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ABSTRACT 

 

 

MODELING ELECTRICITY MARKETS BY INTEGRATING  

RENEWABLE ENERGY 

 

 

PAKYARDIM, Yusuf Kenan 

Ph.D., The Department of Economics 

Supervisor: Assoc. Prof. Dr.Esma  GAYGISIZ 

 

 

September 2022, 160 pages 

 

 

Sustainability concerns arising from anthropogenic climate change necessitated 

fundamental changes in the electricity sector. As set out in the 2015 Paris Agreement, 

the key element to deal with the threat posed by climate change is to increase the shares 

of renewable sources in exchange for reducing the shares of fossil fuels. Nevertheless, 

the traditional electricity systems have not evolved in a way to accommodate large-

scale renewable energy smoothly. The large-scale integration of renewable energy 

poses several challenges for almost all components of the electricity sector.  

The energy transition towards low-carbon energy now faces a multifaceted 

implementation problem. The problems are economic efficiency and managerial 

problems rather than technical difficulties. This dissertation comprises three analytical 

essays on analysis of the challenges of renewable energy integration. The first essay 

studies the problems in the wholesale markets. Particularly, the distortion of 

equilibrium prices in wholesale market because of the negligibly small marginal cost 

of production of renewables, impacts of different renewable subsidization 

mechanisms, and impacts of the industrial organization of renewable energy 
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generation are analyzed in a Cournot-Nash competition framework. The second essay 

proposes a novel retail market model based on a Demand Response mechanism and 

market segmentation. The model includes dynamic programming involving the 

dynamic interaction of retailers and consumers decision making processes and 

addresses the problem due to the intermittency of renewable energy. The last essay 

analyzes and compares the day-ahead hourly demand forecasting performances of 

three different forecasting methods on Turkish electricity markets. 

 

Keywords: Renewable Energy Integration, Demand Response, Wholesale 

Competition, Forecasting Hourly-load 
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ÖZ 

 

 

ELEKTİRİK PİYASALARININ YENİLENEBİLİR ENERJİ İLE BÜTÜNLEŞİK 

MODELLENMESİ 

 

 

PAKYARDIM, Yusuf Kenan 

Doktora, İktisat Bölümü 

Tez Yöneticisi: Doç. Dr. Esma GAYGISIZ 

 

 

Eylül 2022, 160 sayfa 

 

 

Antropojenik iklim değişikliğinden kaynaklanan sürdürülebilirlik endişeleri, elektrik 

sektöründe köklü değişiklikleri zorunlu kılmıştır. 2015 Paris Anlaşması'nda belirtildiği 

gibi, iklim değişikliğinin yarattığı tehditle başa çıkmanın kilit unsuru, fosil yakıtların 

paylarını azaltarak bunları yenilenebilir enerji kaynakları ile değiştirmektir. Bununla 

birlikte, geleneksel elektrik sistemleri, büyük ölçekli yenilenebilir enerjiyi sorunsuz 

bir şekilde kullanabilecek yapılar olarak gelişmemiştir. Yenilenebilir enerjinin büyük 

ölçekli entegrasyonu elektrik sektörünün neredeyse tüm bileşenleri için çeşitli 

zorluklar ortaya çıkarmaktadır. 

Düşük-karbon enerji dönüşümü, bu noktada çok yönlü bir uygulama sorunuyla karşı 

karşıya kalmıştır. Bu sorunların büyük bölümü, teknik zorluklardan ziyade ekonomik 

verimlilik ve yönetim sorunlarıdır. Bu tez, yenilenebilir enerji entegrasyonu ile ilgili 

zorluklarının ekonomik analizi üzerine makalelerden oluşmaktadır. İlk makale toptan 

satış pazarlarındaki sorunları incelemektedir. Özellikle, yenilenebilir enerjinin çok 

düşük marjinal üretim maliyeti ile rekabete katılmasının piyasa denge fiyatları 

üzerindeki etkileri ile birlikte farklı yenilenebilir sübvansiyon mekanizmalarının ve 
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yenilenebilir enerji üretiminin endüstriyel organizasyonunun bu dengeye etkileri 

Cournot-Nash çerçevesinde incelenmiştir. İkinci makale, Talep Tepki (Demand 

Response) yöntemi ve piyasa segmantasyonuna dayalı yeni market yapısı 

önermektedir ve bunun ile ilgili analizleri içermektedir. Model üretici ile tüketicinin 

karar verme süreçlerinin dinamik etkileşimini içeren dinamik programlama 

kullanmaktadır ve yenilenebilir enerjinin kontrol edilememesinden kaynaklanan 

sorunu ele almaktadır. Son makalede, üç farklı tahmin yönteminin Türkiye elektrik 

piyasalarındaki gün-öncesi saatlik talep tahmin performansları analiz edip birbirleri ile 

karşılaştırmaktadır. 

 

Anahtar Kelimeler: Yenilenebilir Enerji, Demand Response, Toptan Piyasalarda 

Rekabet, Saatlik Talep Tahmini 
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CHAPTER 1  

1 INTRODUCTION  

Electrical power industries are constantly evolving and changing around the world 

throughout their entire history. Previously, the evolution has been driven primarily by 

ever-increasing demand, technological advances on both the supply and demand sides, 

policies that facilitate increased access to electricity, and other regulatory policies. In 

this context, traditional electricity systems have developed as vertically integrated and 

predominantly state-owned entities that combine generation, transmission, and 

distribution functions altogether. Since the 1980s, many countries have started to 

restructuring their electricity systems to increase the efficiency of these monopolistic 

organizations. This restructuring mainly involves i) the separation of vertically 

integrated generation, transmission, and distribution functions, ii) facilitating 

competition between generators in the wholesale markets as well as between the 

retailers and related services, and iii) separating financial markets from the physical 

distribution of electricity. However, the serious sustainability threat posed by 

anthropogenic climate change caused further changes. Greenhouse gases emitted from 

fossil fuels, which are also the main source of traditional energy systems, are the main 

cause of climate change. As an important step to handle climate change, an 

international consensus was achieved in the 2015 Paris agreement between 196 parties 

(195 countries and E.U.). The goal of the agreement is to keep global warming to under 

20 compared to the pre-industrial levels with a target of 1.50   (Bernardo et al., 2021). 

The key element to accomplishing the goal is to replace fossil fuels with zero-carbon 

renewable energy sources such as intermittent solar and wind power. Accordingly, 

countries have committed to reducing their emissions in proportion to their “nationally 

determined contributions” and initiated policies to achieve these targets. Though, 

policies designed to increase renewable energy have introduced a new set of problems 

for almost all components of the electricity sector, including network and system 
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operations, investment and generation, distribution, consumption, and related 

businesses. The starting point for transition into low-carbon energy efforts was to 

implement policies to subsidise renewable energy to make it economically viable, 

since expected returns from power sales were not enough to attract low-carbon 

investment. The share of renewable energy has increased considerably in several 

countries and will be in many. In addition, renewable energy investments are becoming 

more attractive than before in time because of the decrease in costs as a result of 

developments in technology and growing markets. Thus, countries begin to revisit 

their support programs. However, the issues created by low-carbon policies have 

grown even more with the increase in the share of renewable energy since traditional 

energy systems in their existing structures are not appropriate to integrate large-scale 

intermittent renewable energy efficiently. At this stage of the low-carbon energy 

transition, where shares of intermittent renewable energy are becoming considerable, 

fundamental changes are required regarding market structures and system operations 

as well as other related components. Intermittent renewable energy has two main 

characteristics that differ greatly from conventional sources, which are the root causes 

of numerous problems. 

 

The first and most prevailing one is intermittency. Without the possibility of nation-

scale storage, electricity must be consumed as soon as it is generated. In this respect, 

input and output to the electricity network must be balanced all the time. In traditional 

electricity systems, all the input-output adjustments are carried out on the supply side 

and the supply is constantly adjusted according to the demand at every point in time. 

Therefore, scheduling production in terms of timing and quantity is central to electrical 

system operations. However, intermittent renewable energy cannot be scheduled 

according to the needs. Abundant inflexible production from renewable sources in a 

period imposes restrictions on production from other sources in that period. One way 

to deal with this problem is to shift the flexibility lost on the supply side to the demand 

side. However, specially designed market mechanisms and market models are needed 

to alter the consumer's consumption pattern and obtain flexibility on the demand side. 

The mechanism designed to change the consumption pattern of the end-users in 

response to a change in the price of electricity or in response to an incentive is referred 

to as Demand Response which is one of the main subjects of this thesis. Another and 
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theoretically more manageable problem of renewable integration is the almost 

negligible marginal cost of production from renewables. When renewable energy 

competes in the wholesale market at almost zero marginal production cost, the 

equilibrium price is distorted downwards, which is referred to as the Merit Order Effect 

of renewables. Together with intermittency, this effect creates several issues, such as 

inefficient wholesale prices, price volatilities, curtailments of new technology 

generation and under-investment problems, etc. In addition, subsidization of 

renewable energy elevates the problems even more. From this respect, the major issues 

related to integrating renewable energy into current electricity systems are mainly 

economic problems rather than technical difficulties. With this motivation, this thesis 

aims at the economic modeling of electricity markets and addresses the issues related 

to the integration of renewable energy. The organization of the thesis is: 

 

Chapter two explains the fundamentals of power systems and current issues because 

of renewable energy integration. This section comprises two main parts. The first 

section presents the key features of all elements of the electricity value chain, from the 

energy source to the end-users. The second section explains how wholesale and retail 

energy markets work. This chapter is important to understand the special features of 

electrical systems, and current issues faced and also it is necessary for a better 

understanding of the rest of the thesis. 

 

Chapter three is an essay on the impact of renewable integration on wholesale markets. 

Besides independent sales, power generation companies compete in the wholesale 

market regulated by a system operator. The system operator determines the 

equilibrium price according to the quantity-price bids of the suppliers. Renewable 

energy, unlike any other energy source, has an almost negligible marginal cost. The 

zero marginal cost of renewables affects equilibrium prices negatively. Also, the 

intermittent nature of these resources creates another constraint to consider. In 

addition, the way renewable energy is subsidized and the industrial organization of 

renewable energy also have impacts on equilibrium prices. This work analytically 

investigates the impacts of all these factors on equilibrium prices in a Cournot-Nash 

framework. The result indicates that equilibrium price and quantity of renewable 

energy are negatively related as expected. Strategic companies having also renewable 
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generation can make use of their diversified portfolio. Therefore, ownership impacts 

the equilibrium. The contributions of this chapter to the current literature are threefold. 

First, two different cost structures, linear and quadratic, are considered in the analysis 

and the results are compared. We show that the result may change significantly in some 

cases. Second, different from the current literature, a general form of heterogeneous 

ownership structure between strategic firms in terms of renewable ownership is 

employed in the model. Third, the impact of renewable energy subsidization methods 

is studied under heterogeneous ownership and different cost structures. The results 

provide useful insight for the policymakers.  

 

Chapter four is an individual essay about the problem because of the intermittency of 

renewable. In this essay, a novel market mechanism is introduced and analyzed. In the 

model, electricity usage is segmented into two based on flexibility. The system 

operator provides a discounted price for the flexible usage in return consumers allow 

the system operator to manage the timing of some portion of the usage. The modeling 

is based on the multistage dynamic interaction of both supplier and consumer which 

addresses the intermittency of renewables. The result of the numerical study indicates 

that the model always improves efficiency when there is excess generation from 

renewables. The model can be evaluated under the direct control type Demand 

Response, but it is quite distinct from the models in current literature. Thus, the model 

itself is the main contribution of this chapter to the literature. Another contribution of 

this chapter is that consumer preferences are modeled based on a utility maximization 

problem. Most of the studies in the current literature use a simplified form of equations 

such as linear relations or make some assumption that a certain amount of demand is 

available for Demand Response. 

 

Chapter five is another individual essay on forecasting hourly electricity demand for 

the next day. Forecasting the next day’s demand is an essential part for both suppliers 

and retailers for the planning and optimization. Especially when intermittent energy 

plays an important role, the number of parties who need accurate forecast would 

increase since consumers would like to know the potential demand when a Demand 

response offer is made to them. In the study, three different forecasting methods which 

are Double Seasonal Exponential Smoothing (DSES), TBATS, and Multiple STL 
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Decomposition (MSTL) are used and their performances are compared. The 

forecasting is carried out based on the consumption data of Turkey. The results show 

that MSTL outperforms the other two methods providing always better results over 

TBATS in all cases and better results over DES for most of the cases. The first 

contribution of this chapter to the current literature is that these techniques are applied 

and compared using Turkish data on an hourly basis. Another contribution is that 

MSTL is recently introduced in commercial statistical packages and up to our 

knowledge, it has almost no application when the study of this chapter was initiated. 
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CHAPTER 2  

2 FUNDAMENTALS OF POWER SYSTEM ECONOMICS 

In this chapter, special characteristics of electricity systems and electricity markets are 

explained in two main parts.   

2.1 Electricity Value Chain 

The value chain of modern electricity energy is composed of the source of the energy 

and the basic functions and components ranging from the generation of the energy to 

the end-user of the energy. These functions include generation, transmission, 

distribution, and consumption. Under each category, several governmental 

organizations and private firms undertake different responsibilities. Although these 

activities are highly interdependent and highly integrated due to both technical 

necessities and instantaneously perishable characteristics of the electricity, they are 

also very diverse in terms of their operational natures. Historically, due to the high 

investment requirements, technological limitations, interminable energy supply 

purposes, etc., most of the activities were carried out by the government agencies. For 

example, TEK was the state organization having the sole responsibility for the 

generation, transmission, and distribution of electricity in turkey until 1994. Demand 

for electricity has grown rapidly over the last decades and these state-owned or natural 

monopolistic structures became insufficient to meet the increasing demand in terms of 

quantity, quality, and price (Tagare, 2011). In order the improve efficiency, many 

countries initiated reformation in their electricity sector around the 90s (Joskow, 

2006). Liberalization and separation of some segments were among the first steps of 

these restructuring processes. Liberalization efforts and also advancements in 

technology have led the organizations and structure of the electricity sector to change 

over time (Jamasb and Pollitt, 2005), (Sioshansi, 2013), (Sioshansi and Pfaffenberger, 
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2006). Liberalization efforts were initiated in the generation part. The majority of the 

countries have privatized and a competitive environment has been created in most of 

the countries. However, heavy regulations in the electricity markets and system 

operations still persist.   

2.1.1 The Source 

The source of electricity is one of the most relevant factors for sustainability, energy 

security, market structures, economic and environmental considerations as well as 

many others such as businesses, technology, etc. Modern electricity generation 

systems rely on many different sources for continuous operation. These sources are 

generally evaluated under three main categories: Fossil, Nuclear, and Renewables. 

Fossil sources primarily consist of coal, natural gas, and petroleum which originated 

from organic substances. Whereas main elements of renewables are hydropower, solar, 

wind, and biomass. In modern electricity systems, relying on a single source of energy 

is not adequate from both operational and economic perspectives. The portfolio of 

sources that are used to generate electricity is often referred to as the energy mix. 

Throughout the years, increasing demand for electricity, technological advancement, 

economic aspects, supply security considerations, and environmental concerns let 

diversification of the energy mix and also an upsurge in the amount utilized in each 

kind of source (Martchamadol and Kumar, 2013), (Augutis et al., 2015), (Roques et 

al., 2008), (Marrero, 2010), (Cucchiella et al., 2012), (Koch and Bassen, 2013).  

 

Figure 2.1: Electricity Production by Source, World 
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Although slightly declined, fossil fuels still have the largest share among the others at 

present accounting for around 60% of the total electricity production worldwide. 

Figure 2.1 summarizes the evolution of the utilization quantity and type of the main 

electricity sources over the world during the last centuries. Each country has its own 

electricity source mix but fossil fuel constitute the backbone of the source portfolios 

for almost all countries around the world. See Figure 2.2 for examples.  

 

Figure 2.2: Examples of the energy mixes 
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for Energy, 2012). In addition to the environmental consideration, the sustainability of 

fossil fuels in terms of availability is another matter. Fossil fuels as non-renewable 

sources, as the name suggests, will eventually deplete in the future (Shafiee and Topal, 

2009). Although, fossil fuels are naturally generated by organic substances such as 
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decayed plants and animals, it took millions of years to be formed. However, people 

have been using such resources extensively for the last centuries. The reformation 

speed is extremely lower when compared to depletion speed such that fossil fuels are 

considered non-renewable.  

  

Figure 2.3: Fossil Fuel Rent as a percentage of GDP 

2.1.2 Generation 

Electricity generation has many dimensions such as cost, required technology, 

capacity, availability, flexibility, etc.  These dimensions are primarily related to the 

fuel used in the generation process and the type of the generating facility. Each country 

optimizes the utilization of generation plants according to available sources, associated 

costs, the flexibility of the generation, and the energy they need. Cost comprises the 

capital cost, the operating cost, and decommissioning (if any) cost. Capital cost is the 

cost spent on the construction of a power plant until it becomes operational. Operating 

costs include the maintenance & repair expenditures, personnel wages, fuel costs, etc. 

required for the continuous operation of the power plant. Cost-based comparison is a 

general method when considering the economic feasibility of power plant investments. 

Although not enough on their own, there are useful metrics generally used in assessing 

the investment decision. Levelized cost of electricity (LCOE) provides a useful metric 

to assess the overall economic competitiveness between the considered power 

generation investment options and Levelized avoided cost of electricity (LACE) is a 

metric for the value of these investment options to the system (EIA, 2022). LCOE 
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stands for the present value of the average cost of electricity production discounted 

over the lifecycle of the power plant. LCOE is calculated by dividing the sum of the 

present value of all costs associated with the power plant during the life cycle by the 

electrical energy generated: 
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where, tI  is the capital expenditure in year t , 
tO  is the operational expenses including 

maintenance and fuel costs, tO  is generated electricity in year t , T  is the lifetime of 

the generation station and r  is the discount factor. However, the calculation of LACE 

is more complicated and includes the cost that would occur in case of the unavailability 

of the option. LCOE, LACE, and their variants are mainly related to long-run 

competitiveness. When short-run competition is the case, another cost metric is used 

widely which is the marginal cost of production. The marginal cost of production is 

mostly related to the decision of production for daily market operations. However, 

there is an implicit relationship between the marginal cost of production and LCOE. 

Generation technologies are specific to the type of fuel used and they are described 

below. 

2.1.2.1 Fossil-Fuel Power Plants 

Power plants running on fossil fuel “burn” the fossil fuel in order to produce thermal 

energy and then thermal energy is converted into mechanical energy in a prime mover. 

The prime movers drive the generators to generate electricity. Coal-fired power plants 

use steam turbines as prime movers. The coal is burnt in a boiler to generate heat to 

obtain steam. Steam, then, expands in a steam turbine and the steam turbine drives the 

electricity generator. These types of plants are usually established close to the location 

of the coal mines in order to avoid the transport cost. Coal power plants are generally 

less expensive to build and could operate consistently over a long period of time.  Gas 

power plants use a similar principle to coal-fired power plants but instead of a steam 

turbine, the gas is directly fired in a gas combustion turbine. Some facilities also use 
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the hot exhaust gas from the gas turbine and direct it to an additional steam turbine to 

increase efficiency which is called a combined cycle gas turbine (CCGT). A gas-fired 

power station is very flexible in terms of installed capacity and operation. The capital 

cost for building a gas power plant is relatively inexpensive. However natural gas has 

the highest marginal production cost due to the high fuel cost.  

2.1.2.2 Nuclear Power Plant 

Nuclear power plants use a steam turbine as a prime mover which is similar to a coal-

fired power plant. However, the thermal energy required to generate steam comes from 

the nuclear reaction, particularly from the fission reaction in which the nucleus of an 

atom splits into smaller nuclei. Nuclear power plants could provide electricity reliably 

over an extensively long period. The typical service time of a nuclear plant is more 

than 60 years. However, construction of such power plants requires extremely high, 

multi-billion USD, capital costs, and long construction time. The marginal cost of 

production is low compared to the other alternatives. On the other hand return from 

the investments is very slow and generally takes decades to cover the initial investment 

cost.  The problem arising from financing such an investment is very complicated and 

brings unclear risks. Estimating the actual cost of such investment is very hard and 

uncertainties are very high due to the unpredictable future over the very long period of 

the project cycle. Especially for the liberalized generation market, investors must bear 

the risk from these uncertainties associated with construction, operation, the value of 

electricity in the future, etc. Transfer of these risks to third parties such as insurance 

usage or forward contract is very limited since typical forward contract options and 

has a limited duration. Thus, such investment is not favorable for private investors in 

liberalized electricity markets. The requirement for significant government subsidies 

and support is another issue. The huge investment paid by the taxpayers will be utilized 

by the future generation which is difficult to justify for the government. Further 

difficulties come from the security of nuclear power plants. Besides the loss of the 

capital invested in nuclear power plants, accidents or damages that occurred in the 

power plant may cause an irreversible adverse effect on the environment and the 

people. The fuel used in a nuclear power plant is highly radioactive which could 

contaminate the air, the water, and the soil. In addition to the possibility of operational 
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accidents due to technical problems which may be mitigated with precautions, natural 

disasters such as earthquakes and terrorist attacks are still potential. Compensation and 

recovery costs for big accidents might be devastating.  For example, it has been 

estimated that the cost associated with compensation, decommissioning, and waste 

storage would be 187 billion USD for the Fukushima nuclear power plant disaster. 

Physiological and social consequences on the people especially on evacuees as well as 

loss of opportunity cost were not included in these estimates. After Fukushima, 

operations of other nuclear power plants (53 out of 54 nuclear power plants) were also 

ceased for several years due to social anxiety and political reasons. 

2.1.2.3 Renewable Generation 

Renewable electricity generation techniques are very heterogeneous due to the 

significant differences between the sources. Being one of the oldest sources of energy, 

hydropower has been utilized to generate electricity since the 1870s. Hydropower 

plants use the kinetic energy of running water to generate electricity. The water runs 

through a turbine and spins it, then, a generator coupled with the turbine produces the 

electricity.  Large-scale plants use water flowing from the vast reservoir of water 

behind a hydroelectric dam whereas small-scale plants could be constructed on the 

running river (Run on River-RoR). Available sites for large-scale hydropower plants 

are subject to geographic limitations and most of the sites have already been in use. 

However, there is still potential for RoR hydroelectric power stations.  Electricity 

generation from solar power employs two types of technologies: Photovoltaic (PV) 

which relies on photons from the sunlight and Concentrated Solar Power (CSP) which 

relies on the heat from the sunlight. Photovoltaic devices convert solar energy directly 

into electricity. The photons from sunlight fall on PV cells. The photons stimulate 

electrons in semiconductors inside the cell and generate an electrical charge.  CSP 

technologies collect the sunlight and concentrate it on a receiver by mirrors and 

reflectors. Then, concentrated sunlight is converted into thermal energy in the receiver. 

Collected thermal energy is used to generate steam, as in the nuclear or coal-fired 

power station, to drive a steam turbine. In this technology, the concentration of sunlight 

at a specific point is required to obtain enough heat to generate steam. Wind power 

generation runs on the kinetic energy of the wind. Blowing wind rotates the blades of 
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wind turbines and rotating energy is converted into electricity by the generator. Output 

from the wind energy is proportional to the cube of the wind speed. Both solar power 

and wind power are completely dependent on environmental conditions. Integration of 

these sources at a large scale into the electricity network is challenging since it reduces 

the flexibility of the supply side 

2.1.3 Dispatchable vs Intermittent Generation 

The electricity generation power plants that can be controllable in terms of turning on, 

turning off, and adjusting their power output are classified as dispatchable generation. 

These kinds of power plants are “dispatched” on request according to the needs. The 

controllable nature of dispatchable power plants makes it possible for the system 

operators to adjust the supply of electricity according to stochastic and fluctuating 

demand patterns. Continuous adjustment of electricity generation according to the 

demand (load following) is necessary since input and output to the electricity network 

must be balanced continuously. Also, economic generation dispatch could be achieved 

by dispatching the generator according to the increasing order of their marginal costs.  

However, different kinds of power plants have different flexibilities and therefore has 

different dispatch characteristic. Dispatch times range from seconds to hours. 

Examples of fast dispatchable power plants are hydropower plants which could be 

dispatched as fast as 16 seconds and natural gas power plants which could be 

dispatched within minutes. Slow dispatchable power plants are coal-fired and nuclear 

power plants. It requires hours for such power plants to become fully operational from 

the cold state. Although theoretically dispatchable, these kinds of power plants are 

operated continuously and regarded as baseload power plants. On the other hand, 

intermittent generation is an uncontrollable generation and intermittent generators are 

neither available on-demand nor available continuously. Photovoltaic Solar Power and 

Wind Power are the two main intermittent energy sources. The timing and quantity of 

generation from Photovoltaic Solar Power and Wind Power are completely dependent 

on the weather conditions. Therefore, the control over such power generation is very 

limited.  Integration of intermittent power sources into the electricity network is 

challenging due to their uncontrollable nature. Increasing shares of intermittent 

sources decrease the flexibility of the supply. For a small share of renewable energy, 
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inflexible generation can be integrated by adjusting other sources in the energy mix. 

However, when the volume of intermittent generation becomes considerable, it would 

be no longer possible to make such an adjustment.  

2.1.4 Transmission and Distribution 

After generation, the electricity is delivered to the end-users through a complex 

network which is called the electricity grid. This complex system is basically 

composed of two functional parts: the transmission system and the distribution system.  

The transmission system is responsible for the bulk transmission of the electricity from 

the location of generation such as power plants to the point close to the neighborhood 

where it will be used. The lines which convey the electricity are interconnected and 

configured as a network. The network structure allows the electricity to go through 

multiple paths from generation to distribution. Modern transmission networks are not 

only interconnected nationally but also internationally. The transmission loss is 

proportional to the square of the current Loss= I2Rt  where I is in ohm, R is the 

resistance coefficient and t is the time. In order to reduce the losses and improve the 

transmission efficiency, electricity is stepped up to a high voltage (low current) after 

generation through transformers before inflowing into the transmission lines. 

Afterward, it is stepped down to low voltage levels through transformers before 

entering into the distribution system (this is why two separate systems as transmission 

system and distribution system are needed) Historically, the vast majority of 

transmission networks have been constructed by governments before the liberalization 

of electricity markets. In some countries such as Turkey, the transmission system is 

still a state-owned entity. However, several countries like Germany, the USA, etc. have 

privatized the transmission system operations such as maintenance, upgrade, and 

expansion of transmission networks.  

A distribution system is a network that connects the transmission endpoint with the 

end-users such as buildings, facilities, etc. This network is responsible for the 

distribution of electricity within the neighborhood. The Distribution network is a local 

network and is separated from the transmission system for several reasons. The 

distribution system is operated at low voltage levels since it directly provides 

electricity to the end-users contrary to the transmission system which is operated at 
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high voltage levels due to efficiency concerns as explained above. Another main 

reason is that failures in the distribution system stay local and do not affect the entire 

network. In almost all liberalized electricity markets, the distribution system is 

operated by private companies. New end-user connection to the system, meter 

readings, and maintenance of the distribution network is the major duties performed 

by distribution companies.  

2.1.5 Central vs Distributed Generation  

Centralized generation is the traditional generation system in which electricity is 

generated at a large scale and away from the point of use. Then it is transferred and 

distributed to many end-users through networks. There are technical and strategical 

reasons why most of the architectures of modern electricity systems have evolved as 

centralized structures including economies of scale (investing in large power 

generators such as bigger turbine decreases the marginal production cost), efficiency 

(higher efficiency through high pressure and temperature which require large power 

plant), integration (electricity pool and grid structure, one compensate the other), 

environmental consideration (away from city centers). All these considerations and 

strategic policy drivers resulted in large-scale centralized power generation facilities 

which rely on integrated transmission and distribution systems.  

Distributed generation, on the other hand, refers to the type of electricity generation at 

a point close to the user location and on a relatively small scale. Distributed generation 

includes a variety of technologies such as wind power, solar power, combined heat, 

and power, etc. A distributed generator may be connected to the distribution system 

and serve multiple end-users or operate as a part of a microgrid such as a college 

campus or a village and also may serve directly a single facility such as a hospital or 

industrial facility. Historically, distributed generation has been used as a backup 

system in case of any failure in the main system. However, liberalization of electricity 

markets and transition of the electricity systems towards more environment-friendly 

structures have given rise to the spreading of the usage of distributed generation 

(Pepermans et al., 2005). Liberalization of the electricity market and technological 

improvement makes it possible now to invest in distributed generation at various 

scales. Traditional distribution systems have been designed to distribute electricity 
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coming from the transmission-end flowing to the end-users which is a one-way flow. 

However, distributed generation requires two-way energy transfer at the distribution 

level. Moreover, the management of the distribution network and also the management 

of the demand become complicated due to the increasing usage of distributed 

generators. 

2.1.6 Consumption  

Modern economies rely on electricity as a main source of energy and there is a strong 

correlation between the economic output of countries and electricity usage.  Electricity 

is the most versatile form of energy. It can be converted into many other forms like 

heat, light, motion, etc. with very high efficiency. Also, electricity is the most 

convenient form of energy since it does not possess any mass, can be easily controlled, 

and leaves no waste after usage. The daily life of people and most activities in modern 

economies require electricity for extensively diverse purposes. Electricity usage by 

sectors of the Turkish economy is shown in Figure 2.4  About half of the electrical 

energy is used by the industry. One-fourth of the energy is used by residential 

consumers. Although the load share of the transportation sector is pretty low compared 

to the other sectors, a dramatic increase will be likely in the near future in parallel with 

the increase in the share of PHEV. Across all sectors as well as within each sector, 

electricity usage patterns exhibit large differences in terms of their magnitude, timing, 

and flexibilities depending on the purpose of the usage. Therefore, the demand for 

electricity is very heterogeneous. For example, lighting needs are coupled with 

daylight availability in general and cannot be scheduled whereas the majority of the 

home appliances can be scheduled according to the needs. Likewise, some industrial 

processes require large power and draw a vast amount of electricity from the network 

when the process starts while charging a cell phone requires a little amount of power. 

Therefore, the aspects such as flexibility, volume, etc. are important parameters when 

modeling electricity load. 
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Source: IEA World Energy Balances 2020 https://www.iea.org/subscribe-to-data-services/world-

energy-balances-and-statistics 

Figure 2.4: Electricity Consumption by sectors in the Turkish Economy 

 

Tradition way of consuming electricity is that end-users utilize electricity whenever 

they want and necessary input-output adjustment of the network is done through tuning 

the supply. Nevertheless, large-scale integration of intermittent renewable energy 

sources reduces supply flexibility. The transition towards a low-carbon economy 

would change not only how electricity is generated but also the way it is consumed. 

2.1.7 Electrification 

There has been growing interest in electrification of other energy uses such as 

transportation, heating, industrial processes, etc. there are two main reasons behind 

this interest. First, electricity is the most convenient form of energy and technological 

advancement makes it possible to use electricity as an energy source in many 

applications. The other is that several analyses showed that electrification of fossil—

fuel based applications such as transportation and residential heating is one of the key 

elements in reducing overall greenhouse gas emissions (Nadel, 2019). Therefore, 

electricity usage is likely to increase significantly in the near future.  
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2.2 Electricity Markets  

2.2.1 Wholesale Markets 

Liberalization of the electricity market has started on the generation side of the 

electricity value chain.  Throughout the years, many countries have spent continuous 

effort in order to establish a competitive environment for the generation and supply of 

electricity. Many state-owned generation facilities have been privatized and new 

private companies have emerged. At present, in the majority of countries, electricity is 

generated in a competitive environment and traded in different forms of wholesale 

markets. The transition from a vertically integrated and monopolistic structure into a 

competitive environment was not an easy process and could not be done promptly due 

to the need for continuous electricity supply to the end-users and to ensure the 

necessary investment for the growing demand. The practices such as constituting the 

legal background first and letting the market respond accordingly are not reasonable 

since market interactions in a transition stage might result in very costly system failure 

and market breakdowns. Contrary to any other commodity markets, electricity markets 

must account for the special characteristic of electricity. These are mainly due to the 

two basic aspects of electricity: non-storability and the need for continuous input-

output balancing in transition networks. California power crises and consequent 

shutdown of California power markets are good examples of this1. Therefore each 

transition process from monopolistic generation into a competitive structure has been 

planned in a step-by-step manner according to the properties of each country. 

Consequently, each country established its specific wholesale market considering its 

existing organization, resources, and legal situation. In addition, different countries 

may be at different stages of the liberalization process.  Nevertheless, the competition 

                                                

 

1 The crises was caused by market manipulation by the suppliers due to partial deregulation of the 

markets. Power generators deliberately pulled back the generation amount to create an artificial shortage 

resulting in demand-supply gap although available generation capacity was 45 GW while demand was 

28 GW at that time.  Therefore, due to the scarcity, electricity was traded at a rate up to 20 times higher 

than regular price in spot markets. However distribution companies had to sell electricity at a constant 

rate to the end users due to the price cap in the retail market. Thus, being unable to reflect high prices 

they paid in the spot market to their customers due to the price cap and retail companies faced big 
financial loses and some of them eventually went bankrupt. During this crises period of 2000-2001, 

there were several blackouts which caused economic and social loses. 
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for the wholesale electricity trade has fallen into two main categories: (i) One-sided 

Wholesale Markets in which power generators are independent and the rest of the 

system is either vertically integrated or unbundled but not competitive, and (ii) 

Competitive Wholesale Markets (Power Exchanges) which is a kind of decentralized 

market process. Due to the country-specific operational restrictions, historical market 

structure, and regulatory environment, there have been a variant of these market 

models  

2.2.1.1 One-Sided Wholesale Markets (Centralized Trade)  

At the beginning of the liberalization endeavors, switching from a monopolistic 

structure to a fully competitive and decentralized market model was seen as a huge 

step and a big deviation from the previously-existing structure. It was decided to make 

the trade-in centralized and controlled settings. Therefore, only the generation side was 

liberalized as a first step while the rest of the system remaining as vertically integrated. 

Thus, a one-sided competitive market was constructed. Generally, an agency that is 

referred to as System Operator is responsible for the operation of the market. Instead 

of a continuous interaction of suppliers and buyers to reach an equilibrium, System 

Operator systematically determines the equilibrium in a one-sided market. Generally, 

all generating firms must participate in one-sided markets. All the power-generating 

firms submit their price-quantity pairs to the System Operator. Next, System Operator 

aggregates these offers, finds the total quantities corresponding to each price, and 

sequences them in ascending order in price. Eventually, these price-aggregated supply 

pairs constitute the supply curve of the market. On the demand side, actual customers 

do not directly involve in the trade, and System Operator does not collect demand-

price offers and construct the demand curve. Instead, System Operator estimates the 

total demand for the end users which is generally price-insensitive in the short run.  

This procedure is called a one-sided pool. (Total demand of the end-users is equal to 

the total demand of the buyer in the wholesale market since all generation firms and 

distribution companies participate in the centralized trade. The System Marginal Price 

that clears the market is determined by System Operator considering only the supply 

curve and the total demand. Then, the System Operator checks the transmission system 

feasibility and revises the dispatch decision if there would be any transmission 
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limitations. Finally, System Operators determine the equilibrium prices and which 

generators would be dispatched for each time. 

Another type of optimization is the consideration of transmission feasibility together 

with the supply and the demand. In this case, each location is assigned a transmission 

cost related to the transmission limitation to that location. Therefore, resulting prices 

would be location specific which is referred to as Locational Marginal Price. Some 

countries such as Italy use locational pricing.  Thus, both equilibrium and which 

generator would be dispatched are determined by the System Operator centrally. 

Although trade is centrally managed in one-sided markets, bilateral trade and long-

term agreements are possible. Bilateral trade could be a physical contract as well as a 

financial contract. Allowing additional bilateral trade is a deviation from the 

centralization of the trade. Examples of markets using a one-sided structure are some 

states of the USA, Brazil, etc. UK market previously relied on a one-sided market 

structure but later switched to a Power exchange model.   

Such markets are criticized by many economists for being an “approximation of a 

market” rather than a true market due to the limited supplier-customer interaction  

 

 

Figure 2.5: Operation of Centralized Power Markets 
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2.2.1.2 Competitive Wholesale Markets: 

Competitive Wholesale Markets in which the trade occurs between sellers and various 

buyers such as distribution companies or large-scale end-users is another type of 

wholesale market model which is widely used by the majority of OECD countries and 

many other countries. This market model provides both decentralized and centralized 

trade opportunities. Bilateral trade, as the name suggests, occurs directly between the 

sellers and the buyers without the involvement of any other parties. In general, sellers 

are the generators and the buyers are the distribution companies and the large-scale 

end-users. However, there is no such limitation for the roles in this market model. A 

generation company could also be a buyer if there exists an opportunity to buy power 

cheaper than its marginal production cost and provide this power to its customer to 

fulfill its contractual obligation. Else, in case of a failure in production facilities, a 

generation company might purchase power from another source to fulfill its 

contractual obligation. Different types of contracts could be exercised between the 

supplier and the buyer. Especially, long-term contracts which cover the period of 

months to years are used for the base load of the distribution companies and large 

customers. The agreed price-quantity pair and the duration, conditions, and flexibilities 

of such long-term contracts are settled between two parties and kept private. 

Although a certain amount of energy is traded between two contracting parties through 

bilateral trade, organized and controlled trade is still needed as the event time 

approaches since bilateral trade does not guarantee to satisfy the supply-demand 

balance and network constraints. Power Exchanges also include centralized day-ahead 

and intraday trade opportunities to ensure supply-demand equilibrium. Participation in 

these trades is voluntary and participants are diverse in terms of their roles and 

purposes. The system Operator collects quantity-price offers for the supply and 

constructs the supply curve. Similarly, the demand curve is constructed by collecting 

and aggregating quantity-price requests. Unlike the pool model, supply offers and 

demand requests may come from both generator companies and distribution 

companies as well as from third parties. Consider a generation company that already 

sold its entire production capacity through a bilateral contract, this generation company 

may participate in power exchange as a buyer requesting a certain amount at a price 

lower than its marginal cost. Table 2.1 provides an example of a typical bid in the 
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Turkish Power Exchange market (EXIST). Positive quantities are sell offers while 

negative quantities represent the demand offers. In this example, there are six price 

levels, four of which are for sell offers and the remaining two are for buy requests. 

When the price level drops below 270 TL, the generator company is no longer willing 

to sell any power instead the company would like to purchase power. It can be inferred 

that the marginal cost of generation for the company in the example is between 250TL 

and 270TL. 

 

Table 2.1: Example bid in the wholesale competition 

Price (TL) 0 250 270 290 310 400 

Quantity 

(MWh) 
-700 -300 50 250 350 390 

 

Several other examples could also be generated regarding the participation in the 

wholesale market in power exchanges. The operational flowchart of a power exchange 

market is displayed in Figure 2.6 

 

Figure 2.6: Decentralized trade with voluntary Power Exchange 
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The equilibrium prices in power exchange are publically visible to all participants as 

well as to non-participants. Although the negotiated prices in the bilateral contract are 

private information, the equilibrium prices in power exchanges are reference values 

for those negotiations in bilateral trade. In an ideal economy, the prices in both power 

exchange and prices in the bilateral contracts should be such that there would be no 

arbitrage opportunity. This market model facilitates supplier and buyer interaction 

together with the possibility of several types of trade opportunities that would not be 

possible otherwise. Large-scale companies and brokers use this trade opportunity as a 

hedging instrument. In this respect, these kinds of market models are more suitable 

than the pool model for the classical economic school of thought. Several countries all 

over the world employ this kind of market model. Examples are Turkey, Germany, 

France, the UK, Japan, some states of the USA, etc. 

2.2.1.3 System Marginal Price 

It is a general practice in power exchanges that generators whose bids are below the 

market-clearing price are paid with the market-clearing price although their bids i.e. 

their willingness to produce, might be lower. Similarly, the buyers whose offers are 

above the market-clearing price pay the market-clearing price. This uniform price is 

determined by the System Operator and is referred to as System Marginal Price. 

System Marginal Price is basically the price offer of the last amount of generation in 

the Merit Order Curve which clears the market. The main idea behind this uniform 

price system is to encourage generators to submit their marginal costs. In other auction 

mechanisms such as pay-as-bid, companies would try to estimate market-clearing 

prices rather than revealing their marginal costs. An example of the determination of 

system marginal price as an intersection of supply-demand curves constructed on 

supply-demand bids is shown in Figure 2.7. 

2.2.1.4 Timeline for the Trade 

The trade between parties could occur at different time frames. Bilateral trades 

typically cover long periods such as months and years. Thus, there is no time limitation 

neither when agreements are done or in the validity period for bilateral contracts. 



 24   

 

Source: EXIST Transparency Platform, https://seffaflik.epias.com.tr/transparency/ 

Figure 2.7: Equilibrium price for 2 a.m. and 6 a.m. on 02.12.2020. 

 

Due to the stochastic nature of the demand and also the intermittency of some 

generators, buyers and sellers cannot estimate their required amount very well for 

future periods. There are also financial and technical reasons why sellers and buyers 

do not satisfy their entire needs through bilateral trade. Thus, bilateral trade only 

accounts for a certain portion of the trade between parties. The remaining portion is 

traded in the organized market such as power exchanges. When the event time 

approaches, the predictions about generation and the demand improve, thus organized 

trade should take place very close to the event time to improve network balancing 

accuracy. However, a spot market with immediate delivery is not possible due to 

technical limitations. Power exchanges typically operate according to the day-ahead 

principle (and real-time for some specific examples). In a day-ahead principal, every 

day up to a predetermined due time, sell and buy bids are collected for every 24 hours 

of the following day. Then System Marginal Price is constructed for every hour of the 

following day and the resulting price and matching quantities are announced to the 

market participants. Bilateral trade plus power exchange almost satisfies all the trade 

requirements of the parties. However, there might be still imbalances between the 

demand and supply due to stochastic parameters when the realization time approaches. 

The remaining part is traded in the intraday market which takes place up to minutes of 

the event time. In some markets, in contrast to the day-ahead operations, organized 
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trade continues until 5-10 minutes of the event time which is referred to as real-time 

trade. Examples of organized trading markets are listed in the table  

 

Table 2.2: Example of trading times of organized electricity markets 

Country Market Trading timeframe 

Turkey EXIST day-ahead 

Germany EPEX-D day-ahead 

France EPEX-F day-ahead 

Italy GME day-ahead 

Canada OIESO real-time 

South Korea KPX day-ahead 

Singapore EMC real-time 

Russia ATS day-ahead 

  

2.2.1.5 Investment and Missing Money  

The rise of competition in wholesale markets causes a decrease in wholesale electricity 

prices. The fall in prices has been beneficial for some energy-intense industries by 

enhancing their competitiveness by reducing their costs and providing several trading 

and hedging opportunities. However, due to the decrease in prices, the wholesale 

electricity market has faced a serious problem: “missing money”.  In general, missing 

money is referred to the situation in which it is not possible to obtain enough profit 

that is needed to provide the optimal generation portfolio either by maintaining the 

existing capacity and/or investing in building new capacity. Building a new power 

station requires a high capital cost that is supposed to be recovered by the future profits 

from the electricity sales. Reduced wholesale prices make this recovery period so long 

that investing in building such capacity is no longer feasible. The duration of the 

recovery period, that is the time until reaching the break-even investment point, is 

mainly related to long-run average cost and the rate of capacity utilization. However, 

competition in the wholesale market is mainly related to the marginal cost of 

production. A very old coal-fired power plant that already covered its investment cost 
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could survive by charging only its marginal production cost which is mainly the fuel 

cost. However, a newly-built power plant could not survive with this bidding strategy.  

In such a situation, there is not any financial incentive for the investors to build a new 

capacity. (Moreover, market-clearing offers always only have their marginal cost). 

Although eliminating the market power of the companies through constituting a 

competitive environment is desirable by policymakers, it brings about a new 

challenging situation to deal with.  

The main reason for “missing money” is the heavy regulations in the electricity 

markets, especially the price caps. Imposing a price cap in the wholesale market is a 

rare application but a retail market price cap is a general regulation imposed by the 

majority of countries. In general, even if there is no price cap in the wholesale 

electricity market, the price cap in the retail market reduces the market power of the 

companies in the wholesale market. The price cap in the retail market implicitly 

imposes a limitation on wholesale prices since the only way for retail companies to 

survive is to keep the average electricity purchase price below the retail price cap.  

The missing money problem has become more tricky due to the price impact of 

renewable energy in the wholesale market. Renewable energy takes part in the 

wholesale market with extremely small marginal costs and owners of those power 

plants greatly benefit from subsidization. The impact of renewable energy is twofold. 

First renewable energy reduces the equilibrium price in the wholesale market. Second, 

renewable energy decreases the frequency of the utilization of some power stations. 

When the production from renewables is high some of the conventional generating 

companies must pull back their production level either by completely switching off or 

reducing the output of some generators, which eventually increases the return on 

investment time and decreases the overall profitability. Consequently, the frequency 

of the utilization of installed capacity is reduced. This also means that the market-

clearing generator is pulled back and the generator with the next lower offer (lower 

marginal cost) now becomes the market-clearing generator ultimately reducing the 

equilibrium price. In general, generators with newer technology and relatively less 

emissions are affected mainly since such kinds of generators have marginal costs 

around the marginal cost. However, high carbon generators such as coal-fired 
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generators would still work constantly, which contradicts the global goal of reduction 

in emissions. 

2.2.2 Capacity Markets  

Equilibrium prices in wholesale competition constitute price signals for long-term 

investment. When these prices are lower and more volatile, investment in new fossil 

fuel generation capacity became unattractive. However, those investments are required 

in the system when the supply from renewables is not sufficient. In some countries, in 

order to ensure the security and reliability of supply and make sure that sufficient 

investment for the future electricity supply is done, producers are paid under capacity 

payment to commit to production in the future. These kinds of markets are referred to 

as Capacity Markets. Capacity markets are criticized as being inconsistent with 

decarbonization policies since fossil fuel generation is subsidized as a result of 

renewable energy integration. In addition, the requirement for such subsidization is 

amplified when the share of renewable energy is increased.  

2.2.3 Retail Markets 

Small-scale end-users are not eligible to buy electricity from the wholesale market and 

do not have any interaction with generation companies. Instead, retailer companies 

that buy electricity from the supplier either through bilateral contracts or through 

auctions are responsible for selling electricity to the end-users. The ultimate goal of 

liberalization in the electricity sector is to create a completely competitive retail 

market. To this end, financial operations are separated from the physical distribution 

of electricity. Many OECD countries have initiated liberalization in the retail markets. 

In Turkey, 21 authorized retail companies are responsible for 21 separate regions. In 

fact, these companies are sister companies of 21 authorized distribution companies 

that were doing both distribution and retail marketing together previously. These 

companies are required to provide service to all end-users. In addition, there are also 

independent retail companies that provide services to the end-user that satisfy certain 

requirements.  
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Generally, the retail price is regulated by policymakers and a price cap is applied. 

However, wholesale prices are constantly fluctuating, which is putting a strain on 

retailers. Since they have to sell the electricity at a fixed price they buy from the 

wholesale market with a variable price. Therefore, their objective is to keep the 

quantity-weighted average cost below the retail price.  
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CHAPTER 3  

3 MERIT ORDER EFFECT UNDER DIFFERENT RENEWABLE ENERGY 

SUBSIDIZATION PROGRAMS AND DIFFERENT OWNERSHIP 

STRUCTURES 

3.1 Introduction 

Beyond the technological feasibility, the integration of large-scale intermittent 

renewable energy presents economic efficiency problems to deal with (Henriot and 

Glachant, 2013). One of the toughest challenges associated with the increased use of 

renewable energy is posing on the wholesale market side of the electricity value chain. 

The equilibrium prices in the spot market are affected by large-scale renewable energy 

deployment in two ways.  The first factor is the intermittency of the generation. 

Generation firms do not have any direct control over the amount and the timing of the 

generation for a specific renewable energy generation infrastructure. Therefore, 

competing firms in the wholesale market should consider this rigid production from 

renewables as a state variable in the optimization of its price-quantity offer while 

production amounts from conventional generators are still a decision variable.  

Another, definitely more prevailing, effect of increasing usage of Renewable energy 

on the wholesale market is the reduction in equilibrium prices due to the negligibly 

small marginal cost of production from renewables. The aggregate supply curve is 

generally constructed by collecting price-quantity offers and sequencing them in 

increasing order yielding the so-called “Merit Order” of the generators (Deane et al., 

2015). Electricity from Renewable energy participates in short-run competition with 

almost zero marginal production cost and shifts the merit order curve rightward 

consequently resulting in lower equilibrium price (Figueiredo and da Silva, 2019). 
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This effect is referred to as the Merit Order Effect of renewable electricity generation. 

A typical merit order curve with and without renewable energy production is illustrated 

in Figure 3.1. Although production from renewables has almost zero marginal cost, it 

requires larger capital cost resulting in a high Long-run average cost. “Levelized Cost 

of Electricity” for renewables is generally higher than the conventional generators, 

which makes renewable generation unattractive for investors.  Aiming to increase the 

share of renewable energy, governments financially support renewable energy 

investment with certain support programs. The subsidies make it possible for the 

investor to cover the capital cost within a reduced timespan since the overall average 

payment per kWh through subsidization is generally higher than the average 

equilibrium price in the wholesale market. Another benefit of such a support system 

for the investor is that it eliminates the risks associated with price volatility in the 

wholesale market. A number of different support mechanisms with different 

implications are employed by various governments (Ragwitz and Steinhilber, 2014).  

Among all, one of the most widely used support mechanisms is the Feed-in Tariff 

program. In this support mechanism, the generator is paid a constant amount of money 

per kW of production regardless of the equilibrium price in the spot market. Moreover, 

priority dispatch of the renewables together with the feed-in tariff is also a common 

support practice (Antweiler and Muesgens, 2021). Therefore, in the planning stage, 

the amount of generation from renewables is directly deducted from the total demand 

Figure 3.1: Merit Order Effect of Renewables 
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and consequently does not enter into the wholesale competition. The resulting effect 

is displayed in Figure 3.2. 

Figure 3.2: Effect of feed-in tariff 

The main feature of the feed-in tariff and its variants is that generation from renewables 

does not enter into the wholesale competition. Such kind of support mechanisms could 

be referred to as non-market support mechanisms since renewable energy is not traded 

in the market like the energy from conventional generation. Alternative to such kinds 

of non-market support mechanisms, there are also support mechanisms in which 

generation from renewable is traded the same way as energy from conventional 

generation is traded. For example, an investment reimbursement program in which a 

portion of the capital cost is paid to the investors. In such support mechanisms, 

renewable energy is not differentiated during the wholesale competition. Nevertheless, 

in both market-based and non-market support mechanisms, the equilibrium price is 

reduced due to the Merit Order Effect. In a perfectly competitive market where all 

companies bid their marginal cost, the effect of both support mechanisms visualized 

in Figure 3.1 and Figure 3.2 would be the same. However, in electricity wholesale 

markets in which the competition is characterized as imperfect, it is likely for a 

competitive company to follow a different strategy under different support schemes. 

Moreover, companies having more than one generation facility have the opportunity 

to further influence the equilibrium when they optimize the output of their entire 

portfolio rather than optimizing each generation facility independently. The key 

difference between these two groups of subsidization schemes which is relevant to 
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short-run wholesale competition is the way renewable energy participates in the trade. 

Thus, in order to investigate the implication of market-based and non-market support 

mechanisms, we consider the case where there is a feed-in tariff for renewables and 

the case where there is no discriminative price for renewables and a common price is 

determined through competition.  

Another significant factor affecting the equilibrium price in the wholesale market is 

the ownership structure (industrial organization) of renewable energy generators. 

Under imperfect competition, a firm having both conventional generation and 

renewable generation could make use of the diversified portfolio in competition by 

optimizing its costly generation according to the available renewable generation. 

Hence, those companies may have the opportunity to mitigate Merit Order Effect by 

exercising their market power. On the other hand, companies generating only 

renewables should act as fringe companies (price takers) since they do not have any 

control over the output quantity, and so, are not able to strategically withhold 

generation to alter prices. Thus, ownership of this uncontrollable generation could also 

influence the strategic behavior of the firms.  

This section analytically investigates the Merit order Effect and impact of 

subsidization mechanisms together with the ownership structure of the renewable 

energy sources on the equilibrium under both linear cost structure and quadratic one 

to account for a wide range of cases. We consider three types of ownership structure: 

companies having only conventional generators, companies having both conventional 

and renewable generators, and companies having only renewable generators. 

Moreover, we extend the analysis to include pre-committed bilateral contracts and how 

the volume of bilateral contracts moves with those parameters.  

Our theoretical analyses show that the Merit Order Effect exists and the impact of the 

Merit Order Effect is always more powerful resulting in lower equilibrium prices in 

non-market support schemes such as feed-in tariffs than the market-based support 

systems. In addition, the share of renewables owned by strategic firms plays an 

important role in the mitigation of the Merit Order Effect. However, in the case of 

feed-in tariff sort of support programs, the impact of the ownership structure is 

eliminated. Heterogeneity within competitive firms has no impact on the equilibrium, 

the only important factor is the total potion of renewable sources owned by strategic 
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firms. The bilateral contract volume is negatively correlated with the amount of 

renewable energy and also with diversification.  

3.2 Literature Review 

There is a substantial and ever-growing body of literature related to the Merit Order 

Effect of renewables. Analysis of (Clò et al., 2015) provided empirical findings on the 

existence of the Merit order Effect in Italian Electricity Markets. They investigate the 

data for the period of 2005-2013 and find that a 1 GWh rise in an hourly average of 

daily RES generation decreased the wholesale electricity prices by 2.3 Eur or 4.2 Eur 

per MWh on average depending on the type of RES. In addition, volatility is increased 

due to RES penetration. Based on a time series regression and using German wholesale 

market data, (Cludius et al., 2014) show that spot prices decreased by 6 Eur per MWh 

in 2010, and with the growing share of RES this reduction reached 10 Eur per MWh 

in 2012. (Ciarreta et al., 2014) find a similar implication for Spanish electricity markets 

for the period 2008-2012 where generation from renewables increased by 57%. 

(Figueiredo and da Silva, 2019) evaluate the Merit-Order Effect in the Iberian 

wholesale electricity market for the period of 2008 to 2017. In addition to the positive 

relation between Merit Order Effect and Renewable production, they find that 

volatility due to MOE reflects the intermittent behavior of uncontrollable RES 

generation.  (Macedo et al., 2021) conducted a study on the Swedish electricity market 

using the data of the period 2016-2020 to explore the MOE on both mean price and 

volatility. An important feature of their work is that they use 24 separate models to 

represent each hour of a day aiming to investigate whether the hour of a day is a factor 

in the MOE of renewables. Their results indicate a significant MOE of renewable 

consistent with the literature but the magnitude of the MOE is not affected by the hour 

of the day.   In addition to country-specific works, there are examples in the recent 

literature considering the global and cross-country effects of renewable integration. 

(Halttunen et al., 2020) compared 37 countries around the world and report that MOE 

is observed in almost all countries. Overall worldwide average MOE is estimated as 

0.68+-0.54 Eur per MWh corresponding to each percentage increase in intermittent 

RES. (Abrell and Kosch, 2022) showed that the cross-country Merit order Effect exists 
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in neighboring countries due to RES production in Germany and this effect reduces 

the profit of generators in those neighboring countries.   

While the results of empirical studies are in consensus, theoretical analysis is required 

in order to generalize the results of these empirical studies and gain further insight into 

how the deployment of renewables affects the equilibrium. Theoretical analyses begin 

with modeling the competition in wholesale markets. Even though electricity markets 

have been liberalized and a competitive environment has been built in the majority of 

the countries, equilibrium prices are still far from the competitive prices and spot prices 

are generally higher than the marginal cost of generation (Borenstein et al., 2002), 

(Mansur, 2008). The situation is attributed to the market power of the companies. For 

example, (Wood and Blowers, 2018) state that the rise in electricity prices by 130% 

from 2015 to 2017 in the Australian market is partially related to the exercise of market 

power of the generation companies. The market power results from the fact that 

wholesale electricity markets generally consist of a limited number of electricity-

generating firms (or a limited number of large firms regardless of the number of small 

ones). Price-quantity offers of those firms directly affect the equilibrium prices. 

Moreover, these firms strategically determine their price-quantity offers to maximize 

their profit and these offers do not necessarily have to reflect their marginal costs. 

(Twomey and Neuhoff, 2010) demonstrate that conventional energy generation 

companies can manipulate the equilibrium prices in a way that they increase the prices 

while selling electricity and reduce them when they buy power from the market. 

(McRae and Wolak, 2009) shows that companies place higher-priced bids for the 

periods in which price elasticity is lower. Therefore, the competition in the wholesale 

market is characterized as imperfect competition. Two major types of theoretical 

frameworks are widely used to model such oligopolistic competition in the wholesale 

market: Cournot-Nash Competition and Supply Function Equilibria. Cournot-Nash 

model is employed by several studies such as (Bushnell, 2007a), (Borenstein et al., 

2002), (Neuhoff et al., 2005),(Sioshansi, 2014), (Ribó-Pérez et al., 2019). Based on a 

Cournot competition framework, (Borenstein et al., 2000) states that the price-cost 

premium is 16% in California power markets, and (Borenstein et al., 2002) found that 

more than 50% of the rise in electricity prices is due to market power of the companies. 

(Neuhoff et al., 2005) compare three different Cournot models developed by different 

research groups. Their results show that the assumptions about market design and how 
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a fringe company acts highly effect the Cournot equilibrium. There are also studies 

that verify the appropriateness of the usage of Cournot-Nash model to represent 

wholesale competition. Based on recently available bidding data of Nord Pool 

electricity market, (Lundin and Tangerås, 2020) shows that competition in Nordic day-

ahead wholesale market is consistent with Cournot-Nash Competition context.  

In Supply Function Equilibria modeling, firms submit their supply function 

considering the supply functions of their rivals, and the equilibrium price is determined 

by the system operator. Hence, this approach assumes that firms compete on both price 

and quantity rather than quantity only. The basic model was developed by (Klemperer 

and Meyer, 1989) and then adopted in the electricity market by (Green and Newbery, 

1992).  

Both models have their strengths and weakness. (Baldick et al., 2004) argue that SFE 

is more appropriate than the Cournot model to represent competition in the wholesale 

market. Cournot model is criticized for providing overestimated equilibrium prices and 

being more sensitive to demand elasticity. Nevertheless, the overestimation problem 

could be evaded by including forward contracts (Willems et al., 2009). On the other 

hand, Supply Function Equilibria is mathematically complicated and formulation does 

not accept any external parameters such as capacity restrictions, etc. Thus SFE is not 

suitable for a variety of cases. Furthermore, it is very hard to draw any conclusions 

from the mathematical results of SFE. 

(Willems et al., 2009) compare these two popular oligopolistic competition models 

and test them using the data from the German wholesale electricity market. Their 

results indicate that both models perform reasonably well and they suggest using the 

Cournot model in order to study short-term competition in the wholesale electricity 

market since the Cournot model makes it possible to include additional constraints and 

provide analytical flexibility. 

Our study is mainly related to the recent literature that studies the impacts of renewable 

deployment on the wholesale market in a theoretical framework (based on Cournot-

Nash competition setup). One of the early theoretical works addressing renewable 

integration and market power is (Twomey and Neuhoff, 2010). They demonstrate that 

conventional generation firms strategically adjust their output according to RES 
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availability. Additionally, these firms are able to raise or suppress the prices along with 

their sell or purchase needs.  (Ben-Moshe and Rubin, 2015) examine the oligopolistic 

competition considering diversified portfolio and indicate that ownership structure has 

an impact on MOE e.g., a strategic firm may increase its market power by investing in 

renewable energy. In addition to a diversified portfolio, (Acemoglu et al., 2017) 

extends the analysis to include forward contracts and incomplete information cases. 

They construct all the derivations assuming that cost of production is linear. Their 

results suggest that MoE is fully neutralized in the case of full diversification. 

However, this result is derived under the specific case of linear cost structure, which 

does not hold when the cost structure is quadratic (or in general when the cost structure 

is different than linear). To highlight the effect of cost structure, we consider both 

linear and quadratic cost structures in all the analyses. Additionally, in contrast to these 

works, our study considers a heterogeneous ownership structure for the competitive 

firms, i.e., we consider the general case of ownership such that some competitive firms 

also own some portion of the renewable generators while the rest of the competitive 

firms only generates conventional energy. Therefore, we consider three types of 

companies: having conventional only, having both conventional and renewable, and 

having renewables only. 

Analysis of the impact of the support mechanism is another important feature of our 

work. (Rubin and Babcock, 2013) investigate the impact of the pricing method for 

wind energy and showed that an increase in wind energy capacity reduces the market 

power in feed-in tariff. (Brown and Eckert, 2020) study the impact of renewable 

support policies on firm behavior and the outcome of the competition under an 

oligopolistic market setting. Their basic model consists of two firms that first compete 

in procurement auction for a certain capacity of renewable production which is 

determined by a regulator and then compete in the wholesale market.  Their result 

shows that the support mechanism has an impact on both renewable production auction 

and wholesale competition such that market power is reduced in the feed-in tariff 

support schema. Different than the current literature, our study comprises the analysis 

of the impact of different support mechanisms on the MOE and volume of bilateral 

contracts under heterogeneous ownership and under different cost structures.  
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Finally, analyses of bilateral contracts which constitute the major part of the trade-in 

liberalized electricity markets are grounded on growing literature initiated by (Allaz 

and Vila, 1993). We compared the impact of renewable energy on bilateral contract 

volume under different support programs.  

3.3 Model 

 Our theoretical analysis begins with describing the overall specifications of the 

competition in the wholesale electricity market. In the following subsection, analysis 

concerning the impact of ownership structure and support scheme on the equilibrium 

is investigated for linear cost structure. Then, similar analyzes are done under 

competitive pricing for renewables and the result is compared with the previous ones. 

Finally, we introduce the bilateral contracts into the model to build up the complete 

formulation. 

One of the demand functions mostly used in related literature is the linear function. A 

linear relationship is also a good approximation of the demand pattern in Turkish 

wholesale markets as shown in Figure 2.7. In this study, we also assume a linear 

demand function in the form of  

 p a bD   (3.1) 

where D  is total demand, 0a   and 0b   are demand parameters. In equilibrium total 

generation must be equalized to total demand due to electricity network constraints. 

Therefore, we assume that 

G=D. 

Unlike long-run cost factors such as investment, the marginal production cost is 

primarily related to the fuel used and operating expenses. Even if the same technology 

and the same fuel are used, the marginal cost could vary according to the efficiency of 

the generator and the scale of the generation (Walheer, 2018). When a firm uses more 

than one production technology, it possesses a collection of assets with different 

variable costs depending on fuel type and operating expenses. Starting from the least 

costly generation, when these dissimilar generation capacities are collected in 

ascending order, the overall marginal cost structure of the entire portfolio would be a 
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stepwise increasing function in quantity. These cost structures are most closely 

represented by quadratic functions. Nevertheless, for the analysis, we consider both 

linear and quadratic cost function cases to examine the implications. A linear cost 

function is suitable when the generating firm relies on a single technology and the fuel 

cost is the main variable cost. On the other hand, a quadratic cost function is a more 

general and realistic one representing the portfolio of generators and also a 

combination of different generation technologies as well as different generation scales. 

Although the assumption that all the firms have a linear cost function may be very 

restrictive, it is still worth analyzing this case for specific applications or markets. For 

example, more than %80 of the total electricity is produced from nuclear energy in 

France. Nuclear energy requires huge investment costs however only the effective cost 

in the generation stage is the fuel and disposal cost. In this case, linear cost 

approximation for large-scale nuclear generations may be reasonable. However, 

countries such as Turkey and Germany as well as most of the countries over the world 

have a collection of different sources and also companies in those countries have a 

portfolio of generators. Therefore quadratic cost function is more realistic for these 

countries. 

3.3.1 General Assumptions 

The following problem setup and assumptions are common for the following analysis. 

The additional assumptions and constraints relevant to specific cases are listed in the 

related section.   

 We consider three different types of electricity generation companies: 

o Type-1: Companies using only conventional technology for the generation,  

o Type-2: Companies using both renewable resources and conventional 

technology for the generation 

o Type-3: Companies using only renewable resources for the generation. 

 

 The number of Type-1, Type-2, and Type-3 companies are k , l  and m  

respectively.  
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 {1,..., }K k is the set of the Type-1 companies, {1,..., }L l is the set of the 

Type-2 companies, and {1,..., }M m is the set of the Type-3. 

 Type-1 and Type-2 companies are competitive companies, i.e, they can adjust 

their outputs to maximize profit, while Type-3 companies are price takers.   

 n k l   is the total number of conventional electricity-producing companies. 

The set {1,..., ,... }N K L k n  is the set of conventional electricity 

generating companies. 

 

 The total capacity of the renewable energy generated for the relevant time-slot 

is R  and it is constant. 

 

 Shares of the renewable generators by the companies are such that: 

  0,1  of the total amount of renewable energy, R , is produced by  

Type-1 companies, and each Type-1 company {1,..., }i k  has a share of 

R

k


. 

 [1 ]R  is the total amount of renewable energy generated by m  Type-3 

companies and each Type-3 company {1,..., }i m  has a share of 
[1 ]R

m

 
 

 n  firms provide electricity from conventional resources:  each Type-1 

company {1,..., }i k produces electricity 
ig  from only conventional resources 

and each Type-2 company {1,..., }j l  produces electricity 
jg  from only 

conventional resources. 

 

 The cost of producing each unit of electricity from conventional resources is 

( )iC g  and  

( )
>0i

i

dC g

dg
 for all {1,..., }i n . 

 

 The cost of producing each unit of electricity from renewable resources is 

zero. 
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 The total supply of electricity (total amount of electricity generated 

conventionally by n  firms plus the available renewable energy) is: 

 

  i

N

G R g   

 

 The total supply (generation) of electricity G  is assumed to be equal to the 

demand for electricity D , G ( G D ) resulting in the following inverse 

demand function:  

 

     
1[ ... ... ]i n

p a bG

a b g g g R

 

      
 

 where 0a  , 0b   and /G a b . 

 

 The total amount of electricity produced from renewable resources is less than 

the total demand: R D  implying  

   /R G a b   

 

Each competitive firm solves the following problem: 

1  ( ,..., ,..., ; )
i

i i n
g

Maximize g g g R  

where the profit function for each type is as follows: 

Type-1 competitive firms having both conventional and renewable generations: 

 1

1( ,..., ,..., ; ) ( ) ( )      
renewi i n i i

R
g g g R p G g p C g where i K

k
    


 (3.2) 

Type-2 competitive firms having only conventional generation:  

 

 2

1( ,..., ,..., ; ) ( ) ( )        i i n i ig g g R p G g C g where i L     (3.3) 

Type-3 firms having only renewable companies: 
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 3

1

[1 ]
( ,..., ,..., ; )       i i n renew

R
g g g R p  where i M

m


  


 (3.4) 

In this setup, renewable-only companies do not have any decision variables. 

Competitive firms’ strategies are the selection of conventional generation amounts in 

order to maximize their profits. 

The price for electricity produced from renewable resources 
renewp  depends on the 

renewable support program. There are two cases to be considered in the following 

analysis:  

Case 1: The electricity produced from renewable resources is subsidized by a 

feed-in tariff program and a constant predetermined feed-in tariff for 

each unit of renewable electricity is Rp  for each kWh produced:  

R

renewp p  

Case 2: There is not a predetermined price for the renewables and the price 

would be determined in the wholesale market with Cournot 

competition. The electricity is priced at the oligopolistic price:  

( )renewp p G  

3.3.2 Linear Cost Function for the Conventional Generation 

This section assumes that the cost function for production from the conventional 

resources is linear: 

( )           0i iC g cg for all i N where c    

The analysis for two kinds of the support program is carried out separately:  

Case 1.1: Feed-in tariff for renewable electricity with a linear cost function 

In this case profit functions for Type-1, Type-2 and Type-3 firms become:  

 
1

1( ,..., ,..., ; )       R

i i n i i i

N

R
g g g R a b g R g p cg where i K

k

  
        

  



(3.5) 
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2

1( ,..., ,..., ; )         i i n i i i

N

g g g R a b g R g cg where i L
  

       
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  (3.6) 

 3

1

[1 ]
( ,..., ,..., ; )       R

i i n

R
g g g R p  where i M

n


  


 (3.7) 

              respectively.  

 

The best response of each competitive company satisfies the following first-order 

conditions:  

 

 

1

2

;
0        

;
0        

i i i

i

i i i

i

g g
i K

g

g g
i L

g






 


 

 

Note that second-order conditions are also satisfied.  The solution for the equilibrium 

provides the following lemma. 

Lemma 3.1: In a wholesale competition with companies having linear cost function, 

when renewable energy is subsidized through a feed-in support program, there exists 

a pure strategy Cournot-Nash equilibrium solution such that regardless of its type, each 

competitive firm chooses the following amount of conventional generation: 

  
   

   
1 1

i

a c R
g R i N

b n n


  

 
 (3.8) 

 

And equilibrium prices with the total amount of production are:  

 

  
 

 
1

n bR
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b n n

 
   

  
 (3.9) 
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n bR
p R a a c

n n

 
    

  
 (3.10) 

Case 1.2: Oligopolistic price for renewable electricity with a linear cost 

function 

Consider the same market organization as the previous one with exactly the same 

number and types of companies. However, in this case, renewable energy is not 

subsidized through a feed-in tariff. Instead, renewable energy is traded in the same 

way as conventional generation is traded. Therefore there will be a unique competitive 

price for electricity regardless of the source of the energy.  

In this setup, the expression for the pre-determinate price of renewable energy Rp in 

the equation  (3.5) and (3.7) is replaced by the competitive price 

( ) i

N

p G a b g R
 

   
 
 . Following the same procedure as in the previous case, the 

equilibrium solution is provided in Lemma 3.2 

Lemma 3.2: In a wholesale competition with companies having linear cost function, 

when the renewable energy is traded in the market, there exists a pure strategy 

Cournot-Nash equilibrium solution such that Type-1firms choose the following 

amount of conventional generation:  

  
 

 
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b n k

  
     

  


  (3.11) 

and the Type-2 firms would choose the following amount of conventional generation: 

  
 
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   (3.12) 

At equilibrium, total generation and the price would be: 
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3.3.3 Quadratic Cost Function for the Conventional Generation 

The linear cost function assumption for the generation is a confining assumption that 

represents only a limited number of situations. The majority of companies in most of 

the market possess a collection of different generators relying on dissimilar 

technologies. In this case, a quadratic cost function is a more appropriate 

representation of the actual cost structure. For that reason, in this section, we will 

consider the quadratic cost function case. 

Assume that the cost function for production from the conventional resources is 

quadratic: 

21
( )          0

2
i iC g cg for all i N where c     

 

Case 2.1: Feed-in tariff for renewable electricity with a quadratic cost 

function 

In this case profit functions for type-1, type-2, and type-3 firms become respectively:  
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 (3.15) 

Similarly, firms' best responses satisfy the following first-order conditions: 
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The result of the solution for equilibrium, in this case, is summarized in Lemma 3.3 

Lemma 3.3: In a wholesale competition with companies having quadratic cost 

function, when renewable energy is subsidized through a feed-in support program, 

there exists a pure strategy Cournot-Nash equilibrium solution such that each 

competitive firm chooses the following amount of conventional generation 

 
 

 
1

   
1

ig a bR i N
b n c

   
 

 (3.16) 

Equilibrium price and total production at equilibrium: 

 
 

 
1

n
G a bR R

b n c
  

 
 (3.17) 

 
 

  2

1

a b
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   

 
 (3.18) 

 

Case 2.2: Oligopolistic price for renewable electricity with a quadratic cost 

function 

Consider now, the feed-in tariff program in 2.a. has been abolished and authorities 

decided to implement another support program which is a non-market support 

program. Thus there is no predetermined price for renewables and the price would be 

determined in the wholesale market. Thus, replacing  

( )R

i

N

p p G a b g R
 

    
 
   

in(3.15). This modification yields the results in Lemma 3.4. 

Lemma 3.4: In a wholesale competition with companies having quadratic cost 

function, when the renewable energy is traded in the market, there exists a pure 

strategy Cournot-Nash equilibrium solution such that each competitive firm chooses 

the following amount of conventional generation 
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Equilibrium price and total production at equilibrium: 
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Analysis of these results leads us to the following two propositions:  

Proposition 3.1: (Impact of support scheme on the equilibrium).  

i) Impact of Merit-Order Effect is always higher in feed-in tariff support 

schemes than in market-based support schemes resulting in lower 

equilibrium price feed in competitivep p    

ii) The equilibrium price is a strictly decreasing function of R in a feed-in tariff 

support scheme and a non-increasing function of R in competitive pricing 

 

Proof of Proposition 3.1: 

The proof will be built on the result of Lemma-1through Lemma-4. To prove that i) 

holds, we simply subtract the equilibrium price in the feed-in tariff system from the 

equilibrium price in the competitive market for both linear and quadratic cost cases 

and show that these differences are always non-negative. 

For the linear cost case, from (3.10) and (3.14) we have 

 

 

 

 

 

 

1 1

1 1

1 1

1

1 1

11

1

1

b a

b a

b a

n n bR
p p a a c bR a a c

n n n n

n
p p bR

n n n

n
p p bR

n







   
           

    

 
   

  

 


 (3.22) 
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For the quadratic cost case, from (3.18) and (3.21) we have 
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(3.23) 

Both expressions in (3.22) and (3.23) are nonnegative for the possible parameters of 

demand and cost functions, showing that feed-in tariff always results in a lower 

equilibrium price. 

ii)  Directly follows from the partial derivatives of equilibrium prices. For the feed-in 

tariff partial derivatives of the prices in (3.10), (3.18) with respect to R are  

 
 

1 2

 and 
1 1

a a b b cp b p

R n R b n c

 
   

    
  

respectively. Both expressions are strictly negative for all possible system parameters, 

which means that the equilibrium prices (3.10) and (3.18) are strictly decreasing with 

R. For the competitive case, derivatives of the prices in (3.14) and (3.21) with respect 

to R are respectively: 

 
 

 
 

1 21 1
 and 

1 1

b bb b b cp p

R n R b n c

   
   

    

 
.  

One interesting result to point out in Proposition-1 is that although the equilibrium 

price decreases with increasing R in all renewable energy support mechanisms, the 

difference between the equilibrium prices in 1.24 and 1.25 are increasing with R. This 

means that when a considerable amount of renewable energy is available in the market, 

equilibrium price would be much lower in feed-in subsidization support mechanism. 

 



 48   

Proposition 3.2: (Effect of Ownership Structure) 

i) Diversified ownership mitigates the Merit Order Effect in competitive 

pricing. The more competitive firms’ share of R, the higher the equilibrium 

price. That is, the equilibrium price is increasing in share of the competitive 

firms    

ii) The feed-in tariff subsidization scheme eliminates the impact of the 

ownership structure. Thus, ownership structure does not have any impact 

on the equilibrium price when renewable energy is subsidized through a 

feed-in tariff.  

Proof of Proposition 3.2: The proof will be built on the result of Lemma 1, Lemma 

2, Lemma 3, and Lemma 4. 

i) The proof directly follows from the partial derivatives of the competitive 

prices in (3.14) and (3.21)  with respect to ownership parameter λ.  
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 
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



  (3.24) 

both derivatives are positive showing that equilibrium prices increase in λ  

ii) It is clear from (3.10) and (3.18) that equilibrium prices in feed-in tariff do 

not include the term λ 

3.3.4 Bilateral Contracts 

Bilateral contracts in wholesale power markets are an essential part of the trade. 

Theoretically, a company increases its market share and profit by selling its part of the 

generation through bilateral contracts. However, due to the reduced volume traded in 

the spot market, the market power of the company also decreases. When all firms 

eventually commit to bilateral contracts at equilibrium, total profit would reduce due 

to the decreased market power. The only way to avoid such a situation is collusion and 

not to commit any bilateral contract which is not legal. Besides strategic consideration, 

there are also several other reasons why companies commit to bilateral trade. These 
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reasons may be technical limitations specific to the technology used in the generation. 

For example, consider a thermal generation facility that requires several hours to 

become fully operational and synchronized with the electricity network from the cold 

start. In this case, switching off and then switching on the generator is a very costly 

process. To avoid such a situation and associated costs, the owner may want to commit 

to a bilateral contract for a certain amount to make sure that this generator runs 

continuously. However, we do not include these technical restrictions in our model. 

We assume that generator companies can smoothly adjust their output. In order to 

analyze the bilateral contract in a basic environment, we assume the same market 

setting as in 2b in which companies compete for quantities at time t. In addition to this 

basic setting, we assume that companies have signed bilateral contracts before the 

competition period starts. Bilateral contracts are formulated as forward contracts 

which are committed before the day ahead competition period: 

Consider a two-stage game for n  companies producing electricity by using renewable 

and conventional resources. They commit to independent bilateral contracts and also 

compete in an organized day-ahead market. Thus their obligation for electricity 

generation each time t  originates from two bases. One is from bilateral contract 

obligations and the other is due to day-ahead market obligations. 

Stage I:  Stage I covers the time period before the day-ahead competition for time t. 

In this stage, each company {1,..., }i n N   signs bilateral contracts with the customer 

j  for a certain amount of electricity ,i jB to be delivered at the time t  at a price B

ip  

where either , 0i jB   or , 0i jB  . The portfolio of the bilateral contracts of the company 

i N  is , ,1 , ,{ ,..., ,..., }Port i i i j i JB B BB  and the volume of bilateral contracts for each 

company is the sum of the contracts in its portfolio 
,i j i

j

B B . 

Stage II:  In a day-ahead competition, after observing 
1{ }n

i iB 
, each company 

{1,..., }i n chooses the generation amount 
ig  for the time t  a la Cournot competition. 

Therefore, the strategy of each company i N is the selection of bilateral contract 

volume iB for time t  and bid 
ig in the day-ahead market for a time t : 
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 , , , , ,,     ,    ,i t i t i t i t i ts B g i N B g R    

The analysis will be conducted for two separate cases: 

Case 3.1: Competitive price for renewable energy. 

Case 3.2: feed-in tariff for renewable energy cases.  

We use backward induction to solve the above two-stage problem and obtain the 

expression for bilateral contract volume.  

Solution for Case 3.1 

We start with the competitive price case. Considering the bilateral contracts from Stage 

I and assuming the generation amounts 
ig
of its rivals in Stage II, each company 

{1,..., }i n  has the following profit function: 

1 1

2

( ,..., ,..., ; ,..., ,..., ; ; )
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                                               ( )   
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i i n i n i
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i i i i i

g g g B B B R p
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p G g B p B cg i N

n

 

 
      

 



 (3.25) 

Stage II Solution: 

In this stage, each company takes the volume of bilateral contracts
1{ }n

i iB 
as given from 

Stage I, and also given the total equilibrium quantity of generation 

 j

N

G g R   (3.26) 

and associated equilibrium price 

    p G a bG   (3.27) 

  

The objective of each company is to maximize its profit. Thus the best response of the 

company i  solves the following maximization problem: 
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Which can be expressed as: 
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 (3.29) 

The company i ’s best response is characterized by the first order condition of the 

above problem:  
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 (3.30) 

All the firms i N  solve the same problem considering their bilateral obligations and 

the decision of the rivals. Their resulting best responses are governed by the n  

equations in the form of (3.30).  Cournot-Nash equilibrium in this setting can be 

calculated as a fixed point by the intersection of the best responses governed by n 

system of equations. The solution yields the following Best Response equation:  
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 (3.31) 
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Inserting the best response expression in (3.31) into (3.26) and (3.27), the results 

regarding Stage-II are summarized in the following lemma:   

Lemma 3.5: Given the set of bilateral contracts, there exists a pure strategy Cournot 

Nash equilibrium in Stage II such that each firm selects the following amount of 

generation: 
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 (3.32) 

with the equilibrium price:  
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and the total production: 
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Stage I Solution: 

In this stage, each company selects the volume of bilateral contract volume to 

maximize: (3.25): 

    21
  

2
iB

i i i i i

R
p G B g B p B cg i N

n

 
        

 


 (3.35) 

In order to eliminate any arbitrage opportunity, bilateral contract prices in the 

contracting stage can be assumed to be equal to the equilibrium spot price (Bushnell, 

2007b).  Thus:  

   E  =   B

ip p G B i N      (3.36) 

So, the profit expression in the contrct stage turns out to be:  
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Each company assumes that any commitment to a bilateral contract volume B  in Stage 

I would yield the equilibrium values in Lemma 3.5 in Stage II. Therefore, equilibrium 

can be calculated by using the anticipated results of Stage II inserted in Stage I profit 

expression. Using the anticipated equilibrium condition in Stage II , i.e., best repose 

correspondences in (3.32), equilibrium aggregated demand in (3.38) , and the 

equilibrium price in (3.39)Best Response optimal bilateral contract volumes for t , 

solves the following maximization problem: 
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which can be reduced to the following unconstrained optimization problem: 
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First Order Condition for the above problem is : 



 54   

i i i i i i
i i

i i i i

p R g g
g p cg

B B n B B

    
    

    


 

  

Inserting the partial derivatives:  
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Since the firms are symmetric, the contract volumes for each firm must be identical 

at equilibrium:    ,i jB B B i j N    . Performing the necessary calculations, the 

results for optimal contract volume are summarized in Lemma 3.6.  

Lemma 3.6: There exists a pure strategy Subgame Perfect Cournot-Nash equilibrium 

bilateral contract volume which is identical for each firm given by: 
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Proposition 3.3: When the price of renewable energy is determined through 

competition, there exists a unique Subgame Perfect Nash Equilibrium of the game such 

that each firm i N  chooses the following strategy : 
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Solution for Case 3.2 

In this case, renewable energy is subsidized through a feed-in tariff 
Rp . The profit 

function takes the following form:  
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following the same solution concept, the results for this case are summarized in  

Proposition 3.4: When renewable energy is subsidized with a feed-in tariff, there 

exists a unique Subgame Perfect Nash Equilibrium of the game such that each firm 

i N  chooses the following strategy: 
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The comparison of the result of both cases provides the following proposition: 

Proposition 3.5: 

The equilibrium bilateral contract volume B  is such that: 

i) The equilibrium contract volume B is a strictly decreasing function of R in 

the feed-in tariff support program. However, it depends on demand and cost 

parameters  , , ,a b c n and ownership fraction  in the case of competitive 

price. 

ii) The equilibrium contract volume is strictly increasing with the ownership 

fraction  of the competitive firms. 

iii) Feed-in tariff support programs always result in a lower bilateral contract 

volume B . 

Proof of Proposition 3.5:   

i) For the feed-in tariff case 
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ii) contract volume decreases in R . For the competitive price case 
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contract volume is increasing in  . 

iv) When every other parameter is fixed in the system, 
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One of the important results of Proposition 3.5 is that increasing renewable energy 

decreases the volume of a bilateral contract in feed-in tariff but depending on system 

parameters, may have a different effect in a competitive price case. Thus, the pricing 

method of renewable energy has an important effect on firm behavior. Similarly, 

ownership structure also has a similar effect on companies' strategic decisions. 

Therefore, companies can make use of diversified portfolios in their strategic decision 

in both competition and bilateral contract stages.  

3.3.5 Numerical Example 

In this section, the analytical findings in the previous section will be examined 

numerically with reasonable system parameters. A representative inverse demand 

function is constructed in order to obtain similar equilibrium prices in the Turkish 

Wholesale Market, “Energy Exchange Istanbul” (EXIST).  For this reason, the demand 

function p=1100-0.35*G where a=1100 and b=0.35 are selected. We assume that there 

are 8 competitive generation firms. For the cost parameter, we anticipate 35% marginal 

profit at equilibrium. Therefore c=0.65 is selected for the quadratic cost case and 

c=180 is selected for the linear cost curve. With these parameters, equilibrium prices 

for 1a, 1b, 2a, and 2b when R=0 are 289.5 TL, 289.5 TL, 282,2 TL, and 282.2 TL 
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respectively, which is fairly close to the actual equilibrium price of 280 TL at that time 

point.  

The result of Proposition-1 is illustrated in Figure 3.3 and Figure 3.4. In both cases, 

namely in both linear cost and quadratic cost cases, equilibrium price decreases with 

available renewable energy at that time, reflecting the Merit-order effect. The main 

result of Proposition-1 is about the impact of the subsidization mechanism for 

renewable in equilibrium price. The results indicate that the Merit order Effect is more 

powerful in the feed-in tariff support scheme. As a result, for a given market setting, 

the equilibrium price is lower when renewable energy is subsidized through a feed-in 

tariff. Figure 3.5 and Figure 3.6 confirm the finding of Proposition-1. In both linear 

and quadratic cost cases, the equilibrium price for the feed-in tariff indicated by the 

blue line is always below the equilibrium price for the competitive tariff which is 

indicated by the orange lines.  In both linear and quadratic cost situations, the 

difference between equilibrium prices for alternative support mechanisms is increasing 

with R. This result implies that when the share of renewable energy is increased to 

considerable amounts and this increase is supported through a feed-in tariff program, 

prices in spot market would eventually decrease dramatically.  

 

Figure 3.3: Equilibrium price as a function of R, linear cost case 

The ownership structure also plays an important role in the equilibrium price. 

However, Proposition 2 suggests the effect of ownership is eliminated in feed-in tariff 

support programs. Nevertheless, when the prices are competitive, Merit order Effect 
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is mitigated by the increasing shares of competitive firms. Figure 3.5 shows that, while 

every other parameter in the economy is fixed, the equilibrium price increases with 

increasing λ.  

 

Figure 3.4: Equilibrium price as a function of R, quadratic cost case 

 

 

Figure 3.5: Effect of λ on equilibrium price in a fixed market setup 
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How equilibrium price moves according to the amount of available renewable energy 

under different ownership percentages is illustrated in Figure 3.6. As expected, the 

equilibrium price decreases slower when the share of competitive firms is higher.  

 

Figure 3.6: Equilibrium Price vs Available Renewable Energy under different 

Ownership Structures 
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mechanism such as a feed-in tariff. Ownership also plays an important role in 

equilibrium. Since the competition is characterized as imperfect, strategic players can 

take advantage of diversified portfolios and mitigate the adverse effect. However, 

feed-in-type support programs eliminate the effect of ownership. Another important 

set of findings is related to the volume of bilateral contracts. In the linear cost case, the 

volume of bilateral contracts is negatively related to the quantity of renewable energy 

and the ownership fraction improves this negative relation. However, the situation in 

the quadratic cost case is complicated and the relation between bilateral contact 

volume and quantity of renewable energy depends on demand parameters and 

ownership fraction. For a certain set of parameters, bilateral contract volume and 

renewable energy quantity are negatively related when the ownership fraction is close 

to 0. The negative relation improves with the increasing ownership fraction and 

depending on the system parameter, may reach a break-even point after which the 

bilateral contract volume becomes positively related to the available renewable energy.  

 Various policy implications can be drawn from these results. First, in order to ease 

adverse effects, policymakers should revisit their subsidization programs and 

implement market-based mechanisms instead of non-market mechanisms. 

Furthermore, strategic companies should be encouraged to add renewable energy into 

their portfolios.  
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CHAPTER 4  

4 A NOVAL DEMAND RESPONSE MODEL AND ITS ANALYSIS 

4.1 Introduction 

Electricity has a unique characteristic among all the other consumable goods. Due to 

its nature and the current technological limits, electricity cannot be stored in large 

quantities feasibly and should be consumed instantaneously when generated. This 

characteristic exposes one of the most challenging limitations in both infrastructure 

design in the technical domain and economic design of the electricity markets. Another 

limitation is network feasibility constraints which require input to and output from the 

transmission network must be balanced with very tight limits at all times. Within these 

restrictions, the operations of conventional electricity markets have been established 

on the principle that electricity generation is adjusted continuously according to the 

corresponding demand. Thus, only the supply side of the system is active in the 

traditional adjustment mechanism (Hu et al., 2013). On the other hand, demand for 

electricity fluctuates through the day along with daily routines like appliance usage, 

transportation, production processes, lighting needs, heating and cooling requirements, 

etc., and, in most markets, makes a peak or peaks at certain hours. Unfortunately, the 

consumption side is not able to observe the efficiency signals of the supply side and 

does not have any incentive to adjust its consumption accordingly (Kirschen, 2003). 

The practice is not compatible with the competitive market idea where prices adjust 

according to the scarcity of the product or service (Zarnikau, 2008). Throughout the 

years, the need for elasticity on the demand side and interest in altering the 

consumption patterns of the users by suppliers and system operators to improve the 

efficiency of electricity markets and electricity systems have been growing.  The desire 

to influence the consumption decision of the customer brought about the idea of 

Demand Side Management (DMS). DMS is a very broad concept incorporating several 



 62   

long-term and short-term activities designed to alter electricity consumption patterns. 

Demand Response (DR) is a subcategory of DMS related to short-term market 

operations. DR is a tariff scheme, a program, or an incentive mechanism established 

to influence the end-user customers’ consumption patterns in response to the changes 

in the price of the electricity (US Dept. Energy, 2006).  

The early objective intended by Demand Response methods was to eliminate the 

inefficiencies due to peak load and promote the system safety of the transmission 

networks. All infrastructure and investment should be settled according to the peak 

demand to prevent blackouts since blackouts cause huge economic costs in addition to 

undesirable discomfort (Shuai et al., 2018). Moreover, there should be some reserve 

margin for generation in case of unexpected demand increases and production 

uncertainties due to system unavailability. Together with this reserve capacity, 

installed generation capacity would be more than 100% of the probable peak demand 

for most of the markets. Unfortunately, the system should be run under its capacity 

during off-peak times. This peak load capacity stays idle during off-peak periods 

resulting in a loss of opportunity cost and a reduction in system efficiency.  When 

average electricity usage is compared with installed capacity, it can be inferred that 

utilization of installed production capacity could be as low as 55% (Strbac, 2008).  

From the system safety point of view, peak demand always poses technical threats to 

the system by ramping of generation, thermal loads, stress on transmission lines, etc.  

Hence, changing the demand profile in order to decrease the peak load and distribute 

the load as evenly as possible has been one of the main objectives of Demand 

Response. However, increasing utilization of renewable energy, decentralization of 

generation, and participation of small-scale producers bring another dimension to the 

problem: supply uncertainty.  

Low carbon policies such as the EU’s objective to reduce greenhouse gas emissions 

by at least 80% below 1990 levels by 2050 necessitates a significant increase in the 

share of renewables (da Graça Carvalho, 2012). Besides technological feasibility, 

efficient use of higher renewable energy requires the implementation of new market 

models facilitating the flexible demand profiles to account for the supply uncertainty. 

Generation amount from renewables and timing of generation is almost completely 

dependent on the weather condition. If the production from renewables is high when 
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the demand is low, the unused amount would be wasted due to the instantaneously 

perishable characteristic of the electricity. However, a few hours later other 

conventional sources with marginal production costs associated with greenhouse gas 

emissions would be used in order to meet the demand when renewable production 

decreases below the demand at that time. Consequently, continuous adjustment of the 

supply according to the demand is no longer an effective practice when higher 

renewable energy utilization is envisioned since supply from renewables is rigid. 

Alternatively, shifting the demand from one point in time to another by Demand 

Response following the available generation schedule has great potential.  There are 

several other consequences of this supply-demand mismatch. Oversupply of 

renewables causes a decrease in prices in the wholesale market and even the 

occurrence of negative prices which make it hard to cover operation costs and affect 

the investment decision in the long run (Cramton and Stoft, 2006), (Joskow, 2008). 

This paradigm change due to the increasing usage of renewable energy has changed 

the focus of demand response practices. Therefore, within the context of renewable 

energy utilization, the primary goal of demand-side management become changing the 

demand profile in order to make it compatible with the inflexible production profile 

rather than preventing the peak demand only.  

Although Demand Response is a promising concept to obtain flexibility on the demand 

side, most of the traditional DR methods which are designed to mitigate the adverse 

effect of peak demand fail to address the problem arising from supply uncertainty and 

do not handle the challenges of increasing renewable utilization. For example, 

“Critical Peak Pricing” where prices are high for certain times when peak load occurs 

is only effective to shave the “peak” load. “Time-Of-Use (TOU)” where there is a set 

of pre-determined tariffs for certain periods is one of the oldest programs that has many 

practical applications. TOU rates are not flexible enough in the short run to influence 

consumer demand dynamically to account for the supply uncertainty (Borenstein, 

2005). Among many others, Real-Time Pricing is theoretically a very efficient 

dynamic pricing practice since it reflects the actual cost of supply by continuously 

updating the price. However, real-time pricing brings maximum uncertainty and risk 

for the customer. Moreover, real-time pricing requires a very high communication rate 

and customer involvement which is not possible often (Dutta and Mitra, 2017), 

(Dütschke and Paetz, 2013). Another drawback of Real-Time pricing is that the 
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customers may not be dynamic enough to adapt to the price signals and respond to the 

price change rapidly. Another important aspect of Demand Response programs is how 

flexibility is obtained. Price-based DR programs generally use price signals to alter 

customer consumption patterns. These kinds of programs aim to influence customer 

behavior indirectly. However, when the demand is controlled directly, the System 

Operator obtains superior certainty compared to the indirect control through price 

signals. (Callaway and Hiskens, 2010). Therefore, instead of manipulating the demand 

through price signals, the system operator may have some control over the timing of 

the electricity usage of the customer as a more effective way to address supply 

uncertainty. It has been discussed that Direct Load Control could produce more 

reliable demand flexibility (Stenner et al., 2017), (He et al., 2013). Besides, load shifts 

should be explicitly included in the effective Demand Response Program.  

Based on these arguments, we propose a Demand Response model in which customers 

voluntarily let the System Operator decide the timing of some amount of electricity 

usage in order to get an incentive in the form of a discounted price.  In this model, 

electricity usage is segmented into two types according to time flexibility. Before each 

optimization period, discounted prices are offered for flexible usage for which the 

System Operator decides the exact usage time within predefined time boundaries. The 

customer selects the amount for flexible and ordinary usage according to price offers. 

Therefore, customers get benefits in terms of incentives in return provide time-

flexibility to the system operator in such a way that the system operator makes sure 

that generated renewable energy is consumed efficiently while maximizing profit. The 

model could be categorized as Direct Load Control demand response practice, but it 

also includes dynamic pricing since the discounted price is determined dynamically at 

the beginning of the optimization period.   

This novel market model addresses some of the major problems related to the efficient 

usage of renewable energy and provides more reliable and practical solutions 

compared to traditional price-signal-based demand response practices available in the 

literature. From the customer perspective, the risks associated with volatile prices are 

eliminated since the prices for ordinary usage and flexible usage are determined before 

the event time. The total incentive is proportional to the volume of flexible usage and 

the customer knows the outcome before committing with certainty. The arguments 
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regarding bill stability which is one of the main concerns related to dynamic pricing 

(Borenstein, 2009) disappear in this model. Moreover, customer involvement requires 

less effort. A well-established communication system is required but this is a “must” 

for any other dynamic pricing technique. In other dynamic pricing practices like real-

time pricing, customer needs to search for the optimal price continuously which 

requires continuous effort from the customers. From a system operator perspective, 

having the right to control the scheduling of the demand rather than influencing the 

customer through price signals provides a great advantage in better utilization of 

renewable energy since the System Operator obtains more reliable and adjustable 

demand flexibility with a greater amount of certainty. Our base model can be extended 

to include constraints about the duration of DR event and maximum shift periods could 

be predefined.  

4.2 Related Literature 

Demand Side Management has always been regarded as a tool with high potential for 

eliminating inefficiencies in the electricity sector. The policies and regulations 

implemented for reducing greenhouse gas emissions and promoting sustainability have 

boosted this potential since decreased flexibility due to uncontrollable renewables on 

the supply side could be compensated on the demand side through Demand Side 

Management (Misconel et al., 2021). Accordingly, the attention on Demand Side 

Management, particularly on Demand Response, has been growing for the last decade. 

In parallel, the literature on Demand Side Management has increased steeply from 

around 130 publications in 2009 to more than 1800 yearly articles in 2020  (Morales-

España et al., 2021). Several articles are reviewing these publications in the literature 

focusing on certain aspects.  

Benefits and Challenges of Demand Side Management have been discussed by many 

authors (O׳Connell et al., 2014),(US Dept. Energy, 2006), (Conchado and Linares, 

2012). Among several others, benefits from three main perspectives stand out: 

financial, operational, and better renewable energy utilization perspectives. Both 

supplier and end-user sides could obtain financial benefits through DR. Supply-side 

face competitive market conditions and prices in the spot market are frequently volatile 

(De Jonghe et al., 2008). One of the main reasons for this volatility is inelastic demand 
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due to flat retail prices since the demand side is irresponsive to the supply side's 

efficient signals. Load that can be shiftable or curtailable can act as an additional 

source of supply for demand-supply balancing and reduce the market power. 

Therefore, with smoothed net demand profiles, price spikes and inefficient prices due 

to excess supply or supply shortages occur less frequently (Bergaentzlé et al., 2014). 

Moreover, smooth generation from thermal sources promotes generation efficiency 

and reduces fuel costs (Müller and Möst, 2018). Therefore, wholesale electricity 

prices, as well as the price volatilities, would be reduced as a result of DR (Asadinejad 

and Tomsovic, 2017). This reduction would be eventually reflected in the bills of the 

end-users. The end-user may also benefit from the direct incentive provided by DR 

practices (Gottwalt et al., 2016). Flexibility on the demand side allows network 

operators to manage network constraints more efficiently (Affonso et al., 2005) 

(Zibelman and Krapels, 2008).  Efficient management of the lines also promotes a 

reduction in line losses (Shaw et al., 2009). Another significant potential operational 

benefit is that the costly investment required for peak-load capacity, especially in such 

an uncertain future, can be avoided (IRENA, 2019) (Veldman et al., 2013) (Blokhuis 

et al., 2011). All these potential benefits of DR are even greater when it comes to 

renewable energy integration since all these problems and complications amplify in 

the case of renewable energy integration (Simshauser, 2019). Shares of total renewable 

energy can be increased by compensating for the loss of flexibility on the supply side 

and preventing curtailment through Demand Response (Gils, 2014). 

DR Modeling in the literature varies significantly depending on the type of DR strategy 

in consideration, scale, the proposed problem setup, etc. In the literature, there is no 

common Demand Response modeling framework that can be applied in general and 

on which a consensus has been achieved. A large group of literature attempts to 

quantify demand response potential based on available resources or rational economic 

behavior of the users. Some of these even do not include any analytical formulation 

that relates price or incentive to demand response behavior, instead, rely on 

assumptions such that a certain fraction out of total demand response potentials was 

available on hand. For example, (Märkle-Huß et al., 2018) first calculates overall 

demand response potential based on available shiftable sources such as appliances 

usage, heating devices, etc., and then analyzed the effect of demand shifts on the 

wholesale prices assuming they would use 1% and 10% of the available demand 
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response potential. These kinds of analyses are useful in understanding the potential 

value of the Demand Response sources and enable the researchers to make a 

comparison of the potential value with the cost of implementation.  A major group of 

authors utilizes the price elasticity of demand to represent Demand Response 

potentials (O’Connell et al., 2015). Many of those models such as (Heydarian-

Forushani et al., 2020) and (Allcott, 2011) rely on a reduction or increase in the 

demand at a certain point in time and do not explicitly represent a demand shift from 

one point in time to another. Therefore, those models fail to address demand recovery.  

However, proper DR modeling should include demand recovery of the affected 

demand within a reasonable timeframe, i.e, a change in demand at one point in time 

should be compensated by a change in the reverse direction at a certain point in time 

(Zerrahn and Schill, 2015). It is important that proper modeling should include time-

related constraints ensuring that the net load shift within the optimization period should 

be zero. Otherwise, the results obtained from the model would be ambiguous as users 

are not expected to forego electricity usage for certain applications in the short term 

because it is costly at one point. Some authors such as (Asensio et al., 2017) and (De 

Jonghe et al., 2012) include cross-price elasticities for different time slots to account 

for demand shifts between time slots. However, cross-price elasticities do not ensure 

that the demand shift balance is satisfied (Zerrahn and Schill, 2015). 

Another main group of modeling considers DR in capacity planning and includes DR 

sources in Unit Commitment problems as a source of negative generation (McPherson 

and Stoll, 2020). The objective of the Unit Commitment Model or Production Cost 

Model is to find out the least costly generation plan to meet the demand considering 

various generation sources with different variable costs (Hummon et al., 2013). 

Therefore, including DR in these models facilitates understanding the potential benefit 

of DR on system capacity planning and cost reduction. Nevertheless, the majority of 

these models do not provide the mechanisms for how Demand Response is obtained 

on the demand side.  

Optimization methods are also closely related to the strategy of Demand Response and 

the definition of the problem. The objective of a Demand Response program could be 

minimizing production cost, maximizing social welfare, maximizing economic 

benefit, maximizing renewable energy utilization, etc (Vardakas et al., 2014). 
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(Mohsenian-Rad and Leon-Garcia, 2010) employed Linear Optimization to find the 

optimal consumption of different appliances in a real-time pricing Demand Response 

setting. The inclusion of binary decision variables such as on-off status leads to Mixed 

Integer Programming as in (Kriett and Salani, 2012) and (Nan et al., 2018). Examples 

of Game-Theory based optimization can be found in (Feng et al., 2020) and (Li et al., 

2021). More complicated optimization methods are utilized such as Nonlinear models 

in (Leithon et al., 2018) and Stochastic models in (Chen et al., 2012). Dynamic 

Optimization considering the interaction of supply and demand is found in (Jiang and 

Low, 2011).  

Our modeling differs from current literature in that we consider the dynamic 

interaction of the supply and demand sides together in a comprehensive way. In 

addition, we derived consumer preferences between inflexible and flexible usage for a 

given incentive based on the strategic decision process of the customer rather than 

assuming linear relations or simplified forms of demand response relations.  To the 

best of our knowledge, such a kind of customer modeling in the direct load control 

context is missing in the literature. Period-by-period energy balance constraints and 

time-related load shift constraints are two fundamental constraints that ensure that 

demand recovery and demand matching requirements are satisfied. We also explicitly 

model load shifts including these constraints. Our resulting mathematical problem is a 

nonlinear dynamic optimization.  

4.3 The Model 

The market we consider consists of a System Operator who provides electricity and a 

representative customer who is the only consumer of electricity. The System Operator 

has two kinds of electricity generation sources: one is from renewable energy 

generators and the other is from a portfolio of conventional (nonrenewable) generators. 

The two kinds of sources differ from each other in terms of controllability of timing 

and quantity: the timing and quantity of the generation from renewables completely 

depend on uncontrollable external factors (particularly on weather conditions), 

whereas the quantity and timing of the conventional generation are controllable. The 

marginal cost of the production from renewables is zero but the marginal cost of 

production from conventional resources is equal to the market price of the electricity
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p . The system operator first uses the costless renewables to meet the demand and then 

dispatches the conventional if needed. In order to better utilize renewables and increase 

revenue by decreasing the cost originating from conventional generation, the system 

operator wants to shift some of the demand from the point where there is a lesser 

amount of renewable generation to the point where renewable generation is abundant. 

To do so, the SO implements a Demand Response mechanism. In this mechanism, 

S.O. segments the electricity usage into two according to time flexibility and offers 

two options to the customer. The first option is ordinary (inflexible) usage the customer 

uses the electricity whenever she desires at the market price p . The other option is 

flexible consumption such that the customer lets the system operator selects the usage 

time within n  of the desired time at a discounted price flexp . The representative 

customer’s optimal decisions determine the level of consumption in each category.  

 The planning period is  1,..., ,..., ,    and 1t T where T T    . 

 Nature reveals each period t’s state: 

     1 1
,..., ,...,    and 1,...,

T

t T t tt
s s s s where s t T


   . The state of the Nature 

includes all the short-term information such as weather conditions, the day of 

the week, etc. which are the determinates of the next day's consumption and 

renewable generation levels.  

 For all levels of the electricity produced from nonrenewable resources 

 0,cq   , the unit cost of production is  0,cc   . 

 For all levels of the electricity produced from renewable resources 

 0,Rq   , the unit cost of production is 0Rc  . 

 The price of the electricity for ordinary usage is determined by policymakers 

as p  and the discounted price for flexible usage is determined by the S.O. 

 0,flexp p . 
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4.3.1 Demand Side: 

The consumer has an upcoming planning period of  1,..., ,...,t T .  The consumer 

consumption plan in the very short-run is only affected by the state of the planning 

period 
1
  

T

t tt
s where s


  since all the other factors affecting the consumption 

decision can be assumed to be stationary for such short-term planning. Moreover, state 

of the nature is revealed by Nature to the RCE well before the upcoming period. Thus, 

Given  
1
  

T

t tt
s where s


  for the upcoming period, the RCE’s set of ex-ante 

consumption levels is: 

       1 1 1 ,..., ,...,xT t t T TD D s D s D s   

However, the consumer can allow System Operator to shift some of its consumption 

 t tD s  from    1,...,  to 1,..., 1, 1,...,t T t t T    in exchange for a discounted 

price, which is referred to as flexible consumption. The portion of the demand that is 

committed to flexible usage for price flexp  at time  1,...,t T  is denoted with 

 ,flex t td s . In the same way, the remaining demand at the time  1,...,t T  that the 

consumer does not want to shift over time is referred to as inflexible consumption and 

it is denoted with  ,inflex t td s . 

We assume that wealth increase due to the incentive does not induce any increase in 

consumption levels. The sum of the flexible and inflexible demand consumption levels 

obey the ex-ante consumption plan at each  1,...,t T .  

      , ,inflex t t flex t t t sd s d s D t   (4.1) 

Assume that for all  1,...,t T , the unit price of the inflexible consumption is p and 

that of flexible consumption is flexp . Then, the cost of time  1,...,t T consumption is: 

         , , , ,inflex t t flex flex t t inflex t t flex t t flex t tpd s p d s pd s p D s d s       

The nominal gain from the flexible consumption is:  
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       

   

, , , ,

,                                                                              

inflex t t flex t t inflex t t flex flex t t

inflex t t flex t t

p d s d s pd s p d s

d s p p s

         

     M
 

Taking p as a numeraire, the consumer’s real wealth gain from the flexible 

consumption can be written as:  

 
 

    ,

, 1
flex tt t

t t flex t t

t t

ps
s d s

p p

 
    

 

M
 (4.2) 

 

The consumer derives utility from inflexible consumption 
inflexd , flexible consumption 

flexd , and the real wealth gain obtained from committing to flexible consumption,  .  

 ( , , ) ( ) ( ) ( )inflex flex inflex inflex flex flexU d d U d U d U         (4.3) 

with weights 0,   0,   0inflex flex        

This utility function can be written in terms of demand and prices as:  

 
,

inf( , , ) ( ) ( ) 1
flex t

inflex flex inflex lex flex flex flex

t

p
U d d U d U d U d

p


  
        

  
 (4.4) 

From constraint in (4.1), we have  

 , ,inflex t t s flex td D t d   

Then 

   ,

,( , , ) ( ) ( ) ( 1 )
flex t

inflex flex inflex t s flex t flex flex flex

t

p
d d U D t d U d U d

p
U

 
     

 
     

  (4.5) 

Let: 

 
1

1

x
U x









 

where  0,1 . So: 
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1
1 1,

, ,

1
( ) 1

1

flex t

flex inflex t flex t flex flex t

t

p
U d D d d

p


 

   
                   


 

  


(4.6) 

Since ( )flexU d is concave in 
flexd , the first order condition 

( )
0

flex

flex

U d

d





 

Provides the utility-maximizing 
flexd and hence utility maximizing 

,flex td , 
,inflex td and t

turns out to be: 

 

   

   

     

,

,

,

ˆ , ,

ˆ , , 1

ˆ , , 1 1 , ,

flex

flex t flex t t t

flex

inflex t flex t t t

flex flex flex

t flex t t t inflex t flex t

p
d p p s D s

p

p
d p p s D s

p

p p p
p p s D s d p p s

p p p

 
  

 

  
   

  

     
         

     

(4.7) 

where 

1
1

11

1 1

p

flex flexp

inflex flex

p p

p p







 
     

            
      

 

 

4.3.2 Supply Side:  

The System Operator does not have any direct control over the consumer decision 

process however, it can influence the output by setting the discounted price level. The 

amount of flexible usage that the System Operator needs is the key factor in the 

optimization. The System Operator’s decision-making process proceeds in a multi-

stage context. Firstly, it decides the unit price of the time-flexible usage of electricity,

flexp . Then, this price determines the time flexible and inflexible demands for each 

 1,...,t T by influencing the RCE’s optimal choices. Next, in order to minimize 
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generation from conventional resources and maximize the utilization of renewables, 

the SO shifts time flexible demands among periods and then determines the amounts 

of electricity to be provided from nonrenewable resources to match total generation 

with the total demand. 

4.3.3 Complete Model: 

The whole model can be formulated as the following multi-stage problem: 

Stage 0:  Nature: Nature reveals each period t’s state    1 1
,..., ,...,  

T

t T t t
s s s s




where   and 1,...,ts t T   

Electricity Providers from Renewables: Each period t’s state ts  determines 

the amount of electricity to be generated from the available renewable 

resources:  

 

        , ,1 1 , ,1
,..., ,..., ,

T

R t t R R t t R T Tt
q s q s q s q s


     

where   and 1,...,ts t T   

 

Representative Consumer: The representative consumer of electricity (RCE) 

first observes  
1

T

t t
s


 where  ts  and prepares a state and time-dependent ex-

ante consumption plan for  1,...,T  in terms of electricity usage:  

 

         1 11
,..., ,..., ,  

T

t t t t T T tt
D s D s D s D s s


   

 

The RCE cannot observe   , 1

T

R t t t
q s


 and its ex-ante consumption plan 

  
1

T

t t t
D s


is exogenously determined. 

 

Stage 1: SO observes   , 1

T

R t t t
q s


of Stage 0. It takes the unit price of electricity 

generated from non-renewable resources  0,p  as given. 
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 Given ts  for all   1,...,t T , the S.O. sets the price for flexible usage 

 0,flexp p to be valid for all   1,...,t T . Once it announces the price of 

flexible usage, it correctly anticipates the optimal choices to be made thereafter 

its decisions.  

 

Stage 2: The representative consumer of electricity observes the SO’s stage 1 

price announcements for the flexible electricity usage 
flexp and inflexible usage 

p over the period  1,...,T . Given ts  for all   1,...,t T and Stage 0’s 

  
1

T

t t t
D s


, depending on 

flexp , the RCE decides how much of the electricity 

 t tD s to be provided as a flexible usage for each   1,...,t T , 
,flex td and 

hence how much of it to be inflexible, , ,inflex t t flex td D d  : 

        , , ,
1

, , , , , , ,
t T

flex t flex inflex t flex t t flex t flex
t

d s p p d s p p D s d s p p



   

 

Stage 3: Given Stage 0’s supply of electricity from renewable 

resources,   , 1

T

renew t t t
q s


, and Stage 2’s optimal allocations between flexible 

and inflexible demand levels     , ,
1

, , , , ,
t T

flex t flex inflex t flex
t

d s p p d s p p



, the SO 

shifts flexible demands between different periods over the horizon 1,...,T : 

,tf   is the potion of flexible demand ,flex td  at the time  t  shifted to the time  

, where   1,...,t T ,   ,...,t n t n   and  0 T   . The SO’s aim is to 

utilize renewables efficiently and reduce the generation from non-renewable 

resources. The determination of optimal demand shifts also provides the 

required minimum generation from conventional resources for each 

  1,...,t T . 

In this setup, we assume that the SO has perfect foresight and can solve the optimality 

problems following its decisions and use them in its preceding decision-making 

processes. The logic as applied in the backward induction method is used in solving 

dynamic programming problems. 
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Solution of the Multi-Stage Problem: 

Using the backward induction method, starting from the last decision stage, Stage 3, 

we solve this multi-stage decision-making problem through the first decision stage, 

Stage 1. 

Stage 3 solution for the SO 

At Stage 3, the SO takes the following as given: 

  
1

T

t t
s


 where  ts  , Stage 0’s supplies of electricity from renewable 

resources   , 1

T

R t t t
q s


, Stage 0’s ex-ante electricity consumption plans 

  
1

T

t t t
D s


, Stage 1’s price levels  ,flexp p , stage 2’s adjusted flexible and 

inflexible electricity demand levels 

        , , ,
1

, , , , , , ,
t T

flex t flex inflex t flex t t flex t flex
t

d s p p d s p p D s d s p p



   

Then, it shifts portions of each   1,...,t T flexible demand ,flex td among periods 

 1,...,T : 

   , , 1 , , 1 , ,,..., , , ,...,
t n

t t n t t t t t t t t n t t n
f f f f f f

 

      
  

where ,tf  is the portion of   1,...,t T flexible demand shifted to a period  1,..., ,T

such that for each   1,...,T : 

  , ,        1,...,
t n

t flex t

t n

f d t T
 



 

    (4.8) 

This constraint can be referred to as the energy shift constraint. The total load that is 

shifted from one point of time to the other periods is equal to the available flexible 

demand at that specific period.  The equality constraint makes sure that demand shifted 

from one point of time must be served within a certain time interval. Therefore demand 

recovery which is one of the problematic aspects of many applications is satisfied in 

this model.  
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The main purpose of demand shifts is to reduce costly production from conventional 

resources. Thus, the decision about flexible demand shifts   , 1
1

t T
T

t
t

f




 


 over the 

horizon 1,...,T is closely related to the generation from conventional sources  , 1

t T

c t t
q





. Therefore, in Stage 3, SO also decides on electricity generation from conventional 

sources.  Note that for each period   1,...,t T , the SO first uses the available 

renewable resources 
,r tq and then generates from conventional sources 

,c tq to meet the 

demand.  Thus total generation in each period is 
, ,r t c tq q . On the other hand demand 

in each period   1,...,t T  is composed of inflexible demand in  t  
,inflex td  in addition 

to the total flexible demand shifted from other periods to period t 
,

t n

t

t n

f
 



 

 . The total 

demand that must be served at the time   1,...,t T  is then
, ,

t n

inflex t t

t n

d f
 



 

  .  Total 

generation must not be less than the total demand for each   1,...,t T , which lead us 

to the following period-by-period energy balance constrained:  

  , , , ,      1,...,
t n

inflex t t R t c t

t n

d f q q t T
 



 

      (4.9) 

 SO’s profit for each   1,...,t T  is composed of three parts: revenue from inflexible 

demand ,inflex tpd , revenue from total flexible demand that is served at time t 

,

t n

flex t

t n

p f
 



 

 , minus the cost of conventional generation tpq at time t. Thus 

     , , , , , ,,       1,...,
t n

t n

SO t c t t inflex t flex t c tt n
t n

q f pd p f pq t T
 

 

  
 

       (4.10) 

Summing up the revenues over the entire planning horizon  1,...,T to obtain the Total 

Revenue:  
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       , , , ,1
1 1

, , ,

1

, ,

                                           

                                         

TT
T t n t n

SO c t t SO t R tt n t n

T t n

inflex t flex t c t

t n

q f q f

pd p f pq

 

  







   

   

 

 

 
  

 

 
   

 



 

 (4.11) 

 

Therefore, given  , flexp p , , 1

T

R tq and  , , 1
,

t T

flex t inflex t t
d d




, SO solves the following 

revenue maximization problem: 

 

SO’s profit maximization problem at Stage 3: 

       

    , ,1
1

, , ,

1,

      
T

T t n

c t t t n

T t n

SO inflex t flex t c t

t nq f

pd p f pqMaximize
 

 

 

 

 
    

 
 



 







             (4.12) 

                             
 subject to

 

  , , , ,       1,...,
t n

inflex t t R t c t

t n

d f q q t T
 



 

      (4.13)    

  , ,       1,...,
t n

t flex t

t n

f d t T
 



 

     (4.14) 

  , ,, 0     , , 1,...,c t i jq f t i j T    (4.15) 

 

Stage 2 solution for the RCE 

Stage 2 does not have any input from Stage 3 results. Stage 2 solution is given above 

in the “demand side” section. The result of Stage 2 is passed to Stage 1 as the following 

constraint: 

 , , , ,
,

, ( , , ) : .  ,flex inflex inflex flex inflex t flex t t flex t flex flex t
D p

d d argmax d d s to d d D pd p dU     M  
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which is amended to the Stage 3 results 

Stage 1 solution for the SO 

In this stage, the System Operator determines the profit-maximizing 
flexp considering 

Stage 2 and Stage 3 equilibrium solutions.  Thus, anticipating the  Stage 2 and Stage 3 

outcomes, the system operator solves the following maximization problem at this 

stage: 

    

 

 

, ,1
1

, , ,

1,

, , , ,

, ,

  

      1,...,

 

      1,...,

  

 

T
T t nflex

c t t t n

T t n

inflex t flex t c t
p t nq f

t n

inflex t t R t c t

t n
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The maximization operator outside the parenthesis can be taken inside to obtain the 

following objective function: 
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The resulting problem will be a bi-level optimization problem such that the upper-level 

problem consists of the S.O.’s profit maximization over the decision set of 
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, ,
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c t tflex t n
p q f



 

 

 
 and the lower-level problem is the utility maximization problem of 

the consumer over the choice of ,flex inflexd d . Note that in this specific case, the problem 
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can also be converted into a single-level non-linear optimization problem by replacing 

the lower-level problem with the value functions of ,flex inflexd d . However, to account 

for a variety of cases, we prefer to formulate the resulting problem as a bi-level 

optimization problem. The resulting bi-level optimization problem is given  
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 (4.16) 

4.3.3.1 Existence of the solution:  

The following definitions are useful to show the existence of the solution: 

1. Constraint set of the problem: 

 

   ,, , , , :  4.1, 4.13, 4.14 and 4.15 holdflex i i c inflex flexp f q d d  (4.17) 

The constraint set of the problem corresponds to the combination of all possible choice 

sets of the System Operator and the Customer 

2. Feasible set for the customer for each flexp :  

The feasible set of the customer is governed by the constraint in (4.1) 
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   , ,( ) , :  flex inflex flex inflex t flex t tp d d d d D     (4.18) 

In fact, in this specific bi-level problem, the choice of S.O does not have any effect 

on the feasible set of the customer. Since ex-ante Demand is assumed to be fixed   D

, all   ,inflex flexd d  combinations such that inflex flexd d D  are feasible for the 

customer. 

3. Projection of constraint set  onto S.O. problem: 
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 (4.19) 

This set is the subset of the constraint set  and refers to the combination of possible 

choice sets of the S.O. defined for all possible  ,inflex flexd d . 

4. The Customer rational reaction set for each
flexp  :  

The customer observes the 
flexp choice of S.O. and responds to maximize her utility.  

Thus, the set is the collection of the optimal  ,inflex flexd d values out of the customer 

optimization problem against the selection of each possible flexp  by S.O. 

 , , , ,
,

( ) ( , , ) : .  ,f inflex flex inflex t flex t t flex t flex flex t
D p

p argmax d d s to d d D pd p dU      M

 (4.20) 

It is also important to note that customer rational reaction corresponds to a single 

solution for each fp since the customer has a strictly concave utility function.  

5. Inducible Region:  

The S.O. problem depends on upper-level constraints some of which are conditional 

on the lower-level decision. The S.O. does not have any direct control but can 

influence the lower-level decision. Since the lower-level problem has a unique solution 

for each flexp , the S.O.’s choice of each flexp results in a specific lower-level decision 
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and thus results in a specific choice set for the S.O. Therefore, each
flexp induces a 

specific constraint set for the upper-level problem.    

The inducible region is the union of the feasible sets for the S.O. for each optimal 

solution ,inflex flexd d  of the Customer against each
flexp .   

     , ,, , , , : , , , , ;  , ( )flex i i c inflex flex flex i i c inflex flex inflex flex flexp f q d d p f q d d d d p   

 (4.21) 

In fact, the inducible region refers to the choice set of the upper-level problem which 

is constructed on the optimal solution of the lower-level problem. Therefore, the 

complete problem of the S.O. turns out to be a selection out of the inducible region.  

Lemma 1: For a nonempty constraint set , the inducible region  is closed.  

Proof of Lemma 1: For better readability and saving notation, let 

   , ,, ,   , , 1,...,flex i j c tx p f q t i j T   be the upper level and 

   , ,,   1,...,inflex t flex ty d d t T   be the lower level choice vectors respectively. Since 

  is nonempty, by definition 3, there exists at least one *x  .  By definition 2 in 

the equation (4.18), the feasible set of the customer is nonempty, thus *( )x  . Since 

the lower level problem is compact we have *( )x   and hence there exists

*

0 ( )y x . Therefore *

0( , )x y  , which shows that the inducible region is 

nonempty. Consider a sequence  
1

( , )
n

n n

n
x y




   converging to * *( , )x y , definition 4 

implies that * *( )y x . Therefore,  is closed.  

Corollary 1: For a nonempty constraint set , the optimal solution for the System 

Operator problem exists.  

Proof of Corollary 1: From Lemma-1,  is closed.  is also a subset of the constraint 

set which is bounded, thus it is compact. By the Weierstrass theorem, the optimal 

solution exists.  

Proposition-1 (Pareto Improvement): If the optimal solution to the above problem 

flexp  is such that flexp p , the solution is Pareto efficient.  
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Proof of proposition-1: The proof is straightforward. The customer is a utility 

maximizer. They select 
, , and flex t inflex td d  such that 

( ) ( ) ( )inflex inflex fleV flexU d U d U U D
p

  
 

   
 

M

M
 Therefore customers are better off. 

The System Operator chooses fp p if only Re ( ) Re ( )fv p v p , therefore, the 

producer is better off when fp p . 

Definition-1:  

i) Set of the periods with excess demand ,{ : }kR kK k q D  : Collection of 

periods where demand exceeds available renewable energy at that period. 

ii) Set of the period with excess renewable energy generation

,{ : }lR kL l q D  : Collection of periods where available renewable energy 

exceeds the demand at that period. 

Theorem-1: For non-empty  and K L , there always exists an optimal price for flexible 

usage flexp which is strictly less than the market price p , i.e. flexp p , such that the 

model provides an improvement in the profit and utilization of renewable energy while 

the customer is not being worse off. That is if there exists at least one period with 

excess renewable energy production and there exists at least one time period with 

excess demand, the model increase the profit of the System Operator and renewable 

energy utilization for a price flexp p . 

Proof of Theorem-1: The proof of the theorem is presented in Appendix. 

4.3.4 The Social Planner Perspective 

The base model has been configured from the producer's perspective to utilize 

renewable energy more efficiently through revenue maximization. However, the 

overall cost structure of the implementation of renewable energy, related support 

mechanisms, and also how this cost is reflected to the end users are quite complicated. 

Thus, in some cases, the objective might be to maximize renewable energy utilization 

regardless of the marginal revenue improvement. The model could be modified to 
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fulfill this objective. In this case, we introduce a Social Planner who is responsible for 

price settings for flexible usage 
flexp . The S.P.'s objective is to maximize renewable 

energy utilization and set 
flexp accordingly. In general retail electricity prices are 

heavily regulated. Since the marginal cost is generally lower than the average cost, 

marginal cost pricing is not sustainable. Therefore, another pricing strategy which is 

referred to as Ramsey pricing or second best pricing is used. This pricing strategy 

leaves a certain amount of revenue to the suppliers to make sure that the average cost 

of generation is covered in the long run. In our modeling, we also use a restriction for 

the revenue in S.P. problem such that S.O. collects at least the same amount of revenue 

if the model were not used. Let the revenue that the S.O. could make without the model 

is referred to as nominal revenue. So, in the optimization, the S.P. include the 

restriction that the revenue of the S.O. will be greater or equal to the nominal revenue.   

The setting of the game defined in Section 2 is modified as follows: 

Stage 0: Nature  reveals   1 1
,..., ,...,  

T

t T t t
s s s s


  where   and 1,...,ts t T   

Stage 1: Social Planner chooses flexp  to maximize renewable utilization while keeping 

producers not worse-off. 

Stage 2: the Consumer chooses  and flex inflexd d out of Utility max Problem 

Stage 3: System Operator decides the Revenue maximizing demand shifts ,i jf  and 

conventional generation amounts ,c tq  according to the available  and flex inflexd d  stage-

2 and anticipated Production profile for renewables. 

 

The Solution to the SP’s Problem 

Stage-3 and Stage-2 solution is the same as in the previous case. Backward induction 

from Stage-3 to Stage-2: 

Let  be the Stage-3 and Stage-2 combined problem in backward induction 

(1... )t T   
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 (4.22) 

Stage-1: 

Different from the base case, we need to define the nominal revenue for the 

producers. Nominal profit of the producer: 

, P =p ( , )N R t t

T

Max q D  

Thus the problem of S.P. 

, 
f

c t
p T

qMin   

subject to 

 P PN  

 , q   1,...,c t t T    
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4.4 Numerical Study 

In this section, we will provide numerical examples based on actual demand data and 

actual renewable energy production profiles.  We consider daily optimization periods 

and hourly data for numerical studies.  

4.4.1 Data and Materials 

Demand Data  

We use realized actual demand data from California ISO in order to attain more 

realistic results. Since consumption patterns change from week-day to weekend-day 

and also from season to season, we consider four categories just for diversity: summer 

week-day, summer weekend-day, winter week-day, and winter weekend-day. A 

random day which is 15.01.2020 is selected as a representative demand profile for each 

category from 2020 consumption data. (note that the number of categories and number 

of demand profiles for each category may be increased, however, we believe that the 

examples provided in this study are enough to demonstrate the output of the model).  

Production data 

For renewable energy production profiles, we use exactly the same day corresponding 

to selected demand dates for each category.  

Scheduling of renewable generation such as PV and Wind is completely dependent on 

the weather condition. This means that for a specific location, installed capacity does 

not have any considerable effect on the profile of renewable generation for a definite 

technology. Thus, when the installed capacity is increased by a certain factor, the 

output would increase proportionally with the same production schedule profile. 

Although we use the realized renewable energy production profile, based on this idea, 

we developed two kinds of production scenarios having different renewable energy 

generation quantities for each category. In addition to renewables, the portfolio of 

generators consists of several sources like natural gas, coal, nuclear, etc., and imports. 
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Figure 4.1: Realized Demand and Renewable generation data 

However, just for simplicity, we refer to all these resources as “conventional 

generation”. We also assume that there is a perfectly competitive market for the 

conventional generation which allows us to assume that marginal production cost is 

equal to market price p. Figure 4.1 exhibits realized the demand and renewable 

generation on 15.01.2020 which is an example for the winter weekday category 

4.4.2 Scenarios 

Scenario-1: This scenario assumes that the installed capacity of renewable is increased 

such that the quantity of total daily renewable energy production matches with the total 

daily demand realized on that date. Nevertheless, due to the difference between the 

demand profile and production profile, additional conventional generation needs to be 

dispatched for the hours when the generation amount falls below the demand, and 

over-generated power is wasted for the hours when the generation quantity exceeds 

the demand. This scenario highlights the inefficiency of the current market structure 

under intensive renewable energy penetration. Although the total daily generation of 

renewables is sufficient to satisfy total daily demand, due to the scheduling difference 

additional production is needed while renewable production cannot be fully utilized. 

Scenario-2: In this scenario, installed capacity is increased such that total daily 

renewable energy production corresponds to 50% of total daily demand. In addition, 

there is a must-run fixed conventional production facility which accounts for only 25% 
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of the total daily demand.  Additional conventional generation is dispatched whenever 

needed in order to maintain the balance between demand and supply.  

Example scenarios generated with 15.01.2020 data are presented in Figure 4.2. From 

the customer's point of view, the degree of commitment to flexible usage depends on 

the utility weights   and risk awareness   parameters. These parameters are 

completely case-specific and should be carefully tuned according to the characteristics 

of the market. Nevertheless, for numerical study, we consider two different sets of 

parameters: one for the case where the customer is relatively less responsive to the 

discounted price which we refer to as the pessimistic case, and one for the case where 

the customer is relatively more responsive the discounted price which we refer to as 

optimistic case. 

 

 

Figure 4.2: Scenarios generated with sample day 15.01.2020 data 

 

We investigate both scenarios under both optimistic and pessimistic customer 

parameter sets separately.  The parameters and corresponding alfa values vs flexp  are 

depicted in Figure 4.3:  
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Figure 4.3: Pessimistic and Optimistic Customer Response cases 

 

In the pessimistic case, both the level and rate of commitment are lower than that of 

the optimistic case. On the contrary, the Consumer commits to flexible usage easier 

and more frequent. 

4.4.3 Methodology 

The upper-level Producer revenue maximization problem is conditional on the optimal 

values of the lower-level customer utility maximization problem. Due to the non-

convex nature of the bi-level optimization problems, the solution to both of the 

problems at the same time is not possible with industrial optimization tools. Finding 

the solution to such bi-level problems is complicated and several algorithms such as 

penalty function methods, single-level reduction methods, decent methods, nested 

methods, etc. have been proposed in the literature(ref). The success and efficiency of 

each method are related to the structure of the problem. In this work, we will use a 

nested algorithm in which we solve the customer problem for each possible flexp value 

and use corresponding optimal values in the constraint set of the S.O. problem. In our 

problem, the System Operator problem is linked to the customer problem through fp

which also makes the S.O. problem non-linear. When fp is set exogenously and a 
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corresponding optimal solution for the customer is obtained, the S.O. problem turns 

out to be a linear program. Although the number of iterations is increased in nested 

methods, computation effort is significantly reduced in each iteration.    

 We do the related calculations in three steps. In the first step, 5-min data is converted 

to hourly data, total demand, total renewable energy production, ex-ante revenue, ex-

ante renewable energy utilization, renewable energy generation scenarios, set of   

values are calculated and Customer problem is solved for different fp  values to obtain 

corresponding  and flex inflexd d  values.  In the second step, for each ,   and flex flex inflexp d d  

which are obtained in the first step, optimal demand shifts ,i jf , conventional energy 

dispatch quantities 
,c tq  , and revenues are calculated. In the post-processing stage flexp  

values that generate maximum revenue is selected as the optimal solution. Also, ex-

post revenues, ex-post renewable energy utilization, improvement in revenue, and 

improvement in energy utilization are calculated. The process and the tools are 

summarized in Figure 4.4. 

 

Figure 4.4:  Computational Methodology 

4.4.4 Results 

This section discusses the main results and findings on several aspects of the model.  

The plots of total revenue vs fp  for all cases are provided in Figure 4.5.  

 In all cases, total revenue first increases with a decrease in fp , reaches a 

maximum point, and then decreases. This result is consistent with Theorem-1. 

There is always positive revenue when there is any excess renewable energy. 
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However, the rate of marginal revenue gain diminishes due to the decrease in 

revenue as a result of decreasing fp .  

 In optimistic cases, the rate of revenue increase is higher compared to the 

pessimistic counterparts since a higher volume of flexible demand could be 

obtained by a relatively smaller discount. Therefore, the optimal point could 

be reached rapidly. 

 

 

Figure 4.5: Total Revenue vs Discounted Price flexp  

Total Conventional Generation vs flexp is shown in Figure 4.6. The main finding can 

be summarized as: 

 Required Total Conventional generation decreases with decreasing flexp . 

Therefore, Renewable energy utilization is increasing with decreasing flexp .  

 The rate of Renewable energy utilization is higher in optimistic cases.  

 In Scenario-2 optimistic case, the required total generation decreases rapidly, 

and then further decrease in flexp does not improve the renewable utilization 

since all the excess renewable generation is used at optimal points. Therefore 
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the point where all the excess generation is utilized constitutes the saturation 

point for the solution.  

 

 

Figure 4.6: Total Conventional Generation vs Discounted Price flexp  

 

Impact on demand re-distribution:  

The problem arising from the mismatch between the demand schedule and generation 

schedule is mitigated with the application of the model. The model provides the 

decision maker with the ability to control the scheduling of the flexible demand. 

Accordingly, the decision maker shifts the flexible demands from low generation time 

slots to high generation time slots. The degree of the control is related to the existing 

flexible demand which is proportional to (1 ) according to the equation (4.7). 

Optimal solutions for S.P. and S.O. in each case are provided in Table 4.1 
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Table 4.1: Optimal Solutions for both SO's and SP's problems in both cases 

  Optimistic Pessimistic 

  flexp  
Total 

Revenue 
Con. 

Generation flexp  
Total 

Revenue 
Con. 

Generation 

Scenario

1 

Without model 1 4923200 1987118 1 4923200 1987118 

S.O. Optimal 

Solution 0,91 5365900 1389431 0,86 5039100 1799365 

S.P. Optimal 

Solution 0,68 4925400 931322 0,64 4923200 1581891 

Scenario

2 

Without model 1 4746800 2163471 1 4746800 2163471 

S.O. Optimal 
Solution 0,95 5111500 1727573 0,86 4860000 1960000 

S.P. Optimal 

Solution 0,95 5111500 1727573 0,64 4745200 1759902 

 

Demand redistribution as a result of optimal demand shift solution of the decision 

maker is the major output of the model.  Related demand re-distributions of both S.O 

and S.P. for each scenario are depicted in Figure 4.7: 

 As expected, in optimistic cases where the customer is more eager to commit 

to flexible usage, renewable energy utilization is higher due to more flexible 

demand availability.  

 In most cases, S.P.'s optimal solution yields more renewable energy utilization. 

In those cases, there is some potential for further renewable energy utilization 

than S.O.'s optimal point. 

 In Scenario-2 Optimistic case, S.O. and S.P. optimal points coincide, for the 

excess renewable production region, and all the excess generation is utilized.  

This is because of the fact that excess generation is less and as a result required 

flexible demand is lower. Thus, with the optimistic customer profile, required 

flexible demand could be reached rapidly.  

 The commitment rate of the consumer which is proportional to  is very 

important for the success of the implementation. 
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Figure 4.7: Demand Re-distribution as a result of model application 

4.5 Conclusion  

In this study, a new demand response model is introduced and analyzed. The model 

segments the electricity usage into two according to flexibility. The consumer transfer 

authority for the exact timing of flexible usage to the S.O. in return for invective in the 

form of a discounted price. Discounted price is determined dynamically before every 

planning period according to the need for the amount of flexibility. The model uses 

both direct load control principles and dynamic price signals together. Hence, the 

model has combined benefits from both direct load control and dynamic planning. This 

new model requires less consumer involvement relative to the other dynamic pricing 

models. The model ensures bill stability and demand recovery in all cases.  Moreover, 

a more reliable source of flexibility can be obtained through a predetermined direct 

load control mechanism. 
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The analysis shows that the suggested model always provides overall improvements 

in both revenue and renewable energy utilization in the case of excess renewable 

energy production. The result of the consumer’s problem shows that the consumer 

commits a certain portion of demand to flexible usage proportional to   which is 

composed of utility weights, relative prices, and risk aversion parameters. When these 

parameters are favorable as in the optimistic scenarios, analysis shows that desired 

volume of flexible usage can be achieved rapidly with relatively less discount. 

Therefore, promoting an environment in which the consumer can use flexible use 

easily and with relatively little risk is key to the model's success.  

We also modified the model to include Social Planner as a responsible agent to 

determine the discounted price. Numerical analysis showed that the optimal solution 

to the Social Planner’s problem provides greater renewable energy utilization in most 

cases. However, when flexible demand parameters are favorable and required 

flexibility is relatively low, both S.O and S.P reach the same optimal solution with a 

little discount since benefits from demand shifts saturate quickly in such cases.  
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CHAPTER 5  

5 FORECASTING HOURLY ELECTRICITY DEMAND  

5.1 Introduction 

Forecasting the demand for electricity has always been of crucial importance for the 

operation of electricity systems and electricity markets as well as the planning of the 

power systems. In addition, the liberalization of electricity markets has drastically 

increased the need for a reliable forecast of the demand for policymakers, system 

operators, generation companies, distribution companies, and market participants 

since most of their decisions are based on a priori information obtained through 

forecasting.  

In general, electricity demand forecasting is divided into three categories depending 

on the length of the forecasting horizon. Long Term Demand Forecast covers the 

forecasting horizon from several months ahead to years ahead. This type of forecast is 

used for the design and development of transmission & distribution networks, capacity 

planning, investment decisions, and investment scheduling for new power plants, etc. 

Underestimation of long-term demand will result in supply shortage and troubles in 

satisfying the demand in the future. On the other hand, overestimating will result in 

inefficiency problems in both power systems and power markets in addition to the 

waste of capital due to overinvestment. Mid-term forecasting is related to the 

forecasting horizon spanning from several days ahead to months ahead. Mid-term 

forecast results are useful data that is used in capacity planning, risk management, 

maintenance scheduling of the power plant and transmission lines, etc. Short-term load 

forecasting corresponds to the forecasting horizon from a few minutes to a few days 

ago. Overall, most of the effort is dedicated to short-term load forecasting for several 

reasons.  Input and output to the power network must be balanced with very tight 

boundaries and short-term forecasts are key inputs to the balancing process. In most 
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electricity systems, the input-output matching process is initiated in a day-ahead 

market.  The system operator first forecasts the demand for the following day and then 

collects supply offers for each 24-hour for the next day and sequences them in 

ascending order in price to obtain the supply curves. The crossing point of the supply 

curve with the demand line constitutes the market price for the specific hour of the 

next day in the day-ahead market. The major part of demand-supply matching is 

performed in the day-ahead market and input and output adjustment for the remaining 

imbalances typically continues until the power is physically delivered to the end-user. 

Electricity systems rely on different sources to generate electricity. These sources have 

different flexibilities and different dispatch costs. Generally, the marginal cost of 

production is higher for the flexible sources and lower for the less flexible sources. 

Thus, a last-minute dispatch order decision is more costly than the dispatch order 

determined in the day-ahead markets, which implies that the cost-effective dispatch 

order necessitates a proper day-ahead forecast. The Short-term forecast is also essential 

for the market participants. In liberalized power markets, generation companies, 

distribution companies, and third parties such as energy brokers enter into price and 

quantity competition. Both distribution companies and generation companies as well 

as third parties should have a reliable forecast in order to place a proper bid and reduce 

associated risks. Therefore, short-term load forecasting is essential and integral 

element of the power system and power market operations, which is performed on a 

continuous basis. In addition, liberalization of the power markets is still under 

progression for most of the countries in the World. Also, policies regarding climate 

change and policies promoting renewable energy will affect the way people use 

electricity.   Novel market models associated with further liberalization of electricity 

markets and increased shares of renewable energy will increase the number of parties 

involved in power markets.  Furthermore, forecasting the short demand will be more 

challenging due to the complexities introduced by the policies whereas the need for 

decision support systems such as demand forecasting will raise. 

In this study, we compare the performance of three univariate time series methods 

based on the aggregate electricity consumption data of Turkey. Particularly, the day-

ahead forecast performances of alternative methods are evaluated. Dynamics of the 

short-term load forecasting are quite different from long-term forecasting (Rob 

Hyndman- density forecasting). Almost all of the factors affecting electricity 
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consumption in the long run such as GDP, population growth, electrification, etc. are 

stationary and only the weather is effective in the short run. The weather effect can be 

captured up to a certain duration by univariate time series since the effect of weather 

is smooth and also with some lag. In addition, weather information dramatically 

changes from region to region all over Turkey at a specific point in time. Hence, when 

working with aggregate data of the country, the inclusion of weather variables 

smoothly into the analysis is virtually impossible since there is a vector of weather 

data indexed by regions corresponding to a single aggregated load value. Therefore, in 

such a context, univariate time series are effective methods to forecast short-term 

electricity load. The univariate methods considered in this study are Double Seasonal 

Exponential Smoothing (DSES), TBATS, and a decomposition technique (MSTL) 

combined with a Simple Exponential Smoothing method (MSTL+ETS). DSES has 

been studied in the literature since first introduced in 2003 whereas TBATS is a 

relatively new method. Among the alternatives, MSTL is the most recent method. 

MSTL is the multiple seasonal adjustments of STL decomposition which has been 

designed to deal with multiple seasonal data and the algorithm for automated MSTL 

is recently developed (Bandara et al., 2021). Up to our knowledge, the application of 

these methods to the hourly load data of Turkey is not available.    

The result of the analysis shows that MSTL+ETS outperforms DSES and TBATS. 

Although DSES has comparable results with MSTL+ETS, TBATS is outperformed in 

all the cases.   

5.2 Literature Review and Theoretical Background 

Hourly electricity consumption data has many characteristics such as complex 

seasonality with high frequency and special day variation etc. Daily human activities 

have a major impact on the characteristics of the data in hourly resolution.  Whit in a 

day, electricity consumption varies from a minimum point (baseload) to a maximum 

point (peak load). The variation in electricity load depends on many factors such as 

economic activities, daylight availability, weather conditions, etc. Generally, the 

minimum load is observed before sunrise when both economic and social activities are 

at the minimum level. Then, it steadily increases to a peak point. There may be two 

peak points one being local, in some regions, or only one depending on the conditions. 
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The pattern of daily variation constitutes daily cycling.   The cycling pattern differs for 

each day of a week although it is alike for similar days, which implies weakly cycling 

behavior.  The specific characteristics of the data complicate modeling and forecasting 

processes. Numerous methods have been proposed in the literature for modeling and 

forecasting short-term electricity consumption (Hong and others, 2014) (Abu-El-Magd 

and Sinha, 1982). In general, these methods can be grouped as time series models, 

decomposition techniques, multiple regression, and Artificial Intelligence. 

ARIMA Models 

Time series models include autoregressive methods and exponential smoothing. 

Autoregressive models compose of Autoregressive (AR) and Moving Average (MA) 

parts in their general structure   (Box et al., 2015). An autoregressive process is the 

weighted linear combination of the past observations plus an error term. Pure AR(p) 

process is given by:  

 
1 1 2 2

1

p

t t t p t p t i t i t

i

y y y y y        



        (5.1) 

 
1

1
p

i

t i t

i

L y 


 
  
 

  (5.2) 

where p is the order of autoregression and L is the backshift operator.  On the other 

hand, MA(q) process is the weighted linear combination of past error terms plus the 

current error term given by:  
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where q is the order of the MA process. Standard ARMA(p,q) process is the 

combination of AR and MA processes given by:  
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Standard ARMA(p,q) family models have restrictive assumptions for instance time 

series should be stationary. Non-stationarity due to non-stable variance may be 

eliminated (or reduced) by transformations such as log transformation or Box-Cox 

transformation.  In order to eliminate non-stationarity due to non-stable mean (non-

stationarity due to trend), differencing can be applied to the original data. Such a 

differencing procedure can also be included in the model. Finally, the generalization 

of autoregressive models is referred to as Autoregressive Integrated Moving Average 

ARIMA(p,d,q) given by: 
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where d is the number of differencing needed.  

 

Seasonal ARIMA 

 Hourly electricity data is always non-stationary due to complex seasonality (Hyndman 

and Athanasopoulos, 2018). Non-stationarity in hourly electricity data may not be 

eliminated by simple differencing and subsequently classical autoregressive models in 

their basic structures may not be appropriate for hourly data with high-frequency 

seasonal components. Instead, Seasonal ARIMA models are employed in the form of  

( , , )( , , )sARIMA p q d P Q D where , ,P Q D is the seasonal length (Box et al., 2015). In 

this formulation, the seasonal term is multiplicative which implies that 
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After multiplication:   
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Performing the lag operations and rearranging the terms to obtain the open form of the 

equation:  
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It is also possible to include double seasonality in ARIMA models in the form of 

1 2

1 1 1 2 2 2( , , )( , , ) ( , , )s sARIMA p q d P Q D P Q D where 1s and 2s are the seasonal lengths and 

1 1 1, ,P Q D and 2 2 2, ,P Q D are the seasonal orders for the first and second seasonality 

respectively. Representation of the DSARIMA in closed form is:  
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After performing multiplication and backshift operations and then rearranging the 

terms we have the following open form for DSARIMA: 
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Double Seasonal version of Seasonal ARIMA is studied in hourly electricity demand 

forecasting and sometimes used as a benchmark in the literature for example (Soares 

and Medeiros, 2008) (Taylor et al., 2006) (Darbellay and Slama, 2000). However, 

implementation of double seasonal ARIMA models is quite tricky as could be inferred 

from the open form of DSARIMA in (5.11). Up to now, there is no build-in function 

or package in the standard statistical programs which can accommodate only one 

seasonality in ARIMA modeling. Moreover, interpretation of MA terms is difficult in 

ARIMA models.  

 

Periodic Autoregressive Models 

In addition to Seasonal ARIMA, there are alternative ways to include seasonal 

behavior in autoregressive models.   Due to its cycling behavior, the seasonality can 

be represented by Fourier terms which consist of sinusoidal expression 
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where s is the seasonal length and h is the harmonic (Young et al., 1999). Fourier terms 

can be added to the model as an external variable in the form of 
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Periodic autoregressive regression is another method that incorporates Fourier terms 

in the model to account for seasonality (Taylor et al., 2006), (Franses and Paap, 2004). 

In Periodic autoregressive models, coefficients are multiplied by a Fourier expression 

to reflect the seasonal adjustment. The periodic autoregressive models are represented 

by:  
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where 
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The key characteristic of this representation is that many aspects of cycling behavior 

are represented by Fourier terms rather than including several seasonal lags.    

 

Model Selection and Diagnostics in Autoregressive Models 

In order to implement ARMA family methods, a proper model should be selected, i.e., 

proper orders of d, p, and q and for Integration, AR and MA processes respectively 

should be identified. Autocorrelation Functions (ACF) and Partial Autocorrelation 

Functions (PACF) provide an initial idea about up to how many lags can play an 

explanatory role in a stationary time series. However analytical metrics developed for 

model selection provide more reliable results. Standard significance tests for model 

selection have some shortcomings such as when the sample size is increasing, the 

likelihood of rejecting simple models is increased radically and thus favoring over-

parameterization (Kuha, 2004). To overcome this, criteria penalizing the over 

parametrization such as Akaike Information Criteria (AIC) and Schwarz’s Bayesian 

Information Criterion (BIC) are employed. 

AIC which has roots in information theory is one of the widely used metrics to assess 

the quality of the model. In general, statistical models that are used to represent the 

data generation process for a given data are practically never exact. Therefore, some 

information is lost when trying to fit a model over a given data. AIC provides a relative 

estimate about the lost information such that the quality of the model could be assessed 

with this estimate: 

  2 2lnAIC k   (5.13) 

where k is the number of parameters in the model and is the log-likelihood function. 

Since it is an estimate for the lost information, the model with a lower AIC score is 

better in quality. AIC is an asymptotically efficient estimator (Flynn et al., 2013). 
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BIC is another penalized likelihood estimate. However, BIC is an estimate of the 

probability that the model is the true model: 

  ln( ) 2lnBIC k n   (5.14) 

where n is the sample size. BIC penalizes the number of parameters more than AIC. 

Thus, the model suggested by BIC tends to have fewer parameters than or the same 

number of parameters as the model suggested by AIC.  

Although AIC and BIC have similar penalized likelihood estimates, they have different 

implications. AIC is a better metric when the purpose is forecasting and BIC is better 

when the purpose is approximating the true model (Chakrabarti and Ghosh, 2011). 

Thus, AIC is suggested by many authors since there is almost no exact model in reality 

(Hyndman and Athanasopoulos, 2018).  

  

Exponential Smoothing 

Exponential smoothing is used extensively in forecasting univariate time series due  

to its robustness and accuracy. Just like most time series methods such as ARIMA 

family models, exponential smoothing relies on the weighted sum of the past 

observations. However, the idea behind exponential smoothing is that more recent 

observations get higher weights than the weights of older observations (Hyndman and 

Athanasopoulos, 2018).  It may be the case for many of the applications that the 

predictive value of the information that the recent observations carry may be more 

important than the value of the information that older observations have.  The simplest 

form of exponential smoothing is given as: 
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Thus, the weight attached to the past observation decreases exponentially as the 

observation time gets older. The exponential smoothing method can be customized to 
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handle time series with different structures and can be applied to each component, i.e., 

Level, Trend, and Seasonal of a time series if relevant. The Standard Holt-Winters 

method was developed to deal with the time series with level, trend, and seasonal 

components (Winters, 1960). However, standard Hold-Winters is not suitable for 

handling time series with complex seasonality such as electricity load data which has 

more than one seasonal cycle. (Taylor, 2003) modified the standard Holt-Winters 

method to accommodate multiple seasonal cycles. The methodology is outlined below: 
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where equation (5.17), (5.18), (5.19) and (5.20)  are smoothing expressions and 

, ,  and      are the smoothing parameter for the local level, trend, first and second 

seasonalities respectively, while equation (5.21) is the expression for k  step forecast. 

Note that in the equation(5.21), the forecast expression is adjusted by the product of 

two seasonal components 
1 2t s k t s kd w    which implies multiplicative seasonality. An 

additive version of this formulation could also be generated, nevertheless, 

multiplicative seasonality is more suitable when the electricity data is concerned. 

Moreover, previous studies on exponential smoothing with multiplicative seasonality 

indicate that residuals are correlated and AR(1) model can be used for the adjustment 

(Chatfield, 1978) (Taylor, 2003).  

 Taylor (2003, 2006) reported that the modified version outperforms double seasonal 

ARIMA in short-term load forecasting. There is extensive literature on the application 
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of double seasonal exponential smoothing to short-term load forecasting including the 

variants of the method such as the triple seasonal adjustment in (Taylor, 2010) and a 

variant enabling the more frequent update of the inner cycle in (Gould et al., 2008), 

application to specific data such as in (Bernardi and Petrella, 2015) and (Taylor and 

McSharry, 2007) as well as studies using exponential smoothing in comparison 

purposes such as (Souza et al., 2007) (Taylor et al., 2006), (Taylor, 2012).  Exponential 

smoothing is relatively easy to implement with a few model parameters and provides 

decent performance. Another advantage of exponential smoothing is that exponential 

smoothing does not require a model specification procedure. These attractive features 

of the method led us to choose it as the benchmark model. 

TBATS 

(De Livera et al., 2011) introduced TBATS in order to overcome restrictions of 

exponential smoothing to deal with broader ranges or time series with complex 

seasonality. TBATS stands for Trigonometric terms, Box-Cox transformations, ARMA 

errors, Trend, and Seasonality. In addition to exponential smoothing, the method 

incorporates Fourier terms to represent seasonality, which accepts also non-integer 

seasonal lengths. Fourier terms are powerful instruments for modeling any type of 

periodic data. Box-Cox transformation is used for heterogeneity and ARMA errors 

capture the short-term dynamics. The model can be represented as (De Livera, 

Hyndman, & Snyder (2011)): 
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where  

 
 
ty


in (5.22) is Box-Cox transformed time series,  

 
tl in(5.24) local level smoothing 

 tb in (5.25) is trend component 

 td in (5.26) is the ARMA structure for the errors 

and, the model parameters are:  

T  Number of Seasonal cycles 

im  Length of the season i 

ik  Number of harmonics in season i 

  Smoothing parameter for the level 

  Smoothing parameter for the trend 

  Damping parameter for the trend 

,i i   Coefficients of ( , )ARMA p q process 

1 2,i i   Smoothing parameter for seasonal terms  

  

In general, the TBATS model is designated as  

    1 1, , , , , ,....., ,T TTBATS p q m k m k  . 

Decomposition 

Decomposition techniques together with simple forecasting methods are also used in 

short-term electricity forecasting (Wang et al., 2012), (Shao et al., 2017). The concept 

behind decomposition is that cycling and trend components are isolated from the data 
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so that remaining residuals become more proper to be modeled. According to the 

purpose and methodology to be followed, decomposition may be carried out in several 

ways. For example, (Goh and Choi, 1984) decomposed electricity consumption data 

into the hour of a day, the day of a week, and the week of year components and 

modeled those components individually. A more general approach is to decompose 

time series  y t  into seasonal  s t , trend  l t  , and irregular  e t components such 

that  

       y t s t l t e t   .  

The seasonal and trend component is modeled with a decomposition method and the 

remaining deseasonalized data is modeled by a simple time series method. For such an 

application, in addition to classical decomposition, SEATS (Seasonal Extraction in 

ARIMA Time Series), X11, and STL decomposition techniques can be used. STL- 

“Seasonal and Trend decomposition using Loess” decomposes the data into the 

seasonal, trend, and remainder components using Loess regression (Cleveland et al., 

1990). STL decomposition has many advantages in modeling time series with complex 

seasonality such as robustness to outliers and accommodating almost any type of 

seasonality. Loess is a non-parametric method that depends on local weights to form a 

smooth curve fitted to the data points. Thus STL does not require model specification 

and parameter estimation. Since it is a non-parametric method, complex seasonality 

which is difficult to model parametrically can be modeled with STL decomposition. 

There is no restriction on the type of seasonality and any kind of seasonal component 

can be modeled with STL. STL decomposition consists of two recursive processes as 

an inner loop which is nested in an outer loop. Seasonal and trend components are 

smoothed and updated in each pass through the inner loop. In the outer loop, robustness 

weights are calculated following the inner loop.  Each inner loop consists of six steps:  

1. Detrending: Detrended series are obtained by subtracting the trend 

component from the series k

t ty T where k

tT is the trend component calculated 

at kth pass and 0 0tT  . 
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2. Cycle-Subseries Smoothing: Subseries of values at each position of the 

seasonal cycle are smoothed by LOESS. The procedure provides the 

temporary seasonal series 1k

tC  . 

3. Low-pass Filtering of Smoothed Cycle-Subseries: A low pass filter consisting 

of two Moving Average filters and a LOESS procedure. The result is referred 

to as  1k

tL   

4. Detrending of smoothed Cycle-Subseries: to obtain the seasonal component, 

1k

tL  is subtracted from the temporary seasonal series to isolate low-frequency 

data from the seasonal component. Thus 1 1 1k k k

t t tS C L     

5. Deseasonalizing: which is simply subtracting out the seasonal component 

1k

t ty S   

6. Trend Smoothing: In order to obtain the trend component 1k

tT  , LOESS is 

applied to deseasonalized series from the previous step. 

The outer loop checks the remaining after seasonal and trend components are 

isolated and assign robustness weights to each point. Let t t t tR y T S   be the 

remainder, the robustness weights indicate the degree of the extremity of tR . Then, 

these weights are used in the next inner loop pass in steps 2 and 6.  

(Theodosiou, 2011) investigated the performance of the STL decomposition technique 

and compared the result with traditional methods like ARIMA and Exponential 

Smoothing. He used a set of monthly and quarterly data and reported that STL provides 

consistently well forecasts for a diverse set of data with different structures.  Standard 

STL produces a single seasonal component, however, STL can also be used to 

decompose data with multiple seasonality into multiple cycling components (Ollech 

2018). An algorithm for automated STL with multiple seasonality is recently 

developed by (Bandara et al., 2021). The model with multiple seasonal adjustments is 

referred to as MSTL. Their procedure first determines whether the time series contains 

multiple seasonality or not. Then, the STL procedure is applied iteratively to remove 

multiple seasonality starting from the lower seasonal length. The application of MSTL 

combined with a simple time series method in forecasting day-ahead electricity load 

is almost missing in the literature.  
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Artificial Intelligence  

Another group of widely used methods in electricity load forecasting is Artificial 

Intelligence methods. Among many others, Artificial Neural Networks (Kouhi and 

Keynia, 2013), Fuzzy Logic (Pandian et al., 2006), Support Vector Mechanism (Chen 

et al., 2004), Gradient Boosting (Taieb and Hyndman, 2014) are some examples. In 

addition, Artificial Intelligence is also used in Hybrid models such as ARMA SVM 

(Nie et al., 2012).  

Application to Specific Data 

The performance of univariate methods in short-term load forecasting depends on 

several factors. These factors are usually due to the structure of the methods, ie how 

the method handles seasonality and the characteristics of the relevant data. For 

example, methods such as dynamic harmonic regression, which represents seasonal 

components in fixed terms, may yield poor results in periods when seasonality patterns 

change. Also, the nature of the data is an important factor, and applying the methods 

to different datasets may yield different model specifications and different results. 

Thus, our case is a specific one concentrating on the short-term load profile of Turkey. 

There are mainly examples of artificial intelligence in the literature on short-term load 

forecasting of Turkey's electricity consumption such as in (Topalli and Erkmen, 2003), 

(Bilgic et al., 2010), and (Akay and Atak, 2007). (Yukseltan et al., 2017) employs 

regression methods whose periodic variations are captured with external variables. 

5.2.1 Performance Evaluation 

Measuring the performance of the forecast method is one of the critical tasks in 

evaluating the validity of the method used and in comparison with the alternatives. 

Nevertheless, there is not a single performance measure that is prevailing in every case. 

There are several performance indicators used to measure forecast accuracy in the 

literature.  These performance indicators can be evaluated under two groups as scale-

dependent metrics and percentage-based metrics (Hyndman and Koehler, 2006). 

Scale-dependent metrics provide error measures that depend on the scale of the data. 

The most commonly used scale-dependent measures are: 
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Mean Squared Error-MSE:   MSE is defined as the mean of the squared forecast 

errors:  

  
2

1

1
ˆ

n

t t

t

MSE y y
n 

  . (5.28) 

Since each error term is squared, the impact of the error on MSE grows with the 

increasing deviation from the original data. Thus, only a few large deviations may 

result in a poor MSE score even if the rest of the forecasted values are pretty good 

(Chatfield and others, 1988). Another issue with MSE is that due to the squaring, the 

error metric is not on the same scale as the date.  

Root Mean Squared Error-RMSE:   RMS is described as the square root of the 

average squared error. RMSE brings back MSE into the same scale as the data.  

  
2

1

1
ˆ

n

t t

t

RMSE y y
n 

   (5.29) 

Some authors like (Armstrong, 2001) strongly suggest not to use “squared error” 

metrics for both comparison and validation of forecast methods since these methods 

are very sensitive to outliers and may provide misleading interpretations (Chatfield 

and others, 1988).  

Mean Absolute Error- MAE:   MAE is the mean of the deviations of forecasted values 

from the original data. All the errors are treated with the same weight.   

 
1

1
ˆ

n

t t

t

MAE y y
n 

   (5.30) 

MAE is useful when the volume of deviation from the original data is important. When 

comparing forecast methods with different data sets, scale-based metrics may provide 

misleading interpretations since the metric value is correlated with the level of the data 

(Armstrong, 2001). When comparing across data sets as well as across alternative 

methods, percentage-based metrics provide more reliable results. The most commonly 

used percentage-based metrics are:  
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Mean Absolute Percentage Error-MAPE:   MAPE measures the accuracy of the 

forecast by taking the average of percentage deviations. The percentage deviation is 

calculated for each forecasted value separately and then their simple average is taken.  

 
1

ˆ1 N
t t

t t

y y
MAPE

N y


   (5.31) 

MAPE is one of the most commonly used and recommended error measures in the 

literature (Bowerman et al., 2005). Feasibility and consistency in risk minimization of 

MAPE usage are shown in (De Myttenaere et al., 2016). Scale independence and easy 

interpretability of MAPE make it popular in industrial applications in addition to 

academic studies (Byrne, 2012). However, MAPE has some disadvantages when the 

level of the actual data is very small, especially when the actual data is close to zero 

(Kim and Kim, 2016). The reason for this disadvantage is that MAPE expression in 

(5.31) has the actual value in the denominator and a very small actual value may result 

in large MAPE values. However, hourly electricity data fluctuates between a base point 

and peak point which are quite far from the origin. Therefore, MAPE is one of the most 

convenient performance metrics for forecasting hourly electricity consumption data.  

Scale-dependent metrics can also be converted into percentage-based metrics. 

However, the interpretation of the metric completely changes.  

Root Mean Squared Percentage Error-RMSPE:   This metric is a variant RMSE in 

such a way that an error in RMSE is replaced by a percentage error 

   

2

1

ˆ1 n
t t

t t

y y
RMSPE

n y

 
  

 
  

5.3 Data and Methodology 

5.3.1 Data 

Hourly electricity consumption data from 16.09.2019 to 09.12.2019  is used for 

empirical analysis. The data is extracted from EXIST Transparency platform 

database(https://seffaflik.epias.com.tr/transparency/tuketim/gerceklesen-
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tuketim/gercek-zamanli-tuketim.xhtml). The data set consists of 2016 hourly 

consumption observations. The set of the last 368 observations which corresponds to 

the last two weeks' hourly data is allocated as test data and the remaining data 

consisting of 1680 observations are assigned as training data to optimize the model 

parameters.  

The complete data is depicted in Figure 5.1.  

 

Figure 5.1: Electricity Consumption in Turkey from 16.09.2019 to 08.12.2019 

Source: https://seffaflik.epias.com.tr/transparency/tuketim/gerceklesen-

tuketim/gercek-zamanli-tuketim.xhtml 

It can be seen from the figure that consumption is always well above the x-axis and 

fluctuates within certain limits. The minimum level of demand over a period of time 

is referred to as base load. Therefore, the base load also reflects the minimum quantity 

of generation required for all time points in that period. The descriptive statistics of 

the data are provided in Table 5.1. 

Table 5.1: Descriptive Statistics of the Consumption Data 

 Consumption(MWh) 

Minimum Maximum Mean Median S.D. 1st Qu. 3rd Qu. 

23269 41933 31863 32348 3981.7 28246 35066 
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In general, electricity consumption data exhibits daily and weekly cycling behavior 

due to sunlight availability, daily routines such as working hours, weekly routines such 

as weekend holidays, etc. Turkish electricity consumption data is not an exception to 

this. The Daily and weekly cycles are visible in Figure 5.2 which presents a closer 

view of the date for two weeks. Since the data is hourly, a period of 24 is set for daily 

seasonality and 24*7=168 is set for the weekly seasonality. 

 

 

Figure 5.2: Weekly and daily cycling of the data 

Source: https://seffaflik.epias.com.tr/transparency/tuketim/gerceklesen-

tuketim/gercek-zamanli-tuketim.xhtml 

There are some specific characteristics of daily cycles. Average hourly consumption 

data for each day of a week is presented in  

Figure 5.3. The line represents the average hourly consumption whereas the blue shade 

corresponds to 95% confidence intervals for data. 95% confidence intervals are 

generated using the sample variance of the load in each hour on every weekday. First 

of all, all daily cycles are not identical and there are certain differences between 

weekday and weekend days. In general, the cycling behaviors on weekdays are similar. 

Electricity consumption decreases from midnight towards the morning and eventually 

reaches the lowest point somewhere between 4:00 and 5:00. From this point, it 
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gradually increases until noon-time. Then, there is a local drop in consumption 

between 12:00 and 13:00.  

Figure 5.3: Average hourly consumption profiles for different days 
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The main reason for this specific drop is the lunch break during which electricity 

consumption of the industry and service sector decreases.  Next, electricity 

consumption ramps up to reach the daily peak around 19:00. On Friday, the period of 

drop in noontime is longer than the periods on other weekdays which is due to Friday 

prey. 

Although the cycling pattern on Saturday is similar to that of weekdays, the level of 

consumption during working hours is less. The situation is mainly due to the fact that 

Saturday is a free day for only part of the industry and service sector. Sunday is totally 

different from the other days. The lowest consumption on Sunday occurs around 7:00 

and there isn’t any definite noon peak. Also, the level of consumption is considerably 

lower than the other days during day time.  

On Friday, the period of drop in noontime is longer than the periods on other weekdays 

which is due to Friday prey. Although the cycling pattern on Saturday is similar to that 

of weekdays, the level of consumption during working hours is less. The situation is 

mainly due to the fact that Saturday is a free day for only part of the industry and 

service sector. Sunday is totally different from the other days.  

5.3.2 Methodology 

In this study, three alternative univariate time series models, DSES, TBATS, and 

MSTL+ETS are used. First, the model specifications that best fit the data are provided, 

and forecasts out of these models are evaluated. 

DSES 

Double Seasonal Exponential Smoothing outlined in (5.17)-(5.21) is used in the 

analysis. Different from many other forecasting methods, double seasonal exponential 

smoothing does not involve a model specification step. However, in order to 

implement the method, starting values of the levels and smoothing parameters must be 

specified. There are some alternative ways to estimate the initial values such as using 

the simple average of the first few data (Williams and Miller, Taylor 2003). However, 

estimating all the parameters simultaneously from the data provides more reliable 

results compared to the other alternatives. Starting values and smoothing parameters 
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can be obtained by minimizing the sum of squared errors of one step ahead forecast. 

Let 1
ˆ

t t t t
y y


  be the residual from the forecast for time t, the sum of squared errors 

for the data set consisting of N  observation is given by 

  
22

1
ˆ

t t t t
N N

SSE y y


     (5.32) 

Unlike the stochastic processes such as autoregressive models, no specific formula 

provides SSE in exponential smoothing. Parameters that minimize SSE in (5.32) can 

only be obtained through non-linear optimization methods.   

TBATS 

TBATS model is designated as TBATS(  , , ,p q ,{ 1 1,m k },…,{ ,T Tm k }). The 

estimation and model selection process for TBATS module is explained in (De Livera 

et al., 2011) in detail. TBATS estimation procedure is constructed on the reduced form 

of the conditional likelihood function which is derived in Section 3 of (De Livera et 

al., 2011): 

      *

1

log 2 1 log
n

t

t

n SSE y


      (5.33) 

where   is the vector of parameters and *SSE  is the optimized sum of squared errors.  

There may be special TBATS model formulations for example with or without Box-

Cox transformation, with or without ARMA errors, etc. The final form of the model is 

selected by AIC; the model with minimum AIC is selected among the alternatives.  For 

the inclusion of ARMA errors, a two-step procedure is followed. First, an appropriate 

model without ARMA error is fitted and an ARMA model is applied to the residuals 

to find the optimum p and q values. Then, in the second step, the TBATS model with 

ARMA(p,q) error is fit. However, in this case, all the parameters including p and q are 

estimated simultaneously. The final decision to keep ARMA error is based on the AIC; 

ARMA error is kept if AIC is improved upon inclusion.  

MSTL + ETS Model 

In this study, the MSTL+ETS model is used. Seasonal and trend components are first  
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modeled with the MSTL decomposition technique. Then exponential smoothing (ETS) 

is applied to model the subsequent residuals. In general, exponential smoothing is 

referred to as ETS(Error, Trend, Seasonal) and there are several alternative exponential 

smoothing model formulations. Those alternatives arise from the possible combination 

of error, trends, and seasonal components. Possible candidate components are as 

follows: 

 Error: Additive (A), Multiplicative (M), 

 Trend: None (N), Additive (A), Additive damped (Ad),  

 Seasonal: None (N), Additive (A), Multiplicative (M).   

For example, ETS(A,N,M) corresponds to an exponential smoothing model with 

additive error, without trend component and multiplicative seasonality. In total, there 

may be 18 possible ETS models. Nevertheless, since trend and seasonal components 

are modeled with STL decomposition in our case, possible candidate models for the 

residuals are without trend and seasonal components. Therefore, the simple ETS 

formulation of ETS(A,N,N) and ETS(M,N,N) are the only two feasible candidate 

models that are suitable for detrended and deseasonalized data. The final selection of 

the model between two feasible alternatives will be based on information criteria AIC.  

5.4 Empirical Results 

Empirical analyses are carried out in order to assess the individual and combined 

performances of the methods presented in the previous section. First, the model 

parameter that best fits the data is calculated for all methods and then forecasts are 

performed with specified models. Particularly, the day-ahead forecast of the next day’s 

hourly demand for the entire 24 hours is performed. That is, after fitting the model 

using training data, the forecast for the next 24 hours is performed and compared with 

the test data to assess the performance. Then the training set is updated and the forecast 

for the following 24 hours is performed. The procedure is repeated for 14 days in a 

moving window forecast fashion. The procedure is visualized in Figure 5.4. Thereby, 

forecast results for the three models are obtained for the test period. First, the 

individual performances of the methods are analyzed and then compared with each 

other. 
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Figure 5.4: Moving Window Forecast 

In our comparison, MAPE (Mean Absolute Percentage Error) is used as a performance 

metric as it is an appropriate and commonly used error metric in forecasting electricity 

load. 
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t t

t t

y y
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N y


   (5.34) 

DSES 

The model parameter estimated using the training set is given in Table 5.2. Note that 

these parameters are estimated through a non-linear optimization technique, not based 

on a likelihood function. Thus the forecast out of this model provides point estimates 

rather than forecast intervals. 

Table 5.2: Optimized parameters of Double Seasonal Holt-Winters Model 

Double Seasonal Exponential Smoothing AR(1) adjusted 

  

(Level) 

  

(Trend) 

  

(Seoasonal-1) 

  

(Seoasonal-2) 

  

(AR(1) error) 

0.0117 0.0579 0.2189 0.2281 0.8937 

Forecasts are performed for each day of the test series. A forecast for one day is 

presented in Figure 5.5 as an example.  
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Figure 5.5: Forecast of DSES for one day 

TBATS 

TBATS Model that best fit to the data is TBATS (0.127, {0,5}, -, {<24,11>, 

<168,6>}). The daily seasonality is represented by 11 harmonics while the weekly 

seasonality is represented by 6 harmonics. There is no AR part in the residuals and 

MA part has five legs. Also damping for the trend is not applied in the final model. An 

example forecast of TBATS for one day is presented in Figure 5.6 

 

Figure 5.6: TBATS Forecast example for one day 
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MSTL+ETS 

A segment corresponding to the last five weeks from MSTL decomposition of the data 

is depicted in Figure 5.7. The plot on the uppermost panel of the figure belongs to the 

original data. The panel under the original data is the trend component followed by 

components for two seasonal cycles of 24-hour and 168-hour periods. The component 

for the residual is on the bottom panel of the figure. As a second step, simple 

exponential smoothing is fitted to the residuals.  

Between two candidate ETS models of ETS(A,N,N) and ETS(M,N,N), ETS(M,N,N) 

provides slightly better AIC value. Therefore, ETS(M,N,N) is selected to model the 

residuals.  

The resulting model turns out to be:  

Model: MSTL+ETS(M,N,N) 

Smoothing parameters for the simple ETS(M,N,N) is  0.8753 

 

Figure 5.7: Multiple STL decomposition of the data 

The forecast of MSTL+ETS method for one day is presented in Figure 5.8 as an 

example 
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Figure 5.8: STL+ETS Forecast Example for one day 

Comparison of the performances 

In this section, individual performances of the forecast methods are compared. The 

comparison is carried out based on MAPE values. Day-ahead forecast MAPE values 

for each model for 7 consecutive days are presented in Figure 5.9. 
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MAPE of forecast from TBATS is always higher than MAPE of STL+ETS in all 7 

days and higher than MAPE of DSHW in most of the days. DSHW and STL+ETS 

have comparable MAPE values but STE+ETS provided a slightly better result. The 

7-day-average day ahead MAPEs are presented in Table 5.3  

 

Table 5.3: 7-day-verage MAPE values for  

Average MAPE 

DSHW MSTL+EST TBATS 

1,234779 1,024888 1,948151 

 

MSTL+ETS has the lowest average MAPE value. STL+ETS outperforms TBATS 

both on average and on each day. Although STL+ETS has marginally lower MAPE 

than DSHW on average, there are specific days in which DSHW performs better. 

5.5 Conclusion 

Over the last decades, there has been a growing need for a reliable electricity demand 

forecast. Especially, short-term load forecasting become a very important component 

of daily system and market operations. Various stakeholders of electricity systems and 

markets need such forecasts for a variety of reasons. Moreover, the required level of 

accuracy, complexity, resolution and forecast horizon, etc. may be rather different 

from application to application. In addition, electricity load depends on many factors 

such as weather conditions and exhibits cycling behaviors. The complexity of the 

problem leads to a large number of methods for forecasting hourly load. Univariate 

methods provide promising results for the aggregated load data. Yet, there is no single 

method that is superior in every case. In addition, the performance of a method may 

vary for different data sets.  

In this study, we compare the performance of three alternative univariate forecasting 

methods using hourly load data of Turkey. Among alternatives. MSTL decomposition 

method provides better results than DSHW in forecasting most of the days and strictly 

dominates TBATS in each case. In this kind of performance comparison, methodology 

and problem setup have a considerable effect on the results. In this work, each time 
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the forecast for 24 hours of the next day is performed, the average MAPE of the 24 

hours forecast is calculated. This procedure is repeated for each of the 7 days in the 

test data.  The motivation behind this method is that in day-ahead markets studied in 

Chapter 3 and also proposed Demand Response method in Chapter 4 both require 

accurate forecasts for 24 hours of the next day.  
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CHAPTER 6  

6 CONCLUSION 

Electricity markets face challenges from transitioning to low carbon generation. 

Particularly, integrating large-scale renewable energy requires various changes in the 

existing systems. To facilitate a smooth and sustainable transition, carefully designed 

market mechanisms incorporating both technical and economic aspects, as well as the 

policies to implement and support those mechanisms are required. Because of the 

complexity of the systems and multidimensional challenges, a variety of fields may 

contribute to dealing with these challenges. However, among many others, economic 

analyzes are of great importance since the current transition is not technology bounded 

but rather a network, resource, markets, and operations-oriented.  This dissertation 

aims to contribute to the current literature on electricity markets and the integration of 

renewable energy by addressing several topics.   

Chapter 2 provides the basics of the electricity value chain and electricity market. 

Moreover, this chapter discusses the current challenges in the electricity markets. 

In Chapter 3, inefficient equilibrium prices in the wholesale electricity market are 

studied. Due to the intermittency and almost zero marginal cost of renewable energy, 

equilibrium prices are affected negatively. Improper price signals threaten supply 

security by discouraging new investment. In this study, specifically, the impact of 

different support mechanisms, ownership structures, and cost structures are 

investigated. The results indicate that non-market support mechanisms result in lower 

equilibrium prices. Moreover, firms’ behavior is affected by ownership structure.  

Chapter 4 proposes a novel Demand Response method. Demand Response methods 

have great potential in mitigating the adverse effect because of the intermittency of 

renewable resources by transferring flexibility from the supply side to the demand side. 

The suggested model has numerous advantages compared to the alternatives in the 
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literature. It is relatively easy to implement by consumers and provides greater 

flexibility to the system operators. The model is also flexible to be modified to include 

a variety of cases.  

Chapter 5 models and compares three alternative univariate forecasting methods by 

using the electricity load data of Turkey. Specifically, Load forecast performances for 

the entire 24 hours of the next day are compared. MSTL which is relatively new 

provides better results compared to TBATS and DSES. TBATS demonstrated the 

worst overall performance on average and on each time. Although MSTL outperforms 

DSES on average, there are some days on which DSES performs better. Thus DSES 

is still comparable results with MSTL. 
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APPENDICES 

 

 

A. PROOF OF THEOREM 1  

 

 

Without loss of generality assume that there are two time period i and j such that 

, iR iq D  and , jR jq D and also ,   kR kq D T   where ,k i j . That is there is one 

time period with excess renewable generation and there is one period with excess 

demand whereas demand and renewable generation for other time periods are exactly 

matching. Without the model implementation, additional conventional generation of 

, ,jc i R iq D q   for time j is required to meet the demand while the amount of , jR iq D

is unused in time i . Therefore without implementation of the model, the revenue would 

be ,i c i

T

p D pq = ,( )i j R i

T

p D p D q  . Let this revenue be the base revenue 

 ,max ( ),0i j R i

T

B p D p D q   . 

 The question is that is there any flexp p that improve the baseline revenue?  

Assume that system operator offers ,  flexp p     . In this case, some of the 

demand in period j where there is excess demand could be shifted to other periods 

(consecutively up to time j where there is excess generation with zero marginal cost). 

Thus, required conventional generation would be reduced. In return, there is a revenue 

loss due to lower price for flexible usage. Let *

,c jq be the required conventional 

generation when flexp  is offered. The revenue as a result of the model is: 

,

*

, ,

t n

fl iinflex ex t ct j

t nT

p pp fd q




 



 


 . 

Rearranging as following:  
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  *

,, ,

t n

i t c j

t n

inflex t

T

p p pd f q




 
  





    

  *

, , ,

t n

i t c j

t

inflex

T

t

T n

p qd p f p




     

   , , ,,

*

t

inflex t fle f c jx

T

t lex t

T
D

p d pd qd      

  *

, ,cflt jex t

T T

p dD pq    

Here the required generation for time j is the excess demand ,j R jD q  minus the total 

of the demand shifted to other periods ,

j n

i j

j n

f




  from time j  . Thus,  

*

, , ,

j n

jc j R j i j

j n

q D q f




    or 0 if , 0j R jD q   . 

So the revenue is:  

   , , ,max ( ),0
j n

t jflex t R i

T

i j

T j n

p qD d p D f




 
    

 
   . Sum of the shifts from time 

j  to other periods must be equal to the total flexible demand available at time j   which 

is flexd . After re-arranging revenue term could be written in two parts: baseline 

revenue plus additional part due to model: 

    , , ,max ( ),0
T

ba d

t j R i flex t flex j

T

ad itionalseline

p D p D q d pd     . 

Let this additional part be    , ,flex t flex j

T

A d pd    . This additional part is the 

revenue from reduction in conventional generation minus the cost of selling of flexible 

at a discount. If there exist a  such that  , , 0flex t flex j

T

d pd   then flexp p is the 

provides optimal solution.  

Substituting the open form of ,flex td : 
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 
1

1
11

1
1

11

1 1

1 1

p

flexp

inflex flex t

T

p

flexp

inflex flex j

A

p
D

p

p
p D

p











  
    

        
        

  
    

      
        












   

  

 

Although the value of  A  depend on the parameters, it is guaranteed that there 

always be a positive additional revenue for some values of  since  A   is always 

positive since  lim 0A





 . 
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C. TURKISH SUMMARY / TÜRKÇE ÖZET  

 

 

Elektrik Piyasaları bütün tarihleri boyunca sürekli bir gelişim ve değişim içerisinde 

olmuştur. Daha önceleri bu değişim ve gelişim teknolojik ilerlemeler ve genişleyen 

talep gibi faktörlerden kaynaklanmıştır. Bunun ile birlikte piyasaları rekabetçi bir 

yapıya getirerek ekonomik verimliliği artırmak için elektrik sektörünü liberalleştirme 

çalışmaları yapılmıştır. Fakat antropojenik iklim değişikliğinden kaynaklanan 

sürdürülebilirlik kaygıları, daha önceki değişimlerden farklı olan ve politika temelli 

bir değişimi başlatmıştır. 2015 Paris antlaşmasında 195 ülke küresel ısınmayı, sanayi 

devriminden önceki seviyelerin 1.5o altına çekmeye yönelik ortak hedefi koymuştur. 

Bu hedefi gerçekleştirmenin yolu ise fosil yakıtları yenilenebilir enerji kaynakları ile 

değiştirmek olarak belirlenmiştir. Fakat modern elektrik sistemleri büyük ölçekli 

yenilenebilir enerjiyi entegre edebilecek yapıda değildirler. Elektrik günümüz 

koşullarında büyük ölçekli ve verimli bir şekilde depolanamamaktadır. Bu doğrultuda 

elektrik sistemleri tarihsel gelişimleri boyunca üretilen elektriğin eşzamanlı olarak 

kullanılması prensibi ile gelişmiştir ve sistemler günümüzde halen bu şekilde 

işlemektedir. Bu kapsamda elektrik üretimi anlık talebe göre sürekli olarak 

ayarlanmaktadır. Özellikle toptan piyasa operasyonları eş zamanlı olarak arz talep 

dengesini sağlayacak şekilde işletilmektedir. Dolayısıyla eş zamanlı olarak yapılması 

gereken arz talep dengesinde yalnıza arz tarafı aktif olarak görev almaktadır.(Hu et al., 

2013). Yenilenebilir enerjinin üretim zamanlamasının ve miktarının kontrol 

edilemiyor olması sistemlerdeki ve piyasalardaki işleyiş yöntemi ile uyum 

sağlamamaktadır. Arz tarafında kaybedilen esnekliği talep tarafına kaydırmak üzere 

esnek kullanımı mümkün kılacak perakende piyasa modelleri geliştirmek bu sorunun 

çözümü için potansiyel teşkil etmektedir.  

Bir diğer özellik ise yenilenebilir enerjinin marjinal üretim maliyetinin yaklaşık sıfır 

olmasıdır. Toptan piyasalarda denge fiyatları günlük olarak organize bir şekilde 

düzenlenen rekabet ile belirlenmektedir. Yenilenebilir enerji bu rekabete sıfır marjinal 

üretim maliyeti ile katıldığından dolayı denge fiyatlarını aşağı yönlü bozmaktadır. 
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“Merit-Order” etkisi olarak adlandırılan bu etki, uzun dönemde yatırım kararlarını 

olumsuz etkilemek, arz güvenliğini tehlikeye atmak gibi faktörlerden dolayı toptan 

piyasaların işleyişinde sürdürülebilirlik sorunlarını ortaya çıkarmaktadır. Buradan 

anlaşılacağı üzere, yenilenebilir enerji entegrasyonu ile ilgili sorunlar teknik 

sorunlardan ziyade ekonomik verimlilik ve yönetim sorunlarıdır. Bu motivasyon ile 

birlikte bu çalışma, yenilenebilir enerji entegrasyonundan kaynaklanan sorunları 

adresleyen ekonomik analizler ve modellemeler yapmayı amaçlamaktadır.  

İkinci bölümde elektrik sistemleri ve piyasaları ile ilgili temel bilgiler verilmektedir. 

Bu alanda çalışma yapabilmek için ve tezin geri kalan kısımlarını anlayabilmek için 

bu bölüm önem arz etmektedir.  

Üçüncü bölüm yenilenebilir enerjinin toptan piyasalardaki etkilerini analiz eden bir 

makaledir. Bu bölümde, yenilenebilir enerjinin denge fiyatlarını aşağı yönlü bozması 

durumu ile birlikte yenilenebilir enerjini destekleme yönteminin ve endüstriyel 

organizasyonunun bu duruma etkileri analitik olarak incelenmiştir. Sonuçlar, 

yenilenebilir enerjinin miktarının denge fiyatları ile ters orantılı olduğunu göstermiştir. 

Rekabete giren firmalar konvansiyonel üretimin yanı sıra yenilebilir enerji kaynakları 

da kullandıkları zaman bu etkiyi azaltabilmektedirler. Aynı zamanda yenilenebilir 

enerjinin nasıl desteklendiği de denge fiyatları üzerine etki etmektedir. Bu bölümün 

literatüre üç yönden katkısı olmuştur. Birincisi lineer ve 2. derece olmak üzere iki 

farklı maliyet yapısı bütün durumlar için analiz edilip kararlaştırılmıştır. Sonuçlar 

farklı maliyet yapısı varsayımlarının çok farklı sonuçlar ortaya çıkarabileceğini 

göstermiştir. İkinci katkı ise üç farklı tipte heterojen firma yapılarının incelenmesidir. 

Son olarak da sübvansiyon mekanizmalarının etkileri heterojen firma yapıları ve farklı 

maliyet varsayımları ile incelenmiştir. Sonuçlar karar vericiler için faydalı bilgiler 

içermektedir.  

Dördüncü bölüm yenilenebilir enerjinin kontrol edilemiyor olmasından kaynaklanan 

sorunu adresleyen bağımsız bir makaledir. Bu çalışmada özgün bir piyasa modeli 

önerilmiş ve analiz edilmiştir. Modelde elektrik kullanımı esnekliklerine göre iki farklı 

kategoriye ayrılmıştır. Sistem Operatörü esnek kullanım için indirimli fiyat 

önermektedir ve bunun karşılığında kullanıcı esnek kullanımın kesin zamanlamasını 

Sistem Operatörüne bırakmaktadır. Modelleme arz ve talep tarafının çok aşamalı 

dinamik etkileşimine dayanmaktadır ve esnek kullanım imkânı sağlanarak 
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yenilenebilir enerjinin verimli kullanılmasını mümkün kılmaktadır. Sonuçlar modeli 

kullanmanın ekonomik verimliliği sürekli artırdığını göstermiştir. Bu model literatürde 

önerilen modellerden farklıdır ve modelin kendisi literatüre yapılmış bit katkıdır. 

Ayrıca bu bölümün bir diğer katkısı ise tüketicinin esnek ve sabit kullanım arasındaki 

karar verme süreci, fayda maksimizasyonu problemi olarak literatürde ilk defa 

modellenmiştir.  

Beşinci bölüm saatlik elektrik talebi tahminine yönelik bağımsız bir makaledir. Bu 

bölümde üç farklı yöntemin tahmin performansları Türkiye piyasalarındaki 

gerçekleşen tüketim verileri kullanılarak analiz edilmiştir ve performansları 

karşılaştırılmıştır. Kullanılan üç yöntem Çift Mevsimsel Üstel Yumuşatma (DSES), 

TBATS ve Çoklu STL bileşenlerine ayırma (decomposition) olmuştur. Sonuçlar 

Çoklu STL metodunun diğer iki yöntemden daha iyi sonuçlar verdiğini göstermiştir. 

Çoklu STL yöntemi TBATS’den her durumda, DSES’den de bir çok durumda daha 

iyi sonuç vermiştir. Bu bölümün literatüre ilk katkısı bu yöntemlerin Türkiye’nin 

tüketim verilerine uygulanıp karşılaştırılması olmuştur. Bir diğer katkısı ise nispeten 

yeni olan Çoklu STL yönteminin gün öncesi saatlik talep tahmininde kullanılan ilk 

örneklerinden olmasıdır.  

Büyük ölçekli yenilenebilir enerji entegrasyonu, üstesinden gelinmesi gereken 

ekonomik verimlilik problemleri ortaya çıkarmaktadır. (Henriot and Glachant, 2013). 

Bu problemlerin en zor olanlarından biri de toptan piyasalarda ortaya çıkmaktadır.  İlk 

olarak, toptan piyasa rekabetinde konvansiyonel üretim miktarı bir karar değişkeni 

iken, yenilenebilir enerji üretimi sabit durum değişkeni olarak hesaba katılmaktadır. 

Bir diğer ve çok daha büyük zorluk getiren faktör ise yenilenebilir enerjinin neredeyse 

sıfır olan marjinal üretim maliyetinden dolayı toptan piyasalarda oluşan denge 

fiyatlarının aşağı yönlü çekilmesidir. Genel olarak toplam arz eğrisi, fiyat-miktar 

tekliflerinin toplanması ve “Merit Order” diye adlandırılan, artan bir sıraya konulması 

ile elde edilir (Deane et al., 2015). Yenilenebilir enerji, sıfır olan marjinal üretim 

maliyetinden dolayı toplam arz eğrisini sağ yönlü kaydırarak denge fiyatlarının 

düşmesini sağlamaktadır (Figueiredo and da Silva, 2019). Yenilenebilir kaynakların 

“Merit Order” Etkisi olarak adlandırılan bu durum Figure 3.1 de gösterilmiştir. 

Yenilenebilir enerjinin marjinal üretim maliyeti her ne kadar sıfıra yakın olsa da 

yatırım maliyetleri ve dolayısıyla uzun dönemli ortalama üretim maliyetleri diğer 
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alternatiflere nazaran oldukça yükseltir. Bu nedenle yatırımı daha cazip kılmak için 

birçok ülke yenilenebilir enerjiye devlet desteği sağlamaktadır. Uygulanana destek 

programları birbirinden çok farklılık gösterse de bu destekler iki ana grupta ele 

alınabilir. Birinci ve en yaygın olarak uygulanan destek programı sabit fiyatlı alım 

programıdır. Bu uygulamada yenilenebilir enerji, piyasadaki denge fiyatlarından 

bağımsız olarak sabit (ve genellikle ortalama piyasa fiyatından yüksek) bir fiyattan 

alınır. Bu tip desteklere, yenilenebilir enerji toptan piyasalarda rekabete dahil 

edilmediği için ve piyasada oluşan denge fiyatları ile yenilenebilir enerjinin alım 

fiyatları bağlantılı olmadığı için “piyasa tabanlı olmayan” destekler denebilir. Diğer 

grup destek programları ile “piyasa tabanlı” desteklerdir. Bu tip destek programlarında 

yenilenebilir enerjiden yapılan üretim, diğer kaynaklardan yapılan üretim gibi toptan 

piyasada rekabete girer ve bütün enerji kaynaklarından yapılan üretim için tek bir sabit 

fiyat belirlenir. Yatırım teşvikleri, vergi indirimleri vb. destekler bu gurupta 

değerlendirilebilir. Sabit alım desteğine ek olarak yenilenebilir enerjinin öncelikli 

kullanımı da yaygın olarak uygulanmaktadır (Antweiler and Muesgens, 2021). Bu 

durumda var olan yenilenebilir enerji miktarı toplam talepten düşülmektedir ve geriye 

kalan miktar net talebi oluşturmaktadır. Sabit alım desteği ve öncelikli kullanım 

programı olduğu durumlarda “Merit Order” etkisi Şekil 3.2 de gösterilmiştir.  Tam 

rekabetçi piyasalarda Şekil 3.1 de ve Şekil 3.2 de gösterilen etkiler sonunda oluşacak 

denge fiyatlarının aynı olması beklenir. Fakat toptan elektrik piyasalarındaki rekabet 

eksik rekabet olarak nitelendirilmektedir. Eksik rekabet koşullarında, firmaların farklı 

destek türleri için farklı davranış sergilemesi ve dolayısıyla her iki destek 

mekanizmasının birbirinden farklı denge fiyatları oluşturması muhtemeldir. Toptan 

piyasalardaki denge fiyatlarını etkileyecek bir başka unsur ise yenilenebilir enerjinin 

endüstriyel organizasyonudur. Birden fazla kaynak ve teknolojiye dayalı üretim yapan 

firmalar, farklı durumlar karşısında elindeki çeşitliliği maliyet optimizasyonu yaparak 

en uygun şekilde kullanmaya yönelik stratejik kararlar verir. Aynı şekilde hem 

geleneksel yöntemlere dayalı üretim kaynakları olan hem de yenilenebilir enerjiye 

dayalı üretim kaynakları olan firmalar, üretim maliyetlerini optimize edip karlılığını 

artırmak için portföy çeşitliliğini en etkin biçimde kullanacak şekilde kararlar verir. 

Bununla birlikte yalnızca yenilenebilir enerjiye dayalı üretim yapan firmaların, üretim 

miktarlarını kontrol edemedikleri için denge fiyatlarını etkileyecek karar değişkenleri 



 145   

bulunmaz. Dolayısıyla, yenilenebilir enerjinin firmanın üretim portföyünde olup 

olmaması durumunun da denge fiyatları üzerinde etkisi olmaktadır.  

Bu çalışmada “Merit Order” etkisi ile birlikte yenilenebilir enerjinin desteklenme 

mekanizmasının ve yenilenebilir enerji üretiminin endüstriyel organizasyonunun 

toptan elektrik piyasalarında oluşan denge fiyatları üzerindeki etkileri analitik olarak 

incelenmiştir. Geniş bir yelpazede birçok durumu ele alabilmek için lineer ve ikinci 

derece olmak üzere iki farklı maliyet yapısı kullanılmıştır. Yenilenebilir enerji destek 

mekanizmalarının etkilerini inceleyebilmek için piyasa tabanlı ve piyasa tabanlı 

olmayan destek mekanizmaları için ayrı durum ele alınmıştır. Endüstriyel 

organizasyonun etkilerini inceleyebilmek için ise üç farklı tipte firma yapısı 

kurgulanmıştır: Tip-1) yalnızca konvansiyonel enerji kaynaklarına dayalı üretim 

yapan firmalar, Tip-2) hem konvansiyonel hem de yenilenebilir enerji kaynaklarına 

dayalı üretim yapan firmalar ve Tip-3) yalnızca yenilenebilir enerji kaynaklarından 

üretim yapan firmalar. Denge fiyatlarının söz konusu parametreler karşısında nasıl 

etkilendiği birçok olası durum için incelenmiştir ve sonuçlar karşılaştırılmıştır.  Ek 

olarak firmaların yapmış olduğu ikili anlaşmalar da modele eklenmiştir ve bu 

parametreler karşısında ikili anlaşma hacimlerinin nasıl etkilendiği de analiz 

edilmiştir.  

Literatürde “Merit Order” etkisinin varlığına yönelik farklı ülkelerden veriler 

kullanılarak yapılmış birçok çalışma bulunmaktadır. Yenilenebilir enerjinin toptan 

piyasalardaki denge fiyatlarını düşürdüğüne yönelik çalışmalara; İtalya için  (Clò et 

al., 2015), Almanya için (Cludius et al., 2014) ve İspanya için (Ciarreta et al., 2014) 

tarafından yapılmış çalışmalar örnek gösterilebilir. Ampirik çalışmaların sonuçlarını 

genelleyebilmek için teorik çalışmaların da yapılması gerekmektedir. Bu alanda 

yapılacak teorik çalışmaların temelini rekabetin modellemesi oluşturmaktadır. Toptan 

elektrik piyasalarındaki rekabet “eksik rekabet” olarak nitelendirilmektedir ve denge 

fiyatlarının genel olarak rekabetçi fiyattan yüksek mertebelerde oluşmaktadır 

(Borenstein et al., 2002), (Mansur, 2008). Bu çerçevede firmaların denge fiyatlarını 

artırabilmek için üretim miktarlarını azaltabildikleri ortaya konulmuştur (Wood and 

Blowers, 2018), (Twomey and Neuhoff, 2010). (McRae and Wolak, 2009) fiyat 

esnekliğinin düşük olduğu periyotlarda firmaların yüksek teklifler verdiğini 

göstermiştir. Bütün bu ve benzeri çalışmalar toptan elektrik piyasalarındaki rekabetin 
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eksik rekabet koşullarında yapıldığını göstermektedir. Bu durum genel olarak piyasada 

kısıtlı sayıda büyük firmanın varlığından ve piyasanın ciddi bir şekilde kontrol 

edilmesinden kaynaklanmaktadır. Toptan piyasalardaki bu oligopol rekabeti 

modellemek için iki farklı yaklaşım bulunmaktadır: Cournot-Nash Rekabet modeli ve 

Arz Fonksiyonu Eşitliği. Cournot-Nash model (Bushnell, 2007a), (Borenstein et al., 

2002), (Neuhoff et al., 2005),(Sioshansi, 2014), (Ribó-Pérez et al., 2019) gibi bir çok 

çalışmada kullanılmıştır. (Lundin and Tangerås, 2020) Nord-Pool toptan piyasasında 

gerçekleşen değerlerin Cournot-Nash modeli ile uyumlu olduğunu göstermiştir. Arz 

Fonksiyonu Eşitliği modeli (Klemperer and Meyer, 1989) tarafından geliştirilmiştir ve 

elektrik piyasasına (Green and Newbery, 1992) tarafından adapte edilmiştir. Her iki 

yöntemin de güçlü ve zayıf yönleri bulunmaktadır. (Willems et al., 2009) Alman 

toptan piyasası verilerini kullanarak yaptığı çalışmada her iki modelinde oldukça iyi 

sonuçlar verdiğini belirtmiştir ve esnek yapısından dolayı ve ilave kısıtların modele 

dahil edilebilmesinden dolayı kısa dönemli rekabet modellemeleri için Cournot-Nash 

modelin kullanılmasını önermiştir.  

Bu çalışma temel olarak yenilenebilir enerjinin toptan piyasalardaki denge fiyatları 

üzerine olan etkilerini teorik çerçevede inceleyen ver yakın zamanda gelişmekte olan 

literatür ile ilgilidir. (Twomey and Neuhoff, 2010), Cournot-Nash modeli kullanarak 

bu rekabeti modelleyen öncü çalışmalardan biridir. (Ben-Moshe and Rubin, 2015) 

yenilenebilir enerjinin endüstriyel organizasyonunu teorik çerçevede çalışmıştır. 

(Acemoglu et al., 2017) ileri kontratlar ve eksik bilgi durumları ekleyerek çalışmayı 

genişletmiştir fakat analizlerinde temel olarak lineer maliyet fonksiyonu 

kullanmışlardır. Literatürden farklı olarak bu çalışma hem lineer hem de ikinci derece 

maliyet fonksiyonları birçok durum için kullanılmıştır ve sonuçlar karılaştırılmıştır. 

Ayrıca güncel literatürden farklı olarak homojen olmayan endüstriyel organizasyon 

yapıları kullanılmıştır. Maliyet yapısının sonuçlara büyük ölçüde etki ettiği ortaya 

çıkmıştır.  

Yenilenebilir enerji destek mekanizmalarının denge fiyatları üzerindeki etkisinin 

incelenmesi bu çalışmanın bir başka özelliğidir. Yenilenebilir enerjinin desteklenme 

mekanizmasının denge fiyatları üzerine etkisinin olduğu literatürde birkaç çalışmada 

belirtilmiştir (Brown and Eckert, 2020). Fakat bu konuda kapsamlı bir teorik çalışma 

güncel literatürde bulunmamaktadır.  Bu çalışmada güncel literatüre bir başka katkı 
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olarak heterojen firma yapılarında ve farklı maliyet fonksiyonları durumlarında 

yenilenebilir enerji destek mekanizmalarının etkileri incelenmiştir.  

Çalışmada öncelikli olarak modelin temel özellikleri tanımlanmıştır. Modellemede 

kullanılan temel varsayımlar Bölüm 3.2.1 de listelenmiştir. Bütün çalışmada talep 

fonksiyonunun afin olduğu varsayılmıştır. Ayrıca üç farklı firma tipinin olduğu 

varsayılmıştır.  

Tip-1: Hem konvansiyonel hem de yenilenebilir enerji kaynaklarını kullanan firmalar. 

Bu firmaların setidir. 

Tip-2: Sadece konvansiyonel enerji kaynaklarını kullanan firmalar. Bu firmaların 

setidir. 

Tip-3: Sadece konvansiyonel enerji kaynaklarını kullanan firmalar. Bu firmaların 

setidir. 

Konvansiyonel kaynaklardan üretim yapan toplam firma sayısıdır. Bir periyodda var 

olan yenilenebilir enerji miktarı R’dir ve bu mevcut yenilenebilir enerjinin Tip-1 ve 

Tip-3arasındaki pay dağılımı göstermektedir. Tip-1 ve Tip-2 firmalar konvansiyonel 

üretim miktarlarını stratejik olarak değiştirebilirken Tip-3 firmalar üretim miktarı 

üzerinde herhangi bir karara sahip değillerdir. Toplam üretim miktarı olarak 

verilmiştir.  Tip-1, Tip-2 ve Tip-3 firmaların kar fonksiyonları sırası ile 3.2, 3.3 ve 3.4 

deki denklemlerde verilmiştir.  Firmaların amaçları, karlarını maksimize edecek 

şekilde konvansiyonel üretim miktarlarını seçmektir. Analizlerde iki farklı 

yenilenebilir enerji destekleme mekanizması durumu ele alınmıştır. Durum 1: 

Yenilenebilir enerji için sabit alım politikası uygulanmaktadır ve sabit alım fiyatı için 

uygulanmaktadır. Durum 2: Yenilenebilir enerji için piyasa temelli destek 

uygulanmaktadır ve denge fiyatı bütün kaynaklardan yapılan üretim için rekabet 

sonucu belirlenmektedir. Her iki durum aynı zamanda her iki farklı maliyet yapısı için 

incelenmiştir. Sonuç olarak Durum 1.1, Durum 1.2, Durum 2.1 ve Durum 2.2 olmak 4 

temel durum için teorik analizler yapılmıştır. Bu durumlarda oluşan denge fiyatları 

sırası ile Lemma 3.1, Lemma 3.2, Lemma 3.3 ve Lemma 3.4 de verilmiştir. Bu 

sonuçların analizi ile elde edilen bulgular aşağıda verilen iki önermede özetlenmiştir.  
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Önerme 3.1: i) “Merit Order” etkisi piyasa tabanlı olmayan destek programlarında 

sürekli daha fazladır. Böylelikle sabit alım destek mekanizması sürekli daha düşük 

denge fiyatı oluşturur. ii) Denge fiyatı yenilenebilir enerji miktarı ile ters orantılıdır.  

Önerme 3.2: i) çeşitlendirilmiş üretim portföyü, yani konvansiyonel kaynaklara sahip 

olan firmaların aynı zamanda yenilenebilir kaynaklara sahip olması, “Merit Order” 

etkisini azaltmaktadır. ii) piyasa temelli olmayan destek programları madde i) de 

verilen etkiyi ortadan kaldırmaktadır. Dolayısıyla sabit alım politikası uygulandığı 

zaman yenilenebilir enerjinin endüstriyel organizasyonunun etkisi kalmamaktadır. 

Bu analizlere ek olarak toptan piyasalardaki ticaretin büyük bölümünü oluşturan ikili 

anlaşmalar da modele dahil edilerek analizler genişletilmiştir. İkili anlaşmalar iki 

aşamalı bir oyun olarak kurgulanmıştır. İlk aşamada firmalar en uygun ikili anlaşma 

miktarlarını seçerler. İkinci aşamada ise gün öncesi piyasalarda üretim miktarları 

üzerinden rekabete girerler. Analizler yine iki farklı yenilenebilir enerji destek 

programı türü için yapılmıştır. İlk olarak piyasa temelli destek programı varsayımı ele 

alınmıştır. Bu problem ikinci aşamadan başlayarak geriye doğru çözülmüştür.   

İkinci aşamada firmalar ikili anlaşma hacimlerini ve ikili anlaşma fiyatlarını birinci 

aşamada verilmiş olarak kabul ederek 3.28 de verilen problemi çözer ve en yüksek 

karlılığı sağlayacak üretim miktarlarını seçerler.  Bu aşamadaki problemin çözümüyle 

ortaya çıkan denge fiyatları ve ilgili üretim miktarları Lemma 3.5 de verilmiştir. 

Firmalar, birinci aşamada seçtikleri ikili anlaşma miktarlarına göre, ikinci aşamada 

Lemma 3.5 verilen çözümle karşılaşacaklarını öngörerek ikili anlaşma miktarlarını 

seçerler. Bu aşamadaki problem 3.40 da verilmiştir. Bu çözümlerde Aşama 1’deki ikili 

anlaşma piyasası ile Aşama 2’deki gün öncesi piyasa arasında arbitraj fırsatı 

oluşmaması için ikili anlaşma fiyatı ile Aşama 2 deki denge fiyatının eşit olduğu 

varsayılmıştır. Bu doğrultuda hesaplanan Aşama 1’in çözümü Lemma 3.6 da 

verilmiştir. Firmaların izleyeceği nihai strateji Önerme 3.3 de özetlenmiştir. Benzer 

bir şekilde piyasa temelli olmayan destek programı varsayımı ile aynı hesaplar 

yapılmıştır ve bu durum için olan sonuçlar Önerme 3.4 de sunulmuştur. Her iki 

durumunda analiz edilmesi ile şu önermeler yapılmıştır: i) denge durumunda oluşan 

ikili kontrat hacmi, piyasa temelli olmayan destek programlarında yenilenebilir enerji 

miktarı ile tamamen ters orantılıdır. Fakat piyasa temelli destek programları 

durumunda bu ilişki sistem parametrelerinin değerlerine göre değişmektedir. ii) denge 
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durumunda ikili kontrat hacmi Tip-1 firmanın sahip olduğu yenilenebilir enerji oranı 

ile tamamen doğru orantılıdır. iii) piyasa temelli olmayan destek programları sürekli 

daha düşük ikili kontrat hacmi sağlamaktadır.  

Teorik analizler ile elde edilen sonuçları görselleştirmek için sayısal örnekler verilerek 

grafikler oluşturulmuştur.  Sistem parametreleri, çalışmanın yapıldığı dönemde 

Türkiye piyasalarında gerçekleşen denge fiyatlarını sağlayacak şekilde seçilmiştir.  

Sayısal örnekler ile elde edilen sonuçlar Şekil 3.3 ile Şekil 3.6 arasında 

görselleştirilmiştir 

 

Uzun yıllar boyunca sistem operatörleri ve üreticiler tarafından son kullanıcının 

kullanım profilinde esneklik sağlamak ve kullanım zamanlaması üzerinde etkili olmak 

adına bir niyet bulunmaktadır. Tüketim tarafının kararlarını etkileme isteği Talep 

Tarafı Yönetimi (Demand Side Management) fikrini ortaya çıkarmıştır. Uzun ve kısa 

vadeli birçok aktiviteyi barındıran Talep Tarafı Yönetiminin günlük piyasa işlemleri 

ile ilgili bir alt başlığı is Talep Tepki (Demand Response) programlarıdır. Genel 

anlamda Talep Tepki programları, değişen fiyatlar doğrultusunda son kullanıcının 

kullanım kararlarını etkileyecek fiyat ya da teşvik temelli mekanizmaları içermektedir 

(US Dept. Energy, 2006). Bu mekanizmaların ilk ortaya çıkış amaçları talep 

tarafındaki dalgalanmaları azaltmak, zirve noktası olan tüketimimin bir kısmını başka 

zamanlara kaydırarak sistem güvenliğini sağlamak vb. gibi olmuştur. Sistemlerin 

normal işleyişi sırasında kesintisiz bir şekilde enerji sağlayabilmek için en düşük 

kapasite ve altyapı gereksinimi talep tarafında oluşabilecek en yüksek zirve 

noktasından daha fazla olmalıdır. Fakat talep çoğu zaman zirve noktasının altında 

gerçekleşmektedir ve sistemler çoğu zaman düşük kapasite ile çalışmak zorunda 

kalmaktadır. Sistem güvenlik marjları gibi diğer faktörler de hesaba katıldığı zaman 

sistemlerin bazı durumlarda kapasitesinin büyük bir kısmının kullanılmadığı ortaya 

çıkmaktadır (Strbac, 2008). Bu nedenle sistem verimliliğinin artırılması için talep 

tarafında esnekliğin sağlanması önemli görülmüştür. Fakat yenilenebilir enerjinin 

artan kullanımı, talep tarafında esnekliğini yalnızca önemli olmaktan çıkarıp belirli 

ölçüde zorunlu kılmıştır. Yenilenebilir enerjinin zamanlamasının ve miktarının kontrol 

edilemiyor olması, arz tarafına bir belirsizlik getirmiştir ve arz tarafının esnekliğini 

kısıtlamıştır.  Düşük karbon politikaları ile belirlenen hedeflere ulaşmak yenilenebilir 
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enerjinin payının çok önemli ölçüde artmasını gerektirmektedir (da Graça Carvalho, 

2012). Bunun için teknik yapılabilirliğin ötesinde büyük ölçekli yenilenebilir enerji 

kullanımından kaynaklı arz tarafında oluşan esneklik kaybını talep tarafına yansıtacak 

ve esnek kullanımı mümkün kılacak piyasa modellerine ihtiyaç duyulacaktır. Aksi 

durumda yenilenebilir enerjini üretiminin fazla olduğu zamanlarda kullanılamayan 

üretim boşa gidecektir ve bir süre sonra yenilenebilir enerjinin üretiminin azaldığı 

konvansiyonel yöntemlerle üretim yapmak gerekecektir. Dolayısıyla, büyük ölçekli 

yenilenebilir enerji varlığı durumunda arz talep dengesi için yalnızca talep tarafında 

ayarlama yapmak, üretimin tamamının kontrol edilememesinden dolayı etkin bir 

yöntem olmaktan çıkmaktadır. Alternatif olarak, Talep Tepki yöntemleri ile tüketim 

profilinin var olan üretime göre kaydırılması sorunun çözümü için potansiyel teşkil 

etmektedir. Yenilenebilir enerjinin getirdiği esneklik kaybıyla ortaya çıkan paradigma 

değişimi Talep Tepki programlarının da odağını değiştirmiştir. Yenilenebilir enerjinin 

etkin kullanımı kapsamında, Talep Tepki programlarının amacı, talebi zaman için de 

kaydırarak esnek olmayan üretim profiline uyumlu hale getirmek olmuştur.  

Talep Tepki programları tüketim tarafında esnekliğin elde edilmesi için umut verici 

yöntemler olsa da literatürde var olan yöntemlerin birçoğu yenilenebilir enerjiden 

kaynaklı arz belirsizliğini tam anlamıyla karşılamamaktadır. Örneğin, “Critical Peak 

Pricing” yalnızca talepte oluşan zirve noktası etkilerini azalmak için kullanılabilir. Bir 

başka yöntem olan “Time-Of-Use (TOU)” ise yeterince dinamik değildir (Borenstein, 

2005). Gerçek zamanlı fiyatlama toptan piyasalardan kaynaklanan maliyeti son 

kullanıcıya doğrudan yansıtması açısından teorik olarak etkin bir yöntem olsa da 

uygulamada kullanıcı tarafına getirdiği belirsizlik ve riskler gibi birçok uygulama 

sorunu ortaya çıkarmaktadır.  

Talep Tepki yöntemlerinin bir diğer özelliği ise talep tarafında esnekliğin doğrudan ya 

da dolaylı olarak elde edildiği ile ilgilidir. Dolaylı yöntemlerde son kullanıcının fiyat 

sinyallerini gözlemleyip kullanım profilini değiştirmesi beklenir. Doğrudan kontrol de 

ise kullanım zamanlaması bir fayda karşılığında sistem operatörüne devredilir.  

Bu çalışmada doğrudan kontrol prensibine dayalı yeni bir piyasa modeli 

önerilmektedir. Model son kullanıcıların, kullanımlarının bir kısmının kontrolünü 

sağlanan teşvik karşılığında Sistem Operatörüne devretmesini içermektedir. Bu 

modelde elektrik kullanımı esnek kullanım ve sabit kullanım olarak iki tipe ayrılmıştır. 
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Her planlama periyodunun başlangıcında, sistem Operatörü tarafından esnek kulanım 

için indirimli bir fiyat son kullanıcıya önerilmektedir. Son kullanıcı önerilen fiyata 

göre toplam tüketiminin ne kadarını esnek kullanıma ayıracağına karar vermektedir. 

Böylelikle son kullanıcı indirimli fiyat formunda bir teşvik elde etmektedir ve Sistem 

Operatörüne talep zamanlaması konusunda bir esneklik sağlamaktadır ve Sistem 

Operatörü maliyeti sıfır olan yenilenebilir enerjiyi daha etkin kullanarak gelirini 

artırmaktadır.  

Bu özgün model yenilenebilir enerjinin etkin kullanılmasına yönelik ortaya çıkan 

sorunlara dolaylı yöntemlere göre daha etkili ve güvenilir çözümler sunmaktadır.  Son 

kullanıcı tarafından bakıldığında fiyatların belirsizliğinden ve oynaklığından 

kaynaklanan sorunlar ortadan kalkmaktadır. Ayrıca son kullanıcının programa katılımı 

diğer dinamik fiyatlama modellerine göre daha az çaba gerektirmektedir. Sistem 

operatörü tarafından bakıldığında ise gerçek zamanlı fiyatlama gibi yöntemlere göre 

daha güvenilir ve kontrol edebilir esneklik elde edilebilmektedir. 

Talep Tarafı Yönetimi ile ilgili hızla büyüyen bir literatür bulunmaktadır. Bu alanda 

yapılan yayınlar 2009 yılında yıllık 130 mertebelerindeyken 2020 yılına gelindiğinde 

yıllık 1800 yayın mertebelerine çıkmıştır. Talep Tarafı Yönetiminin faydaları ve 

zorlukları ilgili  farklı yönlere odaklara çeşitli araştırma makaleleri bulunmaktadır 

(O׳Connell et al., 2014), (Conchado and Linares, 2012). Diğerlerine ek olarak bu 

faydaları genel olarak finansal, operasyonel ve yenilenebilir enerjiyi daha etkin 

kullanma şeklinde üç ana grupta toplamak mümkündür (De Jonghe et al., 2008), 

(Müller and Möst, 2018), (Gottwalt et al., 2016), (Simshauser, 2019).  

Literatürdeki Talep Tepki modelleme örnekleri uygulanan strateji, ölçek, problemin 

kurgusu gibi birçok faktöre bağlı olarak çok çeşitlilik göstermektedir. Bu nedenle 

literatüre genel geçer kullanılabilecek bir Talep Tepki modelleme çerçevesi 

bulunmamaktadır. Bir grup çalışma Talep Tepki potansiyelini hesaplama 

çalışmaktadır. Bunlardan bazıları herhangi bir analitik model bile kullanmamaktadır 

ve sadece toplam talebin belirli bir yüzdesinin esnek talebe katılacağı varsayımına 

dayalı hesaplamalar kullanmaktadırlar. Büyük bir grup çalışma ise talebin fiyat 

esnekliğini kullanarak modelle yapmaktadır (Heydarian-Forushani et al., 2020),  

(Allcott, 2011). Fakat bu yaklaşım ile bir noktada azaltılan talebin zamanda başka bir 

noktada telafi edileceği (demand recovery) garanti edilmemektedir. Bunun için çapraz 
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fiyat esnekliğini modele dahil eden çalışmalar bulunmaktadır fakat çapraz fiyat 

esneklikleri söz konusu problemi tamamen ortadan kaldırmamaktadır. Başka bir grup 

çalışma ise Talep Tepki potansiyelini üretim tarafında negatif yönlü üretim olarak 

modelleyip kapasite planlama problemi çözmektedir (McPherson and Stoll, 2020).  

Çalışmalarda kullanılan optimizasyon metotları da oldukça çeşitlilik göstermektedir. 

Lineer ve lineer olmayan programlama, tam sayılı programlama, stokastik modelleme, 

oyun teorisi, dinamik modelleme vb. optimizasyon yöntemleri kullanan örnekler 

literatürde bulunmaktadır.  

Bu çalışmada, mevcut literatürden farklı olarak, arz ve talep tarafının dinamik olarak 

etkileşimi kapsamlı bir şekilde modellenmiştir. Ayrıca, talep tarafının esnek ve sabit 

kullanım arasındaki seçimi güncel literatürdeki lineer varsayımın aksine fayda 

maksimizasyonu problemi olarak modellenmiştir. Bu tür modelleme örneği literatürde 

bildiğimiz ölçüde bulunmamaktadır. Ayrıca modellemede kullanılan koşullar ve 

yöntem sayesinde talebin korunması (demand recovery) kesin olarak sağlanmaktadır.  

Çalışmada modelleme için kurgulanan market elektrik sağlayan bir Sistem Operatörü 

ve elektriğin tek kullanıcısı olan Temsili Tüketiciden oluşmaktadır. Sistem Operatörü 

yenilenebilir ve konvansiyonel olmak üzere iki farklı kaynaktan elektrik 

sağlamaktadır. Yenilenebilir kaynaklardan üretilen enerjinin marjinal üretim maliyeti 

sıfırdır fakat bu üretimin miktarı ve zamanlaması tamamen doğa kontrolündedir. 

Sistem Operatörü konvansiyonel kaynaklardan yapılan üretimin marjinal üretim 

maliyeti elektriğin piyasa fiyatı olan p ye eşittir. Sistem Operatörü her periyottaki 

talebi karşılamak için önce maliyetsiz olan yenilenebilir enerjiyi kullanmaktadır ve 

ihtiyaç olması durumunda maliyetli olan konvansiyonel yöntemlerle üretim 

yapmaktadır. Yenilenebilir enerjiyi daha etkili kullanmak için talebi yenilenebilir 

enerjinin olmadığı veya az üretildiği zamandan yenilenebilir enerji üretiminin fazla 

olduğu alana çekmek istemektedir. Bunu yapabilmek için kullanıcıya iki farklı 

kullanım seçeneği sunmaktadır. Sabit kullanım olarak nitelendirilen birinci seçenek 

her zaman olduğu gibi kullanıcının istediği zaman elektriği kullanmasıdır. Esnek 

kullanım olarak nitelendirilen ikinci seçenek ise kullanıcının talep zamanının n    

aralığında olmak kaydıyla kesin zamanlamasını Sistem Operatörüne devrettiği 

kullanım seçeneğidir. Söz konusu planlama periyodu, hava durumu, haftanın günü vb. 

üretimi ve tüketimi etkileyen bütün harici bilgilerim olduğu set için Doğa (Nature) bir 
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karar mekanizması olarak dinamik modellemeye eklenmiştir. Her periyod için 

Doğa’nın durumu ts   olarak verilmiştir.  

Tüketicinin güncel planlama dönemi olan çok kısa dönem tüketim planı yalnızca 

Doğa’nın durumundan etkilenmektedir. Diğer faktörlerin hepsi bu çok kısa dönem için 

sabit kabul edilebilir. Planlama dönemi için Doğanın durumu ts   ortaya çıktığı 

zaman tüketicinin de tüketim planı belirlenmektedir ve bu plan ilgili dönem için sabit 

kabul edilmektedir. Sistem Operatörü esnek kullanım için belirlediği fiyat olan 

karşısında tüketici bu dönemsel planın her bir periyodu için tüketmek istediği miktarın 

belirli bir kısmını sabit kullanım ve esnek kullanım olarak ikiye ayırır. Esnek 

kullanıma adadığı kısım için daha düşük ödeme yaptığından dolayı buradan bir 

finansal gelir elde eder. Tüketici sabit kullanımdan, esnek kullanımdan ve elde ettiği 

kazançtan farlı ağırlıklarda fayda sağlamaktadır. Ağırlıklandırılmış fayda fonksiyonu 

denklem 4.3 de verilmiştir. Yapılan hesaplamalar ile bu fayda fonksiyonunu 

eniyileyecek olan sabit kullanım ve esnek kullanım denklemler 4.7 de sunulmuştur. 

Sistem Operatörünün tüketici davranışı üzerinde doğrudan etkisi yoktur fakat esnek 

kullanım fiyatını belirleyerek tüketicinin karanını dolaylı olarak etkilemektedir. Arz 

tarafı olan Sistem Operatörünün karar süreci çok aşamalı bir yapıda ve tüketici tarafı 

ile dinamik etkileşim içerisinde gerçekleşmektedir. Bütün model aşağıdaki dört 

aşamalı dinamik probleme dönüşmektedir:  

Aşama 0: Doğa’nın durumu ortaya çıkar. Tüketicinin gelecek dönem için tüketim planı 

belirlenir ve sabitlenir. Gelecek dönem için yenilenebilir enerji miktarı üretimi 

belirlenir.  

Aşama 1: Sistem Operatörü ve  ’i gözlemler. İhtiyaç duyacağı esnek kullanımı elde 

edebilmek için esnek kullanım fiyatını belirler.  

Aşama 2: Tüketici  ’i gözlemler ve kullanım planının ne kadarını esnek kullanıma 

geçireceğine kadar verir.  

Aşama 3: Sistem Operatörü Aşama 0 da belirlenen yenilenebilir enerji üretim 

miktarları, Aşama 1 de sunulan fiyatları ve Aşama 2 de belirlenen sabit ve senek 

kullanım planlarını gözlemleyerek konvansiyonel kaynaklardan yapacağı üretimi en 

aza indirmek için her bir periyottaki esnek kullanımım bir kısmını t zamanından   
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zamanına kaydırır.  Böylelikle her periyot için ne kadar konvansiyonel kaynak 

kullanılacağının da kararı verilmiş olur. 

Bu problemin çözümü, son aşamadan başlayarak geriye doğru yapılabilir. Aşama 3 de, 

Aşama 2, Aşama 1 ve Aşama 0’dan gelen optimum kararlar verilmiş olarak hesaba 

katılır. Bu aşamada iki temel kısıt bulunmaktadır. Birincisi denklem 4.8 de verilen 

talep kaydırma kısıtı'dır ve diğeri 4.9 da verilen enerji balans kısıtıdır. Sistem 

operatörü diğer aşamalardan gelen değişkenler ve bu kısıtlarla birlikte 4.11 de verilen 

toplam gelir fonksiyonunu maksimize etmeye çalışır. Aşama 2 nin çözümü Tüketicinin 

esnek ve sabit kullanım kararını içermektedir. Sistem Operatörü, Aşama 1 de Aşama 

2 ve Aşama 3 den geriye doğru getirilen optimum çözümleri kısıt alarak gelirini 

maksimize edecek olan sabit kullanım fiyatını belirler. Bütün problemin çözümü 

denklem 4.16 da verilen iki seviyeli (bi-level) optimizasyon problemine indirgenir.  

Nihai olarak elde edilen iki seviyeli optimizasyon probleminin sonucunun var olduğu 

4.3.3.1 bölümünde gösterilmiştir. Öncelikli olarak alt seviye problemin olası en iyi 

değerleri ile şekillenen üst seviye problemin kısıt seti olan indirgenebilir bölge 

tanımlanmıştır. Bu bölgenin kapalı ve kompakt olduğu gösterilmiştir ve Weierstras 

teoremine göre optimum çözümün var olduğu gösterilmiştir. Fala yenilenebilir enerji 

üretiminin olduğu dönemlerde önerilen bu modeli uygulamanın mutlak fayda 

saylayacağı Teorem-1 de ispatlanmıştır.  

Baz model Sistem Operatörünün gelirini artırmak üzere kurgulanmıştır. Bu model, 

gelirden bağımsız olarak yenilenebilir enerjinin kullanımını artırmayı amaçlayan 

Sosyal Planlamacı için de kullanılabilir. Bu duruma esnek kullanım için olan fiyatı 

Sosyal Planlamacı belirler ve amacı yenilenebilir enerji kullanımını maksimize 

etmektir. İlave bir kısıt olarak da Sistem Operatörünün gelirini eski seviyesinin altına 

düşürmeme kriteri probleme eklenmiştir. Yapılan bu uyarlamalar neticesinde ortaya 

çıkan nihai model denklem 4.22 de verilen optimizasyon problemi olmuştur. 

Her iki model için de elde edilen sonuçları görselleştirmek için gerçek verilere ve 

üretim profillerine dayalı uygulama örneği sunulmuştur. Tüketim verisi olarak ve 

yenilenebilir enerji üretim profili olarak Şekil 4.1 de verilen Kaliforniya bölgesinde 

2020 yılında gerçekleşen veriler kullanılmıştır. Bu verilere dayalı olarak Şekil 4.2 de 

verilen iki farklı senaryo oluşturulmuştur. Birinci senaryoda bir günlük yenilenebilir 
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enerji üretiminin o günkü toplam tüketimi karşılayacak kadar olduğu varsayılmıştır 

fakat yenilenebilir enerjinin üretim zamanlamasının talep edilen tüketim 

zamanlamasından farklı olmasından dolayı ortaya çıkan sorun vurgulanmıştır. İkinci 

senaryoda ise toplam yenilenebilir enerji üretiminin toplam talebin yarısını karşıladığı 

varsayılmıştır. Tüketici tarafı için ise esnek kullanıma daha çabuk adapte olan iyimser 

ve daha dirençli olan kötümser olmak üzere iki farklı profil tanımlanmıştır. Şekil 

4.3’de iki farklı tüketici profili için sunulan indirimli fiyata karşılık gelen esnek 

kullanım katsayıları gösterilmiştir.  

İki seviyeli optimizasyon probleminin çözümü için kullanılan hesaplama metodolojisi 

Şekil 4.4.’ de özetlenmiştir. Yapılan hesaplar neticesinde elde edilen flexp ’lere karşılık 

gelen toplam gelirler bütün durumlar için Şekil 4.5 de gösterilmiştir. Buradaki sonuçlar 

Teorem-1 ile tutarlıdır: modelin kullanımı, fazla yenilenebilir enerji olduğu her 

durumda mutlak fayda sağlamaktadır. İhtiyaç duyulan toplam konvansiyonel üretim 

grafikleri de Şekil 4.6 da gösterilmiştir. Daha az yenilebilir enerji üretiminin olduğu 

Senaryo 2 ve daha hızlı tüketici adaptasyonu olan iyimser durum birleşiminde istenen 

fayda çok düşük bir fiyat indirimi ile sağlanmıştır. Tablo 4.1 de Sistem Operatörü ve 

Sosyal Planlamacının optimum çözümleri bütün durumlar için verilmiştir. Model 

uygulaması sonucunda nihai olarak talebin bir zaman periyodundan başka bir zaman 

periyoduna kaydırılarak tekrar düzenlemesini içeren sonuçlar Şekil 4.7 de sunulmuştur 

 

Elektrik talebine olan talebin tahmin edilmesi sistem operasyonları, piyasa işleyişleri 

ve planlamalar için son derece önemli olmuştur. Elektrik piyasalarında hayata 

geçirilen liberalleşme çalışmaları; kararlarını talep tahminine dayalı ön bilgiye göre 

alan sistem operatörleri, üretim ve dağıtım firmaları, piyasa katılımcıları gibi birçok 

paydaş için güvenilir bir talep tahminine olan ihtiyacı oldukça artırmıştır. 

Genel olarak elektriğe olan talebin tahmini tahmin periyodunun uzunluğuna bağlı 

olarak üç farklı kategoride ele alınır. Uzun dönemli tahmin aylardan yıllara kadar olan 

dönemi kapsamaktadır ve genellikle kapasite yatımları ve zamanlamaları, network 

tasarımı vb. kararlar için ihtiyaç duyulur.  Orta dönem tahinim ise haftalardan aylara 

kadar olan dönemi içeren tahmini kapsamaktadır. Orta dönem tahmin risk yönetimi, 

kapasite planlamaları, bakım onarım faaliyetlerinin planlanması vb. konular için 



 156   

kullanılır. Kısa dönemli talep tahmini birkaç dakikadan günler mertebesine kadar olan 

dönemleri kapsamaktadır. Genel olarak Talep tahmin çalışmalarının çok büyük bir 

bölümünü kısa dönem tahminler oluşturur. Güncel elektrik sistemlerine elektriğin çok 

büyük ölçekli depolanması henüz yapılamadığı için elektrik arz talep dengesi anlık 

olarak üretim miktarını ayarlayarak yapılmaktadır. Bu nedenle bütün sistem 

operasyonları, piyasa operasyonları vb. işlemlerin hepsi kısa dönemli talep tahminine 

sürekli olarak ihtiyaç duymaktadır. Farklı elektrik üretim kaynaklarının farklı 

esneklikleri vardır ve bazı üretim teknolojileri anlık olarak devreye alınamaz veya 

çıkış güçlerinde anlık olarak büyük değişiklikler yapılamaz. Bu nedenle bu tür üretim 

sistemlerinin bir süre önceden planlanması kesiksiz üretim ve talep karşılama için 

büyük önem taşımaktadır. Dolayısıyla kısa dönemli talep tahmini sistem 

operasyonlarının ve piyasa işlemlerinin en temel unsurlarından biridir. Yenilenebilir 

enerjinin büyük ölçekli entegrasyonu arz tarafında olan esnekliği azalttığı için 

planlamalar ve operasyonlar çok daha karmaşık bir hale gelmiştir ve kısa dönemli talep 

tahmininin önemi daha da artmıştır.   

Bu çalışmada tek değişkenli üç farklı talep yöntemi Türkiye’nin toplam elektrik talebi 

verileri kullanılarak modellenmiştir ve performansları karşılaştırılmıştır. Bu 

yöntemler: Çift Mevsimli Üstel Yumuşatma (Double Seasonal Exponential 

Smoothing-DSES), TABTS ve Çoklu STL Ayrıştırma (Multiple STL-MSTL) 

yöntemleridir. Spesifik olarak, bu üç alternatif yöntemin bir gün sonrasının 24 saatlik 

elektik tüketim tahmin performansları analiz edilmiş ve karşılaştırılmıştır.  

Saatlik elektrik talebi verisinin karmaşık mevsimsellik, yüksek frekans, özel gün 

farklılaşmaları gibi kendine has birçok özelliği vardır. Bu özellikler genel olarak 

ekonomik aktivitelerden, günlük aktivitelerden ve çevre koşullarından kaynaklanır. 

Buna bağlı olarak talep gün için de bir dip noktası ile bir zirve noktası arasında 

dalgalanır. Bu dalgalanma günlük mevsimsellik yapısını oluşturur. Haftanın farklı 

günleri için günlük mevsimsellik birbirinden farklı yapılar olarak ortaya çıkabilir fakat 

diğer haftaların aynı günü ile benzerlik gösterir ve haftalık bu döngü de haftalık 

mevsimliği oluşturur. Sonuç olarak saatlik elektrik verisinde biri 24 saat diğeri de 168 

saat periyodlarda olmak üzere çift mevsimsellik vardır. Bu özelliğinden dolayı standart 

yöntemler ile tahmin yapmak olanaksızdır. Ayrıca basit mevsimsel çıkarım (seasonal 

differencing) veriyi durağan hale getirerek mevsimsellikten arındırmak için yeterli 
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gelmemektedir. Bu nedenle saatlik elektrik talebi tahminin yapan yöntemler, verinin 

bu karakteristik özelliklerini de modele dâhil eden yöntemler olması gerekmektedir.  

Literatürde birçok talep tahmin yöntemi önerilmiştir. Standard otoregresif hareketli 

ortalama yöntemleri (ARMA) temel yapılarında mevsimsel veriler üzerinde 

kullanılamadığı için mevsimsellikleri da modele dahil edecek şekilde Çift Mevsimli 

Otoregresif Hareketli Ortalama (DSARIMA) yöntemi geliştirilmiştir (Box et al., 

2015). Bu modellerin kapalı formları  şeklinde verilmektedir.  Açık formları denklem 

5.9 , 5.10 ve 5.11 da verilmiştir. Bir başka alternatif ise mevsimsellik davranışlarını 

Fourier terimleri ile temsil etmektir.  yapısındaki Fourier terimleri modele harici 

değişken olarak eklenebilir.  ,  . Alternatif olarak otoregresif terimlerin katsayılarına 

çarpan olarak eklenerek periyodik otoregresif modeller geliştirilebilir (Taylor et al., 

2006), (Franses and Paap, 2004). Periyodik otoregresif formülü denklem 5.12 de 

verilmiştir.  

Üstel Yumuşatma tek değişkenli zaman serilerinin tahmininde oldukça yaygın olarak 

kullanılmaktadır. En yaygın kullanılan üstel yumuşatma uygulaması, üstel 

yumuşatmanın seviye, trend ve mevsimsel bileşenlerine uygulandığı yöntemdir ve 

Hold-Winters yöntemi olarak bilinen bir yöntemdir (Winters, 1960). Fakat bu yöntem 

tek bir mevsimselliği içermektedir. (Taylor, 2003), bu yöntemi çift mevsimli verilere 

uygulanacak şekilde uyarlamıştır. Çift Mevsimli Üstel Yumuşatma(DSES) olarak 

adlandırılan bu yöntemin metodolojisi, denklem 5.17-5.21 arasında gösterilmiştir. 

Taylor (2003, 2006) bu yöntemin DSARIMA yönteminden daha iyi sonuçlar verdiğini 

göstermiştir. DSES yönteminin uygulamaları ile ilgili literatürde birçok çalışma 

bulunmaktadır (Gould et al., 2008), (Bernardi and Petrella, 2015), (Taylor and 

McSharry, 2007), (Souza et al., 2007) (Taylor et al., 2006), (Taylor, 2012).  

Üstel Yumuşatmanın kısıtlarını ortadan kaldırmak ve daha geniş kapsamlı hale 

getirmek için TBATS (Trigonometric terms, Box-Cox transformations, ARMA errors, 

Trend, and Seasonality) yöntemi geliştirilmiştir (De Livera et al., 2011).  Üstel 

yumuşatmaya ek olarak mevsimselliği temsil etmesi için Fourier terimleri 

kullanılmaktadır. Aynı zamanda sonuçlarda iyileşme sağlamalarına göre veriye Box-

Cox dönüşümü ve hata terimlerini ARMA ile modelle uygulaması de yapılmaktadır. 

Sonuçların iyileştirme kriteri olarak da AIC metriği kullanılmaktadır. Model 
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dinamikleri denklem 5.22-5.27 arasında verilmiştir (De Livera, Hyndman, & Snyder 

(2011)). 

Kısa dönemli elektrik ihtiyacı tahminlerinde bileşenlerine ayırma (decomposition) 

yöntemi de kullanılabilmektedir (Wang et al., 2012), (Shao et al., 2017).  Bu yönteme 

ana fikir veriyi mevsimsellik ve trend gibi etkilerden arındırıp geri kalan kısmı standart 

yöntemler ile modellemektir. Bir zaman serisi, mevsimsel, trend ve düzensiz kısım  

olarak şeklinde üç bileşene ayrıştırılmaktadır ve bileşenleri ayrıştırma yöntemi ile 

temsil edilirken,  bileşeni standart yöntemler ile modellenmektedir. SEATS, X11 ve 

STL gibi birçok ayrıştırma tekniği kullanılabilir. Bu çalışmada STL (Seasonal and 

Trend decomposition using Loess) tekniğinin çoklu mevsimsellik içerecek şekilde 

uyarlanmış versiyonu olan MSTL (Multiple STL) kullanılmıştır. STL tekniğinin 

parametrik olmaması, her türlü mevsimsel bileşenin modellenebiliyor olması, hatalı 

verilere karşı gürbüz olması gibi birçok avantajı bulunmaktadır.  

Performans ölçümü ve karşılaştırması için literatürde birçok metrik önerilmiştir. 

Performans karşılaştırmalarında sonuçların verinin büyüklüğünden etkilenmemesi için 

yüzdesel hataları temel alan metriklerin kullanımı daha uygundur. Hatanın karesinin 

alındığı yöntemler bilgi kaybına neden olduğu için bazı araştırmacılar tarafından 

kullanılmamaları önerilmiştir (Armstrong, 2001). Bu çalışmada literatürde en yaygın 

kullanılan Ortalama Mutlak Yüzdesel Hata (Mean Absolute Percentage Error-MAPE) 

kullanılmıştır. Model seçimi için AIC metriği kullanılmıştır.  

Bu çalışmada 16.09.2019 - 09.12.2019 tarihleri arasında Türkiye’de gerçekleşen 

elektrik tüketimi verileri kullanılmıştır ve veriler Şekil 5.1 de gösterilmiştir. Tüketim 

miktarının sürekli dalgalandığı grafikten görülebilmektedir. Elektrik kullanımı genel 

olarak günlük ve haftalık periyodları olan mevsimsellik göstermektedir. Türkiye’de 

gerçekleşen tüketim verisi de her iki mevsimselliği göstermektedir. İki haftalık tüketim 

verilerinin sunulduğu Şekil 5.2 deki grafikte günlük ve haftalık döngüler açıkça 

gözlemlenebilmektedir. Toplam tüketim verisinin haftanın her günü için ayrı ayrı 

hazırlanmış grafikleri Şekil 5.3 de verilmiştir. Koyu çizgi, ilgili gün için ortalama 

tüketimi gösterirken açık mavi aralık ise bütün verinin %95 aralığına düşen kısmını 

göstermektedir. Tüketimin en düşük olduğu seviye genel olarak gün doğumundan bir 

süre önce olmaktadır. Sonrasında gündoğumu ile birlikte başlayan faaliyetlerle öğle 

saatlerine kadar sürekli artmaktadır. Tüketimde öğle arasına bağlı olarak bölgesel bir 
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düşüş olmasına rağmen akşam saatlerine kadar artmaya devam ederek zirve noktasına 

gelmektedir. Bu noktadan sonra en düşük seviyeye doğru tekrardan düşüşe 

geçmektedir. Böylelikle günlük mevsimsellik döngüsü oluşmaktadır. Bu döngü 

haftanın bazı günleri için birbirine benzese de özellikle hasta sonu günleri için oldukça 

farklıdır. Böylelikle, her hafta tekrarlanan günlük döngüler de haftalık mevsimselliği 

oluşturmaktadır.  

Bu çalışmada incelenen yöntemlerin model parametrelerini belirlemek için kendine 

özgü yöntemler kullanılmıştır. DSES yöntemi bir istatistik yöntem olmadığı için 

olabilirlik fonksiyonu tanımlanamamaktadır. Bu nedenle model parametrelerini 

belirlemek için hataların karelerinin toplamı, lineer olmayan optimizasyon yöntemleri 

ile elde edilmiştir. TBATS’in model parametrelerinin belirlenmesi için ise (De Livera 

et al., 2011)’nin türettiği olabilirlik fonksiyonu  kullanılıştır ve AIC ye göre model 

seçimi yapılmıştır. MSTL ile bileşenlerine ayrılan verinin geri kalan kısmını 

modellemek için kullanılacak basit Üstel yumuşatma, mevsimsellik ve trend ortadan 

kalktığı için iki aday model kalmıştır. Model seçimi AIC ye bağlı olarak yapılmıştır.  

Tahmin sırasında izlenen metodoloji, verileri kullanarak model seçimi ve 

parametrelerini belirlemek ve model ile bir gün sonrasının 24 saati için tüketim 

tahminini yapmak şeklinde olmuştur. Sonrasında veri seti güncellenerek bir sonraki 

günün 24 saati için tahmin yapılmıştır ve 7 gün için veriler elde edilmiştir. İzlenen 

yöntem, Şekil 5.4 de gösterilmiştir. DSES, TBATS ve MSTL ile yapılan günlük 

tahminlere örnekler sırası ile Şekil 5.6, Şekil 5.7 ve Şekil 5.’de gösterilmiştir. Bir 

haftalık tahmin periyodu sonunda elde edilen ve performans metriği olarak kullanılan 

MAPE değerleri Şekil 5.9 da verilmiştir. Buna göre MSTL, TBATS’ den bütün günler 

için, DSES’den ise birçok gün için daha iyi sonuç vermiştir. Bütün periyod için MAPE 

ortalamaları Tablo 5.3 de sunulmuştur. Sonuçlara göre MSTL en iyi performansı 

göstermiştir  
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