
BLOCKCHAIN BASED SOLUTION FOR ELECTRONIC HEALTH RECORD
INTEGRITY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KAAN ÇELİK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

SEPTEMBER 2022

Approval of the thesis:

BLOCKCHAIN BASED SOLUTION FOR ELECTRONIC HEALTH RECORD
INTEGRITY

submitted by KAAN ÇELİK in partial fulfillment of the requirements for the degree
of Master of Science in Cryptography Department, Middle East Technical Uni-
versity by,

Prof. Dr. A. Sevtap Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Assoc. Prof. Dr. Oğuz Yayla
Supervisor, Cryptography, METU

Examining Committee Members:

Assoc. Prof. Dr. Ali Doğanaksoy
Mathematics Department, METU

Assoc. Prof. Dr. Oğuz Yayla
Institute of Applied Mathematics, METU

Assoc. Prof. Dr. Fatih Sulak
Mathematics Department, Atılım University

Assoc. Prof. Dr. Adnan Özsoy
Computer Engineering Department, Hacettepe University

Assoc. Prof. Dr. Burhan Coşkun
Faculty of Medicine, Uludağ University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: KAAN ÇELİK

Signature :

v

vi

ABSTRACT

BLOCKCHAIN BASED SOLUTION FOR ELECTRONIC HEALTH RECORD
INTEGRITY

Çelik, Kaan

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

September 2022, 46 pages

With the development of technology, great developments have occurred in the health-
care area, as in every field. Over time, many solutions have been proposed for the
processing of electronic health data. As a fact, there are critical factors that should
be considered under these developments. This information in the field of electronic
health is demanded both by some harmful organizations and people. In addition, there
is an extensive market for these informations. Therefore, in electronic health data
systems, the privacy of the patient, the executability of the system, and its protection
against attacks are milestone requirements. One of the methods offered to provide
these security measures is the blockchain technology. Many theoretical and practical
blockchain-based studies have been achieved for preserving electronic health data.
In this thesis, a blockchain based medical survey system is proposed to achieve the
data integrity. The system is implemented on the Algorand blockchain and its steps
are given. We also do the benchmark of the proposed system in terms of time and
memory usage.

Keywords: Blockchain, Health Record, Cryptography

vii

viii

ÖZ

ELEKTRONİK SAĞLIK VERİLERİNİN BÜTÜNLÜĞÜ İÇİN BLOKZİNCİR
TABANLI ÇÖZÜM

Çelik, Kaan

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Eylül 2022, 46 sayfa

Teknolojinin gelişmesiyle birlikte her alanda olduğu gibi sağlık alanında da büyük
gelişmeler meydana gelmiştir. Bu süreçte, elektronik sağlık verilerinin işlenmesi için
birçok çözüm yöntemi önerilmiştir. Bu gelişmelerin altında dikkate alınması gere-
ken kritik faktörler olduğu bir gerçektir. Elektronik sağlık alanında ki bu bilgiler
bazı kötü amaçlı kuruluşlar ve kişiler tarafından rağbet görmektedir. Ek olarak, bu
sağlık verileri için geniş bir pazar bulunmaktadır. Bu nedenle elektronik sağlık veri
sistemlerinde hastanın mahremiyeti, sistemin çalıştırılabilirliği ve saldırılara karşı ko-
runabilmesi temel gereksinimlerdir. Bu güvenlik önlemlerini sağlamak için sunulan
yöntemlerden birisi de blokzincir teknolojisidir. Elektronik sağlık verilerinin korun-
ması için hem pratik hem de teorik olmak üzere bir çok çalışma yapılmıştır. Bu tezde
verilerin bütünlüğünü sağlamak için blok zinciri tabanlı tıbbi anket sistemi önerildi.
Sistem, Algorand blok zinciri üzerinde gerçekleştirilmiş ve adımları verilmiştir. Aynı
zamanda, hız ve bellek kullanımı açısından performans testleri gerçekleştirildi.

Anahtar Kelimeler: Blokzincir, Tıp, Sağlık, Kriptografi

ix

x

ACKNOWLEDGMENTS

I would like to express my very great appreciation to my thesis supervisor Assoc.
Prof. Dr. Oğuz Yayla for his patient guidance, enthusiastic encouragement and valu-
able advices during the development and preparation of this thesis. His willingness
to give his time and to share his experiences has brightened my path.

I also would like to express my gratitude and appreciation to Assoc. Prof. Dr. Ali
Doğanaksoy for introducing me to cryptography.

I specially thank my family for their patience, support and mental motivation during
thesis term.

Finally, I also would like to thank my colleagues for their technical support and en-
couragement.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xviii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Contribution . 3

1.2 Related Works . 3

1.3 Overview of Thesis . 5

2 ALGORAND . 7

2.1 Key Generations . 7

2.1.1 Public Key & Private Key Generation 7

2.1.2 Address Generation 7

xiii

2.1.3 Mnemonic Key Generation 8

2.1.4 Participation Keys 9

2.2 Consensus Protocol . 10

2.2.1 Verifiable Random Function 11

2.2.2 Selection of Committees: 14

2.2.3 Byzantine Agreement Protocol: 16

2.2.4 Block Generation: 19

2.3 Algorand Specific Structures 20

2.3.1 TEAL . 20

2.3.2 Algorand Standard Asset 20

3 DESIGN . 23

3.1 Blockchain Side . 24

3.1.1 Components . 24

3.1.2 Smart Contract 25

3.1.3 Medical Security Token 27

3.2 Application Side . 30

3.2.1 Survey Creation 30

3.2.2 Consent Form . 32

3.2.3 Completion of the Survey 35

3.3 Database Side . 39

3.4 Technical Properties . 39

xiv

3.5 Performance of Design . 40

4 CONCLUSION . 43

4.1 Future Works . 43

REFERENCES . 45

APPENDICES

xv

xvi

LIST OF TABLES

Table 3.1 Time Analysis . 41

Table 3.2 Memory Analysis . 41

xvii

LIST OF FIGURES

Figure 2.1 Mnemonic Key Generation . 8

Figure 2.2 Block Proposal . 10

Figure 2.3 Proposal Voting . 11

Figure 3.1 General Structure . 24

Figure 3.2 Smart Contract Mechanism . 26

Figure 3.3 Overview of Token Transactions 30

Figure 3.4 Survey Creation Steps . 32

Figure 3.5 Consent Form Steps . 35

Figure 3.6 Survey Completion Steps . 37

Figure 3.7 Database Diagram . 39

xviii

LIST OF ABBREVIATIONS

A Asset

an Asset Name

apaa Appliaction Arguments/Parameters

apan Appliaction Call Type

apap Appliaction Approval Program

apap Appliaction Asset

apgs Appliaction Global State

apid Application ID

apls Appliaction Local State

AVM Algorand Virtual Machine

Br It denotes as constructed block-chain block in specified round
r.

C Smart Contract

c Challenge Value

ctr Iteration Count

dc Asset Decimal Digit Count

df Default Frozen Value

EPKr,s
i ,ESKr,s

i Ephemeral public key, private key of user i in round r, step s

ESIGr,s
i Ephemeral signature of user i in round r, step s

fee Transaction Fee

fv First Valid Round

gen Genesis Hash

H Hash value

Hi,SKi∗ i implies last i bytes, i∗ implies first i bytes of base value.

k Nonce value

l In the round r, it denotes as lr i.e leader of round-r.

lv Last Valid Round

m Message, Data

manaddr Asset Manager Address

xix

MST Medical Security Token

PAYr This expression implies a payment set in round block Br.

PK Public key

PKr
i The public key of user i in round-r.

PKr The set of public keys of all users in round-r.

PPK,PSK Participation public key, participation secret key

Qr A unique value for specified round-r.

r It implies that that current index of round in block-chain where
r ≥ 0.

s It implies that that which step of certain round in block-chain
where s ≥ 1.

snd Sender

SK Private key / Secret key

SVr,s It implies that verifiers of block-chain round r, step s.

tl Asset Total

TEAL Transaction Execution Approval Language

typ Transaction Type

Tx Transaction

TxSIG Signed Transaction

un Unit Name

VRF Verifiable Random Function

W Word list

xx

CHAPTER 1

INTRODUCTION

Technology is developing rapidly day by day. As a result of this development, many

works that are done physically in real life are now transferring to the digital workflow.

For instance, banking, commerce, multimedia, and advertising are affected by tech-

nology. At the same time, another area affected by these technological developments

is the health field. Especially with the spread of the internet, the strengthening of com-

puter technologies, and the learning of technology by people working in the field, the

majority of health-related data transactions began to store in digital areas. During

these transitions, databases were used as the first solution for storing health data. As

a result of this transition, the number of data stored electronically has increased day

by day. Due to both speed and memory requirements, distributed database structures

were established. These accomplishments and transitions have been very beneficial

for healthcare and many other sectors. However, it is an undeniable fact that there are

parts of technology that cause difficulties in the field of health, as in every field. The

most concerning subject among these challenges is the security of healthcare data.

The medical operations and their results may contain sensitive or private data that

is not desired to be captured or exposed by others. Therefore, ensuring the security

of healthcare data is significantly necessary. Due to the necessity of providing secu-

rity, many studies have been achieved about e-healthcare data protection, since the

beginning of healthcare data processing in digital areas. The solution to the secu-

rity concerns relies on the fundamentals of cryptography as confidentiality, integrity,

and authentication. Many techniques have already been developed to provide these

cryptographic fundamentals. These security problems can be eliminated with the

combination of cryptographic techniques such as authorization control, encryption,

1

masking, anonymization etc . As a result of the research and developed attacks in

the literature, the problems that occur when sufficient security measures are not taken

have been observed. One of the problems is that attacks made on a single point cause

gain access to an adversary on the whole system since the centralized systems have

a singular authority. At the same time, the fact that the system management is in a

single authority is convenient for manipulating the data. In the medical sector, forg-

ing these results may lead to changing the treatment to be given to patients and all

their characteristics, such as the duration and amount of these treatments. This ac-

tion taken is likely to have very serious and undesirable consequences. Therefore

blockchain structure has also been proposed among these measures which is used in

many studies recently and their numbers are increasing day by day. In 2008, Satoshi

Nakamoto released Bitcoin [16] officially as the first blockchain system. After that

in 2013, Vitalik Buterin invented the Ethereum [5] and in 2014 he developed the

Ethereum [6] with the smart contracts. With the interest in these two blockchains and

the preservation of their place in the cryptocurrency market, the studies in this field

have increased even more. One benefit of this abundance of blockchain systems is

that we have many options when developing applications. Each one of them has dif-

ferent and similar attributes to the others. These features can be compared in terms of

speed, security factors, cryptographic primitives, consensus mechanisms, block struc-

tures, account management, off-chain activities, accessibility, scalability, transaction

cost, etc. We will mention the studies which are using the blockchain in Section 1.2.

Algorand [9] is one of the developed blockchain systems in the literature. Micali [9]

et.al proposed the Algorand as a Proof of Stake (PoS) based blockchain. We can list

the features that caused us to prefer Algorand as follows. First of all, The PoS-based

blockchain provides less energy consumption for transactions and block generations

than PoW based blockchain. Moreover, Algorand’s Byzantine agreement protocol [8]

can handle the arbitrary number of malicious users as long as honest nodes hold the

majority of the system. In addition, the consensus mechanism runs with the user re-

placeability principle and it provides preventing node-based attacks. One of the other

attributes is that Algorand is a permissionless blockchain which means everyone can

join Algorand as a node without any restriction. It cannot be forked at its origin layer.

The next one is that it has 0.001 Algos fee which is an insignificant amount. Once

we research the performance value of Algorand, we obtained the following results;

2

block proposal time is 0.5 seconds, block finalization time is 4.5 seconds and amount

of transactions per second is 1,000.

1.1 Contribution

As we mentioned in previous section, the data preservation and the data immutabil-

ity are the main requirements for the electronic health record systems. In this study,

we design a system that aims to save the e-health record data and their results as evi-

dence. Since proof immutability is the main requirement of these kinds of systems, an

immutable ledger mechanism is an ideal solution for this requirement. Therefore, we

have designed a system that can work in sync with the blockchain. We aim to provide

a scalable, fast, and secure healthcare-proof system to users. While designing this sys-

tem, we used cryptographic algorithms that comply with the standards. In addition,

we chose to use parameters according to the specified standards for these algorithms.

After this design, we developed and implemented a software that has an interface

and works synchronously with the preferred blockchain structure. Due to the benefits

of Algorand’s technology, its internal mechanism, its unique structures, we preferred

Algorand as the blockchain and developed the application compatible with Algorand.

In addition, since, Algorand is a public blockchain, we have added a control mecha-

nism for preventing the random access to our application context. For providing the

access control mechanism, we inserted an Algorand-based token system to our soft-

ware. The source code of the project is available in Github (https://github.com/kaan-

celik/Blockchain-Based-Solution-For-Electronic-Health-Record-Integrity) [7].

1.2 Related Works

We will briefly discuss the studies about blockchain-based e-healthcare solutions in

the literature.

Azaria et.al in [3] offered a blockchain-based user access control system named

MedRec. They used the Ethereum blockchain and its smart contract mechanism.

They used nodes with two roles as patient and provider nodes. In MedRec’s solu-

3

tion, there are three smart contract designs. The registrar contract ensures the relation

between the Ethereum address and the system user. The summary contract provides

record history for each patient, and the patient-provider contract provides access con-

trol between patients and related providers.

Rajput et.al [19] proposed a blockchain-based control management system for the

patient healthcare data. In Rajput’s system, Hyperledger Fabric [1] was used for the

blockchain mechanism. The business logic was implemented with the smart con-

tract such as registering and retrieving data operations. In addition, they used API

connection between the application and blockchain side. Moreover, they determined

access control rules according to the roles of the users in the system for preventing

unauthorized user activities on patients, doctors, or staff data.

Shahnaz et al. [20] developed a pure blockchain system with role-based authorization

for ensuring the privacy of healthcare data. In this system, they used Ethereum [5]

and its smart contract mechanism Solidity. In their system, there are two types of

the smart contract. The first one is the patient record contract, and the other one is

for roles. The first one contains all create, read, update and delete (CRUD) functions

such as patient record saving, viewing, grant or revoke access controls. The role con-

tract is predefined via OpenZeppelin [2] library. Their user definitions are based on

only Ethereum users. Therefore, the blockchain provides interaction between smart

contracts and user.

Xu et.al [23] studied on blockchain-based approach about IoT based healthcare sys-

tem named Healthchain. They constructed two related chains. The first one is a

public blockchain named Userchain and the second one is a consortium blockchain

named Docchain. Userchain stores the user information data in Ublock. For the con-

fidentiality of the user’s IoT data, they have used AES [10] symmetric encryption. In

addition, for storing the encryption key and encrypted user’s IoT data separately, they

have used two different transactions. Doc-chain, on the other hand, stores the diag-

nostics of the related users in their block named Dblock. As a consensus mechanism,

Userchain has a PoW mechanism. However, they prefer the PoS-based Byzantine

Fault Tolerance for the Docchain. Furthermore, the encrypted data are stored on IPFS

in storage nodes.

4

Fan et.al [11] suggested another blockchain-based electronic medical data sharing

solution named MedBlock. In this solution, they constructed a private blockchain.

In parallel, they use a hybrid consensus mechanism for reducing resource wasting

and improving the network speed. The data security is provided by a signature-based

access control protocol. Accordingly, if the user signature is not among the signature

collection in their system, user access is blocked. The studies we have mentioned so

far are mostly blockchain studies based on providing access control.

Li et.al [14] suggested a blockchain-based medical data preservation system with

Ethereum. They developed three layer application as many solutions have been pro-

posed. These layers are the user layer, the application layer, and the blockchain layer.

Briefly, they retrieve the data from the user layer, process, read or update it at the

application layer and submit the encrypted and hashed data to the blockchain layer.

In this process, they used algorithms such as AES and SHA-256 to preserve data

confidentiality and integrity.

Pavel et.al [18] has specified the problem as medical data transferring and proposed a

blockchain-based solution to their PoS-based blockchain structure. They used signature-

based authorization for the image transfer, retrieving, or viewing.

1.3 Overview of Thesis

In Chapter 2, we introduce the Algorand blockchain and its properties. It covers key

generation methods, consensus mechanism, and the additional structures of Algo-

rand. The key usage and its cryptographic attributes are mentioned in Section 2.1.

Execution of the consensus and Byzantine Agreements are detailed in Section 2.2.

Finally, the provided contract and asset technologies are mentioned briefly in Sec-

tion 2.3. In Chapter 3, the core components of our design and its mechanism are

introduced. Then, we give some applications, blockchain integration, and technical

properties of the proposed system. Implementation of the token and smart contract

structures is explained in Section 3.1. The background of the application, user pro-

cesses, and the cryptographic background operations of these processes are explained

in Section 3.2. Moreover, we mention software technologies used in the development

5

of the proposed system. In the last chapter, we summarize the general outlines of the

system we have created. In addition, we talk about the stages that we will do and aim

to do in future studies.

6

CHAPTER 2

ALGORAND

2.1 Key Generations

Algorand uses specific keys for the transaction operations at the user side. There are

4 core keys in Algorand. These are public-private key pair, public address, mnemonic

key, and participation key. Except for the participation keys, all of these keys are

generated with private key SK and public key PK. In the next sections, basic keys

(private key, public key), user keys (user address, mnemonic key) and participant key

generation has been mentioned.

2.1.1 Public Key & Private Key Generation

Algorand uses the elliptic curve Ed25519 [4] for the key generation as in the following

statement:

(PK,SK) = Ed25519(seed), (2.1)

where seed is a random initial value.

2.1.2 Address Generation

Since the users or participants can not use directly the PK, SK key pair, the high-

level key requires for the transaction. And it called account address. The generated

PK,SK pair is low (Algorand)-level keys and it is used in the background work of

Algorand. Since the users or participants cannot use directly the PK,SK key pair,

7

the high-level key requires for the transaction. And it called account address. The

address generation is given in the following statement:

HPK = SHA-256/512(PK)

Address
encode←−−−−
Base32

PK || H4
PK

Firstly, the hash value of the generated public key HPK is obtained by SHA-256/512.

In the second step, the four-byte checksum of the hash value of the public key H4
PK

and the public key PK is combined and the byte array is obtained. Finally the formed

byte array is encoded with base32 and Algorand address is generated.

2.1.3 Mnemonic Key Generation

As mentioned in the previous section, the users cannot use directly the PK,SK key

pair. For the public key usage at the user level, Algorand has an address structure. As

with the public key, such a user-level structure, is required for the private key. This

structure is named mnemonic key. The users can use this 25 words key as a password

in their account. Besides, for user operations, it is more memorable than the byte

string of a private key. The generation of the mnemonic key is given in Figure 2.1:

Figure 2.1: Mnemonic Key Generation
Reference: https://developer.algorand.org/docs/get-details/accounts/

f : SK→ W | SK ∈ {0, 1}256,W ∈ {0, 1}11

g : H2∗
SK → W | H2∗

SK ∈ {0, 1}
16,W ∈ {0, 1}11

8

First of all, hash value of the private key HSK is generated with SHA-256/512. After

that, the private key is mapped with the function f and 24 integers are obtained.

Each one is 11-bit integer. Next, the integers are mapped one-to-one with the BIP-39

English word list and string of private key SK is obtained. The BIP-39 list contains

2048 words and it is equal 211 Then the last 2 bytes checksum of the hash of the private

key H∗2
SK is mapping with the function g and string of the hash value is generated.

Finally string of private key and generated hash string is concatenated. As a result,

we obtain 25 words mnemonic key.

2.1.4 Participation Keys

In general, the account owner uses generated PK,SK key pair for signing transac-

tions. However, In consensus protocol, the user uses the participation key during

the committee selection process. Once a user wishes to participate in the consensus

mechanism, the user must have the following two key pairs. The first key pair is called

participation keys. And the other one is ephemeral key. As mentioned in the previous

section, these keys are generated with Ed25519 elliptic curve. It can be explained in

the following statements:

Participation Keys: Participation public key PPK and participation private key PSK

are generated for signing the generated ephemeral keys given below

Ephemeral Keys: For each user i ∈ SVr, round r ∈ r0, . . . , rn and step s ∈
1, . . . , sn, the corresponding ephemeral keys are generated as given below:

(EPKr0,1
i , (ESKr0,1

i), . . . , (EPKrn,sn
i , (ESKrn,sn

i) (2.2)

The user i signs all his ephemeral public keys EPK as given in (2.2) with his partic-

ipant secret key PSK. Then he deletes his PSK. In the selection process, he uses his

ephemeral secret keys ESKr,s
i for signing and obtains the signature ESIGr,s

i . After

each signing, he deletes his ephemeral secret key ESKr,s
i for round r and step s. Fur-

thermore, the user i uses his public keys EPKr,s
i and PPKs for the generated signature

verification and propagates them at each round r and step s. This process prevents

key corruption in the self-selection process.

9

2.2 Consensus Protocol

Algorand blockchain has Pure Proof of Stake consensus mechanism. It is based on
the Byzantine Agreement protocol and the stake amount of the user. This protocol tol-
erates malicious users if the majority of the stake amount of honest players is greater
than 2

3
. Algorand block generation is ensured by the voting process. Every user in

Algorand checks if he is selected for the proposal. For the controls of the selection,
the verifiable random function (VRF) is used by each node. After that, each selected
node sends its block offer and the VRF proof to the other nodes. Next step, every
participant executes the VRF again and checks if he is selected for the committee
of verifiers. After that, the participants start voting for the proposed block until the
amount of the proposed block reaches one. After the block voting is over, a new
committee is rebuilt to check the selected block proposal for problems such as over-
spending, and double-spending. If all conditions are satisfied, the new block becomes
active and inserted into the blockchain. The principle of consensus mechanism is
given in Figures 2.2 and 2.3. During the user selection, any user doesn’t know he is
a verifier until he is selected. These attributes provide security against adversaries.
The adversary cannot determine any committee member until after they include con-
sensus. At this time, even if he can control and see the user’s vote, the user has been
propagate his message already. Therefore the adversary cannot manipulate the selec-
tion process. We will mention the details of selection and proposal operations in the
next sections.

Figure 2.2: Block Proposal
Reference: https://developer.algorand.org/docs/get-details/algorand_consensus/

10

Figure 2.3: Proposal Voting
Reference: https://developer.algorand.org/docs/get-details/algorand_consensus/

2.2.1 Verifiable Random Function

Verifiable Random Function (VRF) [12] is used for the voting and user selection

in the rounds of the consensus mechanism. The user who has the private key can

calculate the hash value that he wants to send. However, anyone with the public

key can verify this hash. Once the users check if they selected for the voting, they

use a new participant key instead of the standard spending private key. There are

many variants of the VRF. These variants depend on cipher suits that are used in the

protocol. Algorand prefers to ECVRF-EDWARDS25519-SHA512-ELL2 function. It

is an elliptic curve based version of the protocol. It uses Ed25519 [4] as an elliptic

curve and SHA-512 as a hash function. The VRF contains three main steps: Proof

function, proof to hash function, verifying function.

Proof function: It takes input as private key SK and message m with the curve salt.

11

Where the SK is the private key and B is the generator of group, the calculation is in

the following statements ;

1. Obtain the secret scalar value x from private key SK

2. Compute public key Y

Y = x ·B

3. With m and salt, obtain H and h:

H
encode←−−−−−
Ed25519

m

h
string←−−− H

4. Compute the point γ:

γ = x ·H

5. Compute the nonce value k ∈ Z+ : 1 ≤ k ≤ q − 1

H′ = H′
0 . . .H′

63 = SHA-512(SK)

Hk = SHA-512(H′
32 . . .H′

63 || h)

k = Hk mod q

6. Compute the challenge value c ∈ Z : 0 ≤ c ≤ 28L where L = 16:

P1 = k ·B

P2 = k ·H

Hc = SHA-512(3 || 2 || Y || H || γ || 3 || P1 || P2)

c← Hc

7. Compute s ∈ Zq:

s = (k + c · x) mod q

8. Finally output string is obtained as in the following statement:

outputproof = γ || c || s (2.3)

12

Proof to hash function: This function takes the outputproof (2.3) as input. The algo-

rithm steps are given below;

1. Invert the outputproof string to D = (γ, c, s).

• If it could not invert to the D, it returns the invalid value and halts the

function.

2. Otherwise, compute the output as:

outputhash= SHA-512(3 || 3 || 8 · γ || 0)

Verifying function: It takes inputs as public key string PKstr, outputproof , and the

same message m and the salt in proof function mentioned above. The protocol steps

are given below;

1. The point of public key Y is obtained with converting string PK to point.

• If Y is not valid, it returns the invalid value and halts the function.

2. Otherwise, compute Y ′:

Y ′ = 8 · Y

• If Y ′ is the identity element of the curve, it returns the invalid value and

halts the function.

3. Invert the outputproof string to D = (γ, c, s).

• If it could not invert to the D, it returns invalid value and halts the function.

4. With m and salt, obtain H and h as:

H
encode←−−−−−
Ed25519

m

h
string←−−− H

13

5. Compute the challenge value c′ ∈ Z : 0 ≤ c′ ≤ 28L where L = 16:

U = s ·B − c · Y

V = s ·H − c · γ

Hc′ = SHA-512(3 || 2 || Y || H || γ || 3 || U || V)

c′ ← Hc′

6. If c = c′ it returns (true, outputhash)

According to [12], this protocol provides the security properties given below:

• Full Uniqueness: For public key PK, message m, and outputproof1 , outputproof2

VRFverify(PK,m, outputproof1) = (true, outputhash1
)

VRFverify(PK,m, outputproof2) = (true, outputhash2
)

outputhash1
̸= outputhash2

• Full Collision Resistance: For public key PK, different messages m1,m2, and

outputproof1 , outputproof2

VRFverify(PK,m1, outputproof1) = (true, outputhash1
)

VRFverify(PK,m2, outputproof2) = (true, outputhash2
)

outputhash1
̸= outputhash2

• Pseudorandomness provides that, the outputhash is indistinguishable from a ran-

dom value, when anyone knows an outputhash without a corresponding outputproof

and secret key SK.

2.2.2 Selection of Committees:

Leader Selection: In the Algorand block proposition, A leader must exist to perform

a round with the validators. The optimal block structure of the round-r is in the

following statement:

Br = (r,PAYr, Qr, H(Br−1))

14

where r is round index, PAYr is all valid pay-sets until round-r, Qr is the round quan-

tity, and H(Br−1) is the hash value of the previous round block. Every online user

i ∈ PKr−k calculates the value given below; Each user has common knowledge about

status of chain B0, B1, B2, . . . , Br−1 and set of public keys PK1,PK2, . . . ,PKr−1,

and each Br contains Qr.

• Each player has the signature SIGi(r, 1, Q
r−1) which provides uniqueness.

• H(SIGi(r, 1, Q
r−1)) generates 32 byte unique value.

• .H(SIGi(r, 1, Q
r−1)) converts the hash value to decimal point form as 0.x,

where x is a numeric value of hash.

.H(SIGi(r, 1, Q
r−1)) ≤ p

where p is close to high probability which can be denote as 1 − F and F is a

negligible amount of probability such that 10−12.

{min(H(SIGi(r, 1, Q
r−1))) | i = 0 . . . n,H(SIGi(r, 1, Q

r−1)) ≤ p}

The potential round leader lr is who has the minimum hash value among all of

the players. However, the leader lr must be inside the system for k rounds. The

current leader learns that the player is a leader when this player is chosen by

the system.

Validator Selection: The committee of validators is selected for the voting process.

Every step of round-r is performed by a subset of validators SVr,s, where step s > 1.

As in leader selection part, the same calculation H(SIGi(r, s,Q
r−1)) is calculated by

each user with the quantity of previous round Qr−1. If the user is a validator then he

must ensure the following condition similarly;

.H(SIGi(r, s,Q
r−1)) = pHi

≤ p′

where pHi
, p′ ∈ R : [0, 1]. The probability p′ is selected as 1− F and F is negligible

amount of probability.

15

2.2.3 Byzantine Agreement Protocol:

Blockchain systems can be described as Synchronous Networks [22]. This type of

network performs in the following way: At the time t, every sender i sends his mes-

sage m simultaneous to the receiver j. This message can be shown as mt
ij . And at

next time t+1, the messages are received by receiver j′s. In this type of network, the

adversary can manipulate the message by controlling the malicious user. Therefore,

the equality of sent message and received message is a major property.

Byzantine Agreement is the core property of Algorand blockchain. The agreement

provides system protection against the adversary who can make malicious a user and

control it to manipulate the message inputs or response outputs.

Definition: Let’s n is the number of total users/players, and t is the number of mali-

cious users/players, where;

n ≥ 2t+ 1

Let V be a finite domain. A protocol P among every player i ∈ SVr,s holds an input

value vi ∈ V and finally decides on an output value oi ∈ V achieves consensus

(or is a consensus protocol) with respect to SVr,s and V if it satisfies the following

conditions:

1. Validity: If all honest players i hold the same input value vi = out then all

honest players i decide on it, v′i = out

2. Agreement: All honest players decide on the same output value, if user i ∈ SVr,s

and user i ∈ SVr,s are correct then vi = vj .

Binary BA Protocols (BBA) Protocol has a requirement as a random string str in

setup step. The rest of the protocol consists of a 3-part loop. Briefly, the players

send their values to others. During this process, some players may exit at the some

part of loop since, they do not satisfy the required conditions. And remaining players

continue the value sharing.

Protocol Steps:

• γi is the counter the of player i’s loop execution.

16

• n ≥ 3t+ 1

• lsb(x) implies least significant bit of value x.

• #s
i (v) number of player, has received value v in step s from player i.

• If player i exits, he sends a special value 0∗ or 1∗ .

1. Each player i sends bi

(a) If #1
i (0) ≥ 2t+ 1, then bi = 0, send special value 0∗, di = 0 , EXIT

(b) If #1
i (1) ≥ 2t+ 1 ,then bi = 1

(c) Else bi = 0

2. Each player i sends bi

(a) If #2
i (1) ≥ 2t+ 1, then bi = 1, send special value 1∗, di = 1 , EXIT

(b) If #2
i (0) ≥ 2t+ 1 ,then bi = 0

(c) Else bi = 1

3. Each player i sends bi and his own signature as SIGi(γi, r)

(a) If #3
i (0) ≥ 2t+ 1, then bi = 0

(b) If #3
i (1) ≥ 2t+ 1 ,then bi = 1

(c) Else bi = lsb(min(H(SIGi(γi, r)))), increase γi and go to first step.

Note: min is the minimum of hash value of a player’s signature value.

Graded Consensus Protocol (GC): As in Byzantine Agreement , n is the number

of players/users and t is the number of malicious players/users. Each player has the

input v′i and the output pair (vi, gi), where g ∈ G{0, 1, 2}. And any user must provide

the conditions given below;

• Each honest user i, j, outputs should be as | gi − gj |≤ 1.

• Each honest user i, j, if gi, gj > 0 then vi = vj .

• For each honest user i, input values vi = v value, then gi = 2 for each user i.

17

Protocol Steps:

1. The each user i ∈ SVr,2 sets v′i = H(Br
l) if he confirms that he has the leader

message mr
l . Then he prepares mr,2

i = (ESIGi(v
′
i), σ

r,2
i) and propagates his

mr,2
i .

2. After each user i ∈ SVr,3 receives the mr,2
i , If #2

i (m
r,2
i) ≥ 2t + 1 ,then each

player prepares their mr,3
i = (ESIGi(v

′
i), σ

r,3
i) value and propagates it.

3. Decision Step: Computation of outputs pair as;

• If #3
i (m

r,3
i) ≥ 2t+ 1, v′i = vi and gi = 2

• If #3
i (m

r,3
i) ≥ t+ 1, v′i = vi and gi = 1

• Else vi = H(Br
ϵ) and gi = 0

Then the user i ∈ SVr,4 calculates the bi, the input of BBA as bi = 0 if gi = 2,

otherwise he set as bi = 1 . Finally each user i prepares their mr,4
i value and

propagates it in the following statement:

mr,4
i = (ESIGi(bi),ESIGi(v

′
i), σ

r,4
i)

BA Protocol: The BA protocol [9] is the actual protocol used inside Algorand. It

consists of a combination of the steps of the protocols mentioned in Sections 3.2.2

and 3.2.3. The protocol steps are given below.

Protocol Steps:

• Every user i ∈ SVr,s performs Graded Consensus (GC) with own input vote vi

to calculate their output pair (vi, gi).

• Then all i ∈ SVr,s+2 perform the Binary Byzantine Agreement (BBA) proto-

col, where (vi, gi) output pair, if g > 0 then the first inputs are equal to zero,

otherwise the users calculate the output as following conditions.

– For all user i ∈ SVr,s+5, if outputi = 0, outputpi = vi, else it equals to

special symbol.

18

The BA protocol with the steps given above is one of the key mechanisms of Algo-

rand’s consensus protocol. To increase the benefits of this protocol, Algorand has

developed the faster and partition resilient Byzantine Agreement [8] protocol with

some performance tweaks.

2.2.4 Block Generation:

As mentioned in previous sections, the block structure of round-r is

Br = (r,PAYr, Qr, H(Br−1)).

Each user i ∈ PKr−k computes the .H(SIGi(r, 1, Q
r−1)) and he checks the result of

the computation is less than probability p. If the condition is satisfied than the users

include the committee of potential leader SVr,1. After that, each user i ∈ SVr,1 gener-

ates his block Br which includes set of all pay-sets PAYr−k, . . . ,PAYr, his credential

σr,1
i = SIGi(r, 1, Q

r−1), and hash of the previous block Br−1. After the generation of

block, the user prepares his propagation message mr
i as in following statement:

mr
i = (Br

i ,SIGi(H(Br
i)), σ

r,1
i)

The other components of mr
i are used as proof of the potential leader attributes. Fi-

nally the proposed blocks are propagated by each user i ∈ SVr,1. After that second

step begins. The second step aims to decrease the number of proposed blocks to

one. The each user j ∈ SVr,2, receives the propagated message mr
i . Then, each user

calculates the

{min(H(σr,1
i)) | i ∈ {0, . . . , n}, H(σr,1

i) ≤ p}

for the σr,1
i component of each received mr

i . Then the user can find the credential σr,1
l

that implies the credential of the round leader lr. As the last step, each user prepares

his leader votes H(Br
lr)j . And he checks the result of the computation is less than the

probability p. After the leader selection, the leader’s block is inserted into the ledger.

Q parameter: The quantity of the rth block Qr is constructed uniquely for each

block as in the following statement:

Qr = H(SIGlr

i (Q
r−1), r)

19

2.3 Algorand Specific Structures

As we know, there are numerous blockchain systems. Among the blockchain sys-

tems, some of them have their smart contract system and some of them use the other

blockchain’s smart contract system. Algorand is one of the private smart contract

owner. This contract named Transaction Execution Approval Language (TEAL). In

addition, Algorand has another private structure. It is named Algorand Standart Asset.

It is exchangeable entity that using in the blockchain. The details of these structures

are given in next section.

2.3.1 TEAL

TEAL is opcode-based language. It works with stack mechanism and push-pop op-

erations. In Algorand, the smart contract is executed in Algorand Virtual Machines

(AVM). Once the node is configured, the AVMs automatically stand by as ready in the

node machine. There are two types of smart contract programs for construction. The

one is Approval Program and the other is Clear Program. The approval program pro-

vides deployment of all types of application calls. The clear program provides execu-

tion of all clear-remove calls. There are 6 types of application-call transactions. These

are NoOp, OptIn, DeleteApplication, UpdateApplication, CloseOut, ClearState calls.

Algorand smart contracts can also store values on the blockchain. The data can be

stored as both global and local. Local storage refers to storing values in an account

balance record if that account participates in the contract. When programs are called

to the storage of the data, these data are given as argument parameters and processed

by the defined program.

2.3.2 Algorand Standard Asset

Nowadays, token objects are widely used in many applications. Generally, tokens

appear in applications as points, credits, or any spendable, usable, and exchangeable

elements. It can also be used to define some rights or authorizations to users within

the application. Algorand Standart Asset is a specially designed token structure. Be-

20

sides, Algorand allows the users to create their assets provided they have sufficient

balance in their account. The Algorand Standart Asset structure has some properties

such as asset name, unit name, amounts, URL, etc. In addition, it has also manage-

ment attributes. They are significant properties since the manager account, freezing

authority account, refund, and reserve address are determined in this field. Moreover,

all transactions that require authorization are sent from these accounts determined

within the asset.

21

22

CHAPTER 3

DESIGN

In this study, we developed a healthcare survey application. This application consists

of three main parts. We can summarize these three parts as follows: The first part

is the web application of the project. The web server provides the connection with

the database and constructs all transaction data with the Algorand SDK and Algorand

API. In addition, the survey operations are creation, filling, and consent processed

by the web application. During these operations, all request body data are converted

to designed back-end class objects. The other one is Algorand blockchain side. On

the Algorand side, all types of transaction data sent by the web server via Algorand

API. Then the validity of the transactions is checked by Algorand [9]. In this case,

if the sent data is valid then the data is committed to the blockchain. Moreover,

on the blockchain side, we use the smart contract and asset technology provided by

Algorand. We will mention the details of these technologies in the next sections.

The last part is the database module. For each generated survey, we create a new

executable decentralized application with a unique ID. With this unique ID, we create

a new register in the database and map this register with the smart contract ID. In

addition, the survey data such as questions, options, descriptions, etc. are stored in

the database. Most of time, the database operations are quicker than backend data

operations. Thanks to the cryptographic library methods, database encryption is faster

than back-end encryption. Hence, we use a database for sending survey data more

quickly to the patient side instead of back-end operations. The overview of general

structure is given in Figure 3.1. We will discuss the parts we have mentioned in more

detail in the next sections.

23

Figure 3.1: General Structure

3.1 Blockchain Side

In our design, we use the Algorand API for providing the connection between the

application and the Algorand blockchain. There are two main structures of Algorand

that we use in our solution. The first one is the smart contract structure. The other one

is Algorand Standard Asset. The details of these structures are mentioned in Chapter

2. We will below mention the details of techniques in our design.

3.1.1 Components

All the structures mentioned above can be expressed as transaction structures. These

transactions consist of several components. These components are used singularly

or in a combination. There are three main components of Algorand in used in our

application. Transaction component is common component of our asset and smart

24

contract transaction. According to the usage situation, we use either the asset or

smart contract component together with the transaction component. The structures of

these components are given below:

Transaction Structure:

Tx = (snd, gen∗, fv∗, lv∗, typ, fee∗) (3.1)

Asset Structure:

A = (tl, dc, un, an, df, manaddr) (3.2)

Smart Contract Structure:

C = (apid, apap, apas, apgs, apls, apaa) (3.3)

Equation 3.1 is common transaction structure. Equations (3.2) and (3.3) are asset

and smart contract structures respectively. The empty or unused parameters are not

displayed in the given equations above. The parameters that are marked with (*) are

filled as default by Algorand. The generalized smart contract and asset transaction

structure can be represented respectively as in the following statements:

TxC = (Tx, C)

TxA = (Tx,A)

The input values of the transactions depends to usage. They take different types of

values according to their use cases and their behavior changes accordingly. These

values are mentioned in the following sections.

3.1.2 Smart Contract

In our application, we generate a TEAL code for our smart contract. Then we use

the smart contract in survey operations such as survey filling, survey creating, and

consent form approval. In order to use and create smart contracts, we generate the

transaction structure with the contract-specific parameters and send these transactions

to the blockchain. The principle of the smart contract mechanism is given as in Figure

3.2:

25

Figure 3.2: Smart Contract Mechanism

26

Once the smart contract is executed by any application transaction, firstly the smart

contract checks the application transaction type. If application id equals zero it im-

plies the new application will be generated. This control is used for the survey cre-

ation step. If it is not equal to zero then there is an application already. After that

controls, the smart contract checks if the user has authorization. To achieve this con-

trol, it checks the MST balance of the user. It is successful if the user has not zero

balance of MST. Otherwise, the smart contract finishes itself for this user. This con-

trol is used in both consent forms and survey filling operations. At this point, the

smart contract is divided into two branches. The one is for the consent form approval.

The other one is for survey filling. When the consent form is filled, the smart con-

tract is called. And once more, the previous steps are checked. If all conditions are

satisfied, first, the application examines the type of smart contract invoked. If it is an

opt-in type, it provides a check on whether or not it has registered before. If provided,

it takes the argument sent for the consent form and stores it as key-value pairs in the

user’s local storage of the smart contract. Otherwise, the smart contract broke the

agreement. As a result of the canceling, the transaction fails. In the survey filling

case, the smart contract is called again and rechecks the properties that must satisfy.

If all conditions are valid then the smart contract checks two parameters. The first is

checking whether the user is registered or not. For the second, the existence of pre-

viously recorded survey data is checked. If the contract couldn’t find any data about

registration or it finds any stored survey data, it breaks the agreement and the trans-

action will fail again. Otherwise, the contract takes the argument sent for the hashed

survey data and encrypted survey answers, then stores them as key-value pairs in the

user’s local storage of the smart contract as in the consent form process.

3.1.3 Medical Security Token

As mentioned in Section 2.3.2, Algorand has a primitive transaction unit called Al-

gorand Standard Asset, which is similar to its cryptocurrency. In addition, This asset

structure can be used for many reasons as units such as points, credits, assets, coins,

or tokens. Therefore, we have benefited from this Algorand asset feature for the au-

thorization among the nodes. Unregulated smart contracts can be called and used by

the users who know the generated application id. Due to this unauthorized structure,

27

public participation may pose a problem for security-based applications. Therefore,

we attempted to prevent this public structure with the token system. This security

token is named Medical Security Token MST.

In the use case, we assume that our participant patients are determined by the author-

ity. Firstly we already have generated the asset with the given parameters in (3.2) and

(3.1) as in the following statements. In this process (3.4), we decide the management

accounts PKs and pass the address value to the asset structure in (3.2). The owner of

the manager account can be a doctor, a system administrator, or both of them in differ-

ent fields. In addition, we specified the total amount, freeze, unit, name and decimal

properties as 1000, false (0), MST, Medical Security Token and 0 respectively.

AMST = (1000, 0,MST,Medical Security Token, ∗,PK) (3.4)

Then, in (3.5), we specified the transaction sender and transaction type as authority’s

address PK and type enumeration index of Asset Configuration Transaction, respec-

tively. The remaining Tx parameters are filled by Algorand.

Tx = (snd, typ, gen∗, fv∗, lv∗, fee∗) = (PK, 3, ∗, ∗, ∗, ∗) (3.5)

After that, we generate the transaction

Txasset = (Tx,AMST).

Finally we sign the Txasset by EdDSA and we obtain signed transaction:

TxSIG = (SIG(Txasset), Txasset)

After the asset is generated, we obtained an asset id Aid and we will use this id for

all asset transactions. Next step, we send 1 of these assets to each Algorand account

declared as patients. We pass the transaction sender, and type parameters as doctor’s

address PK and type enumeration index of Asset Transfer Transaction, respectively

as Tx = (PK, 4, ∗, ∗, ∗, ∗). The remaining parameters are filled in a similar way.

Furthermore,asset id, asset receiver and asset amount with the generated transaction

are given below:

Txaxfer = (Aid, arcv, aamt,Tx)

28

Finally we sign the transaction with EdDSA and send it to the specified asset receiver

as in the following form:

TxSIG = (SIG(Txaxfer), Txaxfer)

After the token transfer, we immediately freeze the balances of relevant asset that

associated with the their accounts. Except for the transaction type parameter, we pass

the same parameter to the asset transfer transaction as in (3.6).

Tx = (snd, typ, gen∗, fv∗, lv∗, fee∗) = (PK, 5, ∗, ∗, ∗, ∗) (3.6)

We specified asset id, asset receiver and asset amount as in transfer transaction. In

addition, we set the freeze status and give as parameter for the freezing operation as

in

Txafrz = (Aid, arcv, aamt, afrz, Tx).

As in the previous operations, we sign the transaction again with EdDSA and send it

to the specified asset receiver as follows:

TxSIG = (SIG(Txaxfer), Txaxfer)

The reason for the freezing process is preventing the right to fill out this survey defined

for the patients from being sent to others or used for other purposes. For the user side,

once a user request to reach a survey, the smart contract checks the asset balance and

sends a response about whether the user has authentication or not. According to the

contract response, the participant’s authority to participate in the survey is determined.

As a result, the access control mechanism is satisfied with the token mechanism. The

principle of token operations in given Figure 3.3.

29

Figure 3.3: Overview of Token Transactions

3.2 Application Side

In our design, this part contains the application operations and methods. The users

interact with the application side via the designed web page. The users construct

their requests and the server side catches the incoming request and then processes it.

The application side processes three main requests survey creation, consent form, and

survey filling. We will explain the details of these operations in next sections.

3.2.1 Survey Creation

Once we start creating a survey, both application and blockchain sides work in sync.

The most significant element of this step is the construction of smart contracts and

making them an acceptable and suitable agreement for the blockchain. As we intro-

duced at the beginning of this section, each survey creation triggers the new decen-

tralized application with a unique ID in the Algorand blockchain. The details of the

survey creation step as in the following statements;

In our study, we assume that doctor is the creator of the survey. Therefore he prepares

30

Algorithm 1 Survey Creation
Input: Survey JSON data,mnemonic

1: data← FormatToSurvey(Survey JSON data)

2: PK ← GetAccount(mnemonic)

3: Txcreate ← UnsignedContractTransaction(PK)

4: TxSIG ← (EdDSA(Txcreate),Txcreate)

5: isSuccess, dAppId← SendToBlockchain(TxSIG)

6: if isSuccess then

7: SaveSurvey(dAppId,Encryption(data))

8: else

9: return err

10: end if

the survey and sends it to the application side with his mnemonic key. In this step,

the system requires survey data in JSON format. Once the survey data reaches to ap-

plication, it is adapted to the designed object class for processing. Then, the contract

transaction creation process is performed. This transaction is named Application Call

Transaction. It is denoted as Txcreate. The sender’s account information is retrieved

with the mnemonic key. After that, the user address(public key) PK and its infor-

mation are obtained by the retrieved account. TEAL smart contract program is set to

apap parameter. Our MST token id is set to apas. The global storage and local stor-

age values are set to apgs, apls respectively. The smart contract component generate

as in (3.3). Finally, the contract transaction Txcreate is generated as in the following

statement:

Txcreate = (Tx, C)

Once the contract transaction is generated, it is signed with EdDSA signature algo-

rithm [13] on the elliptic curve Ed25519 [4] as in the following statement:

TxSIG = (SIG(Txcreate), Txcreate).

The signed contract transaction TxSIG is sent to the blockchain. After validation of the

31

blockchain, if there is not an invalid parameter or operation request, the transaction is

committed to Algorand. And our smart contract is executed in the AVM. Otherwise,

the transaction fails. In the successful case, we adapt the survey data to the data

transfer object. After that, we save the survey information to our database. During

registration in the database, we encrypt the survey data with the AES algorithm with

the CBC mode. In addition, PKCS is used for padding operations. Then we store the

encrypted data in the database. Due to the efficiency of database insert and encryption

functions, we prefer database-side encryption for data confidentiality. The flow chart

of survey creation is given in Figure 3.4.

Figure 3.4: Survey Creation Steps

3.2.2 Consent Form

Medical surveys are widely used in many areas of healthcare. These surveys can

be done incrementally, once, continuously, or both before and after some medical

32

operations. The answers or the results of the survey might contain sensitive data. Due

to the principle of doctor-patient confidentiality, both doctors and patients avoid the

disclosure of this data. Moreover, some tests might have unexpected consequences.

Therefore the consent form is filled out by the patients for the data confidentiality

agreements and a disclaimer for unpredictable results. As a consequence of these

requirements in the medical surveys, we construct a consent form structure. Since the

consent form is an agreement between the doctor and the patient, we store this consent

form on the blockchain side for immutable proof of agreement. Algorithm 2 explains

the generation of transactions and the execution of the smart contract mechanism for

the consent form.

Algorithm 2 Consent Form Approval
Input: Consent data(C), dAppId

1: if Accept then

2: H(C)← SHA-256(C)

3: PK ← GetAccount(mnemonic)

4: Txoptin ← UnsignedContractTransaction(PK,dAppId,H(C))

5: TxSIG ← (EdDSA(Txoptin),Txoptin)

6: isSuccess← SendToBlockchain(TxSIG)

7: if isSuccess then

8: MST← Smart Contract: CheckMST(PK)

9: if MST then

10: Smart Contract: LocalStore(H(C))

11: else

12: Smart Contract: return 0

13: end if

14: else

15: return err

16: end if

17: else

18: return 403

19: end if

Once the participant requests to fill out the determined survey, the consent form first

33

appears to the patients before the survey has been sent. The participant reads the

terms and conditions. If the patient declines the terms and conditions, he redirects to

the main page, and the survey is canceled until he accepts the consent form. Once

he confirms the consent form, the consent data is constructed with the server-side

functions and generate the designed object class. Then the hash value of the consent

data H(C) is generated via the SHA-256 hash function. After this step, the contract

transaction generation process begins. This contract transaction is named Application

Opt-in Transaction. Additionally, in this step, we set the apid field with decentralized

application ID and apaa field with H(C). Txoptin constructed as in the following

statement:

Txoptin = (Tx, C(apid, apaa))

It provides the registering of the blockchain users to the generated decentralized ap-

plication. Also, it declares local storage access on the generated decentralized appli-

cation. The opt-in transaction preparation is similar to the transaction preparations we

mentioned in the survey creation. After that, the contract transaction is signed with

the EdDSA[13] with the elliptic curve Ed25519[4] as in the following statement:

TxSIG = (SIG(Txoptin), Txoptin)

Once, the transaction is sent to Algorand [9] blockchain, our smart contract is exe-

cuted unless there is no violation in the transaction. The first thing the smart contract

checks is the sender has access to register the generated decentralized application.

Smart contract checks the sender has our security token MST. Due to satisfy this

requirement, The smart contract retrieves the asset balance specified in the contract

variable. If the sender has our security token asset, he can opt-in to the smart con-

tract and saves the proof of consent data as fixed key-value pair in his local storage at

generated application. However, once the smart contract could not find any security

token asset in his balance, that implies the sender is not authorized by any authority

on our side. In this case, it returns the 403 response to the sender. The flow chart of

consent operation is given in Figure 3.5.

34

Figure 3.5: Consent Form Steps

3.2.3 Completion of the Survey

The survey completion is the key component of our solution. The participants who

accepted the terms and conditions in the consent form has the authority to answer

the questions in the survey.In the previous step, once the user requests the survey, he

must confirm the consent form. After gaining access, he can attain the survey and

starts filling the survey. The survey data is gathered from user answers then data

is formatted for the specified survey object structure. At this part, the application

is divided into two branches. The first one is taking the hash value of the survey

data with the SHA-256 hash algorithm. The aim of this operation is in the following

statements:

1. It provides a unique proof of user’s answers.

2. It fixes the size of survey data since the size of the survey data depends on the

35

number of questions and options.

The other one is formatting the user’s answers. Due to the size of the survey data

can be expanded to a large amount, and formatting the survey answer is necessary

for memory gain. We format each answer o for each question q as in the following

statement:

qi : oj || qi+1 : oj || . . . || qn : oj ,

where n is amount of question, {n : n ∈ Z+}, i is index of the question, {i | i <
n : i ∈ Z+} and j is index of the selected answer of the question, {j | j < m :

j,m ∈ Z+}. Each qi and oj is size of 1 byte. The index strings are concatenated with

comma character (,) and separated with colon character (:). After the formatting,

we encrypt the formatted data to ensure the confidentiality of user answers with the

AES-256 algorithm with the CBC mode. Furthermore, we used the password-based

key derivation function PBKDF2 [15] for a secret key generation with the following

parameters:

Derivated Key = PBKDF2(HMAC, SP, SHA-256, s, ctr)

where SP is secret password, ctr is iteration count. According to NIST’s suggestion

[21], the length of the salt should be 128 bit and the iteration count should be between

103 and 107. In addition, According to OWASP [17], the iteration count should be

310, 000 for the HMAC-SHA-256 usage. We determined the iteration count as ctr =

216.

The aim of this operation, the answer of completed survey data should store in the

blockchain since the answers can be used for the survey evaluation later. Since Algo-

rand is a public blockchain, the confidentiality of the answers data must be ensured.

As in previous sections, we begin to generate transaction data with the parameters.

After the formatting is finished, the transaction generation is started. We construct

an Application Call Transaction. Additionally, in this part, we set the application

argument field apaa with the encrypted and hashed values. Then we set the applica-

tion id apid field with the generated contract id. Txcall is generated as the following

statement:

Txcall = (Tx, C(apid, apaa))

36

This contract transaction is the default usage of the generated smart contract. After

that, the contract transaction is signed with the EdDSA [13] on the elliptic curve

Ed25519 [4] as in survey creation step.

TxSIG = (SIG(Txcall), Txcall)

In the final step, the smart contract is executed unless there is no violation of the

transaction structure. The mechanism of the contract is given as in the following

statement:

1. It checks user has any MST for the access

2. If he has any MST, then it checks user registry status

3. If it is satisfied then it stores the hash and encrypted data as key-value pair

separately.

After the smart contract finishes itself, the whole process is completed. The overview

of the survey filling operation is given in Figure 3.6:

Figure 3.6: Survey Completion Steps

37

Algorithm 3 Save Survey
Input: Answered Survey Data(D), dAppId

1: S ← adapt(D)

2: H(S)← SHA-256(S)

3: Sf ← format(S)

4: ENC(Sf)← Encryption(Sf)

5: PK ← GetAccount(mnemonic)

6: Txcall ← UnsignedContractTransaction(PK, dAppId, H(S), ENC(Sf))

7: TxSIG ← (EdDSA(Txcall),Txcall)

8: isSuccess← SendToBlockchain(TxSIG)

9: if isSuccess then

10: MST← Smart Contract: checkMST(PK)

11: if MST then

12: isRegistered← Smart Contract: checkRegistry(PK)

13: if isRegistered then

14: Smart Contract: LocalStore(H(S), ENC(Sf))

15: else

16: Smart Contract: return 0

17: end if

18: else

19: Smart Contract: return 0

20: end if

21: else

22: return err

23: end if

38

3.3 Database Side

As mentioned in the previous section, we store the generated survey data in the

database. These data contain only the survey name, survey description, questions,

and options. In addition, we encrypt the mentioned survey data with the AES-CBC

mode with cryptographic functions of the pgcrypt library. We designed our database

structure to be simple in the first phase. The diagram of the database is given below:

Figure 3.7: Database Diagram

According to Figure 3.7, the structure can be explained as the following statements:

We store the generated survey application with its unique id, name, description, and

related decentralized application id in polltemptable. Each question is stored with its

unique id, text, and corresponding survey id in questiontemptable. In a similar way,

each option is stored with a related question id in questionoptiontemptable.

3.4 Technical Properties

The technologies have been used in this project given below:

• Frontend: React.js

– It is used for designing a primitive web page.

• Backend: Spring Boot / Java

– It is used for providing interaction with the user and Algorand side via

application API and converting the user data into transaction data.

39

• Server: Apache Tomcat

– It is used for ensuring HTTP service for executing the application.

• Database: PostgreSQL

• Blockchain: Algorand Testnet

• Other Technologies:

– Pgcrypt: PostgreSQL cryptographic plug-in

– TEAL: Algorand smart contract language

– Algorand API: The API ensures the connectivity between Algorand and

Application.

– Algorand Standard Asset: It is used for the security token mechanism

In a general scenario, the frontend side takes input and waits for any submission or

request. In case of any request, the server-side API catches this request and processes

the data according to the structure we have developed and it returns output data. After

data processing, constructed data which is a smart contract transaction or asset trans-

action is sent to Algorand Testnet with the Algorand API service. Besides, after the

transactions and data generation process, the constructed data is encrypted and stored

in the PostgreSQL database.

3.5 Performance of Design

In this section, we shows the performance analysis of the used methods and key op-

erations. Our system properties and experiment constants are given below:

• Processor: AMD Ryzen 5 3600 6-Core 3.6 GHz L1 Cache: 128 KB L2 Cache:

3 MB

• RAM: Memory: 16 GB Read: 3200 MHz Write: 1700 MHz

• OS: Windows 10 64-bit

• Network: Algorand Testnet

40

The sample survey has 10 questions and each question has 4 options. Therefore,

the size of our formatted answer is 39 bytes. Database operations has fixed size.

Therefore, all value columns given in the memory table have same result.

Table 3.1: Time Analysis

Functions Time
Median Average Min Max

PKDF2 17ms 17.87ms 15ms 78ms
AES-CBC 0.119ms 0.142 ms 0.084 ms 2.191 ms
SHA-256 0.096 ms 0.155 ms 0.085 ms 1.110 ms

Database Insert(w/AES) 0.031 ms 0.028 ms 0.009 ms 1.05 ms
Database Select(w/AES) 0.016 ms 0.018 ms 0.015 ms 0.156 ms

Signing Transaction 0.499 ms 0.968ms 0.410 ms 4.871 ms
Asset Transaction 0,082 s 0.083 s 0.076 s 0.088 s

Smart Contract Transaction 0.08656 s 0.08623 s 0.075 s 0.093 s

Table 3.2: Memory Analysis

Functions Time
Median Average Min Max

PKDF2 2.506 MB 3.085 MB 2.476 MB 4.946 MB
AES-CBC 1.4382 MB 1.4398 MB 1.4293 MB 1.5891 MB
SHA-256 0.9946 MB 0.9954 MB 0.9916 MB 1.0325 MB

Signing Transaction 26.31 MB 26 MB 24.87 MB 26.32 MB
Asset Transaction 26.35 MB 26.05 MB 24.91 MB 26.42 MB

Smart Contract Transaction 25.30 MB 26.53 MB 25.05 MB 28.82 MB

The difference between the maximum and minimum values is due to the fact that the

data is kept in the application cache after a certain moment.

As we mention in the related works section, Rajput et.al [19] proposed a Hyperledger

based system. In this system, average response time of the transaction is 5969 ms

with the 319 B memory usage. And their total operation time is between 15 seconds

and 18 seconds approximately. In addition, Li et.al [14] proposed an Ethereum based

data preservation system. They have evaluated their performance with total operation

time. They have used 50 B ,300 B sized texts and 5 MB, 30 MB sized files in their

measurement. As a result, the lower bound is measured as less than 200 ms and the

upper bound is measured as greater than 900 ms for the certain number of concurrent

41

operation. In our system, the results are given in tables 3.1, 3.2. In our measurements,

we haven’t included the blockchain conformation time.

42

CHAPTER 4

CONCLUSION

In this paper, we proposed a blockchain-based medical survey system as a solution

for preventing data forging by the survey creators. While implementing this appli-

cation, we used the Algorand blockchain and its smart contract language, TEAL.

We designed it as a system where users can access the open surveys and participate

in these surveys. Moreover, their answers cannot be changed by anonymous or 3rd

party people with smart contract control. At the same time, to ensure the confiden-

tiality of the patient’s data, we kept the hashed value of the information we collected

from the patient’s survey data as evidence and the encrypted version so that data can

be used for the evaluation, in the relevant storage units of the generated decentralized

application.

4.1 Future Works

In this section, we mention the improvements we can try to put into practice in the

future. Firstly, we insert a result evaluation page with the security and authorization

mechanism. In addition, we provide pseudo-anonymity in the application. We will

try to convert pseudo-anonymity to anonymity in the transaction. We may try zero-

knowledge proof-based authentication for the general authorization and access con-

trol mechanism in the application and generated smart contract mechanism. As we

mentioned in previous sections, we used Algorand blockchain for our solution. We

will try to modify some basic cryptographic structures of the Algorand blockchain

such as key generation and cryptographic signature algorithm or instead of that, we

43

can try to construct our blockchain structure with a certain consensus mechanism and

some basic cryptographic primitives.

44

REFERENCES

[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolic, S. W. Cocco, and J. Yellick, Hyperledger fabric: A distributed op-
erating system for permissioned blockchains, CoRR, abs/1801.10228, 2018.

[2] M. Araoz, D. Brener, F. Giordano, S. Palladino, T. Paivinen, A. Gozzi, and F. Ze-
oli, ZeppelinOS: An open-source, decentralized platform of tools and services
on top of the EVM to develop and manage smart contract applications securely,
Technical Report 0.1.2, November 2017.

[3] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, Medrec: Using blockchain
for medical data access and permission management, in 2016 2nd International
Conference on Open and Big Data (OBD), pp. 25–30, 2016.

[4] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, High-speed
high-security signatures, Journal of Cryptographic Engineering, 2(2), pp. 77–
89, Sep 2012, ISSN 2190-8516.

[5] V. Buterin et al., Ethereum white paper, GitHub repository, 1, pp. 22–23, 2013.

[6] V. Buterin et al., A next-generation smart contract and decentralized application
platform, white paper, 3(37), 2014.

[7] K. Celik and O. Yayla, Blockchain Based Solution For Electronic Health Record
Integrity, 9 2022, https://github.com/kaan-celik/Blockchain-Based-Solution-
For-Electronic-Health-Record-Integrity.

[8] J. Chen, S. Gorbunov, S. Micali, and G. Vlachos, Algorand agreement: Super
fast and partition resilient byzantine agreement, Cryptology ePrint Archive, Re-
port 2018/377, 2018.

[9] J. Chen and S. Micali, Algorand, 2016, Algorand Whitepaper.

[10] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and
J. Dray, Advanced encryption standard (aes), 2001-11-26 2001.

[11] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, Medblock: Efficient and secure
medical data sharing via blockchain, Journal of Medical Systems, 42(8), p. 136,
Jun 2018, ISSN 1573-689X.

45

[12] S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Včelák, Verifiable Random
Functions (VRFs), Internet-Draft draft-irtf-cfrg-vrf-13, Internet Engineering
Task Force, June 2022, work in Progress.

[13] S. Josefsson and I. Liusvaara, Edwards-Curve Digital Signature Algorithm (Ed-
DSA), Internet-Draft draft-irtf-cfrg-vrf-13, January 2017.

[14] H. Li, L. Zhu, M. Shen, F. Gao, X. Tao, and S. Liu, Blockchain-based data
preservation system for medical data, Journal of Medical Systems, 42(8), p.
141, Jun 2018, ISSN 1573-689X.

[15] K. Moriarty, B. Kaliski, and A. Rusch, PKCS #5: Password-Based Cryptogra-
phy Specification Version 2.1, RFC 8018, January 2017.

[16] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Decentralized
Business Review, p. 21260, 2008.

[17] OWASP-CheatSheet-Series-Team, Password Storage Cheat Sheet, August
2021, Accessed on 2022-08-16.

[18] V. Patel, A framework for secure and decentralized sharing of medical imaging
data via blockchain consensus, Health Informatics Journal, 25(4), pp. 1398–
1411, 2019, pMID: 29692204.

[19] A. R. Rajput, Q. Li, M. Taleby Ahvanooey, and I. Masood, Eacms: Emer-
gency access control management system for personal health record based on
blockchain, IEEE Access, 7, pp. 84304–84317, 2019.

[20] A. Shahnaz, U. Qamar, and A. Khalid, Using blockchain for electronic health
records, IEEE Access, 7, pp. 147782–147795, 2019.

[21] M. Sonmez, E. Barker, W. Burr, and L. Chen, Recommendation for password-
based key derivation part 1: Storage applications, 2010-12-22 2010.

[22] G. Weiss, Synchronous networks, IRE Transactions on Automatic Control, 7(2),
pp. 45–54, 1962.

[23] J. Xu, K. Xue, S. Li, H. Tian, J. Hong, P. Hong, and N. Yu, Healthchain: A
blockchain-based privacy preserving scheme for large-scale health data, IEEE
Internet of Things Journal, 6(5), pp. 8770–8781, 2019.

46

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Contribution
	Related Works
	Overview of Thesis

	Algorand
	Key Generations
	Public Key & Private Key Generation
	Address Generation
	Mnemonic Key Generation
	Participation Keys

	Consensus Protocol
	Verifiable Random Function
	Selection of Committees:
	Byzantine Agreement Protocol:
	Block Generation:

	Algorand Specific Structures
	TEAL
	Algorand Standard Asset

	Design
	Blockchain Side
	Components
	Smart Contract
	Medical Security Token

	Application Side
	Survey Creation
	Consent Form
	Completion of the Survey

	Database Side
	Technical Properties
	Performance of Design

	Conclusion
	Future Works

	REFERENCES
	APPENDICES

