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ABSTRACT

KILLING FAMILY OF TENSORS AND HIDDEN SYMMETRIES

Giinel, Okan
M.S., Department of Physics

Supervisor: Prof. Dr. Bahtiyar Ozgiir Sarioglu

August 2022, [69| pages

In this thesis, the symmetries of the spacetimes and symmetry related Killing fam-
ily of tensors are investigated. The relations between the members of the Killing
family of tensors are given. Conserved gravitational charges for the spacetimes are
discussed. We calculated conserved charges for Myers-Perry spacetimes using the
conserved Kastor-Traschen [[1] current obtainable from Killing-Yano tensors in 4, 5,

6, 7, and 8 dimensions.

We also studied a Kerr-like metric for rotating spacetimes. We showed that they share
a common (conformal) Killing-Yano tensor and that the Hamilton-Jacobi equation
separates. We found Carter’s fourth constant of motion [2] using the separability and

using Killing tensors obtainable from the Killing-Yano tensor.

Keywords: Symmetries, Killing-Yano, Hamilton-Jacobi, conserved charges, separa-

bility



0z

KILLING TENSOR AILESI VE SAKLI SIMETRILER

Giinel, Okan
Yiiksek Lisans, Fizik Boliimii

Tez Yoneticisi: Prof. Dr. Bahtiyar Ozgiir Sarioglu

Agustos 2022 , [69] sayfa

Bu tezde, uzayzaman simetrileri ve bu simetrilerle bagdastirilabilen Killing tensor
ailesi incelenmistir. Killing tensor ailesi bilesenleri arasindaki iliskiler verilmisgtir.
Uzayzamanlarda korunan yiikler tartisilmistir. 4, 5, 6, 7 ve 8 boyutlu Myers-Perry
uzayzamanlarinda, Killing-Yano tensorlerden olusturulan Kastor-Traschen [[1] akimi1

kullanilarak korunan yiikler bulunmustur.

Ayrica, donme parametresine sahip Kerr benzeri uzayzamanlar i¢in genel bir met-
rik ¢aligilmistir. Bu metriklerin ortak bir (acikorur) Killing-Yano tensorii oldugu ve
Hamilton-Jacobi denkleminin ayrilabilir oldugu gosterilmistir. Ayrilabilirlik ve Killing-
Yano tensoriinden elde edilebilecek olan Killing tensor kullanilarak, hareketin Carter

sabiti [2] bulunmustur.

Anahtar Kelimeler: Simetri, Killing-Yano, Hamilton-Jacobi, korunan yiikler, ayrila-

bilirlik
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CHAPTER 1

INTRODUCTION

In physics, one tries to determine and analyze the motion of a single or a group of
particles. These motions are determined through a set of differential equations. The
symmetries play an important role while solving the differential equations. In general
relativity, orbits of the particles are found by solving second-order nonlinear differ-
ential equations called geodesic equations. One can reduce the number of differential

equations using symmetries or symmetry generators.

Some symmetries may be obvious and easy to see. However, there may be some hid-
den symmetries. The Killing family of tensors is useful to reveal those symmetries.
A Killing vector is a symmetry generator of the spacetime. Killing vectors give first
integrals of motion that are conserved along the geodesics. They can be generalized
to higher rank symmetric or antisymmetric tensors, Killing and Killing-Yano ten-
sors, respectively. Killing-Yano tensors can be used to get Killing tensors, and later,
higher-order conserved quantities can be found by using Killing tensors. As Carter
showed [2] for the Kerr metric, higher-order conserved quantities can be found from
the separability of the Hamilton-Jacobi equation. In the following years, it was re-
vealed that the existence of a Killing tensor for the Kerr metric led to the separability
[3]. It was generalized to the charged particle case with the Kerr-Newman metric
later by Hughston et al. [4]. In 1976, it was shown that the Dirac’s equation in Kerr
[S] and Kerr-Newman [6] spacetimes is also separable. Later, it was revealed that the

Killing-Yano tensor is the reason behind the separability of Dirac’s equation [7]].

Conformal Killing vectors are the generators of the conformal transformations. Sim-
ilar to the Killing vectors, conformal Killing vectors can be used to give the first

integrals of motion for massless particles. Their generalization to higher ranks are



called conformal Killing and conformal Killing-Yano tensors (CKYT). There is a du-
ality between the closed conformal Killing- Yano tensors (CCKYT) and Killing-Yano
tensors [8]. Using this duality, one can start from a CCKYT and construct different
ranks of CCKYTs, Killing-Yano tensors, and Killing tensors. An extensive review
of the relations within the Killing family of tensors, and hidden symmetries can be

found in [9].

In addition to the first integrals of motion, the Killing family of tensors can be used
for determining conserved quantities of the spacetime, e.g., total mass or angular
momentum. In order to find exact conserved gravitational charges, one needs to find
a covariantly closed current and integrate it over the whole space. Furthermore, one
can find asymptotic conserved gravitational charges when the metric is divided into
a background and a deviation that vanishes at the spatial infinity, using the Abbott-
Deser (AD) construction [10]. In [10], a Killing vector is used with the energy-
momentum tensor to construct a background covariantly conserved current. Kastor
and Traschen [1]] showed that similar to the AD construction, arbitrary rank Killing-
Yano tensors also can be used to construct such currents to find background charges.
In [11} 12], new conserved currents using the Killing-Yano tensors and CKYTs are

given; however, these currents give exact charges instead of asymptotic charges.

The outline of the thesis is as follows. In the second chapter, we will give the def-
initions of Killing family of tensors with their properties and the relations between
them. In the third chapter, we will show how Stokes’ theorem can be used to get
conserved charges by using covariantly conserved currents of arbitrary rank. In the
fourth chapter, we will explicitly give Killing-Yano tensors of Myers-Perry blackholes
in4, 5, 6,7, and 8 dimensions. We will also calculate conserved charges using these
Killing-Yano tensors and KT currents. In the fifth chapter, we will work on a general
Kerr-like metric and give (conformal) Killing and (conformal) Killing-Yano tensors.
We will discuss the separability of the Hamilton-Jacobi equation and its relation with

the Killing tensors. A discussion will be given in the final chapter.



1.1 Preliminaries

In this thesis, we work on spacetimes which are manifolds of finite dimension with
metric compatible affine connections. Let g be the metric of the spacetime with the

signature (—, +, ..., +). It satisfies
Vg, =0, (1.1)

for a metric compatible affine connection V. Throughout the thesis, torsion is as-
sumed to be zero and connection coefficients are the symmetric Levi-Civita connec-
tions

1
Ful/p = 59/“7 (augap + 8pgua - 8091/;7) . (12)

We will work in natural units with G = ¢ = h = 1. We will use square brackets and
parantheses on indices to antisymmetrize and symmetrize them, respectively. Let T’
be an arbitrary tensor of rank-2. Then, the antisymmetrization and symmetrization of

T can be done as

1 1
Ty = 21 (Tuv - Tvu) v Ty = 21 (Tuv + Tvu) : (1.3)

Following the notation of [13], a differential n-form w in a D-dimensional (D > n)

manifold M is a totally antisymmetric tensor of type (0, n) defined as

1
w= awm__,undx“l A ANdatr (1.4)

where 2’s are the coordinates on the manifold. The vector space of n-forms at a point
p on the manifold M is denoted as (2 (M). The exterior derivative of n-form w is a
map 7'(M) — QY (M) defined as

1
dw = _|au (wm..-un) dz” Ndx" A - A dxt. (1.5)
n.

There is an isomorphism between (2 (M) and QP (M) in a D-dimensional man-
ifold defined by the Hodge star (dual) operation. Define the totally antisymmetric

tensor € by
+1, if (uapea - - . fy) is an even permutation of (12...m)
€prpn = § —1, if (12 . .. py) is an odd permutation of (12...m) (1.6)

0, otherwise .



Hodge star of an n-form w is

*W = n'(D— ”|f|n)'wm,,_ung““’1 o gtmtrey L pdat TN - N datP (1.7)

where g is the determinant of the metric g,,, .



CHAPTER 2

KILLING FAMILY OF TENSORS

2.1 Killing Vectors

Let there be an infinitesimal transformation of coordinates

o't = ot 4 el (x) where |e] < 1.

2.1)

If the metric g,,,, is form invariant under this transformation, then it should satisfy

9w (@) = g () .

(2.2)

Any transformation satisfying the form invariance of the metric is called an isometry.

A form invariant metric is transformed under a coordinate transformation as follows:

ox'? 0x'°
guv(l’) = @nga(xl) .

Expanding (2.3) to the first order in €, we get

3 og” 09,0
) ) + 2 g () 4 (2

This can be written in terms of §,, = ¢,,,§"

& | 9, e (3gpa R 89%) 0

oxP  0x° ozt oxP o0x°
aéO’ agﬂ W _
5P + Erche QSMF oo = 0.

In terms of covariant derivatives, the form invariance condition becomes
Vo +Vs§, =0 or V&) =0.

5

(2.3)

(2.4)

(2.5)

(2.6)

2.7)



This equation is known as the Killing equation and any vector satisfying the equation
is called a Killing vector [[13]. Using the definition of the Lie derivative, the Killing

equation can be written as

(Leg),, =0. (2.8)

This means that the local geometry does not vary as we move along the Killing vector
. Thus, the direction of the symmetry of a manifold is given by the Killing vectors.
In order to find all the isometries of the metric, solving the Killing equation is enough.
For the Minkowski metric, the symmetries are translations in space, time, and Lorentz
transformations. However, finding all the Killing vectors for different metrics may be

more complicated.

A linear combination of the Killing vectors also satisfies the Killing vector equation
(2.7) and this is true for the whole Killing family of tensors. Let £ and £(9) be two
vectors that satisfy (2.7). Then, their linear combination also satisfies

Vo (a&) +b6) + Vo (a gl +b€))) =
a (V) + V,e0) + b (V9 + V,£9) =0. (29
where a and b are arbitrary constants. Additionally, the commutator of two Killing

vectors is also a Killing vector, but it is a linearly independent Killing vector. Let us

use (2.8) with the commutator of two Killing vectors

Lo eing =L (Leg) — Letr (Lewg)
=0.

(2.10)

Thus, the commutator [5 @) ¢U )] is also a Killing vector and the Killing vectors form

a Lie algebra

[5(1‘),5(3‘)} — g(k) ) (2.11)
Killing vectors are related to the Riemann curvature tensor [[14]

V.V, =R, €. (2.12)

Consequently, a Killing vector £# is completely determined by the values of £# and

its first covariant derivative, V&, at any point on the manifold.

6



Killing vectors are conserved along geodesics. Let v be a geodesic which is tangent

to u”. Then, §,u" is constant along the geodesic

u'vV, (Lu”) =u'u"V € + UtV ut (2.13)

The second term vanishes when the geodesic equation ©#V ,u” = 0 is used

utvV, (&u”) =uru"V €,
ZUMUVV(MS,,) .

(2.14)

Hence, a Killing vector £ satisfies

UV, () =0 (2.15)

For a test particle with mass m, p” = u”m can be used to find a first integral of motion
in terms of the momentum vector. In this fashion, every Killing vector is related to

the existence of a conserved quantity along the geodesics [[13]].

2.1.1 Conformal Killing Vectors

Killing vectors can be extended to conformal Killing vectors. First, let us define
conformal transformations. Conformal transformations are the transformations that

change the metric such that

9 (') = g () (2.16)

under an infinitesimal displacement z’* = z# + ey*(x) where ¢ < 1. It can be

written as
0z'? 0x'7 o
%ng(x') = e*gu (7). (2.17)

Expanding (2.17)) to the first order in €, we get

) " 99po
T @)+ T ala) 4 0 D < ogela). 219

We find a by multiplying with the inverse metric

2 gy

_2 99p0
D Ox#

oz’

o} (2.19)

1
oy 4PO
+D¢g

7



where D is the dimension of the manifold. In terms of the Lie derivatives, (2.18))

becomes

(L£49),, = QG - (2.20)
Using the covariant derivatives, we can write (2.20) as

2
Vo, + Vi, = Eg,vawp . (2.21)

This equation is called the conformal Killing equation and any vector satisfying the
equation is called a conformal Killing vector [13]. The conformal Killing vectors
are the infinitesimal generators of conformal transformations (2.16)). Note that when

a = 0, the isometry generators are Killing vectors.

Conformal transformations change the scales of the objects on the manifold but pre-
serves the shapes. Let us have two vectors (* and ¢*. Then, we can define the angle

6 between them as

H R
cosf = 9" . (2.22)
\/ngCPCUgTNQSTQSH
The angle is invariant under the conformal transformations
ca B
cost = TN
V€4 GpaCPCT € gr T O (2.23)

=cosf .

Thus, the conformal transformations do not change the angles between vectors.

Similar to the Killing vectors, a linear combination of conformal Killing vectors is

also a conformal Killing vector

) ) ) ; 2 . ;
Vi (@t +000) +V, (a v +bv) = SV’ (avy) + b)) (224)

where a and b are arbitrary constants. Rearranging this, we see that

. , 2 . A . 2 A
a (V,ﬂﬂy) + Vle(j) - Eguyvp¢él)) +b (Vﬂ’y) + VV@ZJL]) - Egm/va,(;])) =0.
(2.25)

Hence, a 1" + b 1)\9) is also a conformal Killing vector if 1)) and 1)) are conformal

Killing vectors.



Unlike Killing vectors, conformal Killing vectors are not conserved along all geode-

sics. Equation (2.14) for a conformal Killing vector is

u'Vy, (hou”) =uu’V iy
9 (2.26)
:u“u”guyﬁvap )

1, 1s conserved along the geodesics only if u*u”g,, = 0, which means the confor-
mal Killing vectors are conserved only along null geodesics. Thus, they give rise to

conserved quantities for massless particles.

2.2 Killing Tensors

Killing tensors are symmetric generalizations of Killing vectors to higher rank. Let

K

1., D€ @aTank-n totally symmetric tensor

Kpyoopin) = Ko - (2.27)

K is a Killing tensor if it satisfies

VK p) =0 (2.28)
Note that the metric g,,,, itself is a rank-2 Killing tensor because of the metric compati-
bility. Killing tensors give rise to the conserved quantities like the Killing vectors. Let
u” be the tangent to a geodesic «y and satisfy v*V ,u” = 0. Then, K, ,, u/* ... ut"

is a conserved quantity along the geodesic v since it satisfies

Wy (Kt u) =0 (2.29)

Killing tensors can be obtained by symmetric products of Killing vectors. However,
such Killing tensors do not give rise to new conserved quantities aside from those
obtained by Killing vectors. Those Killing tensors will be called reducible Killing
tensors. In 4-dimensions, Kerr metric and in higher dimensions, Myers-Perry metrics

admit nontrivial Killing tensors.



Nontrivial Killing tensors play an important role in separating the Hamilton-Jacobi
equations and solving equations of motion for particles. Carter [2] showed that there
is a fourth constant of motion in Kerr spacetime which can be obtained from the
Killing tensor and demonstrated the separability of Hamilton-Jacobi equations. There
is a strong connection between the separability and the existence of Killing tensors
[3]. However, even if a spacetime admits a Killing tensor, that does not mean that
the Hamilton-Jacobi equation separates. Chervonyi and Lunin [[16] showed that this

happens only if one uses a special set of coordinates.

2.2.1 Conformal Killing Tensors

Conformal Killing vectors can be extended to higher ranks and these tensors are called
conformal Killing tensors. Let (), ., be a rank-n totally symmetric tensor. () sat-
isfies the conformal Killing tensor equation which is a generalized version of the

Killing tensor equation (2.28)) [3]

V(VQm-nun) = ng(l/m@mnﬂn) ) (2.30)

where () can be found by tracing both sides. When @ vanishes, equation (2.30)
reduces to the Killing tensor equation (2.28). A rank-2 conformal Killing tensor

satisfies

VipQu) = 29(,)“@1/) : (2.3D)
Multiplying both sides with g#*, we get

9" (VoQuv + VuQuw + ViuQup) = 2 (97 9puQu + 9”900 Qpu + 9™ 90 Q,) -
(2.32)

Since, V is a metric compatible connection, we can solve it for ()

Q. = (2v,.Q", +V,Q",) . (2.33)

2(D +2)

For the higher rank conformal Killing tensors (n > 2), one should multiply with the

inverse metric more than once to find the Q.

10



Let u” be the tangent to a geodesic y and satisfy ©*V ,u” = 0. Let us examine when

Q.. uHt .. uk is a conserved quantity along the geodesic v,

'V (Quyo o ™) =uf UV Q)
=nut .. utmu g, Qm.._un) (2.34)

— (Ml Hn V) )
=nut . g Qs -

For null geodesics, u(*t . .. utry) 9uu, = 0. Therefore, conformal Killing tensors are
conserved along the null geodesics and they give first integrals of motion for massless

particles similar to the conformal Killing vectors.

2.3 Killing-Yano Tensors

Killing-Yano tensors are antisymmetric generalizations of Killing vectors to higher

ranks. Let f,, ,, be arank-n totally antisymmetric tensor

f[m---un} = furopin - (2.35)

f is a Killing-Yano tensor if it satisfies [[17]]

Vi [z =0 (2.36)

Equivalently, the covariant derivative of a Killing-Yano tensor is completely antisym-

metric

vyful...un == v[u ful...un] . (237)
Killing-Yano tensors can be used for constructing Killing tensors. Let K be a product

of Killing-Yano tensor f with itself

K — fuug...unfu ) (2.38)

V2...Un

Let us take the covariant derivative of (2.38)) and symmetrize the free indices

VipKuw) =V (fuwmynfu)uz...un)
:(_1)n_1fy2.“yn(uvpfu)llz...un + f(,uug‘..un vpfy)yg...Vn (239)
:0 5

11



where in the last line, we used the definition of Killing-Yano tensors. Thus, K defined
in (2.38) satisfies the Killing tensor equation (2.28), and Killing-Yano tensors can be
considered as square roots of Killing tensors. Multipliying (2.36) with the inverse
metric ¢g"#', and using metric compatibility, we see that Killing-Yano tensors are

divergenceless

9"V fuysin = Vol "usepn = 0. (2.40)

Killing-Yano tensors are related to the Riemann curvature tensor [1]]

n+1)

V;Lvyfyl...yn - (_1)n+1( 9 Rpp,[l/lflfllz...l/n]p ; (241)

which is the generalised version of equation (2.12)). Another useful identity is
NGy, =0, (2.42)

where G is the Einstein tensor. This identity is reported in [[11 18] and also general-

ized to the higher ranks in [11]].

2.3.1 Conformal Killing-Yano tensors

A CKYT of rank-n is a totally antisymmetric tensor on a D-dimensional manifold
that satisfies

n

Voikp . = Vigkp . ) + Dontl

Gulpr VK g ] - (2.43)
CKYT is first introduced in [19] for rank-2 and [20] for rank-n. Equivalently, we can

write

n—1
Vki).m = 52 I Y Ko g = 5 Gl 6V Rl s o) -

(2.44)

The CKYT equation (2.43)) is invariant under the Hodge duality. The Hodge duality
takes the first term on the right hand side and puts it into the second term’s form and
vice versa. This means that the Hodge dual of a CKYT is also a CKYT. The proof can
be found in various sources in the literature [21, 9]]. Moreover, the wedge product of

CKYT of rank-n with itself gives another CKYT of rank-2n since k; A k9 also satisfies

12



(2.43) when k; and ko are CKYTs. Thus, CKYTs can be used to obtain higher rank
CKYTs.

A CCKYT of rank-n is a totally antisymmetric closed tensor that satisfies the CKYT

equation (2.43) and

Yk 0. (2.45)

B1epin] T

When the second term in the right hand side of (2.43)) vanishes, the equation becomes
the Killing-Yano equation. Hence, the Hodge dual of a CCKYT is a Killing-Yano

tensor and vice versa [8]].

As with Killing-Yano tensors, CKYTs can be used to obtain conformal Killing tensors

QH,V — kﬂVl---V7L kV . (2.46)

V1...Un

Taking the covariant derivative of (2.46) and symmetrizing the indices, we get

VieQu) =k " Vokyyug.ppn + k""" Vo ks
:2/€(H“2"'“"VU/€V)MM#" .

(2.47)

Let us multiply (2.44) with k,#2#» and symmetrize the indices (o, j, f11)

1
bV i = g e ™ s
n—1
= D 1 eleeke" NV R ) ) - (2:48)

Note that when we lower the index of k,#2#» with the metric in the last term of
(2.48), we get indices which should be symmetrized and antisymmetrized at the same

time. Hence, the last term of (2.48)) vanishes

1
k" "N k., = D —n+ 1g(umka)mmﬂnvpkpuz...un ' (2.49)
Substituting this to (2.47)), we get
2
Vi@ = D——n—l-lg(#vko)mmunvpkpmmun . (2.50)

Thus, the conformal Killing tensor equation (2.30)) is satisfied by (2.46) with the Q

~ 1
Qo‘ = D_—mkaulnunvpkpu}“un . (251)

13



Note that if we multiply & with another CKYT, say /, the conformal Killing tensor
equation (2.30) is still satisfied. In other words, two different CKYTSs can also be

used to obtain conformal Killing tensors.

2.3.2 Killing-Yano Tower

A principal conformal Killing-Yano tensor (PCKYT) is a nondegenerate rank-2 to-
tally antisymmetric CCKYT

2 14
Vi = 55— 9l Vil - (2.52)

Since PCKYTs are closed (dk = 0), we can find a Killing-Yano potential b such that
k=db, (2.53)
where b is a 1-form.

The Hodge duality of conformal Killing-Yano tensors goes deeper. We can create a
structure called a Killing-Yano tower by using the Hodge duality property of CCK-
YTs. Starting from a Killing-Yano potential, one can find a PCKYT (or a rank-2
CCKYT) by taking an exterior derivative. In a D-dimensional manifold, PCKYT can
be wedged with itself several times to get different rank CCKYTs. One can obtain
different conformal Killing tensors for each CCKYT by (2.46)).

The Hodge dual of those CCKYTs give different rank Killing-Yano tensors starting
from rank-(D —2) to 1 or 2 depending on evenness or oddness of the dimension D, re-
spectively. Different Killing tensors for each Killing-Yano tensors can be obtained by
using (2.38). To conclude, using a Killing-Yano potential, one can create CCKYTs,

Killing-Yano tensors, conformal Killing tensors and Killing tensors.

14



CHAPTER 3

CONSERVED QUANTITIES

3.1 Linearized General Relativity

In this section, we will divide the spacetime into two parts. A general metric g, can

be written as

Guv = g,uu + h'ul/ ) (31)

where g is the background metric and h is a deviation from the background that
has components assumed to be small compared to the background metric. If the
background is chosen as Minkowski metric, g is 7. Using the relation g,, 9”7 = 9,7,

the inverse of the metric becomes
g =g" =W+ 00, (3.2)

where O(h?) represents terms of order 22 or higher. At this point, it is important to
point out that if the deviation can be constructed by h,, = k,k,, where k is a null
vector with respect to both g and g, i.e. k,k* = 0, the inverse metric can be exactly

written as

g =g" — ht". (3.3)

To proceed, we need the Christoffel symbols and curvature tensors. After lineariza-

tion, we can write the Christoffel symbols in the following form

I, = f“yp + (F“Vp)L +O(h?) . (3.4)
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Substituting the metric into the definition of the Christoffel symbols (I.2]), we get

1 _ _ _
Iwup D) (" = W) [0y (Gop + hop) + 0p (Guo + hue) = 05 (Gup + )] + O(h2>
= 1
:Fuyp + —?]W [az/hop + aphua - aahup]

2

1
= 51 0uliop + 0ygur — Do) + O(7) .
3.5

The linearized Christoffel symbols become

vp

1 1
(FM )L = §gup [auhop + a,ohzza - aahz/p] - §hllp [augap + 8pgua - aagup] . (36)

For the Minkowski background, the second term vanishes since components of the
Minkowski metric are constants. We can further simplify the linearized Christoffel

symbols by using the covariant derivative associated with the background metric

Vol = 0o — T puhoy — T puhyo (3.7)

and the metric compatibility for the background

oG — L7 ppGov — T puGue = 0. (3.8)

Then, the linearized Christoffel symbols can be written in terms of the covariant

derivatives of the background

GQMZ%WWWMW+?MW—?mA- (3.9)

Let us continue with linearizing the Riemann tensor. The Riemann tensor for a Levi-

Civita connection is

R o = 0,175, — 0,17, + TP\, — TP\ T, (3.10)

We try to get it in the form

R o = R o + (R o), + O(R?) . (3.11)

Substituting (3.5) to (3.10), we get

R e = R o + 0y (T76,) = 0 (T700) 1 4+ 20k (T%00) 1 + (T00k) , T
— T (M%), — (T700) T o + O(R?) . (3.12)
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In terms of the covariant derivative of the background, linearized Riemann tensor

becomes

(R o) =V (TP0); — Vo (IP0); - (3.13)

3.2 Conserved Charges from Covariantly Conserved Currents

Firstly, let us define integration on an orientable manifold. Following [[13]], the integral

of an r-form oo = a(x)dx! A ... A dz" over the region U is defined as

/ a= j:/ a(z)dx'...ds" (3.14)
M M

where + is chosen if and only if the coordinate basis (0, . . ., 0,) has the same orien-

tation as U.

Stokes’ theorem states that the integral of a closed form dw over the manifold M is

equal to the integral of w over the boundary of the manifold M [13]]

/dw:/ w . (3.15)
M oM

We shall use Stokes’ theorem to obtain conserved charges in the following sections
with conserved currents satisfying d * 7 = 0, and show that we can find conserved

charges.

3.2.1 Rank-1 Conserved Currents

Let us have a covariantly conserved current V,j# = 0 on a D-dimensional manifold.
The current j can be written as j = j,dx*. Following the discussion in [14], let us

define

. V |g| . 1% v
Wwi=*j] = m]“ewlmymldx AL AP (3.16)

Then the exterior derivative of w is

1
!(91,,3(\/ 917" € ovpyy )AT"P A dx” A oA dx"P L (3.17)

17



To use the covariant conservation, we need a relation between the exterior derivative

and the covariant derivative. Using the relation

V" = —=0,(v/1913") , (3.18)

dw becomes

1 i
dw = m |g| (vVDjM) Eﬂul...l/D_ld.TVD Adz"™ A ... N\ dx"P-t (3.19)

Here, we used V ¢, ,,, = 0. Any D-form can be written as a function /» multiplied

by the invariant volume element

(dw)ljl...l/D = D \/ |g|€,u[u1...yD,1qu]jM = h V ’g’e[yl...l/D] . (3'20)

In order to evaluate the function h, contract the indices with e**¥P

D‘/|g|e"1"'”D€M[V1...uD71VVD]j“ = /]9 P e (3.21)
DI\/1g16,P ¥V, j* = Dhy/|g] , (3.22)
h=V,j". (3.23)

Then, dw can be written as

dw = +/|g| (V,.3") Eylb—“!ypdac”f’ Adz" A A dztP (3.24)

The integral of dw can be used in Stokes’ theorem

/ dw :/ V09l (V") €y .pda®™ .. .da”P (3.25)
M M
:/ w:/ V0agli e vy dat .. dx"P— (3.26)
oM oM

At this point, one should check if the boundary is integrable. Let n* be a timelike
normal vector to the boundary of the manifold M, it is said to be hypersurface or-
thogonal if it satisfies the hypersurface orthogonality condition (Frobenius theorem)
[14]

nEVong = 0. (3.27)
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We can find the induced metric of the boundary OM by g, = g,S‘?,M) —n,n, (— sign

is chosen since the normal vector to the hypersurface must be timelike in order to talk

about conservation in time). For the boundary or the submanifold to be integrable, the

induced metric g,&?,M) should be nondegenerate [[14]. Then, we can define the volume

element on the boundary. The volume element on a manifold M is

€ =/\|glew, vpdx™ N N dz¥P . (3.28)

On the submanifold OM of dimension (D — 1), the volume element becomes

€ =1/|gOMIé,, Ly Ay A AN dyP (3.29)

where ¢(®M) is the metric of the submanifold and y’s are the coordinates on the sub-

manifold.

In the submanifold’s coordinates, equation (3.28) is

€ =\/1gOMe p_dz Ndy™ Ao N dy'P (3.30)

where z is assumed to be the coordinate normal to the submanifold. Then, contraction

of € with n* should give € in y coordinates

V ’g’nuﬁwlml@_l = ’g(aM)’€V1~~-VD—1 . (3.31)

The right hand side of (3.26)) in the submanifold’s coordinates becomes
GOy, oy Ay dy"P = gOM)| it dP Yy . (3.32)
u-vi...Vp—1 o
oM oM

Since the current is covariantly closed, the right hand side of (3.25) gives zero. If
we divide O M into two parts such that OM = ¥, U X_ (note that ¥, and >_ have

opposite orientations), we get
/ \/ 19©@M]5#n,d" "y — / \V19@M)#n,d"y =0 (3.33)
b _

Hence, the integrant does not change over spacelike hypersurfaces. In other words,

we can define the integral as a conserved charge
Q= / 9|50, d” "ty . (3.34)
b
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The discussion is not over yet. If 3 is a manifold with a boundary and the current
can be written as a divergence of another antisymmetric tensor, say charge density /,
Stokes’ theorem can be applied once mor Let j* = V,"* with (** = (¥ then

the charge Q at spatial infinity is

Q= / \/ g |V 0, dPy = / \/ 9@ |r,n, 04dP 2z (3.35)
> ox

where 0% is the boundary of ¥, 2’s are coordinates on 0%, g(az) is the induced metric

on 0% and r* is the spacelike unit normal to 93..

3.2.2 Rank-2 Conserved Currents

For an antisymmetric conserved current V, j##? = 0, where j##? = V (Prir2
with ¢erak2 = glerak2] we can find a conserved charge similar to what we did in the

previous section. Let us start by defining

Vigl . v v
m]“1#26H1N2V1---VD72dx 1 A A dZL' D=2 (336)

w:i=x%x] =

The exterior derivative of w is

1
dw = dxj = !2!80(\/ 9177 2 €1 piown vy ) AT Adx™ A Adx"P=2 . (3.37)

(D -2)
We can generalize equation (3.18)) to any rank as the long as the tensor j is antisym-

metric [22]
1
Vi = —=0,, (\/|g|j‘““2> . (3.38)

VIl

After changing the partial derivative to the covariant one, dw becomes

dw = (D— ”_’g’)@emmyl,_,,DQ (V") dz® N dx™ A ... \dx"P=2 . (3.39)
In the previous section, we used the invariant volume element at this stage. How-
ever, now dw is not a volume form. To overcome this, we can construct a (D — 1)-

dimensional hypersurface >, and work on it to get a volume form on the hypersurface.

1 How it is applicable for a rank-2 tensor is shown in subsectionm

20



This hypersurface must be integrable since we will integrate dw over it. Assuming

the metric on M can be divided into two parts
uv = Yuv + NMNI/ ) (340)

where v is the nondegenerate induced metric on the (D — 1)-dimensional hyper-
surface, and assuming the normal vector N# satisfies the hypersurface orthogonality
condition (3.27]), we can define the volume element on the hypersurface [14]. The

volume element on the manifold M is

€ =/\|glew, vpdx™ N N d2¥P . (3.41)

On the hypersurface, the volume element is

€= VY€ .wp Y A oA dyTPE (3.42)

The coordinates on the manifold are denoted by x, and the coordinates on the hyper-
surface are denoted by y. With 2 being the coordinate normal to the hypersurface, the

contraction of € with N” should give € in y coordinates

V |g|NV€VV1---VD71 =V |7|€V1---VD71 . (3.43)

Let us rewrite equation ([3.39) in the hypersurface’s coordinates

vail . : o A g v
dw = m #1€N21’1~-~VD72 (ng'u”@) dy A dy 1 VANPRAN dy D-2 (344)
To change the index of the covariant derivative, we can use the invariant volume

element on the hypersurface as we did in the previous section

(D~ DV, |

(dw)wml/szU = NIGHQ[VI---VD—QVU}juun =h |7|€[UV1---VD72] .

21
(3.45)
Contract both sides with e*1-¥p—2¢
(D - 1)' o <[4 2
TNmémvgj“ H2 = (D —1)!, (3.46)
1 )
h=—N,V,j"". (3.47)

2!
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That means we can write dw as

kol

dw — VT
YT (-1

Noubomnvp o (V312 dy” N dy™ N ..o AN dy"P=2 . (3.48)

Before integrating dw, let us write w in the hypersurface’s coordinates

VY 142 V1 VD-2
w:(D_—|2|)121‘7uMN Esvnewp o @Y A Ay (3.49)

Assume that, we can further write
9w = by + NN, — nyn,, (3.50)

where n# is a timelike unit normal and %, is the induced metric on the (D — 2)-
dimensional boundary of the hypersurface, 0%, satisfying the integrability conditions

mentioned above. Then w becomes

|h’ . —= 1% v
= (D— "_2)!2!17“1M2NM17’LM26,/1_“VD72dZ AL AdZYP? (3.51)

in the coordinates of 0X.

We can use Stokes’ theorem by integrating dw on the hypersurface

/dw _/ — 1 121 Ny €ovivp s (Vuzjmm) dydy™ ...dy""=* (3.52)
. V |h/| N Ml'qu 1/1 d Vp-—2 (3 53)
Jos (D - 2)!21 s €in.vp g AZT 02 '

21 Ny j*142d7 22 (3.54)
ox

If we divide 0% into two parts with opposite orientations and use the covariant con-
servation, it is evident that the integral does not change over spacelike hypersurfaces.

Thus, we can define it as a charge

\/h
Q= / 2 N,y np,j#2dP 2z . (3.55)

Before imposing the potential for the current, we have seen that if we take the integral
on (D — 1)-dimensional hypersurface, then we can use Stokes’ theorem for rank-2

conserved currents. Hence, if we can write the current as j# = V,[°*", we can
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calculate the charge at the boundary of 3 with the induced metric gfﬁ,i) = hy —1ury

using the potential ¢
\% ‘g(az)’ 1 p2p3 JD—3
Q - _ 21 Nm”uﬂusg d u, (356)
0%
where we assumed ¥ is a submanifold with a boundary, 7 is a spacelike normal to

the boundary and 9¥ is integrable.

3.2.3 Rank-m Conserved Currents

The keypoint of the previous discussion is to get a dw which can be written as a
function multiplied by the invariant volume element. However, if we define w as *j
where j is a rank-m (m # 1) antisymmetric current, dw is not a volume form. So one
can take the integral on the hypersurface of dimension (D — m + 1) in the manifold
M. Then, dw is a volume form for the hypersurface. Let us start by assuming that

the metric associated with the manifold M can be decomposed as

G = g5 + NSOND 4 4 Nm=D N

v )

(3.57)
where Y is the integrable hypersurface of dimension (D —m + 1), g,g) is the induced
metric on the hypersurface and N, ..., N1 are the spacelike normal vectors of
Y.. Here, we assume that the induced metric is nondegenerate, the normal vectors
NW . N1 satisfy the hypersurface orthogonality condition (3.27), and are mu-
tually orthogonal

NOEND =0 (3.58)

where i and j runs from 1 to (m — 1).

The volume element on the manifold M is

€ =/\|glev, pdx”™ N AN dx¥P . (3.59)

The volume element on the hypersurface X of dimension (D — m + 1) becomes

€=\/19PNev, . vp pirdy™ AN dy"PmL (3.60)
where y’s are the coordinates on the hypersurface. In these coordinates, equation

(3-39) can be written as
€ = \/ 19D € pimrvnowp e 2PN NPT N DY AL AN dyPT L (3.61)
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2’s are the coordinates associated with normals to the hypersurface. Then, contraction

of € with the normal vectors to the hypersurface, N, should give ¢ in y coordinates

N(l)#l st N(m_l)ﬂm716/1‘1~~'/1‘m71V1...VD7m+1 V ’g’ - €V1...VD7m+1 \/ |g(2)| Y (362)

or

€Lt cim—1V1- VD mi1 V |g| - N,L(LP s N/.(Lt:jll)gV1~~~VDfm+l ‘g(E)‘ : (3'63)

Generalization of the previous discussion to rank-m is necessary to work with anti-
symmetric current tensors of arbitrary rank. Let us start with writing the current j as

J = Jur.pmdxt A oA dxt™. Hodge dual of j is defined to be w

. V19 U1 e vy VD—m
W = x] = (l)——J’n’)'Tn'ju K Eulmumyl._,l,D_mdﬂf A ... N\ dxtP . (364)

The exterior derivative of w is

dw =dx*j = —(D _1m>!m!80(\/Ej“l"'“memmum,,lml,Dm)da:" Adx"' A ... ANdxPP—m.
(3.65)
We can use (3.18)) for rank-m case
v, e — \/%%(\/EJW“'"”W ' (3.66)
Then, dw is
dw = ﬂ (Vgtt=tm)ydx® Ndx™ A ... Ndx"P=m . (3.67)

(D _ m)|m| €l hm1 . VD
Using (3.63)), we can transform dw to hypersurface’s coordinates and it becomes

(®)
dw = |g | N® 'NL(LZ:_I)A (V(,j“l"'“m) dy® Ady"* A+ - - Ady"P—.

(D —m)tm!" " 1 Cmitvp
(3.68)

dw is a volume element on the hypersurface ¥ of dimension (D — m + 1). Similar
to what we did in the rank-1 case, we can write it as a function h multiplied by the

invariant volume element of X2

(dw) -

V1...VD—m+1

_ (D —-—m+ 1) V |g(2)|Nl51) o N(m—l)A \V4 }julm#m
1 o

m' Mm—1 €,um[1/1...l/D,m

= /19 Neprvp o] - (3.69)
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Contract both sides with e*1-¥p-m?

(D —m+1)!

: N NIDET it = (D —m + 1)1 (3.70)
m!
1
h=— N NG9, g0 3.71)

Thus, dw can be written as

(Z é\l/ N o
dio = VI oo oty 1) (g, i) gy p g A dyo,

(D m -+ 1)|m| ’ -1
(3.72)
We can also write w in the hypersurface’s coordinates using @)
_ ‘g(z)‘ Y- H"LN( ) N(m 1) d 1 ALA d YD (3 73)
w_mj ) fm—1 Ebmv1..vp_m @Y Yy . }

If we integrate dw, we can use Stokes’ theorem (see (3.13))

/ 1 (m—1
/ ’g NISI) .. Mm 1) V1 L dyI/D,m+1

(vumjul ,um) Eyl...VD,m+1 dy

(D—m+1)Im!
(3.74)
= / VAUl gt NED NI De dy™ ... dy"P
o (D —m)!m! ’“ pm—1 THmPL-ED-m
(3.75)
:/ S 5 L A 197> ghe “’”N N=Dy e dz"" ... dz"P-m
oz (D —m)im! T et T YD T
(3.76)
T gt N N Dy, dP T 3.77)

where ¢(?*) is the metric of the boundary of the hypersurface ¥ defined by the relation
g,(uz,) = g,(g,z) — n,n, and 2’s are the coordinates on the boundary. Note that n* is a

timelike normal to the hypersurface ..

A covariantly conserved current satisfies V,,j#"1*m~1 = (. As a result, the integra-
tion in (3.74) is zero. Therefore, we can define the integral in (3.77) as a conserved

charge

MHm—1

/ 82
Q= / gt N NS D, dP T (3.78)
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3 is the hypersurface of constant time with the induced metric ¢°>). We can further
impose jHt-Hm =V, ¢v#1-#m if the current can be written as the covariant derivative
of a potential ¢ with ¢#1-#m —= gvm--tml and ¥ is a hypersurface with a boundary.

Then, using Stokes’ theorem on 3, we get one less integral to take

82
Q= / \/ V Y228 umN(l) N(m 11)andD—mZ (3.79)
32
Vi, PN N D G0
o m!

where ¢(®®) is the metric of the boundary of the manifold & defined by the relation

%
g = gfw Ty Tuly-.

3.2.4 Background Charges

In this section, we are going to show that a conserved charge can be found in a dif-
ferent manner when the metric can be divided into two parts, one is the background,

and the other is a deviation

Juv = g,uu + h,uu ) (3.81)

where 1, need not to be small everywhere but should have a sufficient fall-off rate

at spatial infinity such that spacetime is characterized by g, at spatial infinity.

In most cases, the background is chosen as Minkowski space, and in some cases, it
is chosen as de-Sitter or anti de-Sitter spaces. Let (j),, be a covariantly closed vector

with respect to the background metric
V.)i =0, (3.82)

where V is the covariant derivative associated with the background metric g. If we

integrate it over the D-dimensional manifold M, we get

/M d°z\/|9IV ()} - (3.83)

We can use for the background

Vil = —7=0u(V19l()1) - (3.84)



Then, the integral becomes

/M dPx0,(+/191(G)%) - (3.85)

Using Stokes’ theorem, we can write the integral on the (D — 1)-dimensional bound-

ary. Let n be a timelike normal vector to the boundary of the manifold M

G = Vv — NNy (3.86)

After invoking Stokes’ theorem, the integral becomes

| a6 = [ a e Rk (3.87)
M oM

Since the current is conserved (3.82), we can define it as a conserved charge

Q:/ZdD_lx\/Mnu(j)’z. (3.88)

If the current (j), can be written as (j); = V0" with ¢ = (] and t is the
coordinate associated with the timelike vector n#’s direction, then we can use Stokes’

theorem once more

Q- / P/, 9, 0 = / P840, (/191"
> >

:/ dD_zx\/Wn“rVZ”“.
o

as long as there is a spacelike normal vector 7* which does not vanish anywhere on the

(3.89)

manifold. The charge () can be calculated at the boundary of ¥ using the following
decomposition of g

guv = %u — Ny Ny + Tulv (390)

where 7 is the induced metric on the boundary of >..

Let us have a linearized antisymmetric rank-m covariantly conserved current with

respect to the background metric
Yy (jrmt), =V, 0om-n = ) (3.91)

where ¢ is the totally antisymmetric potential for the linearized current satisfying

gprvievm—1 — gler-vm=1l Tn order to find the conserved charges, we should integrate
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over (D—m—1)-dimensional hypersurfaces if we have a rank-(m-1) potential for the
rank-m current. However, we can integrate over (D — 2)-dimensional hypersurfaces

if we contract the potential with (m — 1) vectors and they satisfy

V.V, (rrrmeig (D mml) = (3.92)

v1 VUm—1
Expanding the derivatives, we get

(v \Y% Zp“l’l“'”m*) ml(,ll) opim=h)

VUm—1

+V,, (£Prrrm-t) Z %1 ’)) xl(fy:;l) + (n < p)
_ el _ _ (3.93)
A0t N N (D (V) (VD) )
i=1 j#i

- gPH ”mlzxyl. (V.V, 5)...x<m—1>:0.

The first term in is zero from . Since / is antisymmetric, and the other
terms in the second and third lines are symmetric on p and p indices, they also vanish.
Finally, the last term should be zero, and that could be the condition on the vectors z°.
However, if the background metric is flat, then the last term is symmetric on p and p

indices, and it vanishes too

v Vm—1

JoHVL V1 Z 2 VLV @) .2 =0 (3.94)

Thus, if the background metric is flat, we can contract / with any vector, and it can
still be used to find conserved charges. A reasonable choice for the vectors 2 is as
follows. Assuming that the background metric can be decomposed as

guu =Y — NNy + Ty

ml (3.95)
=Y — NNy + 17 + Z xfo/ )
i=1

Then, using the equation (3.89), we can define the charge as

Q= . dP2z\/ ]| n,ﬂ“p . (V’Z llfp‘“’l Ym-t1 (3.96)

where 0X is the (D — 2)-dimensional boundary with the induced metric . Hence,
we can integrate on (D — 2)-dimensional space to calculate the conserved charges

instead of (D — m — 1)-dimensional space if the background is flat.
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3.3 Conserved Currents

3.3.1 KT Current

Rank-n Killing-Yano tensors can be used to construct rank-n conserved currents.

Kastor and Traschen [[1]] showed that

UL 1. 0102 £U1...V, P1p2
J " _Nn 5V1---V:p102 f " RUlUZ

(n—1) 1
- _ Rluinz . U3---pnlvp _1)Ht R o lw ppoemle T pogp1epn
y p [t 4 (<1) R, b f SRt
(3.97)
satisfies
Vgt =0, (3.98)
where the symbol 6£1-#» is the generalised Kronecker delta
gt = gl gl (3.99)
Assuming that the metric can be asymptotically split into two parts
Guv = g;w + h;w ) (3.100)

where g is the background, and / is a deviation which has small components com-

pared to g at the spatial infinity, and f is a Killing-Yano tensor for the background,
v,u,f_.ul...un + vul .ful/g...l/n =0 5 (3101)
the linearized version of the current (3.97)) is

(jm---un)L = N, §la--Hn0102 FU1...Un (Ralaw[m pP2ls +92 ﬁalﬁpzhmm) . (3.102)

V1...Unp1p2

and satisfies

V() =0. (3.103)

Here V is the covariant derivative and R*,,, is the Riemann curvature tensor associ-

ated with the background metric g, .

It is shown that (3.102) can be used to construct a conserved asymptotic charge sim-

ilar to AD charge construction [10] for asymptotically transverse flat backgrounds
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[1], and asymptotically (A)dS backgrounds [23]]. Later, a general condition on the
background curvature for the KT current to have asymptotic charges is given in [11]
as

FHEm Ry B 4 (=1)"2h,, 2 R, 1 frebnle — (3.104)
When (3.104) is satisfied, (j); can be written as the divergence of a totally antisym-
metric potential £ with £#1-¥n = luvi--vn]

(jl/l-..l/n)L — ﬁu_l“/lw’/n ) (3.105)

The potential ¢ for a rank-n Killing-Yano tensor is given as

VBTl M1 ffnVp  £01...0n XJN2 }, T
l = 2N, gt | V"™ h,
1

_ TV FH1--Mn plv T F1--fin]
o (hV 7 (n+ 1), f ) . (3.106)

Then, a conserved charge can be found by integrating the potential at spatial infinity

Q= . dPBanyx,r 0/ |goD e (3.107)

3.3.2 Cotton Current

Killing- Yano tensors and CKYTs can be used to construct Cotton currents introduced
in [[12]. The Cotton tensor in D > 3 dimensions is defined as

1
C,u,yp = QV[pR,,]M - mgu[uvp]R ; (3.108)

where R, is the Ricci tensor, and R is the curvature scalar. The Cotton tensor is

antisymmetric on two indices, traceless on all index pairs, and divergenceless. It

satisfies
Cluvp :Ou[l/p] )
Cluwp) =0, (3.109)
V*Cw, =0

It is proportional to the divergence of the Weyl tensor W,,,, in D > 3 dimensions
[12]
D -2

e =D 3

VoW oy - (3.110)
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In 3-dimensional manifolds, C},,, = 0 is the necessary and sufficient condition for the
conformal flatness [13]]. Two conserved currents can be constructed using the Cotton
tensor [12]]

gr=Cc"rf,,, Jt=CM"rE,, . (3.111)

f and k are rank-2 Killing-Yano tensor and CKYT, respectively. Both currents satisfy

V=0, V,J"=0. (3.112)

Using the identity (2.42)), and divergenceless property (2.40), current j can be written

=V, (Eg — i;f“”R) . (3.113)

as

Thus, a potential ¢ for the current j satisfying j* = V ,¢*” can be written as

(D-2)

w nv
uy —<D_1)f R. (3.114)

A potential ¢ for the current J is also given in [12].

2(D —4)
(D - 3)

2(D —2)
(D —1)(D —3)

D -2
D -1

o = GPlg Y Vg 4 ( ) RK™ | (3.115)

where G is the Einstein tensor and & is defined as /;:# = V,k",.
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CHAPTER 4

KT CHARGES FOR MYERS-PERRY METRICS

In this chapter, we will use the Killing-Yano tensors of Myers-Perry metrics to con-
struct conserved charges. We will first divide the spacetime into the flat background
and the deviation. Then, using the Killing-Yano tensors of the background, we will
calculate the potentials (3.106) for the KT current. Finally, we will obtain asymptotic
conserved charges using for 4, 5, 6, 7, and 8 dimensions.

4.1 Myers-Perry and Kerr-Schild (KS) Form

In even (2n + 2) dimensions, Myers-Perry metric [24] is

n

FRd
ds® = —dt2+— dt+z a;ipldeg;)* + r +Z r?ra?)(dp4pde?) +rida?,
4.1)
subject to constraint
Q@+ pi=1. (4.2)
i=1
In odd (2n + 1) dimensions
FRdr?* &
ds? = —dt2+— dt+z asp2de;)? R_—W;QJFZ(r?Jra?)(duﬁuz d¢?), (4.3)
i=1
subject to constraint
=1, (4.4)
i=1
F and R functions are given as
F= _2": aj iy R:ﬁ('f’2—|—a2) (4.5)
k=1 2+ ag k=1 . .



These coordinates are referred to as Boyer-Lindquist (BL) coordinates since, in 4
dimensions, a — —a and m — 2m gives Kerr metric in BL coordinates. In KS form,

the Myers-Perry metric can be written as

G = N + hk,k,, . 4.6)

Here, k,, is a null vector with respect to both g and 7. Thus, it satisfies

kukyg" = k,k,n" =0. 4.7

The inverse metric g can be written exactly as

g =n"" — hE'EY . (4.8)

k differs in even and odd dimensions. In the following discussion, let us set the

parameter ¢ to 1 for even dimensions, and to 0 for odd dimensions

W " r(2ide’ + y'dy’) + a;(2'dy’ — yidat) zdz
kudat = dt + Zl E +e =, (4.9)
mr? mr
odd FR ; even FR ( 0)
F'is also modified
02 i\2
F=1-— QM 4.11)

(12t a)?

In this form, r is not a coordinate but a function of (2,1, 2). It is determined from

the nullness condition of k,, (4.7)

n 7\ 2 1\ 2 2
S EPEWS L 2y (4.12)

2 2 2
e+ a; r
Py + a;

Coordinate transformation from KS form (¢, 2%, y', 2) to Eddington-like coordinates

(t,7, @i, ;) [25]] is given by the following relations:

o' = iy /7?2 + a? cos [(El — arctan %] , (4.13)
r

y' =i /72 + a?sin [d_% — arctan %} : (4.14)
r

(4.15)




Note that the final z transformation does not exist in odd dimensions. In order to get

BL coordinates (t, r, ¢;, ;), one more transformation is needed. For odd dimensions,

mr2

dt =dt — ——d 4.16
F—mr2®" (4.16)
_ F @
do: =do. L d 4.17
and for even dimensions,
dt =dt — dr, (4.18)
—mr

de; = deb; + % gr (4.19)

F—mr r2 + a2

4.1.1 Killing-Yano Tensor in KS Coordinates

We found that the PCKYT in Cartesian like coordinates (KS coordinates) is in a

simple form

hydat Ndz” = Z (—aid:ti A dy' + 2'dt A da' + yidt A dyi) +ezdt Ndz . (4.20)

i=1

Transforming the coordinates from KS to BL by transformations given in the previous

section, h becomes

hywda A dz’ = Z a; i dp; N\ [aidt + (7’2 + a?) dcbz‘] +rdr A

=1

dt + z": aiM?dﬁbi] ;

@
which is the known PCKYT of Myers-Perry metric [26]. To get the Killing-Yano
tensor of rank-(D — 2) in KS coordinates, we will take the Hodge dual of PCKYT

given in equation (4.20)

f=sxh=> (—ada' Ady' A .. Adei Adyi A A da™ Ady™ Adz A dt
=1

+atda Adyt A Adri Ady' A A d™ A dy™ A dz
Fyfdat Adyt A Azt Ay A LA dE™ A dy™ A dz)
+zdxt Adyt A AN da A dy" . (4.22)

The differential forms with a hat on them are omitted from the wedge products.

The form of f in KS coordinates is simpler than that in the BL coordinates. Even
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though ({#.22)) looks complicated, for each a;, coordinates except the rotation plane
are wedged, and for remaining terms, like z¢, other spatial coordinates are wedged
considering cyclicity. Note that, for odd dimensions, 2z term does not contribute, and

there is no dz term in wedge products.

4.2 Myers-Perry Metric in Ellipsoidal Coordinates

Another useful coordinate system for Myers-Perry metrics is the ellipsoidal coordi-
nates. Transformations from BL coordinates (¢, 7, u;, ¢;) to ellipsoidal coordinates
(t,r, x;, ¢;) in even dimensions are given as

n

1 n
(aip;)? = = H a? + ), where ¢ = H (a? —a3) . (4.23)
- k=1(#1)

Note that, when the rotation parameters a; vanish, the coordinate transformation is not
well defined. Following [16], the Myers-Perry metric in the ellipsoidal coordinates

can be written as

ds® = —(e') 2+ Z ™) + (%), (4.24)
with the frames
¢ —mr - k . —(r?2 — x;)d;
= dt —d = dz;
€ FR + Z kci ¢k] ) € 4{1}‘1H,L X
' (4.25)
_ ; Gi(r* +a2) FR
%= : dt k : - d
‘ di(r? — x;) * kz arci(x; + a) IR R—mr
di = H (xz_'rk>7 H; IH(%—F@%), G, :H(l’k—i-al) ,
e S = (4.26)
R=][0*+a}), FR=]J0*-2x), = ][] (¢} —a})
k=1 k=1 k=1(£0)

In odd dimensions, the coordinate transformations are modified

n—1

1
. I I 24 . 4.27
Ky CQ (a’L Q;k) ( )

i =1
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The frames in ellipsoidal coordinates are also modified for odd dimensions

R —mr? ar Gy _ (r2 — x;)d;
b=y e | dt d = da
‘ FR - ; a Wl e am,
. H; Grap(r® + a2) FR
¢ — dt K ( SR T kg T =————d
c \/ xld(r — ;) +Z ci(x; + af) I R—mr2
(4.28)
n—1 n n—1
di = H (zi —xx), Hi= H(% +ap), Gi=|[(m+a),
) k=1(1) n_lkzl ::1 4.29)
R= HT’ +az), FR:r2H(7’2—xk), ¢ = H (a? —a}) .
k=1 k=1 k=1(£i)

Moreover, there is one additional frame that was not present in even dimensions:

ot — \/ HZ:1 ai
1
r? HZ:l (=)

In the ellipsoidal coordinates, the PCKYT £ is the same for even and odd dimensions

n 2 2
at + 3 T8 g | (4.30)

2a
k=1 Kk

n—1
h=re" Ae + Z V—z;e% A e . (4.31)
i=1

In order to obtain Killing-Yano tensors, the discussion in subsection @ can be used,
since we know the PCKYT. The wedge product of a PCKYT with itself (h A .. A h) is
also a CCKYT. The Hodge dual of a CCKYT gives a Killing-Yano tensor. Thus, the
Killing-Yano tensor of rank-(D — 2) is

FP = (4.32)

The lower rank Killing-Yano tensors can be found by
FP=2R) — (/\hk) , (4.33)

where Ah* means that h is wedged with itself & times. For example, in even dimen-

sions, Killing-Yano tensor of rank-2n is

f(2n) _ TH e A e¢k ]+ et Ae” Z(_w/—xi) H (" A e¢’“) ) (4.34)
1 i=1 k=1(0)
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We also have the volume form, which is the simplest Killing-Yano tensor

o :et/\e’"/\H(e’”’“ AePt) Ae? (4.35)
k=1

where e¥ is wedged only in odd dimensions.

4.2.1 Killing-Yano Tensors in Even Dimensions
4.2.1.1 4 Dimensions (Kerr Metric)

In D = 4, the Myers-Perry metric is equivalent to the Kerr metric with the modifica-

tions m — 2m and a — —a. The Killing-Yano tensor of rank-2 is

f(2) =re" Ne® —/—ziet Ne” . (4.36)

The functions (4.26) and the frames in the ellipsoidal coordinates are

H=(z+d)=G, R=*+d*), FR=(*—-1), (4.37)
SR ek kL PR e Y "2 4
(r2 —x) a ’ (r2+a?) —mr "’
(4.38)
o _ (x + a?) gt (T2+a2)d . _ —(r2—x)d
‘ (r2 —x) * o c dz(x + a?) v
and we set ¢ = d = 1. Wedge product of these frames are
2
e ner = dindr+ ) go nar (4.39)
a
1 2, 2
e Net =/ = [dmdt+wdm<14 . (4.40)
x a
Substituting these to the Killing-Yano tensor, we get
2 2, .2
FO == [dde Mdm@]
4x a
2
=z [dt pdr 4+ EED) g dr] . (4.41)
a

One can use equation (4.23)) to turn back to p
r=a*u® —ad?, (4.42)
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de = 2a®pudy . (4.43)

Thus, the Killing-Yano tensor becomes

2
r—wﬂ ladp A dt+ (1 + a®)dp A dg]

(2) —
f i
+1/a? — a?p? [dt A dr + apdo A dr} :

(4.44)

Substituting ;¢ = sin € and du = cos 6d#, also letting a — —a, we get the Killing-

Yano tensor for Kerr metric in BL coordinates

@ = arsin Odt AdO+7(r* +a?) sin 0dO Adp— a cos Odt Adr+a® cos 0 sin® Od Adr-.
(4.45)

4.2.1.2 6 Dimensions

In D = 6, there are two Killing-Yano tensors obtainable from the PCKYT (#.31).
The first one is the dual of & which is a Killing-Yano tensor of rank-4

f(4) = re®  NeP Ne®2 Ne?? —\/—x1et A" NeT2 Ne? —y/—zaet e AeT Ne®t . (4.46)

The second one is the Killing-Yano tensor of rank-2

@ = r(—v/=z1e™ A e®? — /136" Neb) + VZizaet Ae . (4.47)

The frames (4.25) in 6 dimensions are as follows

Hi = (z; +a})(zi +a3), Gi=(w1+a})(z2+a),

(4.48)
R=*+ad)(r*+ad), FR=(r*—2))(*— 125,
v 4 ad)(r? 4 a3) —mr (z1 + af) (2 + a?)
© \/ 7 — ) (% — 1) [dt T a@-)
(z1+ a3)(z2 + a3)
e
o (T + ai)(xy + a3) (x2 + a})(r® +a?)
C \/(1‘1 — o) (r* — 1) e ai(aj — a3) o
(22 + a3)(r* + a3)
ax(al — o) d@] ’
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em:¢@ﬁﬂmw+@)ﬁ+ﬁﬁﬂmﬂ+ﬁh%

(z9 — 1) (12 — 29) al(a% - a%)
(1 + a2)(r* + a3)
az(a3 — af)

d¢2 3

a:¢(vtwmﬂ—@)dh

r2 +a?)(r? +a3) — mr

el — \/ _(T2 — $1)(5L’1 — 1'2) s 072 — \/ —(7"2 _ :BQ)(QSQ — $1) dzs .

dxi(z1 + a?)(x1 + a3) 4xo(T9 + a3) (T2 + a3)

(4.49)

The wedge products of these frames are

(21 + af) (w2 + a3) (21 + a3) (w2 + a3)

e'Ne” = dtAdr+ 5 dor Ndr—+ 5 doos Ndr , (4.50)
ai(ai — a3) az (a5 — aj)
1 2
e"t N e®t = ”E {dml A dt + (x2:(622)<_ra+) al)dxl A do
1 1lay 2
2\ (2 2
R “22) (r j%)da;l A d@] . (451)
as(a3 — af)
1 2\ (.2 2
e VAN 6¢2 == E |f1$2 A dt + (:L‘l ;—(6212)<_T (l:_) al) d$2 VAN dqbl
V 4z, 1lay 2
2\ (.2 2
(O )T 0) 40 ndgy| . @s2)
az(a3 — af)

Let us calculate f(?) as an example

:—dt/\ [1 122 4oy + ,/ d@} 1+ /T1zadt A dr
T

r T (zo +ad)(r* +a z1 (1 + a?)(r? + a?
+ d¢1 [ xQ ( 2 12 > l)d 1 1 ( 1 12)( - 1>d.172:|
V 24

2 ai(af — a3) z2  aiai — a3)
gy A { i@t o) tay) [+ )+ ay) d@}
2 r1  az(ad —a?) Ty az(a3 —ai)
(71 + a2)(xy + a?) (21 + a2)(zy + a3)
V/ dpy Nd dps Nd
*‘““[ e R
(4.53)

The following relations can be used to transform coordinates to/from ellipsoidal co-

ordinates x;:

a2t = (1 + af) (s + af) ’ (4.54)

at — a3
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1 + a2)(xy + a?
) dd)

(4.55)

2 2
a; —ay

In the flat, nonrotating background, the wedge dual of the PCKYT with itself
vanishes. Thus, one can only obtain a rank-(D — 2) Killing-Yano tensor for the
background of the Myers-Perry spacetimes. In D = 6, the rank-4 Killing-Yano tensor
of the background is

@ = 12 5in® 0, sin 0, cos Orddy A dps A dOy A dbs (4.56)

in the BL coordinates with the direction cosines chosen as j; = sin s sin 6, and

o = sin Oy cos ;.

4.2.1.3 8 Dimensions

In D = 8, there are three Killing-Yano tensors. The Killing-Yano tensor of rank-6 is

FO = re™ A et Ae™ Ae?2 Ae™ A e — /—zret A" A e A e A e A e
— /=Lt A" AT APt A e A e® — /—xzet A A et Ae®t A et A e
(4.57)

The Killing-Yano tensor of rank-4 is

W= —r(v/=z1" A e?? Ae"s A e
+ /=™ A e A e A % 4 /e A e A e A e??)

+ et A" A (Voixae™ A e? + \/ria3e™ A e®? + \Jraxse™ Aeft) . (4.58)

The Killing-Yano tensor of rank-2 is

f® = —V/=rimamset Ae" + 1\ /Tax3e™ At 41\ /T1x3e™ A eP? + 1 /T1T2e A e
(4.59)

Frames (4.25) in 8 dimensions are modified such that

H; = (x; + a?)(z; + a3) (z; + ag) . Gi= (21 +a?)(zg 4+ al) (w3 +a)
R = (r2 + a%)(r2 + a%)(r2 + a§) , FR= (7"2 — xl)(r2 — {L‘Q)(T2 —x3),

(4.60)
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de,

(r? = 21)(r? — @) (r? — 3) ay(ai — a3)(af — a3)
(21 + a3)(z2 + a3)(z5 + a3) (z1 + a3)(z2 + a3)(z5 + a3)
az(aj — at)(a3 — a3) as(a3 — af)(a3 — a3)

k_¢o¢+ﬁxﬂ+n@wﬂ+@>—mqﬁ+xm+n@uw+ﬁx%+ﬂa

dps +

d¢3] )

(2 + ad) (2 + ad) (2 + af) —mr

¢ = \/ (% = 20)(r® —2a)(r2 —23) (4.61)

\/a:1+a1 (z1 + a2)(z; + a2) [dt—l— (29 + a?) (x5 + a?)(r? +a1)d¢1

(
(21— 29) (01 — w3)(r? — 1) ar(ai — a3)(aj — a3)
(3 + a3)(z3 + a3)(r? + a3) (3 + a2)(z3 + a2)(r? + a?)
az(a3 — ai)(a3 — a3)

az(a3 — af)(a3 — af)

+ doo + dos|

1,

em:¢—&“¢ﬂ%—@ﬂm—%)

4y (21 + a?)(xy + ad)(zy + ad)

where i = 1,2,3. We will not give frames e?2, e??, 72, €™ since e?! and e®! gives
enough insight about them. The relations for the coordinate transformation between

BL and ellipsoidal coordinates are

2 2 (1 1+ ai)(zs + af)(x; + af)

(af — a3)(af — a3)

2 9 (T1+ a3)(x2 + a3) (w3 + a3)

(a3 — ai)(a3 — a3)

a2l = (1 + a;)(ffz;L a3)(xs + a3)
(a3 — af)(a3 — a3)

)

, (4.62)

For the flat nonrotating metric, only the Killing-Yano tensor of rank-6 survives. Choos-
ing iy, = sinfssinfysinfy, ps = sinfssin by cos by, and ps = sin b3 cos s, it be-

comes

f(ﬁ) = 17 cos 0 cos Oy sin 0, sin® O sin® 05 dpy Ndpa Ndps ANdby N dOy NdB3 , (4.63)

in the BL coordinates.
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4.2.2 Killing-Yano Tensors in Odd Dimensions
4.2.2.1 5 Dimensions

In D = 5, we can find a rank-3 Killing-Yano tensor by taking the Hodge dual of the

PCKYT @31)

O =sh=—re? Ne" Ae¥ +v/—xe? Ael Ne” . (4.64)

The frames (@.28)) are

d=1, H=@x+d)(z+dd), Gi=(x+d),

(4.65)
R=(r*+a})(r*+a}), FR=r*(0"—2), &= (a}—a})=-c3,
R —mr ar(x + a?) as(x + a3)
to [T gy TG gy 2T D)
=\ e ]
2(pn2 __ 2 _
e = —TR(T aj)dr, ez:\/4( +(7“2)(x)+ Q)dx,
— mr xXr a xXr a
! 2 (4.66)
o _ (z+af)(x +ad) @t al(r2+a%)d a2(r2+a§)d
‘ \/ - | d—d) T g a
o — _aja3 i+ ($+gf)(7“z +a?)d¢l N ($+§L§)(7‘z +a§)d¢2 7
xr? (af — a3)ay (a3 — af)az

where ¢ = 1, 2. Let us calculate the Killing-Yano tensor. The wedge products of these

frames are
2 2\ 2\/(,.2 2
6"//’ /\et /\67’ — _ a1az a1<$+a1) - (x—gal)<r +a1)dt/\d¢1 A dr
rv/—z (a2 — a3)ay
2 2\ 2\ (.2 2
_’_CLQ(‘T +a2) - ("Etaﬁ)(r + a2)dt A d¢2 A dT
(a5 — af)ay

az(r* +a?) — a?(r? + a3)

_ 2 2
(x +af)(x + a3) @ - @

d¢1 A dqbg A dr

1 r
- (@ — a2) \/—_x[_@(x + aj)dt Adey A dr + ay(z + a3)dt A dps A dr

+(z + af)(x + a3)dey A dpy A dr],

(4.67)
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2\ (12 2 2 2
eV A et A et = U2 (@ 2al_>(r2 o) al(z _+ Zl) dt A\ dgy A dz
2z (ai — a3)ay (af — a3)
2\ (2 o 2 2+ a2
) ((x +a)? + ) ol 4 §2>> dt A dy A de
(a5 — ai)as (a3 — af)
2 2 2 2
2 2/ 2 2y 82(z +ay) — ai(z + a3)
B doi N dos N d
1

~ @) [as(r? + a2)dt A dgy A da — ay (r® + ad)dt A dy A d

+ (r? +al)(r? + a3)dé1 A doy A da] .
(4.68)

The Killing-Yano tensor becomes

1
fo=- - las(r® + a3)dt A dgy A dx — ar(r® + a3)dt A dey A da
2(aj — a3)
+(r? + a?)(r? + a3)dgr A de A dx]
+ s [—as(w + a)dt Ady A dr + ay(x + a3)dE A des A dr

+ (x4 a2)(z + a3)dpy Addy Adr] . (4.69)

Letting 43 = sinf, and py = cos €, coordinates can be transformed from ellipsoidal

coordinates to BL coordinates by

2
2 (af + ) .2
i = —5——~ =sin“ 0, 4.70)
b (af - aj)
2
2 (a5 + ) 2
[y = —————- =cos 0. “4.71)
2 (a}—dd)

The coordinate x and the differential form dz in terms of 6 are

r =sin?0(a? — a3) — a? = —cos*O(a? — a3) — a3 , (4.72)

dx = 2sinf cos §(a — a3)df . (4.73)

Substitution to the Killing-Yano tensor finally yields

@ =—sinfcosd [ax(r® + ai)dt A dpy — ai(r® + a3)dt A des
+(r? + a?)(r* + a3)de1 A dgo] A dO — 1 [az sin® Odt A dgy (4.74)

+ aq cos® Odt A dgps — sin® 6 cos? H(a% - ag)dqbl A dgzﬁg} Adr .
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4.2.2.2 7 Dimensions

In D = 7, the PCKYT @.31) is

h=re" Aet + /=11 A e®t + /—x9e™2 A e?? . (4.75)

The rank-5 Killing-Yano tensor can be found by taking the Hodge dual of i

O = «h

= (re” Ae" Ae?2 Ne™ et A el (V—rie™ A e?? + /—1ae™ Ae?)) Neb.
(4.76)

There is also another CCKYT
hAh = re' Ne"(v/—w1e? Ne™ /=g Ne™) —/z112e% Ne?2 Ne™ Ne™ | (4.77)
which gives the rank-3 Killing-Yano tensor

O =x(h Ah) = (V=51 A e + /=196 Ne™) A e¥ — \Jrrmae! Ae" Ae?.
(4.78)

The frames (@.28)) are

R=(r*+a})(r’+a3)(r’ +a3), H; = (x; + ai)(x; + a3)(z; + a3),
dy=—dy =11 —19, FR= r2(r2 - :Cl)(TQ —x9), G;= (1 + af)(xg +af),

ci = (ai —a3)(ai —a3), &= (a3 —ai)(a; —a3), c;=(a3—ai)(a;—a3).
(4.79)
==
e e et et
e
e o e

as(zo + a3)(r? + a3)

(a3 — a?)(a3 — a3)

az(ze + a2)(r? + a?)

(a3 - al)(a3 as)

+ doo + dos|
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4(zy + ai)(z1 + a3)(z1 + a3)

o o \/ (0 =z —m)

ar(zy +a?)(r? + a?)
(af — a3)(af — a3)

de,

xo(xg — 1) (1% — x2)
as(zy + a3)(r? + a3) az(xy + a2)(r? + a%)d(b
(a5 — af)(a3 — a3) (@3 —ad)(a3—ad) ]’

e \/ (0 =) =)

4(zy + af) (w2 + a3)(x2 + a3)

o \/_ (v2 + a)(ws + a3) (2 + a3) [dt )

dpa +

(4.80)

2,92 2 2 (12 2
oV — &1a2a§ [dt n (1 +2@1>($22 —|—2a1)(7“2 + al)d¢1
T1ToT (af — a3)(af — az)ay
(@1 +ay) (22 + @) +a3) (@4 a5) (22 +a3) (" +a3)
2 N[22 _ 2 P2 + 2 O\ (2 _ 2 o3
(a2 al)(% a3)a2 (a3 al)(as a2)a3

where ¢ = 1,2,3 and j = 1,2. The coordinate transformations between ellipsoidal

coordinates and BL coordinates are

= (21 + af)(z2 + af)
P (0 —a3)(af —ad)
2 _ (ZE]_ + a%)(xz + a%) 4.81
:u2 - 2 2 2 2\ ( . )
(a5 — ai)(az — a3)
12 = (21 + a3) (22 + a3)
° (a3 —a})(a3 — a3)

The rank-3 Killing-Yano tensor (4.78)) vanishes in the flat nonrotating 7-dimensional
background. Letting p; = sinfsinfy, po = cosfsinby, and puz = cosbs, the

rank-5 Killing-Yano tensor (4.76) becomes
O = cos 0, cos by sin By sin® Oy dpy A dds A dis A dOy A dbs | (4.82)

in the flat nonrotating background.

4.3 KT Charges

In this section, conserved charges obtained from (3.106) and (3.96) for Myers-Perry
black holes are calculated with the help of the Mathematica software [27]. We found
that, from the Killing-Yano tensors obtainable from (4.21)), only rank-(D — 2) Killing-

Yano tensors have nonvanishing components for the D-dimensional flat background.
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To simplify the results, let iK' be a constant defined as

(D — 1)71' QD_Q
2(D -2

Kp:= (4.83)

where Qp = 27/2/T'(£) is the area of a unit D-sphere.

In each dimension, we divided the spacetime into the background metric g and a

deviation h, where the background is the Minkowski metric in spherical coordinates
<t7 r? 07 ¢)
I = Guv + Py - (4.84)

For D = 4, Kerr metric, the Killing-Yano tensor (4.45) is taken at the limit @ — 0 to
get the Killing-Yano tensor f of the flat background

f=r3do Ndo. (4.85)

We can write the background metric as

G = —NyNy + 1,70 + Yo - (4.86)

Y, is the metric on S? of radius 7. n* = (—1,0,0,0) and r* = (0,1,0,0) are
timelike and spacelike normal vectors to S2, respectively. KT potential (3.106) has
two relevant components

o _ @M sin@ (a® cos® 0 +3r%) 54, mr

2r (r2 4 a2 cos? 0))® sin @ (12 4 a2 cos? 0)”

(4.87)

(' gives a conserved charge at the spatial infinity r — oo. 2" is chosen as (0,0, 1/7, 0)

such that the background metric can be written as

Juv = —NuNy +1TuTy + T Ty + Yy - (4.88)

Then the conserved charge can be found by using (3.96)

(4.89)

27 T
Qup = / \/ |fy|n#rl,xpl7“”pd2x :/ / (7“3 sin 9[7”0)T_>OO dfdo
52 o Jo
3

:§am7r2 = 2amK, .
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The total mass differs in the Kerr and the 4-dimensional Myers-Perry metrics. To be
consistent with the calculations in the higher dimensions, let m — m/2. Then the

KT charge for the 4-dimensional Myers-Perry metric is

Qup = amKy . (4.90)

For D = 5, the rank-3 Killing-Yano tensor (4.74)) is taken at the limit a;, a; — 0 and

it becomes rsin 6 cos 0 df A dp, A dg,. There are three relevant components of KT

potential (3.106)
og,  Gamcotf (a3 — af) cos® 0 — aj — 2r?)
3r3 ((a? — a2) cos? 0 + a2 4 12)°
aymtan 6 ((a? — a2) cos? 0 + a3 + 2r?)

Y

rode — f R (4.91)
3r3 ((a3 — a) cos? 0 + a3 + r2)
Jriorgn _ TN CSC Osecl ((a? — a2) cos? O + a3 + 3r?)
613 ((a2 — a2) cos? 0 + a2 + r2)°
Similarly, we write the background metric as
Juv = —NuNy + 10Ty + Yoo - (4.92)

7, 1s the metric on S® of radius 7. The last component of ¢ does not give a conserved
charge since the contraction of ¢ with the timelike normal vector n* = (—=1,0,0,0,0)
vanishes. We choose different normal vectors to get different charges. Let z(D# =
(0,0,1/7,0,0), z®* = (0,0,0,(1/r)sinf,0), and 2* = (0,0,0,0, (1/r) cosh).

Then, we can obtain two conserved charges at the spatial infinity » — oo

- \/quwé%ﬁ?)?“”p"d?’x

(4.93)
Q5D —/ \/‘77%7"1/ o‘ R
2 2
5 D = / / / 7° sin® 6 cos 66"%1)7%00 dfdodps
20 (4.94)
= —Wan = —aomKs ,
2
5 D = / / / 7° sin @ cos® Hﬁtram)rﬁw dfdodps
(4.95)

32 aym = aymKs .
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In higher dimensions (D > 5), the background metric only admits rank-2 CCKYT.
Thus, only rank-(D — 2) Killing Yano tensors are used. We will not give the nonva-
nising components of rank-(D — 1) KT potentials for (D > 5). The charges and the
nonvanishing components of KT potential from which the charges are obtained are

given in table .1}

Table 4.1: KT Charges in 4, 5, 6, 7, and 8 Dimensional Myers-Perry Spacetimes

Dimensions | Charges | Components of KT Potential | Result
4 Qup o Ki,am
éll% girend Ksaom

: é% (tro92 Ksaim
éll% (tre16102 Kgaom

° é% (iré20201 Kgaim
% (tré1620102 K-asm

7 (721% (irés@10102 Kraom
% (tr$203010: K-aym

é(gll% (ir$162010205 Ksasm

8 % irdsd101020; Ksaom
é?g (iré2$301020 Ksaym

We obtained the angular momentum components of the Myers-Perry blackholes upto
8 dimensions and we expect the results would be similar and follow the obvious
pattern in higher dimensions. We can conclude that the asymptotic KT charge gives
the different components of the angular momentum for Myers-Perry blackholes. An
important observation is that one Killing-Yano tensor is enough to get the different
components of the total angular momentum. If we used the Killing vectors dy, in D
dimensions (2n + 2 or 2n + 1), we should have made n AD charge calculations to get

the same result.
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CHAPTER 5

KERR-LIKE SPACETIMES

5.1 Metric and Killing Family of Tensors

The metrics we are going to work with have a similar form to the Kerr metric in BL

coordinates
gs? — A — a?sin* 0 g 2asin® O(r? + a® — A)dtdgb
by z
5.1)
2 2\2 Aa? sin2 3 (
(U Z AT e pag? - Z a1 sde?
by A
where
S(r,0) =1+ a*cos* 0,
(5.2)
A(r)y=r*+a*+ F(r),
with the electromagnetic potentials
0
A= pGé ) (adt — (r* + a®) do) — q@ (dt —asin®0dg) ,  (5.3)
G0 R
A*=q ; ) (adt — (7"2 + aQ) dgb) +p g) (dt — asin® qub) : (5.4)

q is the electric, and p is the magnetic charge. The electromagnetic field strength
tensor /' and the dual one P can be obtained by taking the exterior derivative of the
potentials

F=dA, P=dA". (5.5

There are several solutions found in the literature in the given form. F (r) = —2mr,
and Fn(r) = —2mr + ¢? gives the Kerr [28] and Kerr-Newman [29] 30] metrics,
respectively. Fn(r) = —2mr + ¢* + p? is the dyonic solution of the Kerr-Newman
metric. Also, setting Fp(r) = —2mr + (¢ + p%) (1 — B (12 + a?))” gives Garcia-

Diaz’s [31] nonlinear electrodynamics solution with the notation given in [32]].
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The functions in electromagnetic potentials are G p(f) = cos§(1 — Ba?sin?§) and
Rep(r) = r(1 — B(r? + a?)) for Garcia-Diaz’s metric. Kerr-Newman metric and its
dyonic version can be obtained by setting 5 = 0. Kerr metric satisfies the vacuum
Einstein equations G, = 0. (Dyonic) Kerr-Newman metric satisfies the Einstein

equations G, = k(Tk ), With the energy-momentum tensor (Tx v )

(TkN)w = F.°Fyo + P,°P,, . (5.6)

These spacetimes admit two Killing vectors

W =9, ¢¥=9,. (5.7)

In KS form [33]], metric (5.1]) can be written as

v = N + hELE, (5.8)

k,, is a null vector with respect to both g and 7, and is

r(zdx + ydy) — a(zdy — ydx) N zdz

k,dxt = dt + S " 5.9
h is found to be
—r2F(r)
h=—=-. 5.10
rd 4+ a?z2 ( )

In this form, 7 is not a coordinate but a function of (z, y, z). It is determined from

372"‘3/2 2,2
T = 1 (5.11)

The coordinate transformation from KS form (¢, z,y, z) to Eddington-like coordi-

nates [25] (¢, 7,6, ¢) is given by the following relations

z =12 4 a?sin  cos [gzg + arctan g] , (5.12)
y =V7r? 4 a?sinfsin [qg + arctan %} , (5.13)
z=rcosb, (5.14)
F—t. (5.15)
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In order to get BL coordinates (¢, 7, 0, ¢), one more transformation is needed

df =dt — ii;; dr . (5.16)
dp =do + ﬁdr . (5.17)

These spacetimes share a common Killing-Yano tensor f and a CCKYT £ indepen-

dent of the function F'(r):

f = —acos@dt A\ dr+arsin 0dt A db

(5.18)
—a? cos Osin? Odr A do + r(r? + a®) sin 0df A d¢
k = —rdt A\ dr—a®sin 6 cos Odt A df
(5.19)
—arsin® 0dr A dp — a(r® + a*) sin 0 cos 0df A dg .
A Killing tensor can be constructed from the Killing-Yano tensor (5.18))
K = frefy (5.20)
The Killing tensor K is
B F(r) (T2+a2) cos? 0 F(r)cos? 0 T
a* —a’ AFS(r,0) 0 0 a—a’ A(r)S(r0)
2.2 A(r)
o 0 a“ cos 92(7,79) 0 0
T‘2
2( ) cos? 6 " Hr0) 2 ’ 4 o2
3 F(r) cos T a® cos“ 0
A A NS (X)) 0 0 & o500 T AT
(5.21)

Similarly, we can construct a conformal Killing tensor from the CCKYT (5.19)

Q" = KMk, . (5.22)

The conformal Killing tensor () is

i r)(r2+a?)r?
Pratanto -SRI 0 0 s esty
0 _r2A(r) 0 0
QIW — 3(r,0)
0 0 a;cofO 0
i r2F(r) 0 (8 ) a2 __a*+d®F(r)
L 4= ARS(r0) sinZ 65 (r,0) A(r)z(?? _23)
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5.2 Separability of Hamilton-Jacobi Equation

The Lagrangian for a particle with mass pu, electric charge e, and magnetic charge g
is
1
L= §gwx'“x'” + eA it + gAjah . (5.24)

where 7+ = % with X as an affine parameter related to the proper time by 7 = uA.

Since the metric is itself a Killing tensor, g, 22" is a conserved quantity along the
geodesics

Guiti’ = —p* . (5.25)

This is the first conserved quantity; the rest-mass of the particle. Canonical momen-
tum can be obtained from the Lagrangian
0L
e gin (5.26)
=g’ +eA, + gAZ .

Then, the Hamiltonian of the particle is

1
H = 59" (= €Ay = gA]) (0 — €Ay — gA}) . (5.27)

Since the Lagrangian does not explicitly depend on the affine parameter ), the Hamil-
tonian is conserved. If we write the Hamiltonian in terms of the generalized coordi-

nates, it simply is
1 1,

Vo

H = §gW$“x = —Eu . (5.28)

The equations of motion can be obtained from the Lagrangian (5.24)

D2u dz’ dx’
X _E[EFMV_‘_QJI

= P, . 2
dr? wodr wdr " (5.29)

The metric (5.1]) possesses two Killing vectors:
W =9, €9 = Dy - (5.30)
From the symmetries of the metric, we can obtain two constants of motion. The first

one arises from the conservation of energy, and the second one arises from the con-

servation of angular momentum. As shown in [4], we can also write the conserved
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quantities associated with the Killing vectors and tensors by using canonical momen-
tum for the charged particles, i.e. p*V, ({’p,) = 0. Thus, conserved quantities

associated with the Killing vectors are

p=—E ps=9. (5.31)

Up to now, we have obtained three constants of motion. In order to solve the equa-
tions of motion, we need to find another conserved quantity that cannot be found from
the obvious symmetries of the metric. In order to find it, Carter [2] used the separa-
bility of the Hamilton-Jacobi equation. Following Carter’s discussion, we can write a

separable action for the Lagrangian (5.24)) as

S = %/ﬂ)\ — Bt 4+ ®¢ + Sp(0) + S, () . (5.32)

The Hamilton-Jacobi equation is

0s 1 oS oS

_ _ v - _ * o . * —

B + 59 (8$N eA, gAH) (_(%U” eA, gAV) 0. (5.33)
Writing it explicitly,

|:(7“2 + a2)® — a?sin? GA(T)]

A(r)X3(r,0)

2a(A(r) = (r* +d*))
A(r)S3(r, 0)

[PX(r,0) + (gq + ep) (r* + a®) G(8) + (gp — eq) asin® OR(r)]

A(r) — a®sin* 6

sin? A (r)33(r, 0)

2

- [E(r,0) + (99 + ep) aG(0) + (gp — eq) R(r)]

[E%(r,0) + (9q + ep) aG(0) + (gp — eq) R(r)]

[®X(r,0) + (9 + ep) (r* + a*) G(0)

+(gp — eq) asin® OR(r)]”
+ZA(7E2) (ddsrr) * 2(:, 0) (Cizsee) =0

After using the definitions (5.2) and a careful investigation, equation (5.34) can be

(5.34)
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written as

2.2 dsS; ? 2 (r* + a2)2 2 a? (r* +a?)
e 4+A(r) (W) - F A - d Al + 2aECI>—A(T)
R(r)

2(eq—gp)m( E(?" —|—a))—(€q—gp)2 A(r)

2

d
+ 2aE®
sin® 6

d
= —p%a®cos® 0 — ( 5 24 sin? 4 —

2 G*(0)
—2(ep+g9q) G(0) —2 —Ea)—(ep+99)° —=, =K.
sin” ¢ sin“
We separated the r and 6-dependent parts of the Hamilton-Jacobi equation. Thus, we
can conclude that both parts must be equal to a separation constant /C. This constant

is called the Carter constant. We can work on both sides separately to find the full

action. Let us define two functions

2
0() := — K — p*a®cos® 6 — E%a*sin® 0 — '<I>2 +2aE9
sin® 6
9 (5.36)
) 2 G*(0)
—2(ep+99) G(0) | =5 — Ea ) —(ep+99)" —=5
sin“ 6 sin“ 0
24 a?)’ a® (r? + a?)
T(r) =k — 22 + B2 - _ogppl T
(r) =K — p“r*+ A + NG a A
R(r) B O
+2(eq — gp) ——= (Pa — E (r* +a?)) + (eq — gp .
Then, S, and Sy can be found by integrating these functions
= / Veds
’ (5.38)
) ame
The total action becomes
S = l/f)\—EtJrq)(bjL/\/@dGJr/ﬁdr. (5.39)
2 0 T A(T>

Carter proposed another method [34] to get the fourth constant of motion. Let the

Hamiltonian be in the form

H=- 5.40
U ; (5.40)



where U, (r) and U, (u) are functions of a single coordinate, and H,.(r) is indepen-
dent of other coordinates and independent of p,, and H,,(x) is independent of other
coordinates and independent of p,.. Then, one can construct a conserved quantity

U.H,—-U,H,

IC:
U, + U,

(5.41)
Since K commutes with the Hamiltonian, it is a conserved quantity and can be used
as the fourth constant of motion. The functions H,(r), Hy(#), U,(r), and Uy(0) for
the metric (5.1)) are

E? (7“2 + a2)2 a2 (T2 + CL2)
H, =A(r)p; - — @ 2qpptl %)
r (T)pr A(T’) A(r) + 2a A<r)
Bir) 2 4 g2 ,R(r)
2(eq QP)A(T) (@a E(r +a )) (eq — gp) OB
2
Hy =p + E*a®sin®0 + —5— — 2aE® (5.42)
sin” 0
<I> GQ 0
+2(ep+ 9q)G(0) | —5= — Ea ) + (ep + g9)*— (2 ) 7
sin® 6 <in2 0

U, =r%, Uy=a%cos’h.

If we substitute the Hamiltonian to (5.41)) in terms of the separation constant (5.35),

we get ) )
U (K — p?Ug) — Up(=K + p2U,)
K- =K. 5.43
U, + U, ( )

Thus, both constants are equal to each other. Using (5.41)), the Carter constant is

A 2 2 10052 0 P2
K =—a*cos*0 (r)pf—i- - p§++(s,r 4L )Z

S0 T S, 0) n?e ' AG) ) S(r,0)
+ <r2a2 s+ U F “2(232 cos” 9) S (If 2 5y~ 205 (1 - %)
+2r%(ep + gq) E(fg) (Sij; ks Ea) +r%(ep+ QQ)QS.HPG:%
+ 2a® cos® B(eq — gp)% (Pa— E (r* +a?))

+ a? cos® O(eq — gp)2% :

(5.44)

There is also a simpler method if the spacetime is known to admit a Killing tensor

K. Aside from the conserved quantities obtained from the Killing vectors, there is
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another conserved quantity K [4]

K = Ki"i" = K" (p, — eA, — gA}) (p, — €A, — gA;) . (5.45)

If we use ((5.21)), the two constants K and K are equal to each other

K=K. (5.46)

Thus, one can use the second-order terms in momenta in (5.44) to extract the compo-

nents of the Killing tensor.

For the massless and chargeless particles, Carter constant (5.35)) becomes

A('r’)(dr) FE NG d A(T‘)+2 Ed NG 57

2
@2
:_<%) ~ B?sint0 — 200 = Q.

S

The Hamiltonian can be written in the form of (5.40) with the functions H,.(r), Hy(0),
U,(r), and Uy(0)

E? (r + a?)’ @’ (r? + a?)
T -7 20Ed— —
H A(T)pr A(T) A(T’) + 2a A(r) Q ,
(I)2
Hy =pj + B sin® 0 + — — 2050 = -Q, (5.48)
S1n

U, =r?, U, =a®cos®0 .
) 0

Then, the following is a Carter-like constant for the null geodesics and is a sym-

metrized version of the quantity Q that is defined in (5.47)

_ UsHe — U, H,
B U.-+Uy

_ UrQ+U9Q_Q
Ut

Q
(5.49)

After substituting (5.48)) into (5.49), we get

2,.2 (.2 2)2 2
2A(7‘)pz+Er(r + a®) _oume (11— r?F(r)
%(r,0) E(r,0)A(r) X(r, 0)A(r)

2 .2 2 2 2
Py | pogasin 0 cos” 0 n dca
(r,0) X(r, 0) X(r, 0)

Q=-—r

+a®cos? 0

r 20 5.50
(A(r>+co . (5.50)
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Since the conformal Killing tensors are conserved along the null geodesics, one can

construct a conserved quantity by using (5.23)
Q = ijpupu . (551)
These two constants are equal to each other

Q=09. (5.52)

While we can directly use the conformal Killing tensor to solve the null geodesics,
we can also use the Carter constant (5.35) and take the massless limit (u — 0). In

both cases, we end up with the same differential equations for the null geodesics.

5.3 Cotton Charges

In this section, we will calculate Cotton charges [12] given in the subsection [3.3.2]
Since the metric (5.1)) admits both Killing-Yano tensor and CCKYT, we can construct

both of the Cotton currents.

Cotton charge can be found by using the equation (3.34) with the Cotton currents
given in equation (3.1T1). Let the timelike normal n* be

/ by
F=\———5-5+,0,0,0). 5.53
n ( A—CLQSiHQQ’ ¥ ) ( )

The metric can be written as
G = by — npny (5.54)

where h,,, is the induced metric on the 3-dimensional spacelike hypersurface. The

determinant of the induced metric is

T = sinf (r? + a? cos? 0)3/2

. 5.55
V12 +a2cos20 + F(r) 5:9)

The two Cotton charges can be obtained by integrating over the space with the in-

duced metric hy,

Q) :/nuj“\/|h|drd9d¢,
QW —/nuJ“\/|h\drd6d¢.

(5.56)
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First, let us work on Q) using the current j. We find that the 6 integral vanishes

/ n g/ |h]df =0 . (5.57)
0

Thus, we cannot obtain a Cotton charge for the metric (5.1) using the Killing-Yano

tensor (5.18)
QP =0. (5.58)

Let us move on to the charge Q). We calculated the # integral from 0 to 7, and ¢

integral from 0 to 27r. The result is

Q(k) — _%lﬂ-/<4 tan~! <a> [2 (Tz + a2) + F(T)] [GF(T) — 6TF’(7~) + TQF//(T)]

r arF(r)

2tan~? (ﬁ) A(r)
 aF(r)NrRE F(r)

[F(r) (rF(?’) (r) —4F"(r) + 24)

+4r?F"(r) — 24rF'(r)] — 2F"(r)> dr. (5.59)

For the Kerr metric (Fi(r) = —2mr), Q%) vanishes. For the dyonic Kerr-Newman

metric (Fxn(r) = —2mr + p* + ¢?), Q(IQ\/ is

QW = _32_7T(P2 +q¢°) /00 tan~' (2) (2a® + 2r2 — 2mr + p* + ¢?)
N T+ r (p2 + q2 - 27717”)

2 2 _ 2 2 -1 a
2(r* +a* — 2mr + p* 4 ¢°) tan < —T2_2mr+p2+q2)
dr, (5.60)

(P? +¢* = 2mr) /12 = 2mr + p? + ¢

where r, = m + \/m? — a2 — p2 — ¢2. Unfortunately, we could not take the r
integral. This result is the same as the one calculated in [[12]. It is important to point
out that the Cotton charge is proportional to the total charge of the spacetime (p?+¢?).
At the limit where the rotation parameter a is zero (when the Kerr metric reduces to
the dyonic Reissner-Nordstrom metric [14]), the charge is
32m(p* + ¢%)

k)
iy = .
AN m+ /m? —p? —q?

(5.61)

Since we can calculate the integral as a — 0, we can try to calculate it when a < r.
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Let us denote the integrand with

327, 9 tan~1 (%) (2a% 4 2r2 — 2mr + p* + ¢°)
[=——0(p" +q) —
r(p? + ¢ — 2mr)

2, 2 2 2 —1 a
2(r* 4+ a* — 2mr + p* + ¢°) tan (\/m) 560
(p2+q2—2mr)\/r2—2m7’+p2+q2 S

We should expand the integral by using the fundamental theorem of calculus for small
a. However, the integrals are not simplified. Instead, we can expand the integrand
and the integration limits for small a and then, integrate. Since it would be the same
with starting with a slowly rotating Kerr-Newman metric and integrating from the
perturbed outer horizon to the infinity, we prefer to follow this path. Expanding the
integrand around a = 0, we get

1 a®  4d® 1

o 2 2
I'=32n(p +q>(ﬁ—@+?r2<r2+puq2—zmr>

) + 0 (a') . (5.63)

Now, we can take the r-integral

2

o 1 a
k) = / Idr = =321 (p* + ¢°) [; -

3
e 9r

r—m—\/m?—p?— ¢?

4a? 1
- - 22_ 2_21
<<p2+q2>r+<m oo

r—m+/m?—p?— q¢?

> + O(a*)

The integral vanishes at the limit 7 — oo. The outer horizon 7, is also expanded

T’2

r2 —2mr + p* + ¢?

+m~/m? — p? — ¢?>In (5.64)

T+

around a = 0

2
1
re=m+mE—p—g - L = + O(at). (5.65)

2 /m? —p? —

Substituting (5.63) into the integrand and keeping terms with the second order of a,
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we get the Cotton charge for the dyonic Kerr-Newman metric with small rotation

1 a?

m+ym? —p? = ¢ 9(m+ m2—p2—q2)3

Qicy ~ 327 (1 + ¢°)

02
+ (5 P+ q°) —2m® + 2my/m? — p? — ¢
6 (P +¢*)* \/m? = — ¢ ( )
—16m\/m2—p2—q21n<m—1— m2—p2—q2>

+38 (2m2 —p? - q2) In <2m\/m>
—8 (2m? —p* = ¢ = 2m/m? =2 = ¢ 1n<a>>] |

(5.66)

The charge reduces to the as a — 0. For Garcia-Diaz’s metric (Fep(r) =
—2mr + (2 +p?) (1 — B (1% + a?))?), the exact expression of ng}) is even more
complicated. There are terms of order r? in the integral. Thus, one would expect the
charge to diverge. Since the whole expression is too long and complicated, instead,

let us look at the charge as a — 0

32 24+ g & 243 32 3
Qg% 7?(2?3 q°) /” (/37"T2 )dr = {—3 (p® + ¢*) (Br — ;)}” )
(5.67)

The charge diverges as long as 8 # 0. Therefore, we cannot obtain Cotton charges
for Garcia-Diaz’s metric with the Killing-Yano tensor (5.18) and CKYT (5.19). Nev-
ertheless, we have seen that the Cotton charges are related to the spacetime’s total

electric and magnetic charges.
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CHAPTER 6

CONCLUSION

In this thesis, we reviewed the properties of Killing, Killing-Yano, conformal Killing,
and conformal Killing-Yano tensors. We showed how to construct conserved charges
from covariantly conserved currents and calculated asymptotic conserved charges
with the KT current for Myers-Perry spacetimes. For the spacetimes with a Kerr-
like rotation parameter, we showed that the Hamilton-Jacobi equation separates and

we gave the Killing family of tensors.

We started giving the definitions of Killing and conformal Killing vectors and then
generalized them to higher rank tensors. We emphasized the importance of (confor-
mal) Killing tensors and their relations to the symmetries of the spacetime. Even
though higher rank tensors are not directly related to the symmetries, they reveal
hidden symmetries which are essential while working on the geodesics. We investi-
gated the properties of the Killing family of tensors and showed how to construct the
structure called the Killing-Yano tower. If the Killing-Yano potential is given, one
can construct a PCKYT. Different rank Killing-Yano tensors can be obtained using
the PCKYT and higher rank CCKYTs. Additionaly, different (conformal) Killing

tensors can be obtained by multiplying these (conformal) Killing-Yano tensors.

In chapter |3 we used Stokes’ theorem to construct conserved charges from covari-
antly conserved current vectors. Afterward, we generalized the discussion to higher
rank antisymmetric conserved currents. For higher rank currents, one should inte-
grate on hypersurfaces instead of the whole space in order to use Stokes’ theorem,
and these hypersurfaces must be integrable submanifolds. We also showed that a
conserved charge can be constructed using the background if the spacetime behaves

as flat or (A)dS at the spatial infinity [10]. We also gave three examples of conserved
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currents [1, [12]] obtained by using Killing-Yano and CKYTs.

In the next chapter, we gave the Myers-Perry metrics [24] and their PCKYT in BL, KS
and ellipsoidal coordinates. We found the PCKYT of the Myers-Perry metrics (4.20)
in a compact form in KS coordinates. Afterwards, we calculated the Killing-Yano
tensors in 4, 5, 6, 7, and 8 dimensions by using the Killing-Yano tower structure.
We noticed that only rank-(D — 2) Killing-Yano tensors do not vanish in the flat
background which can be easily interpreted from the PCKYT (#.21)). As the rotation
and mass parameters go to zero, the PCKYT is left with only one component, rdr Adt.
Since the wedge product of rdr A dt with itself vanishes, one cannot get any Killing-

Yano tensor of rank lower than (D — 2) for the flat background.

For the rank-(D — 2) Killing-Yano tensors of the flat background, we calculated KT
potentials [1] (3.106) in 4, 5, 6, 7, and 8 dimensions using the Mathematica software
[27]. Nonvanishing components of the potentials are integrated over the background
at the spatial infinity to calculate the asymptotic gravitational KT charges of Myers-
Perry spacetimes. We found that KT charges correspond to angular momentums of
the Myers-Perry black holes upto 8 dimensions. We presume that it will follow the

same pattern in higher dimensions
(i) ,
Qp ~am, 6.1)
where ¢+ = 1, ..., n with the dimension D = 2n + 2 or D = 2n + 1.

In the last chapter, we studied a metric that looks like the Kerr metric in BL coordi-
nates with additional unknown terms given as F'(r). Kerr(-Newman) 2829, 30], and
Garcia-Diaz [31] metrics can be obtained by setting F'(r) to different functions. A
significant property of these spacetimes is that they admit the same Killing-Yano and
CKYTs in addition to the two Killing vectors 0, and d,. Consequently, we constructed
a Killing tensor (and a conformal Killing tensor) and discussed the separability of the
Hamilton-Jacobi equations. We found Carter’s fourth constant [2] for these space-
times and one can solve the equations of motion for a test particle with mass /mu,
electric charge e, and magnetic charge g. Moreover, we calculated the Cotton currents
[12]] for the metric. The current with the Killing-Yano tensor did not give a conserved
charge when integrated, however, we got an expression for generic F'(r) using the

current with CKYT. For the Kerr metric, the Cotton charge vanished. We could not

64



take the integral for Kerr-Newman and Garcia-Diaz’s metrics but we calculated the
charge as the rotation parameter a — 0. While Reissner-Nordstrom metric’s Cotton

charge is found as
327 (p* + ¢*)

m+/m?—p? —q?

Qu = : (6.2)

the Cotton charge of Garcia-Diaz’s nonrotating metric diverged. However, we can
still conclude that the Cotton charges are related to the total electric and magnetic

charges of the spacetime.
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