
DEEP IMAGE COMPRESSION WITH A UNIFIED SPATIAL AND CHANNEL
CONTEXT AUTO-REGRESSIVE MODEL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALI SEFKAN ULUDAĞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2022

Approval of the thesis:

DEEP IMAGE COMPRESSION WITH A UNIFIED SPATIAL AND
CHANNEL CONTEXT AUTO-REGRESSIVE MODEL

submitted by ALI SEFKAN ULUDAĞ in partial fulfillment of the requirements for
the degree of Master of Science in Electrical and Electronics Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Fatih Kamışlı
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Fatih Kamışlı
Electrical and Electronics Engineering, METU

Prof. Dr. Ahmet Oguz Akyuz
Computer Engineering, METU

Assist. Prof. Dr. Ahmed Hareedy
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Gökhan Koray Gültekin
Electrical and Electronics Engineering, AYBU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Ali Sefkan Uludağ

Signature :

iv

ABSTRACT

DEEP IMAGE COMPRESSION WITH A UNIFIED SPATIAL AND
CHANNEL CONTEXT AUTO-REGRESSIVE MODEL

Uludağ, Ali Sefkan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Fatih Kamışlı

August 2022, 69 pages

Recently, variational auto-encoder-based compression models have gained much at-

tention in learned image compression field due to their dimension reduction property.

These models have three essential components which are encoder, decoder and en-

tropy network. Encoder part of the VAE transforms a high dimensional space to a

lower dimensional latent space, whereas the decoder serves as a reconstructing trans-

formation. The entropy model is trained to generate the probability distributions of

the latent representation to be used in arithmetic coding. End-to-end optimization is

performed to minimize a rate-distortion loss composed of weighted sum of distortion

loss of the decoder output and rate loss of the entropy model output. The VAE-based

learned lossy image compression first introduced in Ballé (2016). Ballé (2018), im-

proved this model by adapting a hyperprior network to increase the expression ability

of spatial dependencies in the latent variable. Spatial auto-regressive and channel

auto-regressive models are introduced in Minnen (2018) and Minnen (2020) respec-

tively, to decrease the entropy of latent representation.

This thesis presents a lossy image compression model which builds upon the afore-

v

mentioned image compression architectures. It has been observed that spatial auto-

regressive and channel auto-regressive models can be complementary and enhance

the rate-distortion performance of the network. The channel auto-regressive model

splits the latent representation along the channel dimension. It eliminates redundan-

cies between channel slices by conditioning the slice being decoded to previously

decoded slices. Spatial auto-regressive model captures the spatial correlations within

a slice. Furthermore, it has been observed that the cumbersome spatial auto-regressive

model can be parallelized by dividing the latent variables into smaller patches. El-

ements with the same index across patches are processed together, allowing parallel

computation.

Keywords: image compression, deep learning, transform coding, auto-encoder

vi

ÖZ

BİRLEŞTİRİLMİŞ UZAYSAL VE KANAL İÇERİK ÖZBAĞLANIM
MODELİ İLE DERİN GÖRÜNTÜ SIKIŞTIRMA

Uludağ, Ali Sefkan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Fatih Kamışlı

Ağustos 2022 , 69 sayfa

Yakın zamanda, boyut azaltma özelliğinden dolayı, değişimsel oto-kodlayıcılar bü-

yük bir ilgi toplamıştır. Bu tip modellerin üç ana parçası bulunmaktadır. Bunlar kod-

layıcı, kod çözücü ve entropi ağlarıdır. Kodlayıcı kısmı, görüntüyü yüksek boyutlara

sahip olan girdi uzayından düşük boyutlara sahip olan örtük uzaya dönüştürür. Bu-

nun yanında, kod çözücü ise tekrardan boyut yükselterek örtük uzaydan görüntü uza-

yına dönüştürme görevindedir. Entropi modeli ise aritmetik kodlamada kullanılmak

üzere örtük uzaydaki elemanların olasılık dağılımlarını üretmek için eğitilmektedir.

Uçtan uca optimizasyon, kod çözücünün çıktısının bozulma kaybı ve entropi ağının

çıktısının hız kaybının ağırlıklı toplamı ile gerçekleştirilmektedir. Değişimsel oto-

kodlayıcı temelli öğrenilmiş görüntü sıkıştırma teknikleri ilk Ballé (2016) ile tanıtıl-

mıştır. Ballé (2018) örtük uzaydaki uzaysal koşullulukları daha iyi ifade edebilmek

için bir hiper-evvel ağı uyarlayarak geliştirmiştir. Uzaysal ve kanalsal içerik modelleri

Minnen (2018) ve Minnen (2020) ile eklenmiştir. Bu özbağlanımlı modeller entropiyi

azaltmak için uygulanmıştır.

vii

Bu tez bahsi geçen görüntü sıkıştırma mimarileri üzerine inşa edilen bir görüntü sı-

kıştırma modeli sunmaktadır. Her iki özbağlanımlı model de bu çalışmada kullanıl-

mıştır. Uzaysal özbağlanımlı ve kanalsal özbağlanımlı modellerin birbirini tamamla-

yıcı özellikte oldukları ve birlikte kullanımlarının hız-bozulma performanını arttırdığı

gözlenmiştir. Kanalsal özbağlanımlı model örtük uzaydaki temsili kanal boyutu bo-

yunca daha küçük kanala sahip olan parçalara böler. Bu model, işlenmekte olan kanal

parçasını daha önce işlenen kanal parçalarına koşullayarak kanallar arasındaki fazla-

lıkları giderir. Uzaysal özbağlanımlı model ise bir kanal parçası içerisindeki uzaysal

korelasyonları yakalar. Bunlara ilaveten, örtük değişken daha küçük parçalara ayrıla-

rak uzaysal özbağlanımlı modelin parelelleştirilmesinin mümkün olduğu gözlenmiş-

tir.

Anahtar Kelimeler: görüntü sıkıştırma, derin öğrenme, dönüşüm kodlaması, oto-kodlayıcı

viii

To the days that have been sacrificed for the days that are yet to come.

ix

ACKNOWLEDGMENTS

I want to express my deepest gratitude to my advisor Assoc. Prof. Dr. Fatih Kamışlı

for his guidance. He never hesitated to help me and share his knowledge whenever I

needed. I greatly appreciate his belief in me.

I thank Onur Yek for giving me motivation to go on whenever I felt exhausted. With-

out him, these past years would be very tough. I am thankful to all my friends for

being there when I needed. I know that we will continue to carry each other forward

throughout our lives. I thank Lizge Gül Uludağ for being the best sister on earth.

She never ceases to lend her support when I am in need. Finally, I am grateful to my

mother Nadire Turgut for everything she has given to me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Image Compression Overview . 2

1.3 Learning Based Image Compression 2

1.4 Contribution . 4

1.5 Outline of the Thesis . 5

2 BACKGROUND INFORMATION . 7

2.1 Information Entropy . 7

2.2 Data Compression . 10

2.2.1 Lossless Data Compression 10

xi

2.2.1.1 Huffman Coding . 10

2.2.1.2 Arithmetic Coding . 11

2.2.2 Lossy Data Compression . 12

2.3 Artificial Neural Networks . 13

2.4 Back-propagation . 15

2.5 Optimization and Gradient Descent 17

2.6 Convolutional Neural Networks . 19

3 LITERATURE REVIEW . 25

3.1 Generalized Divisive Normalization 25

3.2 Nonlinear Transform Coding for Image Compression 26

3.3 Variational Generative Image Models 30

3.4 Variational Image Compression with a Hyperprior 31

3.5 Autoregressive Learned Image Compression 33

3.6 Channel Autoregressive Model . 34

4 PROPOSED METHOD . 37

4.1 Model Structure . 39

4.2 Quantization . 42

4.3 Entropy Network . 42

4.4 Arithmetic Coding . 46

4.5 Compression Procedure . 46

4.6 Decompression Procedure . 47

5 EXPERIMENTAL RESULTS . 51

5.1 Training and Evaluation . 51

xii

5.2 Number of Parameters . 52

5.3 Compression Performance . 53

5.4 Inspection of Latent Space . 55

5.5 Compression Latency and Parallelized Entropy Model 59

6 CONCLUSION . 65

6.1 Future Work . 66

REFERENCES . 67

xiii

LIST OF TABLES

TABLES

Table 5.1 Number of parameters of various models 52

Table 5.2 Encoding and decoding times of various models. 62

Table 5.3 Experimental results of parallel context model for two lambda val-

ues. The first elements in each patch are encoded without spatial context

information. There are more elements to encode without spatial context

information when patch size decreases. Hence, performance tends to de-

crease with the patch size. 63

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 A simple block diagram explaining general image compression

framework. Firstly, input image is projected onto a transform domain to

obtain a compact representation. Quantization is applied to transformed

image since encoder can only operate on integer values. Encoder trans-

lates the integer values into a bitstream. To restore the image, decoder

translates back the integer values from input bitstream. Inverse of quan-

tization and transformation is applied to the retrieved integer values. . . 3

Figure 2.1 Visualization of third property 7

Figure 2.2 Entropy of a binary random process 8

Figure 2.3 Example of Huffman Codebook generation for four symbols . . 11

Figure 2.4 Arithmetic coding procedure 12

Figure 2.5 A simple perceptron . 14

Figure 2.6 A multi-layer perceptron . 15

Figure 2.7 Illustrations of a) forward propagation b) backward propagation.

In forward propagation, the result of a node in a layer is given as input to

each node in the next layer. Multiple inputs are accumulated to produce

an output. In backward propagation, the gradient is propagated from

output to the input. The gradients received from nodes in the next layer

are accumulated and passed on to the previous layer. 16

xv

Figure 2.8 Hieararchy of features extracted from input image. Earlier layers

extract low level information which has no meaningful structure when

examined alone. These features are passed on to following layers to

form higher level features. The image is taken from (Yosinski et al. 2015) 20

Figure 2.9 A fully convolutional neural network for semantic segmentation.

The pixel predictions are compared with the ground truth to optimize

the weights of filters in each layer. 21

Figure 2.10 Neocognitron model developed by Fukushima(1980) et al. 22

Figure 2.11 Examples of max pooling (a) and average pooling (b) operations. 23

Figure 2.12 1-D example of downsampling with convolution on left, upsam-

pling with transposed convolution on right. On left, a filter x⃗with length

3 is convolved with a zero-padded signal a⃗ with 4 elements. The trans-

formation denoted with X is the matrix representation of convolution

operation with a stride of 2. The dimension of output is the length of the

input divided by stride. The next example shows a transposed convolu-

tion operation with the same kernel and a signal with length 2. Notice

that transpose of X is applied to the input to obtain the result. Hence,

this operation is named transposed convolution, and it increases the di-

mension of input. However, different padding rules should be applied

to obtain proper upsampling. 24

Figure 3.1 Histogram of GDN transformed image and Gaussian distribu-

tion. The grey area shows a Gaussian distribution. The y-axis holds the

number of elements, x-axis shows the values. The lines are the dimen-

sions of output of GDN transform y. The histogram proves that GDN

successfully Gaussianize the signal. 27

Figure 3.2 Diagram of nonlinear transform coding framework. 28

Figure 3.3 Diagram of variational image compression with a hyperprior

model. 32

xvi

Figure 3.4 Block schema of the model presented in [1]. 35

Figure 3.5 Block schema of model presented in [2]. 36

Figure 4.1 Diagram of proposed image compression network. The input

image is fed to the encoder to be projected onto the latent space. Gaus-

sian parameters of latent variable are found with entropy network. The

decoder restores the image from the quantized latent variable. 38

Figure 4.2 Encoder network . 39

Figure 4.3 Hyper encoder network . 40

Figure 4.4 Hyper decoder network . 41

Figure 4.5 Decoder network . 41

Figure 4.6 Channel prediction network . 43

Figure 4.7 Parallel spatial context prediction. To parallelize the spatial con-

text model, the latent is divided into patches. The colors represent in-

dexes. In the image, spatial context prediction for the last index is done

by concatenating the previous indexes in channel dimension and pro-

cessing them with a convolution layer. 44

Figure 4.8 Entropy parameter network. 44

Figure 4.9 Latent residual prediction network 45

xvii

Figure 4.10 i-th entropy network. Firstly, quantization is applied to the i-th

channel slice which is input of this network. The previously decoded

channels are concatenated and given to the channel prediction network.

Masked convolution establishes pixel-wise conditioning. The outputs

of auto-regressive models are concatenated with hyperprior. The pa-

rameters of Gaussian model are estimated with entropy parameter net-

works. After the slice is decoded, the latent residual prediction network

attempts to reduce the information loss caused by quantization. The

output slice is passed on to the next entropy network, along with the

previous slices. 45

Figure 5.1 PSNR vs Bit-Rate Curves . 54

Figure 5.2 MS-SSIM vs Bit-Rate Curves 55

Figure 5.3 Input Image . 56

Figure 5.4 Latent Representation of the Input Image 57

Figure 5.5 Mean Subtracted Latent . 58

Figure 5.6 Mean Subtracted Scale Normalized Latent 59

Figure 5.7 Mean Subtracted Scale Normalized Latent at PSNR: 35.5 dB -

bpp: 0.380 . 60

Figure 5.8 Mean Subtracted Scale Normalized Latent at PSNR: 40.65 dB -

bpp: 1.170 . 61

Figure 5.9 Histograms of mean subtracted scale normalized latents at dif-

ferent bit-rates . 62

xviii

LIST OF ABBREVIATIONS

MS SSIM Multi-Scale Structural Similarity Index Measure

JPEG Joint Photographic Experts Group

HEVC High Efficiency Video Coding

ANN Artificial Neural Network

MLP Multi-layer Perceptron

RMSProp Root Mean Square Propagation

Adam Adaptive Moment Estimation.

CNN Convolutional Neural Network

GDN Generalized Divisive Normalization

PMF Probability Mass Function

CDF Cumulative Density Function

VAE Variational Auto-Encoder

SGD Stochastic Gradient Descent

PSNR Peak Signal-to-Noise Ratio

MSE Mean Square Error

ICA-MG Independent Component Analysis Marginal Gaussianization

RG Radial Gaussianization

xix

xx

CHAPTER 1

INTRODUCTION

1.1 Motivation

Image data constitute a large portion of the data available today, thanks to the social

media platforms that incorporate everyday lives of a large portion of the population.

Thus, image compression is a crucial area of research. Image compression is the

process of transforming a digital image to store it with less number of bits than the

original image. Visually meaningful images have strong spatial and spectral depen-

dencies. As correlation between neighboring pixels increases, the bits required to

represent these pixels decrease, greatly reducing the demand for transmission band-

width and storage space.

Conventional methods adapt linear transforms and predictive algorithms to benefit

from natural properties of image data. For example, JPEG [3] is based on discrete

cosine transform, a transform that converts two dimensional images to frequency do-

main features. HEVC [4], one of the most sophisticated video and still image com-

pression algorithm, adaptively chooses the right tools such as block size, prediction

mode or transform to encode and decode according to spatial and spectral properties

of each block of the input. Unfortunately, it has become more and more effortful

to develop new methods to increase the coding efficiency. With increasing image

quality, demand for resources increases. Soon, conventional methods will be either

terribly inefficient or highly costly to be used in a practical scenario. Thus, it is nec-

essary to explore learning based image compression methods.

1

1.2 Image Compression Overview

There are two types of image compression methods namely lossless and lossy image

compression. Lossless image compression aims to compress the image and restore it

without any distortion or loss of information. By utilizing spatial and spectral depen-

dencies, it is possible to obtain an identical image with lower size. Lossless image

compression is mainly used in medical imaging, scientific imaging and for artistic

purposes, where loss of quality is intolerable.

Lossy image compression methods can compress the image to less number of bits in

the expense of information. Lossy image compression gained a broader application

since for most practical areas limited loss of information is acceptable. There are in-

formation present in an image that cannot be perceived by the viewer. Filtering these

information reduces the bits required to encode the image without loss of visual qual-

ity. Allowing more information loss enables the compression algorithm to compress

the image even further in exchange for quality. The trade-off between quality and

size is expressed with rate distortion criterion. Typically, as rate increases, distortion

decreases and vice versa. The aim of lossy compression techniques are to reduce the

bits while keeping the distortion keeping the distortion at a desired or given level.

Current image compression methods use complex algorithms to increase compres-

sion factor. However, as imaging and displaying technologies advances, the need for

more comprehensive algorithms grows.

1.3 Learning Based Image Compression

In recent years, success of the neural networks in computer vision has attracted the

researchers to explore their abilities in low-level image processing problems such as

denoising, edge extraction, super resolution and image sharpening. Image compres-

sion is not an exception. Many models have been proposed to work as an image

compressor. Latest learned image compression models have been shown to exceed

the performance of conventional methods.

Neural networks are universal approximators. By introducing non-linearities between

2

Figure 1.1: A simple block diagram explaining general image compression frame-

work. Firstly, input image is projected onto a transform domain to obtain a compact

representation. Quantization is applied to transformed image since encoder can only

operate on integer values. Encoder translates the integer values into a bitstream. To

restore the image, decoder translates back the integer values from input bitstream.

Inverse of quantization and transformation is applied to the retrieved integer values.

linear transforms, it becomes possible to model any given function with neural net-

works. In the case of image compression, there are several functions to be modeled.

Analysis transform represented by 1.1 maps the input image x to a latent represen-

tation y, which undergoes through quantization to be encoded. The quantized latent

representation ŷ then transformed to output image x̂ by 1.3 transform.

g(x, θ) = y (1.1)

ŷ = Q(y) (1.2)

x̂ = f(ŷ, ϕ) (1.3)

To approximate any function successfully, the weights of the neural network are opti-

mized according to a designated criterion with stochastic gradient descent. In learned

image compression, the optimization criterion is rate-distortion loss. Distortion is

3

the distance between the original image x and the reconstructed image x̂ determined

according to a distance metric as shown in 1.4. Rate is bounded from below by the en-

tropy of the distribution of the quantized latent variable. The weighted sum is called

the rate-distortion loss between the input and output image as given in Equation 1.6.

The λ factor in Equation 1.6 determines the trade-off between quality and rate. Train-

ing the model with stochastic gradient descent or a variant optimization algorithm, it

is possible to obtain a transformation that is able to compress the image.

D = d(x, x̂) (1.4)

R > H(ŷ) (1.5)

L = R + λD (1.6)

Auto encoder based models such as [5] reduces the spatial dimension and obtains

a distribution in latent space. The obtained probability distribution is then used to

encode the latent tensor with a arithmetic coder. A factorized probability model is

jointly trained with the auto-encoder in [5]. The factorized model learns the opti-

mum sampling points to divide the distribution into equally probable regions. The

factorized model assumes that there are no dependency between latent elements. [6]

builds upon [5] and extends the message with extra information about spatial corre-

lations between elements of latent variables to obtain a conditional Gaussian scale

mixture model. The extra information, which is called hyperprior, incorporates much

smaller space compared to the latent tensor. However, [1] and [2] introduces auto-

regressive models in addition to the hyperprior for information redundancy reduction.

Auto-regressive components prevents unnecessary repetition of coded information.

1.4 Contribution

The main contribution of this thesis is a lossy image compression model with an auto-

regressive context model which combine spatial and channel auto-regressive models

presented in [1] and [2] respectively. It has been observed that these two approaches

4

are complementary and can be used in combination to increase rate-distortion perfor-

mance. However, the enhanced results come in the expense of computation latency.

There is another approach under development which aims to decrease encoding and

decoding time with minimal performance trade-off. To achieve this, the latent repre-

sentation is divided into patches. Spatial auto-regressive model processes each ele-

ment with same index in patches in parallel. First results show that a faster model can

be obtained with little performance loss. Nonetheless, further research is needed on

the parallel context model.

1.5 Outline of the Thesis

First of all, preliminary information critical to the remaining chapters is delivered in

2. The chapter starts with a brief introduction to information theory in section 2.1. In

this section, concepts about information entropy, lossless and lossy data compression

are explained. Then, basic knowledge about artificial neural networks is presented

in 2.3. This section covers topic about neural networks and their optimization. Also,

information about convolutional neural networks and early implementations are given

in 2.6.

Then, a literature review composed of works supporting this thesis is presented. Ideas

and contributions of these works are summarized in 3. Most significant aspects of

these publications are detailed in this chapter

The methodology and implementation of proposed lossy image compression model

are discussed in 4. Overview of the model, quantization of latent variables, compo-

nents of entropy network and arithmetic coding are described in detail. Lastly, the

compression scheme of an image is given in 4.5.

Last chapter presents training setup, compression and performance results. The des-

ignated training and validation dataset and training schedule are given in this chapter.

The results includes the resulting network’s performance with comparisons with pre-

vious models. Visual representations of the latent space are also given.

5

6

CHAPTER 2

BACKGROUND INFORMATION

2.1 Information Entropy

In information theory, entropy is defined as a lower bound for rate of information

produced by an information source ([7]). In a sense, it numerically represents the

uncertainty of a random variable. Shannon stated in his paper [7] that such a metric

shall meet certain requirements. These are given below.

1. Entropy should be continuous.

2. If all the outcomes of the process have equal probabilities, then entropy should

be monotonic increasing function of the total number of outcomes.

3. If an outcome of a random process splits into two successive sub-outcomes,

entropy of the original outcome should be the weighted some of the entropy of

the two sub-outcomes. This property can be visualized with Figure 2.1.

Figure 2.1: Visualization of third property

The only mathematical formula that satisfies all of the requirements is given in [7],

7

where n is the total number of outcomes of the random process X .

H(X) = −
n∑
i=1

pilog(pi) (2.1)

To illustrate, entropy of a random process X with two outcomes with probabilities p

and 1 - p is found with the equation in Equation 2.2, which is plotted as a function of

p in Equation 2.2

H(X) = −plog(p)− (1− p)log(1− p) (2.2)

Figure 2.2: Entropy of a binary random process

This entropy definition possesses several properties which makes it a feasible measure

of information. These can be listed as follows

1. H=0 implies that the outcome of the process is certain. In the example of two

outcomes, if probability of one of the outcomes is 1, the entropy equals to 0.

2. Entropy of a random process is maximized when all of the outcomes have equal

probabilities.

3. Entropy of a joint probability of two events is less than or equal to the sum of

individual entropies of the events.

H(X, Y) ≤ H(X) +H(Y) (2.3)

8

4. It is possible to define a conditional entropy by using the conditional probability

definition given in Equation 2.4.

p(y|x) = p(x, y)

p(x)
(2.4)

Applying the entropy formula, we obtain the relation given in Equation 2.5

H(Y |X) = H(X, Y)−H(X) (2.5)

5. Inspection of the former properties leads to the conclusion that conditionality

reduces entropy. This can be shown as Equation 2.6

H(X) +H(Y) ≥ H(X, Y) = H(X) +H(Y |X) ∗H(Y) ≥ H(Y |X) (2.6)

This inequality indicates information of X can decrease the uncertainty of Y if

they are dependent. Otherwise, it is unchanged.

Entropy is a key concept in data compression. It provides a lower bound for expected

value of number of bits required to store or transmit information without any loss.

Less bits are assigned to outcomes with higher probabilities, since these will occur

more frequently. To illustrate, assume X is a random process in which a fair coin is

tossed N times. It would require N bits to store the information of number of heads

since

H(X) = N ∗ (1/2 ∗ log(1/2) + 1/2 ∗ log(1/2))H(x) = N bits. (2.7)

In another random process Y , the coin tossed is unfair and the probability of heads is

p. Then, the required bits to express the outcome of Y would be

H(Y) = N ∗ (p ∗ log(p) + (1− p) ∗ log(1− p)) bits. (2.8)

If p is 0.8, the expected value of bits required to store the outcome is bounded from

below by approximately N*0.722 bits. If N=10, it would require only 8 bits on

average to store the information.

9

2.2 Data Compression

Data compression is the reduction of the number of bits required to represent data.

Data compression can decrease the occupied space, increase file transfer speed, and

reduce storage hardware costs. Typically, there are two components working together

to compress the data. These are encoder and decoder. Encoder transforms the in-

formation in order to represent it with less number of bits. Decoder is the inverse

transform of encoder and retrieves the encoded information from the bits received.

There are two types of data compression, namely lossless and lossy data compres-

sion. In lossless data compression, encoder benefit from statistical redundancies to

compress the data. In this case, decoder is able to reconstruct the original data without

any loss. In the case of lossy data compression, encoder eliminates some part of the

data according to specific measures, resulting in an irreversible transformation. De-

coder is able to approximate the data with limited loss. By using lossy compression,

it is possible to reduce the size of the data even further.

2.2.1 Lossless Data Compression

There are several lossless data compression algorithms which rely on the information

entropy. These types of algorithms adapt a code book in which symbols with less

probability of occurrence are represented with higher bits. Huffmann coding and

arithmetic coding are the two most prevalent ones.

2.2.1.1 Huffman Coding

Huffmann states in his [8] paper that it is possible to develop an optimum coding

process which assigns variable-length codes to input characters correspondent to their

frequency of occurrence. The most frequent character gets the smallest code and the

least frequent character gets the largest code. The variable-length codes assigned to

input characters are prefix codes, the code assigned to a character is not the prefix of

any other code assigned to a separate character.

To produce a codebook for Huffmann coding, construction procedure of a tree is

10

provided in [8]. In the beginning, the characters are sorted according to their prob-

abilities, or frequencies. Two characters with the smallest probabilities are assigned

with codes with equal lengths, only differing in the last bit. These characters are the

deepest leaves of the tree, which are combined to form an internal node. The proba-

bility of the new node equals to the sum of the leaves connected to it. Then, the new

set of characters, including the newly formed internal node, are sorted again. The

procedure is repeated until there is a single node, which is the root of the tree. To

finalize the codebook generation, all of the branches are assigned with a number, 0 or

1. Branches traversed to reach a character leaf determines the code assigned to that

character. The procedure is illustrated in Figure 2.3

Figure 2.3: Example of Huffman Codebook generation for four symbols

2.2.1.2 Arithmetic Coding

Witten et al. defines in his [9] article arithmetic coding as a coding algorithm by

which a message is represented by an interval of real numbers between 0 and 1.

Longer messages are represented with a number chosen from a smaller interval, and

the number of bits needed to code that interval grows. A model is needed beforehand

to assign probabilities to each symbol. Efficiency of the arithmetic coding depends

greatly on how close the distribution of symbols is modeled to the actual distribution.

With each symbol of the message, extent of the interval is reduced according to sym-

bol probabilities defined by the model. Symbols with higher probability reduce the

range by less compared to the symbols with lower probabilities, effectively reducing

the number of bits.

In [10], Langdon et al. describes the arithmetic coding algorithm as follows; primar-

ily, the range is designated as the interval between 0 and 1, with 0 included. Each

11

symbol is assigned an interval, as shown in Figure 2.4. Larger intervals are assigned

to symbols with larger probabilities. When first symbol arrives, the interval of the

numbers are replaced from [0,1) to that character’s interval. The range is divided

with the previous proportions. The process is repeated until the whole message is

received. A single number is obtained to represent the entire message.

Figure 2.4: Arithmetic coding procedure

2.2.2 Lossy Data Compression

To describe the lossy data compression, it is essential to speak of rate-distortion the-

ory. In [11] rate-distortion is described as the trade-off between source fidelity and

coding rate. Either a target distortion or rate is chosen to optimize the coding. Rate-

distortion theory has successfully put constrains on performance in terms of bit rate

and quality for given types of sources. Most two common distortion metrics are

Hamming distortion given in Equation 2.9 and squared error distortion Equation 2.10

below. These distortion metrics are favourable because they are easy to compute and

widely applicable.

12

d(x, x̂) =

0 x = x̂

1 x ̸= x̂
(2.9)

d(x, x̂) = (x− x̂)2 (2.10)

However, it is possible to develop more sophisticated distortion metrics considering

the type of the signal and the final receiver, which is a human most of the time. For

example, details of an image unperceivable by a human viewer are not needed to be

transmitted, hence can be filtered without loss of perceptual quality. A similar case is

exists for audio signals. It is possible to compress audio files greatly by taking into

account the masking effect of human ear. It may be favourable to introduce limited

perceivable distortion when there are heavier constraints on space and bandwidth.

There is research going on to find a suitable distortion metric. Some examples are

[12], [13] for image, [14] for video and [15] for audio signals.

2.3 Artificial Neural Networks

Artificial neural networks are a family of machine learning techniques which orig-

inated from biological neural system. The structure of ANNs resembles the neural

networks, with nodes and connections mirroring the biological neurons and synapses

in the brain. Similar to synapses in an animal brain, each connection can carry a signal

to the attached nodes. Nodes, or artificial neurons, apply a non-linear transformation

to the received signal and transmit it to other connected nodes in the next layer.

The simplest ANN structure is called perceptron, created by Rosenblatt and explained

in [16]. A perceptron can be considered as a single-layer ANN, which processes one

or more inputs, weighted according to their respective connections. These weighted

inputs are summed and passed through a sign function, named activation function. In

general, a bias term is added to the summation as well. It can be formulated as in

Equation 2.11. An example of a perceptron is given in Figure 2.5. The perceptron

is trained in a supervised fashion. Initially, random numbers are given to the weights

of the perceptron. After output is calculated, the error is determined by subtracting

13

the output from the actual answer. If the output is correct, the error will be zero.

Otherwise, it will be either -1 or +1. Weights are replaced by the summation of former

weights and the error multiplied by a constant called learning rate and the input.

The learning rate is a hyperparameter which determines the speed and sensitivity of

learning procedure. Higher learning rate results in faster learning. However, the

optimal point can be unreachable with a high learning rate. The learning algorithm is

given in Algorithm 1.

ŷ = f(x) =

1
∑n

i=1 Wi ∗ xi + b > 0

0 otherwise
(2.11)

Figure 2.5: A simple perceptron

Even though perceptron provides the basic ideas of modern neural networks, its ca-

pabilities are limited. The idea of perceptron is extended to multi-layer perceptron

(MLP) to obtain a higher computational capacity. Sets of perceptrons form a layer,

which are inter-connected to form a feed-forward neural network. Input layer, hidden

layer and output layer are three types of layers in a MLP model. The input layer’s

task is to take in the input signal like an image, whereas the output layer produces

the output to accomplish the task, such as classification or recognition. There can

be multiple hidden layers, which determines the capacity of the neural network. An

14

Algorithm 1 Learning algorithm of a perceptron
while True do

ŷ = f(x)

error = y − ŷ

for 0 < i ≤ n do

Winew = Wi + λ ∗ error ∗ xi
end for

end while

illustration of a MLP can be found in Figure 2.6. Weights of MLPs are updated via

an optimization algorithm called stochastic gradient descent. The partial derivative

of the error with respect to each weight is computed with an algorithm called back-

propagation to apply gradient descent.

Figure 2.6: A multi-layer perceptron

2.4 Back-propagation

Back-propagation is an algorithm that is extensively adopted in training neural net-

works. Back-propagation was first applied to neural networks in [17]. Given an input-

15

output pair, back-propagation algorithm calculates derivatives at each layer with re-

spect to the distance between the desired output and produced output, which is called

loss of the model. Chain rule is exploited to accomplish this task. Partial gradient

computed at a layer is reused in the computation of the gradient for the previous

layer. This reverse flow of error gradient allows for efficient computation in contrast

with computing the gradient of each layer separately. To minimize the loss, the gra-

dients obtained from back-propagation are used by an optimization algorithm, such

as stochastic gradient descent or a variant of it.

In the beginning, the weights of the neural network to be optimized are initialized

randomly with small numbers. Hence, the first output of the network is completely

random. Then, error between the actual result and the output is found according to

a criterion related to the task. To make the model learn to recognize certain patterns

to accomplish the task, the randomly initialized weights have to be updated in such a

way that the error is minimized. To this end, gradients of the output layer’s weights

are calculated first. Next, these gradients are passed as inputs to the previous layer to

take advantage of chain rule. By doing so, unnecessary duplicate computations are

avoided and each gradient on the chain is reused. Forward and backward propagation

are illustrated in Figure 2.7.

Figure 2.7: Illustrations of a) forward propagation b) backward propagation. In for-

ward propagation, the result of a node in a layer is given as input to each node in the

next layer. Multiple inputs are accumulated to produce an output. In backward prop-

agation, the gradient is propagated from output to the input. The gradients received

from nodes in the next layer are accumulated and passed on to the previous layer.

16

2.5 Optimization and Gradient Descent

Optimization is the process of solving quantitative mathematical expressions. Op-

timization includes finding most feasible values of some objective function given a

defined input space. In the case of neural networks, it is the set of actions taken

to minimize the loss between input and output. Optimization algorithms or meth-

ods are used to find the parameters θ of the neural network that minimize the loss

L(y, f(x, θ)). Optimizers are used to solve optimization problems by minimizing the

loss function.

Gradient descent was first proposed by Cauchy (1847). Lemaréchal (2012) describes

the Cauchy’s idea as a means to minimize a non-negative continuous function of

several variables as in Equation 2.12.

L = f(x, y, z, ...) (2.12)

In machine learning, gradient descent is used to minimize the cost function which can

be represented by

Q(w) =
1

n

n∑
i=1

Qi(w) (2.13)

Each Qi is the loss function associated with ith sample in the training dataset. Gra-

dient descent can be applied to the cost function as given in Equation 2.14. ∇Q is

the gradient of cost function, wold and wnew are the parameters used in calculating the

cost function and the new set of parameters after optimization respectively.

wnew = wold − λ∇Q(wold) = wold −
λ

n

n∑
i=1

∇Qi(wold) (2.14)

In the case of neural networks, it not feasible to calculate the gradients of each sum-

mand function. Neural networks require a vast amount of samples to reach accept-

able performance. Furthermore, neural network models are typically used to tackle

non-convex problems, which cannot be represented in a closed form. Therefore, a

17

computationally efficient approach to gradient descent named stochastic gradient de-

scent is utilized. Instead of finding the cost and its derivative of the whole dataset,

a single sample or a subset of samples are computed at each step, which serves as a

approximation to ∇Q. wnew is determined by the approximated gradient of Q(w).

For a single sample approximation, the stochastic gradient descent can be formulated

as shown in 2.15

wnew = wold − λ∇Qi(wold) (2.15)

It is possible to find a more accurate approximation by taking into account a subset

of samples, which are called "mini-batches". This approach to gradient descent opti-

mization reduces the complexity greatly in the expanse of convergence rate. Together

with back-propagation, stochastic gradient descent is a core algorithm in training ar-

tificial neural networks.

Another limitation of stochastic gradient descent is choosing a suitable value for

learning rate. Larger values may cause the model to diverge. Setting the learning

rate small leads to slower convergence. A simple approach to avoid this problem is

to set a learning rate schedule. Learning rate schedule decays the learning rate at a

certain rate in accordance to certain rules such as reducing the learning rate when

a plateau is reached. There are certain modifications to stochastic gradient descent

applied in address to this issue.

RMSProp is a variant of stochastic gradient descent which adapts a learning rate for

each of the parameters. It was introduced in [18] A running average of gradients for

each weight is kept to divide the learning rate to obtain an adaptive learning rate.

First, running average of means square is calculated as in 2.16. In this algorithm,

another hyper-parameter is introduced which is named as decay rate. Decay rate γ

determines how strongly will the past values of average means square will affect the

current learning step which is denoted as t. Then, the weights are updated as shown

in 2.17. The δ term that is in the denominator of 2.17 prevents the algorithm from

becoming unstable.

18

r(w, t) = γr(w, t− 1) + (1− γ)(∇Qi(w))
2 (2.16)

w = w − λ√
r(w, t) + δ

∇Qi(w) (2.17)

Another optimization algorithm that is widely used in training artificial neural net-

works is Adam. It was first proposed in Kingma (2015). In Adam optimization,

running average of second moments of the gradients are taken into account in addi-

tion to the gradients. Adam optimization is especially used in networks with large

number of parameters because of its improved convergence speed.

2.6 Convolutional Neural Networks

Convolutional neural networks are a type of neural networks that have proven to be

extremely successful in learning spatial hierarchies. Therefore, it is commonly used

in tasks involving visual data. Apparent from its name, convolutional neural network

layers use convolution operation to produce an output, as shown in 2.18. It should be

noted that there is no reversal of signals as in conventional convolution operation since

only the position of the weights learned will change. MLPs fall short in capturing the

complex patterns of images. CNNs, on the other hand, successfully capture the spatial

and temporal dependencies in visual data by applying learnable filters to an input.

x[m,n] ∗ f [m,n] =
M∑
k=0

N∑
l=0

x[k, l]f [k −m, l − n] (2.18)

CNNs are in fact regularized MLPs, where number of parameters are reduced by

reusing the weights. These weights are called in the context of convolution operation.

Filters can be optimized to learn hierarchical features present in the data, progres-

sively assembling low level features to form more complex patterns related to the

task as shown in Figure 2.8. An illustration of a fully convolutional neural network is

given in Figure 2.9.

19

Figure 2.8: Hieararchy of features extracted from input image. Earlier layers ex-

tract low level information which has no meaningful structure when examined alone.

These features are passed on to following layers to form higher level features. The

image is taken from (Yosinski et al. 2015)

CNN is a biologically inspired algorithm. It is first devised to resemble the activity

of visual cortex of animals. For example, research on cat’s visual cortex in [19] and

[20] explains the receptive field of a neuron in a cat’s visual cortex. Each neighboring

cell possess similar overlapping receptive fields.[21] presents research conducted on

macaque visual cortex. Hubel and Wiesel demonstrate the organization of special

neurons in the presence of visual stimuli. It was found that there were two groups of

neurons one of which capture low level information such as vertical and horizontal

lines and their orientation, while the other produces output if there is a signal in its

receptive field.

First model to incorporate convolutions into neural networks is neocognitron pro-

posed in Fukushima (1980). The structure of the network was inspired by the visual

nervous system of vertebrates. The network involves two types of cells called S-cells,

which are simple cells or lower order hypercomplex cells, and C-cells, complex cells

or higher order hypercomplex cells. With repetition of feature-extraction by S-cells

followed by positional activation by C-cells, local features extracted in lower stages

are combined into more global features. Figure 2.10 shows the working principle of

neocognitron. Convolution and downsampling operations, two basic operations that

20

Figure 2.9: A fully convolutional neural network for semantic segmentation. The

pixel predictions are compared with the ground truth to optimize the weights of filters

in each layer.

are cornerstone of CNNs, have been first introduced with neocognitron.

In the context of CNN, receptive field is the area on the input image which determine

the value of an element in a feature map. It is possible to expand the receptive field

of subsequent layers with downsampling operation to increase efficiency of CNNs.

There are two approaches for downsampling, the first one is using a pooling function

such as max pooling or average pooling to decrease the spatial dimensions. Max

pooling operations propagate the maximum value inside the kernel to the succeeding

layer. On the other hand, average pooling produces the mean value inside the kernel

as output. Both operations map values inside a kernel to a single value in a non-

learnable manner. Hence, these operations limit the learning potential of CNNs. An

explanotary visual is given in Figure 2.11.

Other method is to adapt strided convolution to perform downsampling via learnable

filters. The filter will learn to transmit and enhance the important features, effec-

tively increasing accuracy. Similarly, it is possible to apply transposed convolution

for upsampling with learnable interpolation, as opposed to non-learnable interpola-

tion methods such as bilinear interpolation. A toy example is given in Figure 2.12

21

Figure 2.10: Neocognitron model developed by Fukushima(1980) et al.

with 1-D signals.

22

(a)

(b)

Figure 2.11: Examples of max pooling (a) and average pooling (b) operations.

23

Figure 2.12: 1-D example of downsampling with convolution on left, upsampling

with transposed convolution on right. On left, a filter x⃗ with length 3 is convolved

with a zero-padded signal a⃗ with 4 elements. The transformation denoted with X is

the matrix representation of convolution operation with a stride of 2. The dimension

of output is the length of the input divided by stride. The next example shows a

transposed convolution operation with the same kernel and a signal with length 2.

Notice that transpose of X is applied to the input to obtain the result. Hence, this

operation is named transposed convolution, and it increases the dimension of input.

However, different padding rules should be applied to obtain proper upsampling.

24

CHAPTER 3

LITERATURE REVIEW

Image compression with nonlinear transform coding is possible by taking advantage

of deep neural networks. There have been many works contributing to the develop-

ment of learned image compression. Below, a number of publications in this area that

have been used in this thesis are explained.

3.1 Generalized Divisive Normalization

Density estimation is crucial to obtain an optimum coding for latent representations.

Ballé proposes a novel probability model for images in his 2016 paper [22] in the

form of a non-linear function. Named generalized divisive normalization, this non-

linear function is shown to successfully decorrelate and Gaussianize natural images.

The proposed function is a generalization of divisive normalization, as the name sug-

gests. This family of normalization functions are first used to model activation of

cortical neurons ([23]), in which linear responses are divided by summed responses

of neighboring neurons.

The generalized divisive normalization is formulated as a linear transformation fol-

lowed by a divisive normalization operation. GDN is expressed as shown in Equation

3.1. In the equation, vectors β, ϵ and matrices H,α, γ are parameters to be set

or learned, depending on the desired divisive normalization operation. By choosing

appropriate set of parameters, it is possible to express other transforms such as stan-

dard divisive normalization ([24]), a form of ICA-MG which is the first iteration of

25

Gaussianization algorithm described in [25] or RG [26].

z = Hx

yi =
zi

(βi +
∑

j γij|zj|αij)ϵi

(3.1)

An approximate inverse transform of generalized divisive normalization has also been

proposed in [22]. Since finding a closed form of the inverse of a non-linear function

is not feasible, the approximate inverse GDN transformation is obtained by using a

fixed point iteration given in Equation 3.2. As initial point z(0)i is chosen. In [27], it

has been stated that using the first iteration is sufficient for image compression.

z
(0)
i = sgn(yi)(γ

ϵi
ii |yi|)

1
1−αiiϵi

z
(n+1)
i = (βi +

∑
j

γij|z(n)j |αij)ϵiyi
(3.2)

The results from the paper [22] are given in Figure 3.1. It is clear that transformed

image can be modeled with a Gaussian distribution. Since to define a Gaussian model,

first and second moments are sufficient, GDN provides much flexibility and ease of

implementation.

3.2 Nonlinear Transform Coding for Image Compression

A framework for nonlinear transform coding training has been proposed in [27],

which generalizes the transform coding paradigm. To compress an image x, it is trans-

formed to a latent representation y by using a differentiable function y = ga(x;ϕ),

where ϕ is the collection of learnable parameters of the analysis transform ga. Scalar

quantization is applied to the latent vector y, yielding ŷ. The quantized latent ŷ is then

transformed to the image space with synthesis transform gs. Restoration of the image

can be shown with x̂ = gs(ŷ, θ), where x̂ is the reconstructed image and θ represents

the parameters of synthesis transform. Figure 3.2 summarizes the transform coding

framework.

The neural transform coding model is optimized according to rate-distortion loss

given in Equation 3.3. The rate is assessed by measuring the entropy H of the discrete

probability distribution Pŷ of the quantized latents over a collection of images. To

26

Figure 3.1: Histogram of GDN transformed image and Gaussian distribution. The

grey area shows a Gaussian distribution. The y-axis holds the number of elements,

x-axis shows the values. The lines are the dimensions of output of GDN transform y.

The histogram proves that GDN successfully Gaussianize the signal.

find the probability mass function Pŷ, the integral of probability density function py

is taken over the quantization bin. In the case of uniform quantization where each

bin has size 1, the integral can be computed with Equation 3.4. Distortion is denoted

by d(x, x̂) in Equation 3.3, where d(., .) is a suitable distortion metric. Even though

a perceptually accurate metric would be more successful in optimization for visually

appealing results, Euclidean distance is widely used because of its universality and

ease of use. Both terms of the summation are expected values determined over a set

of images, namely training dataset.

L = H[Pŷ] + λE[d(x, x̂)] (3.3)

Pŷ(n) =

∫ n+1/2

n−1/2

py(t)dt , for all n ∈ Z (3.4)

End-to-end optimization of non-linear transform coding framework suffers from zero

gradient of quantization function, which prohibits gradient descent optimization. In

27

Figure 3.2: Diagram of nonlinear transform coding framework.

[5], this issue has been resolved by replacing the quantization with a additive uniform

noise during training. The uniform noise provides a continuous approximation of

quantization function, allowing optimization via stochastic gradient descent. More-

over, the property given in Equation 3.6 shows that differential entropy of ỹ can be

used to approximate entropy of y.

ỹ = y + δy (3.5)

pỹ(n) = Pŷ for all n ∈
M

Z (3.6)

Combining all of the definitions mentioned above, the loss function can be expressed

in form given in Equation 3.7.

L = E
x,δy

[−
∑
i

log2 pỹi(ga(x;ϕ) + δy;ψ(i)) + λd(gs(ga(x;ϕ) + δy; θ), x)] (3.7)

In Equation 3.7, each ψ(i) is the collection of parameters of the probability model

with i showing the channel number of latent variable. Every ψ(i) is jointly optimized

28

with θ and ϕ to find an optimum estimation to pyi . In [5], pyi is modeled with a

factorized prior to reduce model error. Each marginal pyi is represented as a piecewise

linear function sampled with a certain number points per unit interval. The parameter

vector ψ(i) represents the value of pyi at these sampling points. The model is trained

to minimize the negative expected log likelihood function given in Equation 3.8.

Lψ = − Ẽ
y

∑
i

log(pyi(ỹi;ψ
(i))) (3.8)

Ballé (2017) provides architectures for analysis and synthesis transform in the form of

learnable filters. Analysis transform ga consists of three layers. Convolution, down-

sampling and divisive normalization operations are applied in order at each layer. To

reduce dimension of the input image with consequent convolution layers, strided con-

volution with stride of 2 is utilized. Strided convolution can be formulated as shown

in Equation 3.9 where T is stride value, w(r)
i is the ith channel of output of convolu-

tion at layer r, u(r)j is the jth channel of input of layer r and h(r)ij is the jth channel

of ith filter of layer r. Strided convolution allows the downsampling operation to be

optimized in a way that the loss of information is minimized.

w
(r)
i [m,n] =

∑
j

M∑
k=0

N∑
l=0

h
(r)
ij [k, l]u

(r)
j [mT − k, nT − l] + c

(r)
i (3.9)

The generalized divisive normalization described in Equation 3.1, a Gaussainizing

non-linear function, is used as activation function in the analysis transform with α = 2

and ϵ = 1/2, the function is in the form given in Equation 3.10, where γ and β are

learnable parameters, and x(r+1)
i [m,n] is the output of the current layer and input of

the next layer.

u
(r+1)
i [m,n] =

w
(r)
i [m,n]

(β
(r)
i +

∑
j γ

(r)
ij (w

(r)
j [m,n])2)1/2

(3.10)

The collection of parameters h, c, β and γ are represented with ϕ in the loss function

and are learned during training.

On the other hand, the synthesis transform gs consist of reverse operations in reverse

29

order, approximation of inverse of generalized divisive normalization followed by up-

sampling transposed convolution. The inverse of generalized divisive normalization

is implemented as in Equation 3.11.

ŵ
(r)
i [m,n] = û

(r)
i [m,n](β̂

(r)
i +

∑
j

γ̂
(r)
ij (û

(r)
j [m,n])2)1/2 (3.11)

Like in the analysis transform, the collection of parameters ĥ, ĉ, β̂ and γ̂ are repre-

sented with θ in the loss function and are learned during training. For such a large

set of parameters, convergence of SGD will be very slow. For this reason, Adam

optimizer is used in [5] to minimize the cost function expressed as Equation 3.7.

3.3 Variational Generative Image Models

The loss function given in Equation 3.7 is close to the loss definition of genera-

tive image models, more specifically variatonal autoencoders as in [28]. Variational

Bayesian inference aims to find a posterior py|x(y|x) from a set of observations of a

random variable x and a likelihood model px|y(x|y). The method described in [28]

consists of approximating this posterior with a density q(y|x), by minimizing the

Kullback–Leibler divergence between the true posterior py|x(y|x) and approximated

posterior q(y|x). This can be formulated as follows

DKL[q||py|x] = E
q
log q(y|x)− E

q
log py|x(y|x)

= E
q
log q(y|x)− E

q
log px|y(x|y)− E

q
log py(y)

(3.12)

which is equivalent to the relaxed rate-distortion loss given in Equation 3.7 when

mean-square error is used as distortion metric and the likelihood model is defined as

a Gaussian distribution. Thus, the elements in Equation 3.12 becomes

px|ỹ(x|ỹ;λ, θ) = N(x, gs(ỹ; θ), (2λ)
−11) (3.13)

pỹ(ỹ;ψ
(0), ψ(1), ...) =

∏
i

pỹi(ỹi;ψ
(i)) (3.14)

30

qỹ|x(ỹ|x;ϕ) =
∏
i

U(ỹi; yi, 1) (3.15)

where U(ỹi; yi, 1) is the uniform probability density on the unit interval around the

center yi, which is found by analysis transform. Inspecting Equation 3.12 in this con-

text, the first element Eq log q(y|x) is constant and can be eliminated from loss func-

tion to be optimized. The second element −Eq log px|y(x|y) expresses the distortion,

and the final element −Eq log py(y) is the rate. Even though there are differences,

the training process of the network can be inspected under the hood of variational

autoencoders. It should be noted that the probability model of ỹ, pỹ(ỹ;ψ(0), ψ(1), ...)

is also called a fully factorized model.

3.4 Variational Image Compression with a Hyperprior

The work presented in [5] present promising results, yet it is far from optimal. The

distribution obtained by a fully factorized model as in Equation 3.14 proves to be a

coarse approximation of the true distribution. The network proposed by [5] is ex-

tended in [6]. Balle et al. incorporates a side information to increase the performance

of the network. Conventional compression methods append a side information to the

encoded image to increase the efficiency. Typically, this side information has a very

small size compared to the gain it provides. In HEVC [4], adaptive block partitioning

is used to increase the coding efficiency. The sizes of these blocks are sent as side

information to the decoder, so that correct decoding can be achieved. In the method

described in [6], the side information to be sent is extracted from latent representa-

tion through a side network called hyperprior network, as illustrated in Figure 3.3.

The model incorporates a hyperprior to effectively capture spatial dependencies in

the latent representation. The output of the hyper-analysis transform serve as a side

information to be sent with the encoded latent representation.

The fully factorized model can be inefficient in capturing spatial dependencies present

in the latent representation. To eliminate these dependencies, a hyperprior latent z̃ is

introduced. z̃ is a random variable obtained by adding uniform noise to hyper-latent

z, the output of hyper analysis transform given in Equation 3.16. The latent with

31

Figure 3.3: Diagram of variational image compression with a hyperprior model.

additive uniform noise ỹi is modeled as a zero mean Gaussian with scale σ2
i . The

scale is predicted by applying hyper-synthesis transform as shown in Equation 3.17.

ϕh and θh represents the parameters of hyper-analysis and hyper-synthesis transforms

respectively. The probability of latent ỹ can be modeled as in Equation 3.18.

z = ha(y, ϕh) (3.16)

σ2
i = hs(z̃; θh) (3.17)

pỹ|z̃(ỹ|z̃, θh) =
∏
i

(N(0, σ2
i) ∗ U(−1/2, 1/2))(ỹi) (3.18)

32

A joint approximated posterior can be written as given in Equation 3.19. Ballé et

al. suggested hyperprior method to determine the scales with the intuition that la-

tent variable possesses information about its probability distribution. With zero-mean

Gaussian distribution assumption, the scales determine the conditional distribution of

the latent variable. In this model, z̃ is modeled with a fully factorized density model,

which was previously used for ỹ in Equation 3.14. The KL divergence previously

formulated as Equation 3.12, is now in the form in Equation 3.20. In Equation 3.20

the last two elements represent entropy or rate, the second element is the distortion.

The first element equals to zero since q(ỹ, z̃|x) is the product of two uniform densities

with unit width as shown in Equation 3.19.

q(ỹ, z̃|x, ϕg, ϕh) =
∏
i

U(ỹi|yi− 1/2, yi+1/2).
∏
j

U(z̃j|zj − 1/2, zj +1/2) (3.19)

DKL[q||pỹ,z̃|x] = E
q
[log q(ỹ, z̃|x)− log px|ỹ(x|ỹ)− log pỹ|z̃(ỹ|z̃)− log pz̃(z̃)] (3.20)

The fundamental observation of this work is that z̃ can be appended to the encoded

latent as side information, which allows the decoder to adapt a conditional probability

model. Hence, the probability model becomes adaptive to the image, getting closer

to the true distribution and increasing coding efficiency.

3.5 Autoregressive Learned Image Compression

Minnen et al. provides an inspection of autoregressive and hyperprior models and

their impact on image compression in [1]. Even though autoregressive models impose

heavy computational burden on the model during the decoding process, it is found that

they can greatly increase the compression performance. [1] suggests that autoregres-

sive entropy model and hyperprior network are compatible and their combined usage

can predict the spatial dependencies present in the image more successfully than the

model described in [6]. Furthermore, the model adapts a Gaussian model with non-

zero mean values which is determined together with scale by hyper-synthesis trans-

form, as observed in Equation 3.21. The zero mean Gaussian scale mixture model

33

given in Equation 3.18 is replaced with non-zero mean Gaussian model shown in

Equation 3.22.

µi, σ
2
i = hs(z̃; θh) (3.21)

pỹ|z̃(ỹ|z̃, θh) =
∏
i

(N(µi, σ
2
i) ∗ U(−1/2, 1/2))(ỹi) (3.22)

A model is called autoregressive when its current output depends on the previous

outputs. In the context of image compression, this means no pixel or block of pixels,

in the case of block-based compression, can be decoded before the prior pixels are

decoded first. Autoregressive models provides great predictive coding performance

since there are strong spatial dependencies in an image, in the expense of decoding

time. The latency of decoding procedure results from sequential processing of each

element. In other words, operations conducted to find mean and scale of the latent

feature map cannot be done in parallel since each element is conditioned on previous

elements.

Even though autoregressive models can be conditioned on the whole set of previous

outputs theoretically, in practice this is not feasible. Hence, autoregressive model is

implemented as a masked convolution in [1], as in PixelCNN [29]. The kernel size

of masked convolution is chosen as five. An overview of whole model can be seen in

Figure 3.4.

3.6 Channel Autoregressive Model

The work shown in [1] take advantage of a spatially autoregressive entropy model,

while Minnen et al. [2] takes a different approach at defining backward conditioning.

To increase the parallel processing capabilities of the model, the entropy model is

defined as a channel-wise autoregressive model, where the latent channels are divided

into slices. These slices are decoded sequentially and each slice is conditioned on

the previously decoded slices. This method greatly minimizes the need for serial

processing compared to the spatial autoregressive model where each pixel has to be

34

Figure 3.4: Block schema of the model presented in [1].

decoded sequentially. The work presented in [2] is built upon [6], the hyperprior

network. Also, the hyper-synthesis transform is duplicated to predict mean and scale

separately.

There is one more improvement to the architecture in [2] which is called latent resid-

ual prediction. It is designed to predict the information loss during the quantization

process, and augment the decoded latent with this information. There are two pur-

poses of latent residual prediction. The first one is to reduce the distortion of the

synthesis transform gs, the other is to increase the efficiency of channel conditioning

as more channels augmented with latent residual prediction are taken into account

while decoding the next slice.

As an alternative to regular training with noise regimen used in earlier models, Min-

nen et al. [2] propose to replace the additive noise with rounding whenever the latent

is passed onto a synthesis transform. The training of entropy model is carried out in

the same manner. This has been shown to improve the rate-distortion performance of

the network. Visualization of the model can be found in Figure 3.5.

35

Figure 3.5: Block schema of model presented in [2].

36

CHAPTER 4

PROPOSED METHOD

In learned image compression with variational auto-encoder architecture, the input

image is projected into a latent space which has lower spatial dimension as shown in

[5]. The latent representations are quantized and encoded losslessly into a bitstream

with arithmetic encoder. To be able to encode with the least number of bits, the

joint distribution of the latent elements should be modeled as accurately as possible.

Balle et al. models each element in the latent representation as independent random

variables and uses a factorized entropy model. However, [6], [1] and [2] show that

there are strong dependencies present in the latent representation which are ignored by

a factorized model. The method in [6] shows that by introducing a side-information,

it is possible to achieve a better rate-distortion performance. Moreover, [1] utilizes

a context model to obtain the conditional distribution of latent elements conditioned

on previously decoded elements. [2] takes a different approach and exploits the inter-

channel dependencies in the latent space.

This thesis proposes a lossy image compression model with an entropy model that

process both spatial and channel context information. The latent representation is di-

vided along the channel dimension into a number of equal-sized slices. The entropy

parameters are conditioned on previously decoded channel slices and previously de-

coded elements in the same slice, more effectively decreasing the information redun-

dancy. Additionally, a latent residual prediction network is employed to reduce the

error caused by quantization.

In this chapter, the overall model is explained in detail. First, the structure of the

model is presented. Then, quantization method during training and inference is dis-

cussed. Entropy network and arithmetic coder are explained in the following sections.

37

Figure 4.1: Diagram of proposed image compression network. The input image is

fed to the encoder to be projected onto the latent space. Gaussian parameters of latent

variable are found with entropy network. The decoder restores the image from the

quantized latent variable.
38

Figure 4.2: Encoder network

4.1 Model Structure

The compression model presented in this thesis builds upon the network in [6] and

combines the ideas presented in [1] and [2]. The model includes an encoder, a de-

coder, a hyper encoder, a hyper decoder and entropy network. These parts are de-

scribed further below. The network structure can be visualized with Figure 4.1.

The encoder ga transforms the input image to latent variable y. There are 4 convolu-

tional layers in the encoder network, each layer downsampling the image by 2. The

channel number in the middle stages is 192. The output of the last layer is the latent

variable, and has 1/16 times smaller spatial dimensions than input image while the

channel number is increased to 384. In encoder, GDN non-linearity is applied to each

intermediate output except the last one, which is the latent tensor. Each element of

the latent tensor is modeled with a Gaussian distribution whose parameters are deter-

mined by the entropy network. The probabilities of the quantized values are found

from the Gaussian distribution. The encoder network is shown in Figure 4.2.

The hyper encoder network ha used in this thesis is the one given in [1]. There are 3

convolutional layers in this hyper encoder network, with the first one having stride of

one and others two. As a result, y is downsampled further to hyper latent variable z,

which has dimensions equal to input image’s size divided by 64. The first and second

39

Figure 4.3: Hyper encoder network

layers produce feature maps with 192 channels. z, the output of final layer, has 384

layers. As y, z is also quantized to ẑ before being entropy coded. ẑ is modeled with a

fully factorized probability model since the bit allocated for ẑ are expected to be very

small. The hyper encoder network is shown in Figure 4.3.

There are two identical hyper decoders in this network. The first one is dedicated to

determination of mean of ŷ. This network is denoted by hsmean . The other network

determines the scale of latent variable and is shown as hsscale . Both of these networks

act on ẑ to extract statistical information, and their outputs are denoted as µ′ and σ′

respectively. Hyper decoder network has 2 transposed convolution layers with stride

2 to upsample the image by 4 factors. The last layer is a regular convolutional layer

with unit stride. The structure of these networks is displayed in Figure 4.4.

Entropy network approximates the parameters of Gaussian probability model of ŷ

from hyperprior and spatial and channel context information. As the hyper decoder

network, there two entropy networks which are dedicated to mean and scale extrac-

tion. Entropy network is detailed in Section 4.3.

The decoder reconstructs the image from ŷ. With 4 transposed convolution layers,

the latent representation is upsampled to the original image’s dimensions. As non-

linearity, approximate inverse GDN function is applied. Like the encoder, the in-

termediate results have 192 channels. The output image has three channels which

corresponds to RGB channels. The decoder network can be seen in Figure 4.5.

40

Figure 4.4: Hyper decoder network

Figure 4.5: Decoder network

41

4.2 Quantization

Quantization is essential since only discrete variables can be encoded losslessly with

arithmetic coder. However, quantization function has zero derivative almost every-

where, inhibiting gradient-based learning. To overcome this issue, [5] introduces

additive uniform noise to imitate quantization error during training. Rounding is ap-

plied to the latent vector to obtain integer values during inference and compression.

It should be noted that scalar quantization is adopted in this approach. Another ap-

proach is to apply rounding during training as well. Zero gradient issue is solved by

substituting the gradient of round function with identity function during back propa-

gation when training with rounded values [30].

In this thesis, a hybrid quantization approach during training is adopted, which was

first proposed in [2]. In this method, uniform noise is exclusively added to the input of

probability model. On the other hand, rounding with gradient substitution is applied

to the input of synthesis and hyper synthesis transforms. The probability model learns

a more accurate probability model with uniform noise. However, it has been observed

in [2] that training synthesis transform with integer values increases reconstruction

performance.

4.3 Entropy Network

The density of latent variables are defined as a Gaussian density [22] in order to

be efficiently encoded with an arithmetic encoder after quantization. The mean and

scale of this distribution are extracted by the entropy network. To capture the sta-

tistical dependencies among elements, each element is conditioned on multiple pa-

rameters. These parameters are hyperprior, channel auto-regressive and spatial auto-

regressive components. The hyperprior network learns to express useful information

to be compressed with the latent representation as side information. The size of the

hyperprior is greatly smaller than the rate saving it provides. Moreover, since the

information is available during decoding, there is no increase in computation latency.

However, auto-regressive model works sequentially, dramatically increasing decod-

ing time. There are two such components in this model, channel-wise auto-regressive

42

Figure 4.6: Channel prediction network

model and spatial auto-regressive model. Together, these two auto-regressive models

are called the context model.

To establish a channel-wise auto-regressive model, the latent variables are split into

slices along the channel dimension. The first slice uses no channel context infor-

mation. Subsequent slices are conditioned on all of the previous channel slices. To

extract channel context information, channel prediction network seen in Figure 4.6 is

used. Each slice possesses its own channel prediction network. As seen in the figure,

input size grows with slice index.

Spatial auto-regressive model aims to take advantage of spatial dependencies within

a channel slice. Two methods have been explored to build spatial conditioning. The

first one is using a masked convolution layer, which has been proposed in [1]. Masked

convolution operation enforces the causal processing of the auto-regression. This

method disables parallel processing since each element has to be encoded and de-

coded sequentially. Another method is to divide the splits further into patches and

process each patch in parallel. The latter approach allows highly parallel processing

in GPU, speeding up the encoding and decoding processes. An illustration of parallel

spatial context prediction for a single channel tensor is given in Figure 4.7.

Outputs of hyperprior decoders, µ′ and σ′, are concatenated with the spatial and chan-

nel context model output. As the hyperprior decoder, there are two context models. µ′

and σ′ are bundled together with the appropriate tensors. These collection of tensors

are given to their respective entropy parameter network. Entropy parameter network

is a three-layered convolutional network, while each layer has a kernel size of 1.

Again, there are two entropy parameter networks, and their outputs µi and σi are used

43

Figure 4.7: Parallel spatial context prediction. To parallelize the spatial context

model, the latent is divided into patches. The colors represent indexes. In the im-

age, spatial context prediction for the last index is done by concatenating the previous

indexes in channel dimension and processing them with a convolution layer.

Figure 4.8: Entropy parameter network.

in the Gaussian probability model. The i-th entropy parameter network is given in

Figure 4.8.

After the slice of latent variable is decoded, latent residual prediction is applied to

reduce the information loss caused by quantization. The i-th latent residual prediction

network is visualized in Figure 4.9. The tensor used to predict the mean µi is also used

in latent residual prediction, along with the decoded slice.

The entropy network is the collection of auto-regressive models and entropy parame-

ter networks. It collects and process statistical deep features to represent the distribu-

tion of latent variables with a multi-variate Gaussian model. The entropy parameter

network dedicated to the i-th channel slice is shown in Figure 4.10.

44

Figure 4.9: Latent residual prediction network

Figure 4.10: i-th entropy network. Firstly, quantization is applied to the i-th channel

slice which is input of this network. The previously decoded channels are concate-

nated and given to the channel prediction network. Masked convolution establishes

pixel-wise conditioning. The outputs of auto-regressive models are concatenated with

hyperprior. The parameters of Gaussian model are estimated with entropy parameter

networks. After the slice is decoded, the latent residual prediction network attempts

to reduce the information loss caused by quantization. The output slice is passed on

to the next entropy network, along with the previous slices.

45

4.4 Arithmetic Coding

Training of the compression network requires entropy calculation, since entropy pro-

vides a bound for minimum achievable bit rate. Hence, minimization of entropy cor-

responds to reducing the bits required to encode the latent representation. Nonethe-

less, for practical usage the latent variables have to be encoded into a bitstream. Arith-

metic coding, which is a lossless compression algorithm, has been used widely in

image compression literature ([5], [6], [1]). Arithmetic coding requires the probabil-

ity model to be available during encoding and decoding, which is obtained with the

pre-trained entropy network. Arithmetic coder operates on finite number of symbols

with a discretized PMF. Consequently, the quantization of the continuous Gaussian

CDF and determining the number of symbols are necessary. During training, the dis-

cretization of CDF is imitated by uniform noise as discussed in Section 4.2. During

practical application, rounding is used to sample the CDF on integer points. How-

ever, this CDF covers the whole real line (−∞,∞). To apply arithmetic coding, the

number of symbols have to be finite. The arithmetic coder handles this issue by con-

sidering probability of any symbol outside a pre-defined range as zero. Afterwards,

the arithmetic coding algorithm described in Section 2.2.1.2 is applied.

4.5 Compression Procedure

From input to bit-stream, the steps can be listed as follows;

1. The input image x is transformed to latent variable y with encoder ga.

2. y is passed to the hyperprior encoder ha as input to obtain z.

3. Both y and z are quantized to obtain ŷ and ẑ.

4. ẑ is transmitted as side information and encoded with a factorized prior entropy

model.

5. From ẑ, pmean and pscale are obtained with hyperprior decoders hsmean and

hsscale .

46

6. ŷ is divided into S slices, each slice having M/S channels where M = total # of

channels of y, S = total number of slices.

7. From first slice ŷ0, spatial context predictions cp0mean and cp0scale are extracted

by spatial context model.

8. Concatenation of pmean and cp0mean is fed into Gaussian mean prediction net-

work to determine mean values. A similar operation is done to obtain scale

values.

9. The obtained Gaussian parameters are used to encode ŷ0.

10. With concatenation of mean parameters and quantized slice, latent residual pre-

diction is applied to reduce quantization errors

11. For subsequent slices, channel context predictions chimean and chiscale are com-

puted by giving concatenation of previously decoded slices ˆy<i to channel con-

text model.

12. From slice ŷi, spatial context predictions cpimean and cpiscale are extracted by

spatial context model.

13. In addition to hyperprior and spatial context prediction, chimean and chiscale are

concatenated with their relevant parameter tensor to be fed into Gaussian mean

and scale prediction networks.

14. The Gaussian parameters are used to encode ŷi with arithmetic encoder.

15. With concatenation of mean parameters and quantized slice, latent residual pre-

diction is applied to reduce quantization errors

16. Return to step 10 until all of the slices are encoded.

4.6 Decompression Procedure

From bit-stream to reconstructed image, the steps can be listed as follows;

1. ẑ is decoded with factorized prior entropy model at receiver side

47

2. From ẑ, pmean and pscale are obtained with hyperprior decoders hsmean and

hsscale .

3. pmean(0, 0) and pscale(0, 0) are used to obtain mean and scale values of the first

element of the first slice ˆy0(0, 0).

4. From bit-stream, first element ˆy0(0, 0) is decoded with computed mean and

scale values.

5. From decoded element(s) of ŷ0, cp0mean(m,n) and cp0scale(m,n) are found with

spatial context module. (0<m<height of latent variable, 0<n<width of latent

variable)

6. Concatenation of pmean(m,n) and cp0mean(m,n) is fed into Gaussian mean pre-

diction network to determine the mean value. A similar operation is done to

obtain the scale value.

7. The obtained Gaussian parameters are used to decode ˆy0(m,n)

8. Return to Step 4 until all elements are decoded in the first slice ŷ0

9. With concatenation of mean parameters and decoded slices, latent residual pre-

diction is applied to reduce quantization errors

10. For subsequent slices, channel context predictions chimean and chiscale are com-

puted by giving concatenation of previously decoded slices ˆy<i to channel con-

text model.

11. From bit-stream, first element ˆyi(0, 0) of i-th slice is decoded with hyper-

prior parameters pmean(0, 0) and pscale(0, 0) and channel context prediction

chimean(0, 0) and chiscale(0, 0).

12. From decoded element(s) cpimean(m,n) and cpiscale(m,n) are computed. 0<m<height,

0<n<width

13. Concatenation of pmean(m,n), chimean(m,n) and cpimean(m,n) is fed into Gaus-

sian mean prediction network to determine the mean value. A similar operation

is done to obtain the scale value.

14. The obtained Gaussian parameters are used to decode ˆyi(m,n)

48

15. Return to Step 12 until all elements are decoded

16. With concatenation of mean parameters and decoded slices, latent residual pre-

diction is applied to reduce quantization errors

17. Return to Step 10 until all slices are decoded

18. Concatenate all decoded slices in channel dimension to obtain ŷ

19. ŷ passes through decoder gs to obtain reconstructed image x̂

49

50

CHAPTER 5

EXPERIMENTAL RESULTS

This chapter is dedicated to present performance of the proposed image compression

network. In addition, training setup and testing details are discussed as well. To show

the effects of spatial and channel context models, visualizations of tensors involved

in entropy model are given.

5.1 Training and Evaluation

The training of sequential model are done on two environments. The first one is a per-

sonal computer which has NVIDIA RTX 3070 GPU, Intel i7 10700KF CPU and 16

GB RAM. The other environment is Colab virtual environment provided by Google.

For developing the model, CompressAI [31], which is a framework for deep learning-

based image compression development is used. CompressAI library is based on Py-

Torch [32] deep learning library. During training, the datasets released on 2020 and

2019 for Challenge on Learned Image Compression (CLIC) have been used. There

are 835 high quality natural images in total. Batch size is set to 8 images. Randomly

cropped images with 256x256 size constitute each batch. The model with highest

lambda is trained first, then each network is obtained by reducing the lambda when

the model reaches a flat region. Learning rate is set to 10−4 in the beginning of each

training phase, then reduced to 10−5 when a plateau is reached. It should be noted

that this training strategy is not optimal and was chosen because of time constraints.

The results can be improved by choosing a different training strategy.

Validation and performance evaluation are done using the Kodak Image Dataset. Ko-

dak Image Dataset contains 24 RGB images of size 768x512. Rate vs. distortion

51

graph is obtained by finding the bit-rate (in bits-per-pixel) of the compressed file

and distortion according to PSNR or MS-SSIM. The most common distortion metric

is PSNR. The formula for PSNR is given in Equation 5.1 where MSE is the mean-

square error between the input image and reconstructed image.

PSNR = 10log10
2552

MSE
(5.1)

5.2 Number of Parameters

The number of parameters is a numerical indicator for the complexity of the model.

Table 5.1 shows total number of parameters of each network. It should be noted that

the number of channels of the proposed models have not been optimized and can be

reduced without significant performance loss.

Hyperprior
Spatial

Auto-regressive

Channel

Auto-regressive
Proposed

Proposed

(Parallel)

Number of

parameters (M)
5 14 122 65 131

Table 5.1: Number of parameters of various models

As expected, the hyperprior model has the least amount of parameters. Spatial auto-

regressive model extends the hyperprior model with an context prediction and entropy

parameter network. Channel auto-regressive model is considerably larger since there

is a separate entropy network for each slice. The proposed model is smaller than

channel auto-regressive model because of the chosen channel sizes. The proposed

model is much larger because of the paralellized spatial context predictor.

52

5.3 Compression Performance

Evaluation of compression performance is done by comparing the rate-distortion

curves obtained from previous models. These models are proposed in [5], [6], [1],

[33] and [2]. [5] uses a factorized entropy model to learn the distribution of pixels.

This model assumes the pixels are independent. On the other hand, the model pro-

posed [6] adopts a zero mean Gaussian model to be used by an arithmetic coder. Fur-

thermore, a hyperprior network to extract dependencies between neighboring pixels

is introduced. There are two models presented in [1]. The first one extends the hy-

perprior model with a non-zero Gaussian assumption and predicts mean values from

hyperprior along with scale values. The second one adds a spatial auto-regressive

component to the first model to capture spatial correlations more successfully. [33]

proposes to use attention modules and residual connections with the model presented

in [1]. [33] also uses a deeper network with smaller filter sizes. [2] suggests to use

a channel-wise auto-regressive model to reduce information redundancy in the latent

space. [34] adds window based attention modules to enhance the performance of

channel-wise auto-regressive model. The results of these models, together with the

proposed model and conventional methods such as BPG and JPEG are given in Fig-

ure 5.1. It should be noted that models optimized for MS-SSIM always have less

PSNR then thier MSE optimized counterparts since MS-SSIM optimization tends

to over-smooth edges and details. Rate-distortion curves with respect to MS-SSIM

metric are shown in Figure 5.2. Since performance of MS-SSIM optimized channel

auto-regressive model is not published, it is not included in Figure 5.2.

According to the Figure 5.1, JPEG has the worst compression performance. This is

an expected result since JPEG has the lowest complexity and fastest encoding and de-

coding times. Even though JPEG 2000 provides a considerable performance boost, it

still cannot reach the performance of lowest performing learning based model, which

is the factorized model. BPG, which is a image compression algorithm based on

HEVC compression algorithm, is almost on par with the hyperprior model presented.

BPG performs slightly better at lower bit-rates. However, as bit-rate increases, the

hyperprior model surpass BPG. Non-zero Gaussian assumption increases the perfor-

mance of hyperprior model. Remaining learning based models leverage non-zero

53

Figure 5.1: PSNR vs Bit-Rate Curves

Gaussian probability model as well. Introduction of auto-regressive models yield sig-

nificantly better results. Comparison of spatial and channel auto-regressive models

shows that there are stronger dependencies between channels and modeling these de-

pendencies can improve the performance more. Furthermore, comparing the model

in [33] with the spatial auto-regressive model proves that residual connections and

deeper network can improve the performance. Furthermore, [34] shows that window

based attention module can increase the rate-distortion performance when compared

with channel auto-regressive model. The proposed method performs the best at high

bit-rates, beating both [2] and [34]. However, it does not perform well at low bit-

rates. The reason for this outcome is that features contained in each channel does not

differentiate much at low bit-rates and channel auto-regressive model is sufficient to

express the dependencies present in the latent variable. As bit-rate increases, the fea-

tures get more distinct and channel auto-regressive model is not enough to capture all

of the correlations among elements. Thus, the proposed model performs better as the

bit-rate increases. It should be noted that ideally the proposed model’s performance

should be equal to the model in [2] at the very least. Because of the non-optimal

training strategy, a worse performance is observed at low bit-rates.

54

Figure 5.2: MS-SSIM vs Bit-Rate Curves

5.4 Inspection of Latent Space

To asses the effectiveness of the proposed method, tensors in the latent space are

inspected in this section. A visualization of the latent variable of the image in Figure

5.3 can be seen in Figure 5.4. PSNR is 26.0832 dB and bit-per-pixel is 0.2123 for this

image. It can be observed that most of the energy is compacted into the channel shown

in left-upper-most patch. This channel also has the highest bit-per-pixel allocation

with 0.0056.

55

Figure 5.3: Input Image

After the mean is computed, it is subtracted from the latent before rounding operation.

The mean-subtracted latent tensors can be seen in Figure 5.5. Most of the channels are

sparse except a small number of channels. It can easily be concluded that most of the

bits are accumulated in a small portion of the channels. Presence of structure in the

latent space decreases the efficiency of the coder. In the Figure 5.6 errors normalized

with scale values are shown. It can be observed that structures are mostly eliminated

in the normalized tensor.

56

Figure 5.4: Latent Representation of the Input Image

With increasing bit-rate, more details are allowed to be represented in the latent space.

By comparing the latent variables produced with different lambda values, this phe-

nomena can be observed. An illustration can be found in Figure 5.7 and 5.8. As

expected, more complex structures are observed in the latent representation as bit-

rate increases.

57

Figure 5.5: Mean Subtracted Latent

Histograms of the channels which require the most bit-per-pixel for multiple lambda

values are shown in Figure 5.9. Even though at low bit-rates Gaussian model performs

well, as more details are allowed, the histogram deviates from a normal distribution.

A different probability model can be utilized in the future to represent the distribution

of the latent more successfully.

58

Figure 5.6: Mean Subtracted Scale Normalized Latent

5.5 Compression Latency and Parallelized Entropy Model

One of the most important metric when comparing the performance of a compres-

sion model is the time it takes to encode and decode an image. Since there are no

auto-regressive computation involved in hyperprior model [6], it can be run on GPU

flawlessly, dramatically reducing the computation time. Moreover, because of the low

complexity of hyperprior model, it is the fastest deep compression model. Among

the auto-regressive models, the channel auto-regressive model [2] is the faster one

due to low number of sequential iterations. The spatial auto-regressive model [1] has

to compute mean and scales values for each element in the latent variable sequen-

59

Figure 5.7: Mean Subtracted Scale Normalized Latent at PSNR: 35.5 dB - bpp: 0.380

tially. This processes renders the model fully sequential, slowing down the encoding

and decoding of the image in magnitudes. On the other hand, each iteration of the

channel auto-regressive model can be run parallel on GPU. The number of sequential

iterations equals to the number of slices, which is defined as 10 in the paper [2].

The proposed model in this thesis uses both sequential and channel auto-regressive

models. While it performs better compared to the other models, the encoding and

decoding times are much higher. To prevent this, a novel approach to partition the

latent into smaller patches and process the items with the same indexes together is

proposed. This approach reduces the encoding and decoding times dramatically.

60

Figure 5.8: Mean Subtracted Scale Normalized Latent at PSNR: 40.65 dB - bpp:

1.170

Figure 5.2 shows the time it takes to encode and decode an image. The data for

hyperprior and spatial auto-regressive models are taken from CompressAI. The pro-

posed method is tested locally on RTX 3070 and Intel i7 10700KF, while proposed

parallel method is tested on Google Colab. Since there was no data for channel auto-

regressive model, it is not included in the table. However, it is expected to accomplish

encoding and decoding slightly faster than the proposed parallel method.

The parallel model has proved that faster compression is possible. Unfortunately, per-

61

(a) PSNR: 30.1 dB

bpp: 0.063

(b) PSNR: 35.5 dB

bpp: 0.380

(c) PSNR: 40.65 dB

bpp: 1.170

Figure 5.9: Histograms of mean subtracted scale normalized

latents at different bit-rates

(seconds) Hyperprior
Spatial

Auto-regressive
Proposed

Proposed

(Parallel)

Encoding Time (CPU) 0.72 5.37 24.61 6.29

Encoding Time (GPU) 0.035 2.94 18.57 1.94

Decoding Time (CPU) 0.70 9.68 75.05 5.07

Decoding Time (GPU) 0.0249 6.25 56.24 1.70

Table 5.2: Encoding and decoding times of various models.

formance experiments are limited to two quality values because of time constraints.

Nevertheless, the obtained data shows that the proposed model can be accelerated

with minimal loss in compression performance. The comparison is shown in Table

5.3.

62

Patch Size λ = 0.0035 λ = 0.013

2
PSNR:30.4

bpp:0.222

PSNR:33.4

bpp:0.445

4
PSNR:30.4

bpp:0.216

PSNR:33.4

bpp:0.409

Table 5.3: Experimental results of parallel context model for two lambda values. The

first elements in each patch are encoded without spatial context information. There

are more elements to encode without spatial context information when patch size

decreases. Hence, performance tends to decrease with the patch size.

63

64

CHAPTER 6

CONCLUSION

In this thesis, a deep learning model to compress natural images is presented. The

model is trained in a end-to-end fashion, minimizing the rate-distortion loss calculated

with a Lagrange multiplier to control the trade-off between bit-per-pixel and quality.

This work adapts the auto-encoder for image compression framework presented in

[27]. Basically, the image is transformed into the latent representation which is en-

coded with a arithmetic coder to be transmitted or stored with least amount of bits

given the entropy model. Afterwards, the encoded tensor is decoded with the same

entropy model and transformed back into the image space. The compression model

learns the most optimal transformation for rate-distortion performance. The entropy

model given in [27] is improved with hyperprior which can be considered as a side

information packed with the actual latent representation to increase the performance.

Additionally, effects of auto-regressive models on compression performance are ex-

plored. The spatial auto-regressive model introduced in [1] uses a pixel-wise condi-

tional model to reduce information redundancy between pixels. On the other hand,

the channel auto-regressive model presented in [2] adopts a channel-wise conditional

probability model to prevent unnecessary repetition of information between channels.

The entropy model in this thesis utilizes both channel and spatial context informa-

tion. First, the latent tensor is divided into smaller slices along the channel dimen-

sion. These slices are encoded and decoded sequentially while each channel slice is

conditioned on the previously processed slices. Furthermore, a masked convolution

extracts useful information from the earlier pixels. The context information obtained

from pixel-wise and channel-wise auto-regressive models are fed into parameter esti-

mator network together with hyperprior tensor. Even though this approach increases

65

rate-distortion performance, the computation time increases dramatically because of

pixel-by-pixel processing of spatial context model. A patch-based spatial context

model is proposed to reduce the compression latency. The latent tensor is divided fur-

ther into patches before the entropy network. Each element inside a patch is indexed

in raster scan order, and every element with the same index is processed in paral-

lel. Moreover, the element being processed is conditioned on formerly processed

elements inside neighboring patches as well as the elements inside the same patch.

The increased receptive field compensates the overhead caused by increased bits al-

located for earlier indexes. With a small performance trade-off, great computational

efficiency can be achieved with patch division.

6.1 Future Work

Future work may include utilizing a Gaussian mixture model or another probability

model to better express the distribution of latent representations. A more successful

approximation will improve the coding efficiency.

The current patch division method divides the latent tensor into patches with equal

size. Division into variable sized patches as in [4] can increase efficiency of patch

division method. An additional network can be implemented to decide on the optimal

patch sizes. Smoother regions can be divided into larger patch sizes while regions

with high variance can have smaller patches. Similar to latent residual network taking

mean estimation input, the patch division network can take the scale predictor’s input

tensor since size of the patches would depend on the local scale.

66

REFERENCES

[1] D. Minnen, J. Ballé, and G. Toderici, “Joint autoregressive and hierarchical pri-

ors for learned image compression,” 2018.

[2] D. Minnen and S. Singh, “Channel-wise autoregressive entropy models for

learned image compression,” 2020.

[3] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Stan-

dard. New York: Van Nostrand Reinhold, 1992.

[4] ISO/IEC 23008-2:2020, “ISO/IEC 23008-2:2020 information technology —

high efficiency coding and media delivery in heterogeneous environments —

part 2: High efficiency video coding,” 2020.

[5] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image com-

pression,” 2016.

[6] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image

compression with a scale hyperprior,” 2018.

[7] C. E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal, vol. 27, pp. 379–423, 1948.

[8] D. Huffman, “A method for the construction of minimum redundancy codes,”

Proceedings IRE 40, no. 10, pp. 1098–1101, 1952.

[9] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compres-

sion,” Commun. ACM, vol. 30, p. 520–540, jun 1987.

[10] G. G. Langdon, “An introduction to arithmetic coding,” IBM J. Res. Dev.,

vol. 28, pp. 135–149, 1984.

[11] D. R. Bull and F. Zhang, Intelligent image and video compression: Communi-

cating Pictures. Academic Press, 2 ed., 2021.

67

[12] Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity for im-

age quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals,

Systems Computers, 2003, vol. 2, pp. 1398–1402 Vol.2, 2003.

[13] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality assessment: Uni-

fying structure and texture similarity,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, pp. 1–1, 2020.

[14] Z. Tu, Y. Wang, N. Birkbeck, B. Adsumilli, and A. C. Bovik, “UGC-VQA:

Benchmarking blind video quality assessment for user generated content,” IEEE

Transactions on Image Processing, vol. 30, pp. 4449–4464, 2021.

[15] P. Manocha, A. Kumar, B. Xu, A. Menon, I. D. Gebru, V. K. Ithapu, and

P. Calamia, “Saqam: Spatial audio quality assessment metric,” 2022.

[16] F. Rosenblatt, “The perceptron - a perceiving and recognizing automaton,” Tech.

Rep. 85-460-1, Cornell Aeronautical Laboratory, Ithaca, New York, January

1957.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, pp. 533–536, Oct. 1986.

[18] G. Hinton, “Neural networks for machine learning lecture 6a overview of mini-

batch gradient descent,” 2012.

[19] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture in

two nonstriate visual areas (18 and 19) of the cat,” Journal of Neurophysiology,

vol. 28, pp. 229–289, 1965.

[20] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and func-

tional architecture in the cat’s visual cortex,” Journal of Physiology (London),

vol. 160, pp. 106–154, 1962.

[21] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of

monkey striate cortex,” Journal of Physiology (London), vol. 195, pp. 215–243,

1968.

[22] J. Ballé, V. Laparra, and E. P. Simoncelli, “Density modeling of images using a

generalized normalization transformation,” 2015.

68

[23] D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neu-

roscience, vol. 9, no. 2, p. 181–197, 1992.

[24] M. Carandini and D. Heeger, “Normalization as a canonical neural computation.

nat,” Nature reviews. Neuroscience, vol. 13, pp. 51–62, 11 2011.

[25] S. Chen and R. Gopinath, “Gaussianization,” in Advances in Neural Information

Processing Systems (T. Leen, T. Dietterich, and V. Tresp, eds.), vol. 13, MIT

Press, 2000.

[26] M. Carandini and D. Heeger, “Normalization as a canonical neural computation.

nat,” Nature reviews. Neuroscience, vol. 13, pp. 51–62, 11 2011.

[27] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimization of nonlinear

transform codes for perceptual quality,” 2016.

[28] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.

[29] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and

K. Kavukcuoglu, “Conditional image generation with pixelcnn decoders,” 2016.

[30] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression

with compressive autoencoders,” 2017.

[31] J. Bégaint, F. Racapé, S. Feltman, and A. Pushparaja, “Compressai: a pytorch

library and evaluation platform for end-to-end compression research,” 2020.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-

tala, “Pytorch: An imperative style, high-performance deep learning library,”

2019.

[33] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned image compression with

discretized gaussian mixture likelihoods and attention modules,” 2020.

[34] R. Zou, C. Song, and Z. Zhang, “The devil is in the details: Window-based

attention for image compression,” 2022.

69

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Image Compression Overview
	Learning Based Image Compression
	Contribution
	Outline of the Thesis

	Background Information
	Information Entropy
	Data Compression
	Lossless Data Compression
	Huffman Coding
	Arithmetic Coding

	Lossy Data Compression

	Artificial Neural Networks
	Back-propagation
	Optimization and Gradient Descent
	Convolutional Neural Networks

	Literature Review
	Generalized Divisive Normalization
	Nonlinear Transform Coding for Image Compression
	Variational Generative Image Models
	Variational Image Compression with a Hyperprior
	Autoregressive Learned Image Compression
	Channel Autoregressive Model

	Proposed Method
	Model Structure
	Quantization
	Entropy Network
	Arithmetic Coding
	Compression Procedure
	Decompression Procedure

	Experimental Results
	Training and Evaluation
	Number of Parameters
	Compression Performance
	Inspection of Latent Space
	Compression Latency and Parallelized Entropy Model

	Conclusion
	Future Work

	REFERENCES

