The main reason to conduct a user study is to evaluate the success of the explana-

tions, which cannot be done numerically. In the study, candidates were asked to write

reviews to some items of their choices and then provided with recommendations and

explanations and were asked to rate the recommended items and the served explana-

tions.

In this study, three of the selected recommenders by their numerical evaluation are

used to serve recommendations to the users. This way, we both had a chance to verify

the numerical results we found for the precisions of the models on the quality of the

recommendations and had a chance to measure and compare the explanations they

serve.

4.3.1 Setup

A web interface with three types of pages has been implemented to have a real-life

like scenario. These pages are:

1. Review page to provide a way to participants to write reviews about the items

2. Search page to provide a way to participants to search items in the dataset

3. Feedback collection page to collect participants’ opinions about the recom-

mendations and explanations.
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Figure 4.4: A sample review page that allows users to write a textual review and rate

the item with a rating in the range [1, 5]. When the user clicks the submit button after

the review is completed, the review is saved for generating the recommendations.

Figure 4.5: A sample search page that allows users to search for an item by a key

phrase. The given phrase is searched among the dataset, and the matches are returned

in an arbitrary order. Users can view the returned items in a listed fashion and pick

any items to review. The provided review button navigates to the review page of that

item.
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Figure 4.6: A sample rating page that allows users to rate their recommendations and

the explanations provided for these recommendations. On that page, users adjust the

sliders to indicate their opinions about the two questions on the item. When the user

is ready with their opinion, they can click the submit button to submit the rating they

gave. These ratings are saved with the recommender’s information that generated the

recommendation and the user’s id.

4.3.2 Methodology

4.3.2.1 Design of the user study session

For the user study, attendants are asked to write reviews to 5 to 7 music albums

consisting of 2-5 sentences on why or what they like or not like about these albums

to imitate a real world scenario. Reviews do not need to be written for items in the

dataset that is used since the thesis pipeline only depends to the numerical ratings and

the review texts about the review. No other item metadata is used.
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To formally ask for help, the following text is shared with the possible attendants:

For evaluating my thesis, "Explainable Recommendations using extracted
topics and word matching," through conducting a user study, I am kindly
asking you to write review texts for 5 to 7 music albums. The albums
themselves do not need to be in the training set. Also, you don’t also
need to write extensive reviews. Generally, 2-5 sentences on why you
did or did not like the album are sufficient. You should rate the album
you reviewed from 1 to 5. (It is better if you mainly review the albums
you would give higher scores.)
After you have written the reviews, I’ll need to create a user for you and
generate the recommendations for that user from the reviews you give.
You can share your reviews with me via mert.tunc@metu.edu.tr in any
format that I can understand. (e.g, Album names as titles, reviews as
paragraphs under these)
At that point, I’ll ask you to schedule a time with me to conduct the study
via Zoom. The thesis program will run on my end and I’ll screen share
so that you can see and rate the music albums recommended to you.
The rating of the recommendations and their explanations is expected to
take 20-40 mins.

If the attendants are sending the reviews through e-mail, a user is prepared with the

shared reviews and made the thesis pipeline generate recommendations for them.

Otherwise, if the reviews are written through the web UI, attendants are provided

with some recommendations on the fly, during the study.

Candidate’s opinions on each recommended item with the following two questions

are asked for collecting data about the perceived performance of the recommender

and the provided:

• How much did you like the recommended item?

• Independent from the first question, how good is the explanation given for that

item?

4.3.2.2 Design of the experiment

The user study’s main aim is to test if any of the best performing three recommenders

are performing better than the others. The emphasis is on evaluating the explanations
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since the recommendation precision can be testable numerically, and the test results

are shared at the beginning of this chapter.

Each of the three recommenders that we compare generates at most eight items. Each

of the items has one to eight explanation words. No more than one item can be

recommended with the same explanation words to ensure users can rate different ex-

planation words.

In all three alternative pipelines, the match distance calculation function Mean of All

is used since it was the best performing algorithm. The keyword extractor algorithm

Yake is used with 1-gram and 2-grams generation configurations. In contrast, the

KeyBERT is used only with 1-grams due to KeyBERT’s lower performance on the

correlation and precision performances on the numerical evaluation when used with

2-grams.

As the evaluation metric of the conducted experiment, Friedman test [36] [37] is used

to determine if any of the recommenders perform better than others. Friedman test

allows checking if any of the entities in question is consistently rated higher com-

pared to the others in the evaluation group. In our test configuration, three alternative

pipelines for generating recommendations and explanations were being compared,

and the ratings are given to the recommendations and the explanations by 15 people.

The configuration and the number of attendants is just enough to use the Friedman

test with a high confidence since the Friedman test requires at least 15 participants to

provide a precise p-value.

For the Friedman test, the followings are our hypotheses:

• H0 - Null hypothesis: The mean rating given to each recommender is equal.

• Halt - Alternative hypothesis: At least one of the recommenders has consis-

tently rated lower or higher.

These hypothesis are tested for recommendation ratings and explanation ratings in-

dependently.
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4.3.3 Results

In the user study, sessions with 15 people were conducted. The attendants are given

at most 8 music albums to rate from each recommender totalling at 24, as described

in the section 4.3.2. It is important to note that none of the attendants were a native

speakers of English Language.

In this section, collected data and the conclusions of the user study is shared.

Figure 4.7: Figure presents examples of the given ratings for each of the recom-

menders by three attendants. In the row (a), album covers of the recommended items

are presented. Row (b) contains the snapshots of the ratings given to the items by

the attendants. In row (c), the explanations generated for the recommendations are

presented, and the snapshots on row (d) presents the perceived rating of these expla-

nations given by the attendants. The interface provided to attendants does not involve

numerical scores. Values selected in these sliders are converted to numbers in the

scale [0-100] for numerical comparisons and analysis done in this chapter.

Figure 4.7 presents three samples taken from the responses in the user study.

45



(a) (b)

Figure 4.8: In subfigure (a), number of participants that is served recommendations

from the noted recommenders are shared. In subfigure (b), number of total recom-

mendations generated by the corresponding recommenders are shared. Since the rec-

ommenders are tuned to be restrictive to achieve high precision on "recommend"

signal, recommenders sometimes generate less then the maximum limit of 8 recom-

mendations. This also leads to inability to serve any recommendations, as it can be

seen in subfigure (a).

In Figure 4.9, average of the ratings given for the recommenders are shared. In this

bar graph, it can be seen that the performances of the recommenders on two aspects,

the quality of the recommendations and the quality of the explanations, are scored

very close. Still, configuration with Bert 1 is slightly scored better compared to other

two recommenders.

In Figure 4.10, histogram of the rating distributions for the generated recommenda-

tions per recommender is shared. Similar to what is observed from the Figure 4.9, the

distributions of Bert 1 and Yake 1 are slightly left-skewed while Yake 2 is closer to a

symmetric distribution. This means that the probability of a recommendation is liked

more for Bert 1 and Yake 1 is slightly higher compared to a recommendation from

Yake 2.
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Figure 4.9: Average ratings given to the recommenders for the two questions asked

during the user study. The blue bars represents the average ratings given for the

quality of the generated recommendations whereas orange bars represents the average

ratings given to the qualities of the explanations.

The similarity between the distributions of the recommendation qualities for the three

configuration and the average scores given to them are also found consistent with the

numerical experimentation shared in the section 4.2.2.

In Figure 4.11, we share histograms for the scores of the qualities of the explanations.

Compared to the distributions of the qualities of the recommendations shared in Fig-

ure 4.10, Bert 1 on the perceived explanation quality is much better than the Yake

1, and slightly better than Yake 2. While the distribution of Yake 1 is symmetric,

distributions of Bert 1 and Yake 2 is left-skewed, meaning that the perceived scores

of their explanations were higher on average.

Table 4.5 presents a simplified version of the information on the histograms of the

rating distributions given for the recommenders.

In the table, percentiles of the scores given by the participants of the user study are

shared for two cases; score ≥ 60 and score ≥ 75. This table can be read as "30% of

the attendants scores for Bert 1 on the quality of the recommendations were higher

47



(a) Bert 1 (b) Yake 1 (c) Yake 2

Figure 4.10: The histograms of the rating distributions for the question "How much

did you like the recommended item?" for the three recommender.

(a) Bert 1 (b) Yake 1 (c) Yake 2

Figure 4.11: The histograms of the rating distributions for the question "How good

the explanation given for that item?" for the three recommender.

than 75 out of 100, while 42% of the scores for the Bert 1 on the quality of the

explanations are higher than 75 out of 100.". As it is discussed for the Figure 4.10

and 4.11, we observe the same fact that Bert 1 is performing slightly better than the

other two recommenders.

Until that point, figures of the distribution graphs, Figure 4.10 and Figure 4.11 sug-

gests that Bert 1 is performing slightly better than other two combinations while the

significance is not obvious. To calculate the significance, we use Friedman test as

described in detail in section 4.3.2.2.

Table 4.6 shows the calculated p-values from the collected data from the user study

using the Friedman test. Since the p-values are higher than 0.05, we can conclude

that there is no statistically significant evidence to support reject H0.
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Table 4.5: In these tables, successes of the individual ratings are presented as per-

centiles. The percentiles are calculated using the thresholds presented in the left-

most column. In sub-table (a), percentiles for the quality of the recommendation is

presented. In the sub-table (b), perceived quality of explanations are presented.

(a)

Recommender Percentile

Score ≥ 60

Bert 1 55%

Yake 1 54%

Yake 2 49%

Score ≥ 75

Bert 1 30%

Yake 1 23%

Yake 2 25%

(b)

Recommender Percentile

Bert 1 58%

Yake 1 42%

Yake 2 52%

Bert 1 42%

Yake 1 22%

Yake 2 33%

The calculated p-values concludes to the fact that the observed differences in the

performances of the recommenders are not statistically significant even though we

observe some differences of the rating distributions on the perceived quality of the

explanations in favor of the recommender with Bert 1.

Table 4.6: Calculated p-values from the Friedman tests. Values lower than 0.05 means

that the Null Hypothesis can be rejected. In the test we conducted, p-values are sig-

nificantly greater than 0.05, meaning that we cannot reject the H0

Test p-value given by Friedman test

Recommendation ratings 0.247

Explanation ratings 0.420
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4.3.4 Discussion of the lack of comparisons on explanation performance

In this thesis, we are not able to present any comparison of the generated explanation

performance with the other works.

During our literature review, two ways to evaluate the explanations are found; using

numerical metrics and conducting online experiments such as user studies or A/B

tests to evaluate the perceived success of the explanations.

There is no widely accepted numerical metric for evaluating recommendation expla-

nations [38]. Our literature review found that commonly used metrics over generated

explanations are for evaluating the structural integrity of the generated explanation

sentences. BLEU [39], METEOR [40] and ROUGE [41] are such metrics. In addition

to these metrics, a metric called model fidelity is used for evaluating the percentage

of cases where the recommender can generate explanations. Despite the wide usage

of these metrics in the explanation evaluation for the recommendations, these metrics

do not directly measure the explanation’s correctness or usefulness.

In this thesis, since we do not generate explanations in the form of sentences, it is not

possible to report values generated via the first group of evaluation metrics. Also, our

proposed solution offers explanations on all recommendations, so the model fidelity

on the explanations of this work is 100%, which also shows that the metric is not ideal

for evaluating generated recommendation explanations.

The results of the user study conducted in this thesis are also not comparable with

the other studies in the literature. The main reason for this is the form difference of

the explanations between our proposed recommender produces and the others in the

literature.

In the literature, we reach some exemplary work that conduct user study to evaluate

the explanations generated in the form of sentences generated from templates using

fetched opinions and predefined aspects [42], using predefined topic sentiments [43]
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or using collaborative filtering techniques, mostly on knowledge graph relations [44].

In our literature search, we are not able to find any work that conducts a user study

for a recommender with keyword based explanations. Also, no study that reports user

study results on the dataset we selected is found even if we do not assert that the form

of the generated explanations is similar to ours.

Considering the limited number of similar studies that serve keyword based recom-

mendations and the limited number of literature on explainable recommendations that

have conducted a user study, our confidence in the fact that there is no comparable

work for the user study that is done in this thesis is high. It is also worth noting that,

due to the lack of alignment on the evaluation metrics, the style of the user study,

and the form of the explanations, the studies in the literature generally do not include

comparisons for their user study results and explanation evaluations.
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CHAPTER 5

CONCLUSIONS

In this research, a recommender that can serve model-intrinsic explanations that is

powered by the extracted keywords from the user written review texts has been stud-

ied. The aim of the thesis was to experiment with the novel strategy of using keyword

extraction algorithms to extract and summarize user written review texts and use these

extracted keywords to generate recommendations and explanations. It was expected

to have a recommender that performs worse than the state-of-the-art recommenders

but still can serve sensible recommendations while serving explanations with the rec-

ommended items.

The proposed method has some core parts that are novel in the domain of generating

recommendations. This work contributes to the literature by studying keyword ex-

traction algorithms to generate recommendations. The matching of users and items

from their profiles built by the keyword extraction algorithms is made using word

vectorizers, and this strategy is also not widely used in this domain.

Reported experiments and evaluation of the proposed recommendation generation

pipeline included the performance comparisons of recommenders based on KeyBERT

[23] and Yake [24] [25] [26] with the extracted phrase lengths of 1 to 2. In addition to

the different approaches to keyword extraction, results and effects of three different

match distance calculation algorithms to the recommendation pipeline are shared.

A user study is conducted for the evaluation of the quality of explanations and the

comparisons of the explanations between the numerically selected configuration al-

ternatives for the recommendation pipeline. All of the experimentation is done with
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the Amazon Review Data [32], using the subset of product group "CDs and Vinyl."

It is observed that the recommender that is proposed and studied in this thesis can

significantly outperform a dummy recommender and can serve sensible recommen-

dations as well as serving sensible explanations. It is shown that the configuration

based on the KeyBERT extraction algorithm with 1-grams performing slightly bet-

ter at generating liked explanations and recommendations. Despite the fact that the

scores given for the recommendations and the explanations of the recommender uti-

lizing KeyBERT extraction algorithm with 1-grams were slightly better than other

tested combinations, it is shown that there is no statistically significant evidence to

favor one of these combinations over another.

During the development and evaluation of the proposed pipeline, several points have

been discovered to have an opportunity to improve the performance of the recom-

mender and the served explanations further.

The first one of these was the possible improvements to the method we employed for

filtering the words that carry no meaning in the domain of the dataset. The current

strategy falls short on its task by removing many of the words that the recommender

can make use of and use in the explanations as well as failing to filter many words

that shouldn’t be used by the recommender and the explanations. It would be a good

future work to test with a predefined set of words that are allowed to be used by the

recommender and the explanations that are tailored for the domain of the recommen-

dations. Also, it would be good to generate a more extensive set of words using the

proposed algorithm and filter the words that carry little to no meaning in the recom-

mendation domain.

One of the ways that can significantly boost the performance of the recommender

would be integrating many more features to the recommender or integrating the pro-

posed model to a state of the art recommender. The current recommender does not

take any data other than the extracted keywords from the reviews and the ratings of
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the review into account. The performance gain from having more features to generate

recommendations, such as item metadata as predefined categories, number of ratings,

average ratings, etc, is very likely. Also, some other well-established methods for

generating recommendations, such as collaborative filtering based algorithms can be

used together with the proposed pipeline to boost the recommendation precision fur-

ther. It would be interesting to integrate the proposed model into a state-of-the-art

recommendation engine as a feature and explanation generator.

Also, in the current proposed and implemented structure, usage of context aware

word vectorizers, such as BERT [31] encoder, is not possible. After keyword extrac-

tion step to get n-gram summarization of the review text, the fetched keywords are

separated from their context. It would be a good addition to the literature to evalu-

ate the pipeline’s performance that utilizes the context aware word vectorizers on the

match score predictions. The context can be referenced from the extracted keywords

and the vector encodings of the extracted keywords can be fetched from the original

context they are taken.
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APPENDIX A

MATCH SCORE FUNCTIONS

In the presented thesis, three scoring functions are mentioned: Mean of All, which is

already presented in methodology chapter 2, Mean of Half and Three smallest. In the

following section, pseudo codes for Mean of Half and Three smallest are shared.
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Algorithm 4 Match Score Calculation - Mean of Half
1: procedure MATCH SCORE(Ui, Ij)

2: X ← []

3: positive_interests← [] . Positive means keywords of Rw with Rt >= 4

4: negative_interests← []

5: item_aspects← []

6:

7: temp_distances← []

8: for positive_interest← positive_interests do

9: for item_aspect← item_aspects do

10: pair_dist← word2vec.dist(positive_interest, item_aspect)

11: temp_distances.append(pair_dist)

12: end for

13: end for

14: temp_distances← Smallest half of temp_distances

15: X[0]← mean(temp_distances)

16:

17: temp_distances← []

18: for negative_interest← negative_interests do

19: for item_aspect← item_aspects do

20: pair_dist← word2vec.dist(negative_interest, item_aspect)

21: temp_distances.append(pair_dist)

22: end for

23: end for

24: temp_distances← Smallest half of temp_distances

25: X[1]← mean(temp_distances)

26:

27: return X

28: end procedure
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Algorithm 5 Match Score Calculation - Three Smallest
1: procedure MATCH SCORE(Ui, Ij)

2: X ← []

3: positive_interests← [] . Positive means keywords of Rw with Rt >= 4

4: negative_interests← []

5: item_aspects← []

6:

7: temp_distances← []

8: for positive_interest← positive_interests do

9: for item_aspect← item_aspects do

10: pair_dist← word2vec.dist(positive_interest, item_aspect)

11: temp_distances.append(pair_dist)

12: end for

13: end for

14: temp_distances← Smallest 3 value from temp_distances

15: X[0]← mean(temp_distances)

16:

17: temp_distances← []

18: for negative_interest← negative_interests do

19: for item_aspect← item_aspects do

20: pair_dist← word2vec.dist(negative_interest, item_aspect)

21: temp_distances.append(pair_dist)

22: end for

23: end for

24: temp_distances← Smallest 3 value from temp_distances

25: X[1]← mean(temp_distances)

26:

27: return X

28: end procedure
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APPENDIX B

MATCH SCORE FUNCTION CORRELATION GRAPHS

In this section, for most of the keyword extractors using 1 and 2-grams and scoring

function implementations, a correlation graph is shared. For the success of the oper-

ation, there should be a negative correlation between the match score and the ratio of

positive reviews to all reviews

This is best satisfied with Yake1 with a scoring function of Mean of All. Correlation

graph of this combination is also presented in chapter 4 as Figure 4.1.

Also, numerical values of the correlation coefficients betweem ratio of positive re-

views and the output of the scoring function is shared in the table 4.1 and 4.2 pre-

sented in chapter 4.
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Figure B.1: Scoring function response - Rate of positive reviews to all reviews graph

for KeyBERT with 1-grams, using scoring function Mean of All. The graphs in the

left column visualizes the relation between the percentage of the positive ratings for

values scoring function can take. In these graphs, intensity of inclination to the right

indicates that the scoring function performs well. In the right column, number of

ratings per the calculated match scores are presented. The figures (c) and (d) suggests

that the range we are looking for a correlation should be searched around the scores

>> 0 due to the high number of samples around these points.
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Figure B.2: Scoring function response - Rate of positive reviews to all reviews graph

for KeyBERT with 1-grams, using scoring function Mean of Half. The graphs in the

left column visualizes the relation between the percentage of the positive ratings for

values scoring function can take. In these graphs, intensity of inclination to the right

indicates that the scoring function performs well. In the right column, number of

ratings per the calculated match scores are presented. The figures (c) and (d) suggests

that the range we are looking for a correlation should be searched around the scores

>> 0 due to the high number of samples around these points.
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Figure B.3: Scoring function response - Rate of positive reviews to all reviews graph

for KeyBERT with 2-grams, using scoring function Mean of All. The graphs in the

left column visualizes the relation between the percentage of the positive ratings for

values scoring function can take. In these graphs, intensity of inclination to the right

indicates that the scoring function performs well. In the right column, number of

ratings per the calculated match scores are presented. The figures (c) and (d) suggests

that the range we are looking for a correlation should be searched around the scores

>> 0 due to the high number of samples around these points.
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Figure B.4: Scoring function response - Rate of positive reviews to all reviews graph

for KeyBERT with 2-grams, using scoring function Mean of Half. The graphs in the

left column visualizes the relation between the percentage of the positive ratings for

values scoring function can take. In these graphs, intensity of inclination to the right

indicates that the scoring function performs well. In the right column, number of

ratings per the calculated match scores are presented. The figures (c) and (d) suggests

that the range we are looking for a correlation should be searched around the scores

>> 0 due to the high number of samples around these points.
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Figure B.5: Scoring function response - Rate of positive reviews to all reviews graph

for Yake with 1-grams, using scoring function Mean of All. The graphs in the left col-

umn visualizes the relation between the percentage of the positive ratings for values

scoring function can take. In these graphs, intensity of inclination to the right indi-

cates that the scoring function performs well. In the right column, number of ratings

per the calculated match scores are presented. The figures (c) and (d) suggests that

the range we are looking for a correlation should be searched around the scores >> 0

due to the high number of samples around these points.
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Figure B.6: Scoring function response - Rate of positive reviews to all reviews graph

for Yake with 1-grams, using scoring function Mean of Half. The graphs in the left

column visualizes the relation between the percentage of the positive ratings for val-

ues scoring function can take. In these graphs, intensity of inclination to the right

indicates that the scoring function performs well. In the right column, number of rat-

ings per the calculated match scores are presented. The figures (c) and (d) suggests

that the range we are looking for a correlation should be searched around the scores

>> 0 due to the high number of samples around these points.
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Figure B.7: Scoring function response - Rate of positive reviews to all reviews graph

for Yake with 1-grams, using scoring function Three Smallest. The graphs in the

left column visualizes the relation between the percentage of the positive ratings for

values scoring function can take. In these graphs, intensity of inclination to the right

indicates that the scoring function performs well. In the right column, number of

ratings per the calculated match scores are presented. The figures (c) and (d) suggests

that the range we are looking for a correlation should be searched around the scores

>> 0 due to the high number of samples around these points.
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Figure B.8: Scoring function response - Rate of positive reviews to all reviews graph

for Yake with 2-grams, using scoring function Mean of All. The graphs in the left col-

umn visualizes the relation between the percentage of the positive ratings for values

scoring function can take. In these graphs, intensity of inclination to the right indi-

cates that the scoring function performs well. In the right column, number of ratings

per the calculated match scores are presented. The figures (c) and (d) suggests that

the range we are looking for a correlation should be searched around the scores >> 0

due to the high number of samples around these points.
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Figure B.9: Scoring function response - Rate of positive reviews to all reviews graph

for Yake with 2-grams, using scoring function Three Smallest. The graphs in the

left column visualizes the relation between the percentage of the positive ratings for

values scoring function can take. In these graphs, intensity of inclination to the right

indicates that the scoring function performs well. In the right column, number of

ratings per the calculated match scores are presented. The figures (c) and (d) suggests

that the range we are looking for a correlation should be searched around the scores

>> 0 due to the high number of samples around these points.
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APPENDIX C

PRECISION-RECALL GRAPHS

In this section of the appendix, precision-recall graphs of the recommenders with

Yake and Bert algorithms for keyword extraction is presented for both 1-grams and

2-grams of extracted phrases.

In the figures, graphs on the left columns contain the precision-recall plots of the rec-

ommenders on the validation set. The yellow bar indicates the selected threshold to

achieve a good precision while having valid but a low value of recall. In the right

column, same graphs for the test set is presented. The values for precision is received

from these graphs by finding y axis value of the plot inside the yellow range, mean-

ing that the resulting performance on the test set according to our decision made on

validations set. There are two graphs per data set: balanced and random. As it is

described in Chapter 4, balanced set consists of 2.500 data points in which the rating

distribution is uniform, while the random set contains 15.000 data points sampled

randomly from the dataset. The gray dashed lines shows the percentage of positive

votes to all votes inside the dataset’s sample.
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(a) Yake1 on Validation Set (b) Yake1 on Test Set

Figure C.1: Precision Recall Graphs of Yake with 1-grams
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(a) Yake2 on Validation Set (b) Yake2 on Test Set

Figure C.2: Precision Recall Graphs of Yake with 2-grams
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(a) Bert1 on Validation Set (b) Bert1 on Test Set

Figure C.3: Precision Recall Graphs of Bert with 1-grams
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(a) Bert2 on Validation Set (b) Bert2 on Test Set

Figure C.4: Precision Recall Graphs of Bert with 2-grams
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