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ABSTRACT

KILLING FAMILY OF TENSORS AND HIDDEN SYMMETRIES

Günel, Okan
M.S., Department of Physics

Supervisor: Prof. Dr. Bahtiyar Özgür Sarıoğlu

August 2022, 69 pages

In this thesis, the symmetries of the spacetimes and symmetry related Killing fam-

ily of tensors are investigated. The relations between the members of the Killing

family of tensors are given. Conserved gravitational charges for the spacetimes are

discussed. We calculated conserved charges for Myers-Perry spacetimes using the

conserved Kastor-Traschen [1] current obtainable from Killing-Yano tensors in 4, 5,

6, 7, and 8 dimensions.

We also studied a Kerr-like metric for rotating spacetimes. We showed that they share

a common (conformal) Killing-Yano tensor and that the Hamilton-Jacobi equation

separates. We found Carter’s fourth constant of motion [2] using the separability and

using Killing tensors obtainable from the Killing-Yano tensor.

Keywords: Symmetries, Killing-Yano, Hamilton-Jacobi, conserved charges, separa-

bility
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ÖZ

KILLING TENSÖR AİLESİ VE SAKLI SİMETRİLER

Günel, Okan
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Bahtiyar Özgür Sarıoğlu

Ağustos 2022 , 69 sayfa

Bu tezde, uzayzaman simetrileri ve bu simetrilerle bağdaştırılabilen Killing tensör

ailesi incelenmiştir. Killing tensör ailesi bileşenleri arasındaki ilişkiler verilmiştir.

Uzayzamanlarda korunan yükler tartışılmıştır. 4, 5, 6, 7 ve 8 boyutlu Myers-Perry

uzayzamanlarında, Killing-Yano tensörlerden oluşturulan Kastor-Traschen [1] akımı

kullanılarak korunan yükler bulunmuştur.

Ayrıca, dönme parametresine sahip Kerr benzeri uzayzamanlar için genel bir met-

rik çalışılmıştır. Bu metriklerin ortak bir (açıkorur) Killing-Yano tensörü olduğu ve

Hamilton-Jacobi denkleminin ayrılabilir olduğu gösterilmiştir. Ayrılabilirlik ve Killing-

Yano tensöründen elde edilebilecek olan Killing tensör kullanılarak, hareketin Carter

sabiti [2] bulunmuştur.

Anahtar Kelimeler: Simetri, Killing-Yano, Hamilton-Jacobi, korunan yükler, ayrıla-

bilirlik

vi



Dedicated to my father.
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Dr. B. Özgür Sarıoğlu, for his patient guidance, enthusiastic encouragement, and

valuable critiques of this research work. I am grateful for his willingness to give time

and complete support to me. Thank you so much.

I would also like to thank the examining committee members and Prof. Dr. Ulf

Lindström for their valuable feedback.

Special thanks should be given to my amazing wife, Nilay Ayşe Günel, who inspired

me in this journey. I am thankful for her endless support and help. I wish to express

my deepest thanks to my mother and sister. They are very special to me.

Finally, I am thankful to my dear friends Önder Gezer, Ali Nuri Güneşdoğdu, Görkem
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CHAPTER 1

INTRODUCTION

In physics, one tries to determine and analyze the motion of a single or a group of

particles. These motions are determined through a set of differential equations. The

symmetries play an important role while solving the differential equations. In general

relativity, orbits of the particles are found by solving second-order nonlinear differ-

ential equations called geodesic equations. One can reduce the number of differential

equations using symmetries or symmetry generators.

Some symmetries may be obvious and easy to see. However, there may be some hid-

den symmetries. The Killing family of tensors is useful to reveal those symmetries.

A Killing vector is a symmetry generator of the spacetime. Killing vectors give first

integrals of motion that are conserved along the geodesics. They can be generalized

to higher rank symmetric or antisymmetric tensors, Killing and Killing-Yano ten-

sors, respectively. Killing-Yano tensors can be used to get Killing tensors, and later,

higher-order conserved quantities can be found by using Killing tensors. As Carter

showed [2] for the Kerr metric, higher-order conserved quantities can be found from

the separability of the Hamilton-Jacobi equation. In the following years, it was re-

vealed that the existence of a Killing tensor for the Kerr metric led to the separability

[3]. It was generalized to the charged particle case with the Kerr-Newman metric

later by Hughston et al. [4]. In 1976, it was shown that the Dirac’s equation in Kerr

[5] and Kerr-Newman [6] spacetimes is also separable. Later, it was revealed that the

Killing-Yano tensor is the reason behind the separability of Dirac’s equation [7].

Conformal Killing vectors are the generators of the conformal transformations. Sim-

ilar to the Killing vectors, conformal Killing vectors can be used to give the first

integrals of motion for massless particles. Their generalization to higher ranks are
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called conformal Killing and conformal Killing-Yano tensors (CKYT). There is a du-

ality between the closed conformal Killing-Yano tensors (CCKYT) and Killing-Yano

tensors [8]. Using this duality, one can start from a CCKYT and construct different

ranks of CCKYTs, Killing-Yano tensors, and Killing tensors. An extensive review

of the relations within the Killing family of tensors, and hidden symmetries can be

found in [9].

In addition to the first integrals of motion, the Killing family of tensors can be used

for determining conserved quantities of the spacetime, e.g., total mass or angular

momentum. In order to find exact conserved gravitational charges, one needs to find

a covariantly closed current and integrate it over the whole space. Furthermore, one

can find asymptotic conserved gravitational charges when the metric is divided into

a background and a deviation that vanishes at the spatial infinity, using the Abbott-

Deser (AD) construction [10]. In [10], a Killing vector is used with the energy-

momentum tensor to construct a background covariantly conserved current. Kastor

and Traschen [1] showed that similar to the AD construction, arbitrary rank Killing-

Yano tensors also can be used to construct such currents to find background charges.

In [11, 12], new conserved currents using the Killing-Yano tensors and CKYTs are

given; however, these currents give exact charges instead of asymptotic charges.

The outline of the thesis is as follows. In the second chapter, we will give the def-

initions of Killing family of tensors with their properties and the relations between

them. In the third chapter, we will show how Stokes’ theorem can be used to get

conserved charges by using covariantly conserved currents of arbitrary rank. In the

fourth chapter, we will explicitly give Killing-Yano tensors of Myers-Perry blackholes

in 4, 5, 6, 7, and 8 dimensions. We will also calculate conserved charges using these

Killing-Yano tensors and KT currents. In the fifth chapter, we will work on a general

Kerr-like metric and give (conformal) Killing and (conformal) Killing-Yano tensors.

We will discuss the separability of the Hamilton-Jacobi equation and its relation with

the Killing tensors. A discussion will be given in the final chapter.
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1.1 Preliminaries

In this thesis, we work on spacetimes which are manifolds of finite dimension with

metric compatible affine connections. Let g be the metric of the spacetime with the

signature (−,+, . . . ,+). It satisfies

∇µgνρ = 0 , (1.1)

for a metric compatible affine connection ∇. Throughout the thesis, torsion is as-

sumed to be zero and connection coefficients are the symmetric Levi-Civita connec-

tions

Γµνρ =
1

2
gµσ (∂νgσρ + ∂ρgνσ − ∂σgνρ) . (1.2)

We will work in natural units with G = c = ℏ = 1. We will use square brackets and

parantheses on indices to antisymmetrize and symmetrize them, respectively. Let T

be an arbitrary tensor of rank-2. Then, the antisymmetrization and symmetrization of

T can be done as

T[µν] =
1

2!
(Tµν − Tνµ) , T(µν) =

1

2!
(Tµν + Tνµ) . (1.3)

Following the notation of [13], a differential n-form ω in a D-dimensional (D ≥ n)

manifold M is a totally antisymmetric tensor of type (0, n) defined as

ω =
1

n!
ωµ1...µndx

µ1 ∧ · · · ∧ dxµn , (1.4)

where x’s are the coordinates on the manifold. The vector space of n-forms at a point

p on the manifold M is denoted as Ωn
p (M). The exterior derivative of n-form ω is a

map Ωn
p (M) → Ω

(n+1)
p (M) defined as

dω =
1

n!
∂ν (ωµ1...µn) dx

ν ∧ dxµ1 ∧ · · · ∧ dxµn . (1.5)

There is an isomorphism between Ωn
p (M) and Ω

(D−n)
p (M) in a D-dimensional man-

ifold defined by the Hodge star (dual) operation. Define the totally antisymmetric

tensor ϵ by

ϵµ1...µD =


+1, if (µ1µ2 . . . µm) is an even permutation of (12 . . .m)

−1, if (µ1µ2 . . . µm) is an odd permutation of (12 . . .m)

0, otherwise .

(1.6)

3



Hodge star of an n-form ω is

∗ω =

√
|g|

n!(D − n)!
ωµ1...µng

µ1ν1 . . . gµnνnϵν1...νDdx
νn+1 ∧ · · · ∧ dxνD , (1.7)

where g is the determinant of the metric gµν .
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CHAPTER 2

KILLING FAMILY OF TENSORS

2.1 Killing Vectors

Let there be an infinitesimal transformation of coordinates

x′µ = xµ + εξµ(x) where |ϵ| ≪ 1 . (2.1)

If the metric gµν is form invariant under this transformation, then it should satisfy

g′µν(x
′) = gµν(x) . (2.2)

Any transformation satisfying the form invariance of the metric is called an isometry.

A form invariant metric is transformed under a coordinate transformation as follows:

gµν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gρσ(x

′) . (2.3)

Expanding (2.3) to the first order in ε, we get

∂ξµ(x)

∂xρ
gµσ(x) +

∂ξν(x)

∂xσ
gρν(x) + ξµ(x)

∂gρσ(x)

∂xµ
= 0 . (2.4)

This can be written in terms of ξµ = gµνξ
ν

∂ξσ
∂xρ

+
∂ξρ
∂xσ

+ ξµ
(
∂gρσ
∂xµ

− ∂gµσ
∂xρ

− ∂gρµ
∂xσ

)
= 0 , (2.5)

∂ξσ
∂xρ

+
∂ξρ
∂xσ

− 2ξµΓ
µ
ρσ = 0 . (2.6)

In terms of covariant derivatives, the form invariance condition becomes

∇ρξσ +∇σξρ = 0 or ∇(ρξσ) = 0 . (2.7)
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This equation is known as the Killing equation and any vector satisfying the equation

is called a Killing vector [13]. Using the definition of the Lie derivative, the Killing

equation can be written as

(Lξg)µν = 0 . (2.8)

This means that the local geometry does not vary as we move along the Killing vector

ξ. Thus, the direction of the symmetry of a manifold is given by the Killing vectors.

In order to find all the isometries of the metric, solving the Killing equation is enough.

For the Minkowski metric, the symmetries are translations in space, time, and Lorentz

transformations. However, finding all the Killing vectors for different metrics may be

more complicated.

A linear combination of the Killing vectors also satisfies the Killing vector equation

(2.7) and this is true for the whole Killing family of tensors. Let ξ(i) and ξ(j) be two

vectors that satisfy (2.7). Then, their linear combination also satisfies

∇ρ

(
a ξ(i)σ + b ξ(j)σ

)
+∇σ

(
a ξ(i)ρ + b ξ(j)ρ

)
=

a
(
∇ρξ

(i)
σ +∇σξ

(i)
ρ

)
+ b
(
∇ρξ

(j)
σ +∇ρξ

(j)
ρ

)
= 0 . (2.9)

where a and b are arbitrary constants. Additionally, the commutator of two Killing

vectors is also a Killing vector, but it is a linearly independent Killing vector. Let us

use (2.8) with the commutator of two Killing vectors

L[ξ(i),ξ(j)]g =Lξ(i)
(
Lξ(j)g

)
− Lξ(j)

(
Lξ(i)g

)
=0 .

(2.10)

Thus, the commutator
[
ξ(i), ξ(j)

]
is also a Killing vector and the Killing vectors form

a Lie algebra [
ξ(i), ξ(j)

]
= ξ(k) . (2.11)

Killing vectors are related to the Riemann curvature tensor [14]

∇µ∇νξ
ρ = Rρ

νµσξ
σ . (2.12)

Consequently, a Killing vector ξµ is completely determined by the values of ξµ and

its first covariant derivative, ∇νξµ, at any point on the manifold.

6



Killing vectors are conserved along geodesics. Let γ be a geodesic which is tangent

to uν . Then, ξµuµ is constant along the geodesic

uµ∇µ (ξνu
ν) =uµuν∇µξν + uµξν∇µu

ν . (2.13)

The second term vanishes when the geodesic equation uµ∇µu
ν = 0 is used

uµ∇µ (ξνu
ν) =uµuν∇µξν

=uµuν∇(µξν) .
(2.14)

Hence, a Killing vector ξν satisfies

uµ∇µ (ξνu
ν) = 0 . (2.15)

For a test particle with massm, pν = uνm can be used to find a first integral of motion

in terms of the momentum vector. In this fashion, every Killing vector is related to

the existence of a conserved quantity along the geodesics [15].

2.1.1 Conformal Killing Vectors

Killing vectors can be extended to conformal Killing vectors. First, let us define

conformal transformations. Conformal transformations are the transformations that

change the metric such that

g′µν(x
′) = eεαgµν(x) , (2.16)

under an infinitesimal displacement x′µ = xµ + εψµ(x) where ε ≪ 1. It can be

written as
∂x′ρ

∂xµ
∂x′σ

∂xν
gρσ(x

′) = eεαgµν(x) . (2.17)

Expanding (2.17) to the first order in ε, we get

∂ψµ(x)

∂xρ
gµσ(x) +

∂ψν(x)

∂xσ
gρν(x) + ψµ(x)

∂gρσ(x)

∂xµ
= αgρσ(x) . (2.18)

We find α by multiplying (2.18) with the inverse metric

α =
2

D

∂ψµ

∂xµ
+

1

D
ψµgρσ

∂gρσ
∂xµ

, (2.19)

7



where D is the dimension of the manifold. In terms of the Lie derivatives, (2.18)

becomes

(Lψg)µν = αgµν . (2.20)

Using the covariant derivatives, we can write (2.20) as

∇µψν +∇νψµ =
2

D
gµν∇ρψρ . (2.21)

This equation is called the conformal Killing equation and any vector satisfying the

equation is called a conformal Killing vector [13]. The conformal Killing vectors

are the infinitesimal generators of conformal transformations (2.16). Note that when

α = 0, the isometry generators are Killing vectors.

Conformal transformations change the scales of the objects on the manifold but pre-

serves the shapes. Let us have two vectors ζµ and ϕµ. Then, we can define the angle

θ between them as

cos θ =
gµνζ

µϕµ√
gρσζρζσgτκϕτϕκ

. (2.22)

The angle is invariant under the conformal transformations

cos θ′ =
eεαgµνζ

µϕµ√
eεαgρσζρζσeεαgτκϕτϕκ

=cos θ .

(2.23)

Thus, the conformal transformations do not change the angles between vectors.

Similar to the Killing vectors, a linear combination of conformal Killing vectors is

also a conformal Killing vector

∇µ

(
a ψ(i)

ν + b ψ(j)
ν

)
+∇ν

(
a ψ(i)

µ + b ψ(j)
µ

)
=

2

D
gµν∇ρ

(
a ψ(i)

ρ + b ψ(j)
ρ

)
, (2.24)

where a and b are arbitrary constants. Rearranging this, we see that

a

(
∇µψ

(i)
ν +∇νψ

(i)
µ − 2

D
gµν∇ρψ(i)

ρ

)
+b

(
∇µψ

(j)
ν +∇νψ

(j)
µ − 2

D
gµν∇ρψ(j)

ρ

)
= 0 .

(2.25)

Hence, a ψ(i)+ b ψ(j) is also a conformal Killing vector if ψ(i) and ψ(j) are conformal

Killing vectors.

8



Unlike Killing vectors, conformal Killing vectors are not conserved along all geode-

sics. Equation (2.14) for a conformal Killing vector is

uµ∇µ (ψνu
ν) =uµuν∇(µψν)

=uµuνgµν
2

D
∇ρψρ .

(2.26)

ψν is conserved along the geodesics only if uµuνgµν = 0, which means the confor-

mal Killing vectors are conserved only along null geodesics. Thus, they give rise to

conserved quantities for massless particles.

2.2 Killing Tensors

Killing tensors are symmetric generalizations of Killing vectors to higher rank. Let

Kµ1...µn be a rank-n totally symmetric tensor

K(µ1...µn) = Kµ1...µn . (2.27)

K is a Killing tensor if it satisfies

∇(νKµ1...µn) = 0 . (2.28)

Note that the metric gµν itself is a rank-2 Killing tensor because of the metric compati-

bility. Killing tensors give rise to the conserved quantities like the Killing vectors. Let

uν be the tangent to a geodesic γ and satisfy uµ∇µu
ν = 0. Then, Kµ1...µnu

µ1 . . . uµn

is a conserved quantity along the geodesic γ since it satisfies

uν∇ν (Kµ1...µnu
µ1 . . . uµn) = 0 . (2.29)

Killing tensors can be obtained by symmetric products of Killing vectors. However,

such Killing tensors do not give rise to new conserved quantities aside from those

obtained by Killing vectors. Those Killing tensors will be called reducible Killing

tensors. In 4-dimensions, Kerr metric and in higher dimensions, Myers-Perry metrics

admit nontrivial Killing tensors.
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Nontrivial Killing tensors play an important role in separating the Hamilton-Jacobi

equations and solving equations of motion for particles. Carter [2] showed that there

is a fourth constant of motion in Kerr spacetime which can be obtained from the

Killing tensor and demonstrated the separability of Hamilton-Jacobi equations. There

is a strong connection between the separability and the existence of Killing tensors

[3]. However, even if a spacetime admits a Killing tensor, that does not mean that

the Hamilton-Jacobi equation separates. Chervonyi and Lunin [16] showed that this

happens only if one uses a special set of coordinates.

2.2.1 Conformal Killing Tensors

Conformal Killing vectors can be extended to higher ranks and these tensors are called

conformal Killing tensors. Let Qµ1...µn be a rank-n totally symmetric tensor. Q sat-

isfies the conformal Killing tensor equation which is a generalized version of the

Killing tensor equation (2.28) [3]

∇(νQµ1...µn) = ng(νµ1Q̄µ2...µn) , (2.30)

where Q̄ can be found by tracing both sides. When Q̄ vanishes, equation (2.30)

reduces to the Killing tensor equation (2.28). A rank-2 conformal Killing tensor

satisfies

∇(ρQµν) = 2g(ρµQ̄ν) . (2.31)

Multiplying both sides with gρµ, we get

gρµ (∇ρQµν +∇µQρν +∇νQµρ) = 2
(
gρµgρµQ̄ν + gρµgρνQ̄µ + gρµgµνQ̄ρ

)
.

(2.32)

Since, ∇ is a metric compatible connection, we can solve it for Q̄

Q̄ν =
1

2 (D + 2)
(2∇µQ

µ
ν +∇νQ

µ
µ) . (2.33)

For the higher rank conformal Killing tensors (n > 2), one should multiply with the

inverse metric more than once to find the Q̄.
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Let uν be the tangent to a geodesic γ and satisfy uµ∇µu
ν = 0. Let us examine when

Qµ1...µnu
µ1 . . . uµn is a conserved quantity along the geodesic γ,

uν∇ν (Qµ1...µnu
µ1 . . . uµn) =uµ1 . . . uµnuν∇(νQµ1...µn)

=nuµ1 . . . uµnuνg(νµ1Q̄µ2...µn)

=nu(µ1 . . . uµnuν)gνµ1Q̄µ2...µn .

(2.34)

For null geodesics, u(µ1 . . . uµnuν)gνµ1 = 0. Therefore, conformal Killing tensors are

conserved along the null geodesics and they give first integrals of motion for massless

particles similar to the conformal Killing vectors.

2.3 Killing-Yano Tensors

Killing-Yano tensors are antisymmetric generalizations of Killing vectors to higher

ranks. Let fµ1...µn be a rank-n totally antisymmetric tensor

f[µ1...µn] = fµ1...µn . (2.35)

f is a Killing-Yano tensor if it satisfies [17]

∇(ν fµ1)µ2...µn = 0 . (2.36)

Equivalently, the covariant derivative of a Killing-Yano tensor is completely antisym-

metric

∇νfµ1...µn = ∇[ν fµ1...µn] . (2.37)

Killing-Yano tensors can be used for constructing Killing tensors. Let K be a product

of Killing-Yano tensor f with itself

Kµν = fµν2...νnf νν2...νn . (2.38)

Let us take the covariant derivative of (2.38) and symmetrize the free indices

∇(ρKµν) =∇(ρ

(
fµ

ν2...νnfν)ν2...νn
)

=(−1)n−1f ν2...νn (ν∇ρfµ)ν2...νn + f(µ
ν2...νn∇ρfν)ν2...νn

=0 ,

(2.39)
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where in the last line, we used the definition of Killing-Yano tensors. Thus,K defined

in (2.38) satisfies the Killing tensor equation (2.28), and Killing-Yano tensors can be

considered as square roots of Killing tensors. Multipliying (2.36) with the inverse

metric gνµ1 , and using metric compatibility, we see that Killing-Yano tensors are

divergenceless

gνµ1∇(ν fµ1)µ2...µn = ∇νf
ν
µ2...µn = 0 . (2.40)

Killing-Yano tensors are related to the Riemann curvature tensor [1]

∇µ∇νfν1...νn = (−1)n+1 (n+ 1)

2
Rρ

µ[νν1fν2...νn]ρ , (2.41)

which is the generalised version of equation (2.12). Another useful identity is

fµν∇µGνρ = 0 , (2.42)

where G is the Einstein tensor. This identity is reported in [11, 18] and also general-

ized to the higher ranks in [11].

2.3.1 Conformal Killing-Yano tensors

A CKYT of rank-n is a totally antisymmetric tensor on a D-dimensional manifold

that satisfies

∇µkµ1...µn = ∇[µkµ1...µn] +
n

D − n+ 1
gµ[µ1∇|ν|k

ν
µ2...µn]

. (2.43)

CKYT is first introduced in [19] for rank-2 and [20] for rank-n. Equivalently, we can

write

∇(µkµ1)...µn =
1

D − n+ 1
gµµ1∇ρkρµ2...µn − n− 1

D − n+ 1
g[µ2|(µ∇ρk|ρ|µ1)|µ3...µn] .

(2.44)

The CKYT equation (2.43) is invariant under the Hodge duality. The Hodge duality

takes the first term on the right hand side and puts it into the second term’s form and

vice versa. This means that the Hodge dual of a CKYT is also a CKYT. The proof can

be found in various sources in the literature [21, 9]. Moreover, the wedge product of

CKYT of rank-nwith itself gives another CKYT of rank-2n since k1∧k2 also satisfies
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(2.43) when k1 and k2 are CKYTs. Thus, CKYTs can be used to obtain higher rank

CKYTs.

A CCKYT of rank-n is a totally antisymmetric closed tensor that satisfies the CKYT

equation (2.43) and

∇[µkµ1...µn] = 0 . (2.45)

When the second term in the right hand side of (2.43) vanishes, the equation becomes

the Killing-Yano equation. Hence, the Hodge dual of a CCKYT is a Killing-Yano

tensor and vice versa [8].

As with Killing-Yano tensors, CKYTs can be used to obtain conformal Killing tensors

Qµν = kµν1...νnkνν1...νn . (2.46)

Taking the covariant derivative of (2.46) and symmetrizing the indices, we get

∇(σQµν) =k(µ
µ2...µn∇σkν)µ2...µn + k(ν

µ2...µn∇σkµ)µ2...µn

=2k(µ
µ2...µn∇σkν)µ2...µn .

(2.47)

Let us multiply (2.44) with kσµ2...µn and symmetrize the indices (σ, µ, µ1)

k(σ
µ2...µn∇µkµ1)...µn =

1

D − n+ 1
g(µµ1kσ)

µ2...µn∇ρkρµ2...µn

− n− 1

D − n+ 1
g[µ2|(µkσ

µ2...µn∇ρk|ρ|µ1)|µ3...µn] . (2.48)

Note that when we lower the index of kσµ2...µn with the metric in the last term of

(2.48), we get indices which should be symmetrized and antisymmetrized at the same

time. Hence, the last term of (2.48) vanishes

k(σ
µ2...µn∇µkµ1)...µn =

1

D − n+ 1
g(µµ1kσ)

µ2...µn∇ρkρµ2...µn . (2.49)

Substituting this to (2.47), we get

∇(σQµν) =
2

D − n+ 1
g(µνkσ)

µ2...µn∇ρkρµ2...µn . (2.50)

Thus, the conformal Killing tensor equation (2.30) is satisfied by (2.46) with the Q̄

Q̄σ =
1

D − n+ 1
kσ

µ2...µn∇ρkρµ2...µn . (2.51)
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Note that if we multiply k with another CKYT, say h, the conformal Killing tensor

equation (2.30) is still satisfied. In other words, two different CKYTs can also be

used to obtain conformal Killing tensors.

2.3.2 Killing-Yano Tower

A principal conformal Killing-Yano tensor (PCKYT) is a nondegenerate rank-2 to-

tally antisymmetric CCKYT

∇µkµ1µ2 =
2

D − 1
gµ[µ1∇|ν|k

ν
µ2]
. (2.52)

Since PCKYTs are closed (dk = 0), we can find a Killing-Yano potential b such that

k = db , (2.53)

where b is a 1-form.

The Hodge duality of conformal Killing-Yano tensors goes deeper. We can create a

structure called a Killing-Yano tower by using the Hodge duality property of CCK-

YTs. Starting from a Killing-Yano potential, one can find a PCKYT (or a rank-2

CCKYT) by taking an exterior derivative. In a D-dimensional manifold, PCKYT can

be wedged with itself several times to get different rank CCKYTs. One can obtain

different conformal Killing tensors for each CCKYT by (2.46).

The Hodge dual of those CCKYTs give different rank Killing-Yano tensors starting

from rank-(D−2) to 1 or 2 depending on evenness or oddness of the dimensionD, re-

spectively. Different Killing tensors for each Killing-Yano tensors can be obtained by

using (2.38). To conclude, using a Killing-Yano potential, one can create CCKYTs,

Killing-Yano tensors, conformal Killing tensors and Killing tensors.
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CHAPTER 3

CONSERVED QUANTITIES

3.1 Linearized General Relativity

In this section, we will divide the spacetime into two parts. A general metric gµν can

be written as

gµν = ḡµν + hµν , (3.1)

where ḡ is the background metric and h is a deviation from the background that

has components assumed to be small compared to the background metric. If the

background is chosen as Minkowski metric, ḡ is η. Using the relation gµνgνσ = δ σµ ,

the inverse of the metric becomes

gµν = ḡµν − hµν +O(h2) , (3.2)

where O(h2) represents terms of order h2 or higher. At this point, it is important to

point out that if the deviation can be constructed by hµν = kµkν , where k is a null

vector with respect to both g and ḡ, i.e. kµkµ = 0, the inverse metric can be exactly

written as

gµν = ḡµν − hµν . (3.3)

To proceed, we need the Christoffel symbols and curvature tensors. After lineariza-

tion, we can write the Christoffel symbols in the following form

Γµνρ = Γ̄µνρ +
(
Γµνρ

)
L
+O(h2) . (3.4)
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Substituting the metric into the definition of the Christoffel symbols (1.2), we get

Γµνρ =
1

2
(ḡµρ − hµρ) [∂ν (ḡσρ + hσρ) + ∂ρ (ḡνσ + hνσ)− ∂σ (ḡνρ + hνρ)] +O(h2)

=Γ̄µνρ +
1

2
ḡµρ [∂νhσρ + ∂ρhνσ − ∂σhνρ]

− 1

2
hµρ [∂ν ḡσρ + ∂ρḡνσ − ∂σḡνρ] +O(h2) .

(3.5)

The linearized Christoffel symbols become(
Γµνρ

)
L
=

1

2
ḡµρ [∂νhσρ + ∂ρhνσ − ∂σhνρ]−

1

2
hµρ [∂ν ḡσρ + ∂ρḡνσ − ∂σḡνρ] . (3.6)

For the Minkowski background, the second term vanishes since components of the

Minkowski metric are constants. We can further simplify the linearized Christoffel

symbols by using the covariant derivative associated with the background metric

∇̄ρhµν = ∂ρhµν − Γ̄σρµhσν − Γ̄σρνhµσ , (3.7)

and the metric compatibility for the background

∂ρḡµν − Γ̄σρµḡσν − Γ̄σρν ḡµσ = 0 . (3.8)

Then, the linearized Christoffel symbols can be written in terms of the covariant

derivatives of the background(
Γµνρ

)
L
=

1

2
ḡµρ
[
∇̄νhσρ + ∇̄ρhνσ − ∇̄σhνρ

]
. (3.9)

Let us continue with linearizing the Riemann tensor. The Riemann tensor for a Levi-

Civita connection is

Rρ
µνσ = ∂νΓ

ρ
σµ − ∂σΓ

ρ
νµ + ΓρνλΓ

λ
σµ − ΓρσλΓ

λ
νµ . (3.10)

We try to get it in the form

Rρ
µνσ = R̄ρ

µνσ + (Rρ
µνσ)L +O(h2) . (3.11)

Substituting (3.5) to (3.10), we get

Rρ
µνσ = R̄ρ

µνσ + ∂ν (Γ
ρ
σµ)L − ∂σ (Γ

ρ
νµ)L + Γ̄ρνκ (Γ

κ
µσ)L +

(
Γ̄ρνκ

)
L
Γκµσ

− Γ̄ρσκ (Γ
κ
µν)L −

(
Γ̄ρνκ

)
L
Γκµσ +O(h2) . (3.12)
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In terms of the covariant derivative of the background, linearized Riemann tensor

becomes

(Rρ
µνσ)L = ∇̄ν (Γ

ρ
µσ)L − ∇̄σ (Γ

ρ
µν)L . (3.13)

3.2 Conserved Charges from Covariantly Conserved Currents

Firstly, let us define integration on an orientable manifold. Following [13], the integral

of an r-form α = α(x)dx1 ∧ . . . ∧ dxr over the region U is defined as∫
M
α = ±

∫
M
α(x)dx1...dxr , (3.14)

where + is chosen if and only if the coordinate basis (∂1, . . . , ∂r) has the same orien-

tation as U .

Stokes’ theorem states that the integral of a closed form dω over the manifold M is

equal to the integral of ω over the boundary of the manifold M [13]∫
M
dω =

∫
∂M

ω . (3.15)

We shall use Stokes’ theorem to obtain conserved charges in the following sections

with conserved currents satisfying d ∗ j = 0, and show that we can find conserved

charges.

3.2.1 Rank-1 Conserved Currents

Let us have a covariantly conserved current ∇µj
µ = 0 on a D-dimensional manifold.

The current j can be written as j = jµdx
µ. Following the discussion in [14], let us

define

ω := ∗j =
√

|g|
(D − 1)!

jµϵµν1...νD−1
dxν1 ∧ ... ∧ dxνD−1 . (3.16)

Then the exterior derivative of ω is

dω = d ∗ j = 1

(D − 1)!
∂νD(

√
|g|jµϵµν1...νD−1

)dxνD ∧ dxν1 ∧ ... ∧ dxνD−1 . (3.17)
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To use the covariant conservation, we need a relation between the exterior derivative

and the covariant derivative. Using the relation

∇µj
µ =

1√
|g|
∂µ(
√
|g|jµ) , (3.18)

dω becomes

dω =
1

(D − 1)!

√
|g| (∇νDj

µ) ϵµν1...νD−1
dxνD ∧ dxν1 ∧ ... ∧ dxνD−1 . (3.19)

Here, we used ∇µϵν1..νD = 0. Any D-form can be written as a function h multiplied

by the invariant volume element

(dω)ν1...νD = D
√

|g|ϵµ[ν1...νD−1
∇νD]j

µ = h
√

|g|ϵ[ν1...νD] . (3.20)

In order to evaluate the function h, contract the indices with ϵν1...νD

D
√

|g|ϵν1...νDϵµ[ν1...νD−1
∇νD]j

µ = h
√

|g|ϵν1...νDϵν1...νD , (3.21)

D!
√
|g|δνDµ ∇νDj

µ = D!h
√
|g| , (3.22)

h = ∇µj
µ . (3.23)

Then, dω can be written as

dω =
√

|g| (∇µj
µ)
ϵν1...νD
D!

dxνD ∧ dxν1 ∧ ... ∧ dxνD−1 . (3.24)

The integral of dω can be used in Stokes’ theorem∫
M
dω =

∫
M

√
|g| (∇µj

µ) ϵν1...νDdx
ν1 ...dxνD (3.25)

=

∫
∂M

ω =

∫
∂M

√
|g|jµϵµν1...νD−1

dxν1 ...dxνD−1 . (3.26)

At this point, one should check if the boundary is integrable. Let nµ be a timelike

normal vector to the boundary of the manifold M, it is said to be hypersurface or-

thogonal if it satisfies the hypersurface orthogonality condition (Frobenius theorem)

[14]

n[µ∇νnρ] = 0 . (3.27)
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We can find the induced metric of the boundary ∂M by gµν = g
(∂M)
µν − nµnν (− sign

is chosen since the normal vector to the hypersurface must be timelike in order to talk

about conservation in time). For the boundary or the submanifold to be integrable, the

induced metric g(∂M)
µν should be nondegenerate [14]. Then, we can define the volume

element on the boundary. The volume element on a manifold M is

ϵ =
√
|g|ϵν1...νDdxν1 ∧ ... ∧ dxνD . (3.28)

On the submanifold ∂M of dimension (D − 1), the volume element becomes

ϵ̂ =
√

|g(∂M)|ϵ̂ν1...νD−1
dyν1 ∧ ... ∧ dyνD−1 . (3.29)

where g(∂M) is the metric of the submanifold and y’s are the coordinates on the sub-

manifold.

In the submanifold’s coordinates, equation (3.28) is

ϵ =
√
|g(∂M)|ϵµν1...νD−1

dz ∧ dyν1 ∧ ... ∧ dyνD−1 , (3.30)

where z is assumed to be the coordinate normal to the submanifold. Then, contraction

of ϵ with nµ should give ϵ̂ in y coordinates√
|g|nµϵµν1...νD−1

=
√

|g(∂M)|ϵ̂ν1...νD−1
. (3.31)

The right hand side of (3.26) in the submanifold’s coordinates becomes∫
∂M

√
|g(∂M)|jµnµϵ̂ν1...νD−1

dyν1 ...dyνD−1 =

∫
∂M

√
|g(∂M)|jµnµdD−1y . (3.32)

Since the current is covariantly closed, the right hand side of (3.25) gives zero. If

we divide ∂M into two parts such that ∂M = Σ+ ∪ Σ− (note that Σ+ and Σ− have

opposite orientations), we get∫
Σ+

√
|g(∂M)|jµnµdD−1y −

∫
Σ−

√
|g(∂M)|jµnµdD−1y = 0 . (3.33)

Hence, the integrant does not change over spacelike hypersurfaces. In other words,

we can define the integral as a conserved charge

Q =

∫
Σ

√
|g(Σ)|jµnµdD−1y . (3.34)
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The discussion is not over yet. If Σ is a manifold with a boundary and the current

can be written as a divergence of another antisymmetric tensor, say charge density ℓ,

Stokes’ theorem can be applied once more1. Let jµ = ∇νℓ
νµ with ℓνµ = ℓ[νµ] then

the charge Q at spatial infinity is

Q =

∫
Σ

√
|g(Σ)|∇νℓ

νµnµd
D−1y =

∫
∂Σ

√
|g(∂Σ)|rνnµℓνµdD−2z , (3.35)

where ∂Σ is the boundary of Σ, z’s are coordinates on ∂Σ, g(∂Σ) is the induced metric

on ∂Σ and rµ is the spacelike unit normal to ∂Σ.

3.2.2 Rank-2 Conserved Currents

For an antisymmetric conserved current ∇µ1j
µ1µ2 = 0, where jµ1µ2 = ∇ρℓ

ρµ1µ2

with ℓρµ1µ2 = ℓ[ρµ1µ2], we can find a conserved charge similar to what we did in the

previous section. Let us start by defining

ω := ∗j =
√

|g|
2!(D − 2)!

jµ1µ2ϵµ1µ2ν1...νD−2
dxν1 ∧ ... ∧ dxνD−2 . (3.36)

The exterior derivative of ω is

dω = d∗j = 1

(D − 2)!2!
∂σ(
√
|g|jµ1µ2ϵµ1µ2ν1...νD−2

)dxσ∧dxν1∧...∧dxνD−2 . (3.37)

We can generalize equation (3.18) to any rank as the long as the tensor j is antisym-

metric [22]

∇µ1j
µ1µ2 =

1√
|g|
∂µ1

(√
|g|jµ1µ2

)
. (3.38)

After changing the partial derivative to the covariant one, dω becomes

dω =

√
|g|

(D − 2)!2!
ϵµ1µ2ν1...νD−2

(∇σj
µ1µ2) dxσ ∧ dxν1 ∧ ... ∧ dxνD−2 . (3.39)

In the previous section, we used the invariant volume element at this stage. How-

ever, now dω is not a volume form. To overcome this, we can construct a (D − 1)-

dimensional hypersurface Σ, and work on it to get a volume form on the hypersurface.

1 How it is applicable for a rank-2 tensor is shown in subsection 3.2.2
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This hypersurface must be integrable since we will integrate dω over it. Assuming

the metric on M can be divided into two parts

gµν = γµν +NµNν , (3.40)

where γ is the nondegenerate induced metric on the (D − 1)-dimensional hyper-

surface, and assuming the normal vector Nµ satisfies the hypersurface orthogonality

condition (3.27), we can define the volume element on the hypersurface [14]. The

volume element on the manifold M is

ϵ =
√

|g|ϵν1...νDdxν1 ∧ ... ∧ dxνD . (3.41)

On the hypersurface, the volume element is

ϵ̂ =
√

|γ|ϵν1...νD−1
dyν1 ∧ ... ∧ dyνD−1 . (3.42)

The coordinates on the manifold are denoted by x, and the coordinates on the hyper-

surface are denoted by y. With z being the coordinate normal to the hypersurface, the

contraction of ϵ with N ν should give ϵ̂ in y coordinates√
|g|N νϵνν1...νD−1

=
√

|γ|ϵ̂ν1...νD−1
. (3.43)

Let us rewrite equation (3.39) in the hypersurface’s coordinates

dω =

√
|γ|

(D − 2)!2!
Nµ1 ϵ̂µ2ν1...νD−2

(∇σj
µ1µ2) dyσ ∧ dyν1 ∧ ... ∧ dyνD−2 . (3.44)

To change the index of the covariant derivative, we can use the invariant volume

element on the hypersurface as we did in the previous section

(dw)ν1...νD−2σ =
(D − 1)

√
|γ|

2!
Nµ1 ϵ̂µ2[ν1...νD−2

∇σ]j
µ1µ2 = h

√
|γ|ϵ̂[σν1...νD−2] .

(3.45)

Contract both sides with ϵν1...νD−2σ

(D − 1)!

2!
Nµ1δ

σ
µ2
∇σj

µ1µ2 = h(D − 1)! , (3.46)

h =
1

2!
Nµ1∇µ2j

µ1µ2 . (3.47)
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That means we can write dω as

dω =

√
|γ|

(D − 1)!2!
Nµ1 ϵ̂σν1...νD−2

(∇µ2j
µ1µ2) dyσ ∧ dyν1 ∧ ... ∧ dyνD−2 . (3.48)

Before integrating dω, let us write ω in the hypersurface’s coordinates

ω =

√
|γ|

(D − 2)!2!
jµ1µ2Nµ1 ϵ̂µ2ν1...νD−2

dyν1 ∧ ... ∧ dyνD−2 . (3.49)

Assume that, we can further write

gµν = hµν +NµNν − nµnν , (3.50)

where nµ is a timelike unit normal and hµν is the induced metric on the (D − 2)-

dimensional boundary of the hypersurface, ∂Σ, satisfying the integrability conditions

mentioned above. Then w becomes

ω =

√
|h|

(D − 2)!2!
jµ1µ2Nµ1nµ2 ϵ̄ν1...νD−2

dzν1 ∧ ... ∧ dzνD−2 (3.51)

in the coordinates of ∂Σ.

We can use Stokes’ theorem by integrating dω on the hypersurface∫
Σ

dω =

∫
Σ

√
|γ|

(D − 1)!2!
Nµ1 ϵ̂σν1...νD−2

(∇µ2j
µ1µ2) dyσdyν1 ...dyνD−2 (3.52)

=

∫
∂Σ

√
|h|

(D − 2)!2!
Nµ1nµ2 ϵ̄ν1...νD−2

jµ1µ2dzν1 ...dzνD−2 (3.53)

=

∫
∂Σ

√
|h|
2!

Nµ1nµ2j
µ1µ2dD−2z . (3.54)

If we divide ∂Σ into two parts with opposite orientations and use the covariant con-

servation, it is evident that the integral does not change over spacelike hypersurfaces.

Thus, we can define it as a charge

Q =

∫
Σ̄

√
|h|
2!

Nµ1nµ2j
µ1µ2dD−2z . (3.55)

Before imposing the potential for the current, we have seen that if we take the integral

on (D − 1)-dimensional hypersurface, then we can use Stokes’ theorem for rank-2

conserved currents. Hence, if we can write the current as jµν = ∇ρl
ρµν , we can
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calculate the charge at the boundary of Σ̄ with the induced metric g(∂Σ̄)
µν = hµν − rµrν

using the potential ℓ

Q =

∫
∂Σ̄

√
|g(∂Σ)|
2!

Nµ1nµ2rµ3ℓ
µ1µ2µ3dD−3u , (3.56)

where we assumed Σ̄ is a submanifold with a boundary, rµ is a spacelike normal to

the boundary and ∂Σ̄ is integrable.

3.2.3 Rank-m Conserved Currents

The keypoint of the previous discussion is to get a dω which can be written as a

function multiplied by the invariant volume element. However, if we define ω as ∗j
where j is a rank-m (m ̸= 1) antisymmetric current, dω is not a volume form. So one

can take the integral on the hypersurface of dimension (D −m + 1) in the manifold

M. Then, dω is a volume form for the hypersurface. Let us start by assuming that

the metric associated with the manifold M can be decomposed as

gµν = g(Σ)
µν +N (1)

µ N (1)
ν + ...+N (m−1)

µ N (m−1)
ν , (3.57)

where Σ is the integrable hypersurface of dimension (D−m+1), g(Σ)
µν is the induced

metric on the hypersurface and N (1), ..., N (m−1) are the spacelike normal vectors of

Σ. Here, we assume that the induced metric is nondegenerate, the normal vectors

N (1), ..., N (m−1) satisfy the hypersurface orthogonality condition (3.27), and are mu-

tually orthogonal

N (i)µN (j)
µ = 0 (3.58)

where i and j runs from 1 to (m− 1).

The volume element on the manifold M is

ϵ =
√

|g|ϵν1...νDdxν1 ∧ ... ∧ dxνD . (3.59)

The volume element on the hypersurface Σ of dimension (D −m+ 1) becomes

ϵ̂ =
√

|g(Σ)|ϵ̂ν1...νD−m+1
dyν1 ∧ ... ∧ dyνD−m+1 , (3.60)

where y’s are the coordinates on the hypersurface. In these coordinates, equation

(3.59) can be written as

ϵ =
√
|g(Σ)|ϵµ1...µm−1ν1...νD−m+1

dzµ1 ∧ . . .∧ dzµm−1 ∧ dyν1 ∧ . . .∧ dyνD−m+1 . (3.61)
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z’s are the coordinates associated with normals to the hypersurface. Then, contraction

of ϵ with the normal vectors to the hypersurface, N (i), should give ϵ̂ in y coordinates

N (1)µ1 . . . N (m−1)µm−1ϵµ1...µm−1ν1...νD−m+1

√
|g| = ϵ̂ν1...νD−m+1

√
|g(Σ)| , (3.62)

or

ϵµ1...µm−1ν1...νD−m+1

√
|g| = N (1)

µ1
. . . N (m−1)

µm−1
ϵ̂ν1...νD−m+1

√
|g(Σ)| . (3.63)

Generalization of the previous discussion to rank-m is necessary to work with anti-

symmetric current tensors of arbitrary rank. Let us start with writing the current j as

j = jµ1...µmdx
µ1 ∧ ... ∧ dxµm . Hodge dual of j is defined to be ω

ω := ∗j =
√
|g|

(D −m)!m!
jµ1...µmϵµ1...µmν1...νD−m

dxν1 ∧ ... ∧ dxνD−m . (3.64)

The exterior derivative of ω is

dω = d∗ j = 1

(D −m)!m!
∂σ(
√

|g|jµ1...µmϵµ1...µmν1...νD−m
)dxσ ∧dxν1 ∧ ...∧dxνD−m .

(3.65)

We can use (3.18) for rank-m case

∇µj
µν1...νm−1 =

1√
|g|
∂µ(
√
|g|jµν1...νm−1) . (3.66)

Then, dω is

dω =

√
|g|

(D −m)!m!
ϵµ1...µmν1...νD−m

(∇σj
µ1...µm) dxσ ∧ dxν1 ∧ ... ∧ dxνD−m . (3.67)

Using (3.63), we can transform dω to hypersurface’s coordinates and it becomes

dω =

√
|g(Σ)|

(D −m)!m!
N (1)
µ1
. . . N (m−1)

µm−1
ϵ̂µmν1...νD−m

(∇σj
µ1...µm) dyσ∧dyν1∧· · ·∧dyνD−m .

(3.68)

dω is a volume element on the hypersurface Σ of dimension (D −m + 1). Similar

to what we did in the rank-1 case, we can write it as a function h multiplied by the

invariant volume element of Σ

(dw)ν1...νD−m+1
=

=
(D −m+ 1)

√
|g(Σ)|

m!
N (1)
µ1
. . . N (m−1)

µm−1
ϵ̂µm[ν1...νD−m

∇σ]j
µ1...µm

= h
√
|g(Σ)|ϵ̂[ν1...νD−mσ] . (3.69)
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Contract both sides with ϵν1...νD−mσ

(D −m+ 1)!

m!
N (1)
µ1
. . . N (m−1)

µm−1
δσµm∇σj

µ1...µm = h(D −m+ 1)! , (3.70)

h =
1

m!
N (1)
µ1
. . . N (m−1)

µm−1
∇µmj

µ1...µm . (3.71)

Thus, dω can be written as

dω =

√
|g(Σ)|ϵ̂ν1...νD−mσ

(D −m+ 1)!m!
N (1)
µ1
. . . N (m−1)

µm−1
(∇µmj

µ1...µm) dyσ ∧ dyν1 ∧ · · · ∧ dyνD−m .

(3.72)

We can also write ω in the hypersurface’s coordinates using (3.63)

ω =

√
|g(Σ)|

(D −m)!m!
jµ1...µmN (1)

µ1
. . . N (m−1)

µm−1
ϵ̂µmν1...νD−m

dyν1 ∧ ... ∧ dyνD−m . (3.73)

If we integrate dω, we can use Stokes’ theorem (see (3.15))∫
Σ

dω =

∫
Σ

√
|g(Σ)|N (1)

µ1 . . . N
(m−1)
µm−1

(D −m+ 1)!m!
(∇µmj

µ1...µm) ϵ̂ν1...νD−m+1
dyν1 . . . dyνD−m+1

(3.74)

=

∫
∂Σ

√
|g(Σ)|

(D −m)!m!
jµ1...µmN (1)

µ1
. . . N (m−1)

µm−1
ϵ̂µmν1...νD−m

dyν1 . . . dyνD−m

(3.75)

=

∫
∂Σ

√
|g(∂Σ)|

(D −m)!m!
jµ1...µmN (1)

µ1
. . . N (m−1)

µm−1
nµm ϵ̄ν1...νD−m

dzν1 . . . dzνD−m

(3.76)

=

∫
∂Σ

√
|g(∂Σ)|
m!

jµ1...µmN (1)
µ1
. . . N (m−1)

µm−1
nµmd

D−mz , (3.77)

where g(∂Σ) is the metric of the boundary of the hypersurface Σ defined by the relation

g
(Σ)
µν = g

(∂Σ)
µν − nµnν and z’s are the coordinates on the boundary. Note that nµ is a

timelike normal to the hypersurface Σ.

A covariantly conserved current satisfies ∇µj
µν1...νm−1 = 0. As a result, the integra-

tion in (3.74) is zero. Therefore, we can define the integral in (3.77) as a conserved

charge

Q =

∫
Σ̄

√
|g(∂Σ)|
m!

jµ1...µmN (1)
µ1
. . . N (m−1)

µm−1
nµmd

D−mz . (3.78)
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Σ̄ is the hypersurface of constant time with the induced metric g(∂Σ). We can further

impose jµ1...µm = ∇νℓ
νµ1...µm if the current can be written as the covariant derivative

of a potential ℓ with ℓνµ1...µm = ℓ[νµ1...µm], and Σ̄ is a hypersurface with a boundary.

Then, using Stokes’ theorem on Σ̄, we get one less integral to take

Q =

∫
Σ̄

√
|g(∂Σ)|
m!

∇νℓ
νµ1...µmN (1)

µ1
. . . N (m−1)

µm−1
nµmd

D−mz (3.79)

=

∫
∂Σ̄

√
|g(∂Σ̄)|
m!

ℓνµ1...µmN (1)
µ1
. . . N (m−1)

µm−1
nµmrνd

D−m−1u , (3.80)

where g(∂Σ̄) is the metric of the boundary of the manifold Σ̄ defined by the relation

g
(∂Σ)
µν = g

(∂Σ̄)
µν + rµrν .

3.2.4 Background Charges

In this section, we are going to show that a conserved charge can be found in a dif-

ferent manner when the metric can be divided into two parts, one is the background,

and the other is a deviation

gµν = ḡµν + hµν , (3.81)

where hµν need not to be small everywhere but should have a sufficient fall-off rate

at spatial infinity such that spacetime is characterized by ḡµν at spatial infinity.

In most cases, the background is chosen as Minkowski space, and in some cases, it

is chosen as de-Sitter or anti de-Sitter spaces. Let (j)L be a covariantly closed vector

with respect to the background metric

∇̄µ(j)
µ
L = 0 , (3.82)

where ∇̄ is the covariant derivative associated with the background metric ḡ. If we

integrate it over the D-dimensional manifold M, we get∫
M
dDx

√
|ḡ|∇̄µ(j)

µ
L . (3.83)

We can use (3.18) for the background

∇̄µ(j)
µ
L =

1√
|ḡ|
∂µ(
√

|ḡ|(j)µL) . (3.84)
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Then, the integral becomes ∫
M
dDx∂µ(

√
|ḡ|(j)µL) . (3.85)

Using Stokes’ theorem, we can write the integral on the (D− 1)-dimensional bound-

ary. Let n be a timelike normal vector to the boundary of the manifold M

ḡµν = γµν − nµnν . (3.86)

After invoking Stokes’ theorem, the integral becomes∫
M
dDx∂µ(

√
|ḡ|(j)µL) =

∫
∂M

dD−1x
√
|γ|nµ(j)µL . (3.87)

Since the current is conserved (3.82), we can define it as a conserved charge

Q =

∫
Σ

dD−1x
√
|γ|nµ(j)µL . (3.88)

If the current (j)L can be written as (j)νL = ∇̄µℓ̄
µν with ℓ̄µν = ℓ̄[µν], and t is the

coordinate associated with the timelike vector nµ’s direction, then we can use Stokes’

theorem once more

Q =

∫
Σ

dD−1x
√
|γ|nµ∇̄ν ℓ̄

νµ =

∫
Σ

dD−1xδtµ∂ν(
√

|ḡ|ℓ̄νµ)

=

∫
∂Σ

dD−2x
√
|γ̄|nµrν ℓ̄νµ .

(3.89)

as long as there is a spacelike normal vector rµ which does not vanish anywhere on the

manifold. The charge Q can be calculated at the boundary of Σ using the following

decomposition of ḡ

ḡµν = γ̄µν − nµnν + rµrν , (3.90)

where γ̄ is the induced metric on the boundary of Σ.

Let us have a linearized antisymmetric rank-m covariantly conserved current with

respect to the background metric

∇̄µ (j
µν1...νm−1)L = ∇̄µ∇̄ρℓ̄

ρµν1...νm−1 = 0 , (3.91)

where ℓ̄ is the totally antisymmetric potential for the linearized current satisfying

ℓ̄ρµν1...νm−1 = ℓ̄[ρµν1...νm−1]. In order to find the conserved charges, we should integrate
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over (D−m−1)-dimensional hypersurfaces if we have a rank-(m+1) potential for the

rank-m current. However, we can integrate over (D − 2)-dimensional hypersurfaces

if we contract the potential with (m− 1) vectors and they satisfy

∇̄µ∇̄ρ

(
ℓ̄ρµν1...νm−1x(1)ν1 . . . x

(m−1)
νm−1

)
= 0 . (3.92)

Expanding the derivatives, we get (
∇̄µ∇̄ρℓ̄

ρµν1...νm−1
)
x(1)ν1 . . . x

(m−1)
νm−1

+∇̄µ

(
ℓ̄ρµν1...νm−1

)m−1∑
i=1

x(1)ν1 . . . (∇̄ρx
(i)
νi
) . . . x(m−1)

νm−1
+ (µ↔ ρ)

+ℓ̄ρµν1...νm−1

m−1∑
i=1

m−1∑
j ̸=i

x(1)ν1 . . . (∇̄ρx
(i)
νi
) . . . (∇̄µx

(j)
νj
) . . . x(m−1)

νm−1

+ℓ̄ρµν1...νm−1

m−1∑
i=1

x(1)ν1 . . .
(
∇̄µ∇̄ρx

(i)
νi

)
. . . x(m−1)

νm−1
= 0 .

(3.93)

The first term in (3.93) is zero from (3.91). Since ℓ̄ is antisymmetric, and the other

terms in the second and third lines are symmetric on µ and ρ indices, they also vanish.

Finally, the last term should be zero, and that could be the condition on the vectors xi.

However, if the background metric is flat, then the last term is symmetric on µ and ρ

indices, and it vanishes too

ℓ̄ρµν1...νm−1

m−1∑
i=1

x(1)ν1 . . . ∇̄(µ∇̄ρ)(x
(i)
νi
) . . . x(m−1)

νm−1
= 0 . (3.94)

Thus, if the background metric is flat, we can contract ℓ̄ with any vector, and it can

still be used to find conserved charges. A reasonable choice for the vectors xi is as

follows. Assuming that the background metric can be decomposed as

ḡµν =γµν − nµnν + rµrν

=γ̄µν − nµnν + rµrν +
m−1∑
i=1

xiµx
i
ν .

(3.95)

Then, using the equation (3.89), we can define the charge as

Q =

∫
∂Σ

dD−2x
√

|γ|nµrρx(1)ν1 . . . x
(m−1)
νm−1

ℓ̄ρµν1...νm−1 , (3.96)

where ∂Σ is the (D − 2)-dimensional boundary with the induced metric γ. Hence,

we can integrate on (D − 2)-dimensional space to calculate the conserved charges

instead of (D −m− 1)-dimensional space if the background is flat.
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3.3 Conserved Currents

3.3.1 KT Current

Rank-n Killing-Yano tensors can be used to construct rank-n conserved currents.

Kastor and Traschen [1] showed that

jµ1...µn =Nn δ
µ1...µnσ1σ2
ν1...νnρ1ρ2

f ν1...νn Rσ1σ2
ρ1ρ2

=− (n− 1)

4
R[µ1µ2

νρ f
µ3...µn]νρ + (−1)n+1Rρ

[µ1 fµ2...µn]ρ − 1

2n
R fµ1...µn ,

(3.97)

satisfies

∇νj
µ1...µn = 0 , (3.98)

where the symbol δµ1...µnν1...νn
is the generalised Kronecker delta

δµ1...µnν1...νn
= δ[µ1ν1

. . . δµn]νn . (3.99)

Assuming that the metric can be asymptotically split into two parts

gµν = ḡµν + hµν , (3.100)

where ḡ is the background, and h is a deviation which has small components com-

pared to g at the spatial infinity, and f̄ is a Killing-Yano tensor for the background,

∇̄µf̄ν1...νn + ∇̄ν1 f̄µν2...νn = 0 , (3.101)

the linearized version of the current (3.97) is

(jµ1...µn)L = Nn δ
µ1...µnσ1σ2
ν1...νnρ1ρ2

f̄ ν1...νn
(
R̄σ1σ2κ

[ρ1 hρ2]κ + 2 ∇̄σ1∇̄ρ2hσ2
ρ1
)
, (3.102)

and satisfies

∇̄µ1(j
µ1...µn)L = 0 . (3.103)

Here ∇̄ is the covariant derivative and R̄µ
νρσ is the Riemann curvature tensor associ-

ated with the background metric ḡµν .

It is shown that (3.102) can be used to construct a conserved asymptotic charge sim-

ilar to AD charge construction [10] for asymptotically transverse flat backgrounds
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[1], and asymptotically (A)dS backgrounds [23]. Later, a general condition on the

background curvature for the KT current to have asymptotic charges is given in [11]

as

f̄ [µ1...µn R̄ν1ν2ρ
ν1 hν2]ρ + (−1)n2hν2

[ν2R̄ρ
ν1
ν1
µ1 f̄µ2...µn]ρ = 0 . (3.104)

When (3.104) is satisfied, (j)L can be written as the divergence of a totally antisym-

metric potential ℓ̄ with ℓ̄µν1...νn = ℓ̄[µν1...νn]

(jν1...νn)L = ∇̄µℓ̄
µν1...νn . (3.105)

The potential ℓ̄ for a rank-n Killing-Yano tensor is given as

ℓ̄νµ1...µn = 2Nn δ
µ1...µnνρ
σ1...σnη1η2

f̄σ1...σn ∇̄η2 hρ
η1

− 1

2n

(
h ∇̄ν f̄µ1...µn − (n+ 1)hρ[ν ∇̄ρ f̄

µ1...µn]
)
. (3.106)

Then, a conserved charge can be found by integrating the potential at spatial infinity

Q =

∫
∂Σ

dD−3xn[µxνrρ]

√
|ḡ(∂Σ)|ℓ̄µνρ . (3.107)

3.3.2 Cotton Current

Killing-Yano tensors and CKYTs can be used to construct Cotton currents introduced

in [12]. The Cotton tensor in D ≥ 3 dimensions is defined as

Cµνρ = 2∇[ρRν]µ −
1

D − 1
gµ[ν∇ρ]R , (3.108)

where Rµν is the Ricci tensor, and R is the curvature scalar. The Cotton tensor is

antisymmetric on two indices, traceless on all index pairs, and divergenceless. It

satisfies
Cµνρ =Cµ[νρ] ,

C[µνρ] =0 ,

∇µCµνρ =0 .

(3.109)

It is proportional to the divergence of the Weyl tensor Wσµνρ in D > 3 dimensions

[12]

Cµνρ =
D − 2

D − 3
∇σW

σ
µνρ . (3.110)
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In 3-dimensional manifolds, Cµνρ = 0 is the necessary and sufficient condition for the

conformal flatness [13]. Two conserved currents can be constructed using the Cotton

tensor [12]

jµ = Cµνρfνρ , Jµ = Cµνρkνρ . (3.111)

f and k are rank-2 Killing-Yano tensor and CKYT, respectively. Both currents satisfy

∇µj
µ = 0 , ∇µJ

µ = 0 . (3.112)

Using the identity (2.42), and divergenceless property (2.40), current j can be written

as

jµ = ∇ν

(
(D − 2)

(D − 1)
fµνR

)
. (3.113)

Thus, a potential ℓ for the current j satisfying jν = ∇µℓ
µν can be written as

ℓµν(f) =
(D − 2)

(D − 1)
fµνR . (3.114)

A potential ℓ for the current J is also given in [12].

ℓµν(k) =
2 (D − 4)

(D − 3)
Gρ[µkρ

ν] +
2 (D − 2)2

(D − 1) (D − 3)
∇[µk̄ν] +

(
D − 2

D − 1

)
Rkµν , (3.115)

where G is the Einstein tensor and k̄ is defined as k̄µ := ∇νk
ν
µ.
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CHAPTER 4

KT CHARGES FOR MYERS-PERRY METRICS

In this chapter, we will use the Killing-Yano tensors of Myers-Perry metrics to con-

struct conserved charges. We will first divide the spacetime into the flat background

and the deviation. Then, using the Killing-Yano tensors of the background, we will

calculate the potentials (3.106) for the KT current. Finally, we will obtain asymptotic

conserved charges using (3.96) for 4, 5, 6, 7, and 8 dimensions.

4.1 Myers-Perry and Kerr-Schild (KS) Form

In even (2n+ 2) dimensions, Myers-Perry metric [24] is

ds2 = −dt2+mr

FR
(dt+

n∑
i=1

aiµ
2
i dϕi)

2+
FRdr2

R−mr
+

n∑
i=1

(r2+a2i )(dµ
2
i+µ

2
i dϕ

2
i )+r

2dα2,

(4.1)

subject to constraint

α2 +
n∑
i=1

µ2
i = 1 . (4.2)

In odd (2n+ 1) dimensions

ds2 = −dt2+mr
2

FR
(dt+

n∑
i=1

aiµ
2
i dϕi)

2+
FRdr2

R−mr2
+

n∑
i=1

(r2+a2i )(dµ
2
i+µ

2
i dϕ

2
i ), (4.3)

subject to constraint
n∑
i=1

µ2
i = 1 . (4.4)

F and R functions are given as

F = 1−
n∑
k=1

a2kµ
2
k

r2 + a2k
, R =

n∏
k=1

(r2 + a2k) . (4.5)
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These coordinates are referred to as Boyer-Lindquist (BL) coordinates since, in 4

dimensions, a→ −a and m→ 2m gives Kerr metric in BL coordinates. In KS form,

the Myers-Perry metric can be written as

gµν = ηµν + hkµkν . (4.6)

Here, kµ is a null vector with respect to both g and η. Thus, it satisfies

kµkνg
µν = kµkνη

µν = 0 . (4.7)

The inverse metric gµν can be written exactly as

gµν = ηµν − hkµkν . (4.8)

k differs in even and odd dimensions. In the following discussion, let us set the

parameter ε to 1 for even dimensions, and to 0 for odd dimensions

kµdx
µ = dt+

n∑
i=1

r(xidxi + yidyi) + ai(x
idyi − yidxi)

r2 + a2i
+ ε

zdz

r
, (4.9)

hodd =
mr2

FR
, heven =

mr

FR
. (4.10)

F is also modified

F = 1−
n∑
i=1

a2i
(xi)2 + (yi)2

(r2 + a2i )
2
. (4.11)

In this form, r is not a coordinate but a function of (xi, yi, z). It is determined from

the nullness condition of kµ (4.7)
n∑
i=1

(xi)2 + (yi)2

r2 + a2i
+ ε

z2

r2
= 1 . (4.12)

Coordinate transformation from KS form (t, xi, yi, z) to Eddington-like coordinates

(t̄, r, ϕ̄i, µi) [25] is given by the following relations:

xi =µi

√
r2 + a2i cos

[
ϕ̄i − arctan

ai
r

]
, (4.13)

yi =µi

√
r2 + a2i sin

[
ϕ̄i − arctan

ai
r

]
, (4.14)

z = rα = r

√√√√1−
n∑
i=1

µ2
i . (4.15)
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Note that the final z transformation does not exist in odd dimensions. In order to get

BL coordinates (t, r, ϕi, µi), one more transformation is needed. For odd dimensions,

dt = dt̄− mr2

F −mr2
dr , (4.16)

dϕi = dϕ̄i +
F

F −mr2
ai

r2 + a2i
dr , (4.17)

and for even dimensions,

dt = dt̄− mr

F −mr
dr , (4.18)

dϕi = dϕ̄i +
F

F −mr

ai
r2 + a2i

dr . (4.19)

4.1.1 Killing-Yano Tensor in KS Coordinates

We found that the PCKYT in Cartesian like coordinates (KS coordinates) is in a

simple form

hµνdx
µ∧dxν =

n∑
i=1

(
−aidxi ∧ dyi + xidt ∧ dxi + yidt ∧ dyi

)
+εzdt∧dz . (4.20)

Transforming the coordinates from KS to BL by transformations given in the previous

section, h becomes

hµνdx
µ ∧ dxν =

n∑
i=1

aiµidµi ∧
[
aidt+

(
r2 + a2i

)
dϕi
]
+ rdr ∧

[
dt+

n∑
i=1

aiµ
2
i dϕi

]
,

(4.21)

which is the known PCKYT of Myers-Perry metric [26]. To get the Killing-Yano

tensor of rank-(D − 2) in KS coordinates, we will take the Hodge dual of PCKYT

given in equation (4.20)

f = ∗h =
n∑
i=1

(−aidx1 ∧ dy1 ∧ ... ∧ d̂xi ∧ d̂yi ∧ ... ∧ dxn ∧ dyn ∧ dz ∧ dt

+ xidx1 ∧ dy1 ∧ ... ∧ d̂xi ∧ dyi ∧ ... ∧ dxn ∧ dyn ∧ dz

+ yidx1 ∧ dy1 ∧ ... ∧ dxi ∧ d̂yi ∧ ... ∧ dxn ∧ dyn ∧ dz)

+ zdx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn . (4.22)

The differential forms with a hat on them are omitted from the wedge products.

The form of f in KS coordinates is simpler than that in the BL coordinates. Even
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though (4.22) looks complicated, for each ai, coordinates except the rotation plane

are wedged, and for remaining terms, like xi, other spatial coordinates are wedged

considering cyclicity. Note that, for odd dimensions, z term does not contribute, and

there is no dz term in wedge products.

4.2 Myers-Perry Metric in Ellipsoidal Coordinates

Another useful coordinate system for Myers-Perry metrics is the ellipsoidal coordi-

nates. Transformations from BL coordinates (t, r, µi, ϕi) to ellipsoidal coordinates

(t, r, xi, ϕi) in even dimensions are given as

(aiµi)
2 =

1

c2i

n∏
k=1

(a2i + xk), where c2i =
n∏

k=1(̸=i)

(a2i − a2k) . (4.23)

Note that, when the rotation parameters ai vanish, the coordinate transformation is not

well defined. Following [16], the Myers-Perry metric in the ellipsoidal coordinates

can be written as

ds2 = −(et)2 + (er)2 +
n∑
i=1

[(exi)2 + (eϕi)2] , (4.24)

with the frames

et =

√
R−mr

FR

[
dt+

n∑
k=1

Gk

akc2k
dϕk

]
, exi =

√
−(r2 − xi)di

4xiHi

dxi ,

eϕi =

√
Hi

di(r2 − xi)

[
dt+

n∑
k=1

Gk(r
2 + a2k)

akc2k(xi + a2k)
dϕk

]
, er =

√
FR

R−mr
dr ,

(4.25)

di =
n∏

k=1(̸=i)

(xi − xk), Hi =
n∏
k=1

(xi + a2k), Gi =
n∏
k=1

(xk + a2i ) ,

R =
n∏
k=1

(r2 + a2k), FR =
n∏
k=1

(r2 − xk), c2i =
n∏

k=1(̸=i)

(a2i − a2k) .

(4.26)

In odd dimensions, the coordinate transformations are modified

µ2
i =

1

c2i

n−1∏
k=1

(a2i + xk) . (4.27)
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The frames in ellipsoidal coordinates are also modified for odd dimensions

et =

√
R−mr2

FR

[
dt+

n∑
k=1

akGk

c2k
dϕk

]
, exi =

√
(r2 − xi)di

4Hi

dxi ,

eϕi =

√
− Hi

xidi(r2 − xi)

[
dt+

n∑
k=1

Gkak(r
2 + a2k)

c2k(xi + a2k)
dϕk

]
, er =

√
FR

R−mr2
dr ,

(4.28)

di =
n−1∏

k=1(̸=i)

(xi − xk), Hi =
n∏
k=1

(xi + a2k), Gi =
n−1∏
k=1

(xk + a2i ) ,

R =
n∏
k=1

(r2 + a2k), FR = r2
n−1∏
k=1

(r2 − xk), c2i =
n∏

k=1(̸=i)

(a2i − a2k) .

(4.29)

Moreover, there is one additional frame that was not present in even dimensions:

eψ =

√ ∏n
k=1 a

2
k

r2
∏n−1

k=1(−xk)

[
dt+

n∑
k=1

Gk(r
2 + a2k)

c2kak
dϕk

]
. (4.30)

In the ellipsoidal coordinates, the PCKYT h is the same for even and odd dimensions

h = rer ∧ et +
n−1∑
i=1

√
−xiexi ∧ eϕi . (4.31)

In order to obtain Killing-Yano tensors, the discussion in subsection 2.3.2 can be used,

since we know the PCKYT. The wedge product of a PCKYT with itself (h∧ ..∧h) is

also a CCKYT. The Hodge dual of a CCKYT gives a Killing-Yano tensor. Thus, the

Killing-Yano tensor of rank-(D − 2) is

f (D−2) = ∗h . (4.32)

The lower rank Killing-Yano tensors can be found by

f (D−2k) = ∗
(
∧hk

)
, (4.33)

where ∧hk means that h is wedged with itself k times. For example, in even dimen-

sions, Killing-Yano tensor of rank-2n is

f (2n) = r

n∏
k=1

[exk ∧ eϕk ] + et ∧ er
 n∑
i=1

(−
√
−xi)

n∏
k=1(̸=i)

(exk ∧ eϕk)

 . (4.34)
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We also have the volume form, which is the simplest Killing-Yano tensor

f (D) = et ∧ er ∧
n∏
k=1

(exk ∧ eϕk) ∧ eψ , (4.35)

where eψ is wedged only in odd dimensions.

4.2.1 Killing-Yano Tensors in Even Dimensions

4.2.1.1 4 Dimensions (Kerr Metric)

In D = 4, the Myers-Perry metric is equivalent to the Kerr metric with the modifica-

tions m→ 2m and a→ −a. The Killing-Yano tensor of rank-2 is

f (2) = rex ∧ eϕ −
√
−xiet ∧ er . (4.36)

The functions (4.26) and the frames in the ellipsoidal coordinates are

H = (x+ a2) = G, R = (r2 + a2), FR = (r2 − x) , (4.37)

et =

√
(r2 + a2)−mr

(r2 − x)

[
dt+

(x+ a2)

a
dϕ

]
, er =

√
(r2 − x)

(r2 + a2)−mr
dr ,

eϕ =

√
(x+ a2)

(r2 − x)

[
dt+

(r2 + a2)

a
dϕ

]
, ex =

√
−(r2 − x)

4x(x+ a2)
dx ,

(4.38)

and we set c = d = 1. Wedge product of these frames are

et ∧ er = dt ∧ dr + (x+ a2)

a
dϕ ∧ dr , (4.39)

ex ∧ eϕ =
√

−1

4x

[
dx ∧ dt+ (r2 + a2)

a
dx ∧ dϕ

]
. (4.40)

Substituting these to the Killing-Yano tensor, we get

f (2) =

√
−r2
4x

[
dx ∧ dt+ (r2 + a2)

a
dx ∧ dϕ

]
−

√
−x
[
dt ∧ dr + (x+ a2)

a
dϕ ∧ dr

]
. (4.41)

One can use equation (4.23) to turn back to µ

x = a2µ2 − a2 , (4.42)
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dx = 2a2µdµ . (4.43)

Thus, the Killing-Yano tensor becomes

f (2) =

√
r2

(1− µ2)
µ [adµ ∧ dt+ (r2 + a2)dµ ∧ dϕ

]
+
√
a2 − a2µ2

[
dt ∧ dr + aµ2dϕ ∧ dr

]
.

(4.44)

Substituting µ = sin θ and dµ = cos θdθ, also letting a → −a, we get the Killing-

Yano tensor for Kerr metric in BL coordinates

f (2) = ar sin θdt∧dθ+r(r2+a2) sin θdθ∧dϕ−a cos θdt∧dr+a2 cos θ sin2 θdϕ∧dr.
(4.45)

4.2.1.2 6 Dimensions

In D = 6, there are two Killing-Yano tensors obtainable from the PCKYT (4.31).

The first one is the dual of h which is a Killing-Yano tensor of rank-4

f (4) = rex1∧eϕ1∧ex2∧eϕ2−
√
−x1et∧er∧ex2∧eϕ2−

√
−x2et∧er∧ex1∧eϕ1 . (4.46)

The second one is the Killing-Yano tensor of rank-2

f (2) = r(−
√
−x1ex2 ∧ eϕ2 −

√
−x2ex1 ∧ e1) +

√
x1x2e

t ∧ er . (4.47)

The frames (4.25) in 6 dimensions are as follows

Hi = (xi + a21)(xi + a22), Gi = (x1 + a2i )(x2 + a2i ),

R = (r2 + a21)(r
2 + a22), FR = (r2 − x1)(r

2 − x2) ,
(4.48)

et =

√
(r2 + a21)(r

2 + a22)−mr

(r2 − x1)(r2 − x2)

[
dt+

(x1 + a21)(x2 + a21)

a1(a21 − a22)
dϕ1

+
(x1 + a22)(x2 + a22)

a2(a22 − a21)
dϕ2

]
,

eϕ1 =

√
(x1 + a21)(x1 + a22)

(x1 − x2)(r2 − x1)

[
dt+

(x2 + a21)(r
2 + a21)

a1(a21 − a22)
dϕ1

+
(x2 + a22)(r

2 + a22)

a2(a22 − a21)
dϕ2

]
,
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eϕ2 =

√
(x2 + a21)(x2 + a22)

(x2 − x1)(r2 − x2)

[
dt+

(x1 + a21)(r
2 + a21)

a1(a21 − a22)
dϕ1

+
(x1 + a22)(r

2 + a22)

a2(a22 − a21)
dϕ2

]
,

er =

√
(r2 − x1)(r2 − x2)

(r2 + a21)(r
2 + a22)−mr

dr ,

ex1 =

√
−(r2 − x1)(x1 − x2)

4x1(x1 + a21)(x1 + a22)
dx1 , ex2 =

√
−(r2 − x2)(x2 − x1)

4x2(x2 + a21)(x2 + a22)
dx2 .

(4.49)

The wedge products of these frames are

et∧er = dt∧dr+(x1 + a21)(x2 + a21)

a1(a21 − a22)
dϕ1∧dr+

(x1 + a22)(x2 + a22)

a2(a22 − a21)
dϕ2∧dr , (4.50)

ex1 ∧ eϕ1 =
√

−1

4x1

[
dx1 ∧ dt+

(x2 + a21)(r
2 + a21)

a1(a21 − a22)
dx1 ∧ dϕ1

+
(x2 + a22)(r

2 + a22)

a2(a22 − a21)
dx1 ∧ dϕ2

]
, (4.51)

ex2 ∧ eϕ2 =
√

−1

4x2

[
dx2 ∧ dt+

(x1 + a21)(r
2 + a21)

a1(a21 − a22)
dx2 ∧ dϕ1

+
(x1 + a22)(r

2 + a22)

a2(a22 − a21)
dx2 ∧ dϕ2

]
. (4.52)

Let us calculate f (2) as an example

f (2) =
r

2
dt ∧

[√
x2
x1
dx1 +

√
x1
x2
dx2

]
+
√
x1x2dt ∧ dr

+
r

2
dϕ1 ∧

[√
x2
x1

(x2 + a21)(r
2 + a21)

a1(a21 − a22)
dx1 +

√
x1
x2

(x1 + a21)(r
2 + a21)

a1(a21 − a22)
dx2

]
+
r

2
dϕ2 ∧

[√
x2
x1

(x2 + a22)(r
2 + a22)

a2(a22 − a21)
dx1 +

√
x1
x2

(x1 + a22)(r
2 + a22)

a2(a22 − a21)
dx2

]
+
√
x1x2

[
(x1 + a21)(x2 + a21)

a1(a21 − a22)
dϕ1 ∧ dr +

(x1 + a22)(x2 + a22)

a2(a22 − a21)
dϕ2 ∧ dr

]
.

(4.53)

The following relations can be used to transform coordinates to/from ellipsoidal co-

ordinates xi:

a21µ
2
1 =

(x1 + a21)(x2 + a21)

a21 − a22
, (4.54)
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a22µ
2
2 =

(x1 + a22)(x2 + a22)

a22 − a21
. (4.55)

In the flat, nonrotating background, the wedge dual of the PCKYT (4.21) with itself

vanishes. Thus, one can only obtain a rank-(D − 2) Killing-Yano tensor for the

background of the Myers-Perry spacetimes. InD = 6, the rank-4 Killing-Yano tensor

of the background is

f (4) = r5 sin3 θ2 sin θ1 cos θ1dϕ1 ∧ dϕ2 ∧ dθ1 ∧ dθ2 , (4.56)

in the BL coordinates with the direction cosines chosen as µ1 = sin θ2 sin θ1, and

µ2 = sin θ2 cos θ1.

4.2.1.3 8 Dimensions

In D = 8, there are three Killing-Yano tensors. The Killing-Yano tensor of rank-6 is

f (6) = rex1 ∧ eϕ1 ∧ ex2 ∧ eϕ2 ∧ ex3 ∧ eϕ3 −
√
−x1et ∧ er ∧ ex2 ∧ eϕ2 ∧ ex3 ∧ eϕ3

−
√
−x2et ∧ er ∧ ex1 ∧ eϕ1 ∧ ex3 ∧ eϕ3 −

√
−x3et ∧ er ∧ ex1 ∧ eϕ1 ∧ ex2 ∧ eϕ2 .

(4.57)

The Killing-Yano tensor of rank-4 is

f (4) = −r(
√
−x1ex2 ∧ eϕ2 ∧ ex3 ∧ eϕ3

+
√
−x2ex1 ∧ eϕ1 ∧ ex3 ∧ eϕ3 +

√
−x3ex1 ∧ eϕ1 ∧ ex2 ∧ eϕ2)

+ et ∧ er ∧ (
√
x1x2e

x3 ∧ eϕ3 +
√
x1x3e

x2 ∧ eϕ2 +
√
x2x3e

x1 ∧ eϕ1) . (4.58)

The Killing-Yano tensor of rank-2 is

f (2) = −
√
−x1x2x3et∧er+ r

√
x2x3e

x1 ∧eϕ1 + r
√
x1x3e

x2 ∧eϕ2 + r
√
x1x2e

x3 ∧eϕ3 .
(4.59)

Frames (4.25) in 8 dimensions are modified such that

Hi = (xi + a21)(xi + a22)(xi + a23) , Gi = (x1 + a2i )(x2 + a2i )(x3 + a2i ) ,

R = (r2 + a21)(r
2 + a22)(r

2 + a23) , FR = (r2 − x1)(r
2 − x2)(r

2 − x3) ,
(4.60)
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et =

√
(r2 + a21)(r

2 + a22)(r
2 + a23)−mr

(r2 − x1)(r2 − x2)(r2 − x3)
[dt+

(x1 + a21)(x2 + a21)(x3 + a21)

a1(a21 − a22)(a
2
1 − a23)

dϕ1

+
(x1 + a22)(x2 + a22)(x3 + a22)

a2(a22 − a21)(a
2
2 − a23)

dϕ2 +
(x1 + a23)(x2 + a23)(x3 + a23)

a3(a23 − a21)(a
2
3 − a22)

dϕ3] ,

er =

√
(r2 − x1)(r2 − x2)(r2 − x3)

(r2 + a21)(r
2 + a22)(r

2 + a23)−mr
dr , (4.61)

eϕ1 =

√
(x1 + a21)(x1 + a22)(x1 + a23)

(x1 − x2)(x1 − x3)(r2 − x1)

[
dt+

(x2 + a21)(x3 + a21)(r
2 + a21)

a1(a21 − a22)(a
2
1 − a23)

dϕ1

+
(x2 + a22)(x3 + a22)(r

2 + a22)

a2(a22 − a21)(a
2
2 − a23)

dϕ2 +
(x2 + a23)(x3 + a23)(r

2 + a23)

a3(a23 − a21)(a
2
3 − a21)

dϕ3

]
,

ex1 =

√
−(r2 − x1)(x1 − x2)(x1 − x3)

4x1(x1 + a21)(x1 + a22)(x1 + a23)
dx1 ,

where i = 1, 2, 3. We will not give frames eϕ2 , eϕ3 , ex2 , ex3 since eϕ1 and ex1 gives

enough insight about them. The relations for the coordinate transformation between

BL and ellipsoidal coordinates are

a21µ
2
1 =

(x1 + a21)(x2 + a21)(x3 + a21)

(a21 − a22)(a
2
1 − a23)

,

a22µ
2
2 =

(x1 + a22)(x2 + a22)(x3 + a22)

(a22 − a21)(a
2
2 − a23)

,

a23µ
2
3 =

(x1 + a23)(x2 + a23)(x3 + a23)

(a23 − a21)(a
2
3 − a22)

.

(4.62)

For the flat nonrotating metric, only the Killing-Yano tensor of rank-6 survives. Choos-

ing µ1 = sin θ3 sin θ2 sin θ1, µ2 = sin θ3 sin θ2 cos θ1, and µ3 = sin θ3 cos θ2, it be-

comes

f (6) = r7 cos θ1 cos θ2 sin θ1 sin
3 θ2 sin

5 θ3 dϕ1∧dϕ2∧dϕ3∧dθ1∧dθ2∧dθ3 , (4.63)

in the BL coordinates.
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4.2.2 Killing-Yano Tensors in Odd Dimensions

4.2.2.1 5 Dimensions

In D = 5, we can find a rank-3 Killing-Yano tensor by taking the Hodge dual of the

PCKYT (4.31)

f (3) = ∗h = −reϕ ∧ ex ∧ eψ +
√
−xeψ ∧ et ∧ er . (4.64)

The frames (4.28) are

d = 1, H = (x+ a21)(x+ a22), Gi = (x+ a2i ) ,

R = (r2 + a21)(r
2 + a22), FR = r2(r2 − x), c21 = (a21 − a22) = −c22 ,

(4.65)

et =

√
R−mr

r2(r2 − x)

[
dt+

a1(x+ a21)

(a21 − a22)
dϕ1 +

a2(x+ a22)

(a22 − a21)
dϕ2

]
,

er =

√
r2(r2 − x)

R−mr
dr , ex =

√
(r2 − x)

4(x+ a21)(x+ a22)
dx ,

eϕ =

√
−(x+ a21)(x+ a22)

x(r2 − x)

[
dt+

a1(r
2 + a21)

(a21 − a22)
dϕ1 +

a2(r
2 + a22)

(a22 − a21)
dϕ2

]
,

eψ =

√
−a

2
1a

2
2

xr2

[
dt+

(x+ a21)(r
2 + a21)

(a21 − a22)a1
dϕ1 +

(x+ a22)(r
2 + a22)

(a22 − a21)a2
dϕ2

]
,

(4.66)

where i = 1, 2. Let us calculate the Killing-Yano tensor. The wedge products of these

frames are

eψ ∧ et ∧ er = − a1a2

r
√
−x

[
a21(x+ a21)− (x+ a21)(r

2 + a21)

(a21 − a22)a1
dt ∧ dϕ1 ∧ dr

+
a22(x+ a22)− (x+ a22)(r

2 + a22)

(a22 − a21)a2
dt ∧ dϕ2 ∧ dr

− (x+ a21)(x+ a22)
a22(r

2 + a21)− a21(r
2 + a22)

(a21 − a22)
2a1a2

dϕ1 ∧ dϕ2 ∧ dr
]

=
1

(a21 − a22)

r√
−x

[−a2(x+ a21)dt ∧ dϕ1 ∧ dr + a1(x+ a22)dt ∧ dϕ2 ∧ dr

+(x+ a21)(x+ a22)dϕ1 ∧ dϕ2 ∧ dr] ,
(4.67)
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eψ ∧ eϕ1 ∧ ex = a1a2
2xr

[(
(x+ a21)(r

2 + a21)

(a21 − a22)a1
− a1(r

2 + a21)

(a21 − a22)

)
dt ∧ dϕ1 ∧ dx

+

(
(x+ a22)(r

2 + a22)

(a22 − a21)a2
− a2(r

2 + a22)

(a22 − a21)

)
dt ∧ dϕ2 ∧ dx

−(r2 + a21)(r
2 + a22)

a22(x+ a21)− a21(x+ a22)

(a21 − a22)
2a1a2

dϕ1 ∧ dϕ2 ∧ dx
]

=
1

2r(a21 − a22)
[a2(r

2 + a21)dt ∧ dϕ1 ∧ dx− a1(r
2 + a22)dt ∧ dϕ2 ∧ dx

+ (r2 + a21)(r
2 + a22)dϕ1 ∧ dϕ2 ∧ dx] .

(4.68)

The Killing-Yano tensor becomes

f (3) = − 1

2(a21 − a22)
[a2(r

2 + a21)dt ∧ dϕ1 ∧ dx− a1(r
2 + a22)dt ∧ dϕ2 ∧ dx

+ (r2 + a21)(r
2 + a22)dϕ1 ∧ dϕ2 ∧ dx]

+
r

(a21 − a22)
[−a2(x+ a21)dt ∧ dϕ1 ∧ dr + a1(x+ a22)dt ∧ dϕ2 ∧ dr

+ (x+ a21)(x+ a22)dϕ1 ∧ dϕ2 ∧ dr] . (4.69)

Letting µ1 = sin θ, and µ2 = cos θ, coordinates can be transformed from ellipsoidal

coordinates to BL coordinates by

µ2
1 =

(a21 + x)

(a21 − a22)
= sin2 θ , (4.70)

µ2
2 = − (a22 + x)

(a21 − a22)
= cos2 θ . (4.71)

The coordinate x and the differential form dx in terms of θ are

x = sin2 θ(a21 − a22)− a21 = − cos2 θ(a21 − a22)− a22 , (4.72)

dx = 2 sin θ cos θ(a21 − a22)dθ . (4.73)

Substitution to the Killing-Yano tensor finally yields

f (3) =− sin θ cos θ
[
a2(r

2 + a21)dt ∧ dϕ1 − a1(r
2 + a22)dt ∧ dϕ2

+(r2 + a21)(r
2 + a22)dϕ1 ∧ dϕ2

]
∧ dθ − r

[
a2 sin

2 θdt ∧ dϕ1

+ a1 cos
2 θdt ∧ dϕ2 − sin2 θ cos2 θ(a21 − a22)dϕ1 ∧ dϕ2

]
∧ dr .

(4.74)
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4.2.2.2 7 Dimensions

In D = 7, the PCKYT (4.31) is

h = rer ∧ et +
√
−x1ex1 ∧ eϕ1 +

√
−x2ex2 ∧ eϕ2 . (4.75)

The rank-5 Killing-Yano tensor can be found by taking the Hodge dual of h

f (5) = ∗h

= (reϕ1 ∧ ex1 ∧ eϕ2 ∧ ex2 + et ∧ er(
√
−x1ex2 ∧ eϕ2 +

√
−x2ex1 ∧ eϕ1)) ∧ eψ.

(4.76)

There is also another CCKYT

h∧h = ret∧er(
√
−x1eϕ1∧ex1+

√
−x2e2∧ex2)−

√
x1x2e

ϕ1∧eϕ2∧ex1∧ex2 , (4.77)

which gives the rank-3 Killing-Yano tensor

f (3) = ∗(h ∧ h) = r(
√
−x1eϕ2 ∧ ex2 +

√
−x2eϕ1 ∧ ex1) ∧ eψ −

√
x1x2e

t ∧ er ∧ eψ.
(4.78)

The frames (4.28) are

R = (r2 + a21)(r
2 + a22)(r

2 + a23), Hj = (xj + a21)(xj + a22)(xj + a23),

d1 = −d2 = x1 − x2, FR = r2(r2 − x1)(r
2 − x2), Gi = (x1 + a2i )(x2 + a2i ),

c21 = (a21 − a22)(a
2
1 − a23), c22 = (a22 − a21)(a

2
2 − a23), c23 = (a23 − a21)(a

2
3 − a22) .

(4.79)

et =

√
R−mr

r2(r2 − x1)(r2 − x2)

[
dt+

a1(x1 + a21)(x2 + a21)

(a21 − a22)(a
2
1 − a23)

dϕ1

+
a2(x1 + a22)(x2 + a22)

(a22 − a21)(a
2
2 − a23)

dϕ2 +
a3(x1 + a23)(x2 + a23)

(a23 − a21)(a
2
3 − a22)

dϕ3

]
,

er =

√
r2(r2 − x1)(r2 − x2)

R−mr
dr ,

eϕ1 =

√
−(x1 + a21)(x1 + a22)(x1 + a23)

x1(x1 − x2)(r2 − x1)

[
dt+

a1(x2 + a21)(r
2 + a21)

(a21 − a22)(a
2
1 − a23)

dϕ1

+
a2(x2 + a22)(r

2 + a22)

(a22 − a21)(a
2
2 − a23)

dϕ2 +
a3(x2 + a23)(r

2 + a23)

(a23 − a21)(a
2
3 − a22)

dϕ3

]
,
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ex1 =

√
(x1 − x2)(r2 − x1)

4(x1 + a21)(x1 + a22)(x1 + a23)
dx1 ,

eϕ2 =

√
−(x2 + a21)(x2 + a22)(x2 + a23)

x2(x2 − x1)(r2 − x2)

[
dt+

a1(x1 + a21)(r
2 + a21)

(a21 − a22)(a
2
1 − a23)

dϕ1

+
a2(x1 + a22)(r

2 + a22)

(a22 − a21)(a
2
2 − a23)

dϕ2 +
a3(x1 + a23)(r

2 + a23)

(a23 − a21)(a
2
3 − a22)

dϕ3

]
,

ex2 =

√
(x2 − x1)(r2 − x2)

4(x2 + a21)(x2 + a22)(x2 + a23)
dx2 ,

eψ =

√
a21a

2
2a

2
3

x1x2r2

[
dt+

(x1 + a21)(x2 + a21)(r
2 + a21)

(a21 − a22)(a
2
1 − a23)a1

dϕ1

+
(x1 + a22)(x2 + a22)(r

2 + a22)

(a22 − a21)(a
2
2 − a23)a2

dϕ2 +
(x1 + a23)(x2 + a23)(r

2 + a23)

(a23 − a21)(a
2
3 − a22)a3

dϕ3

]
,

(4.80)

where i = 1, 2, 3 and j = 1, 2. The coordinate transformations between ellipsoidal

coordinates and BL coordinates are

µ2
1 =

(x1 + a21)(x2 + a21)

(a21 − a22)(a
2
1 − a23)

,

µ2
2 =

(x1 + a22)(x2 + a22)

(a22 − a21)(a
2
2 − a23)

,

µ2
3 =

(x1 + a23)(x2 + a23)

(a23 − a21)(a
2
3 − a22)

.

(4.81)

The rank-3 Killing-Yano tensor (4.78) vanishes in the flat nonrotating 7-dimensional

background. Letting µ1 = sin θ1 sin θ2, µ2 = cos θ1 sin θ2, and µ3 = cos θ2, the

rank-5 Killing-Yano tensor (4.76) becomes

f (5) = r6 cos θ1 cos θ2 sin θ1 sin
3 θ2 dϕ1 ∧ dϕ2 ∧ dϕ3 ∧ dθ1 ∧ dθ2 , (4.82)

in the flat nonrotating background.

4.3 KT Charges

In this section, conserved charges obtained from (3.106) and (3.96) for Myers-Perry

black holes are calculated with the help of the Mathematica software [27]. We found

that, from the Killing-Yano tensors obtainable from (4.21), only rank-(D−2) Killing-

Yano tensors have nonvanishing components for the D-dimensional flat background.
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To simplify the results, let KD be a constant defined as

KD :=
(D − 1)πΩD−2

2(D − 2)2
, (4.83)

where ΩD = 2πD/2/Γ(D
2
) is the area of a unit D-sphere.

In each dimension, we divided the spacetime into the background metric ḡ and a

deviation h, where the background is the Minkowski metric in spherical coordinates

(t, r, θ, ϕ)

gµν = ḡµν + hµν . (4.84)

For D = 4, Kerr metric, the Killing-Yano tensor (4.45) is taken at the limit a → 0 to

get the Killing-Yano tensor f̄ of the flat background

f̄ = r3dθ ∧ dϕ . (4.85)

We can write the background metric as

ḡµν = −nµnν + rµrν + γµν . (4.86)

γµν is the metric on S2 of radius r. nµ = (−1, 0, 0, 0) and rµ = (0, 1, 0, 0) are

timelike and spacelike normal vectors to S2, respectively. KT potential (3.106) has

two relevant components

ℓ̄trθ =
am sin θ (a2 cos2 θ + 3r2)

2r (r2 + a2 cos2 θ))2
, ℓ̄rθϕ =

mr

sin θ (r2 + a2 cos2 θ)2
. (4.87)

ℓ̄trθ gives a conserved charge at the spatial infinity r → ∞. xµ is chosen as (0, 0, 1/r, 0)

such that the background metric can be written as

ḡµν = −nµnν + rµrν + xµxν + γ̄µν . (4.88)

Then the conserved charge can be found by using (3.96)

Q4D =

∫
S2

√
|γ|nµrνxρℓ̄µνρd2x =

∫ 2π

0

∫ π

0

(
r3 sin θℓ̄trθ

)
r→∞ dθdϕ

=
3

2
amπ2 = 2amK4 .

(4.89)
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The total mass differs in the Kerr and the 4-dimensional Myers-Perry metrics. To be

consistent with the calculations in the higher dimensions, let m → m/2. Then the

KT charge for the 4-dimensional Myers-Perry metric is

Q4D = amK4 . (4.90)

For D = 5, the rank-3 Killing-Yano tensor (4.74) is taken at the limit a1, a2 → 0 and

it becomes r4 sin θ cos θ dθ ∧ dϕ1 ∧ dϕ2. There are three relevant components of KT

potential (3.106)

ℓ̄trθϕ1 =
a2m cot θ ((a22 − a21) cos

2 θ − a22 − 2r2)

3r3 ((a21 − a22) cos
2 θ + a22 + r2)

2 ,

ℓ̄trθϕ2 =
a1m tan θ ((a21 − a22) cos

2 θ + a22 + 2r2)

3r3 ((a21 − a22) cos
2 θ + a22 + r2)

2 ,

ℓ̄rθϕ1ϕ2 =
m csc θ sec θ ((a21 − a22) cos

2 θ + a22 + 3r2)

6r3 ((a21 − a22) cos
2 θ + a22 + r2)

2 .

(4.91)

Similarly, we write the background metric as

ḡµν = −nµnν + rµrν + γµν . (4.92)

γµν is the metric on S3 of radius r. The last component of ℓ̄ does not give a conserved

charge since the contraction of ℓ̄ with the timelike normal vector nµ = (−1, 0, 0, 0, 0)

vanishes. We choose different normal vectors to get different charges. Let x(1)µ =

(0, 0, 1/r, 0, 0), x(2)µ = (0, 0, 0, (1/r) sin θ, 0), and x(3)µ = (0, 0, 0, 0, (1/r) cos θ).

Then, we can obtain two conserved charges at the spatial infinity r → ∞

Q
(1)
5D =

∫
S3

√
|γ|nµrνx(1)ρ x(2)σ ℓ̄µνρσd3x ,

Q
(2)
5D =

∫
S3

√
|γ|nµrνx(1)ρ x(3)σ ℓ̄µνρσd3x .

(4.93)

Q
(1)
5D =

∫ 2π

0

∫ 2π

0

∫ π/2

0

(
r5 sin2 θ cos θℓ̄trθϕ1

)
r→∞ dθdϕ1dϕ2

=− 2(2π)2

32
a2m = −a2mK5 ,

(4.94)

Q
(2)
5D =

∫ 2π

0

∫ 2π

0

∫ π/2

0

(
r5 sin θ cos2 θℓ̄trθϕ2

)
r→∞ dθdϕ1dϕ2

=
2(2π)2

32
a1m = a1mK5 .

(4.95)
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In higher dimensions (D > 5), the background metric only admits rank-2 CCKYT.

Thus, only rank-(D − 2) Killing Yano tensors are used. We will not give the nonva-

nising components of rank-(D − 1) KT potentials for (D > 5). The charges and the

nonvanishing components of KT potential from which the charges are obtained are

given in table 4.1.

Table 4.1: KT Charges in 4, 5, 6, 7, and 8 Dimensional Myers-Perry Spacetimes

Dimensions Charges Components of KT Potential Result

4 Q4D ℓtrθ K4am

5
Q

(1)
5D ℓtrϕ1θ K5a2m

Q
(2)
5D ℓtrθϕ2 K5a1m

6
Q

(1)
6D ℓtrϕ1θ1θ2 K6a2m

Q
(2)
6D ℓtrϕ2θ2θ1 K6a1m

7

Q
(1)
7D ℓtrϕ1ϕ2θ1θ2 K7a3m

Q
(2)
7D ℓtrϕ3ϕ1θ1θ2 K7a2m

Q
(3)
7D ℓtrϕ2ϕ3θ1θ2 K7a1m

8

Q
(1)
8D ℓtrϕ1ϕ2θ1θ2θ3 K8a3m

Q
(2)
8D ℓtrϕ3ϕ1θ1θ2θ3 K8a2m

Q
(3)
8D ℓtrϕ2ϕ3θ1θ2θ3 K8a1m

We obtained the angular momentum components of the Myers-Perry blackholes upto

8 dimensions and we expect the results would be similar and follow the obvious

pattern in higher dimensions. We can conclude that the asymptotic KT charge gives

the different components of the angular momentum for Myers-Perry blackholes. An

important observation is that one Killing-Yano tensor is enough to get the different

components of the total angular momentum. If we used the Killing vectors ∂ϕi in D

dimensions (2n+2 or 2n+1), we should have made n AD charge calculations to get

the same result.
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CHAPTER 5

KERR-LIKE SPACETIMES

5.1 Metric and Killing Family of Tensors

The metrics we are going to work with have a similar form to the Kerr metric in BL

coordinates

ds2 =−
(
∆− a2 sin2 θ

Σ

)
dt2 − 2a sin2 θ(r2 + a2 −∆)

Σ
dtdϕ

+

(
(r2 + a2)

2 −∆a2 sin2 θ

Σ

)
sin2 θdϕ2 +

Σ

∆
dr2 + Σdθ2 ,

(5.1)

where
Σ(r, θ) = r2 + a2 cos2 θ ,

∆(r) = r2 + a2 + F (r) ,
(5.2)

with the electromagnetic potentials

A = p
G(θ)

Σ

(
adt−

(
r2 + a2

)
dϕ
)
− q

R(r)

Σ

(
dt− a sin2 θdϕ

)
, (5.3)

A∗ = q
G(θ)

Σ

(
adt−

(
r2 + a2

)
dϕ
)
+ p

R(r)

Σ

(
dt− a sin2 θdϕ

)
. (5.4)

q is the electric, and p is the magnetic charge. The electromagnetic field strength

tensor F and the dual one P can be obtained by taking the exterior derivative of the

potentials

F = dA , P = dA∗ . (5.5)

There are several solutions found in the literature in the given form. FK(r) = −2mr,

and FKN(r) = −2mr + q2 gives the Kerr [28] and Kerr-Newman [29, 30] metrics,

respectively. FKN(r) = −2mr + q2 + p2 is the dyonic solution of the Kerr-Newman

metric. Also, setting FGD(r) = −2mr + (q2 + p2) (1− β (r2 + a2))
2 gives Garcìa-

Dìaz’s [31] nonlinear electrodynamics solution with the notation given in [32].
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The functions in electromagnetic potentials are GGD(θ) = cos θ(1 − βa2 sin2 θ) and

RGD(r) = r(1− β(r2 + a2)) for Garcìa-Dìaz’s metric. Kerr-Newman metric and its

dyonic version can be obtained by setting β = 0. Kerr metric satisfies the vacuum

Einstein equations Gµν = 0. (Dyonic) Kerr-Newman metric satisfies the Einstein

equations Gµν = κ(TKN)µν with the energy-momentum tensor (TKN)µν

(TKN)µν = Fµ
σFνσ + Pµ

σPνσ . (5.6)

These spacetimes admit two Killing vectors

ξ(1) = ∂t, ξ(2) = ∂ϕ . (5.7)

In KS form [33], metric (5.1) can be written as

gµν = ηµν + hkµkν . (5.8)

kµ is a null vector with respect to both g and η, and is

kµdx
µ = dt+

r(xdx+ ydy)− a(xdy − ydx)

r2 + a2
+
zdz

r
. (5.9)

h is found to be

h =
−r2F (r)
r4 + a2z2

. (5.10)

In this form, r is not a coordinate but a function of (x, y, z). It is determined from

x2 + y2

r2 + a2
+
z2

r2
= 1 . (5.11)

The coordinate transformation from KS form (t, x, y, z) to Eddington-like coordi-

nates [25] (t̄, r, θ, ϕ̄) is given by the following relations

x =
√
r2 + a2 sin θ cos

[
ϕ̄+ arctan

a

r

]
, (5.12)

y =
√
r2 + a2 sin θ sin

[
ϕ̄+ arctan

a

r

]
, (5.13)

z = r cos θ , (5.14)

t̄ = t . (5.15)
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In order to get BL coordinates (t, r, θ, ϕ), one more transformation is needed

dt̄ =dt− F (r)

∆(r)
dr , (5.16)

dϕ̄ =dϕ+
a

∆(r)
dr . (5.17)

These spacetimes share a common Killing-Yano tensor f and a CCKYT k indepen-

dent of the function F (r):

f = −a cos θdt ∧ dr+ar sin θdt ∧ dθ

−a2 cos θ sin2 θdr ∧ dϕ+ r(r2 + a2) sin θdθ ∧ dϕ ,
(5.18)

k = −rdt ∧ dr−a2 sin θ cos θdt ∧ dθ

−ar sin2 θdr ∧ dϕ− a(r2 + a2) sin θ cos θdθ ∧ dϕ .
(5.19)

A Killing tensor can be constructed from the Killing-Yano tensor (5.18)

Kµν = fµρf νρ . (5.20)

The Killing tensor K is

Kµν =


a2 − a2

F (r)(r2+a2) cos2 θ
∆(r)Σ(r,θ)

0 0 a− a3 F (r) cos2 θ
∆(r)Σ(r,θ)

0 −a2 cos2 θ ∆(r)
Σ(r,θ)

0 0

0 0 r2

Σ(r,θ)
0

a− a3 F (r) cos2 θ
∆(r)Σ(r,θ)

0 0 r2

sin2 θΣ(r,θ)
+ a4 cos2 θ

∆(r)Σ(r,θ)

 .
(5.21)

Similarly, we can construct a conformal Killing tensor from the CCKYT (5.19)

Qµν = kµρkνρ . (5.22)

The conformal Killing tensor Q is

Qµν =


r2 + a2 sin2 θ − F (r)(r2+a2)r2

∆(r)Σ(r,θ)
0 0 a− a r2F (r)

∆(r)Σ(r,θ)

0 − r2∆(r)
Σ(r,θ)

0 0

0 0 a2 cos2 θ
Σ(r,θ)

0

a− a r2F (r)
∆(r)Σ(r,θ)

0 0 a2

sin2 θΣ(r,θ)
− a4+a2F (r)

∆(r)Σ(r,θ)

 .
(5.23)
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5.2 Separability of Hamilton-Jacobi Equation

The Lagrangian for a particle with mass µ, electric charge e, and magnetic charge g

is

L =
1

2
gµν ẋ

µẋν + eAµẋ
µ + gA∗

µẋ
µ . (5.24)

where ẋµ = dxµ

dλ
with λ as an affine parameter related to the proper time by τ = µλ.

Since the metric is itself a Killing tensor, gµν ẋµẋν is a conserved quantity along the

geodesics

gµν ẋ
µẋν = −µ2 . (5.25)

This is the first conserved quantity; the rest-mass of the particle. Canonical momen-

tum can be obtained from the Lagrangian

pµ =
∂L

∂ẋµ

= gµν ẋ
ν + eAµ + gA∗

µ .

(5.26)

Then, the Hamiltonian of the particle is

H =
1

2
gµν
(
pµ − eAµ − gA∗

µ

)
(pν − eAν − gA∗

ν) . (5.27)

Since the Lagrangian does not explicitly depend on the affine parameter λ, the Hamil-

tonian is conserved. If we write the Hamiltonian in terms of the generalized coordi-

nates, it simply is

H =
1

2
gµν ẋ

µẋν = −1

2
µ2 . (5.28)

The equations of motion can be obtained from the Lagrangian (5.24)

D2xµ

dτ 2
=
e

µ

dxν

dτ
F µ

ν +
g

µ

dxν

dτ
P µ

ν . (5.29)

The metric (5.1) possesses two Killing vectors:

ξ(t) = ∂t, ξ(ϕ) = ∂ϕ . (5.30)

From the symmetries of the metric, we can obtain two constants of motion. The first

one arises from the conservation of energy, and the second one arises from the con-

servation of angular momentum. As shown in [4], we can also write the conserved
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quantities associated with the Killing vectors and tensors by using canonical momen-

tum for the charged particles, i.e. pµ∇µ (ξ
νpν) = 0. Thus, conserved quantities

associated with the Killing vectors are

pt = −E, pϕ = Φ . (5.31)

Up to now, we have obtained three constants of motion. In order to solve the equa-

tions of motion, we need to find another conserved quantity that cannot be found from

the obvious symmetries of the metric. In order to find it, Carter [2] used the separa-

bility of the Hamilton-Jacobi equation. Following Carter’s discussion, we can write a

separable action for the Lagrangian (5.24) as

S =
1

2
µ2λ− Et+ Φϕ+ Sθ(θ) + Sr(r) . (5.32)

The Hamilton-Jacobi equation is

∂S

∂λ
+

1

2
gµν
(
∂S

∂xµ
− eAµ − gA∗

µ

)(
∂S

∂xν
− eAν − gA∗

ν

)
= 0 . (5.33)

Writing it explicitly,

µ2+

[
(r2 + a2)

2 − a2 sin2 θ∆(r)
]

∆(r)Σ3(r, θ)
[EΣ(r, θ) + (gq + ep) aG(θ) + (gp− eq)R(r)]2

−2a(∆(r)− (r2 + a2))

∆(r)Σ3(r, θ)
[EΣ(r, θ) + (gq + ep) aG(θ) + (gp− eq)R(r)][

ΦΣ(r, θ) + (gq + ep)
(
r2 + a2

)
G(θ) + (gp− eq) a sin2 θR(r)

]
+

∆(r)− a2 sin2 θ

sin2 θ∆(r)Σ3(r, θ)

[
ΦΣ(r, θ) + (gq + ep)

(
r2 + a2

)
G(θ)

+ (gp− eq) a sin2 θR(r)
]2

+
∆(r)

Σ(r, θ)

(
dSr
dr

)2

+
1

Σ(r, θ)

(
dSθ
dθ

)2

= 0 .

(5.34)

After using the definitions (5.2) and a careful investigation, equation (5.34) can be
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written as

µ2r2+∆(r)

(
dSr
dr

)2

− E2 (r
2 + a2)

2

∆(r)
− Φ2 a2

∆(r)
+ 2aEΦ

(r2 + a2)

∆(r)

− 2 (eq − gp)
R(r)

∆(r)

(
Φa− E

(
r2 + a2

))
− (eq − gp)2

R2(r)

∆(r)

= −µ2a2 cos2 θ −
(
dSθ
dθ

)2

− E2a2 sin2 θ − Φ2

sin2 θ
+ 2aEΦ

− 2 (ep+ gq)G(θ)

(
Φ

sin2 θ
− Ea

)
− (ep+ gq)2

G2(θ)

sin2 θ
= K .

(5.35)

We separated the r and θ-dependent parts of the Hamilton-Jacobi equation. Thus, we

can conclude that both parts must be equal to a separation constant K. This constant

is called the Carter constant. We can work on both sides separately to find the full

action. Let us define two functions

Θ(θ) :=−K − µ2a2 cos2 θ − E2a2 sin2 θ − Φ2

sin2 θ
+ 2aEΦ

− 2 (ep+ gq)G(θ)

(
Φ

sin2 θ
− Ea

)
− (ep+ gq)2

G2(θ)

sin2 θ
,

(5.36)

T (r) :=K − µ2r2 + E2 (r
2 + a2)

2

∆(r)
+ Φ2 a2

∆(r)
− 2aEΦ

(r2 + a2)

∆(r)

+ 2 (eq − gp)
R(r)

∆(r)

(
Φa− E

(
r2 + a2

))
+ (eq − gp)2

R2(r)

∆(r)
.

(5.37)

Then, Sr and Sθ can be found by integrating these functions

Sθ(θ) =

∫
θ

√
Θdθ ,

Sr(r) =

∫
r

√
T

∆(r)
dr .

(5.38)

The total action becomes

S =
1

2
µ2λ− Et+ Φϕ+

∫
θ

√
Θdθ +

∫
r

√
T

∆(r)
dr . (5.39)

Carter proposed another method [34] to get the fourth constant of motion. Let the

Hamiltonian be in the form

H =
1

2

Hr(r) +Hµ(µ)

Ur(r) + Uµ(µ)
, (5.40)
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where Ur(r) and Uµ(µ) are functions of a single coordinate, and Hr(r) is indepen-

dent of other coordinates and independent of pµ, and Hµ(µ) is independent of other

coordinates and independent of pr. Then, one can construct a conserved quantity

K =
UrHµ − UµHr

Ur + Uµ
. (5.41)

Since K commutes with the Hamiltonian, it is a conserved quantity and can be used

as the fourth constant of motion. The functions Hr(r), Hθ(θ), Ur(r), and Uθ(θ) for

the metric (5.1) are

Hr =∆(r)p2r −
E2 (r2 + a2)

2

∆(r)
− Φ2 a2

∆(r)
+ 2aEΦ

(r2 + a2)

∆(r)

− 2(eq − gp)
R(r)

∆(r)

(
Φa− E

(
r2 + a2

))
− (eq − gp)2

R2(r)

∆(r)
,

Hθ =p
2
θ + E2a2 sin2 θ +

Φ2

sin2 θ
− 2aEΦ

+ 2(ep+ gq)G(θ)

(
Φ

sin2 θ
− Ea

)
+ (ep+ gq)2

G2(θ)

sin2 θ
,

Ur =r
2, Uθ = a2 cos2 θ .

(5.42)

If we substitute the Hamiltonian to (5.41) in terms of the separation constant (5.35),

we get

K =
Ur(K − µ2Uθ)− Uθ(−K + µ2Ur)

Ur + Uθ
= K . (5.43)

Thus, both constants are equal to each other. Using (5.41), the Carter constant is

K =− a2 cos2 θ
∆(r)

Σ(r, θ)
p2r +

r2

Σ(r, θ)
p2θ ++

(
r2

sin2 θ
+
a4 cos2 θ

∆(r)

)
Φ2

Σ(r, θ)

+

(
r2a2 sin2 θ +

(r2 + a2)
2
a2 cos2 θ

∆(r)

)
E2

Σ(r, θ)
− 2aEΦ

(
1− a2 cos2 θF (r)

∆(r)Σ(r, θ)

)
+ 2r2(ep+ gq)

G(θ)

Σ(r, θ)

(
Φ

sin2 θ
− Ea

)
+ r2(ep+ gq)2

G2(θ)

sin2 θΣ(r, θ)

+ 2a2 cos2 θ(eq − gp)
R(r)

∆(r)Σ(r, θ)

(
Φa− E

(
r2 + a2

))
+ a2 cos2 θ(eq − gp)2

R2(r)

∆(r)Σ(r, θ)
.

(5.44)

There is also a simpler method if the spacetime is known to admit a Killing tensor

K. Aside from the conserved quantities obtained from the Killing vectors, there is
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another conserved quantity K̄ [4]

K̄ = Kµν ẋ
µẋν = Kµν

(
pµ − eAµ − gA∗

µ

)
(pν − eAν − gA∗

ν) . (5.45)

If we use (5.21), the two constants K and K̄ are equal to each other

K̄ = K . (5.46)

Thus, one can use the second-order terms in momenta in (5.44) to extract the compo-

nents of the Killing tensor.

For the massless and chargeless particles, Carter constant (5.35) becomes

∆(r)

(
dSr
dr

)2

− E2 (r
2 + a2)

2

∆(r)
− Φ2 a2

∆(r)
+ 2aEΦ

(r2 + a2)

∆(r)

= −
(
dSθ
dθ

)2

− E2a2 sin2 θ − Φ2

sin2 θ
+ 2aEΦ = Q .

(5.47)

The Hamiltonian can be written in the form of (5.40) with the functionsHr(r),Hθ(θ),

Ur(r), and Uθ(θ)

Hr =∆(r)p2r −
E2 (r2 + a2)

2

∆(r)
− Φ2 a2

∆(r)
+ 2aEΦ

(r2 + a2)

∆(r)
= Q ,

Hθ =p
2
θ + E2a2 sin2 θ +

Φ2

sin2 θ
− 2aEΦ = −Q ,

Ur =r
2, Uθ = a2 cos2 θ .

(5.48)

Then, the following is a Carter-like constant for the null geodesics and is a sym-

metrized version of the quantity Q that is defined in (5.47)

Q =
UθHθ − UrHr

Ur + Uθ

=
UrQ+ UθQ
Ur + Uθ

= Q .

(5.49)

After substituting (5.48) into (5.49), we get

Q = −r2 ∆(r)

Σ(r, θ)
p2r +

E2r2 (r2 + a2)
2

Σ(r, θ)∆(r)
− 2aEΦ

(
1− r2F (r)

Σ(r, θ)∆(r)

)
+ a2 cos2 θ

p2θ
Σ(r, θ)

+ E2a4
sin2 θ cos2 θ

Σ(r, θ)
+

Φ2a2

Σ(r, θ)

(
r2

∆(r)
+ cot2 θ

)
. (5.50)
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Since the conformal Killing tensors are conserved along the null geodesics, one can

construct a conserved quantity by using (5.23)

Q̄ = Qµνpµpν . (5.51)

These two constants are equal to each other

Q = Q̄ . (5.52)

While we can directly use the conformal Killing tensor to solve the null geodesics,

we can also use the Carter constant (5.35) and take the massless limit (µ → 0). In

both cases, we end up with the same differential equations for the null geodesics.

5.3 Cotton Charges

In this section, we will calculate Cotton charges [12] given in the subsection 3.3.2.

Since the metric (5.1) admits both Killing-Yano tensor and CCKYT, we can construct

both of the Cotton currents.

Cotton charge can be found by using the equation (3.34) with the Cotton currents

given in equation (3.111). Let the timelike normal nµ be

nµ = (

√
Σ

∆− a2 sin2 θ
, 0, 0, 0) . (5.53)

The metric can be written as

gµν = hµν − nµnν , (5.54)

where hµν is the induced metric on the 3-dimensional spacelike hypersurface. The

determinant of the induced metric is√
|h| = sin θ (r2 + a2 cos2 θ)

3/2√
r2 + a2 cos2 θ + F (r)

. (5.55)

The two Cotton charges can be obtained by integrating over the space with the in-

duced metric hµν

Q(f) =

∫
nµj

µ
√
|h|drdθdϕ ,

Q(k) =

∫
nµJ

µ
√
|h|drdθdϕ .

(5.56)
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First, let us work on Q(f) using the current j. We find that the θ integral vanishes∫ π

0

nµj
µ
√
|h|dθ = 0 . (5.57)

Thus, we cannot obtain a Cotton charge for the metric (5.1) using the Killing-Yano

tensor (5.18)

Q(f) = 0 . (5.58)

Let us move on to the charge Q(k). We calculated the θ integral from 0 to π, and ϕ

integral from 0 to 2π. The result is

Q(k) = −4

3
π

∫
r

(
4 tan−1

(a
r

) [2 (r2 + a2) + F (r)] [6F (r)− 6rF ′(r) + r2F ′′(r)]

arF (r)

−
2 tan−1

(
a√

r2+F (r)

)
∆(r)

aF (r)
√
r2 + F (r)

[
F (r)

(
rF (3)(r)− 4F ′′(r) + 24

)
+4r2F ′′(r)− 24rF ′(r)

]
− 2F ′′(r)

)
dr . (5.59)

For the Kerr metric (FK(r) = −2mr), Q(k)
K vanishes. For the dyonic Kerr-Newman

metric (FKN(r) = −2mr + p2 + q2), Q(k)
KN is

Q
(k)
KN = −32π

a
(p2 + q2)

∫ ∞

r+

(
tan−1

(
a
r

)
(2a2 + 2r2 − 2mr + p2 + q2)

r (p2 + q2 − 2mr)

−
2 (r2 + a2 − 2mr + p2 + q2) tan−1

(
a√

r2−2mr+p2+q2

)
(p2 + q2 − 2mr)

√
r2 − 2mr + p2 + q2

)
dr , (5.60)

where r+ := m +
√
m2 − a2 − p2 − q2. Unfortunately, we could not take the r

integral. This result is the same as the one calculated in [12]. It is important to point

out that the Cotton charge is proportional to the total charge of the spacetime (p2+q2).

At the limit where the rotation parameter a is zero (when the Kerr metric reduces to

the dyonic Reissner-Nordström metric [14]), the charge is

Q
(k)
RN =

32π(p2 + q2)

m+
√
m2 − p2 − q2

. (5.61)

Since we can calculate the integral as a → 0, we can try to calculate it when a ≪ r.
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Let us denote the integrand with I

I = −32π

a
(p2 + q2)

(
tan−1

(
a
r

)
(2a2 + 2r2 − 2mr + p2 + q2)

r (p2 + q2 − 2mr)

−
2 (r2 + a2 − 2mr + p2 + q2) tan−1

(
a√

r2−2mr+p2+q2

)
(p2 + q2 − 2mr)

√
r2 − 2mr + p2 + q2

)
. (5.62)

We should expand the integral by using the fundamental theorem of calculus for small

a. However, the integrals are not simplified. Instead, we can expand the integrand

and the integration limits for small a and then, integrate. Since it would be the same

with starting with a slowly rotating Kerr-Newman metric and integrating from the

perturbed outer horizon to the infinity, we prefer to follow this path. Expanding the

integrand around a = 0, we get

I = 32π(p2 + q2)

(
1

r2
− a2

3r4
+

4a2

3

1

r2 (r2 + p2 + q2 − 2mr)

)
+O

(
a4
)
. (5.63)

Now, we can take the r-integral

Q
(k)
KN =

∫ ∞

r+

Idr = −32π(p2 + q2)

[
1

r
− a2

9r3

−4a2

3

(
− 1

(p2 + q2)r
+ (2m2 − p2 − q2) ln

∣∣∣∣∣r −m−
√
m2 − p2 − q2

r −m+
√
m2 − p2 − q2

∣∣∣∣∣
+m

√
m2 − p2 − q2 ln

∣∣∣∣∣ r2

r2 − 2mr + p2 + q2

∣∣∣∣∣
)

+O(a4)

]∞
r+

. (5.64)

The integral vanishes at the limit r → ∞. The outer horizon r+ is also expanded

around a = 0

r+ = m+
√
m2 − p2 − q2 − a2

2

1√
m2 − p2 − q2

+O(a4) . (5.65)

Substituting (5.65) into the integrand and keeping terms with the second order of a,

61



we get the Cotton charge for the dyonic Kerr-Newman metric with small rotation

Q
(k)
KN ≈ 32π

(
p2 + q2

) [ 1

m+
√
m2 − p2 − q2

− a2

9
(
m+

√
m2 − p2 − q2

)3
+

a2

6 (p2 + q2)2
√
m2 − p2 − q2

(
5
(
p2 + q2

)
− 2m2 + 2m

√
m2 − p2 − q2

− 16m
√
m2 − p2 − q2 ln

(
m+

√
m2 − p2 − q2

)
+ 8

(
2m2 − p2 − q2

)
ln
(
2m
√
m2 − p2 − q2

)
−8
(
2m2 − p2 − q2 − 2m

√
m2 − p2 − q2

)
ln(a)

)]
.

(5.66)

The charge reduces to the (5.61) as a → 0. For Garcìa-Dìaz’s metric (FGD(r) =

−2mr + (q2 + p2) (1− β (r2 + a2))
2), the exact expression of Q(k)

GD is even more

complicated. There are terms of order r2 in the integral. Thus, one would expect the

charge to diverge. Since the whole expression is too long and complicated, instead,

let us look at the charge as a→ 0

Q
(k)
GD = −32π(p2 + q2)

3

∫ ∞

r+

(βr2 + 3)

r2
dr =

[
32

3
π(p2 + q2)

(
βr − 3

r

)]∞
r+

.

(5.67)

The charge diverges as long as β ̸= 0. Therefore, we cannot obtain Cotton charges

for Garcìa-Dìaz’s metric with the Killing-Yano tensor (5.18) and CKYT (5.19). Nev-

ertheless, we have seen that the Cotton charges are related to the spacetime’s total

electric and magnetic charges.
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CHAPTER 6

CONCLUSION

In this thesis, we reviewed the properties of Killing, Killing-Yano, conformal Killing,

and conformal Killing-Yano tensors. We showed how to construct conserved charges

from covariantly conserved currents and calculated asymptotic conserved charges

with the KT current for Myers-Perry spacetimes. For the spacetimes with a Kerr-

like rotation parameter, we showed that the Hamilton-Jacobi equation separates and

we gave the Killing family of tensors.

We started giving the definitions of Killing and conformal Killing vectors and then

generalized them to higher rank tensors. We emphasized the importance of (confor-

mal) Killing tensors and their relations to the symmetries of the spacetime. Even

though higher rank tensors are not directly related to the symmetries, they reveal

hidden symmetries which are essential while working on the geodesics. We investi-

gated the properties of the Killing family of tensors and showed how to construct the

structure called the Killing-Yano tower. If the Killing-Yano potential is given, one

can construct a PCKYT. Different rank Killing-Yano tensors can be obtained using

the PCKYT and higher rank CCKYTs. Additionaly, different (conformal) Killing

tensors can be obtained by multiplying these (conformal) Killing-Yano tensors.

In chapter 3, we used Stokes’ theorem to construct conserved charges from covari-

antly conserved current vectors. Afterward, we generalized the discussion to higher

rank antisymmetric conserved currents. For higher rank currents, one should inte-

grate on hypersurfaces instead of the whole space in order to use Stokes’ theorem,

and these hypersurfaces must be integrable submanifolds. We also showed that a

conserved charge can be constructed using the background if the spacetime behaves

as flat or (A)dS at the spatial infinity [10]. We also gave three examples of conserved
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currents [1, 12] obtained by using Killing-Yano and CKYTs.

In the next chapter, we gave the Myers-Perry metrics [24] and their PCKYT in BL, KS

and ellipsoidal coordinates. We found the PCKYT of the Myers-Perry metrics (4.20)

in a compact form in KS coordinates. Afterwards, we calculated the Killing-Yano

tensors in 4, 5, 6, 7, and 8 dimensions by using the Killing-Yano tower structure.

We noticed that only rank-(D − 2) Killing-Yano tensors do not vanish in the flat

background which can be easily interpreted from the PCKYT (4.21). As the rotation

and mass parameters go to zero, the PCKYT is left with only one component, rdr∧dt.
Since the wedge product of rdr ∧ dt with itself vanishes, one cannot get any Killing-

Yano tensor of rank lower than (D − 2) for the flat background.

For the rank-(D − 2) Killing-Yano tensors of the flat background, we calculated KT

potentials [1] (3.106) in 4, 5, 6, 7, and 8 dimensions using the Mathematica software

[27]. Nonvanishing components of the potentials are integrated over the background

at the spatial infinity to calculate the asymptotic gravitational KT charges of Myers-

Perry spacetimes. We found that KT charges correspond to angular momentums of

the Myers-Perry black holes upto 8 dimensions. We presume that it will follow the

same pattern in higher dimensions

Q
(i)
D ∼ aim , (6.1)

where i = 1, . . . , n with the dimension D = 2n+ 2 or D = 2n+ 1.

In the last chapter, we studied a metric that looks like the Kerr metric in BL coordi-

nates with additional unknown terms given as F (r). Kerr(-Newman) [28, 29, 30], and

Garcìa-Dìaz [31] metrics can be obtained by setting F (r) to different functions. A

significant property of these spacetimes is that they admit the same Killing-Yano and

CKYTs in addition to the two Killing vectors ∂t and ∂ϕ. Consequently, we constructed

a Killing tensor (and a conformal Killing tensor) and discussed the separability of the

Hamilton-Jacobi equations. We found Carter’s fourth constant [2] for these space-

times and one can solve the equations of motion for a test particle with mass /mu,

electric charge e, and magnetic charge g. Moreover, we calculated the Cotton currents

[12] for the metric. The current with the Killing-Yano tensor did not give a conserved

charge when integrated, however, we got an expression for generic F (r) using the

current with CKYT. For the Kerr metric, the Cotton charge vanished. We could not
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take the integral for Kerr-Newman and Garcìa-Dìaz’s metrics but we calculated the

charge as the rotation parameter a → 0. While Reissner-Nordström metric’s Cotton

charge is found as

Q(k) =
32π(p2 + q2)

m+
√
m2 − p2 − q2

, (6.2)

the Cotton charge of Garcìa-Dìaz’s nonrotating metric diverged. However, we can

still conclude that the Cotton charges are related to the total electric and magnetic

charges of the spacetime.

65



66



REFERENCES

[1] D. Kastor and J. Traschen, “Conserved gravitational charges from Yano ten-

sors,” JHEP, vol. 08, p. 045, 2004.

[2] B. Carter, “Global structure of the Kerr family of gravitational fields,” Phys.

Rev., vol. 174, pp. 1559–1571, 1968.

[3] M. Walker and R. Penrose, “On quadratic first integrals of the geodesic equa-

tions for type {22} spacetimes,” Commun. Math. Phys., vol. 18, pp. 265–274,

1970.

[4] L. P. Hughston, R. Penrose, P. Sommers, and M. Walker, “On a quadratic first

integral for the charged particle orbits in the charged kerr solution,” Commun.

Math. Phys., vol. 27, pp. 303–308, 1972.

[5] S. Chandrasekhar, “The Solution of Dirac’s Equation in Kerr Geometry,” Proc.

Roy. Soc. Lond. A, vol. 349, pp. 571–575, 1976.

[6] D. N. Page, “Dirac Equation Around a Charged, Rotating Black Hole,” Phys.

Rev. D, vol. 14, pp. 1509–1510, 1976.

[7] B. Carter and R. G. McLenaghan, “Generalized total angular momentum opera-

tor for the dirac equation in curved space-time,” Phys. Rev. D, vol. 19, pp. 1093–

1097, Feb 1979.

[8] M. Cariglia, “Quantum mechanics of Yano tensors: Dirac equation in curved

spacetime,” Class. Quant. Grav., vol. 21, pp. 1051–1078, 2004.

[9] V. Frolov, P. Krtous, and D. Kubiznak, “Black holes, hidden symmetries, and

complete integrability,” Living Rev. Rel., vol. 20, no. 1, p. 6, 2017.

[10] L. F. Abbott and S. Deser, “Stability of Gravity with a Cosmological Constant,”

Nucl. Phys. B, vol. 195, pp. 76–96, 1982.

67
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