
STREAMING MULTISCALE DEEP EQUILIBRIUM MODELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CAN UFUK ERTENLİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2022

Approval of the thesis:

STREAMING MULTISCALE DEEP EQUILIBRIUM MODELS

submitted by CAN UFUK ERTENLİ in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assist. Prof. Dr. Ramazan Gökberk Cinbiş
Supervisor, Computer Engineering, METU

Assist. Prof. Dr. Emre Akbaş
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering, METU

Assist. Prof. Dr. Ramazan Gökberk Cinbiş
Computer Engineering, METU

Assist. Prof. Dr. Cemil Zalluhoğlu
Computer Engineering, Hacettepe University

Date: 02.09.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Can Ufuk Ertenli

Signature :

iv

ABSTRACT

STREAMING MULTISCALE DEEP EQUILIBRIUM MODELS

Ertenli, Can Ufuk
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Ramazan Gökberk Cinbiş

Co-Supervisor: Assist. Prof. Dr. Emre Akbaş

September 2022, 46 pages

There have been numerous significant developments for addressing recognition prob-

lems in recent years. One important application area of such developments is recog-

nition on streaming data. Efficient inference is typically critical for streaming data

sources, especially for real-time applications such as autonomous driving and robot

control. For this purpose, this thesis presents StreamDEQ, a method that infers frame-

wise representations on videos with minimal per-frame computation. In contrast to

conventional methods where compute time grows at least linearly with the network

depth, we aim to update the representations in a continuous manner. For this purpose,

we leverage the recently emerging implicit layer models, which infer the representa-

tion of an image by solving a fixed-point problem. Our main insight is to leverage

the slowly changing nature of videos and use the previous frame representation as an

initial condition on each frame. This scheme effectively recycles the recent inference

computations and greatly reduces the needed processing time. Through extensive

experimental analysis, we show that StreamDEQ is able to recover near-optimal rep-

resentations in a few frames’ time and maintain an up-to-date representation through-

out the video duration. Our experiments on video semantic segmentation and video

v

object detection show that StreamDEQ achieves on-par accuracy with the baseline

(standard MDEQ) while being more than 3x faster.

Keywords: Implicit Layer Models, Video Analysis and Understanding, Video Object

Detection, Video Semantic Segmentation

vi

ÖZ

AKAN VİDEO İÇİN ÇOK ÖLÇEKLİ DERİN EKİLİBRİYUM MODELLERİ

Ertenli, Can Ufuk
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ramazan Gökberk Cinbiş

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Eylül 2022 , 46 sayfa

Son yıllarda tanıma sorunlarının çözümü için çok sayıda dikkate değer gelişme ol-

muştur. Akan veriler üzerindeki tanıma görevleri bunlardan önemli bir tanesidir. Özel-

likle otonom sürüş ve robot kontrolü gibi gerçek zamanlı uygulamalar için akan veri-

ler üzerinden verimli çıkarsama yapmak çok kritik olmaktadır. Bu amaçla, bu tezde,

videolarda kare başına öznitelikleri, yapılan hesaplama miktarını en aza indirerek çı-

kartabilen bir yöntem olan StreamDEQi sunuyoruz. Hesaplama süresinin ağ derinliği

ile en azından doğrusal olarak arttığı geleneksel yöntemlerin aksine, öznitelikleri sü-

rekli bir şekilde güncellemeyi amaçlıyoruz. Bu amaçla, bir sabit nokta problemini çö-

zerek bir görüntünün özniteliğini çıkaran son zamanlarda ortaya çıkan örtük katman

modellerinden yararlanıyoruz. Ana anlayışımız, videoların yavaş değişen doğasından

yararlanmak ve önceki karenin özniteliğini her yeni karede başlangıç noktası ola-

rak kullanmaktır. Bu yaklaşım, son çıkarsama hesaplamalarını etkin bir şekilde geri

dönüştürerek gerekli işlem süresini büyük ölçüde azaltır. Kapsamlı deneysel analizle-

rimiz sayesinde, StreamDEQin birkaç karelik süre içinde en iyiye yakın öznitelikler

elde edebildiğini ve video süresi boyunca kare bazında güncel bir öznitelik sürdüre-

vii

bildiğini gösteriyoruz. Video anlamsal bölümleme ve video nesne tanıma üzerindeki

deneylerimiz, StreamDEQin referans modelden (standart MDEQ) 3 kattan daha hızlı

olurken, onunla benzer doğrulukta sonuç üretebildiğini göstermektedir.

Anahtar Kelimeler: Örtük Katman Modelleri, Video Analizi ve Anlama, Video Nesne

Tanıma, Video Anlamsal Bölümleme

viii

To my beloved family

ix

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincerest gratitude to my supervisors

Assist. Prof. Dr. Ramazan Gökberk Cinbiş and Assist. Prof. Dr. Emre Akbaş

for their invaluable support and contributions. They have been with me through this

journey at every step. I cannot thank enough.

I would like to thank Assoc. Prof. Dr. Sinan Kalkan and Assist. Prof. Dr. Cemil Zal-

luhoğlu for being members of my thesis committee and for their valuable feedback.

The numerical calculations were partially performed at TUBITAK ULAKBIM, High

Performance and Grid Computing Center (TRUBA), and METU Robotics and AI

Technologies Research Center (ROMER) resources. Additionally, I would like to

thank TUBITAK for providing me with financial support through the 2210-A pro-

gram.

Getting through my dissertation required more than academic support, and I have

many people to thank for listening to me and providing their support for me. I would

like to express my special thanks to my dearest friends, Dersu Giritlioğlu and Berkay

Karacaer. They stood with me, especially when things were tough. I am also grateful

to all my other friends whom I cannot name here.

Last but not least, my parents and my sister deserve endless gratitude. None of this

could have happened without their immense support and continuous encouragement.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Proposed Methods and Models . 3

1.2 Contributions and Novelties . 4

1.3 Outline of the Thesis . 5

2 RELATED WORK . 7

2.1 Efficient Video Processing and Inference 7

2.2 Video Semantic Segmentation . 8

2.3 Video Object Detection . 9

2.4 Saliency-Based Techniques . 10

2.5 Implicit Layer Models . 11

xi

3 PROPOSED METHOD . 13

3.1 DEQ Overview . 13

3.2 Streaming DEQ . 14

3.3 Unrolled Streaming DEQ . 17

4 EXPERIMENTAL RESULTS . 21

4.1 Video Semantic Segmentation . 21

4.1.1 Experimental Setup . 21

4.1.2 Results . 22

4.1.3 Effect of Shot Changes . 26

4.2 Video Object Detection . 26

4.2.1 Experimental Setup . 26

4.2.2 Results . 28

5 CONCLUSIONS . 37

REFERENCES . 39

xii

LIST OF TABLES

TABLES

Table 4.1 Inference time and single-frame performance comparisons of StreamDEQ

on Cityscapes and ImageNet-VID datasets. 27

Table 4.2 Training time and single-frame performance comparisons of StreamDEQ

models and ResNet-50 Faster R-CNN on the ImageNet-VID dataset. . . . 29

Table 4.3 Inference time and streaming video performance comparisons of

StreamDEQ models on the ImageNet-VID dataset. 35

xiii

LIST OF FIGURES

FIGURES

Figure 1.1 StreamDEQ’s inference procedure. 4

Figure 3.1 Approximation error when the solver is initialized with the ref-

erence representation of the preceding frame. 15

Figure 3.2 Distance between the reference representations and StreamDEQ

estimations. 16

Figure 3.3 Distance between the reference representations and StreamDEQ

estimations, when StreamDEQ is initialized with zeros on the first frame. 17

Figure 3.4 StreamDEQ applied to a streaming video, performing two itera-

tions per frame. 18

Figure 4.1 StreamDEQ results on the Cityscapes dataset when the first frame

representation is initialized with the reference representation. 22

Figure 4.2 StreamDEQ results on the Cityscapes dataset when the first frame

representation is initialized with zeros. 23

Figure 4.3 Qualitative analysis of StreamDEQ on the Cityscapes dataset. . . 24

Figure 4.4 Results of StreamDEQ with shot changes from Cityscapes. . . . 25

Figure 4.5 Results of StreamDEQ with shot changes from ImageNet-VID. . 25

Figure 4.6 Results of StreamDEQ-26 on the ImageNet-VID dataset. 30

Figure 4.7 Results of StreamDEQ-50 on the ImageNet-VID dataset. 30

xiv

Figure 4.8 Results of UR-StreamDEQ on the ImageNet-VID dataset. 31

Figure 4.9 Results of SUR-StreamDEQ on the ImageNet-VID dataset. . . . 32

xv

LIST OF ABBREVIATIONS

DEQ Deep Equilibrium Models

Eq. Equation

mAP Mean Average Precision

MDEQ Multiscale Deep Equilibrium Models

mIoU Mean Intersection over Union

xvi

CHAPTER 1

INTRODUCTION

Modern convolutional deep networks excel at numerous recognition tasks. It is com-

monly observed that deeper models tend to outperform their shallower counterparts [1,

2, 3], e.g. the prediction quality tends to increase with network depth using the archi-

tectures with residual connections [1]. Due to the sequential nature of the layer-wise

calculations, however, increasing the network depth results in longer inference times.

While the increase in inference duration can be acceptable for various offline recog-

nition problems, it is typically of concern for many streaming video analysis tasks.

For example, in perception modules of autonomous systems, it is not only necessary

to keep up with the frame rate but also desirable to minimize the computational bur-

den of each recognition component to reduce the hardware requirements and save

resources for additional tasks. Similar concerns arise in large-scale video analysis

tasks, e.g. on video sharing platforms, a slight increase in per-frame calculations can

add up to significant increments in total consumption.

Various techniques have been proposed to speed up the inference in deep networks.

A widely studied idea is to apply a large model to selected key frames and then either

interpolate its features to the intermediate frames [4, 5] or apply a smaller model to

them [6, 7]. However, such approaches come with several potential complications:

(i) each time the larger model is applied, the model lags behind, the handling of

which demands a complicated system design. (ii) Most methods require optical flow

or motion estimates [4, 5], which brings in an additional estimation problem and an

additional point of failure. In addition, the time cost of the flow estimation naturally

reduces the time budget for all dependent steps. (iii) Special techniques need to be

developed to maintain the compatibility of the representations and confidence scores

1

obtained across the key and intermediate frames. (iv) The training schemes tend to be

complicated due to the need for training over video mini-batches. It is also noteworthy

that several models, e.g. [8, 9], rely on forward and backward flow estimates, making

them less suitable for streaming recognition problems due to non-causal processing.

A related approach is to select a subset of each frame to process. These methods

typically aim to identify the most informative regions in the input [10, 11, 12]. The

region selection process can continue for static images until the model becomes con-

fident about its predictions. However, when applied to videos, such subset selection

strategies share shortcomings similar to approaches relying on flow-based intra-frame

prediction approximations. The inputs change over time; therefore, the models have

to choose between relying on optical flow to warp the rest of the features or omitting

them entirely, which may result in obsolete representations over time [5].

In this context, the recently introduced implicit layer models, pioneered by the work

on Deep Equilibrium Model (DEQ) [13] and Multiscale Deep Equilibrium Model

(MDEQ) [14], offer a fundamentally different alternative to deep neural networks.

DEQ (and MDEQ) show that by using the fixed-points of a network as the represen-

tation, one can gain the representation power of deep models using a network with

only a few layers. The potential of DEQ to eliminate long chains of computations over

network layers, therefore, renders it an attractive candidate towards building efficient

streaming recognition models.

However, while DEQ provides a way to learn deep representations using shallow net-

works, the test-time inference process involves iterative root-finding algorithms such

as Newton’s method or quasi-Newton methods (e.g. Broyden’s method [15]) to esti-

mate the fixed-point of the network. On the other hand, one can leverage fixed-point

iterations by repeatedly applying the same layer to its output to again find the fixed-

point, which can be thought of as the explicit version of DEQ. Since each iteration can

be interpreted as an increment in the network depth in both cases, DEQ effectively

constructs deep networks for inference and, therefore, can still suffer from run-time

costs as in explicit deep networks.

2

1.1 Proposed Methods and Models

Our main insight is the potential to speed up the inference process, i.e. fixed-point esti-

mation, by exploiting the temporal smoothness across neighboring frames in videos.1

More specifically, we observe that the fully estimated MDEQ representation of a

frame can be used for obtaining the approximate representations of the following

frames, using only a few inference iterations. We further develop the idea and show

that even without fully estimating the representation at any time step, the implicit

layer representation can be kept up-to-date by running the inference iterations over

the iteration steps and video time steps in a continuous manner. The final scheme,

starting from scratch, accumulates and transfers the extracted information throughout

the video duration. We, therefore, refer to the proposed method as Streaming DEQ,

or StreamDEQ for short.

The main difference between standard DEQ and StreamDEQ is illustrated in Fig-

ure 1.1. While DEQ typically requires a large number of inference iterations, Stream-

DEQ enables inference with only a few iterations per frame by leveraging the rele-

vance of the most recent frame’s representation. At the start of a new stream, or after

a major content change (e.g. a shot change), StreamDEQ quickly adapts to the video

in a few frames, much like a person adapting her/his focus and attention when watch-

ing a new video. In the following frames, it continuously updates the representation

to adapt to minor changes (e.g. objects moving, entering, or exiting the scene).

Overall, StreamDEQ provides a simple and lean solution to the streaming recogni-

tion both with implicit layer models and the explicit versions of said implicit models,

where a single model naturally performs cost-effective recognition without relying

on external inputs and heuristics, such as optical flow [16], post-processing methods

(Seq-NMS [17] or tubelet re-scoring [18, 8]). Our method also maintains the causal-

ity of the system and executes in a continuous manner. We also note that it allows

dynamic time budgeting; the duration of the inference process can be tuned on-the-fly

by a controller, depending on the instantaneous compute system load, which can be a

desirable feature in real-world scenarios.

1 We do not refer to a mathematical definition of smoothness but rather emphasize that the changes between
neighboring frames are small.

3

DEQ StreamDEQ

Figure 1.1: Our method, StreamDEQ, exploits the temporal smoothness between suc-

cessive frames and extracts features via a small number of solver iterations, starting

from the previous frame’s representation as initial solution. StreamDEQ accumulates

and transfers the extracted information continuously over successive frames, effec-

tively sharing computations across video frames in a causal manner.

We verify the effectiveness of the proposed method through extensive experiments

on video semantic segmentation and video object detection. Our experimental re-

sults show that StreamDEQ recovers near-optimal representations at much lower in-

ference costs. More specifically, on the ImageNet-VID video object detection task,

StreamDEQ converges to the mAP scores of 51.6 and 58.9 using only 4 and 8 infer-

ence iterations per frame, respectively. In comparison, the standard DEQ inference

scheme yields only 8.2 and 32.6 mAP scores using 4 and 8 iterations, respectively.

Similarly, on the Cityscapes semantic segmentation task, using StreamDEQ instead

of the standard DEQ inference scheme improves the converged streaming mIoU score

from 42.3 to 71.5 when 4 inference iterations are used per frame and from 73.2 to 78.2

when 8 iterations are used per frame.

1.2 Contributions and Novelties

Our contributions are as follows:

• We introduce a new inference scheme based on DEQ that can be applied to

streaming videos to improve processing speeds drastically while maintaining a

high level of performance,

• To the best of our knowledge, we provide the first attempt at applying implicit

layer models to videos and specifically streaming videos,

4

• We empirically show that the fixed-points for neighboring video frames are

near each other; therefore, previous frames’ fixed-points provide a good starting

point for the upcoming frames,

• In addition to applying the implicit layers to streaming videos, we also show

the effectiveness of our method when applied in an explicit manner.

We note that part of this work has been accepted to and will appear at the European

Conference on Computer Vision (ECCV 2022).

1.3 Outline of the Thesis

In the rest of the thesis, we first provide an overview of related work in Chapter 2.

In Chapter 3, we describe our inference scheme and how we apply StreamDEQ to

streaming videos. In Chapter 4, we first present the details of our experimental setup

and demonstrate the results of our extensive experiments to verify the effectiveness

of our method on challenging datasets. Finally, we conclude with a summary of our

work in Chapter 5.

5

6

CHAPTER 2

RELATED WORK

Here, we summarize efficient video processing methods, video object detection and

segmentation models. Furthermore, we discuss saliency-based techniques for image

and video processing. Finally, we overview implicit models and introduce some im-

portant application areas.

2.1 Efficient Video Processing and Inference

There have been many efforts to improve video processing efficiency to reach real-

time processing speeds. Most of these works take a system-oriented approach [19,

20, 21]. For example, Carreira et al. [19] develop an efficient parallelization scheme

over multiple GPUs and process different parts of a model in separate GPUs to im-

prove efficiency while sacrificing accuracy due to frame delays. Narayanan et al. [20]

propose a novel scheduling mechanism that efficiently schedules and divides forward

and backward passes over multiple GPUs. In another work, Li et al. [21] use a dy-

namic scheduler in which the model chooses to skip a frame when the delays build

up to the point where it would be impossible to calculate the results of the next frame

in the allotted time.

We also note that works on low-cost network designs, such as MobileNets [22, 23]

and low-resolution networks [24, 25], are also relevant. Such efforts are valuable pri-

marily for replacing network components with more compute-friendly counterparts.

However, the advantages of such techniques can also be limited due to natural trade-

offs between speed and performance [26], as the lower-cost network components tend

to have lower expressive power. Nevertheless, one can easily incorporate low-cost

7

model design principles into DEQ or StreamDEQ models, thanks to the architecture-

agnostic definition of implicit layer models. While such efforts may bring reductions

in inference wall-clock time, they are outside the scope of our work.

2.2 Video Semantic Segmentation

Semantic segmentation is a costly, spatially dense prediction task. Due to this specific

nature of the task, its application to videos remains relatively limited. Most works

rely on exploiting temporal relations between frames using methods such as feature

warping [27, 6, 28, 29], feature propagation [30, 31, 32], feature aggregation [33],

and knowledge distillation [34, 35, 36] to reduce the computational cost.

Gadde et al. [27] propose warping features of the previous frame at different depths

based on optical flow. Xu et al. [6] evaluate regions of the input frame and decide

whether to warp the features with a cheap flow network or use the large segmentation

model based on a confidence score. Huang et al. [28] keep a moving average over

time by combining the segmentation maps from the current frame with the warped

map from the previous frame. Jain et al. [29] warp high-quality features from the last

key frame and fuse them with lower-quality features calculated on the current frame

to make predictions.

Shelhamer et al. [30] propose an adaptive method that schedules updates to the multi-

level feature map so that features of layers with smaller changes are carried forward

(without any transformation). Li et al. [31] introduce an adaptive key frame schedul-

ing method based on the deviation of low-level features compared to the previous

key frame. If the deviation is small, the features are propagated with spatially vari-

ant convolution. Liang et al. [32] apply the full model on key frames and propose

to adaptively choose the depth of the network at each non-key frame with a dynamic

gating module while they re-use the rest of the features.

Hu et al. [33] use a set of shallow networks, each calculating features of consecutive

frames starting from scratch. Then, these features are aggregated at the current frame

with an attention-based module. Liu et al. [34, 35] propose to use an expensive net-

work during training including optical flow and applies knowledge distillation on a

8

student network to benefit from the high capacity of a teacher network while cutting

computational costs thanks to a smaller and more efficient student network which the

paper uses during inference. On the other hand, Habibian et al. [36] use a teacher net-

work on key frames, and through knowledge distillation, guide the student network to

learn feature differences, i.e. delta differences, that are combined with the key frame

features to simulate the teacher on non-key frames.

In contrast to all these approaches, the proposed StreamDEQ method directly lever-

ages the similarities across video frames, without requiring any ad-hoc video han-

dling strategies, as a way to adapt the implicit layer inference mechanism to efficient

streaming video analysis.

2.3 Video Object Detection

Most modern video object detection methods exploit temporal information to improve

the accuracy and efficiency. To this end, optical flow [4, 37, 8, 9], feature aggrega-

tion [37, 38, 39, 40] and post-processing techniques [17, 18] are prominently used.

Zhu et al. [4] introduce Deep Feature Flow (DFF) and use optical flow estimates to

warp features on selected key frames to intermediate frames for increased efficiency.

Zhu et al. [37] also propose Flow-Guided Feature Aggregation (FGFA) which uses

optical flow to warp features of nearby frames to the current frame and aggregates

these features adaptively based on weights calculated from the similarity between

features. Kang et al. [8] create links between objects through time (tubelets) from the

predictions calculated with optical flow across a video linking objects through time

and apply tubelet re-scoring to keep detections of high confidence. Wang et al. [9]

add an instance level calibration module to FGFA [37] and combine them to generate

better predictions.

Bertasius et al. [38] sample features from neighboring support frames via deformable

convolution that learns object offsets between frames and aggregates these features

over these frames. Wu et al. [39] focus on linking object proposals in a video accord-

ing to their semantic similarities. Chen et al. [40] propose a model aggregating local

and global information with a long-range memory.

9

Another common way to improve performance is to apply a post-processing method.

For example, Han et al. [17] introduce Seq-NMS to exploit temporal consistency by

constructing a temporal graph to link objects in adjacent frames. With a similar idea,

Kang et al. [18] generate tubelets by combining single image detections through the

video and use a tracker to re-score the tubelets during post-processing to improve

temporal consistency.

2.4 Saliency-Based Techniques

To reduce computational cost, another viable approach is to select important regions

in an image and process only those small patches [10, 11, 12, 41]. Video extensions

of these models also exist [42, 43, 5, 44, 45, 46, 47].

Mnih et al. [10] and Ba et al. [11] model human eye movements by capturing glimpses

from images with a recurrent structure and process those glimpses at each step. Cor-

donnier et al. [12] propose selecting the most important regions to process by first

processing a downsampled version of the image. Liu et al. [41] stops processing for

regions with high-confidence predictions at an earlier stage.

Bazzani et al. [42] and Denil et al. [43] approach video processing in a human-like

manner where the model looks at a different patch around the objects of interest at

each frame and tracks them. Zhu et al. [5] take a key frame based approach. At

each key frame the method processes the entire input, and at intermediate frames, it

updates the feature maps partially based on temporal consistency. Rhee et al. [44]

identify changing regions between frames and re-use the features of the static parts

on non-key frames. Habibian et al. [45] introduce skip-convolutions where the model

determines changing locations via frame difference and computes convolutions only

on some part of each frame. Patchwork [46] uses a Q-learning based policy to select

a sub-window in each frame and combines the sub-window features with the rest

of the features via an attention mechanism. SALISA [47] focuses on an intelligent

downsampling method that magnifies important regions in each frame and reduces

the frame’s resolution.

10

2.5 Implicit Layer Models

Implicit layer models have seen a recent surge of interest and have been outstanding

at tackling numerous tasks. DEQ [13] is a new addition to the implicit model family

aimed at solving sequence modeling tasks. DEQ reformulates the fixed-point solving

problem as root finding and utilizes an iterative root-finding algorithm to find a so-

lution. Multiscale Deep Equilibrium Models (MDEQ) [14] are the extension of the

base DEQ to image-based models where there are multiple fixed-points for different

feature scales. Since the introduction of these models, there have been many efforts

to improve DEQs in terms of speed and accuracy and to find new application areas

where DEQs can be successful.

Huang et al. [48] propose re-using the fixed-point across training iterations with the

drawback of having to stay in full-batch mode for the training. Bai et al. [49] suggest

a new initialization scheme that is realized through a small network. Furthermore,

inferring information from the last few iterations reduces the number of solver itera-

tions required for convergence. Pal et al. [50] propose mixing implicit models with

explicit models. Usually, implicit models are initialized from scratch, i.e. from a ran-

dom point or zero, to iteratively reach the equilibrium point. Instead, this method

first utilizes an explicit model to calculate a “better” starting point for the implicit

model. With this technique, the method obtains better performance and enjoys faster

inference.

Even though DEQs offer a new avenue for research that can potentially surpass ex-

plicit models, they come with several problems. First of all, DEQ models grow in-

creasingly unstable as the training progresses, and they are brittle to architectural

choices meaning even minor modifications may harm the model’s convergence [51].

Furthermore, their backward passes are especially costly [52, 53]. Bai et al. [51] pro-

pose adding a Jacobian regularization term to mitigate these issues to improve model

training. Geng et al. [52] and Fung et al. [53] focus on the backward pass to make it

less costly. Both works [52, 53] utilize the Neumann series expansion and show that

calculating inexact gradients using low-level expansions are sufficient during training.

After the massive success of implicit layer models, they have been applied to several

11

tasks in place of their explicit counterparts, such as optical flow estimation [54], nor-

malizing flows [55], feature refinement [56], and Feature Pyramid Networks [57].

12

CHAPTER 3

PROPOSED METHOD

We build our method on the Deep Equilibrium Model (DEQ). In this chapter, we first

give an overview of DEQ and then present the details of our method.

3.1 DEQ Overview

Weight-tied networks are models where some or all layers share the same weights [58,

59]. A DEQ is essentially a weight-tied network with only one shallow block. DEQ

leverages the fact that continuously applying the same layer to its output tends to

guide the output to an equilibrium point, i.e. a fixed-point. Let x represent the model’s

input, z∗ the equilibrium point, and fθ the applied shallow block, then an explicit

weight-tied network can be described as

lim
i→∞

z[i+1] = lim
i→∞

fθ(z
[i];x) ≡ fθ(z

∗;x) = z∗. (3.1)

Each iteration in Eq. (3.1) is called an unrolling of the model, akin to recurrent neural

networks (RNNs), and this scheme is called the fixed-point iteration. DEQ’s funda-

mental difference from a standard weight-tied model is that the model is represented

by an implicit equation, and the fixed-point is found by employing root-finding algo-

rithms in both forward and backward passes, by rewriting Eq. (3.1) as follows:

gθ(z;x) = fθ(z;x)− z = 0 =⇒ z∗ = RootFind(gθ;x). (3.2)

DEQ uses Broyden’s method [15] to calculate the root of Eq. (3.2). In these settings

(Eq. (3.1) and Eq. (3.2)), the accuracy of the solution depends on the number of

unrollings or the number of Broyden iterations [49, 51, 56]. While more iterations

yield better accuracy, they increase computation costs.

13

DEQs have been successfully adapted to computer vision tasks, too, with the intro-

duction of Multiscale Deep Equilibrium Models (MDEQ) [14]. MDEQ is a multiscale

model where each scale is driven to equilibrium together with other scales in the same

manner as DEQs. Iterations start with z[0] = 0 and continue N times to obtain the

final solution, z[N]. N is set to 26 for ImageNet classification and 27 for Cityscapes

semantic segmentation in MDEQ [14].

3.2 Streaming DEQ

Let X be a H ×W × 3× T dimensional tensor representing a video where T is the

temporal dimension. We represent the frame at time t with xt which is a H ×W × 3

tensor. It should be noted that we primarily target videos with temporal continuity,

without too frequent shot changes. But we also study the effects of shot changes in

Chapter 4.

To process a video, DEQ can be applied to each video frame xt to obtain zt, the

representation of that frame. This amounts to running the Broyden solver for N

iterations starting from z
[0]
t = 0 for each frame.

However, we know a priori that transitions between subsequent video frames are typ-

ically smooth, i.e. xt−1∼xt. From this observation, we hypothesize that the corre-

sponding fixed-points, i.e. representations z∗t−1 and z∗t , are likely to be similar. There-

fore, the representation of the previous frame can be used effectively as a starting

point for inferring the representation of the current frame. To validate this hypothesis,

we run an analysis on the ImageNet-VID [60] dataset using the ImageNet pretrained

MDEQ model. We assume that at each frame xt, we have access to the reference

representation, z∗t−1, of the previous frame. Reference representations are obtained

by running the MDEQ model until convergence (N = 26 iterations). At each frame,

we use the reference representation of the previous frame as the starting point of the

solver,

z
[0]
t = z∗t−1, (3.3)

and run the solver for various but small numbers of iterations, M . To analyze the

amount of change in representations over time, we use an ImageNet-pretrained model

14

z[1]
t z[2]

t z[3]
t z[4]

t z[5]
t z[6]

t z[7]
t z[8]

t

Number of Iterations (M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sq
ua

re
d

Eu
cli

de
an

 D
ist

an
ce

(||
z* t

z[M
]

t
||2 2)

StreamDEQ
Baseline (1 Iteration)
Baseline (2 Iterations)
Baseline (4 Iterations)
Baseline (8 Iterations)

Figure 3.1: Squared Euclidean approximation error as a function of inference steps,

when the solver is initialized with the reference representation of the preceding frame.

(MDEQ-XL) since ImageNet representations are known to be useful in many trans-

fer learning tasks. In Figure 3.1, we show the squared Euclidean distance between

z
[M]
t and z∗t for various t values when the solver starts as in Eq. (3.3). Dashed lines

correspond to the squared Euclidean distance between MDEQ-XL’s reference and

M -iteration based representations.

From the results presented in Figure 3.1, we observe that when we initialize the solver

with the preceding frame’s fixed-point, the inference process quickly converges to-

wards the reference representation. We also observe that after starting from the ref-

erence representation of the previous frame and performing only 1 iteration on the

current frame, the approximate representation is already more similar to the reference

representation than starting from scratch and performing 8 iterations.

Next, we examine the case where the inference method is given access to the reference

representations only at certain frames. To simulate this case, for each video clip, we

compute the reference representation only at the first frame x0, i.e. z∗0. In all following

ones, we initialize the solver with the estimated representation of the preceding frame

and run the solver for M iterations. That is,

z
[0]
1 = z∗0 and z

[0]
t = z

[M]
t−1. (3.4)

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sq
ua

re
d

Eu
cli

de
an

 D
ist

an
ce

(||
z* t

z[M
]

t
||2 2)

StreamDEQ (1 Iteration)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 Iteration)
Baseline (2 Iterations)
Baseline (4 Iterations)
Baseline (8 Iterations)

Figure 3.2: Distance between the reference representations and StreamDEQ estima-

tions for varying number of iterations, when StreamDEQ is initialized with reference

representations on the first frame.

We present the results of this scheme for M ∈ {1, 2, 4, 8} in Figure 3.2. We observe

that starting with the reference representation on the initial frame is still useful, but

for longer clips, its effect diminishes. Still, this scheme helps us maintain a stable

performance even after several frames. For example, starting with the reference rep-

resentation and then applying M = 2 iterations per frame throughout the following

20 frames yields a representation closer to the reference representation of the final

frame than the one given by baseline DEQ inference with 4 solver iterations. This

result shows that the M -step inference scheme is able to keep up with the changes in

the scene by starting from a good initial point.

While this scheme can provide efficient inference on novel frames, we would still

need the reference representations of the initial frames, or key frame(s), which would

share the same problems with key frame based video recognition approaches, e.g. [4,

6, 7]. To address this problem, we further develop the idea, and hypothesize that we

can start from scratch (i.e. all zeros), do a limited number of iterations per frame, and

pass the representation to the next frame as the starting point. That is,

z
[0]
0 = 0 and z

[0]
t = z

[M]
t−1. (3.5)

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sq
ua

re
d

Eu
cli

de
an

 D
ist

an
ce

(||
z* t

z[M
]

t
||2 2)

StreamDEQ (1 Iteration)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 Iteration)
Baseline (2 Iterations)
Baseline (4 Iterations)
Baseline (8 Iterations)

Figure 3.3: Distance between the reference representations and StreamDEQ estima-

tions for varying number of iterations, when StreamDEQ is initialized with just zeros

on the first frame.

We present the representation distance results for this final scheme in Figure 3.3.

The representation distances to the reference representations stabilize in 20 frames.

Converged distance values (in 20 frames) are almost the same as those of the previ-

ous scheme (Eq.(3.4)). Additionally, the initial representations have relatively large

distances, but these differences get smaller as new frames arrive. We call this final

scheme StreamDEQ. This scheme avoids heavy processing in any of the frames and

completely avoids the concept of key frames. The number of Broyden iterations can

be tuned, which allows easy control over the time-vs-accuracy trade-off. Therefore,

the inference iterations can be run as much as the time budget allows. An illustration

of the StreamDEQ inference process is given in Figure 3.4.

3.3 Unrolled Streaming DEQ

In recent works [13, 14, 51], one of the main advantages of using DEQ is indicated as

asymptotically constant memory training in terms of the number of layers. Yet, train-

ing and inference with DEQs are computationally more costly than explicit models

17

0 0 0 …

Prediction head

• • •

• • •

Broyden
iteration

Broyden
iteration

Broyden
iteration

Broyden
iteration

Prediction head Prediction head Prediction head

Broyden
iteration

Broyden
iteration

Broyden
iteration

Broyden
iteration

Figure 3.4: StreamDEQ applied to a streaming video, performing two iterations per

frame. The representation inference process is initialized with zeros in the very first

frame (z[0]0 = 0) and with the most recent representation (z[0]t = z
[2]
t−1) in the rest of

the stream. This scheme effectively recycles all recent computations for time-efficient

inference on a new frame and, therefore, allows approximating a long inference chain

(i.e. a deep network) by a few inference steps (i.e. a few layers) throughout the video

stream.

with comparable sizes (see Table 4.2 & 4.3). Furthermore, constant memory train-

ing is irrelevant during inference which is the primary aim of this thesis. Therefore,

instead of using the implicit formulation of DEQ, we can also formulate our scheme

as the fixed-point iteration problem from Eq. (3.1), i.e. the weight-tied setting. This

allows us to approach the fixed-point solving problem through the more standard ex-

plicit point of view. This only changes how the fixed-point is found while keeping

everything else the same, e.g. fθ. We call this explicit version of StreamDEQ, Un-

rolled StreamDEQ (UR-StreamDEQ). We emphasize that UR-StreamDEQ may not

be considered a DEQ model, but in order to keep our notation consistent throughout

the thesis, we adhere to the same name.

As the only difference between these two versions is the solution procedure, our pre-

vious arguments regarding the smoothness of videos and the nature of fixed-points

of neighboring frames are still valid for UR-StreamDEQ. Thus, we can still argue

that starting with either the reference representations (Eq. (3.4)) or from scratch

(Eq. (3.5)), UR-StreamDEQ eventually reaches a stable condition where its repre-

18

sentations do not vary too much from the reference representations. We confirm

this claim with our experimental findings in Chapter 4. Note that when considering

Eq. (3.4) and Eq. (3.5) in the context of UR-StreamDEQ, the superscripts represent

the number of unrollings instead of the Broyden iterations.

Most previous works [13, 14, 57, 56, 54], however, prefer to use the implicit vari-

ant and Broyden iterations over the explicit weight-tied version. They suggest that

Broyden iterations are more effective in solving for the fixed-point. These works

also claim that it is necessary to perform an infinite number of fixed-point iterations

in order to reach equilibrium, whereas with Broyden iterations, an equilibrium point

can be reached more quickly. In Chapter 4, we empirically demonstrate that this is

not always the case and less than 20 fixed-point iterations are sufficient to reach an

equilibrium in most scenarios.

Even when the model is unrolled very few times per frame in streaming evaluation,

we achieve performances on the same level as the implicit variants with a signifi-

cantly less computational burden. Moreover, even though it is not the focus of this

thesis, with UR-StreamDEQ, we can also achieve much faster training (see Table 4.2)

by avoiding the costly calculation of the Jacobian inverse and relying on the highly

optimized explicit backpropagation with the chain rule.

19

20

CHAPTER 4

EXPERIMENTAL RESULTS

We evaluate our method on video semantic segmentation and video object detection.

In the following, we provide technical details regarding training and inference setups,

the datasets used, and present our experimental findings. We use the PyTorch [61]

framework for all experiments.

4.1 Video Semantic Segmentation

4.1.1 Experimental Setup

We use the Cityscapes semantic segmentation dataset [62], which consists of 5K

finely annotated and 20K coarsely annotated images. These finely annotated images

are divided into train, validation, and test sets, each containing 2975, 500, and 1525

images, respectively. They correspond to frames extracted from video clips where

each annotated image is the 20th frame of its respective clip. To evaluate over videos,

we use these clips up to the 20th frame, which has fine annotations, and evaluate on

that frame.

We use the pretrained MDEQ-XL segmentation model from the MDEQ paper [14]

and do not perform any additional training. We also do not make any changes to its

evaluation setup or hyperparameters, perform the evaluation on Cityscapes val and

report mean intersection over union (mIoU) results. The architecture of the MDEQ-

XL consists of 4 residual blocks of different scales where each block contains convo-

lution layers, group normalization, and ReLU activation. For further details, we refer

the reader to MDEQ [14].

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

70

80

m
Io

U

StreamDEQ (1 Iteration)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 Iteration)
Baseline (2 Iterations)
Baseline (4 Iterations)
Baseline (8 Iterations)
Baseline (27 Iterations)

Figure 4.1: StreamDEQ semantic segmentation results (in mIoU) on the Cityscapes

dataset as a function of solver iterations when the first frame representation is initial-

ized with the reference representation.

4.1.2 Results

We present the results of StreamDEQ for two scenarios. The first scenario corre-

sponds to Eq. (3.4), where we use the reference representations of the first frame to

initialize the solver and apply StreamDEQ then on. Results of this experiment in

Figure 4.1 show that as the offset of the evaluated frame increases, mIoU starts de-

creasing, which is expected because the further we move away from the first frame,

the more irrelevant its representation will become. However, mIoU then stabilizes

at a value proportional to the number of Broyden iterations (the more iterations, the

better the mIoU). This shows that StreamDEQ is able to extract better features over

time. StreamDEQ’s performance with 8 iterations is still comparable with the base-

line (MDEQ) with 27 iterations.

The second scenario corresponds to our final StreamDEQ proposal (i.e. Eq. (3.5)),

where we initialize the solver from scratch, i.e. with all zeros, and apply StreamDEQ.

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

70

80

m
Io

U
StreamDEQ (1 Iteration)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 Iteration)
Baseline (2 Iterations)
Baseline (4 Iterations)
Baseline (8 Iterations)
Baseline (27 Iterations)

Figure 4.2: StreamDEQ semantic segmentation results (in mIoU) on the Cityscapes

dataset as a function of solver iterations when the first frame representation is initial-

ized with zeros.

The results of this case are shown in Figure 4.2. As the videos progress, one might

expect that the Broyden solver cannot keep up with the changing scenes. However,

we observe that even after 20 frames, the accuracy does not drop. Additionally, the

impact of this method is more evident for the lower numbers of iterations. For ex-

ample, performing 1 iteration on every frame without our method would only yield

an mIoU score of 2.2. However, StreamDEQ obtains an mIoU score of 44.9 in 10

frames. This is an improvement of over 20×. For 8 iterations, StreamDEQ is able

to obtain 78.1 mIoU in 10 frames, whereas the non-streaming baseline achieves only

73.2 mIoU. Moreover, the converged mIoU values (at larger frame offsets) are simi-

lar in Figure 4.1 and Figure 4.2. Therefore, we conclude that the initial point where

we start the solver becomes less crucial as the video streams and the performance

stabilizes at some value higher than in the non-streaming case.

We also illustrate these results qualitatively in Figure 4.3. For 1 iteration, while the

baseline cannot produce any meaningful segmentation, StreamDEQ starts capturing

23

Figure 4.3: Qualitative comparison of the baseline with StreamDEQ with different

numbers of iterations on the Cityscapes dataset.

many segments correctly at the 4th frame. With 2 iterations, while the DEQ baseline

still produces poor results, StreamDEQ starts to yield accurate predictions in early

frames compared to the single iteration case. With 4 iterations, while both models

provide rough but relevant predictions in the first frame, StreamDEQ predictions start

to become clearly more accurate in the following frames; for example, tree trunks and

the sky become visible only when StreamDEQ is applied.

We examine the effects of increasing the number of iterations on inference speed in

Table 4.1. We note that our method does not introduce any computation overhead

other than the time it takes to store the fixed-point representation of the previous

frame. Therefore, we observe a linear increase in compute times as the number of

iterations increases. StreamDEQ with 4 iterations achieves an mIoU score of 71.5 at

530 ms per image. MDEQ with 4 iterations can only achieve 42.3 mIoU.

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

70

80

m
Io

U

StreamDEQ (1 Iteration)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 Iteration)
Baseline (2 Iterations)
Baseline (4 Iterations)
Baseline (8 Iterations)
Baseline (27 Iterations)

Figure 4.4: mIoU results of StreamDEQ with shot changes from the Cityscapes

dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

70

80

m
Io

U

StreamDEQ (1 Iteration)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 Iteration)
Baseline (2 Iterations)
Baseline (4 Iterations)
Baseline (8 Iterations)
Baseline (27 Iterations)

Figure 4.5: mIoU results of StreamDEQ with shot changes from the ImageNet-VID

dataset.

25

4.1.3 Effect of Shot Changes

We also study the effects of shot changes for the video semantic segmentation task

where we effectively connect two different clips together. To simulate this behavior,

we initialize the solver with the reference representations from a random frame from

either the Cityscapes dataset or the ImageNet-VID dataset and run StreamDEQ start-

ing from the representations of that frame. We present the results of Cityscapes to

Cityscapes shot change experiments in Figure 4.4 and ImageNet-VID to Cityscapes

shot change experiments in Figure 4.5. The former of these experiments is simpler

as the representations in two different videos from the same dataset are likely to be

more similar. We notice that, for shot changes in similar contexts, i.e. Cityscapes to

Cityscapes, the mIoU scores on initial frames are higher than our previous experi-

ment in Figure 4.2 and also higher than the ImageNet-VID to Cityscapes shot change

scenario in Figure 4.5. However, after the first few frames are processed, following

a similar trajectory to the ones in Figure 4.2, mIoU scores stabilize at a value close

to our original experiment. We conclude that, even with occasional shot changes, our

method is able to adapt to the new scene in a few frames.

4.2 Video Object Detection

4.2.1 Experimental Setup

For the video object detection task, we evaluate our method on the ImageNet-VID

dataset [60], a challenging video dataset with fast-moving objects, camera movement,

and motion blur. We utilize the MMDetection [63] and MMTracking [64] frameworks

for the implementation.

The ImageNet-VID dataset consists of 3862 training and 555 validation videos from

30 classes that are a subset of the 200 classes of the ImageNet-DET dataset. The

frames and annotations for each video are available at a rate of 25-30 FPS per video.

Note that the ImageNet-DET dataset consists only of images rather than videos. We

follow the widely used protocol [37, 9, 65, 39, 40] and train our model on the com-

bination of ImageNet-VID and ImageNet-DET datasets using the 30 overlapping

26

Table 4.1: Inference time comparisons of StreamDEQ with differing number of iter-

ations on Cityscapes and ImageNet-VID datasets.

Cityscapes ImageNet-VID

Model # iterations mIoU FPS mAP@50 FPS

StreamDEQ 1 45.5 4.3 9.1 10.3

StreamDEQ 2 57.9 2.9 39.5 9.2

StreamDEQ 4 71.5 1.9 50.4 6.2

StreamDEQ 8 78.2 1.1 54.8 3.5

MDEQ (Baseline) 27/26 79.7 0.3 55.0 1.2
Note: StreamDEQ model for the ImageNet-VID dataset is the StreamDEQ-26 model.

classes. We use a mini-batch size of 4, distributed to 4 NVIDIA A100 GPUs. We

resize each image to have a shorter side of 600 pixels and train the model for a total

of 7 epochs in 3 stages. We initialize the learning rate to 0.01 and divide it by 10

after epochs 2 and 5. We test the model on ImageNet-VID val and report mAP@50

scores following the common practice.

We adopt Faster R-CNN [66] by replacing its ResNet backbone with the MDEQ-XL

model. To incorporate multi-level representations, we also use a Feature Pyramid

Network (FPN) [67] module after MDEQ-XL. Without any additional modifications,

we directly utilize the model while keeping the model hyperparameters and remaining

architectural details the same as other Faster R-CNN models with ResNet backbones.

Exceptionally, we only modify the number of channels for the FPN module to match

that of MDEQ-XL. We start training with the ImageNet pretrained MDEQ-XL model

from MDEQ [14].

We propose two numbers to be used as the number of Broyden iterations to train

StreamDEQ. First, we pick 26, following the ImageNet classification experiments in

MDEQ [14]. We name this model StreamDEQ-26. However, we find that with more

iterations, we can obtain a more stable fixed-point and better performance on this

challenging video object detection task. Therefore, we use 50 Broyden iterations for

our second version (StreamDEQ-50).

27

UR-StreamDEQ uses the same architecture and training details. Again we have two

schemes to train UR-StreamDEQ. Similar to StreamDEQ, we use a constant number

of unrollings for the first scheme, which we set to 20. This is equivalent to applying

the same layer 20 times to its output while injecting the input into the model every

time. Secondly, we propose setting the number of unrollings stochastically. To clarify,

for each training frame, we set the number of unrollings uniformly and at random

between 1 and 20. We call this variant of UR-StreamDEQ, Stochastically Unrolled

StreamDEQ (SUR-StreamDEQ).

Unlike many video object detection models [37, 65, 40], we train our models in the

causal single-frame setting, meaning we do not use any temporal information for

improved training.

4.2.2 Results

To the best of our knowledge, this is the first time an implicit model (MDEQ) has been

used for a video object detection task. We achieve 55.0, 60.7, 70.8, and 70.2 mAP@50

with StreamDEQ-26, StreamDEQ-50, UR-StreamDEQ, and SUR-StreamDEQ, re-

spectively on ImageNet-VID val. We are aware that Faster R-CNN with ResNet-50

backbone yields 70.7 mAP@50 off-the-shelf; however, Faster R-CNN is highly op-

timized to perform well with ResNet backbones. Yet, we use this same setting with

an MDEQ without any parameter optimization, as our focus is not on constructing

an MDEQ-based state-of-the-art video object detector. We believe there is room for

improvement in detector design and tuning details, which we leave for future work.

Similar to the video segmentation task, we run StreamDEQ models with different

numbers of iterations. We present the results of this experiment with StreamDEQ-26

in Figure 4.6 and StreamDEQ-50 in Figure 4.7. We observe the same trends with

the segmentation task. Over time, detection performance increases and stabilizes at a

value proportional to the number of Broyden iterations.

We note that, neither StreamDEQ-26 nor StreamDEQ-50 can produce any detection

results in the non-streaming mode with 1 or 2 iterations. Instead, in streaming mode,

if we perform 2 iterations with StreamDEQ-26, we improve the performance from

28

Table 4.2: Wall clock training time and single-frame performance comparisons of

StreamDEQ models and Faster R-CNN with ResNet-50 backbone on the ImageNet-

VID dataset.

Model # iterations∗ Training time (in hours) mAP@50

StreamDEQ-26 26 114 55.0

StreamDEQ-50 50 130 60.7

UR-StreamDEQ 20 46 70.8

SUR-StreamDEQ [1, 20]† 34 70.2

Faster R-CNN (ResNet-50) - 9 70.7
∗ denotes the number of Broyden iterations for StreamDEQ and the number of unrollings for (S)UR-StreamDEQ.

† indicates that the number of unrollings for each frame during the training of SUR-StreamDEQ is selected
uniformly and at random between 1 and 20.

0 to 39.5 mAP@50 in 20 frames. We observe a similar pattern with StreamDEQ-

50, i.e. the performance improves as the video progresses. However, even though

the single-frame performance of StreamDEQ-50 is superior to StreamDEQ-26, the

streaming performance for the lower number of iterations is worse. We believe this

comes from performing more iterations during training. The model has more time to

find a stable point during training that, with few iterations, it does not need to reach

a near-optimal solution. Therefore, the step size per iteration gets smaller, but the

overall quality of the fixed-point improves with StreamDEQ-50. Still, with more it-

erations per frame, e.g. 4 or 8, StreamDEQ-50 surpasses the streaming performance

of StreamDEQ-26. While performing 8 iterations per frame, StreamDEQ-26 obtains

54.8 mAP@50, whereas, StreamDEQ-50 boosts this number to 58.9 in 20 frames.

This allows us to choose between better performance in the short term or better per-

formance over a longer video.

In addition, we also compare the inference speed of StreamDEQ with our baseline

for different number of iterations in Table 4.1. In the 8-iteration case, we obtain a

score of 54.8 with StreamDEQ-26, which is only 0.2 lower than our baseline model

with 26 iterations while being almost 3 times faster. Likewise, with StreamDEQ-50

using 8 iterations per frame, we obtain a score only 1.8 lower than its computationally

expensive single-frame counterpart.

29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

m
AP

@
50 StreamDEQ (1 Iteration)

StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 Iteration)
Baseline (2 Iterations)
Baseline (4 Iterations)
Baseline (8 Iterations)
Baseline (26 Iterations)

Figure 4.6: mAP@50 results of StreamDEQ-26 for various number of iterations after

initialization with zeros from the beginning of a clip on the ImageNet-VID dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

m
AP

@
50

StreamDEQ (1 Iteration)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 Iteration)
Baseline (2 Iterations)
Baseline (4 Iterations)
Baseline (8 Iterations)
Baseline (50 Iterations)

Figure 4.7: mAP@50 results of StreamDEQ-50 for various number of iterations after

initialization with zeros from the beginning of a clip on the ImageNet-VID dataset.

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

70

m
AP

@
50 UR-StreamDEQ (1 Unrolling)

UR-StreamDEQ (2 Unrollings)
UR-StreamDEQ (4 Unrollings)
UR-StreamDEQ (8 Unrollings)
Baseline (1 Unrolling)
Baseline (2 Unrollings)
Baseline (4 Unrollings)
Baseline (8 Unrollings)
Baseline (20 Unrollings)

Figure 4.8: mAP@50 results of UR-StreamDEQ for various number of iterations after

initialization with zeros from the beginning of a clip on the ImageNet-VID dataset.

We conduct these experiments for UR-StreamDEQ and SUR-StreamDEQ as well for

the settings described in our experimental setup, the results of which we present in

Figure 4.8 and Figure 4.9, respectively.

Our first observation is that the baseline single-frame performances of UR-StreamDEQ

and SUR-StreamDEQ are higher than both StreamDEQ-26 and StreamDEQ-50. With

UR-StreamDEQ, we achieve 70.8 mAP@50, which is 15.8 more than StreamDEQ-

26 and 10.1 more than StreamDEQ-50. Furthermore, even with 1 unrolling per

frame, both UR-StreamDEQ and SUR-StreamDEQ attain about 60 mAP@50 after

20 frames. We again discover that the scores stabilize at a value proportional to the

number of unrollings.

One interesting matter is the performance comparison of UR-StreamDEQ and SUR-

StreamDEQ, especially for the low number of unrollings. UR-StreamDEQ does not

perform well initially for 1 unrolling per frame and is only able to produce good rep-

resentations after ∼10 frames. This is closer to what we see with StreamDEQ-26 and

StreamDEQ-50 in terms of performance. On the other hand, SUR-StreamDEQ starts

with a strong 15.5 mAP@50 even after one frame with 1 unrolling. We attribute this

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

70
m

AP
@

50 SUR-StreamDEQ (1 Unrolling)
SUR-StreamDEQ (2 Unrollings)
SUR-StreamDEQ (4 Unrollings)
SUR-StreamDEQ (8 Unrollings)
Baseline (1 Unrolling)
Baseline (2 Unrollings)
Baseline (4 Unrollings)
Baseline (8 Unrollings)
Baseline (14 Unrollings)

Figure 4.9: mAP@50 results of SUR-StreamDEQ for various number of iterations af-

ter initialization with zeros from the beginning of a clip on the ImageNet-VID dataset.

to the model’s robustness to the noise introduced by the lower number of iterations as

well as to the accumulation of information through time.

In light of this, we also try to simulate this behavior of SUR-StreamDEQ with UR-

StreamDEQ by using again a constant but lower number of unrollings, e.g. 4, 8, to

train the model. We find that the performance improves for the first few frames over

that of UR-StreamDEQ, but after the first few frames, the scores diminish radically.

For example, consider the case where the model is unrolled 8 times per frame during

the entire training. When evaluated with 2 unrollings per frame, the model starts

with good predictions and obtains over 65 mAP@50 in 4 frames. However, with

the 5th frame, the performance drops to ∼30 mAP@50, which means that the model

cannot maintain high levels of accuracy for the whole video. Similarly, performance

degrades after 8 frames if we employ 1 unrolling per frame during evaluation. Note

that the point where the performance drops significantly coincides with the number

of training unrollings. That is to say, if the model is trained with 8 unrollings, the

streaming performance drops after the model unrolls 8 times (1 unrolling × 8 frames

or 2 unrollings × 4 frames). We think this is because the model cannot learn more

32

complicated structured representations, which require more unrollings. As a result,

the model produces inaccurate representations and cannot find a precise fixed-point.

If the model could reach a “good enough” fixed-point, then it would not have deviated

from that equilibrium with minor changes to the input (i.e. successive frames in a

streaming video).

On the contrary, SUR-StreamDEQ is able to sustain great performance with any num-

ber of unrollings once the initial frames are processed. We explain this huge spike in

performance with the randomness during training. UR-StreamDEQ only learns about

20 unrollings per frame, whereas SUR-StreamDEQ has knowledge about a frame’s

representation after any number of unrollings. Therefore, it is able to adapt to more

challenging situations (noisy representations), and its performance improves drasti-

cally. This also explains why the accuracy of UR-StreamDEQ starts to show a minor

decline after ∼5 − 10 frames, whereas SUR-StreamDEQ maintains its performance

even after 20 frames with as low as 2 unrollings per frame.

Notice that the single-frame performance of SUR-StreamDEQ uses 14 unrollings.

Other StreamDEQ variants use the maximum number of iterations/unrollings that

they use during training to make full use of their potential. However, since the num-

ber of unrollings per frame is not deterministic with SUR-StreamDEQ, we observe its

best single-frame performance using 14 unrollings, achieving 70.2 mAP@50. For ex-

ample, with 20 unrollings, the score drops to 69.9 mAP@50. The variations between

different numbers of unrollings are minor but still, this shows the effectiveness of the

stochasticity by saving 6 unrollings per frame with a 0.3 performance improvement

in the single-frame setting.

Additionally, SUR-StreamDEQ catches up to its single-frame performance with both

4 and 8 unrollings per frame when we evaluate it on streaming videos. Usually,

the single-frame performance of any Stream-DEQ model acts as an upper bound to

its streaming video performance. This makes sense since the models become accus-

tomed to still images from the training phase, yet, we introduce motion during stream-

ing evaluation. Thus, the performance should degrade slightly due to the injection of

moving pictures at each time step. It is interesting to note that SUR-StreamDEQ man-

ages to optimize in such a way that it can tolerate the “noise” coming from the shifting

33

objects between successive frames and achieves 70.3 mAP@50 after 20 frames. This

is 0.1 more than its single-frame baseline. This demonstrates that even though the

performance only marginally improves, with the stochasticity we add to the model

during training, the model becomes more effective in the low unrolling scenarios by

learning diverse levels of representation complexities.

Finally, we compare the training and inference speeds of different StreamDEQ mod-

els in Table 4.2 and Table 4.3, respectively. We observe in Table 4.2 that explicit

models obtain better performances and also train faster. The additional cost induced

by the calculation of the inverse Jacobian during the backward pass slows the training

of implicit models. For example, StreamDEQ-26 trains in approximately 5 days of

wall clock time on 4 GPUs. On the other hand, the explicit variants of StreamDEQ

train within 2 days of wall clock time. Table 4.3 shows that the explicit versions of

StreamDEQ are almost twice as fast during inference with the same number of it-

erations/unrollings while demonstrating better accuracy. Furthermore, when we use

SUR-StreamDEQ, we can achieve 65.1 mAP@50 with 23.2 FPS which is enough for

most real-time applications.

34

Table 4.3: Inference time and streaming video performance comparisons of

StreamDEQ models with differing number of iterations on the ImageNet-VID dataset.

Model # iterations∗ mAP@50 FPS

StreamDEQ-26

1

9.1
10.3

StreamDEQ-50 7.2

UR-StreamDEQ 59.4
23.2

SUR-StreamDEQ 65.1

StreamDEQ-26

2

39.5
9.2

StreamDEQ-50 13.3

UR-StreamDEQ 64.1
17.4

SUR-StreamDEQ 68.8

StreamDEQ-26

4

50.4
6.2

StreamDEQ-50 51.6

UR-StreamDEQ 65.7
11.6

SUR-StreamDEQ 69.5

StreamDEQ-26

8

54.8
3.5

StreamDEQ-50 58.9

UR-StreamDEQ 67.2
6.8

SUR-StreamDEQ 70.3
* denotes the number of Broyden iterations for StreamDEQ and number of unrollings for (S)UR-StreamDEQ.

35

36

CHAPTER 5

CONCLUSIONS

In this thesis, we proposed StreamDEQ, an efficient streaming video application of

the multiscale implicit deep model, MDEQ. To the best of our knowledge, this is the

first large-scale video application of DEQs. Furthermore, we introduced two explicit

variants of StreamDEQ. We showed that our models could start from scratch (i.e. all

zeros) and efficiently update their representations to reach near-optimal representa-

tions as the video streams. We validated this claim on video semantic segmentation

and video object detection tasks with thorough experiments.

StreamDEQ models present a viable approach for both real-time video analysis and

off-line large-scale methods. StreamDEQ is not specific to segmentation or object de-

tection, and can be used as a drop-in replacement for most other structured prediction

problems on streaming videos (action recognition, depth estimation etc.) as long as

the prediction task involves an iterative fixed-point solution procedure. In addition,

StreamDEQ is architecture-agnostic, meaning its architecture (fθ) can be tuned to fit

any criteria. The approach proposed in this thesis can easily be used in conjunction

with current and future developments.

Future work directions include extending the theoretical analysis of MDEQ [14] from

single images to videos and experimenting with different architectures to obtain better

performances. Finally, as all variants of StreamDEQ are trained without temporal

information, incorporating video training with the StreamDEQ scheme in order to

improve performance is a promising future work direction.

37

38

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770–778, 2016.

[2] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-

nected convolutional networks,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pp. 4700–4708, 2017.

[3] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings of

the British Machine Vision Conference (BMVC) (E. R. H. Richard C. Wilson

and W. A. P. Smith, eds.), pp. 87.1–87.12, BMVA Press, September 2016.

[4] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei, “Deep feature flow for video

recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 2349–2358, 2017.

[5] X. Zhu, J. Dai, L. Yuan, and Y. Wei, “Towards high performance video object

detection,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 7210–7218, 2018.

[6] Y.-S. Xu, T.-J. Fu, H.-K. Yang, and C.-Y. Lee, “Dynamic video segmentation

network,” in Proceedings of the IEEE conference on computer vision and pat-

tern recognition, pp. 6556–6565, 2018.

[7] M. Liu, M. Zhu, M. White, Y. Li, and D. Kalenichenko, “Looking fast

and slow: Memory-guided mobile video object detection,” arXiv preprint

arXiv:1903.10172, 2019.

[8] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang,

X. Wang, et al., “T-cnn: Tubelets with convolutional neural networks for object

detection from videos,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 28, no. 10, pp. 2896–2907, 2017.

39

[9] S. Wang, Y. Zhou, J. Yan, and Z. Deng, “Fully motion-aware network for video

object detection,” in Proceedings of the European conference on computer vi-

sion (ECCV), pp. 542–557, 2018.

[10] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of visual

attention,” in Advances in Neural Information Processing Systems (Z. Ghahra-

mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, eds.), vol. 27,

Curran Associates, Inc., 2014.

[11] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with visual

attention,” in ICLR, 2015.

[12] J.-B. Cordonnier, A. Mahendran, A. Dosovitskiy, D. Weissenborn, J. Uszkor-

eit, and T. Unterthiner, “Differentiable patch selection for image recognition,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 2351–2360, 2021.

[13] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” in Advances in

Neural Information Processing Systems (NeurIPS), 2019.

[14] S. Bai, V. Koltun, and J. Z. Kolter, “Multiscale deep equilibrium models,” in

Advances in Neural Information Processing Systems (NeurIPS), 2020.

[15] C. G. Broyden, “A class of methods for solving nonlinear simultaneous equa-

tions,” Mathematics of computation, vol. 19, no. 92, pp. 577–593, 1965.

[16] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial intelli-

gence, vol. 17, no. 1-3, pp. 185–203, 1981.

[17] W. Han, P. Khorrami, T. L. Paine, P. Ramachandran, M. Babaeizadeh, H. Shi,

J. Li, S. Yan, and T. S. Huang, “Seq-nms for video object detection,” arXiv

preprint arXiv:1602.08465, 2016.

[18] K. Kang, W. Ouyang, H. Li, and X. Wang, “Object detection from video tubelets

with convolutional neural networks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 817–825, 2016.

40

[19] J. Carreira, V. Patraucean, L. Mazare, A. Zisserman, and S. Osindero, “Mas-

sively parallel video networks,” in Proceedings of the European Conference on

Computer Vision (ECCV), pp. 649–666, 2018.

[20] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R.

Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized pipeline par-

allelism for dnn training,” in Proceedings of the 27th ACM Symposium on Op-

erating Systems Principles, pp. 1–15, 2019.

[21] M. Li, Y.-X. Wang, and D. Ramanan, “Towards streaming perception,” in Euro-

pean Conference on Computer Vision, pp. 473–488, Springer, 2020.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-

works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:

Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp. 4510–4520, 2018.

[24] M. Liu and M. Zhu, “Mobile video object detection with temporally-aware fea-

ture maps,” in Proceedings of the IEEE conference on computer vision and pat-

tern recognition, pp. 5686–5695, 2018.

[25] B. Zhao, B. Zhao, L. Tang, Y. Han, and W. Wang, “Deep spatial-temporal joint

feature representation for video object detection,” Sensors, vol. 18, no. 3, p. 774,

2018.

[26] H. Zhu, H. Wei, B. Li, X. Yuan, and N. Kehtarnavaz, “A review of video object

detection: Datasets, metrics and methods,” Applied Sciences, vol. 10, no. 21,

p. 7834, 2020.

[27] R. Gadde, V. Jampani, and P. V. Gehler, “Semantic video cnns through rep-

resentation warping,” in Proceedings of the IEEE International Conference on

Computer Vision, pp. 4453–4462, 2017.

[28] P.-Y. Huang, W.-T. Hsu, C.-Y. Chiu, T.-F. Wu, and M. Sun, “Efficient uncer-

tainty estimation for semantic segmentation in videos,” in Proceedings of the

European Conference on Computer Vision (ECCV), pp. 520–535, 2018.

41

[29] S. Jain, X. Wang, and J. E. Gonzalez, “Accel: A corrective fusion network for ef-

ficient semantic segmentation on video,” in Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pp. 8866–8875, 2019.

[30] E. Shelhamer, K. Rakelly, J. Hoffman, and T. Darrell, “Clockwork convnets for

video semantic segmentation,” in European Conference on Computer Vision,

pp. 852–868, Springer, 2016.

[31] Y. Li, J. Shi, and D. Lin, “Low-latency video semantic segmentation,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 5997–6005, 2018.

[32] F. Liang, T.-W. Chin, Y. Zhou, and D. Marculescu, “Ant: Adapt network across

time for efficient video processing,” in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp. 2603–2608, 2022.

[33] P. Hu, F. Caba, O. Wang, Z. Lin, S. Sclaroff, and F. Perazzi, “Temporally dis-

tributed networks for fast video semantic segmentation,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8818–

8827, 2020.

[34] Y. Liu, C. Shen, C. Yu, and J. Wang, “Efficient semantic video segmenta-

tion with per-frame inference,” in European Conference on Computer Vision,

pp. 352–368, Springer, 2020.

[35] Y. Liu, C. Shen, C. Yu, and J. Wang, “Efficient video segmentation models with

per-frame inference,” arXiv preprint arXiv:2202.12427, 2022.

[36] A. Habibian, H. B. Yahia, D. Abati, E. Gavves, and F. Porikli, “Delta distillation

for efficient video processing,” arXiv preprint arXiv:2203.09594, 2022.

[37] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei, “Flow-guided feature aggregation

for video object detection,” in Proceedings of the IEEE international conference

on computer vision, pp. 408–417, 2017.

[38] G. Bertasius, L. Torresani, and J. Shi, “Object detection in video with spatiotem-

poral sampling networks,” in Proceedings of the European Conference on Com-

puter Vision (ECCV), pp. 331–346, 2018.

42

[39] H. Wu, Y. Chen, N. Wang, and Z. Zhang, “Sequence level semantics aggrega-

tion for video object detection,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 9217–9225, 2019.

[40] Y. Chen, Y. Cao, H. Hu, and L. Wang, “Memory enhanced global-local aggre-

gation for video object detection,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 10337–10346, 2020.

[41] Z. Liu, H.-J. Wang, Z. Xu, T. Darrell, and E. Shelhamer, “Confidence adap-

tive anytime pixel-level recognition,” in International Conference on Learning

Representations, 2022.

[42] L. Bazzani, N. de Freitas, H. Larochelle, V. Murino, and J.-A. Ting, “Learning

attentional policies for tracking and recognition in video with deep networks,”

in ICML, 2011.

[43] M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas, “Learning where to

attend with deep architectures for image tracking,” Neural computation, vol. 24,

no. 8, pp. 2151–2184, 2012.

[44] H. Rhee, D. Min, S. Hwang, B. Andreis, and S. J. Hwang, “Distortion-aware

network pruning and feature reuse for real-time video segmentation,” arXiv

preprint arXiv:2206.09604, 2022.

[45] A. Habibian, D. Abati, T. S. Cohen, and B. E. Bejnordi, “Skip-convolutions

for efficient video processing,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 2695–2704, 2021.

[46] Y. Chai, “Patchwork: A patch-wise attention network for efficient object de-

tection and segmentation in video streams,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision, pp. 3415–3424, 2019.

[47] B. E. Bejnordi, A. Habibian, F. Porikli, and A. Ghodrati, “Salisa: Saliency-

based input sampling for efficient video object detection,” arXiv preprint

arXiv:2204.02397, 2022.

[48] Z. Huang, S. Bai, and J. Z. Kolter, “(Implicit)2: Implicit layers for implicit repre-

sentations,” in Advances in Neural Information Processing Systems (NeurIPS),

2021.

43

[49] S. Bai, V. Koltun, and J. Z. Kolter, “Neural deep equilibrium solvers,” in Inter-

national Conference on Learning Representations, 2021.

[50] A. Pal, A. Edelman, and C. Rackauckas, “Mixing implicit and explicit deep

learning with skip deqs and infinite time neural odes (continuous deqs),” arXiv

preprint arXiv:2201.12240, 2022.

[51] S. Bai, V. Koltun, and J. Z. Kolter, “Stabilizing equilibrium models by jaco-

bian regularization,” in International Conference on Machine Learning (ICML),

2021.

[52] Z. Geng, X.-Y. Zhang, S. Bai, Y. Wang, and Z. Lin, “On training implicit mod-

els,” Advances in Neural Information Processing Systems, vol. 34, pp. 24247–

24260, 2021.

[53] S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin, “Jfb:

Jacobian-free backpropagation for implicit networks,” in Proceedings of the

AAAI Conference on Artificial Intelligence, 2022.

[54] S. Bai, Z. Geng, Y. Savani, and J. Z. Kolter, “Deep equilibrium optical flow

estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 620–630, 2022.

[55] C. Lu, J. Chen, C. Li, Q. Wang, and J. Zhu, “Implicit normalizing flows,” in

International Conference on Learning Representations, 2021.

[56] L. Ma, T. Wang, B. Dong, J. Yan, X. Li, and X. Zhang, “Implicit feature refine-

ment for instance segmentation,” in Proceedings of the 29th ACM International

Conference on Multimedia, pp. 3088–3096, 2021.

[57] T. Wang, X. Zhang, and J. Sun, “Implicit feature pyramid network for object

detection,” arXiv preprint arXiv:2012.13563, 2020.

[58] S. Bai, J. Z. Kolter, and V. Koltun, “Trellis networks for sequence modeling,” in

International Conference on Learning Representations, 2019.

[59] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser, “Universal

transformers,” in International Conference on Learning Representations, 2019.

44

[60] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet

Large Scale Visual Recognition Challenge,” International Journal of Computer

Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[61] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-

tala, “Pytorch: An imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems 32, pp. 8024–8035, Curran

Associates, Inc., 2019.

[62] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic ur-

ban scene understanding,” in Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[63] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng,

Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu,

R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin,

“MMDetection: Open mmlab detection toolbox and benchmark,” arXiv preprint

arXiv:1906.07155, 2019.

[64] M. Contributors, “MMTracking: OpenMMLab video perception toolbox

and benchmark.” https://github.com/open-mmlab/mmtracking,

2020.

[65] J. Deng, Y. Pan, T. Yao, W. Zhou, H. Li, and T. Mei, “Relation distillation

networks for video object detection,” in Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pp. 7023–7032, 2019.

[66] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time ob-

ject detection with region proposal networks,” Advances in neural information

processing systems, vol. 28, 2015.

[67] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

45

https://github.com/open-mmlab/mmtracking

pyramid networks for object detection,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 2117–2125, 2017.

46

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Proposed Methods and Models
	Contributions and Novelties
	Outline of the Thesis

	Related Work
	Efficient Video Processing and Inference
	Video Semantic Segmentation
	Video Object Detection
	Saliency-Based Techniques
	Implicit Layer Models

	Proposed Method
	DEQ Overview
	Streaming DEQ
	Unrolled Streaming DEQ

	Experimental Results
	Video Semantic Segmentation
	Experimental Setup
	Results
	Effect of Shot Changes

	Video Object Detection
	Experimental Setup
	Results

	Conclusions
	REFERENCES

