
IMPROVED IMAGE GENERATION IN NORMALIZING FLOWS THROUGH A
MULTI-SCALE ARCHITECTURE AND VARIATIONAL TRAINING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DENİZ SAYIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2022

Approval of the thesis:

IMPROVED IMAGE GENERATION IN NORMALIZING FLOWS
THROUGH A MULTI-SCALE ARCHITECTURE AND VARIATIONAL

TRAINING

submitted by DENİZ SAYIN in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assist. Prof. Dr. Ramazan Gökberk Cinbiş
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering, METU

Assist. Prof. Dr. Ramazan Gökberk Cinbiş
Computer Engineering, METU

Prof. Dr. Selim Aksoy
Computer Engineering, Bilkent University

Date: 31.08.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: DENİZ SAYIN

Signature :

iv

ABSTRACT

IMPROVED IMAGE GENERATION IN NORMALIZING FLOWS
THROUGH A MULTI-SCALE ARCHITECTURE AND VARIATIONAL

TRAINING

SAYIN, DENİZ
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Ramazan Gökberk Cinbiş

August 2022, 44 pages

Generative models have been shown to be able to produce very high fidelity sam-

ples in natural image generation tasks in recent years, especially using generative

adverserial network and denoising diffusion model based approaches. Normalizing

flow models are another class of generative models, which are based on learning in-

vertible mappings between the latent space and the image space. Normalizing flow

models possess desirable features such as the ability to perform exact density esti-

mation and simple maximum likelihood based training, which can offer theoretical

guarantees. While the state-of-the-art normalizing flow models are able to produce

high fidelity images on specific simple image generation tasks such as faces and bed-

rooms, they typically fail to produce sensible results in difficult natural image datasets

containing a multitude of underlying classes. We propose an approach focused on

improving natural image generation using a new normalizing flow model, in which

we start by generating a small natural image and refine it step by step with condi-

tional normalizing flow models performing 2x super-resolution. We also propose a

new augmentation method at the feature level for conditional encodings to make the

intermediate models in our cascade more robust against noise and artifacts coming

v

previous levels of the cascade. This augmentation method has its roots in variational

inference. We perform experiments on the CelebA and CIFAR-10 datasets, show our

qualitative results and compare our generations with state-of-the-art approaches using

the FID metric.

Keywords: natural image generation, normalizing flows, variational inference, gener-

ative models

vi

ÖZ

NORMALLEŞTİRİCİ AKIM MODELLERİNDE ÇOK-ÖLÇEKLİ MİMARİ
VE DEĞİŞİMSEL EĞİTİM İLE GELİŞTİRİLMİŞ RESİM ÜRETİMİ

SAYIN, DENİZ
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ramazan Gökberk Cinbiş

Ağustos 2022 , 44 sayfa

Son yıllarda üretici modellerin doğal resim üretme görevlerinde yüksek kaliteli örnek-

ler üretebildiği, özellikle üretici çekişmeli ağlar ve de yayınım modelleri kullanılarak

gösterilmiştir. Normalleştirici akım modelleri diğer bir üretici model sınıfıdır ve resim

uzayı ile saklı uzay arasında tersi olan bir fonksiyon öğrenmek üzerine kuruludurlar.

Normalleştirici akım modellerinin kesin yoğunluk tahmini yapabilme ve teorik ga-

rantiler sağlayan basit en büyük olabilirlik temelli bir eğitime sahip olma gibi istenen

özellikleri vardır. Fakat güncel olan en iyi normalleştirici akım modelleri insan yüzü

ve yataklar gibi spesifik ve basit resimler içeren veri kümelerinde kaliteli üretici so-

nuçlar elde edebilmekle birlikte, tipik olarak birden fazla sınıf içeren karışık doğal

resim içerikli veri kümelerinde makul sonuçlar üretememektedir. Bu tezde doğal re-

sim içerikli veri kümelerinde üzerinde daha yüksek kaliteli örnekler üretmeyi amaç-

layan yeni bir normalleştirici akım modeli öneriyoruz. Bu modelde ilk olarak basit

bir normalleştirici akım modeli ile çok küçük çözünürlüklü bir resim üretip, ardından

bu resmi 2x süper-çözünürlük uygulayan koşullu normalleştirici akım modelleri ile

adım adım iyileştiriyoruz. Ayrıca modelimizdeki ara modelleri alt modellerden gelen

vii

resimlerde oluşabilecek hata ve gürültüye daha dayanıklı hale getirmek için öznitelik

seviyesinde yeni bir veri artırma yöntemi öneriyoruz. Önerdiğimiz veri artırma yön-

temi teorik köklerini değişimsel çıkarsamadan almaktadır. CelebA ve CIFAR-10 veri

kümelerinde deneyler yapıp, nitel sonuçlarımızı gösteriyor ve bunları FID metriği ile

güncel olan en iyi yöntemlerle karşılaştırıyoruz.

Anahtar Kelimeler: doğal resim üretme, normalleştirici akım, değişimsel çıkarım-

sama, üretken modeller

viii

To my recently enlarged family

ix

ACKNOWLEDGMENTS

I would first and foremost like to thank my supervisor Asst. Prof. Dr. Ramazan

Gökberk Cinbiş for his unending supervision, support and insight which he graciously

provided through ups and downs for the full span of my M.Sc. I would have been

lost without his exceptional guidance and contributions and would not trade them for

anything.

I would then like to thank Prof. Dr. Vittorio Ferrari for the regular advice and feed-

back he provided on our work through its different phases that culminated in this

thesis. Some of his valuable views and guidelines will stay with me for all of my

research career.

I would also like to thank my fiancée Ekin for being there for me during the most

stressful parts of the writing process. Her joyful presence and continuous support

made a huge difference bettering the highs and smoothing out the lows.

Finally, I would like to thank my family for always having my back and encouraging

me to move forward no matter the circumstances.

This thesis was supported in part by the TUBITAK Grant 119E597. The numeri-

cal calculations reported in this paper were fully/partially performed at TUBITAK

ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Contributions . 2

1.2 Outline . 2

2 LITERATURE REVIEW . 5

2.1 Related Work . 5

2.2 Background . 8

2.2.1 Normalizing Flows . 8

2.2.2 Variational Auto-Encoders 9

2.2.3 Glow . 10

2.2.3.1 Actnorm . 11

xi

2.2.3.2 Invertible 1x1 Convolution 11

2.2.3.3 Affine Coupling Block 12

2.2.3.4 Split and Squeeze . 13

2.2.3.5 Performance . 13

2.2.4 SRFlow . 14

2.2.4.1 Conditioning Normalizing Flows 14

2.2.4.2 Conditional Affine Coupling 14

2.2.4.3 Affine Injector . 15

3 METHOD . 17

3.1 CSRFLOW- Cascaded SRFlow . 17

3.1.1 Exact Density Estimation . 18

3.2 Variational Training . 19

3.2.1 Improving the Invertibility of Normalizing Flows 21

4 EXPERIMENTS . 23

4.1 Datasets . 23

4.2 Evaluation Metrics . 24

4.3 Training Setup . 25

4.3.1 Architecture Details . 25

4.3.2 Optimization Settings . 26

4.4 Quantitative Results . 26

4.4.1 Selection of Noise Variance for Variational Training 29

4.4.2 Quantitative Effects of Sigmoid Squishing 30

4.4.3 Effect of Sampling Temperature on FID 31

xii

4.5 Qualitative Results . 31

5 CONCLUSION AND FUTURE WORK 37

5.1 Conclusion . 37

5.2 Future Work . 38

REFERENCES . 39

xiii

LIST OF TABLES

TABLES

Table 4.1 Details of the Datasets Used in Our Experiments 23

Table 4.2 FID Results on CelebA . 28

Table 4.3 FID Results on CIFAR-10 . 29

Table 4.4 Effect of Sigmoid Squishing Glow on FID on Resized CelebA . . . 31

xiv

LIST OF FIGURES

FIGURES

Figure 3.1 Overview of a CSRFlow Model with k = 3 18

Figure 4.1 Glow Reconstructions with σ linearly increasing from 0 to 0.25 . 30

Figure 4.2 SRFlow Reconstructions with σ linearly increasing from 0 to 1 . 30

Figure 4.3 Sample Failure Rate during 32×32 CelebA Training with SRFlow 33

Figure 4.4 Effect of Temperature on FID on the Two Datasets 34

Figure 4.5 Comparison Between Non-Variational and Variational Training

Results . 35

Figure 4.6 Random Samples from Our Best Class-Conditional CIFAR-10

Cascade . 36

xv

LIST OF ABBREVIATIONS

NF Normalizing Flow

VAE Variational Auto-Encoder

CV-VAE Constant-Variance Variational Auto-Encoder

GAN Generative Adversarial Network

IS Inception Score

FID Fréchet Inception Distance

KID Kernel Inception Distance

ELBO Evidence Lower Bound

ODE Ordinary Differential Equation

SR Super-Resolution

BPD Bit-Per-Dimension

NLL Negative Log-Likelihood

LR Low-Resolution

HR High-Resolution

xvi

CHAPTER 1

INTRODUCTION

Generative modeling is an important task in computer vision, where the goal is to

model the underlying distribution of a dataset given only samples from it. Appli-

cations include a wide variety of tasks: image generation, text-to-image translation,

super-resolutio and even artistic tasks such as style transfer.

A well-known class of generative models is Generative Adversarial Networks [1]

(GANs), which are trained as a pair of competing deep neural networks using a game

theory based objective. The generator maps latent noise vectors to image samples and

is trained to fool the discriminator, which tries to distinguish between real examples

from the dataset and fake examples created by the generator. These models are able

to achieve high fidelity in a variety of image generation tasks.

Despite their sample quality, GANs suffer from a range of issues [2]. Their training

is unstable, and the properties of the latent vectors are ill-defined unless guided by

additional models or objective functions [3]. It is also not possible to analytically

calculate the generating latent vector given a data sample.

Normalizing flows [4] (NFs) are another class of generative models, and offer strong

theoretical properties. These models are bijections from the data space to the latent

space, and are trained with a maximum likelihood objective aiming to transform the

data distribution to a simpler prior distribution (usually Gaussian) in the latent space.

This training regime is more stable compared to GANs and allows for the model to

work both ways once training is complete: I. Samples can be drawn from the simple

distribution in the latent space and mapped back into the data space thanks to the

invertibility of the model to generate samples. II. A given real data sample can be

1

mapped into the latent space, and its exact probability density can be estimated due

to the assumption that it should come from the simple distribution in the latent space.

Despite their theoretical strengths, normalizing flows suffer from several limitations

as well. Every building block of the model has to preserve the dimensionality of the

input for the sake of invertibility, and cannot compress or decompress the input like

standard neural networks. Also, the Jacobian of each transformation in the model

needs to be tractable to be able to quickly compute the maximum likelihood objective

function [5, 6]. These limit the expressivity of the model, and the fidelity of samples

drawn from NF models trained on high-resolution image datasets is a far cry from the

quality of samples drawn from GAN models and is open to improvement [7, 8].

1.1 Contributions

In this thesis, we propose a new normalizing flow model focused on improving the

fidelity of generated samples when trained on natural images. We aim to improve

upon state of the art image generation results qualitatively in the domain of normal-

izing flows. In particular, we use a cascaded stack of conditional super-resolution

normalizing flow models optimized on different scales to iteratively refine an initial

low quality image produced by an unconditional normalizing flow model. To reduce

error and noise amplification in the conditional model cascade, we also propose an

augmentation at the feature level for conditional inputs that has theoretical roots in

variational training.

1.2 Outline

We now outline the rest of the thesis. In Chapter 2, we present an overview of image

generation approaches and focus on similarities to our own work, while also pre-

senting necessary background information from the work we base our model on. In

Chapter 3, we explain the details of our own approach and the reasoning behind it

based on the background we provide. In Chapter 4 we provide our basic experimen-

tal results and compare them with previous work and also perform ablation studies

2

and analyses to draw conclusions from. In Chapter 5 we summarise the thesis and

point to possible directions in which future work could be done.

3

4

CHAPTER 2

LITERATURE REVIEW

In this chapter, we first cover related work in the literature by going over the vari-

ous generative modeling approaches, specifically focusing on normalizing flows as

they are of particular interest. We then cover necessary mathematical and architec-

tural details from approaches we base our work on as background for the following

chapters.

2.1 Related Work

Image generation tasks have been tackled by a variety of model classes, each having

their own advantages and disadvantages relative to each other.

The most well known model class is without a doubt generative adversarial networks

(GANs), which was introduced by Goodfellow et al. [1]. These models work by

pairing a generator network that attempts to generate image samples from noise and

a discriminator network that attempts to distinguish real data samples from generated

samples. These two networks improve each other through competition and attempt

to reach Nash equilibrium. GANs can generate very high fidelity images [9], but are

plagued by various failure modes during training such as non-convergence [2] and

mode collapse (only ever generating a single image) [10] and may fail to capture the

full distribution of the data due to the lack of a likelihood objective [11]. Inception

Score (IS) [10] and Fréchet Inception Distance (FID) [12] metrics that are used for

measuring image generation performance have also been introduced in the context of

GANs. A recent large scale survey of GANs can be found in Bermano et al. [13].

5

Another class of generative models are auto-regressive models such as PixelRNN

[14], PixelCNN [15] and WaveNet [16]. These models generate samples piece by

piece and are trained to model the probability distribution of the next piece of a sample

based on the pieces that have been generated so far. Unlike GANs, they can also be

used for density estimation, but usually have a slow generation process since each

piece of the sample has to be generated in sequence. Auto-regressive in a broad sense

can also imply that a model takes is own output as feedback, such as in the case of

transformers [17]. As a result, not all models called auto-regressive will be generative

models.

The next class of variational auto-encoders (VAEs), whose basic formulation we

cover in 2.2.2, were first introduced by Kingma & Welling [18]. These models have

probabilistic encoders and decoders and are optimized on a lower bound of the max-

imum likelihood, the evidence lower bound (ELBO). This lower bound can also be

used for density estimation for comparative purposes, and their convergence proper-

ties are better than GANs. However, a unit-variance normal distribution assumption

on the decoder leads to an MSE loss on the sample images, which can cause blurry

samples [19].

Normalizing flows, which constitute the core of the architecture used in our work,

were first introduced along with the term by Tabak & Turner [4]. They were then used

by Rezende & Mohamed [20] as flexible posterior distributions for VAEs, a powerful

alternative to the initially used spherical normal distributions. For image generation,

Dinh et al. [5] introduced NICE with the coupling layer and successfully modeled

simple image datasets MNIST [21] and TFD [22]. This was then improved upon by

RealNVP [6], a multiscale architecture based on affine coupling layers, split-squeeze

blocks and masked convolutions. Glow[7] further increased the scale of the model

and further refined it by adding invertible 1x1 convolutions, achieving high fidelity re-

sults on the CelebA HQ dataset [23]. NSF [24] added parameterized quadratic-spline

based flows to the same architecture. Flow++ [25] improved the state of the art with

variational dequantization, mixture based couplings and self-attention. Sukthanker et

al. [26] further added a generic invertible attention mechanism and improved genera-

tive performance.

6

Different styles of normalizing flow models have also been proposed. Autoregressive

approaches were developed [27, 28], with similar approaches first being introduced

to once again improve VAE posteriors [29, 30]. Residual flows based on inverting

constrained residual transformations [31, 8] achieved results highly competitive with

the state of the art. Continuous normalizing flows with infinitely many steps were

also proposed and formulated as ODEs to be solved by numeric solvers [32].

Conditional normalizing flows for modeling conditional distributions are implemented

as straightforward modifications of standard normalizing flows that work by embed-

ding conditional data into the computation and are used for various vision tasks such

as segmentation, denoising and super-resolution [33, 34, 35, 36]. SRFlow [36], which

was the state of the art in super-resolution on its publication is of particular interest

as the backbone of our own multiscale model, and we cover it in 2.2.4. We also

cover Glow [7] in 2.2.3 because it is the underlying model used by SRFlow. Further

work [37] generalizes SRFlow for both upscaling and downscaling and adds other

losses to obtain once again state of the art SR results and [38] examines the use of NF

based loss functions in improving super-resolution model performance; but these are

not related to our work. A derivative work [39] improves qualitative super-resolution

results by augmenting training with paired noisy high and low resolution samples,

which is different from our approach in which we only inject noise at the encoding

level and focus on generative modeling.

There are also various approaches combining different generative model classes with

normalizing flows: [40] proposes modeling a VAE’s decoder output distribution as the

latent distribution of a normalizing flow to improve generative modeling performance.

The converse is done in [41], with a VAE being used to model the latent distribution

of a normalizing flow instead of real images, supported by adversarial training. Pires

& Figueiredo [42] propose using a mixture of K normalizing flow models trained

under a variational inference framework to better model multi-modal datasets.

A few recent works in normalizing flows have particular similarities to our approach:

Wavelet Flow [43] and MRCNF [44] use multiple normalizing flow models at differ-

ent resolutions, but in different contexts: Wavelet Flow models Haar wavelets instead

of images, and MRCNF uses continuous normalizing flows instead of discrete. Yük-

7

sel et al. [45] explore the addition of noise in the latent space of normalizing flows,

but without a multi-resolution model or a variational inference framework. Instead,

noise addition is done adversarially to provide useful augmentations for image clas-

sifier training.

Finally, denoising diffusion models [46] have recently received increased attention

after proving that they can also generate very high fidelity images [47, 48], with

their main drawback being slow sampling due to the denoising process containing

a large number of steps. Ho et al. [49] is similar to our work in that a cascaded

set of super-resolution models are used to refine a simpler initial image, and that

various conditional augmentation methods are used. These augmentations include

directly adding noise at the image level and generating corruption based on the diffu-

sion model training process. However, our approach is different due to the fact that it

uses normalizing flows instead of diffusion models and adds noise at the latent feature

level, corresponding to variational training.

2.2 Background

In this section, we first discuss normalizing flows and variational auto-encoders. We

then move on to conditional normalizing flows, which we base our multi-scale ap-

proach on, which is explained in the next chapter.

2.2.1 Normalizing Flows

Let X be the space of a given high-dimensional dataset D; having the underlying

distribution p(x). A normalizing flow f is a bijection that aims to invertibly transform

the space X to a new space Z , in which points from space X will conform to a simpler

distribution q(z), usually a spherical multivariate Gaussian. In summary, flow models

aim to transform an arbitrarily complex high-dimensional distribution to a distribution

that is easy to evaluate likelihoods in and sample from.

Given samples x ∼ D, the optimization process attempts to maximize their log-

likelihood log p(x). This is equivalent to minimizing the negative log-likelihood and

8

performed over the whole dataset:

L(D) = −
∑
x∼D

log p(x) (2.1)

As z = f(x), the likelihood p(x) can be computed from the simpler distribution q(z)

using a change of variables (Jf is the Jacobian of f):

log p(x) = log q(z) + log | detJf | (2.2)

Complete normalizing flow models usually consist of many small cascaded invertible

blocks: f = f0 ◦ f1 ◦ · · · ◦ fk, and the final Jacobian Jf = Jf0Jf1 . . .Jfk . This leads

us to the final, expanded formula for the loss:

L(D) = −
∑
x∼D

(
log q(f(x)) +

k∑
i=0

log | detJfi |

)
(2.3)

Simply put, for each sample x in the dataset, we transform it, find the log-likelihood

of the result, and add the determinant of the Jacobian of each flow block. The latter

is a significant issue in the design of normalizing flows. Since the determinant of the

Jacobian of each block needs to be computed for every sample, they need to be easy

to compute, and most transformations are designed to have triangular Jacobians.

2.2.2 Variational Auto-Encoders

In a standard auto-encoder model, an encoder maps an input data sample x to a usu-

ally lower-dimensional latent vector z. This vector can then mapped back into the

data space via a second decoder network. The aim is discovering a latent representa-

tion for each input, which can be used for compression or comparison of samples via

simpler metrics.

The variational auto-encoder [18, 50], casts this into the probabilistic domain. Instead

of producing a single latent vector for an input, inputs induce a joint distribution over

the latent space. Then, samples from this space are mapped back to the input space

via a probabilistic decoder. Matching the latent distribution to a known simple prior

also allows for data generation through the decoding of samples taken from the latent

prior.

9

The objective function used in optimization consists of two terms, the log-likelihood

of the input data over the decoder’s output distribution, to be maximized, and the KL

divergence between the latent distribution and its prior, to be minimized:

L(x; θ, ϕ) = −Eqϕ(z|x) [log p(x | z; θ)] +DKL(qϕ(z | x) ∥ p(z)) (2.4)

In the above equation, x represents the input data, z represents the induced latent vec-

tor, θ represents the encoder weights, ϕ represents the decoder weights, q represents

the conditional distribution at the encoder output and p represents the latent prior.

Usually, the prior for each latent attribute is assumed to be a Gaussian, and the en-

coder outputs a series of means and variances (which means that the latent vector

distribution is a multivariate Gaussian having diagonal covariance). The decoder is

also assumed to output independently distributed Gaussians having identical variance.

This follows from the assumption that the output of the decoder is not just a singular

reconstruction, but rather the center of a spherical Gaussian distribution that the de-

coder induces. Alternative formulations such as using the Bernoulli distribution are

also possible. This is used by Kingma & Welling [18] on the MNIST dataset, with

grayscale values in the [0, 1] range being the probability of that pixel being white, as

opposed to black.

A tutorial detailing most of the properties of basic VAEs can be found in Kingma et

al. [19].

2.2.3 Glow

Glow [7] is a normalizing flow model engineered for training on images, instead

of tabular or low-dimensional data. It contains many convolutional operations and its

building blocks are a series of cascaded actnorm, invertible 1x1 convolution (invconv)

and affine coupling blocks. There are also a few split and squeeze blocks in the model

for reducing dimensionality and increasing the number of channels. All of these are

explained below.

10

2.2.3.1 Actnorm

The actnorm block is an alternative to batch normalization for very small batch sizes.

Instead of computing scale and shift values from the given batch at every step, scale

and shift values are initialized using the mean and standard deviation of the first train-

ing batch. They are then set as trainable parameters that can change during gradient

descent. The transformation itself is the same as batch norm:

actnorm(x) =
x− µlearnable

σlearnable
(2.5)

Its inverse is also easy to compute:

actnorm−1(z) = σlearnable ⊙ z+ µlearnable (2.6)

The Jacobian is a diagonal matrix having the trainable scales as its entries; the output

dimensions only depend one input dimension. The log-determinant is then the sum

of the logarithms of the trainable positive scale values:

log | detJactnorm| =
∑
i

logσlearnablei (2.7)

2.2.3.2 Invertible 1x1 Convolution

A 1x1 convolution can be formulated as a multiplication by a c× c square matrix W,

where c is the number of channels in the input, essentially mixing the channels. The

inverse and determinant are also computed as-is:

invconv(x) = Wx (2.8)

invconv−1(z) = W−1z (2.9)

log | detJinvconv| = log | detW| (2.10)

An alternative formulation with easier determinant computation based on LU decom-

position is also proposed in Kingma & Welling [18], but we do not use it in our work.

11

2.2.3.3 Affine Coupling Block

Originally introduced in Dinh et al. [6], affine coupling blocks split the input into two

equal parts in the channel dimension, which we define as the split(·) operation: The

first part passes through unchanged, but is used to compute scale and shift values (α

and β, respectively) by being passed through a non-invertible neural network g. The

second part is then scaled and shifted by the produced values. The modified second

part then recombined with the unmodified first part again in the channel dimension,

which we define as concatenate(·, ·). To avoid negative, zero, and large scale values,

the neural network output scales γ are exponentiated and passed through the sigmoid

function σ in Glow:

x1,x2 = split(x) (2.11)

γ,β = split(g(x1)) (2.12)

α = σ(exp(γ) + 2) (2.13)

y1 = y1 (2.14)

y2 = α⊙ x2 + β (2.15)

y = concatenate(y1,y2) (2.16)

The addition of 2 in Eq. 2.13 is not explained in Kingma & Dhariwal [7] but present

in the original source code. We suspect it was added to help the scale values α be

further from zero, because scale values close to zero adversely affect the stability of

the inverse transformation, which is a division by the scale values.

The inverse process of the block can be easily derived by following the same steps:

the scale and shift values are can be recomputed from x1 in the inverse direction as it

remains unchanged.

Since the transformation of one half depends only on the other half, half of the Ja-

cobian of the transformation is a triangular matrix, and the other half is an identity

matrix since it remains unchanged. The log-determinant is once again the sum of the

12

produced scale values:

log | detJaffine| =
∑
i

logαi (2.17)

An alternative but weaker transformation is the additive coupling block that only

shifts the other half of the input and avoids scaling it. We do not use it in our work.

2.2.3.4 Split and Squeeze

The split block simply removes half of the input channels in its input: they immedi-

ately become part of the latent vector z and their log-likelihood based on the chosen

simple prior distribution is added to the loss. The other half of the channels continue

to the following blocks.

The squeeze block combines groups of four pixels into a single channel, reducing

the height and width of its inputs by a factor of two and increasing the number of

channels by a factor of four. This mixes the pixels together, allowing channel-based

normalising flow blocks like the actnorm and invconv to operate on a wider context.

Together, these allow the Glow architecture to be multi-scale, with each level sep-

arated by split-squeeze blocks to work on coarser and coarser details. Both were

introduced with RealNVP [6].

2.2.3.5 Performance

The generative performance of Glow is evaluated only qualitatively [7], and metrics

focus on comparing negative log-likelihood (NLL) on the test with previous normal-

ising flows.

The model is able to produce visually pleasing high resolution samples when trained

on the face dataset CelebA [23]. However, the samples drawn from more multimodal

datasets like CIFAR-10 [51] are blobby and lack structure.

13

2.2.4 SRFlow

We now shortly introduce conditioning in normalizing flows before explaining how

SRFlow [36] modifies various Glow [7].

2.2.4.1 Conditioning Normalizing Flows

A straightforward modification of normalizing flows is making them model a con-

ditional distribution p(x|y). This is achieved by embedding the conditional data or

its features into the computation of normalizing flow blocks. These models lose the

ability to unconditionally estimate the density p(x) of given data samples, but can be

used for other purposes, such as class-conditional generation.

We are particularly interested in SRFlow [36], a conditional normalizing flow model

based on Glow, optimized for the task of super-resolution. It is conditioned on low

resolution images, and produces up to 8x higher resolution versions of the condition

image when sampled. Instead of embedding the low resolution image into the flow

directly, an RRDB-based [52] super-resolution model is pre-trained using L1 loss, and

its intermediate features are embedded into the flow model during optimization. The

SRFlow model itself is trained via the previously explained log-likelihood objective.

To embed conditional features into the Glow architecture, conditional affine coupling

and affine injector blocks are used.

2.2.4.2 Conditional Affine Coupling

Modifying the affine coupling to be conditional simply involves adding the condi-

tional embeddings c as extra input channels to the neural network producing scale

and shift values. This is a simple modification on Eq. 2.12:

γ,β = split(g(concatenate(x1, c))). (2.18)

14

2.2.4.3 Affine Injector

The affine injector block is also similar to the coupling block, and uses the conditional

embeddings to generate scale and shift values for the whole of the input using another

neural network h:

α,β = split(h(c)) (2.19)

z = α⊙ x+ β (2.20)

The inversion and calculation of the Jacobian determinants is straightforward and the

same as the actnorm block’s.

15

16

CHAPTER 3

METHOD

In this chapter we detail our approach and describe its properties, based on the back-

ground introduced in the previous chapter.

3.1 CSRFLOW- Cascaded SRFlow

Our primary aim is addressing the problem of normalizing flows being unable to gen-

erate high fidelity image samples when trained on multimodal datasets. We postulate

that flow models are good at generating smooth local structure in a limited scope such

as face images, but fail when there is significant global structure, such as different

classes of objects having very different orientations, colors and shapes.

To produce improved, higher fidelity image samples using flow models, we propose

a cascade model composed of multiple flows. As the first step, a single unconditional

normalising flow model f0 generates a low resolution image sample x0. This sample

then becomes the condition for a 2x super-resolving SRFlow model f1, which can

then generate x1 having twice the resolution. x1 is then fed as a condition to another

SRFlow model f2, which super-resolves it to produce x2. This process continues

through further SRFlow models until the desired resolution is reached, with the fi-

nal model fk and sample xk. This approach limits the task of each flow model to

a much simpler generation or super-resolution problem compared to reconstructing

high resolution global structure from scratch.

Although the generation process is sequential, because xi−1 needs to be generated

before xi can be, the training process of the models remains the same and is parallel.

17

Figure 3.1: Overview of a CSRFlow Model with k = 3

Each SRFlow model in the cascade can be optimized on different resolution versions

of the same dataset independently, along with the first unconditional Glow model.

An overview of a cascade having k = 3 and a super-resolution factor of 2x between

models is shown in Figure 3.1.

3.1.1 Exact Density Estimation

A core advantage of normalizing flow models is the fact that they can be used for exact

density estimation, and our approach preserves this property even though conditional

models are involved. Our goal is estimating the density of a given high resolution

data sample, p(xk). Let us consider the conditional probability modeled by fi, and

rewrite it using Bayes’ Rule:

p(xi | xi−1) =
p(xi−1 | xi)p(xi)

p(xi−1)
(3.1)

The result in Eq. 3.1 can be simplified by observing that xi−1 is produced from xi

via a deterministic downsampling operation, such as bicubic downsampling. A given

xi will always produce the same xi−1. Thus, p(xi−1 | xi) = 1, which simplifies the

result:

p(xi | xi−1) =
p(xi)

p(xi−1)
(3.2)

18

We then calculate the product of the conditional densities modeled by each interme-

diate model, and obtain the following result:

k∏
i=1

p(xi | xi−1) =
k∏

i=1

p(xi)

p(xi−1)
(3.3)

=
p(xk)

p(xk−1)

p(xk−1)

p(xk−2)
· · · p(x1)

p(x0)
(3.4)

=
p(xk)

p(x0)
(3.5)

Because the first unconditional model f0 models p(x0) directly, we can multiply the

result in Eq. 3.5 with it to finally obtain the exact density estimation for a given sample

p(xk).

In summary, we can estimate the exact likelihood of a given high resolution sam-

ple xk by first downsampling it to obtain conditions and inputs xk−1 . . .x1,x0 for

the intermediate models, and then multiply the likelihoods produced by each model

to obtain p(xk). The log-likelihood will similarly be the sum of the log-likelihood

estimated by each model.

3.2 Variational Training

A problem arising with any cascaded architecture is error and noise amplification. If

one of the earlier models in the cascade produces a noisy or slightly incorrect sample,

the error will be amplified further and further by each following super-resolution

model, resulting in a highly distorted final sample.

To alleviate this problem, we propose to augment the low resolution conditioning data

for the intermediate SRFlow models. In SRFlow’s optimization process, only one low

resolution input is paired with the high resolution image: its perfectly downsampled

version, containing no added artifacts or noise. Instead, we want the current model

to be able to super-resolve its input even when the input is an imperfect generation

produced by the previous level’s model. To perform this in a principled way, we

turn to variational inference with the aim of maximizing a lower bound on the log-

likelihood of our current level log p(xi) through the use of the previous level’s latent

19

variable zi−1:

log p(xi) =

∫
p(xi, zi−1)dzi−1 (3.6)

≥ Eq(zi−1|xi) [log p(xi | zi−1)]−DKL(q(zi−1 | xi) ∥ p(zi−1)) (3.7)

Examining Eq. 3.7, we can make an observation specific to our case: Because xi−1 =

f−1
i−1(zi−1), p(xi | zi−1) = p(xi | xi−1), which is directly the probability density

modeled by our current conditional super-resolution model. Next, we need to decide

on the posterior approximation q(zi−1 | xi). We choose to use a normal distribution

with a constant variance σ centered around zi−1 with q(zi−1 | xi) = N (zi−1, σI) =

N (fi−1(xi−1), σI). Training fi’s likelihood based on samples drawn from this chosen

approximate posterior, which is essentially disturbing xi−1 at the feature level zi−1

with Gaussian noise, maximizes part of a lower bound on log p(xi), with the tightness

of this bound being dependent on how close our chosen approximate is to the true

posterior. We believe our choice constitutes a good approximation to the true posterior

based on the fact that fi−1 has already been trained to model a complex distribution

for xi−1.

As another boon, the KL divergence term DKL(q(zi−1 | xi) ∥ r(zi−1)) turns out

to be equivalent to fi−1’s standard training objective based on maximum likelihood.

First, let us derive the maximum likelihood based objective for fi−1: The well-known

probability density function of an arbitrary multivariate k-dimensional Gaussian dis-

tribution N (µ,Σ) is the following. We use z as our variable:

p(z) =
exp(−1

2
(z− µ)TΣ−1(z− µ))√

(2πk)|Σ|
(3.8)

The log-probability can be obtained by taking the logarithm of both sides:

log p(z) = −1

2

[
(z− µ)TΣ−1(z− µ) + k log 2π + log |Σ|

]
(3.9)

In our normalising flow case, we are trying to match zi−1 to the standard normal

distribution N (0, I). Since I−1 = I and |I| = 1, the expression in Eq. 3.9 simplifies

to the following:

log p(zi−1) = −1

2
(zTi−1zi−1 + k log 2π) (3.10)

20

Because k is constant, maximizing the log-likelihood in Eq. 3.10 is equivalent to

minimizing the dot product zTi−1zi−1.

Now, we focus on the KL-divergence. The KL-divergence between two k-dimensional
multivariate normal distributions N0(µ0,Σ0) and N1(µ1,Σ1) is given by the follow-
ing expression:

DKL(N0 ∥ N1) =
1

2

(
tr(Σ−1

1 Σ0)− k + (µ1 − µ0)
TΣ−1

1 (µ1 − µ0) + log
|Σ1|
|Σ0|

)
(3.11)

Our choice of the induced distribution is N (zi−1, σI) with constant σ, which we are

trying to match to the standard normal N (0, I). Note that (σI)−1 = 1
σ
I and |σI| = σk.

This leads to the following expression:

DKL(N (zi−1, σI) ∥ N (0, I)) =
1

2

(
tr(σI)− k − zTi−1zi−1 + log

1

σk

)
(3.12)

=
1

2
(kσ − k − zTi−1zi−1 − k log σ) (3.13)

=
1

2

[
zTi−1zi−1 + k(σ − 1− log σ)

]
(3.14)

Since σ is a hyper-parameter that remains constant during optimization, the objective

in Eq. 3.14 is also equivalent to minimizing zTi−1zi−1, just like Eq. 3.10!

This result indicates that the standard likelihood-based normalizing flow training has

already minimized the KL divergence term between our choice of induced distribution

and the standard normal prior. Ideally, we should allow weights from fi−1 to change

during this process to possibly trade-off the KL-divergence term with the conditional

likelihood term, but this further slows down and risks destabilizing the training due to

the fact that we are making both a forward and an inverse pass through fi−1. Instead,

we keep the parameters of fi−1 frozen during the variational training process and only

update the conditional likelihood term through training fi with low-resolution inputs

from our approximate posterior, which still tightens the bound on log p(xi).

3.2.1 Improving the Invertibility of Normalizing Flows

Although normalizing flows are analytically stable, a problem that arises often in

practice are z samples that blow up and produce inf and NaN values when put

through the inverse model f−1 [53]. This is especially prevalent when the model

21

is provided unexpected out-of-distribution inputs, and happens quite often with our

approach since we add noise to z values.

The main cause of this problem is the affine coupling block discussed in Eq. 2.2.3.3.

Scale values in the range [0, 1] or even [ϵ, 0] for very small ϵ such as 10−4 are fine

for the forward direction, but cause values to explode in the reverse direction through

repeated divisions by small values; especially for deep models that contain up to 128

such blocks.

To remedy this problem while not entirely getting rid of affine coupling blocks, we

limit the scales to the range [α, 1] by adding a constant and scaling the sigmoid, shown

with function s below:

s(x) = (1− α)σ(x) + α (3.15)

We use α = 0.5 in our work and call the approach sigmoid squishing. A scale-limiting

approach is discussed in Behrmann et al. [53], but how exactly it is implemented is

left unclear. Glow [7] uses additive instead of affine coupling blocks in qualitative

experiments to avoid this invertibility issue.

While this very significantly reduces the prevalence of inverse stability problems in

our models, it is still possible to have samples that blow up, especially with larger

σ values. To prevent this from adversely affecting the model, we replace x′
i that

contain unreasonably large or non-finite values back with their originals xi during the

optimization process. We also keep track of the amount of x′
i we replace and call

its ratio to the total number of produced x′
i the replacement rate. As expected, the

replacement rate increases as the standard deviation of the approximate posterior σ is

increased.

22

CHAPTER 4

EXPERIMENTS

We now show our experimental results in this chapter. We begin by discussing the

datasets we use and our evaluation setup.

4.1 Datasets

We perform experiments on two datasets used widely in generative modeling settings:

CelebA [54] and CIFAR-10 [51].

Table 4.1: Details of the Datasets Used in Our Experiments

Dataset Image Size
Number of Images

Number of Classes
Training Validation Test

CelebA 256× 256 162,770 19,867 19,962 -

CIFAR-10 32× 32 50,000 - 10,000 10

The CelebA [54] dataset is composed of more than 200,000 high resolution celebrity

images from the internet with large pose and size variations. These images are an-

notated with landmarks for cropping faces from them as well as attributes, and a

pre-cropped version is provided with all face images resized to 218× 178. To obtain

higher quality images for use as a baseline, we center-crop face images using the pro-

vided landmarks and resize them to a uniform 256 × 256. We further downsample

these using a bicubic kernel by powers of two for use in our intermediate models to

obtain 128× 128, 64× 64, 32× 32, 16× 16 and 8× 8 images. We do not make use

of the face attribute data in our work.

23

The CIFAR-10 [51] dataset has a total 60,000 small 32×32 images equally distributed

through its ten classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and

truck. We downsample these to 16 × 16 and 8 × 8 for our intermediate models, and

also employ the class labels in some experiments. Since the dataset has no official

validation set, we randomly split 5,000 images (500 from each class) from the training

set to use for hyper-parameter tuning as our validation set, and use the remaining

45,000 images for training.

In our final experiments, we add the validation set to the training set and report eval-

uation metrics on the test set.

4.2 Evaluation Metrics

The FID (Fréchet Inception Distance) [12] metric is commonly used to evaluate the

generative quality of deep models. FID works by comparing the distribution of two

datasets’ InceptionV3 embeddings, keeping the underlying pre-trained network the

same as the previous IS (Inception Score) metric [10]. The mean and covariance ma-

trix of the embeddings are calculated, and the embeddings are assumed to be normally

distributed. Then, the distributions of the difference between the two distributions is

calculated with 2-Wasserstein Distance, and the result is the FID. Since it is a distance

metric, a lower scalar value for the FID implies better generative properties.

KID (Kernel Inception Distance) [55] was proposed more recently as a statistically

unbiased, improved alternative to FID. Another improved approach [56] proposes

disentangling the fidelity of the generated images and the coverage of the provided

dataset with precision and recall as the two metrics, since FID is a single scalar re-

warding both of these: A model generating high fidelity images but covering only

a few modes of the dataset will get an FID score similar to a very different model

generating low fidelity images but having excellent mode coverage [56].

Even though these recent works offer improvements over FID, FID remains more

prevalent as a measure of generative quality in literature, including recent work we

compare our results with [57]. For this reason, we also choose FID as the evaluation

metric in our experiments. We use 50,000 generated samples to calculate sample

24

statistics in our experiments unless stated otherwise, which is also the number used in

the original work [12]. For dataset splits, we use all the available images in the split to

compute statistics. Also note that we compare each model with the dataset resized to

its target size. For example, a model trained on the resized 16× 16 CIFAR-10 dataset

is evaluated by calculating its FID relative to the resized 16 × 16 CIFAR-10 dataset,

not the original 32× 32 CIFAR-10 dataset.

4.3 Training Setup

4.3.1 Architecture Details

We use the SRFlow [36] architecture for our conditional upscaling models, and Glow

[7] as our base model generating small images unconditionally. We use the sigmoid

squishing approach discussed in 3.2.1 with α = 0.5 in all of our SRFlow models to

improve their inverse stability, but not the base Glow models since they are stable

enough without sigmoid squishing.

Our base Glow models are composed of L = 3 levels at different scales (levels are

as explained in 2.2.3.4), with each level containing K = 32 triple actnorm-invertible

1x1 convolution-affine coupling blocks. The small neural networks generating scale

and shift values have a large k = 512 channels in their intermediate activation layers.

Our SRFlow models have the same underlying architecture as Glow and are com-

posed of L = 4, with each level containing K = 16 triplet blocks. Scale and shift

generating networks have k = 64 channels in the intermediate activation layers to

reduce computation time. The RRDB [52] model generating conditional embeddings

from the low-resolution input has the standard 23-block architecture, and we dis-

tribute the same embeddings as conditional inputs to each level of the underlying

Glow model.

For our main CIFAR-10 experiments, we use class-conditional models as done for

the qualitative experiments in Glow [7]. This is achieved by making the prior of the

final level latent variables have class-dependent mean and variance, generated from a

one-hot encoding with a linear transformation, instead of being standard normals. A

25

binary cross-entropy loss term is also introduced on a linear projection of the latent

variable to encourage class separation. This term is weighted by a factor λc = 0.01

and added to the original NLL (negative log-likelihood) loss during training. We also

extend our SRFlow models with the same class-conditional modeling capabilities.

4.3.2 Optimization Settings

We use the Adamax [58] instead of the more commonly used Adam [58] for training

both our Glow and SRFlow models since we find it improves model convergence.

Our Glow models are trained with learning rate λ = 5 × 10−4, β1 = 0.9 and β2 =

0.999, with γ = 5 × 10−5 weighted L2 weight decay. Every model is trained for

200,000 iterations, and the learning rate is linearly increased during the first 5 epochs.

A batch size of 128 is used in our CelebA experiments, and a batch size of 512 is used

in our CIFAR-10 experiments.

For the SRFlow models, we use a slightly reduced learning rate λ = 2.5 × 10−4,

β1 = 0.9 and β2 = 0.99 with no L2 weight decay. The models are again trained for

200,000 iterations, and their learning rate is cut in half at 100,000, 150,000, 180,000

and 190,000 iterations to improve final convergence. A batch size of 64 is used all

around. The conditional RRDB models are also pre-trained for 200,000 iterations

using L1 loss, with Adam as their optimizer and a learning rate of λ = 2 × 10−4.

During SRFlow training, the RRDB model is frozen for the first 100,000 iterations,

and then unfrozen and fine-tuned for the following 100,000.

4.4 Quantitative Results

We now provide quantitative FID results of our experiments on the test splits of the

CelebA dataset in Table 4.2 and the CIFAR-10 dataset in Table 4.3. As with Glow

[7], we use reduced-temperature sampling, in which the standard deviation of the

prior distribution is reduced through multiplication with a constant to decrease the

number of outlying high-noise samples, with τ = 1.0 implying an unmodified prior.

We use temperature τ = 0.8 for our CelebA sampling and τ = 0.9 for our CIFAR-10

26

sampling. For calculating FID, we use CleanFID [59], which is careful with the selec-

tion of filters used in rescaling, as the choice can significantly affect FID results. Most

studies do not report FID on CelebA due to it being a relatively unimodal dataset, and

Grcic et al. [57] report FID on the training split rather than test split. We however still

calculate FID scores on the CelebA test split to be able to compare different models

internally in our work.

Because our quantitative experiments only show at most one variationally-trained

model in the cascade, we also provide that model’s replacement rate, which is the

ratio of noisy augmented samples that we have to replace with their originals due to

an unsuccessful inversion attempt producing very large, NaN or inf values. This

rate becomes higher with increasing σ as latent variables get further from the training

distribution with added noise.

Our models are named through a combination of the models in their cascade, and val-

ues in parentheses represent the σ value used in their variational training if performed.

Intermediate FID values are reported on intermediate results. We use the CC suffix

to denote class-conditional models for the CIFAR-10 experiments. To clarify with

an example: Glow16-SRF32(0.02)-SRF64 implies a cascade in which a Glow model

generates a base 16× 16 image. Then, an SRFlow model generating 32× 32 images

goes through variational training using σ = 0.02 with the previous Glow model. Fi-

nally, an SRFlow model generating 64× 64 images is trained in the standard fashion

(no σ coefficient given) using low-resolution conditioning data from the dataset only.

Our results in terms of FID are lower than results reported in recent literature. We

believe that this is due to the lack of in-depth tuning: FID reported by Chen et al.

[8] from an official Glow model on CIFAR-10 is 46.90, while we only obtain 60.91

when attempting to train the same model. However, we believe that our results are

internally consistent since we use the same settings when training our own models.

The first interesting observation of note when comparing results from the two datasets

is the fact that starting unconditional generation from the lowest possible resolution

is not always beneficial. FID on CelebA turns out best when starting with Glow

from 16 × 16 rather than 32 × 32 or 64 × 64. For CIFAR-10 however, starting from

16 × 16 is significantly better than starting from 8 × 8, while also being better than

27

Table 4.2: FID Results on CelebA

Model Replacement Rate
CelebA FID Score

16 32 64

Related Work DenseFlow-74-10 (Grcić et al., NIPS’2021) - - - 17.1

Ours

Glow16-SRF32-SRF64 - 5.27 12.30 28.55

Glow16-SRF32(0.02)-SRF64 0.00 5.27 12.09 27.14

Glow16-SRF32(0.03)-SRF64 0.00 5.27 12.41 27.84

Glow16-SRF32(0.05)-SRF64 0.00 5.27 14.17 29.13

Glow16-SRF32-SRF64(0.25) 0.00 5.27 12.30 25.79

Glow16-SRF32-SRF64(0.50) 0.00 5.27 12.30 22.76

Glow16-SRF32-SRF64(1.00) 0.11 5.27 12.30 29.13

Glow16-SRF32(0.02)-SRF64(0.50)(*) - 5.27 12.09 22.03

Glow32-SRF64 - - 18.71 36.11

Glow64 - - - 50.52

performing the full generation with Glow at 32 × 32. We believe that every dataset

has its own sweet-spot for the starting resolution: 16 × 16 images may form a good

template for face generation, but 8 × 8 CIFAR-10 images are little more than high-

entropy color blobs and training a generative model on them seems unstable. Adding

further information in the form of class-conditioning to the 8×8 setting unexpectedly

destabilizes the training and results in a lower FID score than unconditional training,

even though class-conditioning significantly improves FID in the 32 × 32 setting.

With the proper starting resolution, our cascade models outperform direct generation

even without variational training.

Another interesting result is the fact that our Glow16-SRF32 cascade slightly outper-

forms the GlowCC32 model that is class-conditional, while being entirerly uncondi-

tional. In contrast, our class-conditional cascade model GlowCC16-SRFCC32 shows

only slight improvement compared to its conditional counterpart.

Both the CelebA and CIFAR-10 results show that variational training with a sensible

σ value can improve generative results, while large values decrease FID due to the in-

consistencies they induce. In the CelebA setting, we see that training the final SRF64

model with σ = 0.25 obtains better FID than standard non-variational training, while

σ = 0.5 achieves even better FID. However, σ = 1.0 gets worse results than stan-

dard training due to excessive noise. We can see similar results in CIFAR-10 with

28

Table 4.3: FID Results on CIFAR-10

Model Replacement Rate
CIFAR-10 FID Score

8 16 32

Related Work

i-ResNet (Behrmann et al., ICML’2019) - - - 65.01

Glow (Kingma & Dhariwal, NIPS’2018) - - - 46.90

Residual Flow (Chen et al., NIPS’2019) - - - 46.37

DenseFlow-74-10 (Grcić et al., NIPS’2021) - - - 34.90

Ours

Glow8-SRF16-SRF32 - 8.33 31.90 72.77

Glow8-SRF16-SRF32(0.75) 0.11 8.33 31.90 73.32

Glow8-SRF16-SRF32(1.00) 0.55 8.33 31.90 73.17

Glow16-SRF32 - - 22.29 60.07

Glow32 - - - 77.54

GlowCC8-SRFCC16-SRFCC32 - 11.93 35.87 73.64

GlowCC8-SRFCC16(0.02)-SRFCC32 0.00 11.93 32.42 75.70

GlowCC8-SRFCC16(0.05)-SRFCC32 0.01 11.93 38.12 82.23

GlowCC8-SRFCC16(0.10)-SRFCC32 0.14 11.93 42.54 87.7

GlowCC16-SRFCC32 - - 22.89 58.35

GlowCC32 - - - 60.91

SRFCC16’s variational training, where σ = 0.05 is optimal in the 16× 16 setting.

4.4.1 Selection of Noise Variance for Variational Training

Intuitively, we want variational training to help train our current model fix mistakes

that may be made by the previous model. For this reason, we disturb the low-

resolution conditioning input at the feature level with σ standard-deviation Gaussian

noise while keeping the target high-resolution output the same. For low enough σ,

the augmented LR input corresponds to the same image with some unnatural artifacts,

while it becomes excessively noisy or something else entirely for large σ.

For Glow, injecting noise at the feature level quickly moves the reconstruction away

from the original image as shown in Figure 4.1. We therefore keep σ in the small [0,

0.1] range to have sensible pairs.

SRFlow however is highly resistant to noise as shown in Figure 4.2 due to being

conditioned on low-resolution input, and we can keep σ large in the range [0, 1]. We

29

Figure 4.1: Glow Reconstructions with σ linearly increasing from 0 to 0.25

can still see that the injected noise introduces color jitter-like artifacts even for smaller

σ upon close inspection, which we believe helps the variationally trained model get

used to fixing artifacts such as these instead of amplifying them.

Figure 4.2: SRFlow Reconstructions with σ linearly increasing from 0 to 1

4.4.2 Quantitative Effects of Sigmoid Squishing

The sigmoid squishing modification we apply to the affine coupling is necessary to

improve the invertibility of our models for variational training. To illustrate this,

we measure sample failure rate during training, which is the ratio of images whose

reconstructions from the latent space fail after adding σ noise to their latent represen-

tations, failure in this instance meaning producing an reconstruction containing inf

or NaN values. How sample failure rate evolves during training for a non-squished

SRFlow model (α = 0) compared to a squished SRFlow model (α = 0.5) on 32× 32

CelebA is shown in Figure 4.3. The squished model quickly achieves practically zero

failure rate while the non-squished model still fails on more than 60% of the samples

for noise σ = 0.5. The effect is even more pronounced for σ = 1.0, where the non-

squished model always fails, while the squished model successfully manages to learn

a reduced failure rate.

To observe possible effects squishing may have on sample quality, we run a small

ablation experiment where we train both a squished and non-squished Glow model

30

on the 8 × 8 and 16 × 16 CelebA test splits. Their sample FID results are shown in

Table 4.4 on a few different temperatures. Rather than having a detrimental effect, the

squishing seems to reduce the frequency of outliers for higher temperatures through

its inverse stabilization effect, slightly improving FID results for higher temperatures.

Table 4.4: Effect of Sigmoid Squishing Glow on FID on Resized CelebA

Glow Model α

CelebA FID Score

τ = 0.8 τ = 0.9 τ = 1.0

8 16 8 16 8 16

α = 0 4.83 5.27 2.25 4.76 1.79 5.62

α = 0.5 3.27 6.01 1.90 4.73 1.51 5.41

4.4.3 Effect of Sampling Temperature on FID

The effect of temperature on the FID on our best models for the two datasets are

shown in Figure 4.4. We see that CIFAR-10 is more adversely affected by low tem-

perature due to the multi-modality of the dataset relative to CelebA and is less af-

fected by outliers brought about by higher temperature for the same reason. The

optimal temperature ranges for FID look like [0.8, 0.9] for CIFAR-10 and [0.7, 0.8]

for CelebA. We observed similar results with our initial models and erred on the side

of generation variety, choosing τ = 0.9 for CIFAR-10 and τ = 0.8 for CIFAR-10.

4.5 Qualitative Results

We show CelebA results from our best model Glow16-SRF32-SRF64(0.5) that achieves

22.76 FID. and compare with the same model that is not trained variationally, Glow16-

SRF32-SRF64 that achieves 28.55 FID in Figure 4.5. The variationally trained model

seems to produce smoother outputs with less abrupt edge and color jittering. This

becomes more easily visible in more unlikely faces as we go down in the figure: the

variationally trained model successfully recovers structure while the standard model

produces noisy outputs having some inconsistent facial features.

31

We also show random class-conditional samples from our best CIFAR-10 model

GlowCC16-SRFCC32 achieving 58.35 FID in Figure 4.6. While the model has a

general idea about classes, it has trouble with the multi-modal dataset and seems to

mix classes in some samples, producing objects like an automobile with horse legs

and a cat with a bird head.

32

Figure 4.3: Sample Failure Rate during 32× 32 CelebA Training with SRFlow

33

Figure 4.4: Effect of Temperature on FID on the Two Datasets

34

Glow16 -SRF32 -SRF64 -SRF64(0.5)

Figure 4.5: Comparison Between Non-Variational and Variational Training Results

35

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Figure 4.6: Random Samples from Our Best Class-Conditional CIFAR-10 Cascade

36

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this final chapter, we conclude this thesis with a summary of our contributions and

discuss future methods in which our current work can be extended.

5.1 Conclusion

We propose a method to improve image fidelity in normalizing flow models via a cas-

cade composed of a small resolution unconditional normalizing flow model followed

by conditional super-resolution normalizing flow models that refine the initially gen-

erated image. We thus aim to simplify the task of each model to either generating

a simple image or slightly improving an existing one rather than generating a whole

high resolution image from scratch with a single model.

We further introduce a principled way of augmenting the low-resolution condition-

ing data for our intermediate super-resolution models based on variational inference.

This augmentation disturbs low-resolution inputs at the feature level while keeping

their target super-resolution the same, aiming to render the cascade more resistant to

artifacts and noisy outliers that may be produced by initial models in the cascade and

prevent their error from being amplified.

While not on par with state of the art methods due to lack of fine-tuning, our experi-

mental results in Chapter 4 internally show that with a correct choice of initial model

resolution, our cascade models improve generation fidelity relative to direct genera-

tion when evaluated with FID score. Our low-resolution augmentation method is also

shown to be able to improve FID when the amount of noise added at the feature level

37

is chosen sensibly. We also demonstrate the necessity of improving the invertibility

of the models we use to make our variational training scheme viable, and explore the

effect of low-temperature sampling on FID scores.

5.2 Future Work

We plan on further tuning the architecture and training settings of our models and

match our own Glow model’s results with the official pre-trained ones to be able to

really compare results with the state of the art in an unbiased setting in future studies,

possibly on additional datasets.

A possible improvement on our variational training scheme is proper noise scaling.

While we apply the same amount of noise to each latent vector split in the multi-level

Glow architecture, these partial latent vectors do not all have the same underlying

standard normal distribution: their means and variances are conditioned on the part

of the input that has been split off. Additionally, the final latent variable can also have

means and variances conditioned on class labels or as set as learnable parameters.

Tuning the scaling of the noise to each of these partial latent vectors individually

could improve the performance gains offered by our variational training scheme.

Improving perceptual image quality in models trained via maximum-likelihood ap-

proaches remains an interesting problem with many avenues to be explored.

38

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial networks,” Communica-

tions of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[2] I. J. Goodfellow, “On distinguishability criteria for estimating generative mod-

els,” May 2015. arXiv:1412.6515 [stat].

[3] G. Perarnau, J. van de Weijer, B. Raducanu, and J. M. Álvarez, “Invertible Con-

ditional GANs for image editing,” Nov. 2016. arXiv:1611.06355 [cs].

[4] E. G. Tabak and C. V. Turner, “A family of nonparametric density estimation

algorithms,” Communications on Pure and Applied Mathematics, vol. 66, no. 2,

pp. 145–164, 2013.

[5] L. Dinh, D. Krueger, and Y. Bengio, “NICE: non-linear independent compo-

nents estimation,” in International Conference on Learning Representations

(ICLR), 2015.

[6] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real NVP,”

in International Conference on Learning Representations (ICLR), 2017.

[7] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 con-

volutions,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[8] R. T. Chen, J. Behrmann, D. K. Duvenaud, and J.-H. Jacobsen, “Residual flows

for invertible generative modeling,” Advances in Neural Information Processing

Systems, vol. 32, 2019.

[9] A. Brock, J. Donahue, and K. Simonyan, “Large Scale GAN Training for High

Fidelity Natural Image Synthesis,” Feb. 2019. arXiv:1809.11096 [cs, stat].

[10] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,

“Improved techniques for training gans,” Advances in Neural Information Pro-

cessing Systems, vol. 29, 2016.

39

[11] A. Grover, M. Dhar, and S. Ermon, “Flow-GAN: Combining Maximum Like-

lihood and Adversarial Learning in Generative Models,” arXiv:1705.08868 [cs,

stat], Jan. 2018. arXiv: 1705.08868.

[12] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans

trained by a two time-scale update rule converge to a local nash equilibrium,”

Advances in Neural Information Processing Systems, vol. 30, 2017.

[13] A. H. Bermano, R. Gal, Y. Alaluf, R. Mokady, Y. Nitzan, O. Tov, O. Patashnik,

and D. Cohen-Or, “State-of-the-art in the architecture, methods and applications

of stylegan,” in Computer Graphics Forum, vol. 41, pp. 591–611, Wiley Online

Library, 2022.

[14] A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent

neural networks,” in International Conference on Machine Learning (ICML),

pp. 1747–1756, PMLR, 2016.

[15] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al.,

“Conditional image generation with pixelcnn decoders,” Advances in Neural

Information Processing Systems, vol. 29, 2016.

[16] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A Generative

Model for Raw Audio,” Sept. 2016. arXiv:1609.03499 [cs].

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” Dec. 2017.

arXiv:1706.03762 [cs].

[18] D. P. Kingma and M. Welling, “Auto-encoding variational {Bayes},” in Inter-

national Conference on Learning Representations (ICLR), 2014.

[19] D. P. Kingma, M. Welling, et al., “An introduction to variational autoencoders,”

Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392,

2019.

[20] D. Rezende and S. Mohamed, “Variational inference with normalizing flows,”

in International Conference on Machine Learning (ICML), pp. 1530–1538,

PMLR, 2015.

40

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[22] J. Susskind, A. Anderson, and G. E. Hinton, “The toronto face dataset,” 2010.

[23] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans

for improved quality, stability, and variation,” in International Conference on

Learning Representations (ICLR), 2018.

[24] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Neural spline flows,”

Advances in Neural Information Processing Systems, vol. 32, 2019.

[25] J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel, “Flow++: Improving

flow-based generative models with variational dequantization and architecture

design,” in International Conference on Machine Learning (ICML), pp. 2722–

2730, PMLR, 2019.

[26] R. S. Sukthanker, Z. Huang, S. Kumar, R. Timofte, and L. Van Gool, “Genera-

tive flows with invertible attentions,” in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp. 11234–11243, 2022.

[27] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville, “Neural Autoregressive

Flows,” Apr. 2018. arXiv:1804.00779 [cs, stat].

[28] P. Jaini, K. A. Selby, and Y. Yu, “Sum-of-squares polynomial flow,” in Interna-

tional Conference on Machine Learning (ICML), pp. 3009–3018, PMLR, 2019.

[29] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and

M. Welling, “Improved variational inference with inverse autoregressive flow,”

Advances in Neural Information Processing Systems, vol. 29, 2016.

[30] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregressive flow

for density estimation,” Advances in Neural Information Processing Systems,

vol. 30, 2017.

[31] J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J.-H. Jacobsen, “In-

vertible residual networks,” in International Conference on Machine Learning

(ICML), pp. 573–582, PMLR, 2019.

41

[32] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordi-

nary differential equations,” Advances in Neural Information Processing Sys-

tems, vol. 31, 2018.

[33] C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling, “Learning Likelihoods

with Conditional Normalizing Flows,” arXiv:1912.00042 [cs, stat], Nov. 2019.

[34] Y. Lu and B. Huang, “Structured output learning with conditional generative

flows,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,

pp. 5005–5012, 2020.

[35] A. Abdelhamed, M. A. Brubaker, and M. S. Brown, “Noise Flow: Noise Mod-

eling with Conditional Normalizing Flows,” Aug. 2019. arXiv:1908.08453 [cs,

eess].

[36] A. Lugmayr, M. Danelljan, L. V. Gool, and R. Timofte, “Srflow: Learning the

super-resolution space with normalizing flow,” in Proceedings of the European

Conference on Computer Vision (ECCV), pp. 715–732, 2020.

[37] J. Liang, A. Lugmayr, K. Zhang, M. Danelljan, L. Van Gool, and R. Timofte,

“Hierarchical conditional flow: A unified framework for image super-resolution

and image rescaling,” in Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision (ICCV), pp. 4076–4085, 2021.

[38] A. Lugmayr, M. Danelljan, F. Yu, L. Van Gool, and R. Timofte, “Normaliz-

ing flow as a flexible fidelity objective for photo-realistic super-resolution,” in

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision, pp. 1756–1765, 2022.

[39] Y. Kim and D. Son, “Noise Conditional Flow Model for Learning the Super-

Resolution Space,” June 2021. arXiv:2106.04428 [cs].

[40] R. Morrow and W.-C. Chiu, “Variational Autoencoders with Normalizing Flow

Decoders,” arXiv:2004.0617 [cs, stat], Apr. 2020.

[41] T. Lucas, K. Shmelkov, K. Alahari, C. Schmid, and J. Verbeek, “Adversarial

training of partially invertible variational autoencoders,” in ICML Workshop on

Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models

(INNF+), 2019.

42

[42] G. G. F. Pires and M. A. Figueiredo, “Variational mixture of normalizing flows,”

in Proceedings of the European Symposium on Artificial Neural Networks, 2020.

[43] J. J. Yu, K. G. Derpanis, and M. A. Brubaker, “Wavelet flow: Fast training of

high resolution normalizing flows,” Advances in Neural Information Processing

Systems, vol. 33, pp. 6184–6196, 2020.

[44] V. Voleti, C. Finlay, A. Oberman, and C. Pal, “Multi-Resolution Continuous

Normalizing Flows,” in ICML Workshop on Invertible Neural Networks, Nor-

malizing Flows, and Explicit Likelihood Models (INNF+), 2021.

[45] O. K. Yüksel, S. U. Stich, M. Jaggi, and T. Chavdarova, “Semantic perturba-

tions with normalizing flows for improved generalization,” in Proceedings of

the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6619–

6629, 2021.

[46] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsu-

pervised learning using nonequilibrium thermodynamics,” in International Con-

ference on Machine Learning (ICML), pp. 2256–2265, PMLR, 2015.

[47] Y. Song and S. Ermon, “Improved techniques for training score-based gener-

ative models,” Advances in Neural Information Processing Systems, vol. 33,

pp. 12438–12448, 2020.

[48] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Ad-

vances in Neural Information Processing Systems, vol. 33, pp. 6840–6851,

2020.

[49] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cas-

caded diffusion models for high fidelity image generation,” Journal of Machine

Learning Research, vol. 23, pp. 47–1, 2022.

[50] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and

approximate inference in deep generative models,” in International conference

on machine learning, pp. 1278–1286, PMLR, 2014.

[51] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Sept.

2009.

43

[52] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy,

“Esrgan: Enhanced super-resolution generative adversarial networks,” in Euro-

pean Conference on Computer Vision (ECCV) Workshops, 2018.

[53] J. Behrmann, P. Vicol, K.-C. Wang, R. Grosse, and J.-H. Jacobsen, “Under-

standing and mitigating exploding inverses in invertible neural networks,” in In-

ternational Conference on Artificial Intelligence and Statistics, pp. 1792–1800,

PMLR, 2021.

[54] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the

wild,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), pp. 3730–3738, 2015.

[55] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying mmd

gans,” in International Conference on Learning Representations (ICLR), 2018.

[56] M. S. Sajjadi, O. Bachem, M. Lucic, O. Bousquet, and S. Gelly, “Assessing

generative models via precision and recall,” Advances in Neural Information

Processing Systems, vol. 31, 2018.

[57] M. Grcić, I. Grubišić, and S. Šegvić, “Densely connected normalizing flows,”

Advances in Neural Information Processing Systems, vol. 34, pp. 23968–23982,

2021.

[58] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in

International Conference on Learning Representations (ICLR), 2015.

[59] G. Parmar, R. Zhang, and J.-Y. Zhu, “On aliased resizing and surprising sub-

tleties in gan evaluation,” in Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2022.

44

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Contributions
	Outline

	Literature Review
	Related Work
	Background
	Normalizing Flows
	Variational Auto-Encoders
	Glow
	Actnorm
	Invertible 1x1 Convolution
	Affine Coupling Block
	Split and Squeeze
	Performance

	SRFlow
	Conditioning Normalizing Flows
	Conditional Affine Coupling
	Affine Injector

	Method
	CSRFLOW- Cascaded SRFlow
	Exact Density Estimation

	Variational Training
	Improving the Invertibility of Normalizing Flows

	Experiments
	Datasets
	Evaluation Metrics
	Training Setup
	Architecture Details
	Optimization Settings

	Quantitative Results
	Selection of Noise Variance for Variational Training
	Quantitative Effects of Sigmoid Squishing
	Effect of Sampling Temperature on FID

	Qualitative Results

	Conclusion and Future Work
	Conclusion
	Future Work

	REFERENCES

