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ABSTRACT 

 

ARTIFICIAL LEARNING-BASED ANALYSIS OF MOLECULAR, CLINICAL 

TRIALS AND PATENT DATA FOR IMPROVED DRUG DEVELOPMENT 

 

Çıray, Fulya 

Ph.D., Department of Health Informatics 

Supervisor: Assoc. Prof. Dr. Yeşim Aydın Son 

Co-Supervisor: Assoc. Prof. Dr. Tunca Doğan 

 

August 2022, 146 pages 

 

Drug development is a costly process, especially in terms of the required time and 

money. Many promising drug candidates are eliminated at late development stages, 

e.g., phase II or III of clinical trials, due to insufficient efficacy or unexpected adverse 

health related affects. Lately, pharmaceutical companies are evaluating computational 

approaches, to increase the efficiency of this process. In this thesis study, we 

investigated the computational prediction of the approval of drug candidate 

compounds by regulatory bodies (i.e.,  approved for an official use to treat the 

indicated disease) while the trial process is still continuing, using relevant information 

from previous discovery and development stages and machine learning. As a 

preliminary analysis, we examined drug substructures to observe whether the presence 

of specific molecular structures in drug candidates lead to undesirable outcomes (i.e., 

unapproved). In the main part of the study, we employed a wider and more 

heterogeneous set of features including molecular and physicochemical properties of 

drugs, together with clinical trial and patent related features, to represent each drug-

indication pair as a heterogeneous numerical vector. Following data gathering, manual 

curation and imputation procedures, our finalized feature vectors are processed by 

random forest (RF) classifiers to train independent drug approval prediction models 

for 14 different disease groups. We achieved high prediction scores in our cross 

validation-based performance evaluation, varying in ranges of; accuracy: 0.67-0.81, 

precision: 0.77-0.82, recall: 0.77-0.96, F1-score: 0.77-0.88 and MCC: 0.45-0.62. 

Furthermore, by conducting a temporal analysis, we showed that our method is also 

capable of producing successful results in a prospective manner. We also carried out 

a performance comparison against a baseline model and a state-of-the-art method from 

literature, the results of which indicated both robustness and the generalization 

capability of our approach. Additionally, we identified the most important features for 

accurately predicting drug approvals, which heavily includes clinical trial and patent 

related features. Within a use-case study, we showed that our method can successfully 
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predict regulatorily approved (phase IV) drugs that are later withdrawn from the 

market due to severe side effects. Finally, we used pre-trained models to predict the 

approval of drug candidates that are currently in clinical trial phases I/II/III and 

presented prediction results. We hope that the results of our study and the 

computational tool we presented will contribute to the literature in terms of evaluating 

and improving the drug development process. All of the datasets, source code, results 

and pre-trained models of this study are freely available at 

https://github.com/HUBioDataLab/DrugApp. 

Keywords: Approval of drugs, clinical trials, drug patents, machine learning, 

predictive modeling. 
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ÖZ 

 

İYİLEŞTİRİLMİŞ İLAÇ GELİŞTİRME İÇİN MOLEKÜLER, KLİNİK 

ÇALIŞMALAR VE PATENT VERİLERİNİN YAPAY ÖĞRENME 

TEMELLİ ANALİZİ 

 

Çıray, Fulya 

Doktora, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Doç. Dr. Yeşim Aydın Son 

Tez Eş Yöneticisi: Doç. Dr. Tunca Doğan 

 

Ağustos 2022, 146 sayfa 

 

İlaç geliştirme, özellikle gereken zaman ve maliyetler açısından oldukça masraflı bir 

süreçtir. Pek çok umut vadeden ilaç adayı molekül, yetersiz etkinlik veya sağlıkla ilgili 

beklenmeyen olumsuz etkilere yol açması nedeniyle klinik araştırmaların ikinci veya 

üçüncü fazları gibi aşamalarda geliştirme sürecinden elenmektedir. Son zamanlarda 

ilaç firmaları bu sürecin verimliliğini artırmak adına hesaplamalı yaklaşımları 

değerlendirmektedir. Bu tez çalışmasında, önceki ilaç keşfi ve geliştirme 

aşamalarından elde edilen özellikler ve makine öğrenmesi kullanılarak, ilaç 

adaylarına, belirtilen hastalıkların tedavisi için kullanım onayı verilip verilmemesinin 

otomatik ve hesaplamalı biçimde tahmin edilmesi araştırılmıştır. Çalışmanın 

başlangıcında, bir ön analiz olarak, ilaç adaylarında spesifik moleküler yapıların 

varlığının istenmeyen sonuçlara (onay alamamaya) yol açıp açmadığını gözlemlemek 

için ilaç alt yapılarını inceledik. Çalışmanın ana bölümünde, her bir ilaç endikasyon 

çiftini heterojen bir nümerik vektör olarak temsil etmek amacıyla ilaçların moleküler 

ve fizikokimyasal özelliklerini içeren bir dizi öznitelik ile, klinik araştırma ve 

patentlerle ilgili özellikleri kullandık. Veri toplama, manuel kürasyon ve imputasyon 

prosedürlerini takiben, nihai hale getirilmiş olan öznitelik vektörlerimiz, 14 farklı 

hastalık grubunun her biri için bir ilaç onay tahmin modeli eğitmek üzere rastgele 

orman (RF) sınıflandırıcıları tarafından işlendi. Çapraz doğrulamaya dayalı 

performans değerlendirmemizde aşağıda verilen aralıklarda değişen yüksek tahmin 

puanları elde ettik; doğruluk: 0,67-0,81, kesinlik: 0,77-0,82, duyarlılık: 0,77-0,96, F1-

skoru: 0,77-0,88 ve MCC: 0,45-0,62. Ayrıca zamansal analizler yaparak yöntemimizin 

ileriye dönük olarak da başarılı sonuçlar üretebildiğini gösterdik. Bunun yanında, 

temel bir model ve literatürde yer alan yeni bir yönteme karşı gerçekleştirilen bir 

performans karşılaştırma analizi sonucunda yaklaşımımızın sağlamlığını ve veriyi 

genelleme kabiliyetini sergiledik. Ek olarak, ilaç onaylarını doğru bir şekilde tahmin 

etmek için önemli olarak nitelendirilen özellikleri belirledik ve tartıştık. Bir kullanım 

örneği çalışması kapsamında, yöntemimizin, önce yasal olarak onaylanan (faz IV), 
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fakat sonrasında ciddi yan etkiler nedeniyle piyasadan çekilen ilaçları başarılı bir 

şekilde tahmin edebildiğini gösterdik. Son olarak, şu anda klinik araştırmalar faz 

I/II/III aşamalarında olan ilaç adaylarının onaylarını tahmin etmek amacıyla önceden 

eğitilmiş modellerimizi kullandık ve tahmin sonuçlarını sunduk. Çalışmamızın 

sonuçlarının ve sunduğumuz hesaplamalı aracın ilaç geliştirme sürecinin 

değerlendirilmesi ve iyileştirilmesi açısından literatüre katkıda bulunacağını 

umuyoruz. Bu çalışmanın tüm veri kümeleri, kaynak kodu, sonuçları ve önceden 

eğitilmiş modelleri https://github.com/HUBioDataLab/DrugApp adresinde açık 

kaynaklı olarak paylaşılmıştır. 

Anahtar Sözcükler: İlaç onayları, klinik araştırmalar, ilaç patentleri, makine 

öğrenmesi, tahmine dayalı modelleme.  
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CHAPTERS 

  CHAPTER 1 

 

1. INTRODUCTION & MOTIVATION 

1.1. Drug Development Process 

Drug development is a long-term, multifaceted process that starts from the target 

identification and extends to the human trials of the drug. Since a drug’s successful 

entry into the market requires various factors, including significant resources, well-

equipped research facilities, and advanced project management, this process is highly 

costly (around $900 million to $2 billion) and takes approximately 12-15 years (Deore 

et al., 2019). 

The drug development process includes the following steps (Figure 1.1.): 

(i) Identification and validation of the target, 

(ii) Identification and optimization of the lead, 

(iii)  Characterization of the product, 

(iv)  Formulation,  

(v)  In vitro studies, 

(vi)  In vivo studies, 

(vii) Clinical trials 

This process also covers the patenting process, which usually starts after identifying a 

valuable chemical in treating an indication and lasts around 30 months until national 

entry in the case of international PCT (Patent Cooperation Treaty) applications 

(WIPO, 2022). The duration of the patenting process (from the application date until 

the date of a grant) varies from country to country, depending on the national 

legislation. The protection of a particular patent lasts 20 years and is intended to last 

sometime after the drug's marketing. 
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Figure 1.1. The Stages of Drug Development Process. 

1.1.1. Computational Approaches in Drug Development 

As drug development involves expensive, time-consuming, and laborious processes 

such as high-throughput screening and clinical trials, computational methods have 

been developed and used to increase the efficiency of this process (Rifaioglu et al., 

2018). The employment of data-centric approaches in data mining and artificial 

learning has been gaining popularity in computational drug discovery and 

development. The majority of these studies focus on the prediction of novel drug 

candidate compounds that would be bio-active against selected targets and diseases or 

on the prediction of ADME and toxicological properties of these compounds, the 

structural and functional properties of targets (Doğan et al., 2021; Rifaioglu et al., 

2020; Yang et al., 2019, Doğan et al., 2018). However, many good drug candidates 

are eliminated at late development phases due to both health-related and unrelated (i.e., 

administrative, legal, etc.) factors. As every drug candidate needs to undergo clinical 

trials followed by the approval by the responsible authority before taking a place in 

the market, developers must determine drugs with high chance of approval as early as 

possible to save time, money, and effort. In this context, the idea of estimating the 

outcome of clinical trials stands out as a non-trivial endeavor. 
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1.1.2. Factors Affecting Drug Development 

In this part of the thesis, the factors mainly investigated throughout this study 

regarding drug development are explained in detail below. These factors consist of 

molecular structures and physicochemical properties of drugs and clinical trial and 

patenting processes for drugs. 

1.1.2.1. Molecular Structures 

Molecular structures of drugs contain important hints for drug discovery. 

Computational drug discovery methods regarding molecular structures, called 

structure-based virtual screening (VS), utilize structure information of both target and 

candidate compounds. In order to be used for virtual screening methods, compounds 

must be quantized by molecular descriptors. 

Molecular descriptors can be defined as representative numerical vectors for 

compounds, constructed by algorithms depending on the various features of 

compounds, including physiochemical, structural, and geometrical properties, using 

line notations such as SMILES as input. One well-known sub-group of molecular 

descriptors consists of binary vectors called fingerprints.  Each dimension of the binary 

vector corresponds to 1: presence or 2: absence of a specific feature to define 

compounds in terms of their structural elements, chemical bonds, connectivity 

pathways, and functional groups. Different molecular descriptors can represent 

different compound features. Molecular descriptors can be categorized into the 

following groups (Rifaioglu et al., 2018): 

(i) 0D molecular descriptors (molecular weight, atom number, etc.(Todechini & 

Consonni, 2008)); 

(ii) 1D molecular descriptors (substituent atoms, functional groups, etc. 

(Todechini & Consonni, 2009)); 

(iii)2D molecular descriptors (topological, graph invariants, etc.); 

- Path-based (e.g. DayLight (Sastry, et al., 2010)), 

- Substructure key-based (e.g., MACCS (Duan et al., 2010)), 

- Circular (e.g., ECFPs (Rogers and Hahn, 2010)), 

(iv) 3D molecular descriptors (geometrical, binding site, etc.); 

- Pharmacophore (e.g., hydrophobicity (Wood et al., 2012)), 
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- Geometrical (e.g. triangular (Todechini & Consonni, 2009)), 

(v) Non-structure-based molecular descriptors (substring occurrence in SMILES; 

etc.); 

- LINGO (Vidal et al., 2005). 

1.1.2.2. Physicochemical Drug Properties 

The physicochemical properties of drugs, examples of which include solubility, 

lipophilicity, number of hydrogen bond acceptors and donors, polar surface area, and 

molecular weight, will affect the conversion of biologically active drugs to 

therapeutically active compounds in our body and the pharmacokinetics of the drugs 

(Kerns & Di, 2008). For a biologically active compound to pass all the drug 

development processes until the marketing of a drug requires it to have drug-like 

properties. Several guidelines exist, such as “rule of five (RO5)” regarding drug-

likeness to decrease attrition in the drug development process.  According to one of 

the most widely used guidelines, RO5, the following physicochemical properties are 

suggested to be consistent with the following criteria (Lipinski, 2001):  

(i) LogP (1-octanol–water partition coefficient) <5, 

(ii) Molecular weight <500 Da, 

(iii)The number of hydrogen-bond donors (HBD) <5, 

(iv) The number of hydrogen-bond acceptors (HBA) <10. 

Among the aforementioned physicochemical properties, LogP is the measure of the 

lipophilicity of a drug and can be considered one of the most important drug-like 

properties (Leeson and Springthorpe, 2007). 

In addition to the physicochemical properties mentioned in the “rule of five,” polar 

surface area (PSA), bioavailability, and the number of rotatable bonds have also been 

revealed to have roles in reducing the attrition rates in the drug development process 

(Hou et al., 2007; Linnankoski et al., 2006; Veber et al., 2002; Lu et al., 2004). While 

PSA relates to the count of O + N atoms together with LogD (1-octanol–water 

coefficient at different pH), bioavailability is the portion of an oral dose that enters 

into the bloodstream and based on first-pass metabolism, dissolution, and gut transit 

time (Leeson and Springthorpe, 2007). Additionally, aromatic ring counts that are 

higher than three can lead to a higher risk of attrition in the drug development process 

(Ritchie et al., 2009). Furthermore, specific 3D pharmacophoric and structural 

properties comprising polarizability will have a role in the binding affinity for protein 
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active sites regarding drug development (Leeson and Springthorpe, 2007). Finally, 

Ghose (1999) states that refractivity measures above 40-130 can correlate with poorer 

drug development processes. 

1.1.2.3. Clinical Trials 

Clinical trials constitute one of the most important parts of the drug development 

process, performed on human volunteers to answer drug safety, efficacy, and dosing 

questions. Clinical trials mainly consist of four phases.  

During phase I, a safety assessment is conducted using 20-30 healthy volunteers, as 

shown in Figure 1.1. Patients are used if healthy people cannot tolerate the drug’s 

action mechanism. The dosage regimen is used according to the animal studies 

conducted. The side effects of the drugs are determined. Around 70% of drugs can 

proceed with phase II trials (Deore et al., 2019). 

During phase II, several hundred people conduct safety and efficacy assessments. By 

providing additional safety data, this phase allows researchers to prepare new Phase 

III protocols. Around 33% of drugs can proceed with phase III trials (Deore et al., 

2019).   

Phase III trials are conducted with 300 to 3,000 volunteers. During this phase, safety, 

efficacy, and dosing assessments are performed. The majority of the safety data comes 

from the phase III trials. As these trials are performed using a large number of people 

and longer duration, log-term or uncommon side effects can also be determined. 

Around 25-30% of drugs can proceed to the next phase (Deore et al., 2019).  

After providing the data showing that the drug is safe and effective, the FDA review 

team carefully inspects and decides to approve a drug (Friedhoff, 2009). For a new 

drug application (NDA), along with all preclinical and clinical trial data until phase 

III, patent information is also required (Lal, 2015). 

After the FDA approval of a drug, phase IV trials are conducted to determine the long-

term effect of the drug while the drug is on the market. Based on the complication 

reports, decisions regarding the addition of precautions, such as dosage information, 

can be made, as well as withdrawal of the drug from the market for much more adverse 

drug reactions. (Suvarna, 2010). 
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1.1.2.4. Patenting Process 

A patent is defined as a right granted for an invention. Patents provide a/n 

new/alternative technical way of doing something or a/n new/alternative technical way 

to solve a problem. In order to obtain patent protection, all the technical information 

required to implement the invention must be disclosed to the public (WIPO, 2022).  

Patents can be classified according to the Cooperative Patent Classification (CPC) 

system managed by EPO and USPTO, depending on the particular field of the 

invention (EPO, 2022). CPC is an extension of the International Patent Classification 

(IPC) and is divided into nine main parts (A-H and Y) and various sub-groups. Patents 

regarding medical preparations belong to the “A61K” class. 

Patenting process of the drugs constitutes one of the important parts of the drug 

development process (Figure 1.1). This process usually starts after identifying a 

valuable drug chemical in treating an indication and involves mainly formal control, 

as well as search and examination procedures regarding novelty, inventive steps, and 

industrial applicability of a drug. The duration from the application date until the grant 

date can show variations from country to country. Additionally, factors such as 

inadequate experimental support and clarity objections can extend the duration of 

patent procedures.  

The protection of a particular patent lasts 20 years. However, the drug development 

process takes so much time until the drug is presented to the market, and in order to 

protect the balance between new drug innovation and generic drug competition, the 

FDA grants certain exclusivities after the approval of a drug. Exclusivities vary from 

six months to seven years (FDA, 2022).   

A patent application is composed of the following main parts (EPO, 2022): 

(i) Abstract, where the aim and the content of the invention are briefly mentioned, 

(ii) Description, where the field of the invention, the aim of the invention, prior 

art, the detailed explanation of the invention, and figures are present, 

(iii)Drawings, non-mandatory part of the patent application, 

(iv) Claims, where the parts of the invention that are desired to be protected are 

present. 

(v) Sequence listing, if present. 

 The “Claims” section can be considered the most critical part of a patent application 

as this section constitutes the part where the actual protection for the drug is requested. 
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This section represents small molecule drugs as Markush structures (Figure 1.2). An 

example Markush claim can be written as “an alcohol, shown as R-OH, wherein R is 

chosen from CH3-, CH3CH2- and (CH3)2CH-” (Gardner and Vinter, 2010). Markush 

claims usually include combinations of different groups of substituents around a 

common core molecule, which in the end, let the patent cover multiple compounds 

with common characteristics or similar physical and chemical properties (Valance, 

1961). 

 

 

Figure 1.2. Example of a Markush structure that corresponds to four specific 

compounds. R1 and R2 indicate potential radical substituents (Gardner and Vinter, 

2010). 

1.2.    Problem Statement 

Despite previous efforts, drug approval prediction is still understudied, a significant 

problem that should be solved and translated into real-life pipelines to effectively 

decrease the overall costs of developing new drugs. This may be possible by increasing 

the scope and size of the data used in training these predictive models. Different layers 

of this data can be found on open access resources; however, the main difficulty is 

integrating and using this data due to differing formats, poor cross-referencing, and 

the highly unstructured nature of data in these resources. 

1.3.    Scope and Objectives 

The main aim of this thesis study is to investigate the early prediction of the regulatory 

approval status of drug candidates using the information previously gathered during 

the process of drug development via data-centric computational approaches, primarily 

focusing on the utilization of multiple types of input/source data and its effects on the 

obtained results.   
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Our first objective was to determine drug substructures, which could be significant for 

getting approval, using molecular fingerprints of drugs (as input) and the random forest 

(RF) algorithm in the framework of a preliminary analysis. Our second objective was 

to propose a new methodology and implement it in a “DrugApp” tool. The application 

utilizes available clinical trial- and patent-related data together with physicochemical 

and molecular features of drug candidate compounds within a random forest classifier 

to predict their potential of getting regulatory approval (i.e., phase IV transition) as 

drugs targeted for specific indications. The main contribution of this methodology is 

utilizing multiple data resources to enrich the data at hand in terms of both the size and 

scope by both automated and manual curation processes, thus presenting a valuable 

benchmark dataset, carefully conducting the modeling process by pre-processing and 

ML model training, obtaining high predictive performance in the end, and finally 

sharing the source code, datasets and the results of the study in full open access. 

Patenting can be considered one of the most important drug development processes 

since patent documents may hold clues about the approval status that comes much later 

in the development pipeline. However, utilizing patent data in a model is difficult due 

to the primarily unstructured representation of information and variations in both the 

availability and formatting of patent documents in different countries. In order to 

address these issues, here, we combined information from various databases to obtain 

specific patent-related features for each drug. To our knowledge, these patent features 

are used here for the first time. We constructed an extensive dataset of 14 different 

disease groups using multiple types of features, including molecular fingerprints, 

physicochemical compound features (e.g., lipophilicity, molecular weight, polar 

surface area, etc.), and clinical trial-based features (e.g., intervention model of the trial, 

gender/age of participants, etc.), on top of the patent related ones (e.g., duration of the 

patent process, the number of claims of the patent application, etc.), all extracted from 

non-proprietary databases. We hypothesize that all these features contain necessary 

signals regarding the outcomes of clinical trials and the subsequent approval. 

We used the random forest (RF) algorithm within a supervised binary classification 

framework (i.e., approved vs. unapproved) and employed mean imputation in order to 

deal with the missing data. We performed a predictive performance analysis using 

various evaluation metrics including accuracy, precision, recall, F1-score and MCC, 

in the course of an ablation study. In order to reveal the temporal effects on approval 

prediction success, we conducted an analysis over six different time frames. Our 

finalized models were employed to predict the outcomes of drugs withdrawn from the 

market after regulatory approval, to observe whether the model is successful in 

detecting these critically important cases. Finally, we analyzed a large set of 

experimental drugs (i.e., drug candidates) that are currently in different phases of the 

drug development process. 
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We hope that our study will shed light on the types of features that are important for 

drug approval, which can be utilized by both commercial and non-commercial entities 

to increase the efficiency of drug development procedures. Also, we believe that our 

newly constructed datasets will be useful for further computational studies as 

benchmarks. Furthermore, we showed that our method has the potential to reveal drugs 

that were withdrawn from the market sometime after their approval within a certain 

level of confidence, which indicates that it may be possible to act upon those cases in 

the first place to prevent critical losses regarding human health potentially. 

1.4.    Structure of the Thesis 

This thesis consists of five main chapters. In the first chapter, background information 

regarding drug development and the factors affecting this process is given to provide 

a clear picture of the problem. The main problem statement and the scope and 

objectives of this thesis are also presented in this chapter. 

In Chapter 2, we provided a literature review about clinical trial outcome predictions. 

We also presented the type of artificial learning techniques used in the literature and 

compared the performances of previous models for predicting clinical trial outcomes. 

In Chapter 3, we explained our methodology from dataset construction to modeling. 

Additionally, we presented a temporal analysis approach and methods for determining 

essential features for predicting drug regulatory approvals. 

In Chapter 4, we presented and discussed the results for models belonging to 14 

different disease groups and important features for predicting drug approvals. We also 

provided a case study regarding drugs withdrawn from the market after approval. 

Moreover, we presented regulatory approval predictions for ongoing clinical trials. 

In the final chapter, we provided concluding remarks and discussed how the findings 

of this thesis might be utilized and further developed in future studies. 
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CHAPTER 2 

 

2.                                   LITERATURE REVIEW 

2.1. Artificial Learning Applications in Clinical Trial Outcome Predictions 

In this part of the thesis, we presented previous works regarding clinical trial outcome 

predictions, including the prediction of drug regulatory approvals after phase III of 

clinical trials. 

Table 2.1 summarizes some recent notable works for predicting clinical trial outcomes. 

Most recent clinical trial outcome prediction studies utilize the random forest 

algorithm. Therefore, in the following sections, we will analyze previous models for 

predicting phase transitions of clinical trials depending on the type of utilized artificial 

learning technique. 

Table 2.1. The list of studies from the drug approval / clinical trial outcome prediction 

literature. 

Year Reference Method/Technique Aim of the Study Findings 

2014 Malik et al. Fisher's exact and 

chi-square tests 

Prediction of drug 

approval from phase I 

results 

A higher number of 

partial responses and 

longer response 

durations predict 

approval. 

2015 DiMasi et al. Logistic regression, 

random forest 

classifier 

Prediction of anticancer 

drug approval after phase 

II 

Activity, number of 

patients, and 

prevalence-related 

measures are 

essential for 

predicting drug 

approval. 

2016 Gayvert et 

al. 

Random forest 

classifier 

Prediction of toxicity 

regarding drug approvals 

Drug target network 

connectivity, 

expression levels, 

and MW are 

essential for adverse 

clinical events. 

2016 

 

 

 

 

Artemov et 

al. 

 

 

Deep neural 

networks 

Prediction of clinical trial 

outcomes after phase I/II 

Metabolic pathways 

regarding oxidation 

and endoplasmic 

reticulum are among 

the important 

predictors for 

failures. 
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Table 

2.1. 

(cont.) 

2017 Jardim et al. Chi-square test Determination of potential 

risk factors for failure at 

phase III for anticancer 

drug candidates 

Potential risk factors 

include lack of a 

biomarker-driven 

strategy and failure 

to attain proof of 

concept in phase II. 

2018 Lo et al. Random forest 

classifier 

Prediction of drug 

approval after phase II/III 

The most important 

features for 

predicting approval 

include trial 

outcomes, trial 

status, trial accrual 

rates, duration, prior 

approval for another 

indication, and 

sponsor track 

records. 

2019 Beinse et al. Cox regression Prediction of anticancer 

drug approval after phase I 

Drug characteristics, 

trial design, 

cytotoxic 

chemotherapy 

targets, or categories 

have important roles 

in the prediction. 

2020 Feijoo et al. Random forest 

classifier 

Prediction of phase 

transition after phase II/III 

The number of 

endpoints and the 

complexity of the 

eligibility criteria is 

associated with 

success. 

2020 Zhavoronkov 

et al. 

Deep learning-

based proprietary 

AI tool 

Prediction of clinical trial 

outcome after phase I/II/III 

- 

2022 Fu et al. Graph neural 

networks 

Clinical trial outcome 

prediction after phase 

I/II/III 

Using multi-modal 

data sources 

increases the success 

of models. The lack 

of sufficient data 

(e.g., diseases with 

low prevalence) 

hinders the 

performance. 

Below, we grouped each model based on the machine learning algorithm utilized in 

the study. 
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2.1.1. Logistic Regression Models 

Logistic regression is a classification algorithm that implements a nonlinear sigmoidal 

function to linear feature combinations, and the basic version of this method models 

binary outcomes (Cox, 1958). Logistic regression is frequently used as a benchmark 

for clinical prediction models (Christodoulou et al., 2019). Previous studies used 

logistic regression to predict anti-cancer drug approval after phase I/II (DiMasi et al., 

2015; Beinse et al., 2019). 

DiMasi et al. (2015) used logistic regression to predict new anti-cancer drug approval 

after phase II. Clinical trial features were utilized in this study. As a result of logistic 

regression analysis linking various factors to the probability of regulatory approval of 

a drug (success), the following factors provided an important basis for predictions: 

pivotal trial size, activity, number of patients treated, and the duration of phase II. The 

most significant impact was obtained from the activity variable. 

2.1.2. Cox Regression Models 

Cox regression is used to assess the link between the rate of survival and variables. 

Risk ratio (RR) can be defined as the measure of each variable risk. If RR equals 1, 

the risk is the same for each participant. On the other hand, if RR is higher than 1, RR 

is representative of increased risk, and vice versa. For example, if RR equals 5.5, the 

patients with a variable are 5.5 times more likely to face the studied outcome (Wendy, 

2007). 

Beinse et al. (2019) studied anticancer drug approval predictions after phase I trials 

using lasso penalized cox regression. A multivariable Cox model with lasso 

penalization was trained to predict the approval-free survival for each antineoplastic 

agent. PubMed abstracts belonging to phase I clinical trials regarding antineoplastic 

agents were utilized with pharmacologic data from the DrugBank database to model 

the time to regulatory approval (approval-free survival) since the first phase I 

publication. Performance analysis was conducted using a weighted concordance index 

(IPCW), and an IPCW of 0.89 on the independent test set was obtained. 

2.1.3. Random Forest Models 

Random forest (RF) is a machine learning algorithm that build classification or 

regression models consisting of a combination of decision trees and employs bagging 

and feature randomness during the construction of an individual tree (Breiman, 2001). 

Random forest algorithm, frequently used in clinical trial outcome predictions, was 

also used in this study and explained more in detail in Section 3.4. 
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Gayvert et al. (2016) used drug-likeness (RO5), drug physicochemical features and 

drug target-based features in a random forest model to predict whether the drug will 

fail clinical trials because of toxicity reasons. As important features for adverse clinical 

trial events; molecular weight (MW) together with drug target network connectivity 

and expression levels were determined. They used 10-fold cross-validation on a set of 

784 regulatorily approved drugs with known targets and the drugs associated with 100 

failed toxic clinical trial drugs having at least one target and known structure. They 

determined the model's predictive performance with an area under the curve (AUC) of 

0.8263.  

Lo et al. (2018) used multiple types of data (mostly about clinical trials) obtained from 

proprietary databases to predict the outcome of clinical trials for various disease 

groups. They utilized random forest classifiers to predict drug approvals using clinical 

trial data across 15 different disease groups. Drug-indication pairs were used in this 

study. The predictors achieved performances of 0.78 AUC for predicting transitions 

from phase 2 to regulatory approval and 0.81 AUC for predicting transitions from 

phase 3 to regulatory approval. They determined the most important features for the 

prediction of drug regulatory approval as trial outcomes, trial status, rates of trial 

accrual, trial duration, earlier drug approval for another indication, and sponsor track 

records.  

The model from Feijoo et al. (2020) was also based on clinical trial features. They 

used random forest classifier for the prediction of phase transition after phase II/III of 

clinical trials. The predictor achieved an average accuracy of 0.80. Moreover, they also 

determined that the complexity of the eligibility criteria and the number of endpoints 

constituted common protocol characteristics across different therapeutic fields that are 

linked to drug approvals. 

2.1.4. Deep Learning Applications 

Nowadays, deep learning methods have intensively been used in various fields of 

technology. Multi-layer perceptrons constitute the simplest form of neural networks, 

which is unable to account for temporal dependencies. On the other hand, recurrent 

neural networks utilize feedback connections in order to model temporal behavior. 

Deep learning techniques have strong performances; however, there exists lack of 

interpretability in their decision-making process (Shamout et al., 2021). 

Artemov et al. (2016) developed deep learning techniques and biology analytical tools 

which utilize drug side effect information to predict the drug approval for phase I/II 

clinical trials. First of all, they performed the predictions of the side effects of a drug 

by deep neural networks and drug-induced pathway activation estimation. Next, they 

used the probabilities of the predicted side effects and the pathway activation scores 
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as an input to train a classifier to predict the clinical trial outcomes. The predictor of 

this study achieved an accuracy of 0.83.  

Zhavoronkov et al. (2020) used wide range of features for the prediction of reaching 

phase II and phase III, including molecule descriptors; ADMETox data, biomedical 

documents, clinical trials, and drug/target omic features. However, the output of this 

study is a proprietary method/tool/system, and researchers cannot obtain either the 

source code, datasets, or detailed results.  

In a recent work, Fu et al. (2022) presented the Hierarchical Interaction Network 

(HINT) method, in which drug molecule, target disease, and trial eligibility criteria 

embeddings are obtained together with drug pharmacokinetic and trial data-based 

knowledge-embeddings. Then these features are connected by a hierarchical 

interaction graph to capture their interactions and predict the outcomes of phase I, II, 

and III clinical trials. 

These studies have shown that it is possible to predict drug approvals, or clinical trial 

outcomes, using machine learning and data science, and revealed important predictors 

thereof. Overall, they pave the way for developing more advanced and systematic 

methods/tools to be used in actual drug development pipelines. 
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 CHAPTER 3 

 

3. METHODS 

 

3.1. Preliminary Data Analysis  

In this part of the thesis, we constructed random forest models for 14 disease groups 

to determine important drug substructures using PubChem fingerprints as input 

features to the model.  

3.1.1. Dataset Construction 

For the construction of datasets of regulatorily approved and unapproved drug classes, 

please see the dataset construction part of the main model (Section 3.2.1).  The only 

difference with the datasets of the main model resides in the removal of SMILES up 

to length 6. Here, we did not remove SMILES data up to length 6 because they could 

also contain important structural information regarding approved and unapproved 

drugs. 

3.1.2. The Use of PubChem Substructure Fingerprints as Features 

PubChem provides structured data about fragments of molecules, called PubChem 

substructure fingerprints. A fingerprint consists of an ordered list of binary bits, each 

corresponding to a presence (1) or absence (0) of an element, a ring system type, atom 

environment as nearest neighbors etc., in a compound structure. PubChem fingerprints 

(881 bits) correspond to 881 substructures, divided into seven sections, as seen in 

Table 3.1 (Bethesha, 2009). Therefore, we decided to use these fingerprints as input 

features in a machine learning model and then determine important features 

(substructures). PubChem fingerprints (881 bits) were generated using the 

PubChemPy package. 
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Table 3.1. The main sections' explanations and examples that are available in the 

PubChem substructure fingerprints. Abbreviations; FPS: fingerprints. 

PubChem FPS 

Section Number 

PubChem FPS 

Section Name 

Examples to  

PubChem FPS 

1 Hierarchic Element Counts  >= 4 H, >= 1 Fe 

2 

Rings in a canonic Extended 

Smallest Set of Smallest Rings 

(ESSSR) ring set 

>= 1 any ring size 3, >= 1 

hetero-aromatic ring 

3 Simple atom pairs Li-H, O-Na 

4 Simple atom nearest neighbors C(~Br)(~C), N(~C)(~C) 

5 Detailed atom neighborhoods C(-N)(=C), N-C:N:C 

6 Simple SMARTS patterns O=C-C:C, S=C-N-C 

7 Complex SMARTS patterns 
Cc1ccc(Cl)cc1, 

NC1CC(N)CCC1 

3.1.3. Modeling for the Determination of Important Drug Substructures 

We used the random forest classifier as a machine learning algorithm. For the 

modeling methodology, please see the modeling part for the main model (Section 

3.2.3). We extracted the top twenty most informative substructures using MDI-based 

feature importance and the built-in function of the RF classifier, which was 

implemented in the Python scikit-learn package (please see Section 3.2.5). 

3.2. Construction and Evaluation of the Drug Approval Prediction Model 

3.2.1. Dataset Construction 

Figure 3.6 summarizes the overall system of DrugApp, including the data gathering 

procedure, which is also explained below. All the data used in this study are extracted 

from public databases that are listed as follows:   

(i) Clinicaltrials.gov (Zarin et al., 2011), the most extensive database comprising 

clinical trial information, 

(ii) DrugBank (Wishart et al., 2006), a database containing information about 

approved and investigational drugs,  

(iii) ChEMBL (Gaulton et al., 2017), a chemistry database comprising small 

molecule compound information and their bioactivities against targets, 
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(iv) SureChEMBL (Papadatos et al., 2016), a chemically annotated patent document 

database including text and image-based compound information,  

(v) PatentsView (USPTO, 2019) is a database containing patent information from 

the United States Patent and Trademark Office. 

In each clinical trial record, a drug candidate is tested against one or more disease(s); 

as a result, in our study, we evaluated a drug’s approval status considering the reported 

indication in the respective trial record. Clinicaltrials.gov also provides 25 condition 

groups in which these indications are classified.  However, most of them have a small 

sample size. Due to this reason, we decided to merge certain groups that could have 

common properties; for example, we constructed an “Infective diseases” group, which 

is obtained by merging “Bacterial and Fungal Diseases” with “Viral Diseases.” 

Additionally, condition groups such as “Occupational Diseases” were discarded as we 

considered diseases in these groups would not have common characteristics. This way, 

we constructed datasets of drug-indication pairs that cover 14 disease groups as; rare 

diseases, nervous system, alimentary tract and metabolism, cancers and other 

neoplasms, dermatological, urinary tract/ sexual organs and pregnancy conditions, 

heart and blood diseases, immune system diseases, infective (bacterial, fungal and 

viral), respiratory tract (lung and bronchial) diseases, gland and hormone-related 

diseases, blood and lymph conditions, musculoskeletal diseases and sensory (eye, ear, 

nose, and throat). Table 3.2 displays these disease groups and the number of drug-

indication pairs under each group. The Clinicaltrials.gov database originally contained 

25 condition groups.  

After that, we downloaded SMILES notations and names for each drug/compound 

obtained in the previous step from DrugBank and ChEMBL databases. In order to 

construct the dataset of regulatorily approved drugs, we searched for drug names in 

“phase IV” clinical trial records in the Clinicaltrials.gov database. During this search, 

we ignored trials in which drug combinations were utilized. To exclude the small 

auxiliary ions, compounds with SMILES notations up to the length of six characters 

were also removed from the dataset. We also added approved drug information from 

the DrugBank database for the corresponding indications on top of the ones extracted 

from the Clinicaltrials.gov database. In the end, we obtained 14 datasets containing 

approved drug-indication pairs, one for each disease group. 

For constructing the unapproved drug datasets, we searched for drugs in clinical trial 

records with “Suspended,” “Terminated,” or “Withdrawn” status and place them into 

the unapproved dataset of the corresponding disease group, similar to the previous 

studies (Lo et al. 2018) (Figure 3.6). We also added unapproved drug data from the 

DrugBank database by considering the aforementioned status for the corresponding 

indications.  Again, drug combinations were ignored, and SMILES up to the length of 

six characters were removed to finalize the disease group-based unapproved drug 

datasets.  
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Table 3.2. The number of regulatorily approved and unapproved drugs and drug-

indication pairs in each disease group.  

Condition/Disease group 
# of approved 

drug-indication 

pairs 

# of unapproved 

drug-indication 

pairs 

# of unique 

approved 

drugs 

# of unique 

unapproved 

drugs 

All Diseases 18,427 2,480 1,995 1,127 

Rare Diseases 3,886 1,768 1,133 835 

Nervous System Diseases 6,397 808 1,132 555 

Alimentary tract and 

Metabolism Diseases 

4,832 861 1,075 555 

Cancers and Other 

Neoplasms 

2,450 1,530 869 704 

Dermatological Diseases 3,246 802 930 521 

Urinary Tract, Sexual 

Organs, and Pregnancy 

Conditions  

3,215 818 914 506 

Heart and Blood Diseases  4,372 516 883 365 

Immune System Diseases 2,494 848 837 495 

Infective (Bacterial, Fungal 

and Viral) Diseases 

3,766 582 906 397 

Respiratory Tract (Lung 

and Bronchial) Diseases  

2,147 688 699 470 

Gland and Hormone 

Related Diseases 

2 ,050 648 631 374 

Blood and Lymph 

Conditions 

1,038 775 463 403 

Musculoskeletal Diseases 1,483 240 516 202 

Sensory (Eye, Ear, Nose 

and Throat) Diseases 

1,378 306 451 218 
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As shown in Table 3.2, the overall dataset consists of 3,122 unique small molecules, 

8,324 unique indications, and 20,907 unique drug-indication pairs. The disease group 

“Rare Diseases” makes up the largest subgroup. For most subgroups, approved drug 

data outnumber the ones in the unapproved category.  

A drug may have multiple disease group tags. For instance, a drug may exist both in 

“Cancers & Other Neoplasms” and “Immune System Diseases” in the 

Clinicaltrials.gov database. Moreover, one disease group may contain a particular drug 

multiple times as the drug can be used for multiple indications belonging to the same 

disease category. On the other hand, a drug labeled as “unapproved” in one disease 

group may be categorized as an approved drug for another group. We allowed these 

cases as this does not cause any contradictions. 

3.2.2. Featurization 

We used four types of features (i.e., molecular descriptors of drugs, physicochemical 

properties of drugs, clinical trial-related features, and patent-related features) to build 

vectors representing each drug-indication pair data point to be given as input to our 

machine learning models that predict drug approval. Details about these features are 

given in both Table 3.3 and Figure 3.6. We utilized extended connectivity fingerprints 

with the diameter value of two (ECFP4) with 128-bits size (Rogers and Hahn, 2010) 

using the publicly available tool RDKit (Landrum et al., 2006). ECFPs are among the 

most widely used similarity search tools in drug discovery and contain information 

regarding the environments of each atom (Carracedo-Reboredo et al., 2021). The 

physicochemical properties of molecules (i.e., logP, MW, PSA, HBA, HBD, number 

of rings, polarizability, refractivity, number of rotatable bonds, bioavailability) were 

extracted from the DrugBank database. These features are evaluated early in the drug 

development process for assessing drug-like properties and are generally used for rules 

regarding drug-like properties such as RO5. The clinical trial-related features were 

obtained from the Clinicaltrials.gov database, including the gender and age of 

participants, allocation of trial to assign participants to an arm of a clinical study (non-

randomized, randomized, etc.), intervention model of the trial (single group 

assignment, parallel assignment, etc.), funder of the trial (Industry, NIH, etc.) and 

locations by country, that were also utilized by previous studies (Beinse et al., 2019; 

Feijoo et al., 2019; Lo et al., 2018). Finally, we used patent features comprising CPC 

(Cooperative Patent Classification), number of related patents, number of claims, 

presence of international application (PCT: Patent Cooperation Treaty), and duration 

of patenting process. CPC classifies patents with respect to various aspects such as 

depending on whether a drug contains active organic ingredients such as hydrocarbons 

or phenols, thereby giving clues regarding the structural properties of drugs. For some 

related patents with the presence of international applications, we speculated that if a 

drug is highly promising, drug developers may tend to apply for more patents in more 
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countries. Claim numbers mainly determine the number of properties to be protected 

by a patent. A high number of claims may reflect an alternative high number of side 

groups of the primary drug, extensive methodology for obtaining that drug, or 

additional properties, etc.  For the duration of patenting process, this duration can 

extend depending on several factors. For example, if the patent application is evaluated 

to lack some properties such as inventive step, patent applicant/s can raise objections, 

thereby leading to re-examination as well as the extension of the duration from the 

patent application until the grant of a patent.  

Table 3.3. Types, names, descriptions, and formats of features used in our machine 

learning-based drug approval predictor. 

Type and name of the feature Description Format 

Molecular features of drugs  

ECFP4 (128 bits) Molecular descriptor; Extended-connectivity fingerprint Categorical 

Physicochemical features of drugs  

logP Lipophilicity Numerical 

MW Molecular weight Numerical 

PSA Polar surface  area Numerical 

HBA Hydrogen bond acceptor Numerical 

HBD Hydrogen bond donor Numerical 

Rings Number of rings Numerical 

Polarizability  Polarizability  Numerical 

Refractivity Refractivity Numerical 

Bonds Rotatable bond count Numerical 

Bioavailability The likelihood that the drug will exhibit oral 

bioavailability 

Categorical 

Clinical trial features  

Gender Gender of participants Categorical 

Age Age of participants Categorical 

Allocation type Allocation of trial to assign participants to an arm of a 

clinical study (Non-Randomized, Randomized, etc.) 

Categorical 

Intervention model Intervention model of the trial (Single Group 

Assignment, Parallel Assignment, etc.) 

Categorical 

Funder type Funder of the trial (Industry, NIH, etc.) Categorical 

Locations Locations by country Categorical 

Patent features  

CPC Cooperative Patent Classification, patent classification 

of the patent application 

Categorical 

Number of related patents Patent numbers containing drug information in the part 

of the claims before the regulatory approval date of the 

drug 

Numerical 

Claim numbers The number of claims of the patent application. Numerical 

PCT The presence of the international Patent Cooperation 

Treaty application  

Categorical 

Duration Duration of the patent process in months (from 

application date to grant date) 

Numerical 
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The drug patent data's usability is lower than the other types of drug features in the 

literature. One of the reasons for this situation is the specific demonstration of drugs 

in patent documents, called the “Markush structure” which covers all possible 

formulations comprising the actual drug to expand the scope of legal protection. 

Markush claims usually include combinations of different groups of substituents 

around a common core molecule, which in the end, let the patent cover multiple 

compounds with common characteristics or similar physical and chemical properties 

(Valance, 1961). Thus, finding the drug/compound of interest among all these claims 

is difficult. Other reasons that reduce the usability of drug patent data are non-

standardized ways of accessing patent data in different resources and differences in 

patent document formats. USPTO has provided bulk patent data to increase readability 

and requires applicants to submit chemical structures as MDL molfiles and ChemDraw 

CDX binary files since 2001. However, for the majority of patent authorities around 

the world, patent data can only be manually extracted in the form of unstructured text 

documents (Papadatos, 2016). In order to generate our patent features by addressing 

these issues, we gathered patent information by combining data from multiple 

databases: USPTO database, SureChEMBL, and DrugBank following these steps:  

(i) The patent ID number (USPTO Patent ID) for a drug/compound was extracted 

from the DrugBank database by only taking the earliest patent application of 

that drug into account (to avoid subsequent patent applications that may be 

processed during or after the clinical trial procedures).  

(ii) For the drugs that did not have a patent ID in DrugBank, the SureChEMBL 

database was utilized. In order to extract patent data from SureChEMBL, first, 

USPTO patents (and if not present in USPTO, patents from other countries) 

containing the drug of interest in the “claims” part of the documents were 

gathered. The reason behind searching the “claims” part is that this is the main 

section of patent documents where the actual drug to be protected shall be 

given. Among the retrieved patents for a particular drug, the earliest patent (by 

publication date) was assumed to be the document of interest for a given drug. 

(iii)After obtaining all patent IDs, patent features were gathered from DrugBank, 

SureChEMBL, USPTO, or Google Patents (the latter is only used when the 

required data is not found in formerly listed databases).  

- For the “number of related patents” feature, all obtained patents whose 

publication date is before the regulatory approval date of the drug of 

interest were taken into account. 

- The values of the “number of claims” feature were obtained from 

SureChEMBL and Google Patents.  
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- The values of “duration”, “PCT”, and “CPC” features were extracted 

from the USPTO database and Google Patents. 

The final feature vector comprises the combination of ECFP4, physicochemical, 

clinical trial- and patent-related features, respectively, 128, 10, 6, and 5 dimensions in 

size. Thus, the size of the finalized feature vector was 149 dimensions. 

A drug may exist in multiple drug-indication data points in a disease group’s dataset 

(each time paired with a different indication). In these cases, molecular, 

physicochemical, and patent features are replicated for the drug of interest, and only 

clinical trial features differ (since each drug-indication pair comes from a different 

clinical trial). This situation could lead to over-optimistic performance results due to 

the high similarity between training and test samples. To avoid this, we discarded 

duplicate data points of drugs under each disease group by randomly filtering all but 

one data point for each drug. This way, we ensured that our performance evaluation 

was not biased regarding data leakage from training to test datasets.  

In our dataset, the data types of features are heterogeneous. For instance, clinical trial 

features are categorical, whereas molecular and physicochemical drug features are 

numerical. Finally patent features are a combination of numerical and categorical 

values. We converted categorical values into one-hot encoded features to distinguish 

between these different data types. 

In order to deal with missing values in our dataset, mean and median imputation 

methods were employed. Figures 3.1-3.3 summarize the visual representation of 

missing data. Mean imputation was used for logP, MW, PSA, polarizability, 

refractivity, and the duration of the patent process, while median imputation was used 

for HBA, HBD, number of rings, number of claims, number of rotatable bonds, and 

the number of patents. Figure 3.1 shows patterns of missing data for physicochemical 

drug features. 26% of physicochemical features were missing from the approved 

dataset and 25% from the unapproved dataset.  
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Figure 3.1. Patterns of missing data for physicochemical drug features. Abbreviations; 

#: number. 

 

Figure 3.2. shows patterns of missing data for clinical trial-related features. The 

missing values varied from 15 to 26% for clinical trial features of approved drugs and 

25 to 32% for clinical trial features of unapproved drugs. 
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Figure 3.2. Patterns of missing data for clinical trial features. 

Figure 3.3. shows patterns of missing data for patent-related features. For patent 

features, the percentages of missing values were 18 to 35% for approved drugs and 23 

to 51 % for unapproved drugs. 
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Figure 3.3. Patterns of missing data for patent features. Abbreviations; #: number, 

CPC: Cooperative Patent Classification, PCT: the presence of international Patent 

Cooperation Treaty application, # of Patents: number of related patents. 

 

Figure 3.4 shows the percentages of missing ECFP4, clinical trial, patent, and 

physicochemical features for each drug in the dataset. Each row corresponds to a 

specific drug, and all the column values of a row represent values that belong to the 

same drug. 
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Figure 3.4. Patterns of missing data for all features. The bar on the right-hand side 

shows color codes representing the percentage of missing data. 

 

We also conducted an empirical study in which we analyzed the performance of the 

imputation process by artificially filling varying degrees of missing features (i.e., 0%, 

25%, 50%, and 75%) to a subset of the data at hand, which do not contain any missing 

features originally. 

 

3.2.3. Modeling 

Here, we modeled the task of predicting the approval (i.e., phase IV transition) of a 

drug-indication pair as a supervised binary classification problem (output classes: 

“approved” and “unapproved”) using the random forest (RF) algorithm, given a set of 

input features. For each drug-indication pair (i.e., data point or sample), the 

corresponding molecular, physicochemical, clinical trial, and patent features are 

combined and presented to the prediction model as a fixed-sized feature vector (Figure 

3.6).  

Random forest (RF) is an ensemble learning algorithm that builds classification or 

regression models using a combination of decision trees. When constructing an 

individual tree, RF employs bagging and feature randomness. For classification tasks, 

the class that most trees choose constitutes the model's output. As the number of trees 

increases, the generalization error converges to a limit. The strength of each tree and 

the correlation in-between determine the generalization error of the forest (Breiman, 

2001). Like most machine learning algorithms, RF involves hyperparameters to be set 
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by the user, and tuning these values can lead to improved model performance (Probst, 

2019). Due to this reason, we focused on the following hyperparameters:  

(i) The maximum number of splits until the final node (max_depth), 

(ii) The minimum number of samples to split any given leaf node 

(min_samples_split), 

(iii) The minimum number of samples to be in the leaf node (min_samples_leaf), 

(iv) The number of trees/estimators in the forest (n_estimators), 

(v) The maximum number of features is considered for the best split 

(max_features). 

We tuned these hyper-parameters using grid search in a scheme of 5-fold cross-

validation. The parameter values we used were; the number of trees/estimators: 100, 

200, and 400, the maximum number of features: 30% of all features, square root of all 

features and all features, maximum depth: 4, 16, and no limitation, the minimum 

number of samples leaves: 1, 2 and 4, the minimum number of samples to split: 2, 4 

and 8. 

3.2.4. Temporal Analysis 

As the processes of drug development, especially clinical trials, continuously change 

over time (Brunoni et al., 2010), it is important to observe that the success of modeling 

drug approval (using data from the past and predicting future events) varies over time. 

For this, we applied a temporal performance analysis. We split clinical trials into six 

different time frames (Figure 3.5). For instance, the first training time frame comprises 

clinical trial data until 2008 (starting from the oldest record), and the testing time frame 

includes the trial data between 2009 and 2020. For the second time frame, the training 

data is until 2010, whereas the testing data is from 2011-2020, etc. The model was 

trained and tested on each time slice independently.  The RF classifier with the hyper-

parameter values of; the number of trees: 200, the maximum feature number: square 

root of the total number of features; maximum depth: 16; minimum samples leaf: 2; 

minimum samples split: 2 were used. The models' performances were estimated using 

F1-score, accuracy, precision, recall, and MCC metrics.  
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Figure 3.5. Time frames used for the temporal analysis. The first training time frame 

consists of clinical trial data until 2008; for the second time frame, the training data 

are selected up to 2010, etc. For each time frame, the test dataset comprises data left 

outside the training dataset. 

3.2.5. Determination of Feature Importance 

In this analysis, we extracted each model's top ten most informative features. Feature 

importance values were determined using the mean decrease impurity (MDI) and 

permutation feature importance methods. In mean decrease impurity, the decrease in 

node impurity for all nodes that split on that variable is determined, weighted by the 

probability of reaching that node, and averaged over all trees (Breiman et al., 1984). 

As MDI-based feature importance could lead to an inflation of the importance of 

numerical values, we also calculated permutation importance.  Permutation feature 

importance takes into account the drop in the model's score when the values of the 

feature of interest are shuffled randomly. This method is based on the breakdown of 

the relationship between the feature and the target. Therefore, the decline in the model 

performance shows how much the model is dependent on the feature of interest 

(Breiman, 2001). We used the n_repeats parameter as 10, determining the number of 

times a specific feature is randomly shuffled. 

3.2.6. Performance Evaluation Metrics 

Evaluation metrics are used to observe the performances of prediction models on the 

testing set, which is important for the fair comparison of the success of different 

models. Here, we will refer to the approval of a drug as the positive class and the 

unapproval of a drug as the negative class for the prediction models regarding the 

regulatory approval of drugs. In classification, predictions of the model are compared 

to the true labels, which results in the following categories: 
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(i)  TP: True positives, when the positive class is predicted correctly, 

(ii)  TN: True negatives, when the positive class is predicted correctly, 

(iii) FP: False positives, when the positive class is predicted incorrectly, 

(iv)  FN: False negatives when the negative class is predicted incorrectly. 

Among various classification metrics, accuracy represents the fraction of correctly 

predicted samples across all samples and is considered highly biased in the case of 

highly imbalanced datasets (Shamout et al., 2021). Precision (i.e., positive predictive 

value) corresponds to the fraction of correctly predicted positive class among all 

positive cases. On the other hand, recall refers to the proportion of correctly predicted 

samples across true positive and false negative cases. As inferred from the definitions, 

false negatives and false positives are not taken into account by precision and recall, 

respectively. Therefore, the evaluation of performances of models by only considering 

a single evaluation metric may lead to inaccurate results. In such a case, F1-score can 

be utilized, considering both false negatives and positives. 

Furthermore, Matthews correlation coefficient (MCC) is another widely used metric 

and differs from F1-score by taking true negatives into account. The MCC value of 

zero indicates random prediction, while value 1 corresponds to perfect classification. 

Because of the equation (Eq. 5), using MCC usually results in lower performance 

values when compared to other evaluation metrics. Therefore, MCC around 0.5 is 

generally evaluated as a successful model. The selection of evaluation metrics may 

vary depending on different cases, and multiple evaluation metrics are suggested to 

reach more realistic conclusions. 

In order to measure the performance of our predictive models, we used multiple 

evaluation metrics such as; accuracy, precision, recall, F1-score, and Matthews 

Correlation Coefficient (MCC). MCC is preferred over both accuracy and F1-score for 

highly imbalanced datasets due to its robustness (Chicco and Jurman, 2020). To further 

compensate for the imbalance between the sizes of approved and unapproved drug 

classes in our datasets, we incorporated metrics such as the balanced accuracy and 

weighted versions of precision, recall, and F1-score (Brodersen et al., 2010; Behera et 

al., 2019; Opitz and Burst, 2021). In weighted metrics, the performances are 

independently calculated for each label, and their weighted average is taken 

considering the number of positive cases for each label. The formulations of the basic 

versions of these metrics are given as follows: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
                                                         (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                   (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
                                                                      (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                      (4) 

  𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 −𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝐹𝑁 + 𝑇𝑃)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
                                              (5) 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
(

𝑇𝑃

𝑃
+

𝑇𝑁

𝑁
)                                                     (6) 

where TP, TN, FP, and FN correspond to true positive, true negative, false positive, 

and false negative predictions. 

All work related to machine learning-based modeling has been done using Python 

scikit-learn package (Pedregosa et al., 2011). 
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Figure 3.6. Schematic representation of the dataset preparation (left-side), 

featurization (middle- and bottom-side), and machine learning modeling (right-side) 

procedures applied in DrugApp, for training and testing a drug approval prediction 

model on an example disease group dataset (i.e., disease-group-1). In DrugApp, each 

data point is a drug-indication pair, and an independent prediction model is trained for 

each generic disease group, which are clusters of indications with commonalities (e.g., 

ovarian cancer belongs to the “cancers and other neoplasms” disease group). Approved 

and unapproved drug data have been obtained from DrugBank and ClinicalTrials.gov 

databases. Unapproved drug candidates are selected from clinical trial records with 

“suspended”, “terminated,” or “withdrawn” outcomes.  Features are gathered from 

various databases (abbreviations; Claim #: number of claims, Patent #: number of 

related patents). Multiple training and validation experiments have been carried out to 

evaluate the performance of models and construct the finalized system. 
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CHAPTER 4 

 

4.    RESULTS AND DISCUSSION 

 

4.1.  Important Drug Substructures 

Intending to determine the most important substructures that could give clues 

regarding drug approvals, we constructed RF-based approval prediction models using 

only drug substructures (represented by PubChem fingerprints) as input features. We 

predicted the outcome as drug approval (1) or unapproved (0) in a supervised binary 

classification scheme. This is followed by determining important substructures using 

RF built-in MDI-based feature importance function.  

Table 4.1 summarizes the performance results of RF models for 14 disease groups. 

The performances of the models varied in the ranges of accuracy: 0.57-0.73, precision: 

0.63-0.75, recall: 0.65-0.89, F1: 0.62-0.81 and MCC: 0.18-0.33. The highest 

performance results were observed in the “Sensory Diseases” group with the accuracy: 

0.64-0.73, the precision: 0.71-0.75, recall: 0.73-0.89, F1: 0.70-0.81, and MCC: 0.33. 

The lowest performance results were observed in the “Blood Diseases” group, with 

the accuracy: 0.59-0.65, precision: 0.63-0.69, recall: 0.65-0.80, F1: 0.62-0.74, MCC: 

0.19. Moreover, the performance of the combined datasets in “All Diseases” group 

was observed as accuracy: 0.62-0.67, precision: 0.66-0.71, recall: 0.67-0.82, F1: 0.66-

0.76, MCC: 0.27. Most of the models belonging to specific disease groups, such as 

“Respiratory Diseases”, performed better than the combined “all diseases” group as 

expected (since it contains drugs with more diverse substructures, which would be 

more difficult for the model to generalize), while others, such as models for “Rare 

Diseases” and “Neoplasms”, performed more poorly. The reason behind this may be 

“Rare Diseases,” and “Neoplasms” groups can also have diverse features due to 

heterogeneity in associated tissues and target proteins. 

Additionally, the performance results of the “Blood Diseases” group are also lower 

than the combined “all disease” group, probably due to the fact that this group has a 

lower sample size leading to a weak representation of its space. The overall 

performances of the models shown in Table 4.1 were observed to be low (i.e., MCC 

scores are close to 0, near-random predictions). These results indicate that using drug 

substructures (i.e., PubChem fingerprints) alone as the input feature is insufficient to 

successfully model regulatory drug approval since many additional factors affect the 

drug development processes and their outcome. 
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Table 4.1. The performance of RF models for 14 disease groups. The highest scores 

for each evaluation metric are shown in bold. Abbreviations are; Acc: accuracy, Accb: 

balanced accuracy, Pre: precision, Prew: precision weighted, Rec: recall, Recw: recall 

weighted, F1: F1-score, F1w: F1 weighted, MCC: Matthews Correlation Coefficient, 

TN: true negative, FP: false positive, FN: false negative, TP: true positive.  

Disease Acc Accb Pre Prew Rec Recw F1 F1w MCC TN FP FN TP 

All 0.67 0.62 0.71 0.66 0.82 0.67 0.76 0.66 0.27 405 562 289 1,357 

Rare 0.65 0.61 0.69 0.64 0.80 0.65 0.74 0.64 0.23 246 350 192 772 

Nervous  0.68 0.57 0.70 0.64 0.89 0.68 0.78 0.64 0.18 102 304 91 721 

Alimentary  0.68 0.57 0.71 0.65 0.88 0.68 0.78 0.64 0.19 104 291 92 698 

Neoplasms 0.66 0.62 0.68 0.65 0.79 0.65 0.73 0.64 0.26 228 272 157 588 

Dermato-

logical 
0.68 0.59 0.71 0.65 0.86 0.68 0.78 0.65 0.21 113 255 100 636 

Urinary  0.69 0.60 0.72 0.67 0.89 0.69 0.79 0.66 0.24 104 238 76 608 

Heart  0.68 0.57 0.70 0.64 0.89 0.68 0.79 0.63 0.18 65 205 58 482 

Immuno-

logical 
0.70 0.60 0.72 0.68 0.89 0.70 0.79 0.67 0.24 105 230 75 595 

Infective  0.68 0.57 0.71 0.64 0.89 0.68 0.78 0.64 0.18 68 200 60 476 

Respiratory  0.71 0.62 0.73 0.70 0.88 0.71 0.80 0.68 0.28 113 196 77 541 

Hormonal 0.69 0.59 0.72 0.67 0.88 0.69 0.79 0.66 0.23 74 169 57 429 

Blood 0.65 0.59 0.69 0.63 0.80 0.65 0.74 0.62 0.19 99 164 94 371 

Musculo-

skeletal 
0.69 0.59 0.72 0.66 0.87 0.69 0.79 0.66 0.22 45 98 36 250 

Sensory 0.73 0.64 0.75 0.71 0.89 0.73 0.81 0.70 0.33 40 61 22 180 

Table 4.2 and 4-13-4.26 (please see Appendix A) shows the top twenty most important 

substructures for 14 disease groups. We observed that drug substructures, for example, 

“>=16 H”, “C(-O)(=O)”, “C(~O)(~O)”, “>=16 C”, “O=C-N-C-C”, “C(-N)(=O)”, 

“>=4 any ring size 6”, “>=3 any ring size 6”, “N(~C)(~C)(~C)”, “>=1 saturated or 

aromatic heteroatom-containing ring size 6”, “[#1]-C-C-N-[#1]”, “N(~C)(~C)(~H)”, 
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“C-F” and “>=1 F” could be important for predicting drug approvals in “All Diseases” 

group. Moreover, “C-F” and “>=1 F” substructures were observed to be higher in 

number in the unapproved drug category (Table 4.2), showing that these substructures 

may have important associations with failure.  

Table 4.2. The top twenty most important substructures for “All Diseases” group. 

Features correspond to substructures from PubChem Fingerprints representing 881 

substructures. Bold: substructures higher in number in the unapproved drugs.  

Feature  
Importance   

(MDI) 
           

# of  

Approved 

# of  

Unapproved 

 >=1 Cl 0.008166            267 180 

C-F 0.006334            185 204 

C(~H)(~H)(~H) 0.005601            1157 706 

 >=1 F 0.005578            192 204 

O-H 0.005200            918 505 

 >=16 H 0.005111            1144 754 

>= 4 O 0.005076            807 477 

C(-O)(=O) 0.004905            629 307 

C(~O)(~O) 0.004889            683 338 

 >=16 C 0.004745            1023 712 

O=C-N-C-C 0.004656            529 445 

C(~C)(~C)(~C)(~H) 0.004633            505 290 

 >=1 S 0.004630            361 234 

C(-N)(=O) 0.004556            614 514 

 >=4 any ring size 6 0.004415            225 218 

 >=3 any ring size 6 0.004388            577 449 

N(~C)(~C)(~C) 0.004388            721 485 

 >=1 saturated or aromatic heteroatom- 

containing ring size 6 
0.004367            570 462 

[#1]-C-C-N-[#1] 0.004312            710 555 

N(~C)(~C)(~H) 0.004198            656 516 

Overall, different substructures were observed to be important in different disease 

groups. This is due to the fact that the associated tissues and target proteins for drugs 

in different diseases are dissimilar. The models performed poorly, showing that the 

prediction of drug approvals using only drug substructure features is not meaningful. 

The results of this preliminary study show that substructures of drug candidate 

molecules are not a clear and direct indicator for regulatory approval. 
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4.2.  Prediction of Drug Approvals 

4.2.1. Data Exploration 

Intending to observe differences between approved and unapproved drugs in terms of 

the value distributions of a clinical trial, patent, and physicochemical features we 

employed in this study, we conducted a simple comparison-based exploratory analysis. 

In Figure 4.1, we provided feature value distribution histograms for the “all diseases” 

group (i.e., the whole dataset). 

The “number of related patents” was calculated by considering the patents containing 

the drug of interest within the claims. These numbers were obtained from the 

SureChEMBL database, which implements extensive text and image mining from 

patent documents covering all types of compounds, including cosmetic products 

(Papadatos, 2016). Therefore, the “number of related patents” generally returned high 

values. Nevertheless, the predictive model evaluates these values in comparison to 

each other (i.e., compares the number of patents for each drug with each other). As a 

result, it is sufficient to provide consistent values (i.e., calculated using the same 

procedure). As observed in Figure 4.1, the mean number (dashed vertical lines on each 

histogram) of related patent applications is much higher among the approved drugs 

compared to the unapproved ones. This is expected as highly promising drug 

candidates are to be patented in many countries and tried for a high number of 

indications for patent protection. Similarly, the number of PCT applications 

(international patent applications), is observed to be higher in the approved drugs 

dataset than in the unapproved ones. Considering the “number of claims”, the 

“duration” of the patent procedure, and “CPC”, the data distributions for approved and 

unapproved drugs are not observed to be significantly different from each other. 
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Figure 4.1. Patent-related feature distributions of regulatorily approved and 

unapproved drugs for the “All Diseases” class.  Abbreviations; #: number, CPC: 

Cooperative Patent Classification, PCT: the presence of Patent Cooperation Treaty 

application, PCT (#0): no PCT application, PCT (#1): the presence of PCT application, 

PCT (#2): unknown. 

For clinical trial features, “age” and “allocation type” slightly differ between the 

approved and unapproved cases (Figure 4.2). While “parallel assignment” constitutes 

most of the intervention model types in the approved drugs group, “other intervention 

models and unknown” and “single group assignment” dominate the unapproved drugs 

dataset along with the “parallel assignment”. While in a parallel assignment, two or 

more participant groups undertake different interventions/treatments, all participants 

receive the same intervention/treatment in a single group assignment. The parallel 

assignment is the most commonly used intervention model and is suggested to be 

utilized in most trials (Nair, 2019). USA is where most clinical trials are conducted, 

considering both the approved and unapproved datasets. “Global Participation In 

Clinical Trials Report” (FDA, 2016) shows that the USA is the leading country in 

terms of participants in clinical trials (40.83 %), whereas the other countries have less 

than 10 % participation in clinical trials. Finally, while “industry” is the dominant 

funder type for unapproved drugs, “other funder types” constitute a more significant 

portion of the approved cases. This result could be indicative of the risk-taking nature 
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of the industry. Without risk, a company’s path to commercialization would probably 

not be viable in the pharmaceutical field (Mollah, 2014). 

 

 

Figure 4.2. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “All Diseases” class.   
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Physicochemical properties are critical for the concept of drug-likeness. Although the 

“rule of five” (Lipinski et al., 2001) has widely been accepted as an approach to 

reducing attrition in drug discovery, recent trends in newly discovered drugs indicate 

additional patterns. Our study revealed that the mean molecular weight – MW 

(417±9.95 Da) and mean the number of rings (2.90±0.05) values for the approved 

drugs are different from the mean MW (491±17.88 Da) and mean the number of rings 

(3.16±0.22) values for the unapproved drugs (Figure 4.3). Ghose rule (1999) states 

that MW should be between 160-480 Da and Ritchie et al. (2009) discloses that more 

than three aromatic rings in a molecule correlate with poorer drug developability. 

Considering other drug physicochemical properties, the mean ± error values for 

approved and unapproved drugs (respectively) are; logP: 1.88±0.09 and 2.46±0.09, 

polar surface area: 106±0.92 and 125±1.72, hydrogen bond donor: 5.6±0.20 and 

6.56±0.34, refractivity: 108±2.41 and 129±4.38, polarizability: 42±0.92 and 50±1.72, 

and the number of rotatable bonds: 6.82±0.29 and 8.27±0.44. These results indicate 

apparent differences between the approved and unapproved drugs, which isverified by 

the student’s t-test with p values lower than 0.05 for all listed features. These results 

are also consistent with the literature (Veber, 2002; Ghose, 1999; Vistoli et al., 2008). 

Finally, HBD and the bioavailability values of the approved drugs are observed to be 

similar to the unapproved ones. Please see Figures 4.15-56(Appendix C-E) for the data 

distributions of specific disease groups, which are largely consistent with the data 

distributions of the “All Diseases” group. 

 

Figure 4.3. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “All Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: 

hydrogen bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted 
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bioavailability as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability 

(#2): unknown. The dashed line corresponds to the mean value for numerical features.  

As physicochemical properties are critical for the concept of drug-likeness, which is 

the fundamental part of the drug development process, we further inspected the 

physicochemical properties of drugs in detail. We compared the mean values of logP, 

MW, number of rings, PSA, HBA, HBD, refractivity, polarizability, and number of 

rotatable bonds across different disease groups (Figures 4.4-4.12). 

Figure 4.4 shows the mean logP values of approved and unapproved drugs across 14 

disease groups. The mean logP values significantly differ between approved and 

unapproved drugs in “Rare Diseases”, “Neoplasms”, “Dermatological Diseases”, 

“Immunological Diseases”, “Infective Diseases”, “Heart Diseases”, “Musculoskeletal 

Diseases”, “Blood Diseases”, Hormonal Diseases” groups (Student’s t test, p values 

<0.05).

 

Figure 4.4. Mean logP values for approved and unapproved drugs among 14 disease 

groups. Comparing approved and unapproved drugs shows statistically significant 

differences at the right part for certain disease groups (Student’s t-test, p values <0.05).  

Figure 4.5 shows the mean MW values of approved and unapproved drugs across 14 

disease groups. The mean MW values significantly differ between approved and 
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unapproved drugs in “Rare Diseases”, “Nervous Diseases”, “Neoplasms”, 

“Dermatological Diseases”, “Immunological Diseases”, “Infective Diseases”, “Blood 

Diseases”, “Blood Diseases”, Respiratory Diseases” groups (Student’s t test, p values 

<0.05). 

 

Figure 4.5. Mean MW values for approved and unapproved drugs among 14 disease 

groups. Comparing approved and unapproved drugs shows statistically significant 

differences at the right part for certain disease groups (Student’s t-test, p values <0.05).  

Figure 4.6 shows the mean PSA values of approved and unapproved drugs across 14 

disease groups. The mean PSA values significantly differ between approved and 

unapproved drugs in “Neoplasms” group (Student’s t-test, p values <0.05). 
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Figure 4.6. Mean PSA values for approved and unapproved drugs among 14 disease 

groups. Comparing approved and unapproved drugs shows statistically significant 

differences at the right part for certain disease groups (Student’s t-test, p values <0.05).  

Figure 4.7 shows the mean HBA values of approved and unapproved drugs across 14 

disease groups. The mean HBA values significantly differ between approved and 

unapproved drugs in “Neoplasms” group (Student’s t-test, p values <0.05). 
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Figure 4.7. Mean HBA values for approved and unapproved drugs among 14 disease 

groups. Comparing approved and unapproved drugs shows statistically significant 

differences at the right part for certain disease groups (Student’s t-test, p values <0.05).  

Figure 4.8 shows the mean HBD values of approved and unapproved drugs across 14 

disease groups. The mean HBD values significantly differ between approved and 

unapproved drugs in “Neoplasms” group (Student’s t-test, p values <0.05). 
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Figure 4.8. Mean HBD values for approved and unapproved drugs among 14 disease 

groups. Comparing approved and unapproved drugs shows statistically significant 

differences at the right part for certain disease groups (Student’s t-test, p values <0.05).  

Figure 4.9 shows the mean number of ring values of approved and unapproved drugs 

across 14 disease groups. The mean number of rings values significantly differs 

between approved and unapproved drugs in “Rare Diseases”, “Alimentary Diseases”, 

“Neoplasms”, “Dermatological Diseases”, “Urinary Diseases”, “Immunological 

diseases”, “Infective Diseases”, “Heart Diseases”, “Respiratory Diseases”, “Hormonal 

Diseases”, “Blood Diseases”  and “Musculoskeletal Diseases” groups (Student’s t-test, 

p values <0.05). 



47 

 

 

Figure 4.9. Mean number of rings values for approved and unapproved drugs among 

14 disease groups. Comparing approved and unapproved drugs shows statistically 

significant differences at the right part for certain disease groups (Student’s t-test, p 

values <0.05).  

Figure 4.10 shows the mean refractivity values of approved and unapproved drugs 

across 14 disease groups. The mean refractivity values significantly differ between 

approved and unapproved drugs in “Rare Diseases”, “Neoplasms”, “Dermatological 

Diseases”, “Urinary Diseases”, “Immunological diseases”, “Heart Diseases”, 

“Respiratory Diseases”, and “Blood Diseases” groups (Student’s t test, p values 

<0.05). 
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Figure 4.10. Mean refractivity values for approved and unapproved drugs among 14 

disease groups. Comparing approved and unapproved drugs shows statistically 

significant differences at the right part for certain disease groups (Student’s t-test, p 

values <0.05).  

Figure 4.11 shows the mean polarizability values of approved and unapproved drugs 

across 14 disease groups. The mean polarizability values significantly differ between 

approved and unapproved drugs in “Rare Diseases”, “Neoplasms”, “Dermatological 

Diseases”, “Immunological diseases”, “Respiratory Diseases”, and “Blood Diseases” 

groups (Student’s t test, p values <0.05). 
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Figure 4.11. Mean polarizability values for approved and unapproved drugs among 

14 disease groups. Comparing approved and unapproved drugs shows statistically 

significant differences at the right part for certain disease groups (Student’s t-test, p 

values <0.05).  

Figure 4.12 shows the mean number of rotatable bond values of approved and 

unapproved drugs across 14 disease groups. The mean number of rotatable bond values 

significantly differ between approved and unapproved drugs in “Nervous Diseases”, 

“Neoplasms” and “Blood Diseases” groups (Student’s t-test, p values <0.05). 
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Figure 4.12. Mean number of rotatable bonds values for approved and unapproved 

drugs among 14 disease groups. Comparing approved and unapproved drugs shows 

statistically significant differences at the right part for certain disease groups 

(Student’s t-test, p values <0.05).   
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4.2.2. Prediction Performance Analysis 

Both as an ablation study and overall performance evaluation, we constructed models 

using each type of feature separately (i.e., molecular compound/drug features, 

physicochemical compound/drug features, clinical trial-related features, and patent-

related features), and all of them at once (by concatenating all features under a single 

feature vector). We trained and validated independent RF models for each disease group 

via 5-fold cross-validation as described in Methods, section 2.3. At this point, a 

hyperparameter optimization test was performed on the “all diseases” group prediction 

model, and the best parameters were determined as; the number of trees: 200; the 

maximum number of features: the square root of the total number of features; maximum 

depth: 16; minimum samples leaf: 2 and minimum samples split: 2. The same set of 

hyperparameter values were used for the rest of the study since hyperparameter tuning 

process is computationally intensive. All the results reported below are obtained using this 

hyperparameter value set. 

Table 4.3 summarizes the performance results of models constructed using drug-

indication pair. As a drug may exist in multiple drug-indication data points in a disease 

group’s dataset (because of being paired with different indications in the same disease 

group); molecular, physicochemical, and patent features are replicated for the drug of 

interest, and only clinical trial features remain different. Therefore, this situation led to 

overoptimistic performance results due to high similarity between training and test 

samples (i.e., a data leakage), as can be seen in Table 4.3. In order to avoid this situation, 

we randomly discarded duplicate data points of drugs under each disease group, thereby 

avoiding bias in terms of data leakage from training to test datasets (Table 4.4 & 4.5). 
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Table 4.3. The performance of models using drug indication pairs across 14 disease 

groups. The highest scores for each evaluation metric are shown in bold. Abbreviations 

are; Acc: accuracy, Accb: balanced accuracy, Pre: precision, Prew: precision weighted, 

Rec: recall, Recw: recall weighted, F1: F1-score, F1w: F1 weighted, MCC: Matthews 

Correlation Coefficient, TN: true negative, FP: false positive, FN: false negative, TP: true 

positive.  

Disease Acc Accb Pre Prew Rec Recw F1 F1w MCC TN FP FN TP 

All 0.97 0.88 0.97 0.97 0.99 0.97 0.98 0.97 0.83 1,321 1,159 1,774 16,653 

Rare 0.92 0.89 0.92 0.92 0.97 0.92 0.94 0.92 0.81 1,125 643 618 3,268 

Nervous  0.94 0.76 0.94 0.94 0.99 0.94 0.97 0.94 0.67 219 589 499 5,898 

Alimentary  0.93 0.79 0.93 0.93 0.99 0.93 0.96 0.92 0.71 298 563 302 4,530 

Neoplasms 0.91 0.90 0.91 0.91 0.96 0.91 0.93 0.91 0.82 1,070 460 543 1,907 

Dermato-

logical 
0.91 0.81 0.92 0.92 0.99 0.92 0.95 0.91 0.73 314 488 198 3,048 

Urinary  0.92 0.82 0.92 0.92 0.99 0.92 0.95 0.92 0.74 371 447 130 3,085 

Heart  0.94 0.73 0.94 0.94 0.99 0.94 0.97 0.93 0.64 105 411 111 4,261 

Immuno-

logical 
0.92 0.85 0.91 0.91 0.99 0.92 0.95 0.91 0.78 356 492 249 2,245 

Infective  0.93 0.76 0.93 0.93 0.99 0.93 0.96 0.92 0.68 162 420 108 3,658 

Respiratory  0.91 0.84 0.91 0.91 0.97 0.91 0.94 0.91 0.75 358 330 211   1,936 

Hormonal 0.92 0.86 0.92 0.92 0.98 0.92 0.95 0.92 0.78 364 284 89 1,961 

Blood 0.90 0.89 0.89 0.89 0.93 0.90 0.91 0.90 0.79 568 207 160 878 

Musculo-

skeletal 
0.91 0.68 0.91 0.91 0.99 0.91 0.95 0.89 0.54 54 186 26 1,457 

Sensory 0.91 0.79 0.91 0.91 0.99 0.91 0.95 0.91 0.68 121 185 117 1,261 

Table 4.4 summarizes our models' drug approval prediction performances using separate 

and combined feature sets for all datasets (i.e., specific disease groups and a dataset that 

includes all data points from all disease groups). Upon comparing the models that utilize 

individual feature types, it is observed that the performance of the clinical trial features is 
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the highest (with the highest accuracy: 0.76, precision: 0.92, recall: 0.85, F1: 0.80, and 

MCC: 0.54), followed by the patent features (with the highest accuracy: 0.71, precision: 

0.81, recall: 0.77, F1: 0.79, and MCC: 0.37). Molecular and physicochemical features of 

drugs displayed lower performances. These results indicate that the most important signals 

for predicting drug approvals come from the clinical trial and patent features. Especially 

for nervous, alimentary, and dermatological disease groups, patent features perform better 

than clinical trial features in certain evaluation metrics. 

On the other hand, models' performances using physicochemical features are observed to 

be the lowest among all, though still better than a random prediction, indicating their 

moderate value for predicting drug approvals. The reason behind this could be that drug 

development time drug candidates are modified to follow generally accepted rules 

regarding desired physicochemical feature values such as Lipinski’s rule of five (Lipinski 

et al., 2001). Therefore, most unapproved and approved drugs are more or less consistent 

with RO5. 

Finally, the performances of the models that utilize the combination of all features are 

observed to be the highest for all of the disease groups, considering most of the evaluation 

metrics (with the highest accuracy: 0.81, precision: 0.82, recall: 0.96, F1: 0.88, and MCC: 

0.62). The precision values of clinical trial features and the recall values of molecular drug 

features are higher than that of combined features; however, weighted versions of these 

evaluation metrics for these individual-feature models are still lower than those that utilize 

combined features. These results highlight the advantage of combining different features 

to maximize the prediction performance by exploiting their complementarity. 
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Table 4.4. The performance of our models for disease groups using four different feature 

sets and their combination (the top-most block corresponds to a model in which data points 

from all disease groups are utilized together). The highest scores for each evaluation 

metric and disease group are shown in bold. Abbreviations are; Acc: accuracy, Accb: 

balanced accuracy, Pre: precision, Prew: precision weighted, Rec: recall, Recw: recall 

weighted, F1: F1-score, F1w: F1 weighted, MCC: Matthews Correlation Coefficient, TN: 

true negative, FP: false positive, FN: false negative, TP: true positive.  

Disease / 

Utilized 

features 

Acc Accb Pre Prew Rec Recw F1 F1w MCC TN FP FN TP 

All diseases 

ECFP4 0.71 0.63 0.72 0.70 0.90 0.71 0.80 0.68 0.33 417 710 203 1,792 

Clinical  0.72 0.74 0.87 0.76 0.65 0.72 0.75 0.72 0.46 914 213 692 1,303 

Patent 0.69 0.69 0.80 0.71 0.69 0.69 0.74 0.70 0.37 780 347 656 1,339 

Physico-

chemical  
0.65 0.58 0.69 0.63 0.84 0.65 0.76 0.63 0.19 353 774 335 1,660 

All  0.80 0.77 0.82 0.80 0.89 0.80 0.85 0.80 0.56 734 393 233 1,762 

Rare diseases 

ECFP4 0.66 0.64 0.67 0.66 0.80 0.66 0.73 0.65 0.29 395 440 224 909 

Clinical  0.70 0.71 0.82 0.73 0.61 0.70 0.70 0.70 0.42 675 160 435 698 

Patent  0.67 0.66 0.72 0.67 0.68 0.67 0.70 0.67 0.32 541 294 400 733 

Physico-

chemical  
0.58 0.58 0.65 0.59 0.58 0.58 0.61 0.58 0.16 236 259 303 534 

All  0.77 0.76 0.78 0.77 0.84 0.77 0.81 0.77 0.52 578 257 303 830 

Nervous diseases 

ECFP4 0.70 0.58 0.71 0.68 0.93 0.70 0.81 0.65 0.23 128 427 90 1,042 

Clinical  0.71 0.73 0.86 0.76 0.67 0.71 0.75 0.72 0.43 432 123 379 753 

Patent  0.71 0.68 0.80 0.72 0.77 0.71 0.78 0.71 0.36 319 236 298 834 
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Table 4.4 

(cont.) 

Physico-

chemical  

 

0.59 

 

0.53 

 

0.69 

 

0.59 

 

0.72 

 

0.59 

 

0.70 

 

0.58 

 

0.06 

 

125 

 

430 

 

159 

 

973 

All  0.79 0.71 0.79 0.78 0.93 0.79 0.85 0.77 0.49 263 292 129 1,003 

Alimentary diseases 

ECFP4 0.70 0.59 0.70 0.69 0.94 0.70 0.80 0.65 0.26 142 413 82 993 

Clinical  0.69 0.72 0.86 0.75 0.63 0.69 0.73 0.69 0.41 446 109 391 684 

Patent  0.69 0.67 0.80 0.71 0.71 0.69 0.74 0.69 0.34 351 204 351 724 

Physico-

chemical  
0.60 0.56 0.70 0.60 0.69 0.60 0.69 0.60 0.11 243 312 378 697 

All  0.80 0.75 0.81 0.80 0.92 0.80 0.86 0.79 0.54 298 257 130 945 

Neoplasms 

ECFP4 0.64 0.63 0.65 0.64 0.76 0.64 0.70 0.63 0.27 351 353 217 652 

Clinical  0.72 0.71 0.72 0.72 0.81 0.72 0.76 0.71 0.43 427 277 167 702 

Patent  0.66 0.66 0.70 0.66 0.66 0.66 0.68 0.66 0.31 467 237 312 557 

Physico-

chemical  
0.59 0.59 0.64 0.59 0.59 0.59 0.61 0.59 0.18 394 310 381 488 

All  0.78 0.77 0.78 0.78 0.83 0.78 0.80 0.78 0.55 494 210 217 652 

Dermatological diseases 

ECFP4 0.69 0.61 0.70 0.67 0.88 0.69 0.78 0.65 0.26 162 359 93 837 

Clinical  0.67 0.70 0.84 0.73 0.61 0.67 0.70 0.68 0.39 404 117 366 564 

Patent  0.69 0.66 0.77 0.69 0.72 0.68 0.74 0.68 0.32 308 213 296 634 

Physico-

chemical  
0.61 0.59 0.70 0.62 0.66 0.61 0.68 0.61 0.17 245 276 328 602 

All  0.78 0.73 0.79 0.78 0.90 0.78 0.84 0.77 0.51 277 244 136 794 



56 

 

Table 4.4 (cont.) 

Urinary tract diseases 

ECFP4 0.69 0.61 0.71 0.67 0.88 0.69 0.78 0.66 0.26 151 355 82 832 

Clinical 0.72 0.75 0.88 0.77 0.66 0.72 0.75 0.73 0.48 432 74 323 591 

Patent  0.68 0.66 0.76 0.69 0.73 0.68 0.73 0.68 0.31 280 226 273 641 

Physico-

chemical  

0.61 0.56 0.68 0.60 0.72 0.61 0.70 0.60 0.12 139 367 167 747 

All 0.80 0.76 0.80 0.80 0.91 0.80 0.85 0.79 0.55 291 215 115 799 

Heart diseases 

ECFP4 0.73 0.58 0.74 0.71 0.96 0.73 0.84 0.68 0.24 64 301 48 835 

Clinical 0.69 0.74 0.92 0.79 0.61 0.69 0.73 0.70 0.44 315 50 340 543 

Patent  0.71 0.67 0.81 0.72 0.77 0.71 0.79 0.71 0.33 211 154 223 660 

Physico-

chemical  

0.61 0.53 0.73 0.62 0.71 0.61 0.72 0.61 0.07 135 230 264 619 

All 0.81 0.73 0.82 0.82 0.95 0.82 0.88 0.80 0.53 168 197 83 800 

Immunological diseases 

ECFP4 0.69 0.62 0.70 0.68 0.89 0.69 0.78 0.65 0.29 159 336 93 744 

Clinical 0.68 0.70 0.84 0.73 0.60 0.68 0.70 0.68 0.40 317 178 279 558 

Patent  0.69 0.67 0.76 0.69 0.73 0.69 0.75 0.69 0.34 294 201 249 588 

Physico-

chemical  

0.61 0.59 0.70 0.62 0.67 0.61 0.69 0.62 0.19 236 259 303 534 

All 0.79 0.74 0.78 0.79 0.92 0.79 0.84 0.77 0.53 268 227 128 709 

Infective diseases 

ECFP4 0.72 0.57 0.73 0.70 0.95 0.72 0.83 0.66 0.23 88 309 46 860 

Clinical 0.68 0.71 0.88 0.76 0.62 0.68 0.73 0.69 0.40 315 82 330 576 
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Table 4.4 

(cont.) 

Patent  

 

0.68 

 

0.66 

 

0.80 

 

0.70 

 

0.72 

 

0.68 

 

0.76 

 

0.69 

 

0.30 

 

229 

 

168 

 

273 

 

633 

Physico-

chemical  

0.60 0.53 0.71 0.60 0.71 0.60 0.71 0.60 0.06 157 240 312 594 

All 0.79 0.70 0.80 0.79 0.96 0.79 0.86 0.77 0.48 182 215 88 818 

Respiratory diseases 

ECFP4 0.71 0.67 0.71 0.71 0.87 0.71 0.78 0.70 0.38 225 245 106 593 

Clinical 0.66 0.67 0.78 0.70 0.64 0.66 0.69 0.66 0.35 260 210 171 528 

Patent  0.66 0.66 0.73 0.66 0.69 0.66 0.71 0.66 0.31 283 187 227 472 

Physico-

chemical  

0.61 0.60 0.69 0.62 0.64 0.61 0.66 0.61 0.20 261 209 259 440 

All 0.77 0.75 0.78 0.77 0.86 0.77 0.82 0.77 0.53 288 182 127 572 

Hormonal diseases 

ECFP4 0.71 0.65 0.71 0.72 0.91 0.71 0.80 0.69 0.35 152 222 68 563 

Clinical 0.65 0.69 0.86 0.73 0.53 0.65 0.65 0.65 0.37 250 124 205 426 

Patent  0.68 0.66 0.76 0.69 0.70 0.68 0.73 0.68 0.33 225 149 209 422 

Physico-

chemical  

0.61 0.59 0.70 0.62 0.66 0.61 0.67 0.61 0.18 110 264 116 515 

All 0.81 0.78 0.81 0.81 0.91 0.81 0.86 0.81 0.59 220 154 66 565 

Blood diseases 

ECFP4 0.65 0.64 0.65 0.65 0.72 0.65 0.69 0.64 0.29 224 179 132 331 

Clinical 0.77 0.76 0.75 0.77 0.85 0.77 0.80 0.76 0.54 267 136 66 397 

Patent  0.63 0.63 0.66 0.63 0.63 0.63 0.64 0.63 0.26 252 151 178 285 

Physico-

chemical  

0.61 0.60 0.63 0.61 0.63 0.61 0.63 0.60 0.21 231 172 185 278 
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Table 4.4 

(cont.) 

All 

 

0.81 

 

0.81 

 

0.81 

 

0.81 

 

0.84 

 

0.81 

 

0.83 

 

0.81 

 

0.62 

 

277 

 

126 

 

77 

 

386 

Musculoskeletal diseases 

ECFP4 0.74 0.58 0.75 0.72 0.96 0.74 0.84 0.69 0.25 29 173 23 493 

Clinical 0.65 0.68 0.87 0.75 0.60 0.65 0.71 0.67 0.33 148 54 212 304 

Patent  0.68 0.63 0.80 0.70 0.75 0.68 0.77 0.69 0.26 103 99 138 378 

Physico-

chemical  

0.66 0.52 0.73 0.83 0.66 0.61 0.77 0.63 0.05 38 164 60 456 

All 0.80 0.67 0.80 0.80 0.96 0.80 0.87 0.77 0.45 75 127 26 490 

Sensory diseases 

ECFP4 0.75 0.65 0.75 0.75 0.94 0.75 0.84 0.72 0.39 84 134 34 417 

Clinical 0.72 0.67 0.78 0.72 0.81 0.72 0.79 0.72 0.35 111 107 122 329 

Patent  0.65 0.61 0.74 0.66 0.73 0.65 0.74 0.65 0.22 102 116 114 337 

Physico-

chemical  

0.64 0.60 0.74 0.65 0.73 0.64 0.73 0.64 0.20 105 113 120 331 

All 0.79 0.71 0.79 0.80 0.95 0.79 0.86 0.77 0.50 107 111 64 387 

Since utilizing all features together yields the best performance in each disease group 

model, we selected these models (i.e., all /combined features) with 149 dimensions to 

continue our analyses with the total size. Table 4.5 summarizes all/combined features-

based performance results for 14 disease groups. The performances of the models for the 

majority of disease groups are observed to be satisfactory and also similar to each other; 

varying in the ranges of accuracy: 0.67-0.81, precision: 0.77-0.82, recall: 0.77-0.96, F1-

score: 0.77-0.88 and MCC: 0.45-0.62, indicating the effectiveness of the drug approval 

prediction approach proposed in this study. As mentioned in Section 3.2.5., MCC around 

0.5 is generally evaluated as a successful model because of the equation for MCC (Eq. 5). 

 



59 

 

Table 4.5. The performance of finalized models for 14 disease groups. The highest scores 

for each evaluation metric are shown in bold. Abbreviations are; Acc: accuracy, Accb: 

balanced accuracy, Pre: precision, Prew: precision weighted, Rec: recall, Recw: recall 

weighted, F1: F1-score, F1w: F1 weighted, MCC: Matthews Correlation Coefficient, TN: 

true negative, FP: false positive, FN: false negative, TP: true positive.  

Disease Acc Accb Pre Prew Rec Recw F1 F1w MCC TN FP FN TP 

All 0.80 0.77 0.82 0.80 0.89 0.80 0.85 0.80 0.56 734 393 233 1,762 

Rare 0.77 0.76 0.78 0.77 0.84 0.77 0.81 0.77 0.52 578 257 303 830 

Nervous  0.79 0.71 0.79 0.78 0.93 0.79 0.85 0.77 0.49 263 292 129 1,003 

Alimentary  0.80 0.75 0.81 0.80 0.92 0.80 0.86 0.79 0.54 298 257 130 945 

Neoplasms 0.78 0.77 0.78 0.78 0.83 0.78 0.80 0.78 0.55 494 210 217 652 

Dermato-

logical 
0.78 0.73 0.79 0.78 0.90 0.78 0.84 0.77 0.51 277 244 136 794 

Urinary  0.80 0.76 0.80 0.80 0.91 0.80 0.85 0.79 0.55 291 215 115 799 

Heart  0.81 0.73 0.82 0.82 0.95 0.82 0.88 0.80 0.53 168 197 83 800 

Immuno-

logical 
0.79 0.74 0.78 0.79 0.92 0.79 0.84 0.77 0.53 268 227 128 709 

Infective  0.79 0.70 0.80 0.79 0.96 0.79 0.86 0.77 0.48 182 215 88 818 

Respiratory  0.77 0.75 0.78 0.77 0.86 0.77 0.82 0.77 0.53 288 182 127 572 

Hormonal 0.81 0.78 0.81 0.81 0.91 0.81 0.86 0.81 0.59 220 154 66 565 

Blood 0.81 0.81 0.81 0.81 0.84 0.81 0.83 0.81 0.62 277 126 77 386 

Musculo-

skeletal 
0.80 0.67 0.80 0.80 0.96 0.80 0.87 0.77 0.45 75 127 26 490 

Sensory 0.79 0.71 0.79 0.80 0.95 0.79 0.86 0.77 0.50 107 111 64 387 

 

We observed that some of the specific disease group models performed slightly better than 

the combined “all diseases” model (e.g., “blood and lymph diseases”); however, others 

performed relatively poorly (e.g., “sensory diseases”). Target proteins and the 
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characteristics of affected tissues greatly vary in different disease groups, which causes a 

high amount of heterogeneity in the data. We believe this is the main reason behind 

observing the performance differences among disease groups. For example, “blood 

diseases” can be considered to have lower heterogeneity than “rare diseases”, which may 

explain their performance difference. Another possible reason behind variable 

performances may be the size of the datasets, together with the state of balance between 

the sizes of tasks/classes (i.e., approved and unapproved drugs), where larger datasets with 

better coverage over the sample space generally result in better performances, provided 

that all other factors remain constant. Relatively lower performances of “sensory”, 

“musculoskeletal,” and “infective” diseases can be given as examples to this point. 

To observe the most informative features for accurately predicting drug approvals, we 

calculated both the permutation importance and mean decrease impurity (MDI) values for 

each feature. Figure 4.13 shows the top ten important features for all disease groups, 

determined using permutation importance. Here, we observe that the number of related 

patents and the funder type of clinical trials is among the most important features for all 

disease groups (Figure 4.13). Additionally, number of claims, allocation and location (by 

country) of clinical trials, duration of patent process, lipophilicity (logP), molecular 

weight, PSA, polarizability and refractivity of the drugs are frequently ranked among the 

top features. The fact that three patent-related features are among the most important ones 

demonstrates that patents have critical roles in the approval of drugs. About the most 

important patent feature (i.e., “number of related patents”), when a drug candidate is 

highly promising, numerous patent applications have been made before the approval date 

of that drug. However, this feature cannot be evaluated in a causality relationship because, 

most probably, getting high number of patents beforehand do not affect the approval 

decision. However, when the developers see high chance of approval, they tend to protect 

the candidate with more patents. 

Additionally, multiple clinical trial-related features such as the funder type, allocation 

type, location by country, and intervention model are among the most important features, 

indicating the importance of clinical trial specifications in drug approvals. As a 

physicochemical feature, the lipophilicity of a drug is frequently observed as important, 

which is understandable because lipophilicity is considered one of the most important 

drug-like physical properties (Leeson et al., 2007). For the MDI-based feature importance 

results, please see Table 4.27(Appendix B). In general, the most important features 

obtained by the MDI method seem to be largely consistent with the results of the 

permutation importance analysis. 
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Figure 4.13. The top ten important features for accurately predicting drug approvals in 

selected disease groups, determined using the permutation feature importance (PFI) 

method. Abbreviations; Claim #: number of claims, Patent #: number of related patents, 

Bond #: number of rotatable bonds, PSA: polar surface area, logP: lipophilicity of the 

molecule. Each categorical feature is represented by a numerical code after one hot 

encoding; Funder_Type_1: Others (in clinicaltirals.gov), Funder_Type_2: Industry, 

Country_1: US, Country_0: Others, Intervention_Model_3: Parallel Assignment, 

Allocation_Type_3: Randomized, CPC_code_5: Others, Age_code_1: Adults & Older 

Adults. 
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4.2.3. Imputation Performance Analysis 

To investigate the high degrees of missing features in our dataset (i.e., 15% to 51%), we 

calculated the performance change caused by the imputation process by artificially adding 

varying degrees of missing features into the dataset (i.e., 0%, 25%, 50%, and 75%). In this 

analysis, we used a subset of our original dataset, composed of 1486 drug-indication pairs 

without any missing features. We separated 10% of this dataset (i.e., 149 data points) 

upfront as our test set. We used the remaining 1337 as our training dataset. We trained 

four models, each differing in terms of the amount of artificially created missing features 

(i.e., 0% - meaning the complete dataset is directly used- 25%, 50%, and 75% 

missing/imputed features). For example, we randomly selected 25% of all features among 

all drug-indication pairs in the training dataset for our second model and changed their 

original value with imputation.  

Following the training and the calculation of performance values, we observed that 

performances are decreasing with the increasing degrees of missing features, which was 

expected (Table 4.6). The performance decrease of the model that use data with 25% 

missing features, compared to the one that utilizes the complete dataset (i.e., 0% missing), 

were 11% and 45% according to weighted F1-score and MCC, respectively. After that 

point, the performance decrease of the models (that use 50% and 75% missing data) is 

slow, mainly due to getting closer to random prediction. These results indicate that 

DrugApp can benefit from data filling procedures that are more sophisticated than 

mean/median imputing. It is also important to note that, in this analysis, we tested 

marginal cases (e.g., 75% of all features in the whole dataset is missing) to observe the 

performance difference. However, in our original dataset, the minimum and maximum 

amounts of missing data for a single feature are 15% and 51%, respectively. 
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Table 4.6. The performance results of the empirical analysis on missing value imputation. 

Performances were analyzed by adding varying degrees of missing features into the 

dataset. Abbreviations are; Acc: accuracy, Accb: balanced accuracy, Pre: precision, Prew: 

precision weighted, Rec: recall, Recw: recall weighted, F1: F1-score, F1w: F1 weighted, 

MCC: Matthews Correlation Coefficient, TN: true negative, FP: false positive, FN: false 

negative, TP: true positive. 

 Acc Accb  Pre Prew Rec Recw F1 F1w MCC TN FP FN TP 

Complete 

data 

(0% 

missing) 

0.79 0.69 

 

0.80 0.78 0.93 0.79 0.86 0.77 0.46 20 24 7 98 

25% 

missing/ 

imputed 

0.73 0.58 

 

0.74 0.71 0.95 0.73 0.83 0.68 0.25 9 35 5 100 

50% 

missing/ 

imputed 

0.71 0.54 

 

0.72 0.70 0.98 0.72 0.83 0.63 0.17 4 40 2 103 

75% 

missing/ 

imputed 

0.71 0.52 

 

0.71 0.68 0.98 0.71 0.83 0.62 0.12 3 41 2 103 

4.2.4. Temporal Analysis  

In order to examine the performance of our method in prospectively predicting the 

outcome of drug development processes with continuing clinical trial procedures, we 

applied a temporal analysis based on the approval date of the drugs. For this purpose, we 

split our dataset into six-time intervals, as shown in Table 4.7, which also displayed the 

statistics of each temporal dataset. The test datasets comprise data left outside of the 

training data time frames. In order to prevent using future trial information for predicting 

the results of earlier trials, testing was selected only from future time frames. In this 

analysis, we did not split data into specific disease groups and used all data points under 

a single model (i.e., the “all diseases” group) due to the reduced size of disease group-

specific temporal datasets.  
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Table 4.7. Statistics of the temporal analysis datasets. The sample sizes of regulatorily 

approved and unapproved drug-indication pairs in six different time frames. The time 

frame for the training set comprises the years before the threshold year, and the testing set 

consists of the years after the threshold year. 

Threshold year 

(to separate 

train-test sets) 

# of approved 

(training set) 

# of unapproved 

(training set) 

# of approved 

(test set) 

# of unapproved 

(test set) 

 2008 752 198 1,781 722 

 2010 952 307 1,711 635 

 2012 1,127 397 1,636 565 

 2014 1,274 497 1,532 467 

2016 1,441 610 1,388 362 

2018 1,649 726 1,184 221 

Table 4.8 summarizes the performance results of the temporal analysis. We observe a 

trend of increasing performance from the threshold year 2008 (accuracy: 0.57-0.75, 

precision: 0.74-0.78, recall: 0.75-0.99, F1: 0.69-0.85, and MCC: 0.32) to 2018 (accuracy: 

0.81-0.91, precision: 0.90-0.94, recall: 0.91-0.95, F1: 0.90-0.94, and MCC: 0.64).  This 

result is expected since the size of the training datasets is getting higher with increasing 

threshold years, and larger datasets usually yield a better representation of sample spaces. 

The performances of temporal models (especially the last two of them) are observed to be 

not only satisfactory but also higher compared to the performance of the previous “all 

disease groups” model on which the performance was measured via random splitting-

based cross-validation (Accuracy: 0.79-0.80, Precision: 0.80-0.82, Recall: 0.80-0.89, F1: 

0.80-0.85, MCC: 0.56). This indicates that our approach is promising in a real-world 

setting where future drug approvals are to be predicted.  
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Table 4.8. The temporal analysis performance results. Performance scores of models from 

six different time frames for the “all diseases” group. The highest scores for each 

evaluation metric are shown in bold. Abbreviations are; Acc: accuracy, Accb: balanced 

accuracy, Pre: precision, Prew: precision weighted, Rec: recall, Recw: recall weighted, 

F1: F1-score, F1w: F1 weighted, MCC: Matthews Correlation Coefficient, TN: true 

negative, FP: false positive, FN: false negative, TP: true positive.  

Training 

data time 

frames 
Acc Accb Pre Prew Rec Recw F1 F1w MCC TN FP FN TP 

≤ 2008 0.75 0.57 0.74 0.78 0.99 0.75 0.85 0.69 0.32 131 591 20 1,761 

≤ 2010 0.81 0.67 0.80 0.81 0.97 0.81 0.88 0.78 0.46 229 406 46 1,665 

≤ 2012 0.84 0.72 0.84 0.83 0.96 0.84 0.90 0.82 0.53 268 297 65 1,571 

≤ 2014 0.86 0.76 0.88 0.86 0.95 0.86 0.91 0.85 0.59 263 204 71 1,461 

≤ 2016 0.88 0.78 0.90 0.88 0.95 0.88 0.93 0.88 0.61 219 143 65 1,323 

≤ 2018 0.91 0.81 0.94 0.90 0.95 0.91 0.94 0.90 0.64 150 71 60 1,124 

For the important features of temporal analysis, please see Figure 4.14 (permutation 

importance) and Table 4.28 (MDI-based feature importance) in Appendix B. The results 

obtained by MDI-based and PFI methods seem primarily consistent. In time, it was 

observed that while ECFP4, age (adults& older adults), and CPC disappeared from the 

top ten most important features, number of claims, other countries in terms of location of 

trials and industry as funder type appeared among the most important features for 

predicting drug approvals. However, despite not being present in the top ten most 

important features determined by PFI method, claim numbers were among the most 

important features for the 0-2008 time interval, revealed by the MDI-based method. For 

ECFP4 and CPC features, the fact that they appeared in the top most important features 

for the 0-2008 time interval might not be meaningful because the 0-2008 model performed 

poorly due to the low sample size. 

Additionally, we observed that the USA was among the most important features for all 

time frames; however, in recent years, other countries emerged as important for predicting 

drug approvals. WHO report (2022) reveals that the USA had the highest number of trials; 

however, after 2010, Europe, and after 2016, the Western Pacific region became the region 

with the highest number of trials being registered, thereby being consistent with our 

results. For the age category, adults & older adults disappeared from being among the 

most important features in future time frames. FDA (2020) report showed that the 

difference between the number of participants younger than 65 and the number of 
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participants older than (or equal to) 65 did not seem to be significantly different between 

the years 2015 and 2018, consistent with our results. Finally, for the funder type, the 

industry emerged as an important feature in future time frames. GlobalData (2017) 

revealed that the relative contribution of industry sponsors, when compared to non-

industry sponsors, increased from 63% to 72% (and the non-industry sponsors decreased 

from 37% to 28%), starting from the year 2012 in Australia, which is also consistent with 

our results. 

      

  

    
Figure 4.14. The top ten important features for predicting drug approvals in the temporal 

analysis, calculated using permutation importance. Abbreviations; Claim #: number of 

claims, Patent #: number of related patents, Bond #: number of rotatable bonds, PSA: 

polar surface area, logP: lipophilicity of the molecule. Each categorical feature is 
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represented by a numerical code after one hot encoding; Funder_Type_1: Others (in 

clinicaltirals.gov), Funder_Type_2: Industry, Country_1: US, Country_0: Others, 

Intervention_Model_0: Others, Allocation_Type_3: Randomized, CPC_code_5: Others, 

Age_code_1: Adults & Older Adults. 

4.2.5. Performance Comparison with Other Methods 

We performed a performance comparison with a baseline method to further investigate 

DrugApp and justify the algorithm choice of random forest. For this, we employed logistic 

regression (LR) since it is a widely known and used algorithm in drug discovery and 

development (Tolles & Meurer, 2016). We used the same datasets for all disease groups 

and calculated the scores based on a 10-fold cross-validation analysis to make results 

comparable to the ones provided in Table 4.5. The performances of the LR models varied 

in the ranges of accuracy: 0.63-0.72, precision: 0.67-0.83, recall: 0.65-0.75, F1-score: 

0.65-0.78 and MCC: 0.25-0.41 (Table 4.9), in comparison to random forest-based 

DrugApp models within the ranges of accuracy: 0.67-0.81, precision: 0.77-0.82, recall: 

0.77-0.96, F1-score: 0.77-0.88 and MCC: 0.45-0.62. A one-to-one comparison for each 

disease group between RF and LR models revealed that the RF models display better 

performances for all disease groups (without any intersections in scores at one standard 

deviation of the mean), justifying the choice of using the random forest algorithm over the 

baseline. 

Table 4.9.  The performance of finalized the baseline prediction models using logistic 

regression for 14 disease groups. The highest scores for each evaluation metric are shown 

in bold. Abbreviations are; Acc: accuracy, Accb: balanced accuracy, Pre: precision, Prew: 

precision weighted, Rec: recall, Recw: recall weighted, F1: F1-score, F1w: F1 weighted, 

MCC: Matthews Correlation Coefficient, TN: true negative, FP: false positive, FN: false 

negative, TP: true positive. 

Disease group Acc Accb Pre Prew Rec Recw F1 F1w MCC TN FP FN TP 

All diseases 0.70 0.70 0.80 0.72 0.71 0.70 0.75 0.71 0.38 779 348 596 1,399 

Rare 0.68 0.68 0.74 0.69 0.69 0.68 0.71 0.68 0.35 540 295 378 755 

Nervous  0.66 0.65 0.79 0.69 0.68 0.66 0.73 0.67 0.29 340 215 366 766 

Alimentary  0.66 0.66 0.79 0.69 0.66 0.66 0.72 0.67 0.29 390 165 402 390 

Neoplasms 0.68 0.68 0.72 0.68 0.68 0.68 0.70 0.68 0.36 480 224 305 564 

Dermatological 0.67 0.67 0.79 0.70 0.67 0.67 0.72 0.68 0.34 352 169 346 584 

Urinary  0.66 0.65 0.77 0.68 0.68 0.66 0.72 0.67 0.30 313 193 278 636 
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Table 4.9 (cont.) 

Heart  
 

0.68 

 

0.67 
 

0.83 

 

0.72 

 

0.69 

 

0.68 

 

0.75 

 

0.69 

 

0.31 

 

231 

 

134 

 

283 

 

600 

Immunological 0.65 0.65 0.76 0.67 0.65 0.65 0.70 0.65 0.29 317 178 312 525 

Infective  0.66 0.65 0.81 0.70 0.67 0.66 0.73 0.67 0.29 313 193 278 636 

Respiratory  0.66 0.65 0.74 0.67 0.67 0.66 0.70 0.66 0.29 279 191 227 472 

Hormonal 0.68 0.67 0.77 0.69 0.68 0.68 0.72 0.68 0.34 247 127 185 446 

Blood 0.70 0.70 0.72 0.71 0.72 0.70 0.72 0.70 0.41 273 130 142 321 

Musculoskeletal 0.65 0.63 0.81 0.70 0.68 0.65 0.74 0.67 0.25 114 88 178 338 

Sensory 0.72 0.70 0.81 0.73 0.75 0.72 0.78 0.72 0.38 130 88 144 307 

Moreover, in order to provide a comparison against the state-of-the-art, we analyzed the 

performance of our model on the dataset of a recently proposed method, HINT, which was 

trained for clinical trial outcome prediction under three different predictions tasks, namely 

the prediction of meeting primary endpoints for Phase I, II and III trials (Fu et al., 2022). 

For this analysis, we employed the dataset provided in the HINT study. Data points from 

the HINT training and test datasets were intersected with our dataset using SMILES 

notations of drugs/compounds, and the intersection set is used as our train and test datasets 

(statistics are shown in Table 4.10). Data points that contain drug combinations were 

ignored. Outcome labels from the HINT study were directly used, initially obtained by 

manual curation in the respective study (1 and 0 mean the primary endpoints were met or 

not, respectively) (Fu et al., 2022). An example of primary endpoints is the percentage of 

hypertension patients with controlled blood pressure (e.g., cytosolic blood pressure lower 

than 140 mm Hg) for an antihypertensive drug trial. 

As reported in the respective study, the HINT models achieved 0.66, 0.62, and 0.85 F1 

scores for predicting the meeting of endpoints for phase I, II, and III clinical trials, 

respectively; whereas, DrugApp displayed 0.73, 0.71, and 0.82 F1-scores for the same 

tasks (Table 4.10). The results show that DrugApp and HINT have roughly comparable 

performances. It is important to note that we could not use the same datasets provided in 

the HINT study due to differences in dataset preparation and featurization steps between 

the two studies (e.g., we manually curated patent features for the data points in our original 

dataset. Also it was not possible to redo this step for the HINT dataset, due to limited 

sources). Therefore, DrugApp could utilize 74% and 70% of the original HINT training 

and test datasets, respectively (Table 4.10). Additionally, HINT is centered around clinical 

trials, whereas DrugApp is based on drug candidate compounds (i.e., the aim of DrugApp 

is directly predicting the approval of the drug candidate for the given indication). 

Consequently, it was not possible to obtain an intersection set over shared clinical trials 

(as we formed our approved drug-indication pairs dataset by using clinical trials that are 
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transitioned in phase IV, whereas in HINT, authors utilized trials at phases I, II, and III). 

Similar limitations exist in the quantitative comparison of computational methods with 

not-perfectly overlapping aims/modeling approaches/datasets. 

Performance comparison results indicate that both the artificial learning and featurization 

approaches utilized in DrugApp effectively model the drug development process. 

Furthermore, DrugApp can generalize information, as it performs quite well when trained 

and tested on a prediction task that it was not originally designed for (i.e., predicting the 

meeting of primary endpoints in clinical trials). 

Table 4.10. The performance comparison between DrugApp and HINT for three different 

prediction tasks, namely the prediction of meeting primary endpoints for Phase I, II, and 

III trials. The best performance for each analysis is shown in bold font. 

 

HINT training  

dataset size  

(# of unique 

SMILES) 

HINT test 

dataset size  

(# of unique 

SMILES) 

DrugApp 

training  

dataset size  

(# of unique 

SMILES) 

DrugApp test 

dataset size  

(# of unique 

SMILES) 

DrugAp

p  

F1-score 

HINT  

F1-score 

Phase I 493 174 354 130 0.73 0.66 

Phase II 1114 233 764 154 0.71 0.62 

Phase III 811 185 675 133 0.82 0.85 

4.2.6. A Case Study  

Some drugs are withdrawn from the market for health and safety reasons, such as severe 

drug side effects or problems in regulatory and manufacturing processes (Siramshetty et 

al., 2015). Approximately 4 % of the drugs are withdrawn from the market due to health 

and safety-related issues caused by reasons such as limited sample sizes or short duration 

of phase I–III trials (Zhang et al., 2016). To observe whether our method has the potential 

to address this issue, we employed our model on the drugs withdrawn from the market 

after being approved to see whether it would be possible to foresee their withdrawal before 

they even enter phase IV (by predicting them as “unapproved” for the intended disease). 

The ChEMBL database provides extensive data about drugs, including withdrawal 

information at https://www.ebi.ac.uk/chembl/g/#browse/drugs. We downloaded the 

dataset of withdrawn drugs in ChEMBL v30. Among the total of 65 withdrawn drugs in 

this list, 12 were found in the “Nervous System Diseases” group as their intended 

indication. We decided to focus on these drugs in our use-case study. These drugs are 

presented in Table 4.11, with the reasons for withdrawal after their regulatory approval, 

https://www.ebi.ac.uk/chembl/g/#browse/drugs
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such as cardiotoxicity, hepatotoxicity, and neurotoxicity. Upon testing the drugs provided 

in Table 4.11 (using the data from phase III trials dating before their approval in the first 

place) in our “Nervous System Diseases” prediction model, using the leave-one-out 

approach, we found that 8 out of 12 drugs (66%) are predicted as unapproved, correctly. 

The prediction scores (which can also be read as the probability for approval) produced 

by the model for these drugs vary between 0.33 and 0.48, given the threshold of approval 

used in our study: 0.5. These scores are produced using the “predict_proba” function in 

the Python Scikit-learn package. The results indicate that our method is promising in 

revealing drugs to be withdrawn from the market sometime after their phase III approval 

and has the potential to prevent large-scale losses in terms of both health and the economy 

by providing an early warning at the end of phase III trials. 

Table 4.11. The list of drugs withdrawn from the market during phase 4 trials for the 

indications in the “Nervous System Diseases” group, included in our use-case study. The 

table also includes the reason(s) for withdrawal and our prediction results. Our model 

produces scores that are binarized afterward (using a threshold of 0.5) to obtain 

classification results. Correct predictions (i.e., unapproved) are shown in bold font. 

Drug Name Reason(s) of withdrawal  Prediction  Score 

Dextropropoxyphene Cardiotoxicity Approved 0.75 

Levacetylmethadol Cardiotoxicity Unapproved 0.36 

Nomifensine Hematological toxicity; Hepatotoxicity Unapproved 0.37 

Pemoline Hepatotoxicity Unapproved 0.48 

Pentobarbital Misuse Approved 0.75 

Pergolide Cardiotoxicity Unapproved 0.44 

Remoxipride Hematological toxicity Unapproved 0.48 

Secobarbital Misuse Unapproved 0.42 

Thioridazine Cardiotoxicity Approved 0.78 

Tolcapone Hepatotoxicity Approved 0.65 

Triazolam Neurotoxicity; Psychiatric toxicity Unapproved 0.45 

Veralipride Neurotoxicity; Dermatological and Psychiatric toxicity Unapproved 0.33 
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4.2.7. Prospective Approval Prediction for Drug Candidates in Continuing Trials 

Finally, we employed our model to predict the approval of drug candidates still in different 

phases of the clinical trial process (excluding phase IV) at the study's date. Here, we only 

considered clinical trials for single drug treatments, not drug combinations. Selected 

approved drug predictions (for each disease group) are listed in Table 4.12, and their 

prediction scores (higher scores indicate a higher chance of approval). We randomly 

selected four drugs from each disease group whose probability of approval is higher than 

our threshold score (0.5). The complete list of approved drug predictions is provided in 

our GitHub repository. 

Table 4.12. Approval predictions for drug candidates currently in phase I, II, or III of 

clinical trials as of May 2022. Drug candidates are given below (randomly selected four 

drug-indication pairs for each disease group) and are predicted as “approved" by DrugApp 

models. Scores can be interpreted as the predicted probability of approval. 

Disease group Drug Indication Phase Score 

Rare diseases Niclosamide Familial Adenomatous Polyposis 2 0.80 

Bromocriptine Peripartum Cardiomyopathy 3 0.81 

Salsalate Preeclampsia 1 0.77 

Pazopanib Glioblastoma Multiforme 1|2 0.61 

Nervous 

system 

diseases 

Atorvastatin Obstructive Sleep Apnea 1|2 0.98 

Guanfacine Alzheimer Disease 3 0.96 

Mifepristone Alcohol Use Disorders 1|2 0.91 

Cariprazine Major Depressive Disorder 3 0.56 

Alimentary 

diseases 

Nitazoxanide Gastroenteritis 2|3 0.87 

Ozanimod Ulcerative Colitis 3 0.60 

Benzocaine Obesity 1 0.81 

Niacin Type 2 Diabetes  1 0.88 

Neoplasms Enzalutamide Ovarian Cancer 2 0.87 

Icotinib Lung Cancer 3 0.95 

Pazopanib Glioblastoma Multiforme 1|2 0.65 

Rocuronium Prostate Cancer 2 0.86 

Dermatologica

l diseases 

Upadacitinib Atopic Dermatitis 3 0.57 

Cholecalciferol Atopic Dermatitis 2 0.88 

Nifedipin Preterm Premature Rupture of 

Membrane 

2 0.54 

Dronabinol Osteoarthritis 3 0.92 

Urinary 

diseases 

Flutamide Polycystic Ovary Syndrome 1 0.82 

Darulotamide Prostate Cancer 3 0.73 

Carvedilol Prostate Cancer 2 0.65 

Tamsulosin Urinary Retention 1|2 0.70 

Heart 

diseases 

Sodium Selenite Heart Disease 3 0.61 

Milrinone Cardiomyopathy 1 0.60 

Edoxaban Aortic Valve Stenosis 3 0.92 

Exenatide Acute Ischemic Stroke 2 0.92 
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 Table 4.12 

(cont.) 
 

Immunological 

diseases 

 

 

Enzastaurin 

 

 

Diffuse Large B-Cell Lymphoma 

 

 

3 

 

 

0.59 

Ixazomib Mantle Cell Lymphoma 2 0.64 

Dexamethasone Graft vs Host Disease 2 0.97 

Tofacitinib Juvenile Idiopathic Arthritis 3 0.83 

Infective 

diseases 

Nitazoxanide Chronic Hepatitis B 2 0.86 

Bedaquiline Tuberculosis 1|2 0.71 

Clofazimine Mycobacterium Avium Complex 2 0.80 

Clevudine COVID-19 2 0.89 

Respiratory 

diseases 

 

 

Amikacin Pneumonia 3 0.91 

Icotinib Lung Cancer 3 0.94 

Losartan COVID-19 1 0.63 

Sildenafil Bronchopulmonary Dysplasia 2 0.90 

 

Hormonal 

diseases 

Naloxone Type 1 Diabetes 2 0.78 

Flutamide Polycystic Ovary Syndrome 1 0.57 

Moxifloxacin Diabetes 1 0.56 

Enzalutamide Ovarian Cancer 2 0.59 

Blood 

diseases 

Cytarabine Myelodysplastic Syndrome 2 0.96 

Ixazomib Mantle Cell Lymphoma 2 0.54 

Pentoxifylline Acute Lymphoblastic Leukemia 2|3 0.70 

Riociguat Sickle Cell Disease 2 0.67 

Musculoskelet

al diseases 

 

 

Etoricoxib Musculoskeletal Pain 2 0.98 

Baricitinib Juvenile Idiopathic Arthritis 3 0.77 

Montelukast Pain 3 0.79 

Tofacitinib Psoriatic Arthritis 3 0.89 

Sensory 

diseases 

Carbidopa Age-Related Macular Degeneration 2 0.56 

Furosemide Nasal Polyps 2 0.79 

Latanoprost Open Angle Glaucoma 1 0.94 

Dexlansoprazole Gastro Esophageal Reflux 1 0.90 
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CHAPTER 5 

 

5. CONCLUSION 

 

In this study, we proposed a new method to predict prospective approval of drug 

candidates (i.e., phase IV transition) using heterogeneous datasets and machine learning. 

For this, we constructed feature vectors composed of molecular and physicochemical 

compound/drug features and a clinical trial- and patent-related features. We employed 

molecular fingerprints (i.e., ECFP4) as our molecular compound/drug feature. Since 

molecular fingerprints represent each different sub-structure in a different, the total size 

of these vectors is usually high (i.e., 512, 1024, or 2048). However, this high 

dimensionality might dominate overall feature vectors since the remaining features were 

relatively low dimensional. To mitigate this risk, we decided to use the 128-bit version of 

ECFP4. For missing data, mean and median imputation techniques were utilized. We 

employed one-hot encoding for the categorical features to distinguish them from real 

values features. We employed the random forest (RF) algorithm to build our model. The 

reason behind using RF is that it has long been used in drug discovery and development 

studies and shown to be highly successful on many different tasks (Rifaioglu et al., 2020). 

We performed our predictive performance analyses using various classification metrics. 

Overall, our prediction models (each comprising a different disease group) achieved 

considerably high performances, indicating the potential of our approach for successfully 

predicting drug approval using heterogeneous data. We also performed temporal analysis 

by dividing our dataset into six different time frames and splitting each frame into training 

and test folds over a threshold point in time. Again, high-performance scores indicated 

that our method could be utilized to generate future drug approval predictions. 

Furthermore, we showed that our method is also promising in terms of revealing drugs to 

be withdrawn from the market, even before their approval in the first place, with an 

acceptable sensitivity (recall) score of 0.66. 

This study, for the first time in literature, explored the extensive use of patent-related 

features and revealed that these features have critical importance for predicting regulatory 

approval. The most important features for successfully predicting approval were found as 

the “number of related patents”, “number of claims”, “funder type”, “allocation and the 

location of clinical trials”, “duration of patent process”, drug’s lipophilicity (logP), 

molecular weight and refractivity. In future studies, only the approved patent numbers can 

be considered for the number of related patents. Additionally, we observed that a high 

number of related patents is important for predicting drug approvals, showing that when 
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the developers see a high chance of approval, they tend to protect the candidate with more 

patents. However, in the future, patent numbers may increase for all types of drug 

candidates regardless of whether they are promising. For future studies, it is suggested to 

retrain the models using current data and to use these current models for the prediction. 

Limitations of this study mainly resided in the dataset preparation part. For example, the 

size of the unapproved dataset was smaller than the approved dataset for most of the 

disease groups mainly due to the lack of proper reporting of negative results, which caused 

dataset imbalance. In order to overcome this problem, we used class weights during the 

training of our prediction models. Another problem was the missing data, especially 

considering clinical trial and patent features, for which we used simple data imputation 

methods such as mean/median imputation. However, mean and median imputation can 

introduce bias on the mean, reduce the variance and not consider the relationship with 

other variables (Zhang, 2016). In case there exists a low correlation between the variables 

and only less than 10% of data is missing, the limitations of the mean imputation almost 

disappear (Raymond, 1986; Tsikriktsis, 2005). Alternative imputation methods can be 

utilized, such as regression-based imputation by predicting the missing values from non-

missing ones or the maximum likelihood method, which produces maximum likelihood 

estimates of missing values (Lodder, 2013). 

We had varying degrees of missingness in our dataset, with the highest degree of 51%, 

which was only observed in the unapproved drug dataset for the patent duration feature. 

Additionally, we did not have any missing values for the ECFP4 feature (128-bit). 

Therefore, our data contained approximately 3% missing features in total. As an 

alternative solution, mean imputation can be performed by taking the mean of the most 

similar samples to the missing sample (similarity can be based on the non-missing 

features). Another limitation is that the source databases for clinical trials and patent 

features were semi-structured, meaning that many of the data fields are filled with free 

text, making it extremely difficult to use fully automated pipelines. We had to curate the 

data manually at different study steps to overcome this issue. One further limitation was 

the scarcity of patent data in the literature, mainly due to accessibility-related issues. Upon 

utilizing multiple databases and integrating data from each one, we constructed a patent 

dataset with a considerable size and coverage; however, this was still a limiting factor.  

The models' performances that utilize the combination of all features are observed to be 

the highest for all disease groups, indicating the advantage of combining different types 

of features to maximize the prediction performance. The most important signals for 

predicting drug approvals come from the clinical trial and patent features, showing the 

importance of using these feature types for predicting drug approvals. Drug 

physicochemical properties are observed to be less powerful than other features. The 

reason behind this could be that during the drug development process, unapproved drugs 

are also adjusted to follow the rules regarding drug physicochemical properties, such as 
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rule of five (RO5). Therefore, most unapproved and approved drugs seem consistent with 

the existing rules. However, although both approved and unapproved drug 

physicochemical properties essentially fit the existing rules, we still observed significant 

differences between the physicochemical properties of approved and unapproved drugs 

for some disease groups. This indicates that there is more to the existing rules. Therefore, 

our results can contribute to the literature regarding narrowing the optimized 

physicochemical property ranges depending on various disease classes. 

This study also revealed different substructures that might be important in different 

disease groups. However, poor performances of the models show that substructures of 

drug candidate molecules are not a clear and directly detectable indicator for regulatory 

approval. Additionally, interpreting these substructures is still difficult because, although 

specific, one disease group may comprise drugs with various structural properties. If the 

model performances were high, we would expect the following behind the basic structural 

factors: the groups increasing the drug solubility would certainly have a better chance of 

approval for the indication groups where the route of administration requires soluble 

molecules. On the other hand, if the drug should pass a lipophilic barrier like the blood-

brain barrier, lipophilic subgroups would be necessary for the success of the drug. In future 

studies, if the drugs can be categorized more precisely according to the associated tissues 

and target proteins, more meaningful results can be obtained regarding significant drug 

substructures for predicting drug approvals.  

To summarize the main contributions of our study: 

1. Data: To prepare enriched datasets in terms of size and scope, numerous data resources 

have been incorporated, and their data were integrated by both automated and manual 

curation processes. We utilized these datasets while developing our prediction system, but 

they will also be valuable for the research community in terms of being reliable 

benchmarks for training and evaluating other future drug development-related prediction 

models. During this process, it was challenging to incorporate patent data due to its 

primarily unstructured representation of information. Here, we combined data from 

multiple patent databases to obtain specific patent-related features for each drug. To our 

knowledge, these patent features are used here for the first time. 

2. Prediction method: We trained an independent drug approval prediction model for each 

of the 14 disease groups, using our heterogeneous datasets that contain features from 

clinical trials, patents, and drugs’ physicochemical and molecular properties, together with 

the random forest classification algorithm, which allowed us to optimize each model 

according to the aspects of the corresponding disease group. We rigorously tested our 

prediction system's potential via random split-based cross validation and temporal split-

based test experiments. In the end, we observed that the proposed method has a high and 

stable predictive performance, indicating its reliability. 
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3. Investigating drugs withdrawn from the market after approval: We showed that our 

method has the potential to reveal drugs that were withdrawn from the market sometime 

after their regulatory approval, within a certain level of confidence, which indicates that 

it may be possible to act upon similar cases in the first place, to prevent critical losses 

regarding human health. 

4. Sharing datasets, codes, and results: We strongly believe it is crucial to fully and 

adequately share in silico methods and results with the research community. For this 

purpose, we constructed a data repository for our study and shared all datasets with source 

codes and results at https://github.com/HUBioDataLab/DrugApp. We considered 

alignment with FAIR data principles to contribute to the movement towards fully open 

access, standard, and efficiently (re)usable biomedical data. 

In the future, patent features can be examined more in detail. In this context, new patent-

related features can be selected. Moreover, the performance of models including all non-

patent features can also be compared with models using all features of this study in order 

to assess the effect of patent-related features in more detail. Additionally, new types of 

data can be incorporated into drug approval prediction systems to provide models with the 

ability to generalize information and produce more sensible output, especially in 

complicated cases (e.g., out-of-distribution samples). In this context, bioactivity profiles 

(obtained from target protein and cell-based assays) and previously documented side 

effect associations of drug candidate compounds, as well as ADMETox features, can be 

incorporated into the system together with text-based features of indicated diseases (e.g., 

curated descriptions/definitions from disease centric databases and biomedical text from 

the literature). 
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APPENDICES 

APPENDIX A 

IMPORTANT DRUG SUBSTRUCTURES OF REGULATORILY APPROVED 

AND UNAPPROVED DRUGS  

Table 4.13 shows the top twenty most important substructures for “Rare Diseases” group. 

We observed that “>=16 C”, “N(~C)(~H)”, “O-H”, “C(~O)(~O)”, “[#1]-C-C-N-[#1]”, 

“C(-N)(=O)”, “N(~C)(~C)(~C)”, “>=2 aromatic rings”,  “C(-O)(=O)”, “>=2 any ring size 

6”, “>= 1 any ring size 5”, “C(-C)(-N)(=O)”, “C-F”, “>=1 F”, “C(~F)(:C)” and “N-O” 

could be important for predicting drug approvals in “Rare Diseases” group. Moreover, 

“C-F”, “>=1 F”, “C(~F)(:C)” and “N-O” substructures were observed to be higher in 

number in the unapproved drug category (Table 4.3) , showing that these substructures 

may have important associations with failure. 

Table 4.13. The top twenty most important substructures for “Rare Diseases” group. 

Features corresponds to substructures from PubChem Fingerprints representing 881 

substructures. Bold: substructures higher in number in the unapproved drugs.  

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

C-F 0.006282 115 135 

 >=1 F 0.005667 118 135 

 >=1 Cl 0.005612 147 114 

C(~H)(~H)(~H) 0.005152 680 431 

 >=16 C 0.005141 597 442 

N(~C)(~H) 0.005128 532 425 

O-H 0.004912 555 305 

C(~O)(~O) 0.004882 402 209 

[#1]-C-C-N-[#1] 0.004741 435 364 

C(-N)(=O) 0.004706 371 326 

C(~F)(:C) 0.004703 56 87 

>= 4 O 0.004659 494 283 

C(~C)(~C)(~C)(~H) 0.004654 302 161 

N(~C)(~C)(~C) 0.004501 415 289 

 >=2 aromatic rings 0.004490 424 376 

C(-O)(=O) 0.004441 367 188 

 >=2 any ring size 6 0.004424 561 407 

N-O 0.004348 45 56 

>= 1 any ring size 5 0.004295 465 322 

C(-C)(-N)(=O) 0.004268 328 285 
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Table 4.14 shows the top twenty most important substructures for “Nervous Diseases” group. 

We observed that drug substructures, for example, “[#1]-C-C-N-[#1]”, “N-H”, 

“C(~O)(~O)”, “N(~C)(~H)”,  “N-C-C-C-N”, “C(-C)(-N)(=O)”, “C-C-O-C-C”, “C-F”, 

“>=1 F” and “C(~F)(:C)” could be important for predicting drug approvals in “Nervous 

Diseases” group. Moreover, “C-F”, “>=1 F” and “C(~F)(:C)” substructures were observed 

to be higher in number in the unapproved drug category, showing that these substructures 

may have important associations with failure.  

Table 4.14. The top twenty most important substructures for “Nervous Diseases” group. 

Features corresponds to substructures from PubChem Fingerprints representing 881 

substructures. Bold: substructures higher in number in the unapproved drugs.  

Feature 
Importance 

(MDI) 

# of 

Approved 

# of 

Unapproved 

C(~H)(~H)(~H) 0.007666 574 283 

>=1 F 0.007394 100 102 

C-F 0.007341 98 101 

>=1 Cl 0.006187 133 75 

C(~F)(:C) 0.006172 48 64 

[#1]-C-C-N-[#1] 0.005397 329 224 

>= 4 O 0.005344 361 180 

N-H 0.004875 414 267 

C(~O)(~O) 0.004819 316 132 

C-C(C)-C(C)-C 0.004764 302 159 

>=32 H 0.004690 172 100 

O-H 0.004659 435 207 

[#1]-N-C-[#1] 0.004574 257 166 

C(~C)(~H)(~O) 0.004351 388 191 

N(~C)(~H) 0.004351 404 266 

N-C-C-C-N 0.004301 167 141 

O=C-C-C-C-C-C 0.004300 334 176 

>=2 saturated or aromatic carbon-

only ring size 6 
0.004294 337 181 

C(-C)(-N)(=O) 0.004276 262 181 

C-C-O-C-C 0.004275 280 136 

Table 4.15 shows the top twenty most important substructures for “Alimentary Diseases” 

group. We observed that drug substructures, for example,  “[#1]-C-C-N-[#1]”, “>=1 Cl”, 

“>=3 any ring size 6”, “N(~C)(~C)(~H)”,  “N(~C)(~H)”, “O=C-C=C-[#1]”, “>=2 N”, “C-

F”, “>=1 F” and “>=2 F” could be important for predicting drug approvals in “Alimentary 

Diseases” group. Moreover, “C-F”, “>=1 F” and “>=2 F” substructures were observed to 

be higher in number in the unapproved drug category, showing that these substructures 

may have important associations with failure.  
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Table 4.15. The top twenty most important substructures for “Alimentary Diseases” 

group. Features corresponds to substructures from PubChem Fingerprints representing 

881 substructures. Bold: substructures higher in number in the unapproved drugs.  

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

 >=1 F 0.008819 93 94 

 >=1 Cl 0.007603 112 79 

C-F 0.006746 88 93 

[#1]-C-C-N-[#1] 0.006682 331 233 

 >=3 any ring size 6 0.006562 274 184 

C(~H)(~H)(~H) 0.005885 556 285 

N(~C)(~C)(~H) 0.005480 313 216 

>= 4 O 0.005180 411 193 

N(~C)(~H) 0.005075 405 267 

O=C-C=C-[#1] 0.004783 168 122 

C(~O)(~O) 0.004538 336 157 

O-H 0.004506 456 215 

C(-O)(=O) 0.004397 305 143 

O(~C)(~H) 0.004377 421 200 

 >=2 N 0.004305 438 284 

 >=2 F 0.004297 42 49 

O=C-C-C-C-C-O 0.004225 120 36 

N(~C)(~C)(~C) 0.004191 356 188 

 >=1 saturated or aromatic nitrogen- 

containing ring size 6 
0.004147 219 163 

C(-C)(-O)(=O) 0.004069 275 125 

Table 4.16 shows the top twenty most important substructures for “Dermatological Diseases” 

group. We observed that drug substructures, for example,  “>=1 Cl”,  “>=4 N”, “C-C-N-

C-C”, “>=3 any ring size 6”, “>=2 N”, “>=2 O”, “O=C-N-C-[#1]”, “>=1 S”, “C-F”, “>=1 

F”, “>=2 F” and “C(~F)(:C)” could be important for predicting drug approvals in 

“Dermatological Diseases” group. Moreover, “C-F”, “>=1 F”, “>=2 F” and “C(~F)(:C)” 

substructures were observed to be higher in number in the unapproved drug category, 

showing that these substructures may have important associations with failure. 
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Table 4.16. The top twenty most important substructures for “Dermatological Diseases” 

group. Features corresponds to substructures from PubChem Fingerprints representing 

881 substructures. Bold: substructures higher in number in the unapproved drugs.  

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

C-F 0.009622 86 95 

 >=1 F 0.006922 88 96 

 >=1 Cl 0.006283 125 70 

 >=4 N 0.006252 162 157 

>= 4 O 0.005659 346 192 

>= 1 any ring size 5 0.005067 333 207 

C-C-N-C-C 0.005059 380 275 

 >=3 any ring size 6 0.005055 265 184 

C(~H)(~H)(~H) 0.004659 509 258 

C(~F)(:C) 0.004572 43 57 

 >=2 N 0.004554 392 279 

 >=16 C 0.004540 460 269 

O-H 0.004479 429 211 

 >=2 F 0.004469 44 52 

O(~C)(~H) 0.004345 402 187 

 >=1 saturated or aromatic 

heteroatom-containing ring size 5 
0.004332 246 177 

 >=2 O 0.004319 572 312 

O=C-N-C-[#1] 0.004259 172 141 

C(-O)(=O) 0.004167 277 118 

 >=1 S 0.004139 150 97 

Table 4.17 shows the top twenty most important substructures for “Infective Diseases” 

group. We observed that drug substructures, for example, “O=C-C=C-[#1]”,  “>=16 C”, 

“>=1 Cl”,  “>=4 N”, “C-C-N-C-C”, “N-O”, “C-F”, “>=1 F”, and “>=2 F” could be 

important for predicting drug approvals in “Infective Diseases” group. Moreover, “C-F”, 

“>=1 F”, “>=2 F” and “>=1 saturated or aromatic nitrogen-containing ring size 9” 

substructures were observed to be higher in number in the unapproved drug category, 

showing that these substructures may have important associations with failure. 
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Table 4.17. The top twenty most important substructures for “Infective Diseases” group. 

Features corresponds to substructures from PubChem Fingerprints representing 881 

substructures. Bold: substructures higher in number in the unapproved drugs.  

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

 >=1 F 0.007422 54 66 

C-F 0.007367 53 65 

 >=2 F 0.006902 27 41 

O=C-C=C-[#1] 0.006539 110 86 

 >=16 C 0.005950 328 206 

 >=1 Cl 0.005832 84 58 

 >=4 N 0.005578 163 119 

 >=1 any ring size 9 0.005252 117 83 

C-C-N-C-C 0.005247 302 197 

N-O 0.005119 29 27 

>= 4 O 0.004761 285 145 

>=1 saturated or aromatic 

nitrogen-containing ring size 9 
0.004731 54 60 

C(~O)(~O) 0.004703 240 101 

O=C-N-C-C 0.004629 189 126 

 >=32 H 0.004616 140 86 

 >=2 any ring size 5 0.004609 73 60 

C(~C)(~C)(~H)(~N) 0.004566 213 94 

 >=1 saturated or aromatic 

heteroatom-containing ring size 9 
0.004527 73 66 

C(~H)(~H)(~H) 0.004400 392 191 

[#1]-C-O-[#1] 0.004394 181 82 

Table 4.18 shows the top twenty most important substructures for “Urinary Diseases” 

group. We observed that drug substructures, for example,  “>=1 Cl”,  “>=3 any ring size 

6”,  “>=2 N”, “>= 4 O”, “O=C-N-C-[#1]”, “>=4 N”, “O=C-C=C-C”, “O-C-C-C-C-C-N-

C”, “C(~O)(~O)”, “>=32 H”, “N-C-C-C-C”, “>=1 saturated or aromatic heteroatom-

containing ring size 6”, “C-F”, “>=1 F”, “C(~F)(:C)” and “>= 1 B” could be important for 

predicting drug approvals in “Urinary Diseases” group. Moreover, “C-F”, “>=1 F”, 

“C(~F)(:C)” and “>= 1 B” substructures were observed to be higher in number in the 

unapproved drug category, showing that these substructures may have important 

associations with failure. 
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Table 4.18. The top twenty most important substructures for “Urinary Diseases” group. 

Features corresponds to substructures from PubChem Fingerprints representing 881 

substructures. Bold: substructures higher in number in the unapproved drugs.  

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

 >=1 Cl 0.009429 101 66 

 >=1 F 0.007968 68 87 

C-F 0.007395 66 87 

 >=3 any ring size 6 0.006620 244 170 

 >=2 N 0.005093 390 267 

O-C-C-C-C-C-N-C 0.005044 102 89 

>= 4 O 0.004943 336 182 

O=C-N-C-[#1] 0.004885 184 136 

 >=4 N 0.004880 173 150 

O-H 0.004817 389 197 

C(~H)(~H)(~H) 0.004776 494 244 

O=C-C=C-C 0.004612 192 131 

[#1]-C-C-N-[#1] 0.004584 305 203 

O=C-C=C-[#1] 0.004517 128 104 

 >=1 saturated or aromatic 

heteroatom-containing ring size 6 
0.004218 243 162 

C(~O)(~O) 0.004186 278 117 

 >=32 H 0.004186 160 103 

C(~F)(:C) 0.004163 39 55 

N-C-C-C-C 0.004131 444 284 

>= 1 B 0.003945 2 5 

Table 4.19 shows the top twenty most important substructures for “Heart Diseases” group. 

We observed that drug substructures, for example, “>= 1 any ring size 5”,  “>=3 any ring 

size 6”, “N(~C)(~C)(~H)”,  “>=8 O”, “O=C-C=C-[#1]”, “C-F” and “>=1 F” could be 

important for predicting drug approvals in “Heart Diseases” group. Moreover, “C-F” and 

“>=1 F” substructures were observed to be higher in number in the unapproved drug 

category, showing that these substructures may have important associations with failure. 
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Table 4.19. The top twenty most important substructures for “Heart Diseases” group. 

Features corresponds to substructures from PubChem Fingerprints representing 881 

substructures. Bold: substructures higher in number in the unapproved drugs. 

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

C-F 0.007749 56 57 

>= 4 O 0.006090 264 136 

 >=32 H 0.005883 110 71 

[#1]-N-C-[#1] 0.005748 196 113 

N(~C)(~C)(~C) 0.005580 234 117 

[#1]-C-C-N-[#1] 0.005276 244 141 

>= 1 any ring size 5 0.005247 241 144 

 >=1 F 0.005119 57 57 

 >=1 S 0.004981 114 68 

 >=3 any ring size 6 0.004930 182 129 

 >=16 H 0.004816 384 208 

C(~C)(~H)(~O) 0.004786 264 135 

N(~C)(~C)(~H) 0.004718 228 141 

 >=8 O 0.004614 88 29 

 >=1 saturated or aromatic 

heteroatom-containing ring size 5 
0.004535 182 122 

 >=2 O 0.004523 418 223 

C(-O)(=O) 0.004514 206 98 

C-C-C-C-C-C(C)-C 0.004449 237 129 

O=C-C=C-[#1] 0.004361 116 79 

C(~H)(~H)(~H) 0.004356 382 184 

Table 4.20 shows the top twenty most important substructures for “Neoplasms” group. 

We observed that drug substructures, for example,  “>=1 Cl”,  “>=32 H”, “>=16 C”,  “>=2 

N”, “N-H”, “N(~C)(~C)(~C)”, “C-C-N-C-C”, “C(-C)(-N)(=O)”, “N(~C)(~H)”, “>=4 N”, 

“>=1 F”, and “N-C-C-C-N” could be important for predicting drug approvals in 

“Neoplasms” group. Moreover, “>=4 N”, “>=1 F”, “N-C=C-[#1]” and “N-C-C-C-N” 

substructures were observed to be higher in number in the unapproved drug category, 

showing that these substructures may have important associations with failure. 
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Table 4.20. The top twenty most important substructures for “Neoplasms” group. Features 

corresponds to substructures from PubChem Fingerprints representing 881 substructures. 

Bold: substructures higher in number in the unapproved drugs. 

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

 >=1 Cl 0.006397 103 91 

 >=4 N 0.006345 197 236 

 >=32 H 0.006220 158 138 

 >=16 C 0.005611 460 376 

 >=2 N 0.005413 410 385 

N-H 0.005397 408 364 

N(~C)(~C)(~C) 0.005352 314 257 

[#1]-C-C-N-[#1] 0.005346 332 303 

C(~H)(~H)(~H) 0.005123 523 367 

>= 4 O 0.004956 349 239 

N-C=C-[#1] 0.004938 252 277 

 >=1 F 0.004917 100 111 

C-C-N-C-C 0.004812 399 375 

N-C-C-C-N 0.004696 171 198 

C(-C)(-N)(=O) 0.004685 240 238 

N(~C)(~H) 0.004589 400 361 

O-H 0.004454 406 253 

C(~C)(~H)(~O) 0.004348 337 228 

O(~C)(~H) 0.004314 378 228 

 >=2 saturated or aromatic 

heteroatom-containing ring size 6 
0.004198 85 107 

Table 4.21 shows the top twenty most important substructures for “Immunological 

Diseases” group. We observed that drug substructures, for example, “>=4 N”,  “O=C-

C=C-C”, “>=16 C”, “O=C-N-C-[#1]”, “>= 1 any ring size 5”, “O(~C)(~C)”, “>=1 Cl”, 

“C-F”, “>=1 F” and “>=2 F” could be important for predicting drug approvals in 

“Immunological Diseases” group. Moreover, “C-F”, “>=1 F” and “>=2 F”  substructures 

were observed to be higher in number in the unapproved drug category, showing that these 

substructures may have important associations with failure. 
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Table 4.21. The top twenty most important substructures for “Immunological Diseases” 

group. Features corresponds to substructures from PubChem Fingerprints representing 

881 substructures. Bold: substructures higher in number in the unapproved drugs.  

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

C-F 0.006957 71 83 

 >=1 F 0.006890 75 84 

 >=4 N 0.006207 172 161 

 >=2 F 0.005555 34 47 

O=C-C=C-C 0.005533 192 141 

 >=4 any ring size 6 0.005125 101 91 

C(~C)(~C)(~H)(~O) 0.005076 225 92 

 >=16 C 0.004604 419 262 

 >=1 saturated or aromatic 

heteroatom-containing ring size 5 
0.004597 233 161 

C(~C)(~C)(~C)(~H) 0.004588 224 96 

O-C-C-N 0.004479 240 124 

>= 4 O 0.004469 324 171 

[#1]-C-C-N-[#1] 0.004354 279 203 

O=C-N-C-[#1] 0.004340 167 133 

>= 1 any ring size 5 0.004311 303 185 

O(~C)(~C) 0.004307 292 176 

O=C-C=C-[#1] 0.004295 150 115 

 >=1 Cl 0.004283 114 74 

O-C-C-N-C 0.004272 212 115 

C(~O)(~O) 0.004223 266 111 

Table 4.22 shows the top twenty most important substructures for “Respiratory Diseases” 

group. We observed that drug substructures, for example, “O=C-N-C-[#1]”,  “>=4 N”, 

“N-C-C-N-C”, “>=2 N”, “>=2 O”, “>=2 aromatic rings”, “>=2 any ring size 5”, “C-F”, 

“>=1 F” and “>=2 F” could be important for predicting drug approvals in “Respiratory 

Diseases” group. Moreover, “C-F”, “>=1 F”, “>=2 F” and >=2 saturated or aromatic 

heteroatom-containing ring size 6” substructures were observed to be higher in number in 

the unapproved drug category, showing that these substructures may have important 

associations with failure. 
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Table 4.22. The top twenty most important substructures for “Respiratory Diseases” 

group. Features corresponds to substructures from PubChem Fingerprints representing 

881 substructures. Bold: substructures higher in number in the unapproved drugs. 

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

O=C-N-C-[#1] 0.007241 156 129 

 >=1 F 0.006384 73 76 

 >=4 N 0.006318 149 148 

 >=2 F 0.005914 31 46 

 >=4 any ring size 6 0.005849 85 76 

C-F 0.005523 71 75 

N-C-C-N-C 0.005482 169 128 

 >=1 Cl 0.005157 96 55 

C(-O)(=O) 0.004918 229 100 

O-H 0.004909 348 177 

O=C-C-C-C-N 0.004858 67 55 

 >=2 N 0.004831 350 246 

 >=2 saturated or aromatic 

heteroatom-containing ring size 6 
0.004815 69 71 

C(~O)(~O) 0.004815 252 107 

C(~H)(~H)(~H) 0.004532 447 215 

[#1]-C-C-N-[#1] 0.004454 275 179 

 >=2 O 0.004370 483 263 

 >=3 any ring size 6 0.004262 220 150 

 >=2 aromatic rings 0.004211 278 205 

 >=2 any ring size 5 0.004162 75 65 

Table 4.23 shows the top twenty most important substructures for “Hormonal Diseases” 

group. We observed that drug substructures, for example, “>=32 H”,  “O=C-C=C”, “>=1 

F”,  “C-F”, “O=C-N-C-[#1]”, “N-C-C:C-C”, “>=2 O”, “[#1]-C-C-N-[#1]”, “>=16 C”, “>= 

1 B”, “S(-O)(=O)” and “S(~C)(~O)” could be important for predicting drug approvals in 

“Hormonal Diseases” group. Moreover, “>= 1 B”, “S(-O)(=O)”,  S(=O)(=O) and 

“S(~C)(~O)” substructures were observed to be higher in number in the unapproved drug 

category, showing that these substructures may have important associations with failure. 
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Table 4.23. The top twenty most important substructures for “Hormonal Diseases” group. 

Features corresponds to substructures from PubChem Fingerprints representing 881 

substructures. Bold: substructures higher in number in the unapproved drugs. 

Feature 
Importance   

(MDI) 

# of  

Approved 

# of  

Unapproved 

>= 1 B 0.006614 0 4 

>= 4 O 0.006552 235 135 

S(-O)(=O) 0.006193 26 35 

 >=32 H 0.005656 105 78 

S(=O)(=O) 0.005450 26 35 

O=C-C=C 0.005263 157 102 

 >=1 Cl 0.005098 81 53 

 >=1 F 0.005045 60 58 

C-F 0.005013 58 57 

O=C-N-C-[#1] 0.004969 127 94 

N-C-C:C-C 0.004903 197 150 

S(~C)(~O) 0.004867 25 30 

C(~C)(~H)(~O) 0.004817 234 127 

C(-O)(=O) 0.004688 172 88 

 >=2 O 0.004688 377 204 

O-C-C-C-N 0.004688 133 67 

C(~H)(~H)(~H) 0.004677 348 177 

 >=3 any ring size 6 0.004634 176 124 

[#1]-C-C-N-[#1] 0.004582 212 138 

 >=16 C 0.004503 322 192 

Table 4.24 shows the top twenty most important substructures for “Blood Diseases” 

group. We observed that drug substructures, for example, “>=2 N”,  “O=C-N-C-[#1]”,  

“O-H”, “O=C-C=C-C”, “>=2 aromatic rings”, “N(~C)(~C)(~H)”, “N-H”, “N-C-C=C”, 

“[#1]-C-O-[#1]”, “O=C-C=C-[#1]”, “C-F”, “>=1 F”, “N=C-C-C”, “N-O” and “N-C-C-O-

C” could be important for predicting drug approvals in “Blood Diseases” group. 

Moreover, “C-F”, “>=1 F”, “N=C-C-C”, “N-O” and “N-C-C-O-C” substructures were 

observed to be higher in number in the unapproved drug category, showing that these 

substructures may have important associations with failure. 
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Table 4.24. The top twenty most important substructures for “Blood Diseases” group. 

Features corresponds to substructures from PubChem Fingerprints representing 881 

substructures. Bold: substructures higher in number in the unapproved drugs.  

Feature 
Importance  

(MDI) 

# of  

Approved 

# of  

Unapproved 

>= 4 O 0.006429 227 131 

C-F 0.005752 48 64 

 >=2 N 0.005746 256 208 

O=C-N-C-[#1] 0.005662 121 101 

 >=1 F 0.005424 49 64 

 >=3 any ring size 6 0.005257 176 131 

N=C-C-C 0.005212 137 137 

O-H 0.005125 287 127 

O=C-C=C-C 0.005089 135 113 

C(~C)(~C)(~H)(~N) 0.004935 159 89 

 >=2 aromatic rings 0.004852 201 175 

N(~C)(~C)(~H) 0.004839 174 161 

N-H 0.004770 246 198 

N-O 0.004763 18 20 

N-C-C=C 0.004684 225 192 

C-S 0.004617 99 53 

N-C-C-O-C 0.004494 58 62 

[#1]-C-O-[#1] 0.004393 152 57 

O=C-C=C-[#1] 0.004386 104 93 

C(~H)(~H)(~H) 0.004385 319 190 

Table 4.25 shows the top twenty most important substructures for “Musculoskeletal 

Diseases” group. We observed that drug substructures, for example,  “>=16 H”,  “C-C-N-

C-C”,  “C(-C)(-N)(=O)”, “O=C-N-C-C”, “C-F”, “>=1 F”, “>=2 F”, “>=1 Sm”, “>= 1 B”, 

“>=3 aromatic rings”, and “C(~F)(:C)” could be important for predicting drug approvals 

in “Musculoskeletal Diseases” group. Moreover; “C-F”, “>=1 F”, “>=2 F”, “>=1 Sm”, 

“>= 1 B”, “>=3 aromatic rings”, >=4 any ring size 6 and “C(~F)(:C)” substructures were 

observed to be higher in number in the unapproved drug category, showing that these 

substructures may have important associations with failure. 

 

 

 



99 

 

Table 4.25. The top twenty most important substructures for “Musculoskeletal Diseases” 

group. Features corresponds to substructures from PubChem Fingerprints representing 

881 substructures. Bold: substructures higher in number in the unapproved drugs. 

Feature 
Importance  

(MDI) 

# of  

Approved 

# of  

Unapproved 

C-F 0.009453 30 43 

 >=2 F 0.007813 12 26 

 >=1 F 0.007636 31 43 

 >=1 Sm 0.007583 0 1 

>= 1 B 0.007534 0 2 

 >=3 aromatic rings 0.006248 54 56 

 >=16 H 0.005973 188 109 

C-C-N-C-C 0.005906 143 108 

C(-C)(-N)(=O) 0.005783 88 70 

O-H 0.005438 156 80 

O=C-N-C-C 0.005319 83 63 

 >=3 any ring size 6 0.005270 77 72 

>= 4 O 0.005092 131 69 

 >=2 aromatic rings 0.005066 118 93 

 >=32 H 0.005037 49 34 

[#1]-N-C-[#1] 0.004970 90 56 

 >=4 any ring size 6 0.004866 21 32 

C(~F)(:C) 0.004670 16 24 

Cc1ccc(O)cc1 0.004663 41 33 

C-C-C-O-[#1] 0.004631 130 64 

Table 4.26 shows the top twenty most important substructures for “Sensory Diseases” 

group. We observed that drug substructures, for example, “N-C-C:C-C”,  “C-C-N-C-C”, 

“N=C-C=C”, “N=O” and “C-C-C-C-C-C-C”, “C-F”, “>=1 F”, “>=2 F”, “N-O”, “N:C-

C:C”, “C(~F)(:C)”, “>=4 aromatic rings”, “C-C:N:C”, “O-N-C-C”, “C(~F)(~F)” and 

“C(~C)(:N)” could be important for predicting drug approvals in “Sensory Diseases” 

group. Moreover; “C-F”, “>=1 F”, “>=2 F”, “N-O”, “N:C-C:C”, “C(~F)(:C)”, “>=4 

aromatic rings”, “C-C:N:C”, “O-N-C-C”, “C(~F)(~F)” and “C(~C)(:N)” substructures 

were observed to be higher in number in the unapproved drug category, showing that these 

substructures may have important associations with failure. 
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Table 4.26. The top twenty most important substructures for “Sensory Diseases” group. 

Features corresponds to substructures from PubChem Fingerprints representing 881 

substructures. Bold: substructures higher in number in the unapproved drugs. 

Feature Importance  (MDI) 
# of  

Approved 

# of  

Unapproved 

C-F 0.012166 16 26 

 >=1 F 0.011330 16 26 

 >=2 F 0.009745 5 14 

N-O 0.008224 4 10 

N-C-C:C-C 0.007563 68 62 

 >=3 any ring size 6 0.007330 61 52 

N:C-C:C 0.007253 29 46 

C(~F)(:C) 0.007205 10 18 

>=4 aromatic rings 0.006949 17 33 

N:C:C-C 0.006854 38 49 

N=C-C-[#1] 0.006392 43 51 

C-C:N:C 0.006042 37 47 

O-N-C-C 0.005843 2 6 

C-C-N-C-C 0.005771 105 78 

C(~F)(~F) 0.005701 2 9 

C(~C)(:N) 0.005478 40 50 

N=C-C=C 0.005298 37 50 

N=C-C:C-[#1] 0.005265 29 40 

N=O 0.005247 2 5 

C-C-C-C-C-C-C 0.005217 132 81 
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APPENDIX B 

IMPORTANT FEATURES FOR PREDICTING DRUG APPROVALS  

Table 4.27. The top ten important features for predicting drug approvals for each disease 

group, shown using mean decrease impurity (MDI).  

Disease groups Importance (MDI) 

All diseases  

Number of related patents 0.065 

Funder type of clinical trials 0.063 

Duration of patent process  0.040 

Number of claims 0.025 

Polarizability of the drug 0.024 

Refractivity of the drug 0.024 

Lipophilicity (logP) of the drug 0.023 

Molecular weight of the drug 0.022 

Allocation of clinical trials 0.020 

Polar surface area of the drug 0.020 

Rare diseases 
 

Number of related patents 0.051 

Funder type of clinical trials 0.038 

Duration of patent process  0.034 

Number of claims 0.028 

Lipophilicity (logP) of the drug 0.027 

Polarizability of the drug 0.025 

Molecular weight of the drug 0.024 

Refractivity of the drug 0.024 

Polar surface area of the drug 0.022 

Location of clinical trials 0.022 

Nervous diseases 
 

Number of related patents 0.057 

Funder type of clinical trials 0.050 

Duration of patent process  0.033 

Number of claims 0.027 

Molecular weight of the drug 0.025 

Polar surface area of the drug 0.023 

Polarizability of the drug 0.023 

Lipophilicity (logP) of the drug 0.023 

Refractivity of the drug 0.021 

Allocation of clinical trials 0.020 

Alimentary diseases 
 

Number of related patents 0.059 

Duration of patent process in months  0.033 

Funder type of clinical trials 0.032 

Number of claims 0.028 

Lipophilicity (logP) of the drug 0.028 
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Table 4.27 (cont.) 

Location of clinical trials 

 

0.026 

Polar surface area of the drug 0.025 

Refractivity of the drug 0.024 

Polarizability of the drug 0.023 

Allocation of clinical trials 0.020 

Neoplasms 
 

Number of related patents 0.058 

Funder type of clinical trials 0.036 

Location of clinical trials 0.035 

Duration of patent process in months 0.033 

Polar surface area of the drug 0.027 

Molecular weight of the drug 0.026 

Number of claims 0.025 

Refractivity of the drug 0.023 

Polarizability of the drug 0.021 

Lipophilicity (logP) of the drug 0.020 

Dermatological diseases 
 

Number of related patents 0.057 

Funder type of clinical trials 0.036 

Duration of patent process  0.035 

Refractivity of the drug 0.026 

Polar surface area of the drug 0.025 

Molecular weight of the drug 0.025 

Lipophilicity (logP) of the drug 0.024 

Polarizability of the drug 0.024 

Number of claims 0.016 

Allocation of clinical trials 0.014 

Urinary tract diseases 
 

Funder type of clinical trials 0.049 

Number of related patents 0.039 

Duration of patent process  0.028 

Polar surface area of the drug 0.027 

Location of clinical trials 0.026 

Number of claims 0.026 

Lipophilicity (logP) of the drug 0.026 

Molecular weight of the drug 0.026 

Intervention model of clinical trials 0.026 

Polarizability of the drug 0.023 

Heart diseases 
 

Funder type of clinical trials 0.070 

Number of related patents 0.044 

Duration of patent process in months 0.033 

Molecular weight of the drug 0.027 

Polarizability of the drug 0.026 

Refractivity of the drug 0.025 

Lipophilicity (logP) of the drug 0.025 

Number of claims 0.025 

Polar surface area of the drug 0.024 

Allocation of clinical trials 0.021 
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Table 4.27 (cont.) 

Immunological diseases 

 

Number of related patents 0.052 

Duration of patent process  0.035 

Molecular weight of the drug 0.030 

Polar surface area of the drug 0.029 

Number of claims 0.027 

Polarizability of the drug 0.027 

Refractivity of the drug 0.026 

Funder type of clinical trials 0.026 

Lipophilicity (logP) of the drug 0.025 

Intervention model of clinical trials 0.020 

Infective diseases 
 

Number of related patents 0.051 

Funder type of clinical trials 0.045 

Duration of patent process 0.030 

Lipophilicity (logP) of the drug 0.027 

Molecular weight of the drug 0.025 

Polar surface area of the drug 0.025 

Polarizability of the drug 0.024 

Refractivity of the drug 0.024 

Number of claims 0.023 

Number of rotatable bonds 0.016 

Respiratory diseases 
 

Number of related patents 0.053 

Duration of patent process 0.036 

Funder type of clinical trials 0.028 

Polar surface area of the drug 0.027 

Molecular weight of the drug 0.026 

Number of claims 0.025 

Lipophilicity (logP) of the drug 0.025 

Polarizability of the drug 0.025 

Refractivity of the drug 0.024 

Location of clinical trials 0.022 

Hormonal diseases 
 

Number of related patents 0.053 

Location of clinical trials 0.036 

Duration of patent process 0.032 

Allocation of clinical trials 0.030 

Funder type of clinical trials 0.030 

Molecular weight of the drug 0.028 

Number of claims 0.026 

Polarizability of the drug 0.025 

Polar surface area of the drug 0.025 

Lipophilicity (logP) of the drug 0.022 

Blood diseases 
 

Number of related patents 0.053 

Location of clinical trials 0.048 

Duration of patent process 0.031 

Age of participants 0.029 
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Table 4.27 (cont.) 
Funder type of clinical trials 

 

0.029 

Intervention model of clinical trials 0.027 

Molecular weight of the drug 0.027 

Refractivity of the drug 0.027 

Polar surface area of the drug 0.026 

Polarizability of the drug 0.024 

Musculoskeletal diseases 
 

Number of related patents 0.052 

Duration of patent process 0.035 

Allocation of clinical trials 0.030 

Refractivity of the drug 0.026 

Polar surface area of the drug 0.026 

Polarizability of the drug 0.025 

Number of claims 0.025 

Molecular weight of the drug 0.024 

Lipophilicity (logP) of the drug 0.024 

Number of related patents 0.052 

Sensory diseases 
 

Duration of patent process 0.032 

Polarizability of the drug 0.031 

Number of related patents 0.031 

Molecular weight of the drug 0.029 

Polar surface area of the drug 0.028 

Refractivity of the drug 0.028 

Number of claims 0.023 

Location of clinical trials 0.022 

Lipophilicity (logP) of the drug 0.021 

Allocation of clinical trials 0.019 

 

 

 

 

 

 

 



105 

 

Table 4.28. The top ten most important features for predicting drug approvals in temporal 

analysis, shown using mean decrease impurity (MDI). 

Training time frames Importance (MDI) 

0-2008 
 

Number of related patents 0.086 

Duration of patent process  0.030 

Molecular weight of the drug 0.029 

Funder type of clinical trials 0.028 

Polar surface area of the drug 0.027 

Location of clinical trial 0.023 

Refractivity of the drug 0.022 

Polarizability of the drug 0.023 

Lipophilicity (logP) of the drug 0.022 

Number of claims 0.018 

0-2010 
 

Number of related patents 0.092 

Funder type of clinical trials 0.043 

Duration of patent process  0.035 

Allocation of clinical trials 0.024 

Molecular weight of the drug 0.023 

Number of claims 0.022 

Location of clinical trial 0.021 

Refractivity of the drug 0.020 

Polarizability of the drug 0.020 

Lipophilicity (logP) of the drug 0.019 

0-2012 
 

Number of related patents 0.089 

Funder type of clinical trials 0.055 

Duration of patent process  0.038 

Allocation of clinical trials 0.024 

Number of claims 0.024 

Location of clinical trial 0.022 

Molecular weight of the drug 0.022 

Polarizability of the drug 0.020 

Refractivity of the drug 0.020 

Polar surface area of the drug 0.019 

0-2014  

Number of related patents 0.081 

Funder type of clinical trials 0.055 

Duration of patent process  0.041 

Allocation of clinical trials 0.024 

Number of claims 0.023 

Molecular weight of the drug 0.021 

Polar surface area of the drug 0.021 

Polarizability of the drug 0.020 

Lipophilicity (logP) of the drug 0.019 

Refractivity of the drug 0.019 

0-2016  
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Table 4.28 (cont.) 

Number of related patents 

 

0.077 

Funder type of clinical trials 0.054 

Duration of patent process  0.039 

Number of claims 0.024 

Refractivity of the drug 0.022 

Polar surface area of the drug 0.022 

Molecular weight of the drug 0.021 

Polarizability of the drug 0.021 

Lipophilicity (logP) of the drug 0.021 

Location of clinical trial 0.020 

0-2018  

Number of related patents 0.066 

Funder type of clinical trials 0.059 

Duration of patent process  0.036 

Number of claims 0.025 

Allocation of clinical trials 0.023 

Lipophilicity (logP) of the drug 0.022 

Refractivity of the drug 0.021 

Polar surface area of the drug 0.021 

Location of clinical trial 0.020 

Polarizability of the drug 0.020 
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APPENDIX C 

 

PATENT-RELATED FEATURE DISTRIBUTIONS OF REGULATORILY 

APPROVED AND UNAPPROVED DRUGS  

 

Figure 4.15. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Rare Diseases” class.  Abbreviations; #: number, CPC: Cooperative Patent 

Classification, PCT: the presence of Patent Cooperation Treaty application, PCT (#0): no 

PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 
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Figure 4.16. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Nervous Diseases” class.  Abbreviations; #: number, CPC: Cooperative 

Patent Classification, PCT: the presence of Patent Cooperation Treaty application, PCT 

(#0): no PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 
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Figure 4.17. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Alimentary Diseases” class.  Abbreviations; #: number, CPC: Cooperative 

Patent Classification, PCT: the presence of Patent Cooperation Treaty application, PCT 

(#0): no PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 
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Figure 4.18. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Neoplasms” class.  Abbreviations; #: number, CPC: Cooperative Patent 

Classification, PCT: the presence of Patent Cooperation Treaty application, PCT (#0): no 

PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 
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Figure 4.19. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Dermatological Diseases” class.  Abbreviations; #: number, CPC: 

Cooperative Patent Classification, PCT: the presence of Patent Cooperation Treaty 

application, PCT (#0): no PCT application, PCT (#1): presence of PCT application, PCT 

(#2): unknown. 
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Figure 4.20. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Urinary Diseases” class.  Abbreviations; #: number, CPC: Cooperative 

Patent Classification, PCT: the presence of Patent Cooperation Treaty application, PCT 

(#0): no PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 
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Figure 4.21. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Heart Diseases” class.  Abbreviations; #: number, CPC: Cooperative Patent 

Classification, PCT: the presence of Patent Cooperation Treaty application, PCT (#0): no 

PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 
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Figure 4.22. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Immunological Diseases” class.  Abbreviations; #: number, CPC: 

Cooperative Patent Classification, PCT: the presence of Patent Cooperation Treaty 

application, PCT (#0): no PCT application, PCT (#1): presence of PCT application, PCT 

(#2): unknown. 
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Figure 4.23. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Anti-infective Diseases” class.  Abbreviations; #: number, CPC: 

Cooperative Patent Classification, PCT: the presence of Patent Cooperation Treaty 

application, PCT (#0): no PCT application, PCT (#1): presence of PCT application, PCT 

(#2): unknown. 
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Figure 4.24. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Respiratory Diseases” class.  Abbreviations; #: number, CPC: Cooperative 

Patent Classification, PCT: the presence of Patent Cooperation Treaty application, PCT 

(#0): no PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 

 

 

 

 

 

 

 



117 

 

 

Figure 4.25. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Hormonal Diseases” class.  Abbreviations; #: number, CPC: Cooperative 

Patent Classification, PCT: the presence of Patent Cooperation Treaty application, PCT 

(#0): no PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 
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Figure 4.26. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Blood Diseases” class.  Abbreviations; #: number, CPC: Cooperative Patent 

Classification, PCT: the presence of Patent Cooperation Treaty application, PCT (#0): no 

PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 
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Figure 4.27. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Musculoskeletal Diseases” class.  Abbreviations; #: number, CPC: 

Cooperative Patent Classification, PCT: the presence of Patent Cooperation Treaty 

application, PCT (#0): no PCT application, PCT (#1): presence of PCT application, PCT 

(#2): unknown. 
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Figure 4.28. Patent-related feature distributions of regulatorily approved and unapproved 

drugs for the “Sensory Diseases” class.  Abbreviations; #: number, CPC: Cooperative 

Patent Classification, PCT: the presence of Patent Cooperation Treaty application, PCT 

(#0): no PCT application, PCT (#1): presence of PCT application, PCT (#2): unknown. 
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APPENDIX D 

 

CLINICAL TRIAL-RELATED FEATURE DISTRIBUTIONS OF 

REGULATORILY APPROVED AND UNAPPROVED DRUGS  

 

     

Figure 4.29. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Rare Diseases” class. 
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Figure 4.30. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Nervous Diseases” class. 
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Figure 4.31. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Alimentary Diseases” class. 
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Figure 4.32. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Neoplasms” class. 
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Figure 4.33. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Dermatological Diseases” class. 
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Figure 4.34. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Urinary Diseases” class. 
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Figure 4.35. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Heart Diseases” class. 
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Figure 4.36. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Immunological Diseases” class. 
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Figure 4.37. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Anti-infective Diseases” class. 
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Figure 4.38. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Respiratory Diseases” class. 
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Figure 4.39. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Hormonal Diseases” class. 
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Figure 4.40. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Blood Diseases” class. 
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Figure 4.41. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Musculoskeletal Diseases” class. 
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Figure 4.42. Clinical trial-related feature distributions of regulatorily approved and 

unapproved drugs for the “Sensory Diseases” class. 
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APPENDIX E 

 

PHYSICOCHEMICAL FEATURE DISTRIBUTIONS OF REGULATORILY 

APPROVED AND UNAPPROVED DRUGS  

 

 

Figure 4.43. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Rare Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 

bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features.  
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Figure 4.44. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Nervous Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 

bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features.  

 

Figure 4.45. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Alimentary Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 
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bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features.  

 

Figure 4.46. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Neoplasms” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 

bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features. 
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Figure 4.47. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Dermatological Diseases” class.  Abbreviations; #: number, 

logP: lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: 

hydrogen bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted 

bioavailability as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability 

(#2): unknown. Dashed line corresponds to the mean value for numerical features. 

 

Figure 4.48. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Urinary Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 
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bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features. 

 

Figure 4.49. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Heart Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 

bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features. 
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Figure 4.50. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Immunological Diseases” class.  Abbreviations; #: number, 

logP: lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: 

hydrogen bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted 

bioavailability as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability 

(#2): unknown. Dashed line corresponds to the mean value for numerical features. 

 

Figure 4.51. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Anti-infective Diseases” class.  Abbreviations; #: number, 

logP: lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: 
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hydrogen bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted 

bioavailability as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability 

(#2): unknown. Dashed line corresponds to the mean value for numerical features. 

 

Figure 4.52. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Respiratory Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 

bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features. 
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Figure 4.53. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Hormonal Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 

bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features. 

 

Figure 4.54. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Blood Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 

bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features. 
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Figure 4.55. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Musculoskeletal Diseases” class.  Abbreviations; #: number, 

logP: lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: 

hydrogen bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted 

bioavailability as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability 

(#2): unknown. Dashed line corresponds to the mean value for numerical features. 

 

Figure 4.56. Physicochemical feature distributions of regulatorily approved and 

unapproved drugs for the “Sensory Diseases” class.  Abbreviations; #: number, logP: 

lipophilicity measure, MW: molecular weight, PSA: polar surface area, HBA: hydrogen 
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bond acceptor, HBD: hydrogen bond donor, Bioavailability (#0): predicted bioavailability 

as 0, Bioavailability (#1): predicted bioavailability as 1, Bioavailability (#2): unknown. 

Dashed line corresponds to the mean value for numerical features. 
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