
LINEAR PARAMETER VARYING CONTROL FOR AUTONOMOUS
SYSTEMS: METHODS AND APPLICATION EXAMPLES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATIH ÇALIŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2022

Approval of the thesis:

LINEAR PARAMETER VARYING CONTROL FOR AUTONOMOUS
SYSTEMS: METHODS AND APPLICATION EXAMPLES

submitted by FATIH ÇALIŞ in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Klaus Werner Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Kemal Leblebicioğlu
Electrical and Electronics Engineering, METU

Prof. Dr. Klaus Werner Schmidt
Electrical and Electronics Engineering, METU

Prof. Dr. Umut Orguner
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Halil Ersin Söken
Aerospace Engineering, METU

Prof. Dr. Çağlar Başlamışlı
Mechanical Engineering, Hacettepe University

Date: 24.08.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Fatih Çalış

Signature :

iv

ABSTRACT

LINEAR PARAMETER VARYING CONTROL FOR AUTONOMOUS
SYSTEMS: METHODS AND APPLICATION EXAMPLES

Çalış, Fatih

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Klaus Werner Schmidt

August 2022, 110 pages

Linear parameter varying (LPV) systems are nonlinear systems which can be mod-

elled as linear systems whose parameters change as a function of different "schedul-

ing parameters". In other words, the dynamics of the LPV systems change during the

operation hence they require a parameter dependent controller. Although classical

gain-scheduling approaches satisfy some performance criteria for constant dynam-

ics, they don’t guarantee stability while the scheduling parameter is changing. On

the other hand, H∞-norm based LPV control methods utilizing parameter dependent

Lyapunov functions provide stability and performance guarantees for the closed-loop

system throughout the whole operation. This controller synthesis problem is infinite-

dimensional due to the dependency on the scheduling parameter, with the help of

polytopic approach it turns into a finite-dimensional convex search with constraints

in the form of linear matrix inequalities.

In this thesis, LPV control is applied for lane keeping and a launch vehicle system.

LPV system models are derived for both systems based on respective nonlinear mod-

els of the lateral vehicle dynamics and a rocket by linearization and selection of a

suitable scheduling parameter. LPV controllers are designed using a linear matrix

v

inequality (LMI) formulation of the stability conditions and performance constraints.

The functionality of the designed controllers is validated by extensive high fidelity

simulations.

Keywords: Linear parameter varying systems, H2 control, gain scheduling, LMI,

autopilot design

vi

ÖZ

OTONOM SİSTEMLERİN DOĞRUSAL PARAMETRE DEĞİŞİMLİ
KONTROLÜ: METOTLAR VE UYGULAMALI ÖRNEKLER

Çalış, Fatih

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Klaus Werner Schmidt

Ağustos 2022 , 110 sayfa

LPV sistemler belirli "planlama parametrelerine" bağlı olarak değişen doğrusal sis-

temler olarak modellenebilen fakat doğrusal olmayan sistemlerdir. Başka bir deyişle,

LPV sistemlerin dinamiği operasyon esnasında değişmektedir ve bu nedenden ötürü

parametreye bağlı kontrolcülere ihtiyaç duyarlar. Her ne kadar klasik kazanç prog-

ramlamalı metotlar sabit dinamikli sistemler için bazı performans isterlerini sağlasa

da, bu yöntemler sistemin dinamiği değişirken kararlılığı garanti etmezler. Diğer ta-

raftan, parametreye bağlı Lyapunov fonksiyonlar kullanan H∞ tabanlı LPV kontrol

metotları, operasyon boyunca kapalı döngü sistem için performans ve kararlılık ga-

rantisi verirler. Bu kontrol problemi parametreye bağlı olarak değiştiği için sonsuz

boyutludur, politop yaklaşımı ile bu problem doğrusal matris eşitsizliği şeklinde kı-

sıtları olan sonlu boyutlu dışbükey optimizasyon problemine dönüşür.

Bu tezde, şerit takip sistemine ve bir fırlatma aracına LPV kontrol uygulanmıştır. LPV

sistem modelleri, doğrusal olmayan roket ve yatay araç dinamiğinin doğrusallaştırıl-

ması ve uygun planlama parametreleri seçim işlemleri ile elde edilmiştir. LPV kont-

rolcüler ise kararlılık koşulları ve performans kısıtlarının doğrusal matris eşitsizlikleri

vii

şeklinde formüle edilmiş halleri kullanılarak tasarlanmıştır. Tasarlanan kontrolcülerin

işlevsellikleri yüksek hassasiyetli ve kapsamlı simülasyonlar ile doğrulanmıştır.

Anahtar Kelimeler: Doğrusal Parametre Değişimli sistemler, H2 kontrol, kazanç ayar-

lama, LMI, otopilot tasarımı

viii

ACKNOWLEDGMENTS

First and foremost, I want to express my deepest gratitude to my supervisor, Prof.

Dr. Klaus Werner Schmidt, for his countless hours spent on this thesis as well as his

invaluable assistance, guidance, and encouragement throughout my graduate study

under his supervision.

I would like to thank my current employer Roketsan A.Ş. for funding this work.

I would also like to express my gratitude to the examining committee for their sug-

gestions and criticisms.

I would like to extend my sincere thanks to my colleagues, Sena Güler for her invalu-

able assistance in the gravity and 6DoF modelling, Tahir Yanık for his precious re-

views and support, Kağan İpek and Korhan Dokumacı for their practical suggestions

about aerodynamics modelling and Onur Altın for his contributions on mechanical

calculations.

I would also like to give special thanks to Gamze Mert, and my friends from "Autony-

mous" team, "2010-B-2014" and "D3" for their friendship and motivational support

during this process.

Without the help and support of my sister Şeyda and my parents, I would not have

been able to complete this thesis.

ix

to my family...

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . xi

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 Linear Parameter Varying (LPV) Systems 5

2.2 Control Methods for LPV Systems 7

2.3 Mathematical Preliminaries . 9

2.4 Reference Frames . 11

2.4.1 Body Frame . 11

2.4.2 Earth-Centered Earth-Fixed Frame 11

2.4.3 North East Down Frame . 13

2.4.4 Earth-Centered Inertial Frame 14

xi

3 MODELLING AND SIMULATION OF THE SELECTED SYSTEMS . . . 17

3.1 Vehicle Lateral Dynamic Model . 17

3.1.1 Nonlinear Vehicle Lateral Dynamic Model 18

3.1.1.1 Vehicle Dynamics . 18

3.1.1.2 Error Dynamics . 20

3.1.1.3 Actuator Dynamics . 20

3.1.2 Linear Vehicle Lateral Dynamic Model 21

3.2 Launch Vehicle Model . 23

3.2.1 Nonlinear Launch Vehicle Model 23

3.2.1.1 Aerodynamics . 24

3.2.1.2 Translational Dynamics 28

3.2.1.3 Rotational Dynamics 31

3.2.1.4 Error Dynamics . 32

3.2.1.5 Actuator Dynamics . 32

3.2.2 Linear Launch Vehicle Model 33

4 EXAMPLE APPLICATION-I: LANE KEEPING CONTROLLER 37

4.1 Theoretical Background . 38

4.2 Lane Keeping Controller Synthesis 41

4.2.1 LPV Vehicle Lateral Dynamic Model 41

4.2.2 Controller Design . 45

4.3 Nonlinear Dynamic Bicycle Model Simulation 47

4.3.1 Implementation of the Nonlinear Simulation 47

xii

4.3.2 Open Loop Simulation of the Vehicle Lane Keeping 50

4.3.3 Closed Loop Simulation of the Vehicle Lane Keeping 51

4.3.3.1 Case-I: Nonzero Initial Lateral Error, V = 50km/h . . . 53

4.3.3.2 Case-II: Nonzero Initial Lateral Error, V = 85km/h . . . 54

4.3.3.3 Case-III: Nonzero Initial Lateral Error, V = 120km/h . . 55

4.3.3.4 Case-IV: Nonzero Initial Heading Error, V = 50km/h . . 56

4.3.3.5 Case-V: Nonzero Initial Heading Error, V = 85km/h . . 57

4.3.3.6 Case-VI: Nonzero Initial Heading Error, V = 120km/h . 58

4.3.3.7 Case-VII: Nonzero Road Curvature, V = 50km/h 59

4.3.3.8 Case-VIII: Nonzero Road Curvature, V = 85km/h . . . 60

4.3.3.9 Case-IX: Nonzero Road Curvature, V = 120km/h 61

4.3.3.10 Case-X: Square Wave Acceleration and Curvature . . . 62

4.3.3.11 Case-XI: Acceleration and Curvature Profile #1 63

4.3.3.12 Case-XII: Acceleration and Curvature Profile #2 64

4.3.3.13 Controller Comparison 65

5 EXAMPLE APPLICATION-II: LAUNCH VEHICLE AUTOPILOT 69

5.1 Autopilot Design for Launch Vehicle 69

5.1.1 LPV Model of the Launch Vehicle 69

5.1.2 Autopilot Design . 75

5.2 6 DoF Simulation of the Launch Vehicle 77

5.2.1 Implementation of the Nonlinear Simulation 77

5.2.2 Open Loop Simulation of the Launch Vehicle 85

xiii

5.2.3 Closed Loop Simulation of the Launch Vehicle 88

5.2.3.1 Nominal Trajectory 90

5.2.3.2 Monte Carlo Simulations 93

6 CONCLUSION . 101

REFERENCES . 103

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 The LPV systems and their relations with other classes 6

Figure 2.2 Body frame drawing on the isometric view (top) and on the right

view of the rocket . 12

Figure 2.3 ECEF frame definition . 13

Figure 2.4 NED frame definition . 14

Figure 2.5 ECI frame definition . 15

Figure 3.1 Dynamic bicycle model and its parameters 18

Figure 3.2 VEGA rocket and its stages . 24

Figure 3.3 Body geometry of VEGA (with all 4 stages) launch vehicle for

aerodynamic calculations . 25

Figure 3.4 Moment coefficient CM (at nose) vs Mach for different angle of

attack values . 26

Figure 3.5 Moment coefficient CM (at nose) vs Alpha graph of the rocket . . 26

Figure 3.6 Force coefficient CN vs Mach graph of the rocket 27

Figure 3.7 Force coefficient CN vs Alpha graph of the rocket 27

Figure 3.8 Moment coefficient CM (at CG) vs angle of attack α graph of the

rocket with all 4 stages . 28

Figure 3.9 VEGA rocket and forces exerted on it in the pitch plane 29

xv

Figure 4.1 Implementation of the nonlinear vehicle model on Simulink . . . 49

Figure 4.2 Simulation results for Case0 . 50

Figure 4.3 Controller used for comparison 52

Figure 4.4 Simulation results for Case1 . 53

Figure 4.5 Simulation results for Case2 . 54

Figure 4.6 Simulation results for Case3 . 55

Figure 4.7 Simulation results for Case4 . 56

Figure 4.8 Simulation results for Case5 . 57

Figure 4.9 Simulation results for Case6 . 58

Figure 4.10 Simulation results for Case7 . 59

Figure 4.11 Simulation results for Case8 . 60

Figure 4.12 Simulation results for Case9 . 61

Figure 4.13 Simulation results for Case10 62

Figure 4.14 Simulation results for Case11 63

Figure 4.15 Simulation results for Case12 64

Figure 4.16 Simulation results for controller comparison with the same sce-

nario used at Case12 . 65

Figure 5.1 Thrust vs time graphs of the rocket (at 1st stage) with burn-time

uncertainties . 70

Figure 5.2 Mass vs time (up) and mass vs velocity graphs of the rocket (at

1st stage) with burn-time uncertainties 71

Figure 5.3 Altitude vs time (up) and altitude vs velocity graphs of the rocket

(at 1st stage) with burn-time uncertainties 72

xvi

Figure 5.4 Implementation of the nonlinear launch vehicle model on Simulink,

main blocks . 77

Figure 5.5 Inside of the "Rocket Model" block given in the figure 5.4 78

Figure 5.6 GNC algorithms inside of the "Flight Computer" block given in

the figure 5.5 . 78

Figure 5.7 Inside of the "6Dof - Environment" block given in the figure 5.5 . 80

Figure 5.8 Inside of the "Force & Moment Calculation" block given in the

figure 5.7 . 82

Figure 5.9 Open loop simulation results: Acceleration in x axis graph . . . 86

Figure 5.10 Open loop simulation results: Velocity magnitude graph 86

Figure 5.11 Open loop simulation results: Altitude graph 87

Figure 5.12 Open loop simulation results: Dynamic pressure graph 87

Figure 5.13 Open loop simulation results: AOA and side slip angle graph . . 88

Figure 5.14 Open loop simulation results: Attitude angle in pitch plane graph 88

Figure 5.15 Nominal trajectory: Trajectory curvature in pitch and yaw axis . 90

Figure 5.16 Nominal trajectory: Attitude angle errors 90

Figure 5.17 Nominal trajectory: Thrust deflection angles 91

Figure 5.18 Nominal trajectory: Body angular rates 91

Figure 5.19 Nominal trajectory: AOA and side-slip angles 92

Figure 5.20 Nominal trajectory: Euler angles 92

Figure 5.21 Monte Carlo analysis: Trajectory curvatures in different runs . . 94

Figure 5.22 Monte Carlo analysis: Attitude angle error in different runs . . . 95

Figure 5.23 Monte Carlo analysis: Attitude angle in different runs 96

xvii

Figure 5.24 Monte Carlo analysis: Body angular rate around pitch axis in

different runs . 97

Figure 5.25 Monte Carlo analysis: Angle of attack in different runs 98

Figure 5.26 Monte Carlo analysis: Thrust deflection angle in different runs . 99

xviii

LIST OF ABBREVIATIONS

CG Center of Gravity

DCM Direction Cosine Matrix

DoF Degree of Freedom

ECI Earth-Centered Inertial

ECEF Eearh-Centered Earth-Fixed

GNC Guidance Navigation and Control

IMU Inertial Measurement Unit

LFR Latitude Longitude Altitude

LFR Linear Fractional Representation

LFT Linear Fractional Transformation

LKA Lane Keeping Algorithm

LMI Linear Matrix Inequality

LPV Linear Parameter Varying

LTV Linear Time Variant

LTI Linear Time Invariant

NED North East Down

SOF Static Output Feedback

SW Steering Wheel

TVC Thrust Vector Control

VISTA Variable Stability In-flight Simulator Test Aircraft

xix

xx

CHAPTER 1

INTRODUCTION

Systems can be categorized according to different properties, one of which is linear-

ity. Linear systems are easier to analyze and control than their nonlinear counterparts.

However, if not all, most of the systems are inherently nonlinear in nature, meaning

that they cannot be expressed as a linear system. One way of getting around this is-

sue is the process of linearization. Although it can successfully present the dynamics

of the nonlinear system around some operating point, the accuracy of the linearized

model drops if the states move away from this point. Another methodology is to de-

scribe a nonlinear system such that it is linear, but the dynamics depend on some pa-

rameters which can change over time. This system class is called a Linear-Parameter

Varying (LPV) system [1].

LPV systems can be regarded as a bridge between linear and nonlinear systems and

are useful when the dynamics of a system changes as a function of some parame-

ters. There are various methodologies on the control of these systems. The most

straightforward one is classical gain scheduling [2]. More advanced approaches are

called LPV control methods including gridding-based [3] [4], polytopic [5] [6] and

LFT-LPV synthesis [7] [8]. These methods can be applied to the control of LPV sys-

tems such as lane keeping for autonomous cars [9] or autopilot systems for launch

vehicles [10].

Lane keeping algorithms are utilized in both completely autonomous [11] and ad-

vanced driver assistance systems [12]. The main objective of these algorithms is lat-

eral vehicle control in the sense of keeping the vehicle at the center of the lane despite

the existence of disturbances such as a changing road curvature or initial deviations

from the lane centerline. There are different control methods used for these applica-

1

tions such as PID [11] or nested PID control [13], model predictive control [14] [15],

H2 control [16] etc. Hereby, it has to be noted that the lateral dynamics of a vehicle

depends on different constant parameters such as tire coefficients as well as varying

parameters like the longitudinal velocity [17].

Most of the airborne systems possess 6 degree-of-freedom (DoF) movement with

changing dynamics as a function of different parameters. Launch vehicles or rockets

can be given as an example for these systems. They are generally aerodynamically

unstable, exhibit non-minimum phase characteristics and have relatively slow actu-

ators [18]. Moreover, during the flight, different parameters such as mass, dynamic

pressure, velocity, center of gravity (CG) distance varies. As a result, the controller,

which is called autopilot, needs to keep the rocket stable against disturbances, en-

sure some reference tracking performance while taking these parameter changes into

account. For this purpose, in some applications linear controllers with frozen time

approach [19] are used where the trajectory is divided into multiple parts considering

a stationary dynamic between these points. Although this approach provides some

performance at the design points, it does not satisfy any stability guarantee in the

transition between these points.

The lateral dynamics of a vehicle changes with the longitudinal velocity. Similarly,

the launch vehicle has different parameters that the dynamics of it depends on. As

a result, the controller for both systems needs to take these changes into account

otherwise stability and performance problems will be inevitable. For that purpose,

LPV control can be applied to these systems.

In this thesis, firstly, modelling of the lateral dynamics of a vehicle and a launch ve-

hicle is done. Secondly, LPV control is applied to these systems, namely, to a lane

keeping problem and autopilot design for a launch vehicle. Finally, to verify the de-

signed controllers, nonlinear simulations are performed. The lane keeping algorithm

is tested in diverse scenarios with road curvatures and nonzero initial heading or dis-

placement errors at different velocities, realistic velocity and curvature profiles. The

autopilot of the launch vehicle is verified by extensive Monte Carlo simulations under

uncertainties in different parameters including aerodynamics, structural parameters,

thrust, with disturbances such as wind or delay in the sensors. The novelty of this

2

work lies within the design procedure of the autopilot algorithm. In the literature,

usually gain scheduling or LFT-LPV methodologies are used for LPV control where

in this work, the polytopic approach is utilized.

The contribution to the literature can be summarized as follows.

• Development of lane keeping and autopilot models in a unified framework that

is suitable for a polytopic LPV controller formulation,

• Application of this controller formulation to the two different system namely

lane keeping algorithm and launch vehicle autopilot,

• Verification of the controller with extensive simulations under disturbances.

The remainder of the thesis comprises five chapters. In the second chapter, the pre-

liminary information that will be useful in the following chapters is introduced. The

LPV systems and control methods are explained in more detail. The mathematical

background along with the reference frame definitions are provided in this chapter.

The third chapter is about the modelling of the selected systems namely vehicle in

lane keeping problem and launch vehicle dynamics. In this chapter, the nonlinear

models for these two systems with the equations of motion, actuator dynamics and

error dynamics are constructed. Then, these nonlinear models are transformed into

linear models using jacobian linearization. Chapter 4 and 5 are devoted to the LPV

controller design and simulations. In these chapters, the linear models obtained in

the third chapters are transformed into LPV form and they are used to synthesize an

LPV controller. After the controller design, the implementation of the simulations are

explained. Then extensive closed loop simulations are executed. For the lane keep-

ing algorithm different scenarios with various velocities, initial conditions and road

curvature profiles are tested while the launch vehicle autopilot is verified using the

Monte Carlo simulations. In the last chapter, the conclusion summarizing the work

done in this thesis with the possible future work are given.

3

4

CHAPTER 2

BACKGROUND

In this chapter, linear parameter varying (LPV) systems will be introduced. Their

properties along with the similarities and the differences between other system classes

will be examined. Example systems belonging to this class will be given. Various

methodologies used for the control of LPV systems will be mentioned and compared

briefly. The mathematical preliminaries together with the definition of the reference

frames will be given.

2.1 Linear Parameter Varying (LPV) Systems

The dynamics of an LPV system can be expressed as the following state-space repre-

sentation

ẋ = A(ρ)x+B(ρ)u

y = C(ρ)x
(2.1)

where u is the input, y is the output and ρ is the exogenous parameter called "schedul-

ing parameter" that can be time dependent [20]. The time variation of the scheduling

parameter ρ is unknown, but it is assumed to be measurable. Another assumption is

that ρ is an exogenous parameter, meaning that it does not depend on the states. If this

was the case, then this type of system is called quasi-LPV system. On the other hand,

if ρ is a function of the time only, then this system becomes Linear Time-Variant

(LTV) system. Similarly, if ρ is constant, then it turns into Linear Time-Invariant

(LTI) system, which is the easiest class to control. This property makes LPV systems

a useful bridge between nonlinear and LTI systems. This relation is depicted in Figure

5

2.1.

Figure 2.1: The LPV systems and their relations with other classes

The LPV paradigm is introduced for the first time in the PhD thesis of Shamma [1]

for the systematic analysis and design of gain-scheduled controllers, which will be

mentioned in the following section.

Although 6 DoF equations of motion possess high non-linearity, many aircraft sys-

tems can be modelled as an LPV system (with some assumptions) since their dynam-

ics change as a function of various flight parameters such as dynamic pressure, mach

number or angle of attack. There are various examples for the aircrafts modelled as

an LPV system in the literature, some of them are airplanes such as B737-800 [21],

B747-100/200 [22], fighter jets such as F14 [23], F16-VISTA [7] and F18 [24].

LPV modelling is also used in the rocket industry, some examples for the missiles

are [25] [26] [27] [8] [28] [29] [30] and launch vehicles are [10] [31] [4] [32].

Another area where the LPV formalization is useful is the ground vehicle control.

There are different controller design applications on the autonomous ground vehicles

with the assistance of LPV modeling in the literature [33] [34] [35] [6]. Moreover,

LPV systems are being used in the driver assistance systems, such as lane keeping

systems [5] [9], lane change system [12], vertical controllers [36] [37].

6

One of the important factors for the modelling and control of an LPV system is to

choose the scheduling parameters ρ. For simplification purposes usually the least

possible number of parameters are chosen, but if the dynamics of the actual system

cannot be captured using a small number of parameters, then the chosen scheduling

parameters can be increased. One should note that with the addition of each schedul-

ing parameters, the number of design points increases exponentially, which increases

the complexity of the controller process. In the literature, usually one parameter is

scheduled, however there are few applications where the number of scheduling pa-

rameter can be increased up to seven [38].

2.2 Control Methods for LPV Systems

One of the most straightforward methods is called classical gain scheduling [2]. In

this method, the nonlinear system is linearized for different points along the system

trajectories with the assumption of the system parameters being "frozen" and LTI

controllers are designed for these linear systems. Then, these linear controllers are

interpolated during the operation. The linearity property comes with powerful tools

for stability and performance analysis such as bode plot, root locus etc. and assures

the desired stability and performance criteria for these linear systems obtained at spe-

cific trajectory points. However, there is no guarantee for these criteria throughout the

whole trajectory since the scheduled parameter can take any value while controllers

are designed for some specific values of it. To overcome this weakness, LPV control

methods can be utilized.

Most of the LPV controller synthesis techniques are based on a sufficient condition

in terms of an infinite-dimensional parameter dependent matrix inequality to analyze

stability and performance, e.g. the Bounded Real Lemma [38], which is given in

Section 2.3.

The LPV controller synthesis procedure generally follows the steps below [39]

1. Derive a (in general, sufficient) analysis condition for a desired closed-loop

property.

7

2. Evaluate this condition on the closed-loop LPV system

3. Transform the search for control parameters into a convex search.

4. If the convex search is successful, extract controller parameters.

After the first two steps, infinite set of Linear Matrix Inequalities (LMI) defined over

the parameter set ρ ∈ {ρmin, ρmax} are obtained. This infinte set of LMIs can be

solved via semidefinite programing using the following approaches:

• Gridding based LPV synthesis

• Polytopic LPV synthesis

• LFT LPV synthesis

Gridding approach is the most straightforward of the three, the steps for this method

are as follows [40]:

1. Define a grid G for the value set of scheduling parameter ρ

2. Minimize the defined performance level γ subject to the LMI constraints asso-

ciated with G and the rate limits of parameter ρ

3. Check the constraints with a denser grid.

4. If Step-3 fails, increase the grid density and return Step-2.

One of the advantages of the gridding approach is that the implementation of the con-

troller is computationally inexpensive. [38]. However, with the dimension of schedul-

ing parameter n and grid point number M , the required controller number is Mn and

hence it may require a large amount of memory to store the local controller. This

method first appeared in [41], refined in [40]. There are different examples for the

implementation of this approach on the literature [31] [4] and a MATLAB Toolbox

"LPVTools" is created for this purpose [42].

Another approach for the LPV control is called "Polytopic LPV Synthesis", which

is the most widely used approach among the three [38]. In this method, the infinite

8

dimension LMIs are converted to a finite set of LMIs obtained at the vertices of the

polytope that ρ spans. The controller is synthesised only at the vertices, and a convex

combination of the controllers are used during the operation. Since a controller is

designed for each vertex, if the dimension of the scheduling parameter ρ increases by

n, then the number of controllers are increased by 2n, meaning that it is better than

the gridding approach in terms of required memory. There are different applications

for the polytopic approach on the literature [33] [35] [6] [9] [43]

The final LPV control method is "Linear Fractional Transform (LFT) LPV synthe-

sis". This approach utilizes the LPV interpretation of Linear Fractional Representa-

tion (LFR), where the feedback gain is assumed to vary in time as it is a function of

the scheduling parameter ρ. Note that LFRs of LPV systems can be seen as a general-

ization of LFRs of uncertain LTI systems where the feedback gains is assumed to be a

constant or time varying uncertainty [44]. This method is based on S-procedure [45]

and its variants and extensions, so called full-block S-procedure [46]. There are dif-

ferent examples of applicaions with LFT LPV approach in the literature [7] [8] [26]

2.3 Mathematical Preliminaries

In this section, useful mathematical formulations which will be used in the next chap-

ters are given.

The positive definiteness or positive semi-definiteness of a matrix is an important

property that is used in most of the matrix inequalities. The definiton of this property

is as follows.

Definition 1 (Positive Definiteness of a Matrix). A square matrix M is called positive

definite (positive semi-definite) if it is symmetric and all eigenvalues are positive (non-

negative) and shown as

M > 0 (M ≥ 0) (2.2)

Linear Matrix Inequalities (LMI) are useful when it comes to formulate an optimiza-

tion problem. Most of them can be solved using interior-point algorithms [47]. There

are various applications of LMIs in control [45] such as Lyapunov stability.

9

Definition 2 (LMI). A linear matrix inequality,G : Rm −→ Sn, in the variable x ∈ Rm

is an expression of the form

F (x) = F0 +
m∑
i=1

xiFi ≤ 0 (2.3)

where xT = [x1 x2 ... xm] and Fi ∈ Sn, i = 0, ...,m.

The norm of a signal is also an important property used in the control theory. There

are different norm definitions one of the most widely used one is given in the follow-

ing definition.

Definition 3 (L2 Norm of a Signal). The L2 norm of a square integrable signal u(t)

is defined in time and frequency domain as

∥u(t)∥2 =
(∫ +∞

0

u(t)2 dt

)1/2

=

(
1

2π

∫ +∞

−∞
|U(jω)|2 dω

)1/2

(2.4)

where U(jω) is the Fourier transform of the signal u(t)

H∞ norm is an important parameter showing the maximum possible amplification of

a system and defined as follows.

Definition 4 (H∞ Norm of a System). The H∞ norm of a system G(s) is as defined

∥G(s)∥∞ = sup
ω

∥G(jω)∥2 = sup
ω
σ(G(jω)) (2.5)

where σ denotes maximum singular value.

The bounded real lemma which is also referred as Kalman–Popov–Yakubovich (KYP)

lemma [48] is a useful expression to calculate H∞ norm of a system and given below.

Lemma 1 (Bounded Real Lemma). Consider the system G, state space matrices of

which are as follows.
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

x(0) = x0

(2.6)

Where A is Hurwitz, i.e., every eigenvalue of A has strictly negative real part, then

the following are equivalent:

10

• ||G||H∞ ≤ γ

• There exists a X > 0 such thatATX +XA XB

BTX −γ

+ 1/γ

CT

DT

[CT DT

]
< 0 (2.7)

• There exists a X > 0 such that
ATX +XA XB CT

BTX −γI DT

C D −γI

 < 0 (2.8)

2.4 Reference Frames

In this section, different reference frames used in the modelling and simulation chap-

ters will be given.

2.4.1 Body Frame

The definition of the body frame for both the car and the rocket is the same. It has its

origin at the CG of the vehicle. Its x axis points forward towards the nose, while y and

z axes points to right hand side and down side respectively. This frame is depicted for

the rocket in the figure 2.2.

2.4.2 Earth-Centered Earth-Fixed Frame

Earth-centered earth-fixed (ECEF) coordinate frame is fixed to the Earth and moves

with it. It is defined as follows:

1. The origin is located at the center of mass of the Earth.

2. z axis points towards the north pole of the Earth.

3. x axis points towards the point where the equator and the Greenwhich meridian

intersect.

11

Figure 2.2: Body frame drawing on the isometric view (top) and on the right view of

the rocket

4. y axis is chosen such that it completes the orthogonal coordinate system by

complying the right hand rule.

The axes of the ECEF frame is depicted in the figure 2.3.The ECEF frame is useful

to express the location of a point both inside or outside the Earth. It can be utilized

to express the cartesian coordinates of a point in terms of xECEF , yECEF and zECEF .

Similarly, the position of a point can be described by spherical coordinates using the

latitude Φ, longitude λ and altitude (LLA). ECEF coordinates and LLA coordinates

can be converted into one another.

12

Figure 2.3: ECEF frame definition

2.4.3 North East Down Frame

North East Down (NED) frame is generally used to describe the attitude of an aircraft

with respect to the Earth. It is a local frame whose origin is located at the CG of the

aircraft. The axes of this frame is obtained as follows. First, the tangent plane to the

earth whose normal vector pass through the CG point is drawn. The x axis lies in the

tangent plane pointing towards north, y axis also lies in the tangent plane pointing

towards east and z axis is normal to the tangent plane and points down.

Note that although z axis of the NED frame points down, it does not necessarily pass

through the center of the Earth, i.e., it may not be coincident with the gravity vector

due to the oblateness of the Earth. The axes of the NED frame together with the ECEF

frame are given in the following figure.

13

Figure 2.4: NED frame definition

2.4.4 Earth-Centered Inertial Frame

The origin of the Earth-Centered Inertial (ECI) frame is located at the center of mass

of the Earth like ECEF frame. However, unlike the ECEF frame, ECI frame does not

rotate with the Earth. Its axes are defined as follows.

1. x axis points towards the vernal equinox.

2. z axis points towards the north pole of the Earth.

3. y axis is chosen such that it completes the orthogonal coordinate system by

complying the right hand rule.

The axes of the ECI frame along with the ECEF frame are given in the following

figure.

14

Figure 2.5: ECI frame definition

15

16

CHAPTER 3

MODELLING AND SIMULATION OF THE SELECTED SYSTEMS

In this chapter, nonlinear and linear models of the selected systems namely, a ground

vehicle and a launch vehicle will be obtained. Although these systems seem very

different, they have the following common property: their dynamics change as a

function of their velocity. Which implies that these systems are a good candidate for

LPV modelling and control. The linear models obtained in this chapter will be used

in the controller design procedure and nonlinear models will be used for thorough

simulations to validate the controller.

First, nonlinear model of the lateral dynamics of a vehicle will be obtained. By Jaco-

bian linearization of this model, linear model will be acquired. After the vehicle, the

launch vehicle will be modelled following the same procedure.

3.1 Vehicle Lateral Dynamic Model

In the lane keeping problem, the motion of the vehicle in the yaw axis is aimed to

be controlled. For this reason, the lateral dynamics of the vehicle will be modelled.

Since the longitudinal velocity also affects the behaviour in the lateral axis, it needs

to be taken into account.

There are various vehicle models, considering motions in different numbers of degree-

of-freedom in the literature [49]. The simplest is the two DoF model, which represent

the lateral velocity and yaw motion. This model does not capture the dependency of

the longitudinal velocity, hence it does not suit the LPV approach. A 3 DoF model

adds the acceleration in the longitudinal axis to the 2 DoF model and can describe

17

the full vehicle motion in the X-Y plane. There are higher order models considering

the slip angles of each tires, enabling an in-depth study of traction and braking forces

on handling maneuvers [49]. In this study, the decoupled dynamic bicycle model

obtained from [50] will be used to model the vehicle.

3.1.1 Nonlinear Vehicle Lateral Dynamic Model

To obtain the nonlinear lateral vehicle model, first the dynamics of the vehicle is to be

analyzed. Then, the error dynamics and lastly actuator dynamics will be given. The

parameters of the model is depicted in the figure 3.1 [50].

Figure 3.1: Dynamic bicycle model and its parameters

3.1.1.1 Vehicle Dynamics

Starting from the dynamic bicycle model given in the figure 3.1, where the lateral

and longitudinal forces of the tires are taken into account, one can obtain the lateral

motion dynamics of the decoupled dynamic bicycle model given below following

the steps from [50]. Note that the decoupled model is obtained using the following

assumptions: Longitudinal force acting on the rear tire is zero, Fcr = 0 and the engine

traction force Flf is chosen such that the desired acceleration is obtained.

18

Table 3.1: Parameters used in the the dynamic bicycle model

Parameter Name Definition

m Mass

V Longitudinal velocity

a Distance between center of gravity (CG) and front wheel

b Distance between CG and rear wheel

Izz Inertia of the vehicle around body z axis

Fcf Cornering force of the front wheel

Fcr Cornering force of the rear wheel

β̇ =
cos(β)

mV

(
Fcr + Fcf cos(δt) +

mar − Fcf sin(β − δt)

cos(β − δt)

)
− Ψ̇ cos2(β) (3.1)

ψ̈ =
a(mar + Fcf cos(β)− Fcr sin(β) sin(δt))− bFcr cos(β − δt)

Izz cos(β − δt)
(3.2)

In these equations, the β is the side-slip angle which is defined as the angle between

the velocity vector and body x vector, where ψ stands for the heading angle in body

frame. Moreover, δt is the steering angle of the front tires. The other parameters used

in the above equations are defined in the table 3.1 and depicted in the figure 3.1.

The cornering forces at the tires are calculated using the Pacejka’s magic formula as

follows.

Fcf = D sin(C tan−1(Bαf − E(Bαf − tan−1(Bαf)))) (3.3)

Fcr = D sin(C tan−1(Bαr − E(Bαr − tan−1(Bαr)))) (3.4)

Where the parameters αf and αr are the slip angle of the front and rear tires respec-

tively and B,C,D are the tire coefficients. The slip angles can be calculated using the

following relations between the linear and angular velocities of the vehicle.

αf = tan−1

(
ẏ + aψ̇

ẋ

)
− δt (3.5)

19

αr = tan−1

(
ẏ − bψ̇

ẋ

)
(3.6)

Note that velocities along the body axis can be rewritten using relation between the

side slip angle and velocity as follows.

ẋ = V cos(β) (3.7)

ẏ = V sin(β) (3.8)

With all the equations given above combined, one can obtain the complete nonlinear

vehicle model with the states β, Ψ̇, Ψ, V and input δ.

3.1.1.2 Error Dynamics

With the model of the vehicle completed, the next objective is to obtain road curvature

model. Assuming to have an access to the lateral distance from vehicle CG to the road

centerline and road curvature information, one can integrate the road curvature into

the model in the heading error ∆ψ and lateral displacement error yR [51] form using

the following relations,

∆ψ̇ = ψ̇ − V ρ (3.9)

ÿR = V (β̇ + ψ̇)− V 2ρ (3.10)

where ρ is the road curvature.

3.1.1.3 Actuator Dynamics

There is a dynamic relation between the steering wheel angle δsw and the actual tire

steering angle δt. This dynamic is assumed to be of 2nd order [9] as follows:

20

δt(s)

δsw(s)
=

nsω
2
n

s2 + 2ξωns+ ω2
n

(3.11)

With this actuator, the states for tire steering actuators become:

δ̈t = −2ξωnδ̇t − ω2
nδt + nsω

2
nδsw (3.12)

where ωn is the bandwidth of the actuator, ξ is the damping ratio and ns is the gear

ratio. Combining equations from 3.1 to 3.12, one can obtain the complete vehicle-

road model.

3.1.2 Linear Vehicle Lateral Dynamic Model

Since the side-slip angle β can be expressed in terms of other states, it can be substi-

tuted. After that, this model can be linearized using the states ψ̇, ψ, ẏR, yR, ∆ψ, δ̇t

and δt and control input δsw and disturbance ρ around the operating point

x =



ψ̇

ψ

ẏR

yR

∆ψ

δ̇t

δt


=



0

0

0

0

0

0

0


, u = δsw = 0, ρ = 0, V = Veq, V̇ = 0 (3.13)

After the linearization, and defining the tire coefficient as ct = BCD, following state

equations for the complete road-vehicle model are obtained.

ψ̈ =
ct(a

2 + b2)

VeqIzz
ψ̇ +

ct(a− b)

IzzVeq
ẏR − ct(a− b)

Izz
∆ψ − cta

Izz
δt (3.14)

ÿR =
ct(a− b)

mVeq
ψ̇ +

2ct
mVeq

ẏR − 2ct
m

∆ψ − ct
m
δt − V 2

eqρ (3.15)

21

∆ψ̇ = ψ̇ − Veqρ (3.16)

δ̈t = −2ξωnδ̇t − ω2
nδt + nsω

2
nδsw (3.17)

The linear state equations can be converted into the state space form ẋ = Apx +

Bpuu+Bpww with the following state space matrices.

Ap =



ct(a
2 + b2)

VeqIzz
0

ct(a− b)

IzzVeq
0 −ct(a− b)

Izz
0 −cta

Izz

1 0 0 0 0 0 0

ct(a− b)

mVeq
0

2ct
mVeq

0 −2ct
m

0 − ct
m

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 −2ξωn −ω2
n

0 0 0 0 0 1 0



(3.18)

Bpu =



0

0

0

0

0

nsω
2
n

0



, Bpw =



0

0

V 2
eq

0

−Veq

0

0



(3.19)

22

3.2 Launch Vehicle Model

The launch vehicles can move in and rotate around 3 directions, resulting in a 6 de-

gree of freedom motion. In this work, a controller (autopilot) for pitch axis will be

designed and due to the symmetry of the rocket around its body x axis, the same con-

troller will be used in the yaw axis. The vehicle model is assumed to be controlled in

roll axis by other means. Hence, in this chapter, the dynamics of a launch vehicle in

the pitch plane will be introduced. For the formulation, although some steps can be

skipped, mainly the steps from [52] will be followed.

For the model parameters, small-lift launch vehicle VEGA is chosen since its proper-

ties can be found in the literature. It is an expendable launch system jointly designed

and manufactured by Italian Space Agency (ASI) and the European Space Agency

(ESA). It is designed to launch small payloads, 300 to 2500 kg, satellites for scien-

tific and Earth observation missions to polar and low Earth orbits. The first Vega

mission is conducted in 2012 [53]. It is a four stage rocket with 30m height and 3m

diameter and shown in 3.2 [54]. Most of the model parameters for Vega is acquired

from its user manual [54].

3.2.1 Nonlinear Launch Vehicle Model

To obtain the dynamics of the launch vehicle in the pitch plane, first aerodynamic

coefficients in this axis will be obtained using DATCOM. Using these coefficients,

translational dynamics will be examined. Then, rotational dynamics will be acquired.

After 6 DoF equations are derived, then actuator and error dynamics will be given.

The dynamic behaviours such as bending and sloshing will not be included in the

models.

To clarify the difference between scalar and vector parameters, bold symbols are used

to describe vector parameters. The unit vectors î, ĵ and k̂ are used to describe the

direction of x, y and z axes of the related reference frame respectively. The linear

velocities u, v and w with the angular velocities p, q and r are given in body frame,

while the Euler angles are given in NED frame.

23

Figure 3.2: VEGA rocket and its stages

3.2.1.1 Aerodynamics

The aerodynamic properties of a rocket can be modelled in terms of force and moment

coefficients around different axes. These coefficients are used to calculate the exerted

moment and forces on the rockets using the following equations.

Fi = q∞SrefCFi

Mi = q∞Sref lrefCMi

(3.20)

Where q∞ is dynamic pressure, Sref and lref are reference area and length, CFi
and

CMi
are the aerodynamics force and moment coefficients around the axis-i respec-

24

tively.

These coefficients depend on various parameters such as angle of attack, Mach num-

ber, side-slip angle, roll angle, and the derivative of these parameters [55]. However,

in most of the applications these coefficients can be simplified such that they only

depend on static parameters. In this work, they are assumed to depend on only Mach

number and angle-of-attack. These coefficients are calculated using the software Mis-

sile DATCOM with arbitrary geometry input mode. In this mode, user can enter the

rocket geometry in the form of a length-from-nose and radius [56]. For the Vega

rocket, this data is obtained in MATLAB as shown in the following figure.

Figure 3.3: Body geometry of VEGA (with all 4 stages) launch vehicle for aerody-

namic calculations

Using the geometry data given in 3.3, the moment and force coefficients for Mach

values between 0.3 and 10 and AOA values between −9◦ and 9◦ are obtained. These

coefficients are depicted in Figures 3.4, 3.5, 3.6 and 3.7. The graphs are given in 2D

to improve the visibility.

25

Figure 3.4: Moment coefficient CM (at nose) vs Mach for different angle of attack

values

Figure 3.5: Moment coefficient CM (at nose) vs Alpha graph of the rocket

26

Figure 3.6: Force coefficient CN vs Mach graph of the rocket

Figure 3.7: Force coefficient CN vs Alpha graph of the rocket

27

Figure 3.8: Moment coefficient CM (at CG) vs angle of attack α graph of the rocket

with all 4 stages

Using the moment and force coefficients obtained for the nose of the rocket, the mo-

ment coefficient at the center of the gravity can be calculated. This data can be seen

in Figure 3.8. As seen in this graph, CMα which is the derivative of the moment coef-

ficient CM with respect to angle of attack α is positive, hence this rocket is statically

unstable [55].

3.2.1.2 Translational Dynamics

From the Newton’s 2nd law of the motion, the force equation for a body with infinite-

small mass dm, linear velocity V = ûi + vĵ + wk̂ and angular velocity ω = p̂i +

qĵ + rk̂, can be written in the form:

F = m
dV
dt

∣∣∣∣
body

+m(ω × V) (3.21)

28

Which results in the following 3 equations:

∑
∆Fx = m(u̇+ wq − vr)

∑
∆Fy = m(v̇ + ur − wp)

∑
∆Fz = m(ẇ + vp− uq)

(3.22)

Writing the forces acting on the rocket in 3 different body axis:

Fx = Tx +Gx + FAx

Fy = Ty +Gy + FAy

Fz = Tz +Gz + FAz

(3.23)

where Fi means the total force, Ti stands for thrust, Gi is gravitational force and FAi

is the aerodynamic force along the direction "i". To visualize these forces, the force

diagram on the pitch plane is depicted in Figure 3.9.

Figure 3.9: VEGA rocket and forces exerted on it in the pitch plane

The calculation of these forces are as follows.

29

Tx = T cos(δe) cos(δr)

Ty = −T cos(δe) sin(δr)

Tz = T sin(δe) cos(δr)

(3.24)

where T is the total thrust force magnitude, δe and δr is the thrust deflection angle in

pitch and yaw plane,

Gx = −mg sin(θ)

Gy = −mg sin(ψ) cos(θ)

Gz = mg cos(ψ) cos(θ)

(3.25)

where m is mass, g is the gravitational acceleration, ψ and θ are attitude angles in

NED Frame.
FAx = q∞SrefCx

FAy = q∞SrefCy

FAz = q∞SrefCz

(3.26)

where q∞ is the dynamic pressure, Sref is the reference area andCi is the aerodynamic

force coefficient along the direction "i". Note that the rocket is symmetrical around

body x axis, hence the aerodynamic coefficient around pitch and yaw plane are equal.

Moreover, instead of using directional coefficients, generally axial and drag coeffi-

cients are preferred. Hence, the following substitutions will be made: Cx = −CA,

Cz = −CN . Combining the equation sets 3.23, 3.24, 3.25 and 3.26:

m(u̇+ wq − vr) = T cos(δe) cos(δr)−mg sin(ψ)− q∞SCA

m(v̇ + ur − wp) = −T cos(δe) sin(δr)−mg sin(ψ) cos(θ)− q∞SCN

m(ẇ + vp− uq) = T sin(δe) cos(δr) +mg cos(ψ) cos(θ)− q∞SCN

(3.27)

Rearranging the equations given in 3.27, final translational dynamics equations can

be obtained.

u̇ =
T cos(δe) cos(δr)

m
− g sin(ψ)

−q∞SCA

m
− wq + vr

v̇ = −T cos(δe) sin(δr)

m
− g sin(ψ) cos(θ)− q∞SCN

m
− ur + wp

ẇ =
T sin(δe) cos(δr)

m
+ g cos(ψ) cos(θ)− q∞SCN

m
− vp+ uq

(3.28)

30

3.2.1.3 Rotational Dynamics

The angular momentum of the mass dm rotating around a point at a distance r with

angular velocity ω = p̂i+ qĵ + rk̂ is defined as:

dH = r × dmV = dmr × (ω × r) (3.29)

Expanding the term on the most right hand side of the equation 3.29, using the inertia

definition, neglecting the cross inertia terms (Ixy = Ixz = Iyz = 0), and finally with

the integration over the entire mass, the elements of H can be found as follows.

Hx = pIx

Hy = qIy

Hz = rIz

(3.30)

From the Newton’s 2nd law of the motion, the moment equation can be written in the

form: ∑
M =

dH

dt

∣∣∣∣
I

+ ω ×H (3.31)

Combining equations 3.30 and 3.31, one can obtain the following 3 equations:

∑
∆Mx = ṗIx + qr(Iz − Iy)∑
∆My = q̇Iy + pr(Ix − Iz)∑
∆M z = ṙIz + pq(Iy − Ix)

(3.32)

Writing the aerodynamic moments acting on the rocket around 3 different body axis:

MAx = CMxq∞Sref lref

MAy = CMyq∞Sref lref

MAz = CMzq∞Sref lref

(3.33)

31

Writing the and moments due to the deflection of the thrust vector:

Mδx = 0

Mδy = T sin(δe) cos(δr)larm

Mδz = T cos(δe) sin(δr)larm

(3.34)

Where CMi
stands for the aerodynamic moment around the axis "i", larm is the lever

arm between the thrust deflection pivot point and center of gravity, and lref is the

reference length of the rocket. Combining the equations 3.32, 3.33 and 3.34:

ṗIx + qr(Iz − Iy) = CMxq∞Sref lref

q̇Iy + pr(Ix − Iz) = CMyq∞Sref lref + T sin(δe) cos(δr)larm

ṙIz + pq(Iy − Ix) = CMzq∞Sref lref + T cos(δe) sin(δr)larm

(3.35)

Re-arranging the equation 3.35, one can obtain the final rotational dynamics of the

rocket.

ṗ =
CMxq∞Sref lref

Ix
− qr(Iz − Iy)

Ix

q̇ =
CMyq∞Sref lref

Iy
+
T sin(δe) cos(δr)larm

Iy
− pr(Ix − Iz)

Iy

ṙ =
CMzq∞Sref lref

Iz
+
T cos(δe) sin(δr)larm

Iz
− pq(Iy − Ix)

Iz

(3.36)

3.2.1.4 Error Dynamics

The rocket is expected to move a predefined trajectory which has nonzero curvatures.

The lateral distance to this predefined trajectory is not very important but the heading

angle error needs to be minimized. This heading errors can be defined using the

trajectory curvatures in pitch and yaw planes, ρpitch and ρyaw as follows:

∆ψ̇ = r − V ρyaw

∆θ̇ = q − V ρpitch
(3.37)

3.2.1.5 Actuator Dynamics

In the absence of an ideal actuator, there is a dynamic relation between the thrust

deflection command and the actual thrust deflection. This dynamic is assumed to be

32

of 2nd order as follows:

δ(s)

δc(s)
=

ω2
n

s2 + 2ξωns+ ω2
n

(3.38)

With this actuator, the states for elevator and rudder actuators become:

δ̈e = −2ξωnδ̇e − ω2
nδe + ω2

nδec

δ̈r = −2ξωnδ̇r − ω2
nδr + ω2

nδrc

(3.39)

where ωn is the bandwidth of the actuator and ξ is the damping ratio.

3.2.2 Linear Launch Vehicle Model

Gathering the equations given in 3.28, 3.36, 3.37 and 3.39, the total nonlinear dynam-

ics of the launch vehicle around pitch axis can be summarized as:

ẇ =
T sin(δe) cos(δr)

m
+ g cos(ψ) cos(θ)− q∞SCN

m
− vp+ uq (3.40)

q̇ =
CMyq∞Sref lref

Iy
+
T sin(δe) cos(δr)larm

Iy
− pr(Ix − Iz)

Iy
(3.41)

∆θ̇ = q − V ρpitch (3.42)

δ̈e = −2ξωnδ̇e − ω2
nδe + ω2

nδec (3.43)

Instead of having two different states for lateral velocityw and angle of attack α, since

they are related through the following equation, one can be expressed as in terms of

the other using the small angle approximation:

α = tan−1
(w
u

)
∼=
w

u
(3.44)

Then the final nonlinear state equations using α as one of the states becomes:

33

α̇ =
T sin(δe) cos(δr)

mu
+
g cos(ψ) cos(θ)

u
− q∞SCN(α, V)

mu
− vp

u
+ q (3.45)

q̇ =
CMyq∞Sref lref

Iy
+
T sin(δe) cos(δr)larm

Iy
− pr(Ix − Iz)

Iy
(3.46)

∆θ̇ = q − V ρpitch (3.47)

δ̈e = −2ξωnδ̇e − ω2
nδe + ω2

nδec (3.48)

With the linearization of these equation around the equilibrium point

v = p = r = α = δr = 0, u = V (3.49)

the linear state equations of the rocket around the pitch axis can be obtained as fol-

lows:

α̇ = −q∞SCNα(V)

mV
α + q +

T

mV
δe (3.50)

q̇ =
CMyα

(V)q∞Sref lref

Iy
α +

T larm
Iy

δe (3.51)

δ̈e = −2ξωnδ̇e − ω2
nδe + ω2

nδec (3.52)

∆θ̇ = q − V ρpitch (3.53)

Using the following state vector, input and disturbance

xp =



α

q

δ̇e

δe

∆θ


, u = δec , w = ρpitch (3.54)

34

and rewriting the equations given in 3.50 through 3.53, the linear state equations of

the launch vehicle in the pitch plane in the matrix form can be obtained as follows:

ẋp = Apxp +Bpuu+Bpww (3.55)



α̇

q̇

δ̈e

δ̇e

∆̇θ


=



a11 1 0 a14 0

a21 0 0 a24 0

0 0 a33 a34 0

0 0 1 0 0

0 1 0 0 0





α

q

δ̇e

δe

∆θ


+



0

0

ω2
n

0

0


δec +



0

0

0

0

−V


ρpitch (3.56)

where

a11 = −q∞SCNα(V)

mV
, a14 =

T

mV
, a21 =

CMyα
(V)q∞Sref lref

Iy

a24 =
T larm
Iy

, a33 = −2ξωn, a34 = −ω2
n

35

36

CHAPTER 4

EXAMPLE APPLICATION-I: LANE KEEPING CONTROLLER

In the first part of this chapter, using the linear model of the vehicle obtained in the

previous chapter, LPV model will be obtained. After that, using this LPV model,

controller for this system will be designed. In the second part of this chapter, the

nonlinear model of the vehicle will be implemented on MATLAB/Simulink and both

open and closed loop simulations will be performed.

The controller for the vehicle will be used to make sure that the car stays on the lane.

This controller algorithm can be utilized in a normal car to aid the driver [57] [58] or

they can be used in a complete autonomous car [59]. In this work, the lateral dynamics

of a vehicle will be modelled as a standalone system and it will be controlled against

disturbances such as road curvature or change in the longitudinal velocity.

First, the main theory (from [9]) that will be followed in the control design process

will be introduced. It consists of Lemmas and an optimization problem in an linear

matrix inequality (LMI) form. Then, using the linear models derived in the previ-

ous chapter, LPV models of the systems will be obtained. Finally, the optimization

problem given in the theorem will be constructed using the LPV models and will be

solved to synthesise the controller.

There are different open source MATLAB toolboxes designed for LPV controller

synthesis and LMI analysis [42] [60] [61]. In this study, the YALMIP toolbox will be

used as it has flexible syntax and provide various solvers [61].

37

4.1 Theoretical Background

The theorem used in thesis is retrieved from [5] [43] [9] and is constructed by com-

bining Lemma1 and Lemma2. In Lemma 1, a condition relating an LMI with H2

norm of the LPV system with a relationship of the stability is given. In Lemma2, a

property on the functions that aims to convert a parameter-dependent condition to a

finite set of LMIs is given. These Lemmas are defined as follows:

Lemma1

Given an LPV system Σ

Σv(θ) =

ẋ =
∑N

i=1 ηi(θ)(Aix+Bu
i u+Bω

i ω)

z =
∑N

i=1(C
z
i x+Dz

i u)
(4.1)

and a positive scalar α, assume there exists a symmetric positive definite matrix

Q(θ) ∈ Rnx×nx and a matrix Z(θ) ∈ Rnω×nω and a positive scalar γ > 0 such

that

[
Â(θ)Q(θ) + (Â(θ)Q(θ))T + αQ(θ)− ˙(θ) (ĈZ(θ)Q(θ))

T

ĈZ(θ)Q(θ) −I

]
< 0 (4.2)

[
Z(θ) B̂w(θ)

T

B̂w(θ) Q(θ)

]
> 0 (4.3)

trace(Z(θ)) < γ2 (4.4)

Then it follows that ||Σ||2 < γ and the associate Lyapunov function of LPV system

is:

V (x) = xT (
N∑
i=1

ηi(θ)Qi)
−1x = xTQ(θ)−1x (4.5)

38

Lemma2

Let Υij , i,j ∈ ΩN , be symmetric matrices of appropriate dimensions and {ηi}i∈ΩN
,

be any family of functions satisfying the following property:

ηiθ ≥ 0,
N∑
i=1

ηi(θ) = 1,
N∑
i=1

η̇i(θ) = 0 (4.6)

η̇i(θ) ∈ [ϕi1, ϕi2], i ∈ ΩN (4.7)

The condition

N∑
i=1

N∑
j=1

ηiηjΥij < 0 (4.8)

holds if

Υii < 0, i ∈ ΩN

2
(N−1)

Υii +Υij +Υji < 0, i, j ∈ ΩN , and i < j
(4.9)

The following theorem that utilizes the Lemma1 and Lemma 2 will be used to syn-

thesise the controller. In this theorem, an LMI related to the H2 norm of the LPV

system is given. By solving this LMI while minimizing the norm the controller will

be synthesized.

Theorem

Given an LPV system (with N vertices) (4.1) and a positive scalar α > 0, assume that

there exist symmetric positive definite matricesQi ∈ Rnx×nx , matricesMi ∈ Rnu×ny ,

Lω
i ∈ Rnu×nω , X ∈ Rny×ny , Zi ∈ Rnω×nω for i ∈ ΩN , where ΩN means the integer

set 1, 2, ..., N ., and positive scalars γ > 0, ϵ > 0 such that

39

[
Zi ∗

Bω
i +Bu

i L
ω
j Qi

]
> 0, i, j ∈ ΩN

trace(Zi) <γ
2, i ∈ ΩN

Ξklm
ii < 0, i, k, l ∈ ΩN , m ∈ Ω2, k ̸= l

2

N − 1
Ξklm
ii + Ξklm

ij + Ξklm
ji < 0, i, j, k, l ∈ ΩN , m ∈ Ω2, i < j, k ̸= l

(4.10)

where the quantity Ξklm
ii is defined as follows:

Ξklm
ij =

 Ξklm
ij(1,1) 0 ϵBu

i Mj

Dz
iMjCy + Cz

iQj −I ϵDz
iMj

CyQj −XCy 0 −ϵX

+
 Ξklm

ij(1,1) 0 ϵBu
i Mj

Dz
iMjCy + Cz

iQj −I ϵDz
iMj

CyQj −XCy 0 −ϵX


T

(4.11)

Ξklm
ij(1,1) = AiQj +Bu

i MjCy + αQj − ϕkm(Qk −Ql)/2

Then, the SOF controller stabilizes the LPV system and satisfies ∥Σ∥2 < γ. More-

over, the control feedback gains are given by

Ki =MiX
−1, i ∈ ΩN (4.12)

In other words, the controller gains are obtained by solving the following optimization

problem.

min
Qi,Zi,Mi,Lω

i ,X
γ2 subject to

[
Zi ∗

Bω
i +Bu

i L
ω
j Qi

]
> 0, i, j ∈ ΩN

trace(Zi) <γ
2, i ∈ ΩN

Ξklm
ii < 0, i, k, l ∈ΩN , m ∈ Ω2, k ̸= l

2

N − 1
Ξklm
ii + Ξklm

ij + Ξklm
ji < 0, i, j, k, l ∈ ΩN , m ∈ Ω2, i < j, k ̸= l

(4.13)

40

4.2 Lane Keeping Controller Synthesis

To synthesise the controller for the purpose of lane keeping, the LPV model of the

lateral dynamics of the vehicle is needed. This model will be constructed using the

linear model after choosing output and performance vector and the scheduling pa-

rameter since these parameters change state space matrices of the LPV system. In

order to improve the behaviour of the controller, an input shaping filter in the form of

a road curvature model will be integrated to the model. Although some steps can be

minorly changed or skipped, mainly the formulation given in [9] will be followed in

this section.

4.2.1 LPV Vehicle Lateral Dynamic Model

In order to incorporate some information about the disturbance dynamics into the

controller design, generator model is considered, which can be regarded as input

shaping filter. Hence, the controller will use this information to improve its over-

all behaviour [9]. The input of this filter is an irreducible signal and its output will

be the road curvature. The impulse response of this curvature model will contain the

information regarding the expected road curvature in the following way. The peak

value of the impulse response corresponds to the maximum value of the expected

road curvature and the time to peak corresponds to the expected peak time of the road

curvature change. For this purpose, the following 3rd order model will be used.

Σw =

ẋw = Acxw +Bcxw

yw = Ccxw

(4.14)

where xw =
[
ρ ρ̇ ρ̈

]T
and yw = ρ with the state space matrices

Ac =

 0 1 0

0 0 1

−ac0 −ac1 −ac2

 , Bc =

 0

0

Kc

 , Cc =
[
1 0 0

]
(4.15)

The output vector used in the feedback and corresponding Cp matrix is shown in

41

the equation 4.16. Note that ẏR and δ̇ are absent in the output vector, since they

require more expensive sensors which is not an ideal situation for the mass production

systems. It is also important to point out that the vector yp is not the complete output

vector which will be used in the feedback. The road curvature information will be

also used in the feedback. This situation can be seen in the definitions made in the

equation 4.21.

yp =


ψ̇

yR

∆ψ

δT

 , Cp =


1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

 (4.16)

Another vector to be decided is the performance vector. One of the performance

measures of the lane keeping algorithm is how fast the lateral error diminishes. After

all, the main purpose of this algorithm is to keep this error as minimum as possible.

Moreover, the heading angle error also needs to be eliminated. The response of the

LKA to eliminate these two errors are important for the success of the algorithm.

However, apart from keeping the error states at minimum, there is another property

that the vehicle needs to satisfy: the driving comfort. To increase the comfort, the

lane keeping algorithm should minimize the lateral acceleration, which is related with

the steering angle of the tires. Hence, the controlled output vector of the algorithm

z = Dzxpxp +Dzwxw is chosen as follows.

z =


∆ψ

yR

ay

δt

 (4.17)

Where the matrices Dzxp and Dzw are defined as follows.

Dzxp = Wz


0 0 0 0 1 0 0

0 0 0 1 0 0 0

ct(a
2 + b2)

IzzV
0

ct(a− b)

IzzV
0 −ct(a− b)

Izz
0 −cta

Izz
0 0 0 0 0 0 1


42

Dzw = Wz


0 0 0

0 0 0

−V 2 0 0

0 0 0

 (4.18)

The termWz used in the above definitions is the weight matrix. It is used to emphasize

more importance on some states than others and has the following form.

Wz =


W1 0 0 0

0 W2 0 0

0 0 W3 0

0 0 0 W4

 (4.19)

Combining the state space matrices of the vehicle model given in equation 3.18 and

3.19 the road curvature model given in equation 4.14, with the matrices for output

and performance vectors given in equations 4.16 and 4.18, the complete vehicle-road

model becomes as follows.

Σ(V) :

ẋ = Ax+Buu+Bww

z = Czx, y = Cyx
(4.20)

where

x =

[
xp

xw

]
, y =

[
yp

yw

]

A =

[
Ap BpwCc

0 Ac

]
, Bu =

[
Bpu

0

]
, Bw =

[
0

Bc

]
(4.21)

Cy =

[
Cp 0

0 Cc

]
, Cz =

[
Dzxp Dzw

]
The complete model given in the equation 4.20 is still not in LPV form. To convert

this system into LPV form, the scheduling parameter must be chosen. Note that the

state space matrices of the road vehicle model depends on longitudinal velocity of

the vehicle in different form such as V , V 2 and 1/V . For scheduling parameter, 1/V

43

is chosen through parameter θ and parameters V and V 2 are expressed in terms of θ

using the 1st Taylor series as follows.

1

V
=

1

V0
+

1

V1
θ, V ≈ V0

(
1− V0

V1
θ

)
, V 2 ≈ V 2

0

(
1− 2V0

V1
θ

)
(4.22)

with

V0 =
2VminVmax

Vmin + Vmax

and V1 =
2VminVmax

Vmin − Vmax

(4.23)

Hence, the variation in the velocity is taken into account by the parameter θ which

changes between −1 and 1 corresponding to velocities Vmin and Vmax. Using the

scheduling parameter θ and the complete road vehicle model given in equation 4.20,

the polytopic LPV model of the system becomes:

Σ(θ) :


ẋ =

2∑
i=1

ηi(θ) (Aix+Bu
i u+Bw

i w)

z =
2∑

i=1

ηi(θ)C
z
i x, y = Cyx

(4.24)

where the state space matrices are given by:

A1 = A(θmin), Bu
1 = Bu, Bw

1 = Bw, Cz
1 = Cz(θmin)

A2 = A(θmax), Bu
2 = Bu, Bw

2 = Bw, Cz
1 = Cz(θmax)

(4.25)

The function ηi used in the polytopic representation given in 4.24 is called scalar

membership function. These functions are utilized for expressing a model in terms

of convex combination of the systems at the vertex of the polytope. They have the

following definition and properties.

η1(θ) =
1− θ

2
, η2(θ) = 1− η1(θ) =

1 + θ

2
(4.26)

ηi(θ) ≥ 0,
2∑

i=1

ηi(θ) = 1,
2∑

i=1

η̇i(θ) = 0 (4.27)

44

In this work, besides the limits on the velocity of the vehicle, the acceleration limits

are also taken into account.

amin ≤ ax ≤ amax (4.28)

From the equations 4.22 and 4.28, it follows that

amin

a0
≤ θ̇ ≤ amax

a0
, with a0 =

−V 2
0

V1
(4.29)

These acceleration limits are integrated into the synthesis through the membership

function satisfying the additional propery:

η̇i(θ) ∈ [ϕi1, ϕi2] (4.30)

where

ϕ11 =
−amax

2a0
, ϕ12 =

−amin

2a0
, ϕ21 =

amin

2a0
, ϕ22 =

amax

2a0
(4.31)

4.2.2 Controller Design

First, the parameter for the road curvature model will be decided. After that, the

scheduling parameter and its derivative limits will be set. Finally, using the numerical

values of all the required matrices, the optimization problem given in 4.13 will be

solved using YALMIP toolbox and feedback gains will be obtained.

In this work, the minimum road curve radius of 250m will be considered, hence the

maximum expected road curvature is 1/250 = 4 × 10−3m−1. The impulse response

peak time is chosen as 8 second. Using these values, the parameters for the road

curvature model is decided as given in the table 4.1.

The velocity and acceleration limits are chosen as follows.

45

Table 4.1: Numeric values of the road curvature model

Parameter Name Value
ac0 0.05

ac1 5

ac2 10

Kc 0.022

Vmin = 50km/h, Vmax = 120km/h

amin = −3m/s2, amax = 3m/s2
(4.32)

To incorporate a priority among the states, the coefficient in the weighting matrices

can be set different than 1. In this work, the heading error ∆ψ is considered as slightly

more important and hence the weight matrix is chosen as follows.

Wz =


1 0 0 0

0 1 0 0

0 0 3 0

0 0 0 1

 (4.33)

Apart from these constant values, there are other constant parameters needed to be

set in order to solve the LMI defined in the theorem given in the chapter 4.1. One of

these parameters is α. It is related with the decay rate of the states and the closed loop

poles of the system is forced on the left of the line x = −α. This parameter is set

considering the preferred decay rate. Another parameter is γ, which defines the upper

limit of the L2 norm of the system, as it is pointed out in the theorem 4.1. Finally, the

last parameter is ϵ, it is chosen by doing a practical method where a logarithmic grid

over [10−5, 105] is scanned. These parameters are chosen as follows.

α = 0.001, γ = 40, ϵ = 0.2783 (4.34)

To solve the LMI given in the theorem 4.1 with these parameter values, MOSEK

solver introduced in [62] with the YALMIP toolbox [61] is used and following gain

values are obtained (K1 corresponds to V = Vmin and vice versa).

46

Table 4.2: Numeric values of the vehicle model

Parameter Name Definition Value
m Mass 1480 kg

Izz Inertia of the vehicle around body z axis 1950 kgm2

a Distance between cg and front wheel 1.421 m

b Distance between cg and rear wheel 1.029 m

B Tire force coefficient 8.22

C Tire force coefficient 1.65

D Tire force coefficient −1.7× 104

E Tire force coefficient −10

ωn Steering dynamics bandwidth 3 Hz

ξ Steering dynamics damping ratio 0.707

ns Steering dynamics gear ratio 16.34

K1 =
[
−0.0010 −0.0021 −0.0381 −0.0147 0.1682

]
K2 =

[
−0.0017 −0.0005 −0.0250 −0.0169 0.1904

] (4.35)

4.3 Nonlinear Dynamic Bicycle Model Simulation

In this section, the vehicle model for the lane-keeping problem given in section 3

will be implemented. Firstly, the implementation on MATLAB-Simulink will be de-

scribed. Secondly, to validate the model, some open loop simulations will be con-

ducted and results will be given. And finally, the controller will be integrated to the

model and closed loop simulations in different scenarios will be performed.

The values of the vehicle parameters are taken from [50] while actuator values are

obtained from [9] and can be seen in the table 4.2.

4.3.1 Implementation of the Nonlinear Simulation

The nonlinear model is implemented on Simulink using the plant state equations given

in 3.1 3.2 3.3 3.4 3.5 3.6, error state equations given in 3.9 and 3.10, actuator states

47

given in 3.12. These equations are realized with the use of MATLAB function block

and the derivatives of the states are obtained. With the integration of these derivative

vector with the proper initial conditions, the state vector is obtained. The state vector

then is multiplied with the matrix C to obtain the output vector, which is multiplied

with the gain. The value of the feedback gain K is calculated using the value of the

scheduling parameter θ whose calculation is as follows.

θ =
Vmax + Vmin − (2VmaxVmin/Vx)

Vmax − Vmin

(4.36)

The gain is calculated using the value of the θ with the convex combination of the

gain values at the vertices of the polytope. The vertices of the polytope corresponds

to Vmin where θ = −1 and Vmax where θ = 1. The value of the gain as a function of

the scheduling parameter θ is calculated as follows.

K(θ) =
(K1 −K2)(1− θ)

2
+K2 (4.37)

where K1 corresponds to the gain value obtained for Vx = Vmin and K2 corresponds

to the gain value obtained for Vx = Vmax. The longitudinal velocity is calculated by

the integration of the longitudinal acceleration, which is an input to the model. The

implementation of this model on the Simulink software is depicted in Figure 4.1

The validation of this model is realized with an open loop simulation, where a con-

stant steering angle and velocity is used as an experiment. The vehicle is expected to

draw a circle in this scenario. This case is called "Case0" and the simulation result

can be seen in figure 4.2.

48

Figure 4.1: Implementation of the nonlinear vehicle model on Simulink

49

4.3.2 Open Loop Simulation of the Vehicle Lane Keeping

Figure 4.2: Simulation results for Case0

50

4.3.3 Closed Loop Simulation of the Vehicle Lane Keeping

In this section, the performance of the LPV controller will be tested against different

initial conditions and disturbances. Firstly, the response of the controller against ini-

tial displacement error will be tested. This scenario is very likely to happen in real life

since the lane-keeping algorithm can be activated when the vehicle is not in the mid-

dle of the road. The first two cases will show the performance of the controller against

this initialization displacement error for different velocities, namely V = Vmin and

V = Vmax. Note that these velocities are used in the design, so another case where

V = (Vmin + Vmax)/2 will be tested in the third case.

Case-4, Case-5 and Case-6 are added to test cases to validate the controller under

nonzero initial heading angle error condition. Again, in each case different velocities

will be tested

The seventh, eighth and ninth scenarios consider a situation where the vehicle is in

the center of the line with LKA is open and road starts turning. In a perfect scenario,

the vehicle follows the center-line of the road with zero error, but this is not a practical

situation. Usually there is some small steady state error while turning, and this error

goes to zero when the road curvature drops to zero.

The last three cases utilizes varying road curvature and velocity. In the Case-10,

the square wave and smoothed saw-tooth wave will be used for road curvature and

acceleration values respectively. In the last two cases, some predefined profiles will be

utilized. The profile used in the Case-11 is taken from [9]. The profile for the Case-12

is constructed by considering a road around METU. In these cases, the performance of

the controller against both nonzero road curvature and change in the lateral dynamics

will be tested. These simulation cases are shown in the table 4.3.

After testing the designed LPV controller in 12 different cases, its performance should

be compared to the methods in literature. For this purpose, another controller from

the literature [63] in the form of PIDD2 will be implemented and tested in the scenario

Case-12 to compare the controllers. The block diagram of this controller is as shown

in the figure 4.3.

51

Table 4.3: Scenarios that will be used to validate the controller

Case Name Explanation
Case-1 Initial lateral displacement error & V = 50km/h

Case-2 Initial lateral displacement error & V = 85km/h

Case-3 Initial lateral displacement error & V = 120km/h

Case-4 Initial heading error & V = 50km/h

Case-5 Initial heading error & V = 85km/h

Case-6 Initial heading error & V = 120km/h

Case-7 Nonzero road curvature & V = 50km/h

Case-8 Nonzero road curvature & V = 85km/h

Case-9 Nonzero road curvature & V = 120km/h

Case-10 Nonzero ax & ρ, V0 = 100km/h

Case-11 ax & ρ Profile #1, V0 = 80km/h

Case-12 ax & ρ Profile #2, V0 = 100km/h

Figure 4.3: Controller used for comparison

As seen in the block diagram given in the figure 4.3, this controller utilizes a feedback

consisting of the angular yaw velocity and lateral displacement error. This algorithm

is obtained from [63]. Note that to implement this controller, the steering dynamics

is removed from the model.

52

4.3.3.1 Case-I: Nonzero Initial Lateral Error, V = 50km/h

Figure 4.4: Simulation results for Case1

53

4.3.3.2 Case-II: Nonzero Initial Lateral Error, V = 85km/h

Figure 4.5: Simulation results for Case2

54

4.3.3.3 Case-III: Nonzero Initial Lateral Error, V = 120km/h

Figure 4.6: Simulation results for Case3

55

4.3.3.4 Case-IV: Nonzero Initial Heading Error, V = 50km/h

Figure 4.7: Simulation results for Case4

56

4.3.3.5 Case-V: Nonzero Initial Heading Error, V = 85km/h

Figure 4.8: Simulation results for Case5

57

4.3.3.6 Case-VI: Nonzero Initial Heading Error, V = 120km/h

Figure 4.9: Simulation results for Case6

58

4.3.3.7 Case-VII: Nonzero Road Curvature, V = 50km/h

Figure 4.10: Simulation results for Case7

59

4.3.3.8 Case-VIII: Nonzero Road Curvature, V = 85km/h

Figure 4.11: Simulation results for Case8

60

4.3.3.9 Case-IX: Nonzero Road Curvature, V = 120km/h

Figure 4.12: Simulation results for Case9

61

4.3.3.10 Case-X: Square Wave Acceleration and Curvature

Figure 4.13: Simulation results for Case10

62

4.3.3.11 Case-XI: Acceleration and Curvature Profile #1

Figure 4.14: Simulation results for Case11

63

4.3.3.12 Case-XII: Acceleration and Curvature Profile #2

Figure 4.15: Simulation results for Case12

64

4.3.3.13 Controller Comparison

In this section, the designed LPV controller and the linear controller [63] given in

the figure 4.3 will be compared. In this comparison, the same acceleration and road

curvature profile utilized at the Case-12 will be used.

Figure 4.16: Simulation results for controller comparison with the same scenario used

at Case12

65

As seen in the figures from Figure 4.4 to 4.6, the controller manages to eliminate the 1

meter initial lateral displacement error around 4 seconds while the vehicle is moving

at the constant velocities (Vmin and Vmax) used in the controller design. To eliminate

this error, the controller responds with a sudden change in the steering angle which

causes a temporary heading error diminishing when the lateral displacement goes to

zero. The similar situation occurs when V = 85km/h, which is important to check

since the controller is designed only at vertex points (Vmin and Vmax).

From the Figures 4.7 to 4.9, the effect of 3 degrees initial heading angle error can

be seen. The controller responds with a sharp turn resulting that the heading an-

gle error makes an overshoot around 1 second and goes to zero around 3 seconds.

The responses in 3 different velocities are roughly the same, except as the velocity

increases, the maximum lateral error occurring in the manoeuvre increases as well,

which is expected.

The effect of the road curvature on the performance of the controller is tested at

different velocities with a step-wise curvature signal as seen in the Figures 4.10 to

4.12. When the road starts turning, some lateral displacement error begins to increase

and controller responds to this error. Thus, the tire angle increases to some point such

that the lateral distance stays at the same value. While the road is still turning, there

is a steady state lateral displacement error which again increases with the velocity.

The maximum value of this steady state error is around 35cm when the velocity is

120km/h and road curvature is 1/300m-1. The value of the error will increase with

a sharper turn but the chosen radius curvature for this speed is as safe as double

since in the highway design handbook the suggested minimum curvature radius (for

0 elevation) is 600m in USA [64] and 565m in Turkey [65] for V = 120km/h.

In the Case-10 which is depicted in 4.13, there are some spikes in the response of the

controller, which is due to the jumps in the road curvature signal. In this scenario,

the velocity is changing with a profile similar to smoothed saw-tooth wave. Together

these conditions result in a lateral error with a maximum value of 35cm and heading

angle error reaches 1 degree at peaks. In the Case-11, the response of the controller

in a more realistic velocity and curvature profile [9] is tested as shown in Figure 4.14.

In this scenario the road turn radius drops to values as low as 100m and velocity

66

changes with relatively sharper peaks. As a result, the lateral error reaches values

around 70cm at peak. The last profile used in the Case-12 has smoother transition

between the velocity values but still the road curvature changes with sudden jumps as

seen in Figure 4.15. As seen in the same figure, the lateral displacement error in this

case has the maximum value of 20cm with a maximum heading error 0.35◦.

In the last simulation, a PIDD2 controller and the LPV controller is tested with the

same acceleration and curvature profiles used in the Case12. As seen in the figure

4.16, the magnitude of the lateral displacement errors are similar except the PIDD2

controller is faster to eliminate the displacement error. The LPV controller is better

than the a PIDD2 controller in terms of heading error elimination. As can be seen

in the graphs, the maximum heading error for LPV controller is around 0.3◦ while

in the PIDD2 controller case it reaches a value up to 0.6◦. Another difference is the

steering angles, although it seems that PIDD2 controller leads to huge steering angles,

this is due to the absence of the actuator model in the PIDD2 controller simulation.

For a better comparison, the gear ratio of 16.34 should be taken into account and

with this scale the tire angles become similar. Although the responses are similar,

the LPV controller achieves this performance with a second order actuator, while the

PIDD2 controller require an ideal actuator. If the actuator dynamics is added to the

model, then the closed loop system becomes unstable. Another advantage is that the

LPV controller guarantees stability in the existence of acceleration. Although in the

simulation the PIDD2 controller manages to keep the system stable, this does not

necessarily state that it will in any acceleration.

67

68

CHAPTER 5

EXAMPLE APPLICATION-II: LAUNCH VEHICLE AUTOPILOT

This chapter is composed of two main sections. In the first section, using the lin-

ear model of the launch vehicle obtained in Chapter 3, LPV model will be obtained.

Using this LPV model, autopilot for this system will be designed. In the second

part of this chapter, the nonlinear model of the vehicle will be implemented on MAT-

LAB/Simulink and both open and closed loop simulations with the Monte Carlo anal-

ysis will be performed.

Launch vehicles are generally aerodynamically unstable, have relatively slow servo

actuators, and may exhibit non-minimum phase characteristics [18]. Hence, the con-

troller for the launch vehicle, which is called "autopilot", is needed to make the rocket

stable throughout the trajectory. The second most important mission of the autopilot

is to follow the guidance commands.

Launch vehicles consists of different number of stages to increase the efficiency of

the thrust. Generally, the first stage is the hardest to control due to the high dynamic

pressure, aerodynamic instabilities, gust, turbulence etc. [66]. Hence, in this study,

autopilot design and nonlinear simulations for 1st stage will be conducted.

5.1 Autopilot Design for Launch Vehicle

5.1.1 LPV Model of the Launch Vehicle

To convert the linear system given in 3.56 into LPV form, the scheduling parameters

must be decided. To simplify the controller design process, the least possible number

of parameters should be chosen. For that reason, these parameters should be chosen

69

such that other varying parameters can be expressed as a function of this parameter.

In the rocket case, many parameters are changing during the flight such as velocity,

dynamic pressure, angle of attack, mass, thrust, inertia, center of gravity etc. In

some applications [31], time is chosen as a scheduling parameter, however, due to

the uncertainties in the thrust profiles, the profile that these parameters follow can

severely change. To overcome this, velocity V is chosen as scheduling parameter.

Hence, if the thrust is lower than nominal, the velocity would be less than nominal

too. Same principle applies to the other parameters as well, resulting in a lower

sensitivity on the uncertainties. This situation can be seen in Figure 5.2 and 5.3 that

corresponds to the %10 uncertainty in the thrust duration given in Figure 5.1.

Figure 5.1: Thrust vs time graphs of the rocket (at 1st stage) with burn-time uncer-

tainties

70

Figure 5.2: Mass vs time (up) and mass vs velocity graphs of the rocket (at 1st stage)

with burn-time uncertainties

As seen in Figures 5.2 and 5.3, the mass and altitude changes in a smaller distribution

for the same velocity than for the same time. Which proves the velocity being better

than the time as a scheduling parameter in terms of being robust against thrust uncer-

tainty. One point is that when the thrust ends, the velocity starts decreasing, which

may lead to multiple parameter values for the same velocity. But since the thrust is

ended, the controller would not be effective anymore meaning that it does not change

anything in terms of control performance.

71

Figure 5.3: Altitude vs time (up) and altitude vs velocity graphs of the rocket (at 1st

stage) with burn-time uncertainties

With the scheduling parameter selected, the next objective is to transform the linear

model into LPV form. The linear model for the dynamics of the launch vehicle is

obtained in the equation 3.56 in the following configuration.

ẋp = Apxp +Bpuu+Bpww

yp = Cpxp
(5.1)

72

The state dynamics of the rocket is expressed in the equation 3.56, however the output

yp is not defined. The output of the plant is chosen assuming that the angular velocity

of the actuator angle δ̇e is not measurable as follows.

yp =


α

q

δe

∆θ

 , Cp =


1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

 (5.2)

Similar to the process done in the Section 4.2.1, a trajectory curvature model whose

dynamics is given in the equation 5.3 will be utilized in the design. The impulse re-

sponse of this model contains the information regarding the expected curvature in the

following way. The peak value of the impulse response corresponds to the maximum

value of the expected trajectory curvature and the time to peak corresponds to the

expected peak time of the curvature change.

Σw =

ẋw = Acxw +Bcxw

yw = Ccxw

(5.3)

where xw =
[
ρpitch ˙ρpitch ¨ρpitch

]T
and yw = ρpitch with the state space matrices.

Ac =

 0 1 0

0 0 1

−ac0 −ac1 −ac2

 , Bc =

 0

0

Kc

 , Cc =
[
1 0 0

]
(5.4)

By completing the system dynamics with the curvature model and defining the output

vector, the only vector to define before synthesising the controller is the performance

vector. Throughout the flight, the aerodynamical loads are proportional with the angle

of attack, whose dynamics depend on the angular rate q proportionally. Hence, these

states are important in terms of the satisfying mechanical design requirements. The

attitude error ∆θ is important in terms of the trajectory following, hence it should be

included in the performance vector as well. Finally, to minimize the actuator loads,

the thrust deflection angle δe is added to performance vector whose final form is given

in the equation below.

73

z =


α

q

δe

∆θ

 (5.5)

With this definition of the performance vector, relation between the performance and

the state vector becomes

z = Dzxpxp, Dzxp =


1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

 (5.6)

Combining the state space matrices of the launch vehicle model given in equation

3.56, the trajectory curvature model given in equation 5.3 and 5.4, with the matri-

ces for output and performance vectors given in equations 5.2 and 5.6, the complete

launch vehicle model becomes as follows.

Σ(V) :

ẋ = Ax+Buu+Bww

z = Czx, y = Cyx
(5.7)

where

x =

[
xp

xw

]
, y =

[
yp

yw

]

A =

[
Ap BpwCc

0 Ac

]
, Bu =

[
Bpu

0

]
, Bw =

[
0

Bc

]
(5.8)

Cy =

[
Cp 0

0 Cc

]
, Cz =

[
Dzxp 0

]
Note that during the flight, mass m, dynamic pressure q∞, thrust T , inertia Iy, aero-

dynamic moment and force coefficients CMyα & CNα change. Some of them changes

nearly linearly while others have nonlinear characteristics. These parameters can be

74

approximated as a function of the velocity. This process is done similar to the lateral

LPV model of the vehicle as explained in the 4 through the parameter θ which changes

between −1 and 1 corresponding to velocities Vmin and Vmax. Using the scheduling

parameter θ and the launch vehicle model given in equation 5.7, the polytopic LPV

model of the system becomes:

Σ(θ) :


ẋ =

2∑
i=1

ηi(θ) (Aix+Bu
i u+Bw

i w)

z =
2∑

i=1

ηi(θ)C
z
i x, y = Cyx

(5.9)

where the state space matrices are given by:

A1 = A(θmin), Bu
1 = Bu, Bw

1 = Bw, Cz
1 = Cz(θmin)

A2 = A(θmax), Bu
2 = Bu, Bw

2 = Bw, Cz
1 = Cz(θmax)

(5.10)

5.1.2 Autopilot Design

In the design process, similar steps given in the controller design Chapter 4.2.2 will be

followed. Firstly, the parameters for the trajectory curvature model will be decided.

After that, the scheduling parameter and its derivative limits will be set. And finally,

using the numerical values of all the required matrices, the LMI given in the theorem

will be solved using YALMIP toolbox and feedback gains will be obtained.

In this work, considering the first manoeuvre of the rocket, the minimum trajectory

curve radius of 300m will be considered, hence the maximum expected curvature is

1/300 = 3.3× 10−3m−1. The impulse response peak time is chosen as 12.8 second.

Using these values, the parameters for the trajectory curvature model is decided as

given in the table 5.1.

The velocity and acceleration limits that will be used in the design process are chosen

as follows.

75

Table 5.1: Numeric values of the trajectory curvature model

Parameter Name Value
ac0 0.5

ac1 15

ac2 100

Kc 0.07

Vmin = 100km/h, Vmax = 1600km/h

amin = 0m/s2, amax = 35m/s2
(5.11)

To incorporate a priority among the states, the coefficient in the weighting matrices

can be set different than 1. In this work, the attitude error ∆θ is considered as slightly

more important and hence the weight matrix is chosen as follows.

Wz =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 5

 (5.12)

Apart from these constant values, there are other constant parameters needed to be

set in order to solve the LMI defined in the theorem which are explained in Section

4.2.2. These parameters are chosen following the similar steps given in Section 4.2.2

as follows.

α = 0.001, γ = 20, ϵ = 0.087 (5.13)

To solve the LMI given in Theorem 4.1 with these parameter values, MOSEK solver

[62] with the YALMIP toolbox [61] is used and following gain values are obtained

(K1 corresponds to V = Vmin and vice versa).

K1 =
[
0.0767 −0.7967 0.0530 −0.3781 623.5157

]
K2 =

[
0.0635 −1.3984 0.0806 −0.5455 987.5879

] (5.14)

76

5.2 6 DoF Simulation of the Launch Vehicle

The complete nonlinear launch vehicle model derived in Chapter 3.2.1 will be im-

plemented in the Simulink software to validate the controller. Apart from this 6 DoF

model of the rocket, imperfections such as delays, uncertainties and disturbances will

also be modelled.

5.2.1 Implementation of the Nonlinear Simulation

The simulink model of the launch vehicle will consist of 2 main blocks: rocket model

and environment model as shown in Figure 5.4. While the former incorporates the

algorithms and hardware on the rocket, the latter is constructed to model the dynamics

of the rocket along with the environmental affects such as wind.

Figure 5.4: Implementation of the nonlinear launch vehicle model on Simulink, main

blocks

The rocket model will be composed of 3 main parts namely flight computer, sensor

models and actuator as shown in Figure 5.5. The flight computer runs the guidance,

navigation and control (GNC) algorithms in the configuration depicted in Figure 5.6.

77

Figure 5.5: Inside of the "Rocket Model" block given in the figure 5.4

Figure 5.6: GNC algorithms inside of the "Flight Computer" block given in the figure

5.5

In a typical application, the guidance algorithm generates the reference commands

for the controller. In this work, it is generating the trajectory curvature information.

Note that there are various approaches for guidance algorithm design in the literature,

however, in this study an open loop trajectory curvature in the shape of half sine wave

will be used.

The second algorithm is the navigation. Normally it is responsible for detecting the

current states of the rocket such as attitude, position, velocity, acceleration etc. In

78

this work, it is modelled such that it calculates the attitude error in the pitch and yaw

planes using the trajectory curvature information coming from the guidance block

and feeds this delta-angle information into the controller (autopilot) algorithm.

Finally, the autopilot uses these error state and disturbance information coming from

navigation and guidance algorithms along with the sensor outputs to generate the

output vector. By multiplying this output with the feedback gains, the actuator com-

mands to be sent to the actuators are obtained.

Apart from the algorithms running inside the flight computer, there are sensor models

which are added for the modelling of inertial measurement unit (IMU) and the actua-

tor sensors dynamics. In this study the dynamics of these sensors are implemented as

a pure delay.

The final block inside the rocket model is the actuator. It is utilized to model the

dynamics of the thrust vector control (TVC) actuator. The linear actuator dynamics

are given in the equation 3.39, however a practical actuator has non-ideal properties

such as angle and rate limit. Hence, in this work the actuator is modelled to have ±5◦

angle limit and 20◦/s angular rate limit.

The second main block of the model is the "6 DoF - Environment" block as shown

in Figure 5.4. This block is utilized to simulate the laws of physics. It consists of

4 sub-blocks: system parameters, force & moment calculations, 6 DoF calculations

and atmosphere model as depicted in Figure 5.7.

System parameters block generates the necessary system parameters such as mass,

inertia, thrust, center of gravity. These values are generated beforehand and saved

in the workspace. Mass value is obtained such that it starts from full stack mass to

dry mass and is assumed to change linearly as a function of burn-time. Inertia and

center of gravity are also assumed to change linearly from the full configuration the

1st-stage-burned configuration as a function of time. The inertia values are obtained

assuming a uniform density of the rocket. Note that, if the burn time is short, then

the time change rate of these parameters are high and vice versa. The values of

these parameters are obtained using different sources. For example, the mass and

the dimension information are obtained from the user manual of the VEGA [54].

79

Figure 5.7: Inside of the "6Dof - Environment" block given in the figure 5.5

Using these dimension and mass data with the uniform density assumption, the launch

vehicle created in the CATIA environment to calculate both the CG and inertia values

for full and completely burned configurations. The thrust data is obtained using the

values given in the manual [54] and the approach given in [67]. The values of the

complete system parameters are given in table 5.2, while the obtained thrust data is

given in 5.1 with ±10% burn-time uncertainties.

The second block is force & moment calculation block which produce the force and

moments that launch vehicle experience. In this block, aerodynamics, gravity and

thrust force and moments along with the tower dynamics are modelled as shown

in Figure 5.8. Aerodynamic forces and moments are calculated using the equations

given in 3.33 and 3.26 respectively. The aerodynamic coefficientsCM andCN change

80

Table 5.2: Numeric values of the system parameters of VEGA launch vehicle used in

the simulation

Name Value @ t=0 Value After 1st Stage is Burned
Mass 135926kg 48216 kg

Inertia around x axis 214884 kgm2 49490 kgm2

Inertia around y axis 5243000 kgm2 1521000 kgm2

CG distance from nose 21.56 m 15.68 m

as a function of angle of attack and Mach number as shown in Figure 3.5, 3.4, 3.7 and

3.6. Interpolation block is used to calculate these aerodynamic coefficients depending

on the current values of angle of attack and Mach number. Note that the moment

coefficient CM is generated at nose and since the rotations are defined around the

CG, this moment coefficient is carried to the CG. The dynamic pressure q∞ used in

the calculation of aerodynamic forces and moments are obtained in the atmosphere

block, which will be mentioned in the following paragraphs.

The thrust forces and moments are calculated using the equations given in 3.24 and

3.34 respectively. Note that the thrust moment component around the x axis is ne-

glected with the assumption of thrust pivot point lying on the body-x vector.

The gravity force is calculated using the gravitational acceleration and mass. The

gravitational acceleration between two masses is directly proportional to the product

of their masses and inversely proportional to the square of the distance between their

center of mass. To find the distance from the rocket to the center of the earth, the

position vector p = pxî+py ĵ+pzk̂ in the ECI coordinates can be utilized as proposed

in [68] as follows.

g = −GM

∥p∥3

pxpy
pz

 (5.15)

whereGM = 3.986004418×1014m3/s2 is the Earth-mass gravitational constant. Note

that the gravitational acceleration depends on the length of p because of the inverse

square law and the latitude angle of p due to the non-spherical shape of the earth. The

81

Figure 5.8: Inside of the "Force & Moment Calculation" block given in the figure 5.7

latter is negligible if the rocket moves near the surface of the Earth, however this is

not the case in this work. Hence, to account for the effect of the Earth’s oblateness on

g, the equation 5.15 is modified by replacing px, py and pz by px, py and pz [68] from

px = px

[
1 + 1.5J2

(
rE
∥p∥

)2

(3− 5 sin2 λ)
]

(5.16)

py = py

[
1 + 1.5J2

(
rE
∥p∥

)2

(1− 5 sin2 λ)
]

(5.17)

pz = pz

[
1 + 1.5J2

(
rE
∥p∥

)2

(1− 5 sin2 λ)
]

(5.18)

82

Table 5.3: The numerical values of the parameters used to generate aerodynamic

coefficients

Name Value
Mach 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2, 3, 4, 5, 6, 7, 8, 9, 10

AOA (◦) −9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Altitude (km) 0, 1.1, 2.2, 3.6, 5.4, 7.5, 8.9, 16.7, 33, 53, 64, 74, 88, 99, 110

LRef (m) 3

SRef (m2) 7.069

where J2 = 1.08263 × 10−3 is the gravitational harmonic constant of the Earth,

rE = 6378137m is the Earth’s equatorial radius and λ is latitude angle calculated

from sin−1(px/∥p∥).

With the gravity force explained, the last force and moment components to obtain

are aerodynamically generated forces and moments. As explained in the previous

sections, the aerodynamical force and moment coefficients are calculated using the

Missile DATCOM software. These coefficients are plotted in Figure 3.4, 3.5, 3.6, 3.7

and calculated for discrete values of angle of attack and mach values which are shown

in the table 5.3 along with other parameters used in this process.

While implementing the force and moments that the rocket experiences, the tower

model needs to be considered. Towers are used to hold the rocket while thrust force is

building up against the gravity. If there is not a tower at the start, the gravity force will

be bigger than the thrust and the rocket would go down and crash. To model the effect

of the tower, "Tower Model" block is added inside the "Force & Moment Calculation"

block as shown in Figure 5.8. This block ensures that no force or moment is applied to

the rocket until the release. The release action is decided inside the "Tower Clearance"

block by time such that the thrust force gains some value.

With completing the force and moment calculations, the next block is the 6DoF dy-

namics block labelled as "6 DoF Equations" and shown in Figure 5.7. In this block,

the 6DoF equation of motion block "Custom Variable Mass 6DOF ECEF (Quater-

nion)" of MATLAB is utilized and is set to custom variable mass mode since the

mass and inertia of the launch vehicle changes with time. This block has 4 inputs,

83

force, moment, mass and inertia. The force and moments are in the body frame and

they are obtained above. Mass and inertia values come from the system properties

block. The outputs of this block includes velocity and position (both cartesian and

LLA) in ECEF frame, Euler angles, Direction Cosine Matrices (DCM) between dif-

ferent frames, body translational and angular velocities, acceleration etc.

Apart from the 6DOF equations of motion, gusts are also implemented in this block.

They are important disturbances and may severely effect the stability of a rocket. To

model the gust, the widely-used half sine gust model of the NASA will be used [69].

In this approach, the gust profile is chosen in the form of a half sine wave. The

magnitude and the length of the gust corridor is varying. In this work, the gusts are

applied on the pitch axis, hence the velocity of the gust is added to w, which is the

velocity of the rocket in the body-z axis.

The last block given in Figure 5.7 to examine is the "Atmosphere Model" block.

In this block, "NRLMSISE-00 Atmosphere Model" of the MATLAB is used to im-

plement the mathematical representation of the 2001 United States Naval Research

Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere atmosphere

model [70]. This model is capable of calculating the temperature and the air density

from surface to lower exosphere (0 to 106 meters) according to the MATLAB doc-

umentation. Then, these values are used to calculate the speed of velocity which is

necessary to obtain the Mach values and air density ρ which is utilized to calculate

the dynamic pressure q∞ as follows.

q∞ =
1

2
ρV 2 (5.19)

Also, the angle of attack α and side slip angles β are calculated in this block as

follows.

α = tan−1
(w
u

)
, β = sin−1

(v

|V |

)
(5.20)

84

5.2.2 Open Loop Simulation of the Launch Vehicle

As stated earlier, the aerodynamic moment coefficient at the CG has a negative deriva-

tive with respect to AOA as shown in 3.8, meaning that the dynamics of the launch

vehicle is unstable. This can be shown by obtaining the transfer function from thrust

deflection angle δ to angular velocity q in the pitch plane. For this purpose, the trans-

fer function using the system properties at 1.2Mach is obtained as follows:

G(s) =
q(s)

δ(s)
=

5.3014(s+ 0.006841)

(s+ 0.5962)(s− 0.5929)
(5.21)

As can be seen in the equation 5.21, the system has positive poles and is hence un-

stable. Note that this unstability occurs due to the aerodynamics. Hence, to get the

open loop simulation, the aerodynamic moments needs to be eliminated. For this

purpose, the aerodynamic moments are multiplied with 0 and simulation is run. Note

that since there is no controller, the rocket does not make any manoeuvre, hence it

will go directly up since the initial theta angle is 90◦. The simulation is ended when

the 1st stage is separated, which is modelled to happen after 2s elapsed before the end

of the thrust. The simulation is run with the gust properties given in the table 5.4. The

results are depicted in the figures from 5.9 to 5.14.

Table 5.4: Values of the gust parameters used in the open loop simulation

Gust Number Gust Time Gust Duration Gust Magnitude
Gust-1 10 3 7

Gust-2 40 3 5

Gust-3 70 3 3

From the graph given in Figure 5.9, it can be seen that the longitudinal acceleration

has a similar shape to the thrust curve as expected, which can be seen in Figure 5.1.

Towards the end, the acceleration goes to negative numbers indicating that the thrust

is coming to end and gravity becomes stronger. From the velocity graph given in

Figure 5.10, the rocket speeds until the thrust ends and starts do decline due to the

gravity. The Mach number and the velocity has different envelope which is caused by

the nonlinear change in the speed of sound.

85

Figure 5.9: Open loop simulation results: Acceleration in x axis graph

Figure 5.10: Open loop simulation results: Velocity magnitude graph

The rocket reaches the altitude of around 90km in this simulation as seen in Figure

5.11 and experiences the maximum dynamic pressure around 10km altitude. This is

important since the rocket experiences the maximum aerodynamic load at this point.

The angle of attack and side slip angles can be seen in Figure 5.13. The half sine

waves shapes are due to the gust. The AOA is 0 if there is no gust since the rocket

is going directly up, meaning that it does not gain any velocity in the body-z axis.

However it gains some velocity in the body-y axis, which is due to gravity. As a result

86

Figure 5.11: Open loop simulation results: Altitude graph

Figure 5.12: Open loop simulation results: Dynamic pressure graph

the side slip angle of the launch vehicle does not stay at zero. Note that although theta

angle is 90◦ as seen in Figure 5.14, it does not mean the gravity is completely on x

axis, since the z axis of the NED frame does not necessarily intersect the center of

mass of the Earth.

87

Figure 5.13: Open loop simulation results: AOA and side slip angle graph

Figure 5.14: Open loop simulation results: Attitude angle in pitch plane graph

5.2.3 Closed Loop Simulation of the Launch Vehicle

In this section, the nominal trajectory will be explained and closed loop simulations

will be performed. Firstly, the trajectory in the absence of any uncertainties which will

be referred as "nominal trajectory" will be given. Secondly, to validate the controller

against the uncertainties and disturbances, Monte Carlo simulations will be performed

and results will be given.

88

In a typical implementation, the reference trajectory is calculated by the guidance

algorithm. There are different approaches for the design of the guidance algorithms

in the literature. Usually open loop commands are used for the lower altitudes and

closed loop commands for the higher altitudes [71]. Since the guidance algorithm is

out of the scope of this work, an open loop command will be used throughout the

flight of the 1st stage. The formation of the curvature information is explained in the

following paragraphs.

In this work, the reference trajectory is described by the trajectory curvature, whose

effect on the attitude angle is given in the equation 3.37. Since the VEGA rocket is

symmetric around the body-x axis, the rocket is assumed to manoeuvre only in the

pitch axis. In other words, the body axes are defined such that the rocket is expected to

rotate only around body-y axis. Hence, the trajectory curvature in the yaw plane ρyaw

will be taken as zero. This means that the rocket will not make any yaw motion during

the flight. As expressed earlier, the roll control of the launch vehicle is assumed to be

realized by other means and hence in this simulations the rocket will not experience

any moment around body-x axis.

The reference trajectory in the pitch axis is created with the classical approaches of

minimizing the aerodynamics loads and maximizing the gained velocity [72]. The

aerodynamic loads are proportional with the dynamic pressure q∞ and angle of attack

α. Hence, to minimize the aerodynamic loads, the term q∞α should be minimized.

The dynamic pressure is proportional to the velocity squared and air density as given

in the equation 5.19 and cannot be controlled. As a result, the term q∞α is minimized

through the angle of attack. Especially when the dynamic pressure is high, around

the time 37s in Figure 5.12, the angle of attack needs to be very small meaning that

the rocket should not rotate near this point. Apart from the loads, there is another

property that needs to be considered, the gained velocity. If the rocket does not rotate

and go directly up, then most of the thrust is wasted since the gained velocity is much

smaller than the potential. To prevent this, launch vehicles start maneuvering as soon

as possible after the launch. Considering these facts, the trajectory curvature in the

pitch axis is chosen as given in Figure 5.15. The two manoeuvres that corresponds to

the half sine-wave shapes are initialized when the velocity is 10m/s and 420m/s.

89

Figure 5.15: Nominal trajectory: Trajectory curvature in pitch and yaw axis

5.2.3.1 Nominal Trajectory

With the trajectory curvature information given in Figure 5.15, the other simulation

outputs are as given in Figure 5.16 through 5.20.

Figure 5.16: Nominal trajectory: Attitude angle errors

As seen in Figure 5.16, after the trajectory curvature rises, the error in the attitude

angle is accumulated at first. As a result, the controller reacts to this by increasing

the actuator command which is the thrust deflection angle resulting in a rotation of

90

Figure 5.17: Nominal trajectory: Thrust deflection angles

Figure 5.18: Nominal trajectory: Body angular rates

the rocket in the desired way to decrease the attitude error, as seen in Figure 5.17 and

5.18.

The spikes in the angle of attack graph given in Figure 5.19 is caused by the gust,

whose properties are given in Table 5.4. The Euler angles θ and ψ are given in Figure

5.20. The attitude angle in the pitch plane is decreased to around 57◦ at the end of the

1st stage of the flight. Note that since the Euler angles have a discontinuity around

θ = 90◦, although the initial value for ψ is set to 0◦, it jumps to some value and then

91

Figure 5.19: Nominal trajectory: AOA and side-slip angles

Figure 5.20: Nominal trajectory: Euler angles

drops to −180◦. The same phenomena occurs on the roll angle ϕ as well, although the

system have zero angular rate around body-x axis, it jumps to some value and then

drops to −180◦. This is due to the discontinuity of the Euler angles near the point

θ = 90◦.

92

Table 5.5: Numeric values of the Monte Carlo parameters

Parameter Name Distribution Uncertainty Mean
1st Stage Dry Mass Normal %5 8533kg

1st Stage Fuel Mass Normal %5 87710kg

Other Stages Total Mass Normal %5 39683kg

1st Stage Initial CG Normal %5 21.563m

1st Stage Burn Time Normal %12 109.9s

CM Uniform %10 Figure 3.8

CN Uniform %10 Figure 3.7

CA Uniform %10 -

Gust Time Uniform [30 30 20]s [0 30 60]s

Gust Magnitude Uniform [9 7 5]m/s [3 2 1]m/s

Gust Duration Uniform [3 2 1]s [3 2 1]s

IMU Delay Uniform 5s 2s

Actuator Sensor Delay Uniform 5s 2s

5.2.3.2 Monte Carlo Simulations

The response of the controller in the ideal scenario is given in the previous section.

However, this is not enough by itself to validate the controller since this scenario

is practically not realistic. To test the performance of the controller in the presence

of the disturbances and uncertainties, Monte Carlo simulations will be performed. In

this simulations, the system parameters such as mass, thrust, center of gravity distance

from the nose and their rate of change, along with the aerodynamic moment and force

coefficients, magnitude, time and duration of the gusts, delays of the sensors will be

dispersed. These parameters are summarized in table 5.5.

In the table given in 5.5, if the distribution is uniform, then the uncertainty value

means the difference between maximum and minimum possible uncertainty value. If

it is normal, then its value means the 1σ value of the uncertainty. The gust parameters

are chosen such that 3 gusts occur throughout the flight, whose magnitude and dura-

tion are decreasing with increasing the time. The gust magnitudes are chosen using

the document [69].

93

With the values of the uncertain parameters given in the table 5.5, the Monte Carlo

analysis is performed. In this analysis, 200 different runs are performed. The results

of these simulations are presented in Figures 5.21 through 5.26.

Figure 5.21: Monte Carlo analysis: Trajectory curvatures in different runs

As explained in the previous part, the first manoeuvre starts when the velocity is

10m/s and the second manoeuvre is initialized when the velocity is 420m/s. In the

Monte Carlo analysis, due to the uncertainties in the thrust force and the mass, the

rocket does not reach the same speed at the same time in different runs. As a result,

the trajectory curvature may change from run to run. This situation can be seen from

the graph given in Figure 5.21. The first peak is initiated when the velocity is very

low so there is not much a difference which ensures that the rocket will experience

almost the same curvature during the first maneuver.

94

Figure 5.22: Monte Carlo analysis: Attitude angle error in different runs

From Figure 5.22, it can be seen that in the first manoeuvre the error in the pitch

attitude angle can get as high as 8◦. These peaks at the start are caused by the gust. In

the second manoeuvre which happens in the higher altitudes, maximum attitude error

is around 4◦. At the end of the 1st stage flight, the error in the attitude angle is around

-0.7◦. As can be seen in Figure 5.26, the autopilot does not respond to these errors

and even if it does, the error may not change since the thrust value is getting near zero

at these moments.

95

Figure 5.23: Monte Carlo analysis: Attitude angle in different runs

The attitude angle of the launch vehicle in the Monte Carlo runs is depicted in Figure

5.23. After the first rotation, the θ angle is dropped around 82◦. After the second

manoeuvre, the final θ angle becomes around 55◦.

Note that although the curvature signals have the same duration and amplitudes, they

do not imply the same change in the attitude angle. This is due to the differences

in the velocity between runs. If a faster rocket experiences the same curvature, then

the change in the attitude angle increases since the rocket will move through more

distance in this curvature. As a result, although the attitude error angles are close to

0◦ at the end as seen in Figure 5.22, the final attitude angle changes between 53◦ and

96

60◦.

Figure 5.24: Monte Carlo analysis: Body angular rate around pitch axis in different

runs

The effect of the gust on the body angular velocity can be seen in Figure 5.24. At

the beginning, the gusts cause rocket to make bigger turns, this is due to the fact

that the rocket is slow at these moments meaning that gust and rocket velocities are

comparable. As the rocket is speeding up, the effect of the gust is still observable but

their magnitude is decreasing. The same situation can be observed in the AOA, whose

graphs are depicted in Figure 5.25. Note that in a realistic scenario the rocket might

tear apart in the case of high AOA. In this simulation this is not taken into account

and simulation is completed with the end of thrust.

97

Note that the rocket has positive q values and the θ is decreasing. This is due to the

values of other attitude angles ψ and ϕ. At first, the rocket is initialized with the

Euler angles 0◦, 90◦, 0◦ and due to the discontinuity around θ = 90◦, positive rotation

around pitch axis lead to a jump in the ψ and ϕ to −180◦. This situation can be seen

in Figure 5.20.

Figure 5.25: Monte Carlo analysis: Angle of attack in different runs

The actuator angle, i.e., thrust deflection angle can be seen in Figure 5.26. The rocket

reacts to gust with higher actuator commands at first, this is due to the gust velocity

being comparable with the rocket velocity. After the t = 40s, the actuator angle

increases due to the excessive road curvature. Overall, the thrust deflection angle do

98

not cross ±1.3◦.

Figure 5.26: Monte Carlo analysis: Thrust deflection angle in different runs

The controller successfully maintains the stability of the rocket under the uncertain-

ties and disturbances throughout the flight. This result can be deduced from Figure

5.24. Although the gust caused some oscillations at first, there is no sign of instability

such as growing oscillations after some time. Note that the beginnings of the launch

generally require different control schemes to maintain different requirements such

as "minimum drift", or "minimum load" [73] [74]. Hence, these gust-related short

oscillations can be regarded as "acceptable" for this work.

99

100

CHAPTER 6

CONCLUSION

This thesis is concerned with the application of control methods for linear parameter

varying (LPV) systems to different types of vehicles.

First, linear and nonlinear models of lateral vehicle dynamics in the lane keeping

configuration for ground vehicles are obtained. The linear model is transformed into

LPV form and a controller is synthesized using the polytopic approach of LPV con-

trol. The nonlinear model is implemented on the MATLAB/Simulink software to test

the controller. It is verified in the extensive nonlinear simulations under different ini-

tial conditions, disturbances and velocities. Some velocity and road curvature profiles

are used in the process.

The simulation results prove that the applied method manages to keep the vehicle

stable and errors below some limits even though the velocity is changing. To give

numerical examples, the controller eliminates the 1m initial displacement error or 3◦

heading angle error within around 4 seconds. In a constant turn with a radius of 300m

the maximum lateral displacement error is around 35cm while it can get as high as

65cm if the velocity and curvature change together. In these simulations sensor model

is missing, hence in the future works the noise or delay in the lateral displacement

signal might be considered.

The similar steps are executed for the launch vehicle modelling and controller design.

For the system parameters, the launch vehicle VEGA in the first stage configuration is

chosen. The aerodynamic coefficients are obtained using the DATCOM software. For

the controller design, different from applications in the literature, the LPV controller

is designed with the polytopic approach instead of gridding approach. To test the

101

designed autopilot in different scenarios, the nonlinear model considering realistic

disturbances such as non-ideal actuator model, delays in sensors and environmental

effects is implemented on Simulink. 6DoF high fidelity simulations are performed

in the Monte Carlo analysis. To test the robustness of the controller, uncertainties in

different parameters such as mass, thrust, CG location, aerodynamics and inertia.

The Monte Carlo simulation results show that the designed controller is able to main-

tain the stability in the presence of disturbances and uncertainties. The effect of sud-

den gusts becomes apparent at lower velocities in the form of high angle of attacks

or turn rates. This problem is generally solved by different control schemes at the

start of the launch such as "minimum drift" approaches, hence this behavior for the

designed controller is expected. Apart from the stability, the reference tracking per-

formance of the controller is also tested with nonzero trajectory curvature values in

the pitch plane. The maximum attitude error throughout the trajectory is around 4◦

if the effect of the gust at the beginning is neglected. The final values of the attitude

error is between 1◦ and −1◦, since there are other stages, this error at the 1st stage

separation is not very critical and hence accepted.

In most applications, the rotations in these axes are tried to be decoupled by maneu-

vering the system around one axis at a time. However in practice this is rarely the

case. In this work, the roll movement is assumed to be controlled by other means,

hence the rocket rotates only around the pitch axis. As a result, the effect of the cou-

pling between these axes are absent in these analysis. Also, the bending and sloshing

dynamics are also neglected and with some addition the states, they can be included

in the controller design in a possible future work.

102

REFERENCES

[1] J. S. Shamma, Analysis and Design of Gain Scheduled Control Systems. PhD

thesis, Massachusetts Institute of Technology, 1988.

[2] D. J. Leith and W. E. Leithead, “Survey of gain-scheduling analysis and design,”

International journal of control, vol. 73, no. 11, pp. 1001–1025, 2000.

[3] R. D. Mocsányi, B. Takarics, A. Kotikalpudi, and B. Vanek, “Grid-based and

polytopic linear parameter-varying modeling of aeroelastic aircraft with para-

metric control surface design,” Fluids, vol. 5, no. 2, p. 47, 2020.

[4] D. Navarro-Tapia, A. Marcos, S. Bennani, and C. Roux, “Linear parameter

varying control synthesis for the atmospheric phase VEGA launcher,” vol. 51,

pp. 68–73, Elsevier, 2018.

[5] A.-T. Nguyen, P. Chevrel, and F. Claveau, “On the effective use of vehicle sen-

sors for automatic lane keeping via LPV static output feedback control,” vol. 50,

pp. 13808–13815, Elsevier, 2017.

[6] A. Abubakar, K. I. Dahiru, S. H. Sulaiman, and H. Mustapha, “Robust polytopic

LPV based adaptive cruise control design for autonomous vehicle system,” In-

ternational Journal of Scientific & Engineering Research, vol. 10, 2019.

[7] M. S. Spillman, “Robust longitudinal flight control design using linear

parameter-varying feedback,” Journal of Guidance, Control, and Dynamics,

vol. 23, no. 1, pp. 101–108, 2000.

[8] P. C. Pellanda, P. Apkarian, and H. D. Tuan, “Missile autopilot design via a

multi-channel LFT/LPV control method,” vol. 12, pp. 1–20, Wiley Online Li-

brary, 2002.

[9] S. Mustaki, A.-T. Nguyen, P. Chevrel, M. Yagoubi, and F. Fauvel, “Comparison

of two robust static output feedback H2 design approaches for car lateral con-

103

trol,” in 2019 18th European Control Conference (ECC), pp. 716–723, IEEE,

2019.

[10] M. Ganet and M. Ducamp, “LPV control for flexible launcher,” in AIAA Guid-

ance, Navigation, and Control Conference, p. 8193, 2010.

[11] O. Törő, T. Becsi, and S. Aradi, “Design of lane keeping algorithm of au-

tonomous vehicle,” Periodica Polytechnica Transportation Engineering, vol. 44,

no. 1, pp. 60–68, 2016.

[12] J. Baek, C. Kang, and W. Kim, “Practical approach for developing lateral motion

control of autonomous lane change system,” Applied Sciences, vol. 10, no. 9,

p. 3143, 2020.

[13] R. Marino, S. Scalzi, and M. Netto, “Nested PID steering control for lane keep-

ing in autonomous vehicles,” Control Engineering Practice, vol. 19, no. 12,

pp. 1459–1467, 2011.

[14] Z. Li, G. Cui, S. Li, N. Zhang, Y. Tian, and X. Shang, “Lane keeping control

based on model predictive control under region of interest prediction consid-

ering vehicle motion states,” International journal of automotive technology,

vol. 21, no. 4, pp. 1001–1011, 2020.

[15] M. Samuel, M. Mohamad, M. Hussein, and S. M. Saad, “Lane keeping maneu-

vers using proportional integral derivative (PID) and model predictive control

(MPC),” Journal of Robotics and Control (JRC), vol. 2, no. 2, pp. 78–82, 2021.

[16] M. Shimakage, H. Kawazoe, O. Sadano, and T. Murakami, “Design of lane-

keeping control with steering torque input for a lane-keeping support system,”

SAE transactions, pp. 448–455, 2001.

[17] P. Pfeffer and H.-H. Braess, Basics of Lateral Vehicle Dynamics, pp. 91–120.

Cham: Springer International Publishing, 2017.

[18] J. Orr and T. Van Zwieten, “Robust, practical adaptive control for launch vehi-

cles,” in AIAA Guidance, Navigation, and Control Conference, p. 4549, 2012.

104

[19] B. Clement, G. Duc, S. Mauffrey, and A. Biard, “Aerospace launch vehicle con-

trol: A gain scheduling approach,” IFAC Proceedings Volumes, vol. 35, no. 1,

pp. 145–150, 2002.

[20] J. Mohammadpour and C. W. Scherer, Control of linear parameter varying sys-

tems with applications. Springer Science & Business Media, 2012.

[21] G. Zhenxing and F. Jun, “Robust LPV modeling and control of aircraft fly-

ing through wind disturbance,” Chinese Journal of Aeronautics, vol. 32, no. 7,

pp. 1588–1602, 2019.

[22] A. Marcos and G. J. Balas, “Development of linear-parameter-varying mod-

els for aircraft,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 2,

pp. 218–228, 2004.

[23] G. J. Balas, I. Fialho, A. Packard, J. Renfrow, and C. Mullaney, “On the design

of LPV controllers for the F-14 aircraft lateral-directional axis during powered

approach,” in Proceedings of the 1997 American Control Conference (Cat. No.

97CH36041), vol. 1, pp. 123–127, IEEE, 1997.

[24] G. Balas, J. Mueller, and J. Barker, “Application of gain-scheduled, multivari-

able control techniques to the F/A-18 system research aircraft,” in Guidance,

Navigation, and Control Conference and Exhibit, p. 4206, 1999.

[25] F. Wu, A. Packard, and G. Balas, “LPV control design for pitch-axis missile au-

topilots,” in Proceedings of 1995 34th IEEE Conference on Decision and Con-

trol, vol. 1, pp. 188–193, IEEE, 1995.

[26] J.-M. Biannic and P. Apkarian, “Missile autopilot design via a modified LPV

synthesis technique,” Aerospace Science and Technology, vol. 3, no. 3, pp. 153–

160, 1999.

[27] W. Tan, A. K. Packard, and G. J. Balas, “Quasi-LPV modeling and LPV control

of a generic missile,” in Proceedings of the 2000 American Control Conference.

ACC (IEEE Cat. No. 00CH36334), vol. 5, pp. 3692–3696, IEEE, 2000.

[28] H. Pfifer and S. Hecker, “LPV controller synthesis for a generic missile model,”

in 2010 IEEE International Conference on Control Applications, pp. 1838–

1843, IEEE, 2010.

105

[29] H. Pfifer, “Quasi-LPV model of a NDI-controlled missile based on function

substitution,” in AIAA Guidance, Navigation, and Control Conference, p. 4970,

2012.

[30] R. Tekin and H. Pfifer, “Linear parameter varying control of an agile missile

model based on the induced L2-norm framework,” in Advances in Aerospace

Guidance, Navigation and Control, pp. 3–14, Springer, 2013.

[31] D. Navarro-Tapia, A. Marcos, S. Bennani, C. Roux, and E. SpA, “Structured

H-infinity and linear parameter varying control design for the VEGA launch

vehicle,” in Proceedings of the 7th European Conference for Aeronautics and

Aerospace Sciences (EUCASS), 2017.

[32] D. N. Tapia, Robust and Adaptive TVC Control Design Approaches for the

VEGA Launcher. PhD thesis, University of Bristol, 2019.

[33] E. Alcalá, V. Puig, and J. Quevedo, “LPV-MPC control for autonomous vehi-

cles,” vol. 52, pp. 106–113, Elsevier, 2019.

[34] L. Jacobs, A. De Preter, J. Anthonis, J. Swevers, and G. Pipeleers, “Trajectory

tracking of AGVs by linear parameter-varying control: a case study,” vol. 51,

pp. 43–48, Elsevier, 2018.

[35] P. Hang and X. Chen, “Path tracking control of 4-wheel-steering autonomous

ground vehicles based on linear parameter-varying system with experimental

verification,” vol. 235, pp. 411–423, SAGE Publications Sage UK: London,

England, 2021.

[36] M. Q. Nguyen, LPV approaches for modelling and control of vehicle dynamics:

application to a small car pilot plant with ER dampers. PhD thesis, Université

Grenoble Alpes, 2016.

[37] J. C. Tudon-Martinez, S. Varrier, O. Sename, R. Morales-Menendez, J.-J. Mar-

tinez, and L. Dugard, “Fault tolerant strategy for semi-active suspensions with

LPV accommodation,” in 2013 Conference on Control and Fault-Tolerant Sys-

tems (SysTol), pp. 631–636, IEEE, 2013.

106

[38] C. Hoffmann and H. Werner, “A survey of linear parameter-varying control ap-

plications validated by experiments or high-fidelity simulations,” IEEE Trans-

actions on Control Systems Technology, vol. 23, no. 2, pp. 416–433, 2014.

[39] J. Mohammadpour and C. W. Scherer, Control of linear parameter varying sys-

tems with applications. Springer Science & Business Media, 2012.

[40] P. Apkarian and R. J. Adams, “Advanced gain-scheduling techniques for un-

certain systems,” in Advances in linear matrix inequality methods in control,

pp. 209–228, SIAM, 2000.

[41] F. Wu, Control of linear parameter varying systems. PhD thesis, University of

California, Berkeley, 1995.

[42] A. Hjartarson, P. Seiler, and A. Packard, “LPVTools: A toolbox for mod-

eling, analysis, and synthesis of parameter varying control systems,” IFAC-

PapersOnLine, vol. 48, no. 26, pp. 139–145, 2015.

[43] A.-T. Nguyen, P. Chevrel, and F. Claveau, “LPV static output feedback for con-

strained direct tilt control of narrow tilting vehicles,” IEEE Transactions on Con-

trol Systems Technology, vol. 28, no. 2, pp. 661–670, 2018.

[44] R. Tóth, M. Lovera, P. S. Heuberger, M. Corno, and P. M. Van den Hof, “On

the discretization of linear fractional representations of LPV systems,” IEEE

Transactions on Control Systems Technology, vol. 20, no. 6, pp. 1473–1489,

2011.

[45] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities

in system and control theory. SIAM, 1994.

[46] C. W. Scherer, “LPV control and full block multipliers,” Automatica, vol. 37,

no. 3, pp. 361–375, 2001.

[47] Y. Nesterov, “Interior point polynomial methods in convex programming,” The-

ory and Applications, 1994.

[48] S. V. Gusev and A. L. Likhtarnikov, “Kalman-Popov-Yakubovich lemma and

the s-procedure: A historical essay,” Automation and Remote Control, vol. 67,

no. 11, pp. 1768–1810, 2006.

107

[49] P. P. Ramanata, Optimal vehicle path generator using optimization methods.

PhD thesis, Virginia Tech, 1998.

[50] M. A. Ardm Haseeb, Optimal Control Problems for Safe and Efficient Lane

Changes of Self-Driving Vehicles. PhD thesis, Çankaya University, 2017.

[51] K. Saraçoğlu, B. Üleş, and K. W. Schmidt, “A lane keeping system with a

weighted preview measurement,” in 2018 26th Signal Processing and Commu-

nications Applications Conference (SIU), pp. 1–4, IEEE, 2018.

[52] J. H. Blakelock, Automatic control of aircraft and missiles. John Wiley & Sons,

1991.

[53] S. Gallucci, F. Battie, M. Volpi, T. Fossati, and G. Curti, “Vega launch vehi-

cle first flight mission analysis—VV01,” in 2012 IEEE First AESS European

Conference on Satellite Telecommunications (ESTEL), pp. 1–5, IEEE, 2012.

[54] Arianespace, VEGA User’s Manual. Arianespace.

[55] B. Özkan, Dynamic Modeling, Guidance and Control of Homing Missiles. PhD

thesis, Middle East Technical University, 2017.

[56] W. B. Blake, Missile DATCOM User’s Manual. AFRL.

[57] S. Ishida and J. E. Gayko, “Development, evaluation and introduction of a

lane keeping assistance system,” in IEEE Intelligent Vehicles Symposium, 2004,

pp. 943–944, IEEE, 2004.

[58] N. C. Basjaruddin, D. Saefudin, S. A. Aryani, et al., “Lane keeping assist sys-

tem based on fuzzy logic,” in 2015 International Electronics Symposium (IES),

pp. 110–113, IEEE, 2015.

[59] O. Törő, T. Becsi, and S. Aradi, “Design of lane keeping algorithm of au-

tonomous vehicle,” Periodica Polytechnica Transportation Engineering, vol. 44,

no. 1, pp. 60–68, 2016.

[60] D. De Vito, A. Kron, J. de Lafontaine, and M. Lovera, “A Matlab toolbox for

LMI-based analysis and synthesis of LPV/LFT self-scheduled H∞ control sys-

tems,” in 2010 IEEE International Symposium on Computer-Aided Control Sys-

tem Design, pp. 1397–1402, IEEE, 2010.

108

[61] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,”

in 2004 IEEE international conference on robotics and automation (IEEE Cat.

No. 04CH37508), pp. 284–289, IEEE, 2004.

[62] M. ApS, “Mosek optimization toolbox for matlab,” User’s Guide and Reference

Manual, Version, vol. 4, 2019.

[63] J. Ackermann, J. Guldner, W. Sienel, R. Steinhauser, and V. I. Utkin, “Linear and

nonlinear controller design for robust automatic steering,” IEEE Transactions on

Control Systems Technology, vol. 3, no. 1, pp. 132–143, 1995.

[64] DOT-NY, Highway Design Manual - Chapter 5. New York - Department of

Transportation.

[65] KGM, Karayolu Tasarım El Kitabı. Karayolları Genel Müdürlüğü.

[66] J. Jang, A. Alaniz, R. Hall, N. Bedrossian, C. Hall, and M. Jackson, “Design

of launch vehicle flight control systems using ascent vehicle stability analysis

tool,” in AIAA guidance, navigation, and control conference, p. 6652, 2011.

[67] E. Dumont, “Variations of solid rocket motor preliminary design for small TSTO

launcher,” 2012.

[68] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and simulation:

dynamics, controls design, and autonomous systems. John Wiley & Sons, 2015.

[69] D. Johnson, “Terrestrial environment (climatic) criteria guidelines for use in

aerospace vehicle development, 2008 revision,” tech. rep., 2008.

[70] J. Picone, A. Hedin, D. P. Drob, and A. Aikin, “NRLMSISE-00 empirical model

of the atmosphere: Statistical comparisons and scientific issues,” Journal of

Geophysical Research: Space Physics, vol. 107, no. A12, pp. SIA–15, 2002.

[71] G. A. Dukeman, Closed-loop nominal and abort atmospheric ascent guidance

for rocket-powered launch vehicles. Georgia Institute of Technology, 2005.

[72] G. Dukeman, “Atmospheric ascent guidance for rocket-powered launch vehi-

cles,” in AIAA Guidance, Navigation, and Control Conference and Exhibit,

p. 4559, 2002.

109

[73] D. Garner, “Control theory handbook,” tech. rep., 1964.

[74] B. Wie, W. Du, and M. Whorton, “Analysis and design of launch vehicle flight

control systems,” in AIAA guidance, navigation and control conference and ex-

hibit, p. 6291, 2008.

110

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background
	Linear Parameter Varying (LPV) Systems
	Control Methods for LPV Systems
	Mathematical Preliminaries
	Reference Frames
	Body Frame
	Earth-Centered Earth-Fixed Frame
	North East Down Frame
	Earth-Centered Inertial Frame

	Modelling and Simulation of the Selected Systems
	Vehicle Lateral Dynamic Model
	Nonlinear Vehicle Lateral Dynamic Model
	Vehicle Dynamics
	Error Dynamics
	Actuator Dynamics

	Linear Vehicle Lateral Dynamic Model

	Launch Vehicle Model
	Nonlinear Launch Vehicle Model
	Aerodynamics
	Translational Dynamics
	Rotational Dynamics
	Error Dynamics
	Actuator Dynamics

	Linear Launch Vehicle Model

	Example Application-I: Lane Keeping Controller
	Theoretical Background
	Lane Keeping Controller Synthesis
	LPV Vehicle Lateral Dynamic Model
	Controller Design

	Nonlinear Dynamic Bicycle Model Simulation
	Implementation of the Nonlinear Simulation
	Open Loop Simulation of the Vehicle Lane Keeping
	Closed Loop Simulation of the Vehicle Lane Keeping
	Case-I: Nonzero Initial Lateral Error, V = 50km/h
	Case-II: Nonzero Initial Lateral Error, V = 85km/h
	Case-III: Nonzero Initial Lateral Error, V = 120km/h
	Case-IV: Nonzero Initial Heading Error, V = 50km/h
	Case-V: Nonzero Initial Heading Error, V = 85km/h
	Case-VI: Nonzero Initial Heading Error, V = 120km/h
	Case-VII: Nonzero Road Curvature, V = 50km/h
	Case-VIII: Nonzero Road Curvature, V = 85km/h
	Case-IX: Nonzero Road Curvature, V = 120km/h
	Case-X: Square Wave Acceleration and Curvature
	Case-XI: Acceleration and Curvature Profile #1
	Case-XII: Acceleration and Curvature Profile #2
	Controller Comparison

	Example Application-II: Launch Vehicle Autopilot
	Autopilot Design for Launch Vehicle
	LPV Model of the Launch Vehicle
	Autopilot Design

	6 DoF Simulation of the Launch Vehicle
	Implementation of the Nonlinear Simulation
	Open Loop Simulation of the Launch Vehicle
	Closed Loop Simulation of the Launch Vehicle
	Nominal Trajectory
	Monte Carlo Simulations

	Conclusion
	REFERENCES

