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ABSTRACT

MODELING ELECTRICITY MARKETS BY INTEGRATING
RENEWABLE ENERGY

PAKYARDIM, Yusuf Kenan
Ph.D., The Department of Economics
Supervisor: Assoc. Prof. Dr.Esma GAYGISIZ

September 2022, 160 pages

Sustainability concerns arising from anthropogenic climate change necessitated
fundamental changes in the electricity sector. As set out in the 2015 Paris Agreement,
the key element to deal with the threat posed by climate change is to increase the shares
of renewable sources in exchange for reducing the shares of fossil fuels. Nevertheless,
the traditional electricity systems have not evolved in a way to accommodate large-
scale renewable energy smoothly. The large-scale integration of renewable energy

poses several challenges for almost all components of the electricity sector.

The energy transition towards low-carbon energy now faces a multifaceted
implementation problem. The problems are economic efficiency and managerial
problems rather than technical difficulties. This dissertation comprises three analytical
essays on analysis of the challenges of renewable energy integration. The first essay
studies the problems in the wholesale markets. Particularly, the distortion of
equilibrium prices in wholesale market because of the negligibly small marginal cost
of production of renewables, impacts of different renewable subsidization

mechanisms, and impacts of the industrial organization of renewable energy

iv



generation are analyzed in a Cournot-Nash competition framework. The second essay
proposes a novel retail market model based on a Demand Response mechanism and
market segmentation. The model includes dynamic programming involving the
dynamic interaction of retailers and consumers decision making processes and
addresses the problem due to the intermittency of renewable energy. The last essay
analyzes and compares the day-ahead hourly demand forecasting performances of
three different forecasting methods on Turkish electricity markets.

Keywords: Renewable Energy Integration, Demand Response, Wholesale

Competition, Forecasting Hourly-load
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ELEKTIRIK PIYASALARININ YENILENEBILIR ENERJi ILE BUTUNLESIK
MODELLENMESI

PAKYARDIM, Yusuf Kenan
Doktora, iktisat Boliimii
Tez Yoneticisi: Dog. Dr. Esma GAYGISIZ

Eyliil 2022, 160 sayfa

Antropojenik iklim degisikliginden kaynaklanan siirdiiriilebilirlik endiseleri, elektrik
sektoriinde koklii degisiklikleri zorunlu Kilmistir. 2015 Paris Anlagsmasi'nda belirtildigi
gibi, iklim degisikliginin yarattigi tehditle basa ¢ikmanin kilit unsuru, fosil yakitlarin
paylarini azaltarak bunlar1 yenilenebilir enerji kaynaklar1 ile degistirmektir. Bununla
birlikte, geleneksel elektrik sistemleri, biiyiik 6l¢ekli yenilenebilir enerjiyi sorunsuz
bir sekilde kullanabilecek yapilar olarak gelismemistir. Yenilenebilir enerjinin biiyiik
olgekli entegrasyonu elektrik sektoriiniin neredeyse tiim bilesenleri igin gesitli

zorluklar ortaya ¢ikarmaktadir.

Diisiik-karbon enerji doniigiimii, bu noktada ¢ok yonlii bir uygulama sorunuyla karsi
karstya kalmistir. Bu sorunlarin biiyiik boliimii, teknik zorluklardan ziyade ekonomik
verimlilik ve yonetim sorunlaridir. Bu tez, yenilenebilir enerji entegrasyonu ile ilgili
zorluklarinm ekonomik analizi {izerine makalelerden olusmaktadir. Ik makale toptan
satis pazarlarindaki sorunlar1 incelemektedir. Ozellikle, yenilenebilir enerjinin ¢ok
diistik marjinal iretim maliyeti ile rekabete katilmasmnin piyasa denge fiyatlar:

iizerindeki etkileri ile birlikte farkli yenilenebilir siibvansiyon mekanizmalarmim ve
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yenilenebilir enerji iliretiminin endiistriyel organizasyonunun bu dengeye etkileri
Cournot-Nash cercevesinde incelenmistir. ikinci makale, Talep Tepki (Demand
Response) yontemi ve piyasa segmantasyonuna dayali yeni market yapisi
onermektedir ve bunun ile ilgili analizleri igermektedir. Model iiretici ile tiiketicinin
karar verme siireclerinin dinamik etkilesimini igeren dinamik programlama
kullanmaktadir ve yenilenebilir enerjinin kontrol edilememesinden kaynaklanan
sorunu ele almaktadir. Son makalede, ii¢ farkli tahmin yonteminin Tiirkiye elektrik
piyasalarindaki giin-oncesi saatlik talep tahmin performanslari analiz edip birbirleri ile

karsilastirmaktadir.

Anahtar Kelimeler: Yenilenebilir Enerji, Demand Response, Toptan Piyasalarda
Rekabet, Saatlik Talep Tahmini
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CHAPTER 1

INTRODUCTION

Electrical power industries are constantly evolving and changing around the world
throughout their entire history. Previously, the evolution has been driven primarily by
ever-increasing demand, technological advances on both the supply and demand sides,
policies that facilitate increased access to electricity, and other regulatory policies. In
this context, traditional electricity systems have developed as vertically integrated and
predominantly state-owned entities that combine generation, transmission, and
distribution functions altogether. Since the 1980s, many countries have started to
restructuring their electricity systems to increase the efficiency of these monopolistic
organizations. This restructuring mainly involves i) the separation of vertically
integrated generation, transmission, and distribution functions, ii) facilitating
competition between generators in the wholesale markets as well as between the
retailers and related services, and iii) separating financial markets from the physical
distribution of electricity. However, the serious sustainability threat posed by
anthropogenic climate change caused further changes. Greenhouse gases emitted from
fossil fuels, which are also the main source of traditional energy systems, are the main
cause of climate change. As an important step to handle climate change, an
international consensus was achieved in the 2015 Paris agreement between 196 parties
(195 countries and E.U.). The goal of the agreement is to keep global warming to under
20 compared to the pre-industrial levels with a target of 1.50 (Bernardo et al., 2021).
The key element to accomplishing the goal is to replace fossil fuels with zero-carbon
renewable energy sources such as intermittent solar and wind power. Accordingly,
countries have committed to reducing their emissions in proportion to their “nationally
determined contributions” and initiated policies to achieve these targets. Though,
policies designed to increase renewable energy have introduced a new set of problems

for almost all components of the electricity sector, including network and system
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operations, investment and generation, distribution, consumption, and related
businesses. The starting point for transition into low-carbon energy efforts was to
implement policies to subsidise renewable energy to make it economically viable,
since expected returns from power sales were not enough to attract low-carbon
investment. The share of renewable energy has increased considerably in several
countries and will be in many. In addition, renewable energy investments are becoming
more attractive than before in time because of the decrease in costs as a result of
developments in technology and growing markets. Thus, countries begin to revisit
their support programs. However, the issues created by low-carbon policies have
grown even more with the increase in the share of renewable energy since traditional
energy systems in their existing structures are not appropriate to integrate large-scale
intermittent renewable energy efficiently. At this stage of the low-carbon energy
transition, where shares of intermittent renewable energy are becoming considerable,
fundamental changes are required regarding market structures and system operations
as well as other related components. Intermittent renewable energy has two main
characteristics that differ greatly from conventional sources, which are the root causes

of numerous problems.

The first and most prevailing one is intermittency. Without the possibility of nation-
scale storage, electricity must be consumed as soon as it is generated. In this respect,
input and output to the electricity network must be balanced all the time. In traditional
electricity systems, all the input-output adjustments are carried out on the supply side
and the supply is constantly adjusted according to the demand at every point in time.
Therefore, scheduling production in terms of timing and quantity is central to electrical
system operations. However, intermittent renewable energy cannot be scheduled
according to the needs. Abundant inflexible production from renewable sources in a
period imposes restrictions on production from other sources in that period. One way
to deal with this problem is to shift the flexibility lost on the supply side to the demand
side. However, specially designed market mechanisms and market models are needed
to alter the consumer's consumption pattern and obtain flexibility on the demand side.
The mechanism designed to change the consumption pattern of the end-users in
response to a change in the price of electricity or in response to an incentive is referred

to as Demand Response which is one of the main subjects of this thesis. Another and
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theoretically more manageable problem of renewable integration is the almost
negligible marginal cost of production from renewables. When renewable energy
competes in the wholesale market at almost zero marginal production cost, the
equilibrium price is distorted downwards, which is referred to as the Merit Order Effect
of renewables. Together with intermittency, this effect creates several issues, such as
inefficient wholesale prices, price volatilities, curtailments of new technology
generation and under-investment problems, etc. In addition, subsidization of
renewable energy elevates the problems even more. From this respect, the major issues
related to integrating renewable energy into current electricity systems are mainly
economic problems rather than technical difficulties. With this motivation, this thesis
aims at the economic modeling of electricity markets and addresses the issues related
to the integration of renewable energy. The organization of the thesis is:

Chapter two explains the fundamentals of power systems and current issues because
of renewable energy integration. This section comprises two main parts. The first
section presents the key features of all elements of the electricity value chain, from the
energy source to the end-users. The second section explains how wholesale and retail
energy markets work. This chapter is important to understand the special features of
electrical systems, and current issues faced and also it is necessary for a better

understanding of the rest of the thesis.

Chapter three is an essay on the impact of renewable integration on wholesale markets.
Besides independent sales, power generation companies compete in the wholesale
market regulated by a system operator. The system operator determines the
equilibrium price according to the quantity-price bids of the suppliers. Renewable
energy, unlike any other energy source, has an almost negligible marginal cost. The
zero marginal cost of renewables affects equilibrium prices negatively. Also, the
intermittent nature of these resources creates another constraint to consider. In
addition, the way renewable energy is subsidized and the industrial organization of
renewable energy also have impacts on equilibrium prices. This work analytically
investigates the impacts of all these factors on equilibrium prices in a Cournot-Nash
framework. The result indicates that equilibrium price and quantity of renewable

energy are negatively related as expected. Strategic companies having also renewable
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generation can make use of their diversified portfolio. Therefore, ownership impacts
the equilibrium. The contributions of this chapter to the current literature are threefold.
First, two different cost structures, linear and quadratic, are considered in the analysis
and the results are compared. We show that the result may change significantly in some
cases. Second, different from the current literature, a general form of heterogeneous
ownership structure between strategic firms in terms of renewable ownership is
employed in the model. Third, the impact of renewable energy subsidization methods
is studied under heterogeneous ownership and different cost structures. The results
provide useful insight for the policymakers.

Chapter four is an individual essay about the problem because of the intermittency of
renewable. In this essay, a novel market mechanism is introduced and analyzed. In the
model, electricity usage is segmented into two based on flexibility. The system
operator provides a discounted price for the flexible usage in return consumers allow
the system operator to manage the timing of some portion of the usage. The modeling
is based on the multistage dynamic interaction of both supplier and consumer which
addresses the intermittency of renewables. The result of the numerical study indicates
that the model always improves efficiency when there is excess generation from
renewables. The model can be evaluated under the direct control type Demand
Response, but it is quite distinct from the models in current literature. Thus, the model
itself is the main contribution of this chapter to the literature. Another contribution of
this chapter is that consumer preferences are modeled based on a utility maximization
problem. Most of the studies in the current literature use a simplified form of equations
such as linear relations or make some assumption that a certain amount of demand is

available for Demand Response.

Chapter five is another individual essay on forecasting hourly electricity demand for
the next day. Forecasting the next day’s demand is an essential part for both suppliers
and retailers for the planning and optimization. Especially when intermittent energy
plays an important role, the number of parties who need accurate forecast would
increase since consumers would like to know the potential demand when a Demand
response offer is made to them. In the study, three different forecasting methods which
are Double Seasonal Exponential Smoothing (DSES), TBATS, and Multiple STL
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Decomposition (MSTL) are used and their performances are compared. The
forecasting is carried out based on the consumption data of Turkey. The results show
that MSTL outperforms the other two methods providing always better results over
TBATS in all cases and better results over DES for most of the cases. The first
contribution of this chapter to the current literature is that these techniques are applied
and compared using Turkish data on an hourly basis. Another contribution is that
MSTL is recently introduced in commercial statistical packages and up to our
knowledge, it has almost no application when the study of this chapter was initiated.



CHAPTER 2

FUNDAMENTALS OF POWER SYSTEM ECONOMICS

In this chapter, special characteristics of electricity systems and electricity markets are

explained in two main parts.

2.1  Electricity Value Chain

The value chain of modern electricity energy is composed of the source of the energy
and the basic functions and components ranging from the generation of the energy to
the end-user of the energy. These functions include generation, transmission,
distribution, and consumption. Under each category, several governmental
organizations and private firms undertake different responsibilities. Although these
activities are highly interdependent and highly integrated due to both technical
necessities and instantaneously perishable characteristics of the electricity, they are
also very diverse in terms of their operational natures. Historically, due to the high
investment requirements, technological limitations, interminable energy supply
purposes, etc., most of the activities were carried out by the government agencies. For
example, TEK was the state organization having the sole responsibility for the
generation, transmission, and distribution of electricity in turkey until 1994. Demand
for electricity has grown rapidly over the last decades and these state-owned or natural
monopolistic structures became insufficient to meet the increasing demand in terms of
quantity, quality, and price (Tagare, 2011). In order the improve efficiency, many
countries initiated reformation in their electricity sector around the 90s (Joskow,
2006). Liberalization and separation of some segments were among the first steps of
these restructuring processes. Liberalization efforts and also advancements in
technology have led the organizations and structure of the electricity sector to change
over time (Jamasb and Pollitt, 2005), (Sioshansi, 2013), (Sioshansi and Pfaffenberger,

6



2006). Liberalization efforts were initiated in the generation part. The majority of the
countries have privatized and a competitive environment has been created in most of
the countries. However, heavy regulations in the electricity markets and system
operations still persist.

211 The Source

The source of electricity is one of the most relevant factors for sustainability, energy
security, market structures, economic and environmental considerations as well as
many others such as businesses, technology, etc. Modern electricity generation
systems rely on many different sources for continuous operation. These sources are
generally evaluated under three main categories: Fossil, Nuclear, and Renewables.
Fossil sources primarily consist of coal, natural gas, and petroleum which originated
from organic substances. Whereas main elements of renewables are hydropower, solar,
wind, and biomass. In modern electricity systems, relying on a single source of energy
is not adequate from both operational and economic perspectives. The portfolio of
sources that are used to generate electricity is often referred to as the energy mix.
Throughout the years, increasing demand for electricity, technological advancement,
economic aspects, supply security considerations, and environmental concerns let
diversification of the energy mix and also an upsurge in the amount utilized in each
kind of source (Martchamadol and Kumar, 2013), (Augutis et al., 2015), (Roques et
al., 2008), (Marrero, 2010), (Cucchiella et al., 2012), (Koch and Bassen, 2013).

Electrictiy Production by Source, World
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Figure 2.1: Electricity Production by Source, World
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Although slightly declined, fossil fuels still have the largest share among the others at
present accounting for around 60% of the total electricity production worldwide.
Figure 2.1 summarizes the evolution of the utilization quantity and type of the main
electricity sources over the world during the last centuries. Each country has its own

electricity source mix but fossil fuel constitute the backbone of the source portfolios
for almost all countries around the world. See Figure 2.2 for examples.
Energy Mix of States, 2019
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Figure 2.2: Examples of the energy mixes

Moreover, fossil fuels have been one of the major components contributing to the
wealth of many countries and the GDPs of some countries as depicted in Figure 2.3
(Lange et al., 2018). However, due to GHG emission, fossil fuel is also a major threat
to the environment and a triggering factor for anthropogenic climate change and global
warming (Ho6k and Tang, 2013), (Johnsson et al., 2019). Greenhouse gas emissions
associated with fossil fuel production and consumption account for around 70 percent
of the total GHG emission from human activities (IEA, 2010 database). A significant
reduction in the share of fossil fuels is necessary in order to mitigate the environmental
effects of fossil fuel usage which will lead to significant increases in the share of
renewable energy (Panwar et al., 2011), (European Commission. Directorate-General
for Energy, 2012). In addition to the environmental consideration, the sustainability of
fossil fuels in terms of availability is another matter. Fossil fuels as non-renewable
sources, as the name suggests, will eventually deplete in the future (Shafiee and Topal,

2009). Although, fossil fuels are naturally generated by organic substances such as
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decayed plants and animals, it took millions of years to be formed. However, people
have been using such resources extensively for the last centuries. The reformation
speed is extremely lower when compared to depletion speed such that fossil fuels are

considered non-renewable.

0/no data <1 Bl 15 20 20

Figure 2.3: Fossil Fuel Rent as a percentage of GDP

2.1.2 Generation

Electricity generation has many dimensions such as cost, required technology,
capacity, availability, flexibility, etc. These dimensions are primarily related to the
fuel used in the generation process and the type of the generating facility. Each country
optimizes the utilization of generation plants according to available sources, associated
costs, the flexibility of the generation, and the energy they need. Cost comprises the
capital cost, the operating cost, and decommissioning (if any) cost. Capital cost is the
cost spent on the construction of a power plant until it becomes operational. Operating
costs include the maintenance & repair expenditures, personnel wages, fuel costs, etc.
required for the continuous operation of the power plant. Cost-based comparison is a
general method when considering the economic feasibility of power plant investments.
Although not enough on their own, there are useful metrics generally used in assessing
the investment decision. Levelized cost of electricity (LCOE) provides a useful metric
to assess the overall economic competitiveness between the considered power
generation investment options and Levelized avoided cost of electricity (LACE) is a

metric for the value of these investment options to the system (EIA, 2022). LCOE
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stands for the present value of the average cost of electricity production discounted
over the lifecycle of the power plant. LCOE is calculated by dividing the sum of the
present value of all costs associated with the power plant during the life cycle by the
electrical energy generated:

ire li = (1+r
LCOE — sum of all costs over entire Ile_ . tTl (1+r) 2.1)
sum of all energy generated over entire life Z G,
T (1+r)

where, |, is the capital expenditure in yeart, O, is the operational expenses including
maintenance and fuel costs, O, is generated electricity in year t, T is the lifetime of

the generation station and r is the discount factor. However, the calculation of LACE
is more complicated and includes the cost that would occur in case of the unavailability
of the option. LCOE, LACE, and their variants are mainly related to long-run
competitiveness. When short-run competition is the case, another cost metric is used
widely which is the marginal cost of production. The marginal cost of production is
mostly related to the decision of production for daily market operations. However,

there is an implicit relationship between the marginal cost of production and LCOE.

Generation technologies are specific to the type of fuel used and they are described

below.

2121 Fossil-Fuel Power Plants

Power plants running on fossil fuel “burn” the fossil fuel in order to produce thermal
energy and then thermal energy is converted into mechanical energy in a prime mover.
The prime movers drive the generators to generate electricity. Coal-fired power plants
use steam turbines as prime movers. The coal is burnt in a boiler to generate heat to
obtain steam. Steam, then, expands in a steam turbine and the steam turbine drives the
electricity generator. These types of plants are usually established close to the location
of the coal mines in order to avoid the transport cost. Coal power plants are generally
less expensive to build and could operate consistently over a long period of time. Gas
power plants use a similar principle to coal-fired power plants but instead of a steam

turbine, the gas is directly fired in a gas combustion turbine. Some facilities also use
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the hot exhaust gas from the gas turbine and direct it to an additional steam turbine to
increase efficiency which is called a combined cycle gas turbine (CCGT). A gas-fired
power station is very flexible in terms of installed capacity and operation. The capital
cost for building a gas power plant is relatively inexpensive. However natural gas has
the highest marginal production cost due to the high fuel cost.

21.2.2 Nuclear Power Plant

Nuclear power plants use a steam turbine as a prime mover which is similar to a coal-
fired power plant. However, the thermal energy required to generate steam comes from
the nuclear reaction, particularly from the fission reaction in which the nucleus of an
atom splits into smaller nuclei. Nuclear power plants could provide electricity reliably
over an extensively long period. The typical service time of a nuclear plant is more
than 60 years. However, construction of such power plants requires extremely high,
multi-billion USD, capital costs, and long construction time. The marginal cost of
production is low compared to the other alternatives. On the other hand return from
the investments is very slow and generally takes decades to cover the initial investment
cost. The problem arising from financing such an investment is very complicated and
brings unclear risks. Estimating the actual cost of such investment is very hard and
uncertainties are very high due to the unpredictable future over the very long period of
the project cycle. Especially for the liberalized generation market, investors must bear
the risk from these uncertainties associated with construction, operation, the value of
electricity in the future, etc. Transfer of these risks to third parties such as insurance
usage or forward contract is very limited since typical forward contract options and
has a limited duration. Thus, such investment is not favorable for private investors in
liberalized electricity markets. The requirement for significant government subsidies
and support is another issue. The huge investment paid by the taxpayers will be utilized
by the future generation which is difficult to justify for the government. Further
difficulties come from the security of nuclear power plants. Besides the loss of the
capital invested in nuclear power plants, accidents or damages that occurred in the
power plant may cause an irreversible adverse effect on the environment and the
people. The fuel used in a nuclear power plant is highly radioactive which could

contaminate the air, the water, and the soil. In addition to the possibility of operational
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accidents due to technical problems which may be mitigated with precautions, natural
disasters such as earthquakes and terrorist attacks are still potential. Compensation and
recovery costs for big accidents might be devastating. For example, it has been
estimated that the cost associated with compensation, decommissioning, and waste
storage would be 187 billion USD for the Fukushima nuclear power plant disaster.
Physiological and social consequences on the people especially on evacuees as well as
loss of opportunity cost were not included in these estimates. After Fukushima,
operations of other nuclear power plants (53 out of 54 nuclear power plants) were also
ceased for several years due to social anxiety and political reasons.

2.1.2.3 Renewable Generation

Renewable electricity generation techniques are very heterogeneous due to the
significant differences between the sources. Being one of the oldest sources of energy,
hydropower has been utilized to generate electricity since the 1870s. Hydropower
plants use the kinetic energy of running water to generate electricity. The water runs
through a turbine and spins it, then, a generator coupled with the turbine produces the
electricity. Large-scale plants use water flowing from the vast reservoir of water
behind a hydroelectric dam whereas small-scale plants could be constructed on the
running river (Run on River-RoR). Available sites for large-scale hydropower plants
are subject to geographic limitations and most of the sites have already been in use.
However, there is still potential for RoR hydroelectric power stations. Electricity
generation from solar power employs two types of technologies: Photovoltaic (PV)
which relies on photons from the sunlight and Concentrated Solar Power (CSP) which
relies on the heat from the sunlight. Photovoltaic devices convert solar energy directly
into electricity. The photons from sunlight fall on PV cells. The photons stimulate
electrons in semiconductors inside the cell and generate an electrical charge. CSP
technologies collect the sunlight and concentrate it on a receiver by mirrors and
reflectors. Then, concentrated sunlight is converted into thermal energy in the receiver.
Collected thermal energy is used to generate steam, as in the nuclear or coal-fired
power station, to drive a steam turbine. In this technology, the concentration of sunlight
at a specific point is required to obtain enough heat to generate steam. Wind power

generation runs on the kinetic energy of the wind. Blowing wind rotates the blades of
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wind turbines and rotating energy is converted into electricity by the generator. Output
from the wind energy is proportional to the cube of the wind speed. Both solar power
and wind power are completely dependent on environmental conditions. Integration of
these sources at a large scale into the electricity network is challenging since it reduces
the flexibility of the supply side

2.1.3 Dispatchable vs Intermittent Generation

The electricity generation power plants that can be controllable in terms of turning on,
turning off, and adjusting their power output are classified as dispatchable generation.
These kinds of power plants are “dispatched” on request according to the needs. The
controllable nature of dispatchable power plants makes it possible for the system
operators to adjust the supply of electricity according to stochastic and fluctuating
demand patterns. Continuous adjustment of electricity generation according to the
demand (load following) is necessary since input and output to the electricity network
must be balanced continuously. Also, economic generation dispatch could be achieved
by dispatching the generator according to the increasing order of their marginal costs.
However, different kinds of power plants have different flexibilities and therefore has
different dispatch characteristic. Dispatch times range from seconds to hours.
Examples of fast dispatchable power plants are hydropower plants which could be
dispatched as fast as 16 seconds and natural gas power plants which could be
dispatched within minutes. Slow dispatchable power plants are coal-fired and nuclear
power plants. It requires hours for such power plants to become fully operational from
the cold state. Although theoretically dispatchable, these kinds of power plants are
operated continuously and regarded as baseload power plants. On the other hand,
intermittent generation is an uncontrollable generation and intermittent generators are
neither available on-demand nor available continuously. Photovoltaic Solar Power and
Wind Power are the two main intermittent energy sources. The timing and quantity of
generation from Photovoltaic Solar Power and Wind Power are completely dependent
on the weather conditions. Therefore, the control over such power generation is very
limited. Integration of intermittent power sources into the electricity network is
challenging due to their uncontrollable nature. Increasing shares of intermittent

sources decrease the flexibility of the supply. For a small share of renewable energy,
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inflexible generation can be integrated by adjusting other sources in the energy mix.
However, when the volume of intermittent generation becomes considerable, it would

be no longer possible to make such an adjustment.

214 Transmission and Distribution

After generation, the electricity is delivered to the end-users through a complex
network which is called the electricity grid. This complex system is basically
composed of two functional parts: the transmission system and the distribution system.
The transmission system is responsible for the bulk transmission of the electricity from
the location of generation such as power plants to the point close to the neighborhood
where it will be used. The lines which convey the electricity are interconnected and
configured as a network. The network structure allows the electricity to go through
multiple paths from generation to distribution. Modern transmission networks are not
only interconnected nationally but also internationally. The transmission loss is
proportional to the square of the current Loss= IRt where | is in ohm, R is the
resistance coefficient and t is the time. In order to reduce the losses and improve the
transmission efficiency, electricity is stepped up to a high voltage (low current) after
generation through transformers before inflowing into the transmission lines.
Afterward, it is stepped down to low voltage levels through transformers before
entering into the distribution system (this is why two separate systems as transmission
system and distribution system are needed) Historically, the vast majority of
transmission networks have been constructed by governments before the liberalization
of electricity markets. In some countries such as Turkey, the transmission system is
still a state-owned entity. However, several countries like Germany, the USA, etc. have
privatized the transmission system operations such as maintenance, upgrade, and

expansion of transmission networks.

A distribution system is a network that connects the transmission endpoint with the
end-users such as buildings, facilities, etc. This network is responsible for the
distribution of electricity within the neighborhood. The Distribution network is a local
network and is separated from the transmission system for several reasons. The
distribution system is operated at low voltage levels since it directly provides

electricity to the end-users contrary to the transmission system which is operated at
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high voltage levels due to efficiency concerns as explained above. Another main
reason is that failures in the distribution system stay local and do not affect the entire
network. In almost all liberalized electricity markets, the distribution system is
operated by private companies. New end-user connection to the system, meter
readings, and maintenance of the distribution network is the major duties performed

by distribution companies.

2.15 Central vs Distributed Generation

Centralized generation is the traditional generation system in which electricity is
generated at a large scale and away from the point of use. Then it is transferred and
distributed to many end-users through networks. There are technical and strategical
reasons why most of the architectures of modern electricity systems have evolved as
centralized structures including economies of scale (investing in large power
generators such as bigger turbine decreases the marginal production cost), efficiency
(higher efficiency through high pressure and temperature which require large power
plant), integration (electricity pool and grid structure, one compensate the other),
environmental consideration (away from city centers). All these considerations and
strategic policy drivers resulted in large-scale centralized power generation facilities

which rely on integrated transmission and distribution systems.

Distributed generation, on the other hand, refers to the type of electricity generation at
a point close to the user location and on a relatively small scale. Distributed generation
includes a variety of technologies such as wind power, solar power, combined heat,
and power, etc. A distributed generator may be connected to the distribution system
and serve multiple end-users or operate as a part of a microgrid such as a college
campus or a village and also may serve directly a single facility such as a hospital or
industrial facility. Historically, distributed generation has been used as a backup
system in case of any failure in the main system. However, liberalization of electricity
markets and transition of the electricity systems towards more environment-friendly
structures have given rise to the spreading of the usage of distributed generation
(Pepermans et al., 2005). Liberalization of the electricity market and technological
improvement makes it possible now to invest in distributed generation at various

scales. Traditional distribution systems have been designed to distribute electricity
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coming from the transmission-end flowing to the end-users which is a one-way flow.
However, distributed generation requires two-way energy transfer at the distribution
level. Moreover, the management of the distribution network and also the management
of the demand become complicated due to the increasing usage of distributed

generators.

2.1.6 Consumption

Modern economies rely on electricity as a main source of energy and there is a strong
correlation between the economic output of countries and electricity usage. Electricity
is the most versatile form of energy. It can be converted into many other forms like
heat, light, motion, etc. with very high efficiency. Also, electricity is the most
convenient form of energy since it does not possess any mass, can be easily controlled,
and leaves no waste after usage. The daily life of people and most activities in modern
economies require electricity for extensively diverse purposes. Electricity usage by
sectors of the Turkish economy is shown in Figure 2.4 About half of the electrical
energy is used by the industry. One-fourth of the energy is used by residential
consumers. Although the load share of the transportation sector is pretty low compared
to the other sectors, a dramatic increase will be likely in the near future in parallel with
the increase in the share of PHEV. Across all sectors as well as within each sector,
electricity usage patterns exhibit large differences in terms of their magnitude, timing,
and flexibilities depending on the purpose of the usage. Therefore, the demand for
electricity is very heterogeneous. For example, lighting needs are coupled with
daylight availability in general and cannot be scheduled whereas the majority of the
home appliances can be scheduled according to the needs. Likewise, some industrial
processes require large power and draw a vast amount of electricity from the network
when the process starts while charging a cell phone requires a little amount of power.
Therefore, the aspects such as flexibility, volume, etc. are important parameters when

modeling electricity load.
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Figure 2.4: Electricity Consumption by sectors in the Turkish Economy

Tradition way of consuming electricity is that end-users utilize electricity whenever
they want and necessary input-output adjustment of the network is done through tuning
the supply. Nevertheless, large-scale integration of intermittent renewable energy
sources reduces supply flexibility. The transition towards a low-carbon economy

would change not only how electricity is generated but also the way it is consumed.

2.1.7 Electrification

There has been growing interest in electrification of other energy uses such as
transportation, heating, industrial processes, etc. there are two main reasons behind
this interest. First, electricity is the most convenient form of energy and technological
advancement makes it possible to use electricity as an energy source in many
applications. The other is that several analyses showed that electrification of fossil—
fuel based applications such as transportation and residential heating is one of the key
elements in reducing overall greenhouse gas emissions (Nadel, 2019). Therefore,

electricity usage is likely to increase significantly in the near future.
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2.2 Electricity Markets

221 Wholesale Markets

Liberalization of the electricity market has started on the generation side of the
electricity value chain. Throughout the years, many countries have spent continuous
effort in order to establish a competitive environment for the generation and supply of
electricity. Many state-owned generation facilities have been privatized and new
private companies have emerged. At present, in the majority of countries, electricity is
generated in a competitive environment and traded in different forms of wholesale
markets. The transition from a vertically integrated and monopolistic structure into a
competitive environment was not an easy process and could not be done promptly due
to the need for continuous electricity supply to the end-users and to ensure the
necessary investment for the growing demand. The practices such as constituting the
legal background first and letting the market respond accordingly are not reasonable
since market interactions in a transition stage might result in very costly system failure
and market breakdowns. Contrary to any other commodity markets, electricity markets
must account for the special characteristic of electricity. These are mainly due to the
two basic aspects of electricity: non-storability and the need for continuous input-
output balancing in transition networks. California power crises and consequent
shutdown of California power markets are good examples of this. Therefore each
transition process from monopolistic generation into a competitive structure has been
planned in a step-by-step manner according to the properties of each country.
Consequently, each country established its specific wholesale market considering its
existing organization, resources, and legal situation. In addition, different countries

may be at different stages of the liberalization process. Nevertheless, the competition

! The crises was caused by market manipulation by the suppliers due to partial deregulation of the
markets. Power generators deliberately pulled back the generation amount to create an artificial shortage
resulting in demand-supply gap although available generation capacity was 45 GW while demand was
28 GW at that time. Therefore, due to the scarcity, electricity was traded at a rate up to 20 times higher
than regular price in spot markets. However distribution companies had to sell electricity at a constant
rate to the end users due to the price cap in the retail market. Thus, being unable to reflect high prices
they paid in the spot market to their customers due to the price cap and retail companies faced big
financial loses and some of them eventually went bankrupt. During this crises period of 2000-2001,
there were several blackouts which caused economic and social loses.
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for the wholesale electricity trade has fallen into two main categories: (i) One-sided
Wholesale Markets in which power generators are independent and the rest of the
system is either vertically integrated or unbundled but not competitive, and (ii)
Competitive Wholesale Markets (Power Exchanges) which is a kind of decentralized
market process. Due to the country-specific operational restrictions, historical market
structure, and regulatory environment, there have been a variant of these market

models

2.2.1.1  One-Sided Wholesale Markets (Centralized Trade)

At the beginning of the liberalization endeavors, switching from a monopolistic
structure to a fully competitive and decentralized market model was seen as a huge
step and a big deviation from the previously-existing structure. It was decided to make
the trade-in centralized and controlled settings. Therefore, only the generation side was
liberalized as a first step while the rest of the system remaining as vertically integrated.
Thus, a one-sided competitive market was constructed. Generally, an agency that is
referred to as System Operator is responsible for the operation of the market. Instead
of a continuous interaction of suppliers and buyers to reach an equilibrium, System
Operator systematically determines the equilibrium in a one-sided market. Generally,
all generating firms must participate in one-sided markets. All the power-generating
firms submit their price-quantity pairs to the System Operator. Next, System Operator
aggregates these offers, finds the total quantities corresponding to each price, and
sequences them in ascending order in price. Eventually, these price-aggregated supply
pairs constitute the supply curve of the market. On the demand side, actual customers
do not directly involve in the trade, and System Operator does not collect demand-
price offers and construct the demand curve. Instead, System Operator estimates the
total demand for the end users which is generally price-insensitive in the short run.
This procedure is called a one-sided pool. (Total demand of the end-users is equal to
the total demand of the buyer in the wholesale market since all generation firms and
distribution companies participate in the centralized trade. The System Marginal Price
that clears the market is determined by System Operator considering only the supply
curve and the total demand. Then, the System Operator checks the transmission system

feasibility and revises the dispatch decision if there would be any transmission
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limitations. Finally, System Operators determine the equilibrium prices and which
generators would be dispatched for each time.

Another type of optimization is the consideration of transmission feasibility together
with the supply and the demand. In this case, each location is assigned a transmission
cost related to the transmission limitation to that location. Therefore, resulting prices
would be location specific which is referred to as Locational Marginal Price. Some
countries such as Italy use locational pricing. Thus, both equilibrium and which
generator would be dispatched are determined by the System Operator centrally.
Although trade is centrally managed in one-sided markets, bilateral trade and long-
term agreements are possible. Bilateral trade could be a physical contract as well as a
financial contract. Allowing additional bilateral trade is a deviation from the
centralization of the trade. Examples of markets using a one-sided structure are some
states of the USA, Brazil, etc. UK market previously relied on a one-sided market

structure but later switched to a Power exchange model.

Such markets are criticized by many economists for being an “approximation of a

market” rather than a true market due to the limited supplier-customer interaction
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Figure 2.5: Operation of Centralized Power Markets



2.2.1.2  Competitive Wholesale Markets:

Competitive Wholesale Markets in which the trade occurs between sellers and various
buyers such as distribution companies or large-scale end-users is another type of
wholesale market model which is widely used by the majority of OECD countries and
many other countries. This market model provides both decentralized and centralized
trade opportunities. Bilateral trade, as the name suggests, occurs directly between the
sellers and the buyers without the involvement of any other parties. In general, sellers
are the generators and the buyers are the distribution companies and the large-scale
end-users. However, there is no such limitation for the roles in this market model. A
generation company could also be a buyer if there exists an opportunity to buy power
cheaper than its marginal production cost and provide this power to its customer to
fulfill its contractual obligation. Else, in case of a failure in production facilities, a
generation company might purchase power from another source to fulfill its
contractual obligation. Different types of contracts could be exercised between the
supplier and the buyer. Especially, long-term contracts which cover the period of
months to years are used for the base load of the distribution companies and large
customers. The agreed price-quantity pair and the duration, conditions, and flexibilities

of such long-term contracts are settled between two parties and kept private.

Although a certain amount of energy is traded between two contracting parties through
bilateral trade, organized and controlled trade is still needed as the event time
approaches since bilateral trade does not guarantee to satisfy the supply-demand
balance and network constraints. Power Exchanges also include centralized day-ahead
and intraday trade opportunities to ensure supply-demand equilibrium. Participation in
these trades is voluntary and participants are diverse in terms of their roles and
purposes. The system Operator collects quantity-price offers for the supply and
constructs the supply curve. Similarly, the demand curve is constructed by collecting
and aggregating quantity-price requests. Unlike the pool model, supply offers and
demand requests may come from both generator companies and distribution
companies as well as from third parties. Consider a generation company that already
sold its entire production capacity through a bilateral contract, this generation company
may participate in power exchange as a buyer requesting a certain amount at a price

lower than its marginal cost. Table 2.1 provides an example of a typical bid in the
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Turkish Power Exchange market (EXIST). Positive quantities are sell offers while
negative quantities represent the demand offers. In this example, there are six price
levels, four of which are for sell offers and the remaining two are for buy requests.
When the price level drops below 270 TL, the generator company is no longer willing
to sell any power instead the company would like to purchase power. It can be inferred
that the marginal cost of generation for the company in the example is between 250TL
and 270TL.

Table 2.1: Example bid in the wholesale competition

Price (TL) 0 250 270 290 310 400
Quantity

-700 -300 50 250 350 390
(MWh)

Several other examples could also be generated regarding the participation in the
wholesale market in power exchanges. The operational flowchart of a power exchange

market is displayed in Figure 2.6

Exchange

Bilateral Trade
Power

Figure 2.6: Decentralized trade with voluntary Power Exchange
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The equilibrium prices in power exchange are publically visible to all participants as
well as to non-participants. Although the negotiated prices in the bilateral contract are
private information, the equilibrium prices in power exchanges are reference values
for those negotiations in bilateral trade. In an ideal economy, the prices in both power
exchange and prices in the bilateral contracts should be such that there would be no
arbitrage opportunity. This market model facilitates supplier and buyer interaction
together with the possibility of several types of trade opportunities that would not be
possible otherwise. Large-scale companies and brokers use this trade opportunity as a
hedging instrument. In this respect, these kinds of market models are more suitable
than the pool model for the classical economic school of thought. Several countries all
over the world employ this kind of market model. Examples are Turkey, Germany,
France, the UK, Japan, some states of the USA, etc.

2.2.1.3  System Marginal Price

It is a general practice in power exchanges that generators whose bids are below the
market-clearing price are paid with the market-clearing price although their bids i.e.
their willingness to produce, might be lower. Similarly, the buyers whose offers are
above the market-clearing price pay the market-clearing price. This uniform price is
determined by the System Operator and is referred to as System Marginal Price.
System Marginal Price is basically the price offer of the last amount of generation in
the Merit Order Curve which clears the market. The main idea behind this uniform
price system is to encourage generators to submit their marginal costs. In other auction
mechanisms such as pay-as-bid, companies would try to estimate market-clearing
prices rather than revealing their marginal costs. An example of the determination of
system marginal price as an intersection of supply-demand curves constructed on

supply-demand bids is shown in Figure 2.7.

2214 Timeline for the Trade

The trade between parties could occur at different time frames. Bilateral trades
typically cover long periods such as months and years. Thus, there is no time limitation

neither when agreements are done or in the validity period for bilateral contracts.
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Figure 2.7: Equilibrium price for 2 a.m. and 6 a.m. on 02.12.2020.

Due to the stochastic nature of the demand and also the intermittency of some
generators, buyers and sellers cannot estimate their required amount very well for
future periods. There are also financial and technical reasons why sellers and buyers
do not satisfy their entire needs through bilateral trade. Thus, bilateral trade only
accounts for a certain portion of the trade between parties. The remaining portion is
traded in the organized market such as power exchanges. When the event time
approaches, the predictions about generation and the demand improve, thus organized
trade should take place very close to the event time to improve network balancing
accuracy. However, a spot market with immediate delivery is not possible due to
technical limitations. Power exchanges typically operate according to the day-ahead
principle (and real-time for some specific examples). In a day-ahead principal, every
day up to a predetermined due time, sell and buy bids are collected for every 24 hours
of the following day. Then System Marginal Price is constructed for every hour of the
following day and the resulting price and matching quantities are announced to the
market participants. Bilateral trade plus power exchange almost satisfies all the trade
requirements of the parties. However, there might be still imbalances between the
demand and supply due to stochastic parameters when the realization time approaches.
The remaining part is traded in the intraday market which takes place up to minutes of

the event time. In some markets, in contrast to the day-ahead operations, organized
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trade continues until 5-10 minutes of the event time which is referred to as real-time

trade. Examples of organized trading markets are listed in the table

Table 2.2: Example of trading times of organized electricity markets

Country Market Trading timeframe
Turkey EXIST day-ahead
Germany EPEX-D day-ahead
France EPEX-F day-ahead
Italy GME day-ahead
Canada OIESO real-time
South Korea KPX day-ahead
Singapore EMC real-time
Russia ATS day-ahead

2.2.1.5 Investment and Missing Money

The rise of competition in wholesale markets causes a decrease in wholesale electricity
prices. The fall in prices has been beneficial for some energy-intense industries by
enhancing their competitiveness by reducing their costs and providing several trading
and hedging opportunities. However, due to the decrease in prices, the wholesale
electricity market has faced a serious problem: “missing money”. In general, missing
money is referred to the situation in which it is not possible to obtain enough profit
that is needed to provide the optimal generation portfolio either by maintaining the
existing capacity and/or investing in building new capacity. Building a new power
station requires a high capital cost that is supposed to be recovered by the future profits
from the electricity sales. Reduced wholesale prices make this recovery period so long
that investing in building such capacity is no longer feasible. The duration of the
recovery period, that is the time until reaching the break-even investment point, is
mainly related to long-run average cost and the rate of capacity utilization. However,
competition in the wholesale market is mainly related to the marginal cost of

production. A very old coal-fired power plant that already covered its investment cost
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could survive by charging only its marginal production cost which is mainly the fuel
cost. However, a newly-built power plant could not survive with this bidding strategy.
In such a situation, there is not any financial incentive for the investors to build a new
capacity. (Moreover, market-clearing offers always only have their marginal cost).
Although eliminating the market power of the companies through constituting a
competitive environment is desirable by policymakers, it brings about a new
challenging situation to deal with.

The main reason for “missing money” is the heavy regulations in the electricity
markets, especially the price caps. Imposing a price cap in the wholesale market is a
rare application but a retail market price cap is a general regulation imposed by the
majority of countries. In general, even if there is no price cap in the wholesale
electricity market, the price cap in the retail market reduces the market power of the
companies in the wholesale market. The price cap in the retail market implicitly
imposes a limitation on wholesale prices since the only way for retail companies to

survive is to keep the average electricity purchase price below the retail price cap.

The missing money problem has become more tricky due to the price impact of
renewable energy in the wholesale market. Renewable energy takes part in the
wholesale market with extremely small marginal costs and owners of those power
plants greatly benefit from subsidization. The impact of renewable energy is twofold.
First renewable energy reduces the equilibrium price in the wholesale market. Second,
renewable energy decreases the frequency of the utilization of some power stations.
When the production from renewables is high some of the conventional generating
companies must pull back their production level either by completely switching off or
reducing the output of some generators, which eventually increases the return on
investment time and decreases the overall profitability. Consequently, the frequency
of the utilization of installed capacity is reduced. This also means that the market-
clearing generator is pulled back and the generator with the next lower offer (lower
marginal cost) now becomes the market-clearing generator ultimately reducing the
equilibrium price. In general, generators with newer technology and relatively less
emissions are affected mainly since such kinds of generators have marginal costs

around the marginal cost. However, high carbon generators such as coal-fired
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generators would still work constantly, which contradicts the global goal of reduction

in emissions.

2.2.2 Capacity Markets

Equilibrium prices in wholesale competition constitute price signals for long-term
investment. When these prices are lower and more volatile, investment in new fossil
fuel generation capacity became unattractive. However, those investments are required
in the system when the supply from renewables is not sufficient. In some countries, in
order to ensure the security and reliability of supply and make sure that sufficient
investment for the future electricity supply is done, producers are paid under capacity
payment to commit to production in the future. These kinds of markets are referred to
as Capacity Markets. Capacity markets are criticized as being inconsistent with
decarbonization policies since fossil fuel generation is subsidized as a result of
renewable energy integration. In addition, the requirement for such subsidization is

amplified when the share of renewable energy is increased.

2.2.3 Retail Markets

Small-scale end-users are not eligible to buy electricity from the wholesale market and
do not have any interaction with generation companies. Instead, retailer companies
that buy electricity from the supplier either through bilateral contracts or through
auctions are responsible for selling electricity to the end-users. The ultimate goal of
liberalization in the electricity sector is to create a completely competitive retail
market. To this end, financial operations are separated from the physical distribution
of electricity. Many OECD countries have initiated liberalization in the retail markets.
In Turkey, 21 authorized retail companies are responsible for 21 separate regions. In
fact, these companies are sister companies of 21 authorized distribution companies
that were doing both distribution and retail marketing together previously. These
companies are required to provide service to all end-users. In addition, there are also
independent retail companies that provide services to the end-user that satisfy certain

requirements.
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Generally, the retail price is regulated by policymakers and a price cap is applied.
However, wholesale prices are constantly fluctuating, which is putting a strain on
retailers. Since they have to sell the electricity at a fixed price they buy from the
wholesale market with a variable price. Therefore, their objective is to keep the
quantity-weighted average cost below the retail price.
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CHAPTER 3

MERIT ORDER EFFECT UNDER DIFFERENT RENEWABLE ENERGY
SUBSIDIZATION PROGRAMS AND DIFFERENT OWNERSHIP
STRUCTURES

3.1 Introduction

Beyond the technological feasibility, the integration of large-scale intermittent
renewable energy presents economic efficiency problems to deal with (Henriot and
Glachant, 2013). One of the toughest challenges associated with the increased use of
renewable energy is posing on the wholesale market side of the electricity value chain.
The equilibrium prices in the spot market are affected by large-scale renewable energy
deployment in two ways. The first factor is the intermittency of the generation.
Generation firms do not have any direct control over the amount and the timing of the
generation for a specific renewable energy generation infrastructure. Therefore,
competing firms in the wholesale market should consider this rigid production from
renewables as a state variable in the optimization of its price-quantity offer while
production amounts from conventional generators are still a decision variable.
Another, definitely more prevailing, effect of increasing usage of Renewable energy
on the wholesale market is the reduction in equilibrium prices due to the negligibly
small marginal cost of production from renewables. The aggregate supply curve is
generally constructed by collecting price-quantity offers and sequencing them in
increasing order yielding the so-called “Merit Order” of the generators (Deane et al.,
2015). Electricity from Renewable energy participates in short-run competition with
almost zero marginal production cost and shifts the merit order curve rightward

consequently resulting in lower equilibrium price (Figueiredo and da Silva, 2019).
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This effect is referred to as the Merit Order Effect of renewable electricity generation.

Suppy Offers with and withot Renewables

gas-2 gas-2

gas-1 gas-1

exp coal | exp coal
3 demand

coal coal

supply without renewable

Price
.

supply with renewable

. hydro |  hydro
rwb

0 5 10 15 20 25 30 35 40 45
Quantity

Figure 3.1: Merit Order Effect of Renewables

A typical merit order curve with and without renewable energy production is illustrated
in Figure 3.1. Although production from renewables has almost zero marginal cost, it
requires larger capital cost resulting in a high Long-run average cost. “Levelized Cost
of Electricity” for renewables is generally higher than the conventional generators,
which makes renewable generation unattractive for investors. Aiming to increase the
share of renewable energy, governments financially support renewable energy
investment with certain support programs. The subsidies make it possible for the
investor to cover the capital cost within a reduced timespan since the overall average
payment per kWh through subsidization is generally higher than the average
equilibrium price in the wholesale market. Another benefit of such a support system
for the investor is that it eliminates the risks associated with price volatility in the
wholesale market. A number of different support mechanisms with different
implications are employed by various governments (Ragwitz and Steinhilber, 2014).
Among all, one of the most widely used support mechanisms is the Feed-in Tariff
program. In this support mechanism, the generator is paid a constant amount of money
per kW of production regardless of the equilibrium price in the spot market. Moreover,
priority dispatch of the renewables together with the feed-in tariff is also a common
support practice (Antweiler and Muesgens, 2021). Therefore, in the planning stage,
the amount of generation from renewables is directly deducted from the total demand
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and consequently does not enter into the wholesale competition. The resulting effect
is displayed in Figure 3.2.
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Figure 3.2: Effect of feed-in tariff

The main feature of the feed-in tariff and its variants is that generation from renewables
does not enter into the wholesale competition. Such kind of support mechanisms could
be referred to as non-market support mechanisms since renewable energy is not traded
in the market like the energy from conventional generation. Alternative to such kinds
of non-market support mechanisms, there are also support mechanisms in which
generation from renewable is traded the same way as energy from conventional
generation is traded. For example, an investment reimbursement program in which a
portion of the capital cost is paid to the investors. In such support mechanisms,
renewable energy is not differentiated during the wholesale competition. Nevertheless,
in both market-based and non-market support mechanisms, the equilibrium price is
reduced due to the Merit Order Effect. In a perfectly competitive market where all
companies bid their marginal cost, the effect of both support mechanisms visualized
in Figure 3.1 and Figure 3.2 would be the same. However, in electricity wholesale
markets in which the competition is characterized as imperfect, it is likely for a
competitive company to follow a different strategy under different support schemes.
Moreover, companies having more than one generation facility have the opportunity
to further influence the equilibrium when they optimize the output of their entire
portfolio rather than optimizing each generation facility independently. The key

difference between these two groups of subsidization schemes which is relevant to
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short-run wholesale competition is the way renewable energy participates in the trade.
Thus, in order to investigate the implication of market-based and non-market support
mechanisms, we consider the case where there is a feed-in tariff for renewables and
the case where there is no discriminative price for renewables and a common price is

determined through competition.

Another significant factor affecting the equilibrium price in the wholesale market is
the ownership structure (industrial organization) of renewable energy generators.
Under imperfect competition, a firm having both conventional generation and
renewable generation could make use of the diversified portfolio in competition by
optimizing its costly generation according to the available renewable generation.
Hence, those companies may have the opportunity to mitigate Merit Order Effect by
exercising their market power. On the other hand, companies generating only
renewables should act as fringe companies (price takers) since they do not have any
control over the output quantity, and so, are not able to strategically withhold
generation to alter prices. Thus, ownership of this uncontrollable generation could also
influence the strategic behavior of the firms.

This section analytically investigates the Merit order Effect and impact of
subsidization mechanisms together with the ownership structure of the renewable
energy sources on the equilibrium under both linear cost structure and quadratic one
to account for a wide range of cases. We consider three types of ownership structure:
companies having only conventional generators, companies having both conventional
and renewable generators, and companies having only renewable generators.
Moreover, we extend the analysis to include pre-committed bilateral contracts and how

the volume of bilateral contracts moves with those parameters.

Our theoretical analyses show that the Merit Order Effect exists and the impact of the
Merit Order Effect is always more powerful resulting in lower equilibrium prices in
non-market support schemes such as feed-in tariffs than the market-based support
systems. In addition, the share of renewables owned by strategic firms plays an
important role in the mitigation of the Merit Order Effect. However, in the case of
feed-in tariff sort of support programs, the impact of the ownership structure is
eliminated. Heterogeneity within competitive firms has no impact on the equilibrium,
the only important factor is the total potion of renewable sources owned by strategic
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firms. The bilateral contract volume is negatively correlated with the amount of

renewable energy and also with diversification.

3.2 Literature Review

There is a substantial and ever-growing body of literature related to the Merit Order
Effect of renewables. Analysis of (Clo et al., 2015) provided empirical findings on the
existence of the Merit order Effect in Italian Electricity Markets. They investigate the
data for the period of 2005-2013 and find that a 1 GWh rise in an hourly average of
daily RES generation decreased the wholesale electricity prices by 2.3 Eur or 4.2 Eur
per MWh on average depending on the type of RES. In addition, volatility is increased
due to RES penetration. Based on a time series regression and using German wholesale
market data, (Cludius et al., 2014) show that spot prices decreased by 6 Eur per MWh
in 2010, and with the growing share of RES this reduction reached 10 Eur per MWh
in 2012. (Ciarreta et al., 2014) find a similar implication for Spanish electricity markets
for the period 2008-2012 where generation from renewables increased by 57%.
(Figueiredo and da Silva, 2019) evaluate the Merit-Order Effect in the Iberian
wholesale electricity market for the period of 2008 to 2017. In addition to the positive
relation between Merit Order Effect and Renewable production, they find that
volatility due to MOE reflects the intermittent behavior of uncontrollable RES
generation. (Macedo et al., 2021) conducted a study on the Swedish electricity market
using the data of the period 2016-2020 to explore the MOE on both mean price and
volatility. An important feature of their work is that they use 24 separate models to
represent each hour of a day aiming to investigate whether the hour of a day is a factor
in the MOE of renewables. Their results indicate a significant MOE of renewable
consistent with the literature but the magnitude of the MOE is not affected by the hour
of the day. In addition to country-specific works, there are examples in the recent
literature considering the global and cross-country effects of renewable integration.
(Halttunen et al., 2020) compared 37 countries around the world and report that MOE
is observed in almost all countries. Overall worldwide average MOE is estimated as
0.68+-0.54 Eur per MWh corresponding to each percentage increase in intermittent
RES. (Abrell and Kosch, 2022) showed that the cross-country Merit order Effect exists
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in neighboring countries due to RES production in Germany and this effect reduces

the profit of generators in those neighboring countries.

While the results of empirical studies are in consensus, theoretical analysis is required
in order to generalize the results of these empirical studies and gain further insight into
how the deployment of renewables affects the equilibrium. Theoretical analyses begin
with modeling the competition in wholesale markets. Even though electricity markets
have been liberalized and a competitive environment has been built in the majority of
the countries, equilibrium prices are still far from the competitive prices and spot prices
are generally higher than the marginal cost of generation (Borenstein et al., 2002),
(Mansur, 2008). The situation is attributed to the market power of the companies. For
example, (Wood and Blowers, 2018) state that the rise in electricity prices by 130%
from 2015 to 2017 in the Australian market is partially related to the exercise of market
power of the generation companies. The market power results from the fact that
wholesale electricity markets generally consist of a limited number of electricity-
generating firms (or a limited number of large firms regardless of the number of small
ones). Price-quantity offers of those firms directly affect the equilibrium prices.
Moreover, these firms strategically determine their price-quantity offers to maximize
their profit and these offers do not necessarily have to reflect their marginal costs.
(Twomey and Neuhoff, 2010) demonstrate that conventional energy generation
companies can manipulate the equilibrium prices in a way that they increase the prices
while selling electricity and reduce them when they buy power from the market.
(McRae and Wolak, 2009) shows that companies place higher-priced bids for the
periods in which price elasticity is lower. Therefore, the competition in the wholesale
market is characterized as imperfect competition. Two major types of theoretical
frameworks are widely used to model such oligopolistic competition in the wholesale
market: Cournot-Nash Competition and Supply Function Equilibria. Cournot-Nash
model is employed by several studies such as (Bushnell, 2007a), (Borenstein et al.,
2002), (Neuhoff et al., 2005),(Sioshansi, 2014), (Ribo-Pérez et al., 2019). Based on a
Cournot competition framework, (Borenstein et al., 2000) states that the price-cost
premium is 16% in California power markets, and (Borenstein et al., 2002) found that
more than 50% of the rise in electricity prices is due to market power of the companies.
(Neuhoff et al., 2005) compare three different Cournot models developed by different

research groups. Their results show that the assumptions about market design and how
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a fringe company acts highly effect the Cournot equilibrium. There are also studies
that verify the appropriateness of the usage of Cournot-Nash model to represent
wholesale competition. Based on recently available bidding data of Nord Pool
electricity market, (Lundin and Tangeras, 2020) shows that competition in Nordic day-
ahead wholesale market is consistent with Cournot-Nash Competition context.

In Supply Function Equilibria modeling, firms submit their supply function
considering the supply functions of their rivals, and the equilibrium price is determined
by the system operator. Hence, this approach assumes that firms compete on both price
and quantity rather than quantity only. The basic model was developed by (Klemperer
and Meyer, 1989) and then adopted in the electricity market by (Green and Newbery,
1992).

Both models have their strengths and weakness. (Baldick et al., 2004) argue that SFE
is more appropriate than the Cournot model to represent competition in the wholesale
market. Cournot model is criticized for providing overestimated equilibrium prices and
being more sensitive to demand elasticity. Nevertheless, the overestimation problem
could be evaded by including forward contracts (Willems et al., 2009). On the other
hand, Supply Function Equilibria is mathematically complicated and formulation does
not accept any external parameters such as capacity restrictions, etc. Thus SFE is not
suitable for a variety of cases. Furthermore, it is very hard to draw any conclusions

from the mathematical results of SFE.

(Willems et al., 2009) compare these two popular oligopolistic competition models
and test them using the data from the German wholesale electricity market. Their
results indicate that both models perform reasonably well and they suggest using the
Cournot model in order to study short-term competition in the wholesale electricity
market since the Cournot model makes it possible to include additional constraints and

provide analytical flexibility.

Our study is mainly related to the recent literature that studies the impacts of renewable
deployment on the wholesale market in a theoretical framework (based on Cournot-
Nash competition setup). One of the early theoretical works addressing renewable
integration and market power is (Twomey and Neuhoff, 2010). They demonstrate that

conventional generation firms strategically adjust their output according to RES

35



availability. Additionally, these firms are able to raise or suppress the prices along with
their sell or purchase needs. (Ben-Moshe and Rubin, 2015) examine the oligopolistic
competition considering diversified portfolio and indicate that ownership structure has
an impact on MOE e.g., a strategic firm may increase its market power by investing in
renewable energy. In addition to a diversified portfolio, (Acemoglu et al., 2017)
extends the analysis to include forward contracts and incomplete information cases.
They construct all the derivations assuming that cost of production is linear. Their
results suggest that MoE is fully neutralized in the case of full diversification.
However, this result is derived under the specific case of linear cost structure, which
does not hold when the cost structure is quadratic (or in general when the cost structure
is different than linear). To highlight the effect of cost structure, we consider both
linear and quadratic cost structures in all the analyses. Additionally, in contrast to these
works, our study considers a heterogeneous ownership structure for the competitive
firms, i.e., we consider the general case of ownership such that some competitive firms
also own some portion of the renewable generators while the rest of the competitive
firms only generates conventional energy. Therefore, we consider three types of
companies: having conventional only, having both conventional and renewable, and

having renewables only.

Analysis of the impact of the support mechanism is another important feature of our
work. (Rubin and Babcock, 2013) investigate the impact of the pricing method for
wind energy and showed that an increase in wind energy capacity reduces the market
power in feed-in tariff. (Brown and Eckert, 2020) study the impact of renewable
support policies on firm behavior and the outcome of the competition under an
oligopolistic market setting. Their basic model consists of two firms that first compete
in procurement auction for a certain capacity of renewable production which is
determined by a regulator and then compete in the wholesale market. Their result
shows that the support mechanism has an impact on both renewable production auction
and wholesale competition such that market power is reduced in the feed-in tariff
support schema. Different than the current literature, our study comprises the analysis
of the impact of different support mechanisms on the MOE and volume of bilateral

contracts under heterogeneous ownership and under different cost structures.
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Finally, analyses of bilateral contracts which constitute the major part of the trade-in
liberalized electricity markets are grounded on growing literature initiated by (Allaz
and Vila, 1993). We compared the impact of renewable energy on bilateral contract

volume under different support programs.

3.3 Model

Our theoretical analysis begins with describing the overall specifications of the
competition in the wholesale electricity market. In the following subsection, analysis
concerning the impact of ownership structure and support scheme on the equilibrium
is investigated for linear cost structure. Then, similar analyzes are done under
competitive pricing for renewables and the result is compared with the previous ones.
Finally, we introduce the bilateral contracts into the model to build up the complete

formulation.

One of the demand functions mostly used in related literature is the linear function. A
linear relationship is also a good approximation of the demand pattern in Turkish
wholesale markets as shown in Figure 2.7. In this study, we also assume a linear

demand function in the form of
p=a-bD (3.1)

where D is total demand, a >0 and b > 0 are demand parameters. In equilibrium total
generation must be equalized to total demand due to electricity network constraints.

Therefore, we assume that
G=D.

Unlike long-run cost factors such as investment, the marginal production cost is
primarily related to the fuel used and operating expenses. Even if the same technology
and the same fuel are used, the marginal cost could vary according to the efficiency of
the generator and the scale of the generation (Walheer, 2018). When a firm uses more
than one production technology, it possesses a collection of assets with different
variable costs depending on fuel type and operating expenses. Starting from the least
costly generation, when these dissimilar generation capacities are collected in
ascending order, the overall marginal cost structure of the entire portfolio would be a
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stepwise increasing function in quantity. These cost structures are most closely
represented by quadratic functions. Nevertheless, for the analysis, we consider both
linear and quadratic cost function cases to examine the implications. A linear cost
function is suitable when the generating firm relies on a single technology and the fuel
cost is the main variable cost. On the other hand, a quadratic cost function is a more
general and realistic one representing the portfolio of generators and also a
combination of different generation technologies as well as different generation scales.
Although the assumption that all the firms have a linear cost function may be very
restrictive, it is still worth analyzing this case for specific applications or markets. For
example, more than %80 of the total electricity is produced from nuclear energy in
France. Nuclear energy requires huge investment costs however only the effective cost
in the generation stage is the fuel and disposal cost. In this case, linear cost
approximation for large-scale nuclear generations may be reasonable. However,
countries such as Turkey and Germany as well as most of the countries over the world
have a collection of different sources and also companies in those countries have a
portfolio of generators. Therefore quadratic cost function is more realistic for these

countries.

3.3.1 General Assumptions

The following problem setup and assumptions are common for the following analysis.
The additional assumptions and constraints relevant to specific cases are listed in the

related section.

e We consider three different types of electricity generation companies:
o Type-1: Companies using only conventional technology for the generation,
o Type-2: Companies using both renewable resources and conventional
technology for the generation

o Type-3: Companies using only renewable resources for the generation.

e The number of Type-1, Type-2, and Type-3 companies arek,l and m

respectively.
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K ={L,...,k}Iis the set of the Type-1 companies, L=4{1,...,1}is the set of the

Type-2 companies, and M ={1,...,m}is the set of the Type-3.

Type-1 and Type-2 companies are competitive companies, i.e, they can adjust
their outputs to maximize profit, while Type-3 companies are price takers.
n=Kk+1 is the total number of conventional electricity-producing companies.
The set N=KUL={,...,k,..n}is the set of conventional electricity

generating companies.

The total capacity of the renewable energy generated for the relevant time-slot
is R and it is constant.

Shares of the renewable generators by the companies are such that:

e 1€[0,1] of the total amount of renewable energy, AR, is produced by

Type-1 companies, and each Type-1 company i e{y,...,.k} has a share of

iR
R

e [1-A]R is the total amount of renewable energy generated by m Type-3

~2IR
m

n firms provide electricity from conventional resources: each Type-1
company i e{y,...,k}produces electricity g, from only conventional resources
and each Type-2 company j e{1,...,1} produces electricity g; from only

conventional resources.

The cost of producing each unit of electricity from conventional resources is
C(g;) and

9C09) 50 forall i cft,...n}.

dg;

The cost of producing each unit of electricity from renewable resources is

Zero.
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e The total supply of electricity (total amount of electricity generated

conventionally by n firms plus the available renewable energy) is:
G=R+>.g,
N

e The total supply (generation) of electricity G is assumed to be equal to the
demand for electricity D, G(G=D) resulting in the following inverse

demand function:

p=a-bG
=a-b[g,+...+0,+...+ 0, +R]

where a>0, b>0 and G<al/b.

e The total amount of electricity produced from renewable resources is less than
the total demand: R < D implying
R<G<alb

Each competitive firm solves the following problem:

Maximize IT(9,,...,0;,-.,0,;R)
Ji

where the profit function for each type is as follows:

Type-1 competitive firms having both conventional and renewable generations:

E—C(gi) where ieK (3.2)

(911G 9 R) = PG)G, + P, 7

Type-2 competitive firms having only conventional generation:

(s G G0 R) = P(G) g, —C(g;)  Where ielL (3.3)

Type-3 firms having only renewable companies:
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[1- A]R

T (Gyrees Oiveees O3 R) = Prenen where ieM (3.4)

In this setup, renewable-only companies do not have any decision variables.
Competitive firms’ strategies are the selection of conventional generation amounts in

order to maximize their profits.

The price for electricity produced from renewable resources p,., depends on the

renewable support program. There are two cases to be considered in the following

analysis:

Case 1: The electricity produced from renewable resources is subsidized by a
feed-in tariff program and a constant predetermined feed-in tariff for
each unit of renewable electricity is p® for each kWh produced:

R
prenew = p

Case 2: There is not a predetermined price for the renewables and the price
would be determined in the wholesale market with Cournot
competition. The electricity is priced at the oligopolistic price:
Prenew = P(G)

3.3.2 Linear Cost Function for the Conventional Generation

This section assumes that the cost function for production from the conventional

resources is linear:

C(g,)=cg;, forallieN where c>0

The analysis for two kinds of the support program is carried out separately:
Case 1.1: Feed-in tariff for renewable electricity with a linear cost function

In this case profit functions for Type-1, Type-2 and Type-3 firms become:

H:il(gll---ygil---y gni R) :(a_b(zgi + Rngl + pRg_Cgi Where I € K (35)
N
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Hf(gl,...,gi,...,gn;R)=(a—b(ZgiJrRDgi—cgi where iel (3.6)

N

where ieM (3.7)

1-7]R
I17(9y, - G5y 93 R) = P° %

respectively.

The best response of each competitive company satisfies the following first-order

conditions:
a(9:94) ik
g
M (9i94) _, .,
0i

Note that second-order conditions are also satisfied. The solution for the equilibrium

provides the following lemma.

Lemma 3.1: In a wholesale competition with companies having linear cost function,
when renewable energy is subsidized through a feed-in support program, there exists
a pure strategy Cournot-Nash equilibrium solution such that regardless of its type, each

competitive firm chooses the following amount of conventional generation:

a—c R .
gi(R):b(n+l)_(n+1) teN (38)

And equilibrium prices with the total amount of production are:

6(R)=" ((a—c)+b—Rj (39)



bR
1(R)=a—- (a—c +—) 3.10
Pr(R)=a-rg @9 (3.10)
Case 1.2: Oligopolistic price for renewable electricity with a linear cost

function

Consider the same market organization as the previous one with exactly the same
number and types of companies. However, in this case, renewable energy is not
subsidized through a feed-in tariff. Instead, renewable energy is traded in the same
way as conventional generation is traded. Therefore there will be a unique competitive
price for electricity regardless of the source of the energy.

In this setup, the expression for the pre-determinate price of renewable energy p~ in

the equation (3.5) and (3.7) is replaced by the competitive price

p(G) = a—b(z g + Rj. Following the same procedure as in the previous case, the
N

equilibrium solution is provided in Lemma 3.2

Lemma 3.2: In a wholesale competition with companies having linear cost function,
when the renewable energy is traded in the market, there exists a pure strategy
Cournot-Nash equilibrium solution such that Type-1firms choose the following

amount of conventional generation:

G (R.A)= (n1+1) ((a—c)—kJr;tT(Hl)bR] vieK  (311)

and the Type-2 firms would choose the following amount of conventional generation:

g’ (R.A)=

b(n1+1) ((a—c)-(1-2)bR) VieM (3.12)

At equilibrium, total generation and the price would be:

_ _.n 1=
G(R,i)_kgl+lgz+R_b(n+1)[a C+ - RJ (3.13)
pl'z(R,/l):a—ﬁ(a—c+@bR] (3.14)



3.3.3 Quadratic Cost Function for the Conventional Generation

The linear cost function assumption for the generation is a confining assumption that
represents only a limited number of situations. The majority of companies in most of
the market possess a collection of different generators relying on dissimilar
technologies. In this case, a quadratic cost function is a more appropriate
representation of the actual cost structure. For that reason, in this section, we will
consider the quadratic cost function case.

Assume that the cost function for production from the conventional resources is

quadratic:
1, .
C(gi)zgcgi forall ieN where ¢>0
Case 2.1: Feed-in tariff for renewable electricity with a quadratic cost
function

In this case profit functions for type-1, type-2, and type-3 firms become respectively:

(9, Givs 93 R) =(a—b(29i + RDgi + pR%—%cgf where ieK
N

Hf(gl,...,gi,...,gn;R):[a—b(Zgi+RNgi—%cgf where ielL (3.15)
N

where ieM

1-A]R
I (Gy-s G510 953 R) = P° %

Similarly, firms' best responses satisfy the following first-order conditions:

G CE) P
gi

A(9:94) 4 i,
gi
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The result of the solution for equilibrium, in this case, is summarized in Lemma 3.3

Lemma 3.3: In a wholesale competition with companies having quadratic cost
function, when renewable energy is subsidized through a feed-in support program,
there exists a pure strategy Cournot-Nash equilibrium solution such that each

competitive firm chooses the following amount of conventional generation

1

g =

Equilibrium price and total production at equilibrium:

n
G=——(a-bR)+R 3.17
b(n+1)+c ( ) (3.17)
pza:a—L(na+(b+c)R) (3.18)
b(n+1)+c
Case 2.2: Oligopolistic price for renewable electricity with a quadratic cost

function

Consider now, the feed-in tariff program in 2.a. has been abolished and authorities
decided to implement another support program which is a non-market support
program. Thus there is no predetermined price for renewables and the price would be

determined in the wholesale market. Thus, replacing

p* = p(G):a—b(ZgﬁRj

in(3.15). This modification yields the results in Lemma 3.4.

Lemma 3.4: In a wholesale competition with companies having quadratic cost
function, when the renewable energy is traded in the market, there exists a pure
strategy Cournot-Nash equilibrium solution such that each competitive firm chooses

the following amount of conventional generation
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1 (n+21) :
= - 3.19
J b(n+1)+c[a n ij vieN (3.19)
Equilibrium price and total production at equilibrium:
G =;(na+((l—i)b+c)R) (3.20)
b(n+1)+c
b

2b

p _a—m(na+((l—ﬂ)b+c)R) (3.21)

Analysis of these results leads us to the following two propositions:

Proposition 3.1: (Impact of support scheme on the equilibrium).

i)

Impact of Merit-Order Effect is always higher in feed-in tariff support
schemes than in market-based support schemes resulting in lower
equilibrium price p ™" < peompetitve

The equilibrium price is a strictly decreasing function of R in a feed-in tariff

support scheme and a non-increasing function of R in competitive pricing

Proof of Proposition 3.1:

The proof will be built on the result of Lemma-1through Lemma-4. To prove that i)

holds, we simply subtract the equilibrium price in the feed-in tariff system from the

equilibrium price in the competitive market for both linear and quadratic cost cases

and show that these differences are always non-negative.

For the linear cost case, from (3.10) and (3.14) we have

o e R Ty (e

__n [1_<H)]bR

(3.22)

n n

46



For the quadratic cost case, from (3.18) and (3.21) we have

b a __ b b

pZ _pz _a—m(na—i—((l—ﬂ,)bﬁ-C)R)—a+m(na+(b+C)R)
a b

pr _ pz :m(na+(b+c)—na—((1—/1)b+C))R

2b 2a Ab?

- = R
PP b(n+1)+c
(3.23)

Both expressions in (3.22) and (3.23) are nonnegative for the possible parameters of
demand and cost functions, showing that feed-in tariff always results in a lower

equilibrium price.

ii) Directly follows from the partial derivatives of equilibrium prices. For the feed-in
tariff partial derivatives of the prices in (3.10), (3.18) with respect to R are
apla . b apZa . b(b+C)

= and =
oR n+1 OR b(n+1)+c

respectively. Both expressions are strictly negative for all possible system parameters,
which means that the equilibrium prices (3.10) and (3.18) are strictly decreasing with
R. For the competitive case, derivatives of the prices in (3.14) and (3.21) with respect

to R are respectively:

op®  (1-2)b op®  b(l-2)b+c

R (n+l) R b(n+l)+c

One interesting result to point out in Proposition-1 is that although the equilibrium
price decreases with increasing R in all renewable energy support mechanisms, the
difference between the equilibrium prices in 1.24 and 1.25 are increasing with R. This
means that when a considerable amount of renewable energy is available in the market,

equilibrium price would be much lower in feed-in subsidization support mechanism.
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Proposition 3.2: (Effect of Ownership Structure)

) Diversified ownership mitigates the Merit Order Effect in competitive
pricing. The more competitive firms’ share of R, the higher the equilibrium
price. That is, the equilibrium price is increasing in share of the competitive
firms 4

i) The feed-in tariff subsidization scheme eliminates the impact of the
ownership structure. Thus, ownership structure does not have any impact
on the equilibrium price when renewable energy is subsidized through a
feed-in tariff.

Proof of Proposition 3.2: The proof will be built on the result of Lemma 1, Lemma

2, Lemma 3, and Lemma 4.

i) The proof directly follows from the partial derivatives of the competitive

prices in (3.14) and (3.21) with respect to ownership parameter A.

op® bR
o4 n+1
apr bZR (3'24)

o4 b(n+1)+c
both derivatives are positive showing that equilibrium prices increase in A

i) It is clear from (3.10) and (3.18) that equilibrium prices in feed-in tariff do

not include the term A

3.34 Bilateral Contracts

Bilateral contracts in wholesale power markets are an essential part of the trade.
Theoretically, a company increases its market share and profit by selling its part of the
generation through bilateral contracts. However, due to the reduced volume traded in
the spot market, the market power of the company also decreases. When all firms
eventually commit to bilateral contracts at equilibrium, total profit would reduce due
to the decreased market power. The only way to avoid such a situation is collusion and
not to commit any bilateral contract which is not legal. Besides strategic consideration,

there are also several other reasons why companies commit to bilateral trade. These
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reasons may be technical limitations specific to the technology used in the generation.
For example, consider a thermal generation facility that requires several hours to
become fully operational and synchronized with the electricity network from the cold
start. In this case, switching off and then switching on the generator is a very costly
process. To avoid such a situation and associated costs, the owner may want to commit
to a bilateral contract for a certain amount to make sure that this generator runs
continuously. However, we do not include these technical restrictions in our model.
We assume that generator companies can smoothly adjust their output. In order to
analyze the bilateral contract in a basic environment, we assume the same market
setting as in 2b in which companies compete for quantities at time t. In addition to this
basic setting, we assume that companies have signed bilateral contracts before the
competition period starts. Bilateral contracts are formulated as forward contracts

which are committed before the day ahead competition period:

Consider a two-stage game for n companies producing electricity by using renewable
and conventional resources. They commit to independent bilateral contracts and also
compete in an organized day-ahead market. Thus their obligation for electricity
generation each time t originates from two bases. One is from bilateral contract

obligations and the other is due to day-ahead market obligations.

Stage I: Stage | covers the time period before the day-ahead competition for time t.

In this stage, each company i e{1,...,n}= N signs bilateral contracts with the customer

j for a certain amount of electricity B; ;to be delivered at the time t at a price p’
where either B;; >0 or B ; =0. The portfolio of the bilateral contracts of the company

ieN is By, ={B,--,B ;- B;,} and the volume of bilateral contracts for each

company is the sum of the contracts in its portfolio Z B, =B.
i

Stage Il: In a day-ahead competition, after observing {B}.,, each company

i e{1,...,n}chooses the generation amount g, for the time t a la Cournot competition.

Therefore, the strategy of each company i< N is the selection of bilateral contract

volume B, for time t and bid g, in the day-ahead market for a time t:
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Si,t(Bi,t'gi,t) VieN, B g,eR"

The analysis will be conducted for two separate cases:
Case 3.1: Competitive price for renewable energy.
Case 3.2: feed-in tariff for renewable energy cases.

We use backward induction to solve the above two-stage problem and obtain the

expression for bilateral contract volume.
Solution for Case 3.1

We start with the competitive price case. Considering the bilateral contracts from Stage

| and assuming the generation amounts g_,of its rivals in Stage II, each company

i e{L,...,n} has the following profit function:

I1,(9,,-1 9, 9,: Byyeees By ooty B R ) =

|0(G)(©Ji -B, +%j+ PrB, —%cqf VieN

(3.25)
Stage 11 Solution:

In this stage, each company takes the volume of bilateral contracts{B,}._, as given from

Stage I, and also given the total equilibrium quantity of generation

G=>9,+R (3.26)
N

and associated equilibrium price

p(G)=a-bG (3.27)

The objective of each company is to maximize its profit. Thus the best response of the

company i solves the following maximization problem:
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MaxTT, = p(G)(gi -B, +£j+ p’B, —%cgf VieN
gi n
sto
(3.28)
p(G)=a-bG
G=>g,+R
N

Which can be expressed as:

argmax IT, :(a—b[gi +Zgj + RJ](gi - B, +BJ+ p°B —%Cgf VieN
, n

9 ji

(3.29)

The companyi’s best response is characterized by the first order condition of the

above problem:

oI, (9;;97,B) 0

9 (3.30)
AR
a—bg,—b> g, —bR-bg, +bB, —b=——cg; =0

= n
All the firms i e N solve the same problem considering their bilateral obligations and
the decision of the rivals. Their resulting best responses are governed by the n
equations in the form of (3.30). Cournot-Nash equilibrium in this setting can be
calculated as a fixed point by the intersection of the best responses governed by n

system of equations. The solution yields the following Best Response equation:

j#i

g =m[a+(b—ij((bn+c)a —bZBjJ—(”:’I)bRJ vieN (3.31)
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Inserting the best response expression in (3.31) into (3.26) and (3.27), the results

regarding Stage-Il are summarized in the following lemma:

Lemma 3.5: Given the set of bilateral contracts, there exists a pure strategy Cournot
Nash equilibrium in Stage Il such that each firm selects the following amount of

generation:
6B =— - |a+ 2 [(bn+c)B b B el vien
i b(n+1)+c b+c boed
(3.32)
with the equilibrium price:
b
=—a—— | na+b) B +((1-4)b+c)R 3.33
P b(n+1)+c( ;' (( ) ) ] (3:33)
and the total production:
G(B)=Zgi(Bi)+R
' (3.34)
G(B)= na+b» B +((l-A)b+c)R
(®) b(n+1)+c( " ZN: '+(( Jo ) j
Stage | Solution:
In this stage, each company selects the volume of bilateral contract volume to
maximize: (3.25):
IT; = IO(G(B))(gi - B, +§]+ p*B, —%cgf VieN (3.35)

In order to eliminate any arbitrage opportunity, bilateral contract prices in the
contracting stage can be assumed to be equal to the equilibrium spot price (Bushnell,
2007b). Thus:

E[ p’|=p(G(B)) VieN (3.36)
So, the profit expression in the contrct stage turns out to be:
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I, = p(G(B))(gi +%)—%cgf VieN (3.37)

Each company assumes that any commitment to a bilateral contract volume B in Stage
| would yield the equilibrium values in Lemma 3.5 in Stage Il. Therefore, equilibrium
can be calculated by using the anticipated results of Stage Il inserted in Stage | profit
expression. Using the anticipated equilibrium condition in Stage Il , i.e., best repose
correspondences in (3.32), equilibrium aggregated demand in (3.38) , and the
equilibrium price in (3.39)Best Response optimal bilateral contract volumes for t,

solves the following maximization problem:

B, c argmax 1T, = p(G(Bi))(gi (B)+2=

s.to

o b B _(n+2)
6:(B) = )+C[a+b+c[(bn+c)8i bZBj) - bRJ (3.40)

(n+1 ji

p(G(B)):a—m(na+b;Bi +((1—}t)b+c)Rj

which can be reduced to the following unconstrained optimization problem:

B, e argmaxIT, = p(gi +/1—Rj—%c(gi)2 VieN
n
where

i (o v ] ()
gi_b(n+1)+c[a+b+c[(bn+c)Bi b;BjJ n bRJ (3.41)

and

p= a—m(nam% B +((1—/1)b+c)Rj

First Order Condition for the above problem is :
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ort; GHiD( +ﬁ)+paﬂigi_cg oI,
' on B, ' OB,

Inserting the partial derivatives:

o, b’ ( +ﬁj+ b(bn +c¢) B b(bn+c) 3
B, bn+Y+clo n (b(n+D)+c)(b+c) ' (b(n+1)+c)(b+c)
where
1 b oy | (14)
gi_b(n+1)+c(a+b+c[(bn+c)8i b;Bjj - bRJ
and

b
p:a—m(na'Fb%Bi+((1—ﬂ)b+C)Rj

Since the firms are symmetric, the contract volumes for each firm must be identical

at equilibrium: B;=B; =B Vi, j € N . Performing the necessary calculations, the

results for optimal contract volume are summarized in Lemma 3.6.

Lemma 3.6: There exists a pure strategy Subgame Perfect Cournot-Nash equilibrium

bilateral contract volume which is identical for each firm given by:

B— (n-1) {ba{b—ml}R} (3.42)

[b(b+c)+(bn+c)’ | n

Proposition 3.3: When the price of renewable energy is determined through
competition, there exists a unique Subgame Perfect Nash Equilibrium of the game such

that each firm i e N chooses the following strategy :

B = [b(b+(§)n+_(1t3n +c)2][ba_[b_@4 R}

31 _ 1 b B B
9i (B)_b(n+1)+c{a+b+c[(bn+c)8‘ bZBjJ bR]

j#i

is'l(Bi,gi) VieN

54



Solution for Case 3.2

In this case, renewable energy is subsidized through a feed-in tariff p~. The profit

function takes the following form:

I1,(9,,19;,--»9,: By B,y By R ) =

AR 1 ]
p(G)(g;—B)+ pRT+ pCB, —5095 VieN

following the same solution concept, the results for this case are summarized in

Proposition 3.4: When renewable energy is subsidized with a feed-in tariff, there
exists a unique Subgame Perfect Nash Equilibrium of the game such that each firm
i e N chooses the following strategy:

b(n-1)
[b(b+c)+(bn+c)2}

s°(Bigi) = vieN

3.2 _ 1 b B B
9i (B)—b(nJrl)JrC[aJrb+c((bn+c)Bi bZBjj bR]

j#

B_3.2 —

[a-R]

The comparison of the result of both cases provides the following proposition:

Proposition 3.5:

The equilibrium bilateral contract volume B is such that:

i) The equilibrium contract volume B is a strictly decreasing function of R in

the feed-in tariff support program. However, it depends on demand and cost
parameters {a,b,c,n}and ownership fraction A in the case of competitive
price.

i) The equilibrium contract volume is strictly increasing with the ownership
fraction A of the competitive firms.

iii) Feed-in tariff support programs always result in a lower bilateral contract

volume B .

Proof of Proposition 3.5:

32 _
) For the feed-in tariff case B, =— b(n-1) <0, thus the

R [b(b+c)+(bn+c) |
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i) contract volume decreases in R . For the competitive price case

31 _
oB¥ b(n-1) 2 {b—(bn+c)1},whenl< bn the
R [b(b+c)+(bn+c) } n bn+c
contract volume decreases in R and the converse when A > br?z .
31 -1)R b
N S U L (( n+C)]>o WR >0 which shows that
04 [b(b+c)+(bn+c) L 1

contract volume is increasing in 4.

iv) When every other parameter is fixed in the system,

goi_poe__ (1-1)(bn+c) _R250 wR>0
[b(b+c)+(bn+c) } n

One of the important results of Proposition 3.5 is that increasing renewable energy
decreases the volume of a bilateral contract in feed-in tariff but depending on system
parameters, may have a different effect in a competitive price case. Thus, the pricing
method of renewable energy has an important effect on firm behavior. Similarly,
ownership structure also has a similar effect on companies' strategic decisions.
Therefore, companies can make use of diversified portfolios in their strategic decision

in both competition and bilateral contract stages.

3.35 Numerical Example

In this section, the analytical findings in the previous section will be examined
numerically with reasonable system parameters. A representative inverse demand
function is constructed in order to obtain similar equilibrium prices in the Turkish
Wholesale Market, “Energy Exchange Istanbul” (EXIST). For this reason, the demand
function p=1100-0.35*G where a=1100 and b=0.35 are selected. We assume that there
are 8 competitive generation firms. For the cost parameter, we anticipate 35% marginal
profit at equilibrium. Therefore ¢=0.65 is selected for the quadratic cost case and
c=180 is selected for the linear cost curve. With these parameters, equilibrium prices
for 1a, 1b, 2a, and 2b when R=0 are 289.5 TL, 289.5 TL, 282,2 TL, and 282.2 TL
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respectively, which is fairly close to the actual equilibrium price of 280 TL at that time
point.

The result of Proposition-1 is illustrated in Figure 3.3 and Figure 3.4. In both cases,
namely in both linear cost and quadratic cost cases, equilibrium price decreases with
available renewable energy at that time, reflecting the Merit-order effect. The main
result of Proposition-1 is about the impact of the subsidization mechanism for
renewable in equilibrium price. The results indicate that the Merit order Effect is more
powerful in the feed-in tariff support scheme. As a result, for a given market setting,
the equilibrium price is lower when renewable energy is subsidized through a feed-in
tariff. Figure 3.5 and Figure 3.6 confirm the finding of Proposition-1. In both linear
and quadratic cost cases, the equilibrium price for the feed-in tariff indicated by the
blue line is always below the equilibrium price for the competitive tariff which is
indicated by the orange lines. In both linear and quadratic cost situations, the
difference between equilibrium prices for alternative support mechanisms is increasing
with R. This result implies that when the share of renewable energy is increased to
considerable amounts and this increase is supported through a feed-in tariff program,

prices in spot market would eventually decrease dramatically.

Merit Order Effect (Linear Cost)
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Figure 3.3: Equilibrium price as a function of R, linear cost case

The ownership structure also plays an important role in the equilibrium price.

However, Proposition 2 suggests the effect of ownership is eliminated in feed-in tariff

support programs. Nevertheless, when the prices are competitive, Merit order Effect
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is mitigated by the increasing shares of competitive firms. Figure 3.5 shows that, while
every other parameter in the economy is fixed, the equilibrium price increases with

increasing A.

Merit Order Effect (Quad Cost)
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Figure 3.4: Equilibrium price as a function of R, quadratic cost case

Ownership Effect for Fixed Market Setup

300
280
260
240
220
200

180 —— Equilibrium Price
160

140
120

100
0 0,2 0,4 0,6 08 1

Share of competitive fiims A

Price TL/MWh

Figure 3.5: Effect of A on equilibrium price in a fixed market setup
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How equilibrium price moves according to the amount of available renewable energy
under different ownership percentages is illustrated in Figure 3.6. As expected, the
equilibrium price decreases slower when the share of competitive firms is higher.

Effect of Ownership
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= 260 -0
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=2 240 A=0,4
Z 230 A=0,8
wl

220 A=1

210

200

0 200 400 600 800

Amount of Renewables

Figure 3.6: Equilibrium Price vs Available Renewable Energy under different

Ownership Structures

3.4 Conclusion

The ever-increasing sustainability concerns necessitated the development of policies
to combat climate change. Energy systems with their distinct characteristics have been
greatly influenced by the policies imposed. Due to these policies, many issues emerged
that needed to be studied by different disciplines. In this study, we examine the impact
of intermittent renewable energy integration on the wholesale market. Specifically, the
problem due to negligibly small marginal production cost is studied in various cases.
In addition, we try to understand whether the way how renewable energy is subsidized
and ownership of renewable energy play any role in the equilibrium. Different than the
current literature, we consider heterogeneous ownership structures with both quadratic
and linear cost structures and compare the results for both market-based and non-
market renewable energy support structures. Our results indicate that renewable
energy negatively affects equilibrium prices in all cases. Furthermore, this negative

effect is exacerbated when renewable energy is supported by a non-market support
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mechanism such as a feed-in tariff. Ownership also plays an important role in
equilibrium. Since the competition is characterized as imperfect, strategic players can
take advantage of diversified portfolios and mitigate the adverse effect. However,
feed-in-type support programs eliminate the effect of ownership. Another important
set of findings is related to the volume of bilateral contracts. In the linear cost case, the
volume of bilateral contracts is negatively related to the quantity of renewable energy
and the ownership fraction improves this negative relation. However, the situation in
the quadratic cost case is complicated and the relation between bilateral contact
volume and quantity of renewable energy depends on demand parameters and
ownership fraction. For a certain set of parameters, bilateral contract volume and
renewable energy quantity are negatively related when the ownership fraction is close
to 0. The negative relation improves with the increasing ownership fraction and
depending on the system parameter, may reach a break-even point after which the

bilateral contract volume becomes positively related to the available renewable energy.

Various policy implications can be drawn from these results. First, in order to ease
adverse effects, policymakers should revisit their subsidization programs and
implement market-based mechanisms instead of non-market mechanisms.
Furthermore, strategic companies should be encouraged to add renewable energy into

their portfolios.
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CHAPTER 4

A NOVAL DEMAND RESPONSE MODEL AND ITS ANALYSIS

4.1 Introduction

Electricity has a unique characteristic among all the other consumable goods. Due to
its nature and the current technological limits, electricity cannot be stored in large
quantities feasibly and should be consumed instantaneously when generated. This
characteristic exposes one of the most challenging limitations in both infrastructure
design in the technical domain and economic design of the electricity markets. Another
limitation is network feasibility constraints which require input to and output from the
transmission network must be balanced with very tight limits at all times. Within these
restrictions, the operations of conventional electricity markets have been established
on the principle that electricity generation is adjusted continuously according to the
corresponding demand. Thus, only the supply side of the system is active in the
traditional adjustment mechanism (Hu et al., 2013). On the other hand, demand for
electricity fluctuates through the day along with daily routines like appliance usage,
transportation, production processes, lighting needs, heating and cooling requirements,
etc., and, in most markets, makes a peak or peaks at certain hours. Unfortunately, the
consumption side is not able to observe the efficiency signals of the supply side and
does not have any incentive to adjust its consumption accordingly (Kirschen, 2003).
The practice is not compatible with the competitive market idea where prices adjust
according to the scarcity of the product or service (Zarnikau, 2008). Throughout the
years, the need for elasticity on the demand side and interest in altering the
consumption patterns of the users by suppliers and system operators to improve the
efficiency of electricity markets and electricity systems have been growing. The desire
to influence the consumption decision of the customer brought about the idea of

Demand Side Management (DMS). DMS is a very broad concept incorporating several
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long-term and short-term activities designed to alter electricity consumption patterns.
Demand Response (DR) is a subcategory of DMS related to short-term market
operations. DR is a tariff scheme, a program, or an incentive mechanism established
to influence the end-user customers’ consumption patterns in response to the changes

in the price of the electricity (US Dept. Energy, 2006).

The early objective intended by Demand Response methods was to eliminate the
inefficiencies due to peak load and promote the system safety of the transmission
networks. All infrastructure and investment should be settled according to the peak
demand to prevent blackouts since blackouts cause huge economic costs in addition to
undesirable discomfort (Shuai et al., 2018). Moreover, there should be some reserve
margin for generation in case of unexpected demand increases and production
uncertainties due to system unavailability. Together with this reserve capacity,
installed generation capacity would be more than 100% of the probable peak demand
for most of the markets. Unfortunately, the system should be run under its capacity
during off-peak times. This peak load capacity stays idle during off-peak periods
resulting in a loss of opportunity cost and a reduction in system efficiency. When
average electricity usage is compared with installed capacity, it can be inferred that
utilization of installed production capacity could be as low as 55% (Strbac, 2008).
From the system safety point of view, peak demand always poses technical threats to
the system by ramping of generation, thermal loads, stress on transmission lines, etc.
Hence, changing the demand profile in order to decrease the peak load and distribute
the load as evenly as possible has been one of the main objectives of Demand
Response. However, increasing utilization of renewable energy, decentralization of
generation, and participation of small-scale producers bring another dimension to the

problem: supply uncertainty.

Low carbon policies such as the EU’s objective to reduce greenhouse gas emissions
by at least 80% below 1990 levels by 2050 necessitates a significant increase in the
share of renewables (da Graga Carvalho, 2012). Besides technological feasibility,
efficient use of higher renewable energy requires the implementation of new market
models facilitating the flexible demand profiles to account for the supply uncertainty.
Generation amount from renewables and timing of generation is almost completely

dependent on the weather condition. If the production from renewables is high when

62



the demand is low, the unused amount would be wasted due to the instantaneously
perishable characteristic of the electricity. However, a few hours later other
conventional sources with marginal production costs associated with greenhouse gas
emissions would be used in order to meet the demand when renewable production
decreases below the demand at that time. Consequently, continuous adjustment of the
supply according to the demand is no longer an effective practice when higher
renewable energy utilization is envisioned since supply from renewables is rigid.
Alternatively, shifting the demand from one point in time to another by Demand
Response following the available generation schedule has great potential. There are
several other consequences of this supply-demand mismatch. Oversupply of
renewables causes a decrease in prices in the wholesale market and even the
occurrence of negative prices which make it hard to cover operation costs and affect
the investment decision in the long run (Cramton and Stoft, 2006), (Joskow, 2008).
This paradigm change due to the increasing usage of renewable energy has changed
the focus of demand response practices. Therefore, within the context of renewable
energy utilization, the primary goal of demand-side management become changing the
demand profile in order to make it compatible with the inflexible production profile

rather than preventing the peak demand only.

Although Demand Response is a promising concept to obtain flexibility on the demand
side, most of the traditional DR methods which are designed to mitigate the adverse
effect of peak demand fail to address the problem arising from supply uncertainty and
do not handle the challenges of increasing renewable utilization. For example,
“Critical Peak Pricing” where prices are high for certain times when peak load occurs
is only effective to shave the “peak” load. “Time-Of-Use (TOU)” where there is a set
of pre-determined tariffs for certain periods is one of the oldest programs that has many
practical applications. TOU rates are not flexible enough in the short run to influence
consumer demand dynamically to account for the supply uncertainty (Borenstein,
2005). Among many others, Real-Time Pricing is theoretically a very efficient
dynamic pricing practice since it reflects the actual cost of supply by continuously
updating the price. However, real-time pricing brings maximum uncertainty and risk
for the customer. Moreover, real-time pricing requires a very high communication rate
and customer involvement which is not possible often (Dutta and Mitra, 2017),

(Diitschke and Paetz, 2013). Another drawback of Real-Time pricing is that the
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customers may not be dynamic enough to adapt to the price signals and respond to the
price change rapidly. Another important aspect of Demand Response programs is how
flexibility is obtained. Price-based DR programs generally use price signals to alter
customer consumption patterns. These kinds of programs aim to influence customer
behavior indirectly. However, when the demand is controlled directly, the System
Operator obtains superior certainty compared to the indirect control through price
signals. (Callaway and Hiskens, 2010). Therefore, instead of manipulating the demand
through price signals, the system operator may have some control over the timing of
the electricity usage of the customer as a more effective way to address supply
uncertainty. It has been discussed that Direct Load Control could produce more
reliable demand flexibility (Stenner et al., 2017), (He et al., 2013). Besides, load shifts
should be explicitly included in the effective Demand Response Program.

Based on these arguments, we propose a Demand Response model in which customers
voluntarily let the System Operator decide the timing of some amount of electricity
usage in order to get an incentive in the form of a discounted price. In this model,
electricity usage is segmented into two types according to time flexibility. Before each
optimization period, discounted prices are offered for flexible usage for which the
System Operator decides the exact usage time within predefined time boundaries. The
customer selects the amount for flexible and ordinary usage according to price offers.
Therefore, customers get benefits in terms of incentives in return provide time-
flexibility to the system operator in such a way that the system operator makes sure
that generated renewable energy is consumed efficiently while maximizing profit. The
model could be categorized as Direct Load Control demand response practice, but it
also includes dynamic pricing since the discounted price is determined dynamically at

the beginning of the optimization period.

This novel market model addresses some of the major problems related to the efficient
usage of renewable energy and provides more reliable and practical solutions
compared to traditional price-signal-based demand response practices available in the
literature. From the customer perspective, the risks associated with volatile prices are
eliminated since the prices for ordinary usage and flexible usage are determined before
the event time. The total incentive is proportional to the volume of flexible usage and

the customer knows the outcome before committing with certainty. The arguments
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regarding bill stability which is one of the main concerns related to dynamic pricing
(Borenstein, 2009) disappear in this model. Moreover, customer involvement requires
less effort. A well-established communication system is required but this is a “must”
for any other dynamic pricing technique. In other dynamic pricing practices like real-
time pricing, customer needs to search for the optimal price continuously which
requires continuous effort from the customers. From a system operator perspective,
having the right to control the scheduling of the demand rather than influencing the
customer through price signals provides a great advantage in better utilization of
renewable energy since the System Operator obtains more reliable and adjustable
demand flexibility with a greater amount of certainty. Our base model can be extended
to include constraints about the duration of DR event and maximum shift periods could
be predefined.

4.2 Related Literature

Demand Side Management has always been regarded as a tool with high potential for
eliminating inefficiencies in the electricity sector. The policies and regulations
implemented for reducing greenhouse gas emissions and promoting sustainability have
boosted this potential since decreased flexibility due to uncontrollable renewables on
the supply side could be compensated on the demand side through Demand Side
Management (Misconel et al., 2021). Accordingly, the attention on Demand Side
Management, particularly on Demand Response, has been growing for the last decade.
In parallel, the literature on Demand Side Management has increased steeply from
around 130 publications in 2009 to more than 1800 yearly articles in 2020 (Morales-
Espana et al., 2021). Several articles are reviewing these publications in the literature

focusing on certain aspects.

Benefits and Challenges of Demand Side Management have been discussed by many
authors (O'Connell et al., 2014),(US Dept. Energy, 2006), (Conchado and Linares,
2012). Among several others, benefits from three main perspectives stand out:
financial, operational, and better renewable energy utilization perspectives. Both
supplier and end-user sides could obtain financial benefits through DR. Supply-side
face competitive market conditions and prices in the spot market are frequently volatile

(De Jonghe et al., 2008). One of the main reasons for this volatility is inelastic demand
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due to flat retail prices since the demand side is irresponsive to the supply side's
efficient signals. Load that can be shiftable or curtailable can act as an additional
source of supply for demand-supply balancing and reduce the market power.
Therefore, with smoothed net demand profiles, price spikes and inefficient prices due
to excess supply or supply shortages occur less frequently (BergaentzI¢ et al., 2014).
Moreover, smooth generation from thermal sources promotes generation efficiency
and reduces fuel costs (Miiller and Maost, 2018). Therefore, wholesale electricity
prices, as well as the price volatilities, would be reduced as a result of DR (Asadinejad
and Tomsovic, 2017). This reduction would be eventually reflected in the bills of the
end-users. The end-user may also benefit from the direct incentive provided by DR
practices (Gottwalt et al., 2016). Flexibility on the demand side allows network
operators to manage network constraints more efficiently (Affonso et al., 2005)
(Zibelman and Krapels, 2008). Efficient management of the lines also promotes a
reduction in line losses (Shaw et al., 2009). Another significant potential operational
benefit is that the costly investment required for peak-load capacity, especially in such
an uncertain future, can be avoided (IRENA, 2019) (Veldman et al., 2013) (Blokhuis
et al., 2011). All these potential benefits of DR are even greater when it comes to
renewable energy integration since all these problems and complications amplify in
the case of renewable energy integration (Simshauser, 2019). Shares of total renewable
energy can be increased by compensating for the loss of flexibility on the supply side

and preventing curtailment through Demand Response (Gils, 2014).

DR Modeling in the literature varies significantly depending on the type of DR strategy
in consideration, scale, the proposed problem setup, etc. In the literature, there is no
common Demand Response modeling framework that can be applied in general and
on which a consensus has been achieved. A large group of literature attempts to
quantify demand response potential based on available resources or rational economic
behavior of the users. Some of these even do not include any analytical formulation
that relates price or incentive to demand response behavior, instead, rely on
assumptions such that a certain fraction out of total demand response potentials was
available on hand. For example, (Markle-Huf3 et al., 2018) first calculates overall
demand response potential based on available shiftable sources such as appliances
usage, heating devices, etc., and then analyzed the effect of demand shifts on the

wholesale prices assuming they would use 1% and 10% of the available demand
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response potential. These kinds of analyses are useful in understanding the potential
value of the Demand Response sources and enable the researchers to make a
comparison of the potential value with the cost of implementation. A major group of
authors utilizes the price elasticity of demand to represent Demand Response
potentials (O’Connell et al., 2015). Many of those models such as (Heydarian-
Forushani et al., 2020) and (Allcott, 2011) rely on a reduction or increase in the
demand at a certain point in time and do not explicitly represent a demand shift from
one point in time to another. Therefore, those models fail to address demand recovery.
However, proper DR modeling should include demand recovery of the affected
demand within a reasonable timeframe, i.e, a change in demand at one point in time
should be compensated by a change in the reverse direction at a certain point in time
(Zerrahn and Schill, 2015). It is important that proper modeling should include time-
related constraints ensuring that the net load shift within the optimization period should
be zero. Otherwise, the results obtained from the model would be ambiguous as users
are not expected to forego electricity usage for certain applications in the short term
because it is costly at one point. Some authors such as (Asensio et al., 2017) and (De
Jonghe et al., 2012) include cross-price elasticities for different time slots to account
for demand shifts between time slots. However, cross-price elasticities do not ensure
that the demand shift balance is satisfied (Zerrahn and Schill, 2015).

Another main group of modeling considers DR in capacity planning and includes DR
sources in Unit Commitment problems as a source of negative generation (McPherson
and Stoll, 2020). The objective of the Unit Commitment Model or Production Cost
Model is to find out the least costly generation plan to meet the demand considering
various generation sources with different variable costs (Hummon et al., 2013).
Therefore, including DR in these models facilitates understanding the potential benefit
of DR on system capacity planning and cost reduction. Nevertheless, the majority of
these models do not provide the mechanisms for how Demand Response is obtained

on the demand side.

Optimization methods are also closely related to the strategy of Demand Response and
the definition of the problem. The objective of a Demand Response program could be
minimizing production cost, maximizing social welfare, maximizing economic

benefit, maximizing renewable energy utilization, etc (Vardakas et al., 2014).
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(Mohsenian-Rad and Leon-Garcia, 2010) employed Linear Optimization to find the
optimal consumption of different appliances in a real-time pricing Demand Response
setting. The inclusion of binary decision variables such as on-off status leads to Mixed
Integer Programming as in (Kriett and Salani, 2012) and (Nan et al., 2018). Examples
of Game-Theory based optimization can be found in (Feng et al., 2020) and (L1 et al.,
2021). More complicated optimization methods are utilized such as Nonlinear models
in (Leithon et al., 2018) and Stochastic models in (Chen et al., 2012). Dynamic
Optimization considering the interaction of supply and demand is found in (Jiang and
Low, 2011).

Our modeling differs from current literature in that we consider the dynamic
interaction of the supply and demand sides together in a comprehensive way. In
addition, we derived consumer preferences between inflexible and flexible usage for a
given incentive based on the strategic decision process of the customer rather than
assuming linear relations or simplified forms of demand response relations. To the
best of our knowledge, such a kind of customer modeling in the direct load control
context is missing in the literature. Period-by-period energy balance constraints and
time-related load shift constraints are two fundamental constraints that ensure that
demand recovery and demand matching requirements are satisfied. We also explicitly
model load shifts including these constraints. Our resulting mathematical problem is a

nonlinear dynamic optimization.

4.3 The Model

The market we consider consists of a System Operator who provides electricity and a
representative customer who is the only consumer of electricity. The System Operator
has two kinds of electricity generation sources: one is from renewable energy
generators and the other is from a portfolio of conventional (nonrenewable) generators.
The two kinds of sources differ from each other in terms of controllability of timing
and quantity: the timing and quantity of the generation from renewables completely
depend on uncontrollable external factors (particularly on weather conditions),
whereas the quantity and timing of the conventional generation are controllable. The
marginal cost of the production from renewables is zero but the marginal cost of

production from conventional resources is equal to the market price of the electricity
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P . The system operator first uses the costless renewables to meet the demand and then

dispatches the conventional if needed. In order to better utilize renewables and increase
revenue by decreasing the cost originating from conventional generation, the system
operator wants to shift some of the demand from the point where there is a lesser
amount of renewable generation to the point where renewable generation is abundant.
To do so, the SO implements a Demand Response mechanism. In this mechanism,
S.0. segments the electricity usage into two according to time flexibility and offers
two options to the customer. The first option is ordinary (inflexible) usage the customer

uses the electricity whenever she desires at the market price p. The other option is
flexible consumption such that the customer lets the system operator selects the usage

time within £n of the desired time at a discounted price Py, . The representative

customer’s optimal decisions determine the level of consumption in each category.

e The planning period is {ltT} where TeNand 1<T <o0.

e Nature reveals each period t’s state:
{S1eesSpreenr Sy} = {st}:=1 where s, eQandte{l,...,T}. The state of the Nature

includes all the short-term information such as weather conditions, the day of
the week, etc. which are the determinates of the next day's consumption and

renewable generation levels.
e For all levels of the electricity produced from nonrenewable resources

q. € (O,oo), the unit cost of production is C, € (O,oo).

e For all levels of the electricity produced from renewable resources

O € (0,00), the unit cost of production is ¢, =0.

e The price of the electricity for ordinary usage is determined by policymakers

as p e R" and the discounted price for flexible usage is determined by the S.O.

Piex € [01 p]-
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43.1 Demand Side:

The consumer has an upcoming planning period of {1tT} The consumer
consumption plan in the very short-run is only affected by the state of the planning
period{st}::1 where s, e Q since all the other factors affecting the consumption

decision can be assumed to be stationary for such short-term planning. Moreover, state

of the nature is revealed by Nature to the RCE well before the upcoming period. Thus,

Given {st}tT:1 where s, e Q for the upcoming period, the RCE’s set of ex-ante

consumption levels is:

Dy ={D,(5)s--D,(8,) - Dy (57 )}

However, the consumer can allow System Operator to shift some of its consumption
D,(s,) from te{l,..T}tore{l.. t-Lt+1..,T}in exchange for a discounted
price, which is referred to as flexible consumption. The portion of the demand that is

committed to flexible usage for price p,., at time te{l..,T} is denoted with

O peec (S,). In the same way, the remaining demand at the time te{l,...,T} that the

consumer does not want to shift over time is referred to as inflexible consumption and

it is denoted with d; e, (S,)-

We assume that wealth increase due to the incentive does not induce any increase in

consumption levels. The sum of the flexible and inflexible demand consumption levels

obey the ex-ante consumption plan at each t € {1T}

dinﬂex,t (St ) +d flex,t (St) = ISt (ts) (4.1)

Assume that for all te {1T} the unit price of the inflexible consumption is p and

that of flexible consumption is p,, . Then, the cost of time t & {1,..., T }consumption is:

pdinflex,t (St ) + pﬂexd flex,t (St) = pdinﬂex,t (St ) + pflex I:[_)t (st )d flext (st ):I

The nominal gain from the flexible consumption is:
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pl:dinﬂex t( flext ):I I:pdlnflext + pflex flex,t (S :'
mflex t ( I: p pflex] M

Taking pas a numeraire, the consumer’s real wealth gain from the flexible

consumption can be written as:

The consumer derives utility from inflexible consumption d flexible consumption

inflex ?

d..., and the real wealth gain obtained from committing to flexible consumption, .

flex 1

U (dinﬂex' d flex 1 H) = 8ianexU (dinﬂex) + 8ﬂexU (d flex) + SpU (H) (43)

with weights &, 4, >0, 84, >0, 5,>0

This utility function can be written in terms of demand and prices as:

P fiex,
U (dinflex ' d flex 1 H) = 8inflexU (dinflex) + 6flexU (d flex) + SpU (d flex |:1_ Z) t :D (44)

t

From constraint in (4.1), we have

dinﬂex,t =L (ts ) —d flex,t

Then

D, P fiex
U (dmﬂex’ flex /I) '”ﬂexu (Dt (tS ) —d flex,t) + 5ﬂexU (d flex) + 5 U (d flex |: E) ’t :|)

t

(4.5)

Let:

where pe(0,1). So
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1 _ 1-
U (d flex) = nl:é‘mﬂex I:Dt -d flex,t:l : + |:5flex + 5// |:1

P

_M:| }[d flex t :Ilp:l (46)

Since U(d,,,) is concave in d,, the first order condition
ouU
(d flex) -0
ad flex
Provides the utility-maximizing d ., and hence utility maximizing d ., ,, d;eand p,
turns out to be:
q _ pflex ~
dﬂex,t ( pflex' P, S ) =a T Dt (St)
) _ I pflex N
dinﬂex,t(pﬂex' p’st)_ 1—0(,( p j:| t(st) (47)
A I p ex p ex ~ p ex
Mt ( pﬂexl p’ St ) = l_ f :|OL( ; j t (st ) = |:1_L:|dinflex,t ( pflex’ p! St)
L P P P
where
1 -1
1 e |p
a[%J =1+ Spinflex 6flex + Sp |:1_ h:|
p P
4.3.2 Supply Side:

The System Operator does not have any direct control over the consumer decision

process however, it can influence the output by setting the discounted price level. The

amount of flexible usage that the System Operator needs is the key factor in the

optimization. The System Operator’s decision-making process proceeds in a multi-

stage context. Firstly, it decides the unit price of the time-flexible usage of electricity,

Pqec- Then, this price determines the time flexible and inflexible demands for each

te{l,...,T}by influencing the RCE’s optimal choices. Next, in order to minimize
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generation from conventional resources and maximize the utilization of renewables,
the SO shifts time flexible demands among periods and then determines the amounts
of electricity to be provided from nonrenewable resources to match total generation
with the total demand.

4.3.3 Complete Model:

The whole model can be formulated as the following multi-stage problem:

Stage 0:  Nature: Nature reveals each period t’s state {s,,...,s,,...,S; } ={s,}

.
t=1
where s, eQandte{l,...T}

Electricity Providers from Renewables: Each period t’s state s, € Q determines

the amount of electricity to be generated from the available renewable

resources:

{qR,t (%)}; = [qR,l(Sl) v Oryt (St)1"" Orr (ST )]’

wheres, eQandte{l,...,T}

Representative Consumer: The representative consumer of electricity (RCE)

first observes {s }tT:l wheres, € Q and prepares a state and time-dependent ex-

ante consumption plan for {1T} in terms of electricity usage:

{Di(s)}, ={Dy(5,):-+ D (8) s Dr (7)), 5, €©

The RCE cannot observe {qR,t (St)}::l and its ex-ante consumption plan

{D, (s, )}L1 is exogenously determined.

Stage 1: SO observes {qRt (St)}; of Stage 0. It takes the unit price of electricity

generated from non-renewable resources p & (0,0)as given.
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Given s, eQfor all te{l,..,T}, the S.O. sets the price for flexible usage

Prex € (0, p)to be valid for all te{l,..,T}. Once it announces the price of

flexible usage, it correctly anticipates the optimal choices to be made thereafter
its decisions.

Stage 2: The representative consumer of electricity observes the SO’s stage 1

price announcements for the flexible electricity usage p,,, and inflexible usage

pover the period {1,..,T}. Given s, eQfor all te{l,..,T}and Stage 0’s

{D, (St)};’ depending on p,,,, the RCE decides how much of the electricity

D, (s,)to be provided as a flexible usage for each te{l,..,T}, dy, and
hence how much of it to be inflexible, d, .., = D, —d g
t=T
{d flex,t (S' p’ pflex)1dinflex,t (S’ p1 pflex) = Dt (St ) _d flex,t (S! p’ pflex )},[::L
Stage 3: Given Stage 0’s supply of electricity from renewable

T : . :
[ESOUICES, {Cgneu (St)}t:l, and Stage 2’s optimal allocations between flexible

and inflexible demand levels {dﬂexyt(s, D: Pt )+ Dio (S P pﬂex)} I the SO

t=

shifts flexible demands between different periods over the horizon{1,...,T}:

f, . is the potion of flexible demand d . at the time t shifted to the time <

flex,t
, Where te {1,...,T}, Te {t—n,...,t+ n}and 0<t<T. The SO’s aim is to
utilize renewables efficiently and reduce the generation from non-renewable

resources. The determination of optimal demand shifts also provides the

required minimum generation from conventional resources for each

te{l..T}.

In this setup, we assume that the SO has perfect foresight and can solve the optimality

problems following its decisions and use them in its preceding decision-making

processes. The logic as applied in the backward induction method is used in solving

dynamic programming problems.
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Solution of the Multi-Stage Problem:

Using the backward induction method, starting from the last decision stage, Stage 3,
we solve this multi-stage decision-making problem through the first decision stage,
Stage 1.

Stage 3 solution for the SO

At Stage 3, the SO takes the following as given:
e {5 }tT:l wheres, e Q , Stage 0’s supplies of electricity from renewable
resources {qut (st)};, Stage 0’s ex-ante electricity consumption plans

{Dt (St)};, Stage 1’s price levels (py,,. p), stage 2’s adjusted flexible and

inflexible electricity demand levels

{dflex,t (S’ p’ pﬂex)1dinflex,t (S' p1 pflex) = Dt (St)_dflex,t (S’ p’ pflex )}

t=T

t=1

Then, it shifts portions of each t e {1,..., T } flexible demand d,, , among periods

flex,t

1..T}:

{ ft,t—n 10y ft,t—l’ ft,t’ ft,t+1, ey ft,nn } - { ft,r }T:”"

T=t—-n

where f, _is the portion of t e {1,..., T } flexible demand shifted to a period te{1,... T},

such that for each te{l,...,T}:

Z f =0 g vtell,.. T} (4.8)

This constraint can be referred to as the energy shift constraint. The total load that is
shifted from one point of time to the other periods is equal to the available flexible
demand at that specific period. The equality constraint makes sure that demand shifted
from one point of time must be served within a certain time interval. Therefore demand
recovery which is one of the problematic aspects of many applications is satisfied in

this model.
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The main purpose of demand shifts is to reduce costly production from conventional

_T\t=T
resources. Thus, the decision about flexible demand shifts {{ flﬂ}rj} over the
==

horizon {L,..., T }is closely related to the generation from conventional sources {q, } |

. Therefore, in Stage 3, SO also decides on electricity generation from conventional

sources. Note that for each period te{l,...,T}, the SO first uses the available
renewable resources ¢, and then generates from conventional sources g, to meet the

demand. Thus total generation in each period is g, +q.,. On the other hand demand

in each period te{L,..., T} is composed of inflexible demand in t d in addition

inflex,t

T=t+n
to the total flexible demand shifted from other periods to period t > f_ . The total

T=t—-n

T=t+n
demand that must be served at the time te{L,...,T} is then Qiioce + 2 fop- Total

t=t-n
generation must not be less than the total demand for each te{1,..., T}, which lead us

to the following period-by-period energy balance constrained:

T=t+n

dinflex,t + Z f’t,t < qR,t + qc,t Vte {1' ’T} (49)

T=t—n

SO’s profit for each te {lT} is composed of three parts: revenue from inflexible

demand pd revenue from total flexible demand that is served at time t

inflex,t ?

T=t+n
Paec 2. f..» Minus the cost of conventional generation pg,at time t. Thus

t=t-n

T=t+n

nSO,t (qc,t’{f-r,t }thm) = pdinflex,t + pflex z f-r,t - pqc,t Vte {1’ ’T} (410)

T=t-n
t=t-n

Summing up the revenues over the entire planning horizon {1,...,T}to obtain the Total

Revenue:
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=t+n) T T r=t+n
M fou ] {0} =S (a1

(4.11)

T 7=t+n
= Z( pdinflex,t + DPrrex Z fr,t - pqc,tj
1

r=t-n

Therefore, given {p,pﬂex},{qRYt}I and {dﬂexyt,dinﬂexyt}i, SO solves the following

revenue maximization problem:

SO’s profit maximization problem at Stage 3:

T r=t+n
MaX|mlze HSO = Z( pdinﬂex,t + pﬂex Z fr,t - pqc,tj

foodk {1t0) I o
(4.12)
subject to
T=t+n
Qo + O Ty SOpe+0e,  Vie{l.. T} (4.13)
T=t—n
t=t+n
Z fo.=dp, Vte{l.. T} (4.14)
T=t—n
Qe fi; =0 Wi je{l,...T} (4.15)

Stage 2 solution for the RCE

Stage 2 does not have any input from Stage 3 results. Stage 2 solution is given above
in the “demand side” section. The result of Stage 2 is passed to Stage 1 as the following
constraint:

d flex 1 dinflex € ar%max (U (dinflex ' d flex ? :u) :s.to dinflex,t + d flext = 5t’ pd flex t + M= pflexd flex,t)

p
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which is amended to the Stage 3 results

Stage 1 solution for the SO

In this stage, the System Operator determines the profit-maximizing p,,, considering

Stage 2 and Stage 3 equilibrium solutions. Thus, anticipating the Stage 2 and Stage 3

outcomes, the system operator solves the following maximization problem at this

stage:
. . .. T r=t+n
Maximize MaX|m|zeT Z(pdinflex,t + Priex Z fm - pqc,tj
S (TR L o
subject to
r=t+n
dinflex,t + Z ff,t < qut + qcvt Vte {1,,T}
7=t-n
r=t+n
Z ft,r :dﬂex,t VtE{l,,T}
7=t-n
Qo fi; 20 Vi, je{l,.., T}
0 fex Dinfex €
ar%max (U (dinﬂex’d flex’lu) : S'to dinflex,t + d flex,t = [_)11 pd flex t + @/V[ = pﬂexd flex,t)
P

The maximization operator outside the parenthesis can be taken inside to obtain the

following objective function:

T 7=t+n
|\/|aXImIZ€ TZ( pdinflex,t + pflex Z fr,t - pqc,tj

pflex v{qc‘t }I v{{ ff,t}:t:}l 1 7=t—n

The resulting problem will be a bi-level optimization problem such that the upper-level

problem consists of the S.0.’s profit maximization over the decision set of
P {0, ,{{fm}zt:}z and the lower-level problem is the utility maximization problem of
the consumer over the choice of d,, ,d ., . Note that in this specific case, the problem
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can also be converted into a single-level non-linear optimization problem by replacing

the lower-level problem with the value functions of d.,_,,d However, to account

flex * Minflex *

for a variety of cases, we prefer to formulate the resulting problem as a bi-level

optimization problem. The resulting bi-level optimization problem is given

T r=t+n
Maximize = Il = Z[ Pintiexs + Priex Z f.- pqc,tj
1

_ T
Pl {1 0, =t

subject to

7=t+n

dinflex,t + z fm SOge +0c, Vie {1,...,T}

r=t-n

O fi; =20 Vti, ] e{l,...,T}

L=

= argmax U (dinflex’dflex’:u) :sto dinflex,t +dﬂex,t = ISt’ pd flex,t +M

D.p = pflexd flex,t

dexo d

flex * Yinflex

(4.16)

4331 Existence of the solution:

The following definitions are useful to show the existence of the solution:

1. Constraint set of the problem:

Q={(Ppers fiir G Do A ) 41,413,414 and 415 hold|  (4.17)
The constraint set of the problem corresponds to the combination of all possible choice

sets of the System Operator and the Customer

2. Feasible set for the customer for each py, :
The feasible set of the customer is governed by the constraint in (4.1)
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Y( pflex) = {(dinflex’ d ﬂex) : dinflex,t + d flex,t = _t } (418)

In fact, in this specific bi-level problem, the choice of S.O does not have any effect
on the feasible set of the customer. Since ex-ante Demand is assumed to be fixed D

all (e d e ) COMbinations such that d, g, +d,, = Dare feasible for the

inflex flex

customer.

3. Projection of constraint set Qonto S.O. problem:

t+n t+n

V= {( pflex’ fi,i’qc,t) : El(dinflex’dflex)’ dinflex + Z fi,t < qR,t + qc,t’ Z ft,j =df|e><’ qc,t' fi,j 20
t-n t-n
(4.19)

This set is the subset of the constraint set Q and refers to the combination of possible

choice sets of the S.0. defined for all possible (d; g, d e, ) -

4. The Customer rational reaction set for each p,,, € V¥:
The customer observes the p,,., choice of S.O. and responds to maximize her utility.
Thus, the set is the collection of the optimal (dinﬂex,dﬂex)values out of the customer

optimization problem against the selection of each possible p,,, € ¥ by S.O.

A(pf ) = ar%max (U (dinflex’dflew/u) :s.to dinflex,t + dﬂex,t = [_)t’ pd flext T M= pﬂexdflex,t)
P

(4.20)

It is also important to note that customer rational reaction corresponds to a single

solution for each p, since the customer has a strictly concave utility function.

5. Inducible Region:

The S.O. problem depends on upper-level constraints some of which are conditional
on the lower-level decision. The S.O. does not have any direct control but can
influence the lower-level decision. Since the lower-level problem has a unique solution

for each py,, , the S.0.’s choice of each pg,, results in a specific lower-level decision
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and thus results in a specific choice set for the S.O. Therefore, each p,,, induces a

specific constraint set for the upper-level problem.

The inducible region is the union of the feasible sets for the S.O. for each optimal

solution ;e 0y, OF the Customer against each p,, .

I'= {( Piexs fiir dos Dinpiee dﬂex) : ( Prex: fiis O Dingex» d flex) €Y s A s € A( pﬂex)}

(4.21)

In fact, the inducible region refers to the choice set of the upper-level problem which
is constructed on the optimal solution of the lower-level problem. Therefore, the

complete problem of the S.O. turns out to be a selection out of the inducible region.
Lemma 1: For a nonempty constraint setQ, the inducible region I'is closed.

Proof of Lemma 1. For better readability and saving notation, let
X={Pgo fijs 0o} tiJe(L.T) be the upper level and
y = {dinﬂex,t,dﬂexyt} te(l...,T) be the lower level choice vectors respectively. Since

Q is nonempty, by definition 3, there exists at least one x” ¥ . By definition 2 in
the equation (4.18), the feasible set of the customer is nonempty, thus Y(x") # ¢ . Since
the lower level problem is compact we have A(X')#¢ and hence there exists

Y, € A(X"). Therefore (x,y,)el’, which shows that the inducible regionT is

nonempty. Consider a sequence {(x“, y”)} “cT converging to(x",y") , definition 4

n=1
implies that y" e A(x") . Therefore, Tis closed.

Corollary 1: For a nonempty constraint setQ, the optimal solution for the System

Operator problem exists.

Proof of Corollary 1: From Lemma-1, I'is closed. I'is also a subset of the constraint
set Qwhich is bounded, thus it is compact. By the Weierstrass theorem, the optimal

solution exists.

Proposition-1 (Pareto Improvement): If the optimal solution to the above problem

P IS such that Pg., # P, the solution is Pareto efficient.
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Proof of proposition-1: The proof is straightforward. The customer is a utility

maximizer. They select d,,,andd such that

flex,t inflex,t

Ointied (Dintiex) T ey (A ) +,,U [Mj >U (D) Therefore customers are better off.
P

The System Operator chooses P; # Pif only Rev(p,)>Rev(p), therefore, the

producer is better off when p; # .
Definition-1:

i) Set of the periods with excess demand K ={k : g <5k}: Collection of

periods where demand exceeds available renewable energy at that period.
i) Set of the period with excess renewable energy generation

L={l:q;, > Di}: Collection of periods where available renewable energy

exceeds the demand at that period.

Theorem-1: For non-empty K and L, there always exists an optimal price for flexible

usage py., Which is strictly less than the market price p, i.e. py, < p, such that the

model provides an improvement in the profit and utilization of renewable energy while
the customer is not being worse off. That is if there exists at least one period with
excess renewable energy production and there exists at least one time period with
excess demand, the model increase the profit of the System Operator and renewable

energy utilization for a price py,, < p.

Proof of Theorem-1: The proof of the theorem is presented in Appendix.

4.3.4 The Social Planner Perspective

The base model has been configured from the producer's perspective to utilize
renewable energy more efficiently through revenue maximization. However, the
overall cost structure of the implementation of renewable energy, related support
mechanisms, and also how this cost is reflected to the end users are quite complicated.
Thus, in some cases, the objective might be to maximize renewable energy utilization

regardless of the marginal revenue improvement. The model could be modified to
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fulfill this objective. In this case, we introduce a Social Planner who is responsible for

price settings for flexible usage p,, . The S.P.'s objective is to maximize renewable
energy utilization and set p,, accordingly. In general retail electricity prices are

heavily regulated. Since the marginal cost is generally lower than the average cost,
marginal cost pricing is not sustainable. Therefore, another pricing strategy which is
referred to as Ramsey pricing or second best pricing is used. This pricing strategy
leaves a certain amount of revenue to the suppliers to make sure that the average cost
of generation is covered in the long run. In our modeling, we also use a restriction for
the revenue in S.P. problem such that S.O. collects at least the same amount of revenue
if the model were not used. Let the revenue that the S.O. could make without the model
is referred to as nominal revenue. So, in the optimization, the S.P. include the

restriction that the revenue of the S.O. will be greater or equal to the nominal revenue.

The setting of the game defined in Section 2 is modified as follows:

Stage 0: Nature reveals{s,,....s,,...s; } ={s,}, where s,eQandte{l,..,T}

t=1

Stage 1: Social Planner chooses p,,, to maximize renewable utilization while keeping

producers not worse-off.

and d.

inflex

Stage 2: the Consumer chooses d out of Utility max Problem

flex

Stage 3: System Operator decides the Revenue maximizing demand shifts f; ; and

and d.

conventional generation amounts ¢, according to the available d inflex. StAQE-

flex

2 and anticipated Production profile for renewables.

The Solution to the SP’s Problem

Stage-3 and Stage-2 solution is the same as in the previous case. Backward induction

from Stage-3 to Stage-2:

Let A be the Stage-3 and Stage-2 combined problem in backward induction
vte(d...T)

83



r=t+n

T
MaXimiZe Z( pdinflex,t + pflex Z fr,t - p
1

_ T
foeal fir ]

subject to

r=t+n

r=t-n

=dg, Vte{l..,T}

oo i, 20 Vi jell..T}

d - d

flex ' Minflex

€ argmax
D.p

[U (dinfiexs A frexr 12) 2 S:1O dinflex,t +d flex t
= pﬂexdﬂex,t

N

dinflex,t + Z fr,t < qR't + qC’t Vte {1,,T}

=D,, pd

flex t

+ M

Stage-1:

(4.22)

Different from the base case, we need to define the nominal revenue for the

producers. Nominal profit of the producer:
Py=p>_Max(dy,, D,)
T

Thus the problem of S.P.

subject to
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4.4 Numerical Study

In this section, we will provide numerical examples based on actual demand data and
actual renewable energy production profiles. We consider daily optimization periods
and hourly data for numerical studies.

4.4.1 Data and Materials

Demand Data

We use realized actual demand data from California 1SO in order to attain more
realistic results. Since consumption patterns change from week-day to weekend-day
and also from season to season, we consider four categories just for diversity: summer
week-day, summer weekend-day, winter week-day, and winter weekend-day. A
random day which is 15.01.2020 is selected as a representative demand profile for each
category from 2020 consumption data. (note that the number of categories and number
of demand profiles for each category may be increased, however, we believe that the

examples provided in this study are enough to demonstrate the output of the model).
Production data

For renewable energy production profiles, we use exactly the same day corresponding

to selected demand dates for each category.

Scheduling of renewable generation such as PV and Wind is completely dependent on
the weather condition. This means that for a specific location, installed capacity does
not have any considerable effect on the profile of renewable generation for a definite
technology. Thus, when the installed capacity is increased by a certain factor, the
output would increase proportionally with the same production schedule profile.
Although we use the realized renewable energy production profile, based on this idea,
we developed two kinds of production scenarios having different renewable energy
generation quantities for each category. In addition to renewables, the portfolio of

generators consists of several sources like natural gas, coal, nuclear, etc., and imports.
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Realized Profiles 15.01.2020
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Figure 4.1: Realized Demand and Renewable generation data

However, just for simplicity, we refer to all these resources as ‘“conventional
generation”. We also assume that there is a perfectly competitive market for the
conventional generation which allows us to assume that marginal production cost is
equal to market price p. Figure 4.1 exhibits realized the demand and renewable

generation on 15.01.2020 which is an example for the winter weekday category

442 Scenarios

Scenario-1: This scenario assumes that the installed capacity of renewable is increased
such that the quantity of total daily renewable energy production matches with the total
daily demand realized on that date. Nevertheless, due to the difference between the
demand profile and production profile, additional conventional generation needs to be
dispatched for the hours when the generation amount falls below the demand, and
over-generated power is wasted for the hours when the generation quantity exceeds
the demand. This scenario highlights the inefficiency of the current market structure
under intensive renewable energy penetration. Although the total daily generation of
renewables is sufficient to satisfy total daily demand, due to the scheduling difference

additional production is needed while renewable production cannot be fully utilized.

Scenario-2: In this scenario, installed capacity is increased such that total daily
renewable energy production corresponds to 50% of total daily demand. In addition,

there is a must-run fixed conventional production facility which accounts for only 25%
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of the total daily demand. Additional conventional generation is dispatched whenever

needed in order to maintain the balance between demand and supply.

Example scenarios generated with 15.01.2020 data are presented in Figure 4.2. From
the customer’s point of view, the degree of commitment to flexible usage depends on

the utility weights & and risk awareness p parameters. These parameters are

completely case-specific and should be carefully tuned according to the characteristics
of the market. Nevertheless, for numerical study, we consider two different sets of
parameters: one for the case where the customer is relatively less responsive to the
discounted price which we refer to as the pessimistic case, and one for the case where
the customer is relatively more responsive the discounted price which we refer to as

optimistic case.

Scenario-1 Generation & Demand Profiles Scenario-2 Generation & Demand Profiles
600000 600000
-
500000 ! \ 500000
/ \
400000 | \ 400000
I
h \

3

€ 300000 R o - Z 300000

200000 N \ 200000 e
-
100000 \acemaa= 100000
0 0

123456789101112131415161718192021222324 123456789101112131415161718192021222324
hour hour

=+ demand === fixed generation =« demand === fixed generation

Figure 4.2: Scenarios generated with sample day 15.01.2020 data

We investigate both scenarios under both optimistic and pessimistic customer

parameter sets separately. The parameters and corresponding alfa values vs p,,, are

depicted in Figure 4.3:
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Customer Best Response
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Figure 4.3: Pessimistic and Optimistic Customer Response cases

In the pessimistic case, both the level and rate of commitment are lower than that of
the optimistic case. On the contrary, the Consumer commits to flexible usage easier

and more frequent.

4.4.3 Methodology

The upper-level Producer revenue maximization problem is conditional on the optimal
values of the lower-level customer utility maximization problem. Due to the non-
convex nature of the bi-level optimization problems, the solution to both of the
problems at the same time is not possible with industrial optimization tools. Finding
the solution to such bi-level problems is complicated and several algorithms such as
penalty function methods, single-level reduction methods, decent methods, nested
methods, etc. have been proposed in the literature(ref). The success and efficiency of

each method are related to the structure of the problem. In this work, we will use a
nested algorithm in which we solve the customer problem for each possible Py, value
and use corresponding optimal values in the constraint set of the S.O. problem. In our

problem, the System Operator problem is linked to the customer problem through p;

which also makes the S.O. problem non-linear. When pP;is set exogenously and a
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corresponding optimal solution for the customer is obtained, the S.O. problem turns
out to be a linear program. Although the number of iterations is increased in nested

methods, computation effort is significantly reduced in each iteration.

We do the related calculations in three steps. In the first step, 5-min data is converted
to hourly data, total demand, total renewable energy production, ex-ante revenue, ex-

ante renewable energy utilization, renewable energy generation scenarios, set of «
values are calculated and Customer problem is solved for different P; values to obtain

and d.

inflex

and d.

inflex

corresponding d values. In the second step, for each p,,, d

flex flex

which are obtained in the first step, optimal demand shifts f, ., conventional energy

i,j?
dispatch quantities g, , and revenues are calculated. In the post-processing stage P,
values that generate maximum revenue is selected as the optimal solution. Also, ex-
post revenues, ex-post renewable energy utilization, improvement in revenue, and

improvement in energy utilization are calculated. The process and the tools are

summarized in Figure 4.4.

1. Data Preperation & Customer 2. System Operator Problem 3. Post Processing
Problem
data import, data initializiton, ex- System operator problem opt., data export, ex-post values,
ante values, scenarios, customer ™ demand shifts, conventional N visulization
problem opt. generation, revenue
Python Script IBMILOG Cplex Python Script, MS Excell

Figure 4.4: Computational Methodology

444 Results

This section discusses the main results and findings on several aspects of the model.

The plots of total revenue vs P; for all cases are provided in Figure 4.5.

e In all cases, total revenue first increases with a decrease in P;, reaches a

maximum point, and then decreases. This result is consistent with Theorem-1.

There is always positive revenue when there is any excess renewable energy.
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However, the rate of marginal revenue gain diminishes due to the decrease in
revenue as a result of decreasing P .

e In optimistic cases, the rate of revenue increase is higher compared to the
pessimistic counterparts since a higher volume of flexible demand could be
obtained by a relatively smaller discount. Therefore, the optimal point could

be reached rapidly.

Scenario-1, Optimistic Case Scenario-1, Pesimistic Case
5400000
5300000

5200000

5100000

usp

pv pv

Scenario-2, Optimistic Case Scenario-2, Pesimistic Case

usb

pv pv

Figure 4.5: Total Revenue vs Discounted Price Py

Total Conventional Generation vs Py, is shown in Figure 4.6. The main finding can

be summarized as:

e Required Total Conventional generation decreases with decreasing Py, .

Therefore, Renewable energy utilization is increasing with decreasing P, .

e The rate of Renewable energy utilization is higher in optimistic cases.

e In Scenario-2 optimistic case, the required total generation decreases rapidly,
and then further decrease in Py, does not improve the renewable utilization

since all the excess renewable generation is used at optimal points. Therefore
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the point where all the excess generation is utilized constitutes the saturation
point for the solution.

Scenario-1, Optimistic Case Scenario-1, Pesimistic Case
0 500000
)000
1 0 1501
1000000 100
500000
0
8 1 9 08 0 0
pv pv
Scenario-2, Optimistic Case Scenario-2, Pesimistic Case
)000
000 2000000
1 0 150
1000000 10
500000
0
8 1 08 0 0
pv pv

Figure 4.6: Total Conventional Generation vs Discounted Price P,

Impact on demand re-distribution:

The problem arising from the mismatch between the demand schedule and generation
schedule is mitigated with the application of the model. The model provides the
decision maker with the ability to control the scheduling of the flexible demand.
Accordingly, the decision maker shifts the flexible demands from low generation time
slots to high generation time slots. The degree of the control is related to the existing

flexible demand which is proportional to (1—e«)according to the equation (4.7).

Optimal solutions for S.P. and S.O. in each case are provided in Table 4.1
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Table 4.1: Optimal Solutions for both SO's and SP's problems in both cases

Optimistic Pessimistic

Total Con. Total Con.

Without model |1 4923200 |1987118 1 4923200 1987118

Pfiex Revenue | Generation P fiex Revenue | Generation

Scenario | S-O. Optimal

1 Solution 0,91 |5365900 |1389431 0,86 |5039100 1799365
S.P. Optimal
Solution 0,68 |4925400 |931322 0,64 |4923200 1581891

Without model |1 4746800 | 2163471 1 4746800 | 2163471

Scenario | S-O. Optimal

2 Solution 0,95 | 5111500 |1727573 0,86 | 4860000 1960000
S.P. Optimal
Solution 0,95 | 5111500 |1727573 0,64 | 4745200 1759902

Demand redistribution as a result of optimal demand shift solution of the decision

maker is the major output of the model. Related demand re-distributions of both S.O

and S.P. for each scenario are depicted in Figure 4.7:

e As expected, in optimistic cases where the customer is more eager to commit

to flexible usage, renewable energy utilization is higher due to more flexible

demand availability.

e Inmost cases, S.P.'s optimal solution yields more renewable energy utilization.

In those cases, there is some potential for further renewable energy utilization

than S.O.'s optimal point.

e In Scenario-2 Optimistic case, S.O. and S.P. optimal points coincide, for the

excess renewable production region, and all the excess generation is utilized.

This is because of the fact that excess generation is less and as a result required

flexible demand is lower. Thus, with the optimistic customer profile, required

flexible demand could be reached rapidly.

e The commitment rate of the consumer which is proportional to ais very

important for the success of the implementation.

92



Scenario-1, Optimistic Case Scenario-1, Pesimistic Case
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Figure 4.7: Demand Re-distribution as a result of model application

45 Conclusion

In this study, a new demand response model is introduced and analyzed. The model
segments the electricity usage into two according to flexibility. The consumer transfer
authority for the exact timing of flexible usage to the S.O. in return for invective in the
form of a discounted price. Discounted price is determined dynamically before every
planning period according to the need for the amount of flexibility. The model uses
both direct load control principles and dynamic price signals together. Hence, the
model has combined benefits from both direct load control and dynamic planning. This
new model requires less consumer involvement relative to the other dynamic pricing
models. The model ensures bill stability and demand recovery in all cases. Moreover,
a more reliable source of flexibility can be obtained through a predetermined direct

load control mechanism.
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The analysis shows that the suggested model always provides overall improvements
in both revenue and renewable energy utilization in the case of excess renewable
energy production. The result of the consumer’s problem shows that the consumer
commits a certain portion of demand to flexible usage proportional to o which is
composed of utility weights, relative prices, and risk aversion parameters. When these
parameters are favorable as in the optimistic scenarios, analysis shows that desired
volume of flexible usage can be achieved rapidly with relatively less discount.
Therefore, promoting an environment in which the consumer can use flexible use

easily and with relatively little risk is key to the model's success.

We also modified the model to include Social Planner as a responsible agent to
determine the discounted price. Numerical analysis showed that the optimal solution
to the Social Planner’s problem provides greater renewable energy utilization in most
cases. However, when flexible demand parameters are favorable and required
flexibility is relatively low, both S.O and S.P reach the same optimal solution with a
little discount since benefits from demand shifts saturate quickly in such cases.
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CHAPTER 5

FORECASTING HOURLY ELECTRICITY DEMAND

51 Introduction

Forecasting the demand for electricity has always been of crucial importance for the
operation of electricity systems and electricity markets as well as the planning of the
power systems. In addition, the liberalization of electricity markets has drastically
increased the need for a reliable forecast of the demand for policymakers, system
operators, generation companies, distribution companies, and market participants
since most of their decisions are based on a priori information obtained through

forecasting.

In general, electricity demand forecasting is divided into three categories depending
on the length of the forecasting horizon. Long Term Demand Forecast covers the
forecasting horizon from several months ahead to years ahead. This type of forecast is
used for the design and development of transmission & distribution networks, capacity
planning, investment decisions, and investment scheduling for new power plants, etc.
Underestimation of long-term demand will result in supply shortage and troubles in
satisfying the demand in the future. On the other hand, overestimating will result in
inefficiency problems in both power systems and power markets in addition to the
waste of capital due to overinvestment. Mid-term forecasting is related to the
forecasting horizon spanning from several days ahead to months ahead. Mid-term
forecast results are useful data that is used in capacity planning, risk management,
maintenance scheduling of the power plant and transmission lines, etc. Short-term load
forecasting corresponds to the forecasting horizon from a few minutes to a few days
ago. Overall, most of the effort is dedicated to short-term load forecasting for several
reasons. Input and output to the power network must be balanced with very tight
boundaries and short-term forecasts are key inputs to the balancing process. In most
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electricity systems, the input-output matching process is initiated in a day-ahead
market. The system operator first forecasts the demand for the following day and then
collects supply offers for each 24-hour for the next day and sequences them in
ascending order in price to obtain the supply curves. The crossing point of the supply
curve with the demand line constitutes the market price for the specific hour of the
next day in the day-ahead market. The major part of demand-supply matching is
performed in the day-ahead market and input and output adjustment for the remaining
imbalances typically continues until the power is physically delivered to the end-user.
Electricity systems rely on different sources to generate electricity. These sources have
different flexibilities and different dispatch costs. Generally, the marginal cost of
production is higher for the flexible sources and lower for the less flexible sources.
Thus, a last-minute dispatch order decision is more costly than the dispatch order
determined in the day-ahead markets, which implies that the cost-effective dispatch
order necessitates a proper day-ahead forecast. The Short-term forecast is also essential
for the market participants. In liberalized power markets, generation companies,
distribution companies, and third parties such as energy brokers enter into price and
quantity competition. Both distribution companies and generation companies as well
as third parties should have a reliable forecast in order to place a proper bid and reduce
associated risks. Therefore, short-term load forecasting is essential and integral
element of the power system and power market operations, which is performed on a
continuous basis. In addition, liberalization of the power markets is still under
progression for most of the countries in the World. Also, policies regarding climate
change and policies promoting renewable energy will affect the way people use
electricity. Novel market models associated with further liberalization of electricity
markets and increased shares of renewable energy will increase the number of parties
involved in power markets. Furthermore, forecasting the short demand will be more
challenging due to the complexities introduced by the policies whereas the need for

decision support systems such as demand forecasting will raise.

In this study, we compare the performance of three univariate time series methods
based on the aggregate electricity consumption data of Turkey. Particularly, the day-
ahead forecast performances of alternative methods are evaluated. Dynamics of the
short-term load forecasting are quite different from long-term forecasting (Rob

Hyndman- density forecasting). Almost all of the factors affecting electricity
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consumption in the long run such as GDP, population growth, electrification, etc. are
stationary and only the weather is effective in the short run. The weather effect can be
captured up to a certain duration by univariate time series since the effect of weather
iIs smooth and also with some lag. In addition, weather information dramatically
changes from region to region all over Turkey at a specific point in time. Hence, when
working with aggregate data of the country, the inclusion of weather variables
smoothly into the analysis is virtually impossible since there is a vector of weather
data indexed by regions corresponding to a single aggregated load value. Therefore, in
such a context, univariate time series are effective methods to forecast short-term
electricity load. The univariate methods considered in this study are Double Seasonal
Exponential Smoothing (DSES), TBATS, and a decomposition technique (MSTL)
combined with a Simple Exponential Smoothing method (MSTL+ETS). DSES has
been studied in the literature since first introduced in 2003 whereas TBATS is a
relatively new method. Among the alternatives, MSTL is the most recent method.
MSTL is the multiple seasonal adjustments of STL decomposition which has been
designed to deal with multiple seasonal data and the algorithm for automated MSTL
is recently developed (Bandara et al., 2021). Up to our knowledge, the application of

these methods to the hourly load data of Turkey is not available.

The result of the analysis shows that MSTL+ETS outperforms DSES and TBATS.
Although DSES has comparable results with MSTL+ETS, TBATS is outperformed in

all the cases.

5.2  Literature Review and Theoretical Background

Hourly electricity consumption data has many characteristics such as complex
seasonality with high frequency and special day variation etc. Daily human activities
have a major impact on the characteristics of the data in hourly resolution. Whit in a
day, electricity consumption varies from a minimum point (baseload) to a maximum
point (peak load). The variation in electricity load depends on many factors such as
economic activities, daylight availability, weather conditions, etc. Generally, the
minimum load is observed before sunrise when both economic and social activities are
at the minimum level. Then, it steadily increases to a peak point. There may be two

peak points one being local, in some regions, or only one depending on the conditions.
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The pattern of daily variation constitutes daily cycling. The cycling pattern differs for
each day of a week although it is alike for similar days, which implies weakly cycling
behavior. The specific characteristics of the data complicate modeling and forecasting
processes. Numerous methods have been proposed in the literature for modeling and
forecasting short-term electricity consumption (Hong and others, 2014) (Abu-EIl-Magd
and Sinha, 1982). In general, these methods can be grouped as time series models,
decomposition techniques, multiple regression, and Artificial Intelligence.

ARIMA Models

Time series models include autoregressive methods and exponential smoothing.
Autoregressive models compose of Autoregressive (AR) and Moving Average (MA)
parts in their general structure (Box et al., 2015). An autoregressive process is the
weighted linear combination of the past observations plus an error term. Pure AR(p)

process is given by:

p
Vi =P Yiat @Yot QY tE = Z(Di Yii T & (5.1)

i=1

- -

i=1

where pis the order of autoregression and L is the backshift operator. On the other

hand, MA(q) process is the weighted linear combination of past error terms plus the

current error term given by:

q
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where qis the order of the MA process. Standard ARMA(p,q) process is the

combination of AR and MA processes given by:

[1—Zp:¢i|_ijyt :[1_§Wiujgt (5.5)

i=1
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Standard ARMA(p,q) family models have restrictive assumptions for instance time
series should be stationary. Non-stationarity due to non-stable variance may be
eliminated (or reduced) by transformations such as log transformation or Box-Cox
transformation. In order to eliminate non-stationarity due to non-stable mean (non-
stationarity due to trend), differencing can be applied to the original data. Such a
differencing procedure can also be included in the model. Finally, the generalization
of autoregressive models is referred to as Autoregressive Integrated Moving Average
ARIMA(p,d,q) given by:

(1 Z(pll_'jl L)’ [1 ZW,UJ (5.6)

where d is the number of differencing needed.

Seasonal ARIMA

Hourly electricity data is always non-stationary due to complex seasonality (Hyndman
and Athanasopoulos, 2018). Non-stationarity in hourly electricity data may not be
eliminated by simple differencing and subsequently classical autoregressive models in
their basic structures may not be appropriate for hourly data with high-frequency
seasonal components. Instead, Seasonal ARIMA models are employed in the form of

ARIMA(p,q,d)(P,Q, D), where P,Q,Dis the seasonal length (Box et al., 2015). In

this formulation, the seasonal term is multiplicative which implies that

(l—g(pil_ij(l—gﬂ |_iSJ(yt — )= (1—iz::wiu](1—§9j US]gt (5.7)

After multiplication:

P ) P ) p P
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(5.8)
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99



Performing the lag operations and rearranging the terms to obtain the open form of the

equation:

ZA¢|yt |+Z¢ yt js Zz¢k¢ yt k—ms ZW| t| zEHgt s
k=1 m=1
+ZZWk tk -ms

k=1 m=1

(5.9)

It is also possible to include double seasonality in ARIMA models in the form of

ARIMA(p,q,d)(P,Q",D%), (P*,Q* D?), where s ands,are the seasonal lengths and

P',Q',D'and P? Q% D?are the seasonal orders for the first and second seasonality

respectively. Representation of the DSARIMA in closed form is:

=

(5.10)
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After performing multiplication and backshift operations and then rearranging the

terms we have the following open form for DSARIMA:
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(5.11)
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Double Seasonal version of Seasonal ARIMA is studied in hourly electricity demand
forecasting and sometimes used as a benchmark in the literature for example (Soares
and Medeiros, 2008) (Taylor et al., 2006) (Darbellay and Slama, 2000). However,
implementation of double seasonal ARIMA models is quite tricky as could be inferred
from the open form of DSARIMA in (5.11). Up to now, there is no build-in function
or package in the standard statistical programs which can accommodate only one
seasonality in ARIMA modeling. Moreover, interpretation of MA terms is difficult in
ARIMA models.

Periodic Autoregressive Models

In addition to Seasonal ARIMA, there are alternative ways to include seasonal
behavior in autoregressive models. Due to its cycling behavior, the seasonality can

be represented by Fourier terms which consist of sinusoidal expression
f, = a, sin ( Zﬁsh‘tj + [, cos(—zzh‘tj :

where s is the seasonal length and h is the harmonic (Young et al., 1999). Fourier terms

can be added to the model as an external variable in the form of
yt - ARIMAX(pIqu! EX)

where

EX = il: f .o +mzl A

Periodic autoregressive regression is another method that incorporates Fourier terms
in the model to account for seasonality (Taylor et al., 2006), (Franses and Paap, 2004).
In Periodic autoregressive models, coefficients are multiplied by a Fourier expression

to reflect the seasonal adjustment. The periodic autoregressive models are represented

by:
V=6 () +6,(t)y,+6, ()Y, +6, (1), +& (5.12)

where
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The key characteristic of this representation is that many aspects of cycling behavior
are represented by Fourier terms rather than including several seasonal lags.

Model Selection and Diagnostics in Autoregressive Models

In order to implement ARMA family methods, a proper model should be selected, i.e.,
proper orders of d, p, and q and for Integration, AR and MA processes respectively
should be identified. Autocorrelation Functions (ACF) and Partial Autocorrelation
Functions (PACF) provide an initial idea about up to how many lags can play an
explanatory role in a stationary time series. However analytical metrics developed for
model selection provide more reliable results. Standard significance tests for model
selection have some shortcomings such as when the sample size is increasing, the
likelihood of rejecting simple models is increased radically and thus favoring over-
parameterization (Kuha, 2004). To overcome this, criteria penalizing the over
parametrization such as Akaike Information Criteria (AIC) and Schwarz’s Bayesian

Information Criterion (BIC) are employed.

AIC which has roots in information theory is one of the widely used metrics to assess
the quality of the model. In general, statistical models that are used to represent the
data generation process for a given data are practically never exact. Therefore, some
information is lost when trying to fit a model over a given data. AIC provides a relative
estimate about the lost information such that the quality of the model could be assessed

with this estimate:
AIC =2k -2In(L) (5.13)

where k is the number of parameters in the model and L is the log-likelihood function.
Since it is an estimate for the lost information, the model with a lower AIC score is

better in quality. AIC is an asymptotically efficient estimator (Flynn et al., 2013).
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BIC is another penalized likelihood estimate. However, BIC is an estimate of the

probability that the model is the true model:
BIC =kIn(n)-2In(L) (5.14)

where n is the sample size. BIC penalizes the number of parameters more than AIC.
Thus, the model suggested by BIC tends to have fewer parameters than or the same

number of parameters as the model suggested by AIC.

Although AIC and BIC have similar penalized likelihood estimates, they have different
implications. AIC is a better metric when the purpose is forecasting and BIC is better
when the purpose is approximating the true model (Chakrabarti and Ghosh, 2011).
Thus, AIC is suggested by many authors since there is almost no exact model in reality
(Hyndman and Athanasopoulos, 2018).

Exponential Smoothing
Exponential smoothing is used extensively in forecasting univariate time series due

to its robustness and accuracy. Just like most time series methods such as ARIMA
family models, exponential smoothing relies on the weighted sum of the past
observations. However, the idea behind exponential smoothing is that more recent
observations get higher weights than the weights of older observations (Hyndman and
Athanasopoulos, 2018). It may be the case for many of the applications that the
predictive value of the information that the recent observations carry may be more
important than the value of the information that older observations have. The simplest

form of exponential smoothing is given as:

yt+1‘t = ayt + (1_ a) ytfl.‘t—Z (515)

Replacing |, =ay,;, +(1-a)¥_;_,| in (5.15) for the past estimates:

Yoar =Y, +a(1—a)ytil+a(1_a)2 Yo +~-+a(1—a)i Y+ (5.16)

Thus, the weight attached to the past observation decreases exponentially as the
observation time gets older. The exponential smoothing method can be customized to
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handle time series with different structures and can be applied to each component, i.e.,
Level, Trend, and Seasonal of a time series if relevant. The Standard Holt-Winters
method was developed to deal with the time series with level, trend, and seasonal
components (Winters, 1960). However, standard Hold-Winters is not suitable for
handling time series with complex seasonality such as electricity load data which has
more than one seasonal cycle. (Taylor, 2003) modified the standard Holt-Winters

method to accommodate multiple seasonal cycles. The methodology is outlined below:

Level: |, = _h +(1-a)(l,+T) (5.17)
dt—slvvt—s2
Trend: T=8(-1.)+1-8)T, (5.18)
Seasonality 1: = 5(| Y J+(1+ 5)d,_ (5.19)
W,
Seasonality 22w, = a)[ | dyt J+ (1+o)w_, (5.20)
tYt-s
Forecast: Vi = (1 +KT ) dig o Wig (5.21)

where equation (5.17), (5.18), (5.19) and (5.20) are smoothing expressions and
a, 3,6 and o are the smoothing parameter for the local level, trend, first and second
seasonalities respectively, while equation (5.21) is the expression for k step forecast.
Note that in the equation(5.21), the forecast expression is adjusted by the product of

two seasonal components d, , W, ¢ ., Which implies multiplicative seasonality. An

additive version of this formulation could also be generated, nevertheless,
multiplicative seasonality is more suitable when the electricity data is concerned.
Moreover, previous studies on exponential smoothing with multiplicative seasonality
indicate that residuals are correlated and AR(1) model can be used for the adjustment
(Chatfield, 1978) (Taylor, 2003).

Taylor (2003, 2006) reported that the modified version outperforms double seasonal

ARIMA in short-term load forecasting. There is extensive literature on the application
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of double seasonal exponential smoothing to short-term load forecasting including the
variants of the method such as the triple seasonal adjustment in (Taylor, 2010) and a
variant enabling the more frequent update of the inner cycle in (Gould et al., 2008),
application to specific data such as in (Bernardi and Petrella, 2015) and (Taylor and
McSharry, 2007) as well as studies using exponential smoothing in comparison
purposes such as (Souzaet al., 2007) (Taylor et al., 2006), (Taylor, 2012). Exponential
smoothing is relatively easy to implement with a few model parameters and provides
decent performance. Another advantage of exponential smoothing is that exponential
smoothing does not require a model specification procedure. These attractive features

of the method led us to choose it as the benchmark model.
TBATS

(De Livera et al., 2011) introduced TBATS in order to overcome restrictions of
exponential smoothing to deal with broader ranges or time series with complex
seasonality. TBATS stands for Trigonometric terms, Box-Cox transformations, ARMA
errors, Trend, and Seasonality. In addition to exponential smoothing, the method
incorporates Fourier terms to represent seasonality, which accepts also non-integer
seasonal lengths. Fourier terms are powerful instruments for modeling any type of
periodic data. Box-Cox transformation is used for heterogeneity and ARMA errors
capture the short-term dynamics. The model can be represented as (De Livera,
Hyndman, & Snyder (2011)):

y, -1
o= A0 (5.22)
logy,, 4=0
*) ol
v =l o+ D s, +d, (5.23)
i=1
I, =1, +db , +ad, (5.24)
b =(1-¢)b+gb, + A4, (5.25)
P q
d, = Z@dtfi + ZQ&‘H & (5.26)
i=1 i=1
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i i 27 | *(j . 27 i
552 _ 52'2_1 cos [_J} ¥ sjftll sin (Tj) +yid, (5.27)

where

. yt“) in (5.22) is Box-Cox transformed time series,
e |, in(5.24) local level smoothing
e Db,in (5.25) is trend component

e d,in (5.26) is the ARMA structure for the errors

and, the model parameters are:

Number of Seasonal cycles

m. Length of the season i

k; Number of harmonics in season i
a Smoothing parameter for the level
B Smoothing parameter for the trend
¢ Damping parameter for the trend

@, 0, | Coefficients of ARMA(p,q)process

71‘,7,; Smoothing parameter for seasonal terms

In general, the TBATS model is designated as

TBATS (4,4, 0,0, {m;, K },.....{my . k; }).

Decomposition

Decomposition techniques together with simple forecasting methods are also used in
short-term electricity forecasting (Wang et al., 2012), (Shao et al., 2017). The concept

behind decomposition is that cycling and trend components are isolated from the data
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so that remaining residuals become more proper to be modeled. According to the
purpose and methodology to be followed, decomposition may be carried out in several
ways. For example, (Goh and Choi, 1984) decomposed electricity consumption data
into the hour of a day, the day of a week, and the week of year components and
modeled those components individually. A more general approach is to decompose

time series y (t) into seasonal s(t), trend I(t) , and irregular e(t)components such

that

y(t)=s(t)+1(t)+e(t).

The seasonal and trend component is modeled with a decomposition method and the
remaining deseasonalized data is modeled by a simple time series method. For such an
application, in addition to classical decomposition, SEATS (Seasonal Extraction in
ARIMA Time Series), X11, and STL decomposition techniques can be used. STL-
“Seasonal and Trend decomposition using Loess” decomposes the data into the
seasonal, trend, and remainder components using Loess regression (Cleveland et al.,
1990). STL decomposition has many advantages in modeling time series with complex
seasonality such as robustness to outliers and accommodating almost any type of
seasonality. Loess is a non-parametric method that depends on local weights to form a
smooth curve fitted to the data points. Thus STL does not require model specification
and parameter estimation. Since it is a non-parametric method, complex seasonality
which is difficult to model parametrically can be modeled with STL decomposition.
There is no restriction on the type of seasonality and any kind of seasonal component
can be modeled with STL. STL decomposition consists of two recursive processes as
an inner loop which is nested in an outer loop. Seasonal and trend components are
smoothed and updated in each pass through the inner loop. In the outer loop, robustness

weights are calculated following the inner loop. Each inner loop consists of six steps:

1. Detrending: Detrended series are obtained by subtracting the trend

component from the series y, — T, where T,“is the trend component calculated

at k™ pass and T.° =0.
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2. Cycle-Subseries Smoothing: Subseries of values at each position of the
seasonal cycle are smoothed by LOESS. The procedure provides the
temporary seasonal series C/*.

3. Low-pass Filtering of Smoothed Cycle-Subseries: A low pass filter consisting
of two Moving Average filters and a LOESS procedure. The result is referred

toas L™
4. Detrending of smoothed Cycle-Subseries: to obtain the seasonal component,

L' is subtracted from the temporary seasonal series to isolate low-frequency

data from the seasonal component. Thus S{* = C/** — L

5. Deseasonalizing: which is simply subtracting out the seasonal component
yt _ Stk+l

6. Trend Smoothing: In order to obtain the trend component T**, LOESS is

applied to deseasonalized series from the previous step.

The outer loop checks the remaining after seasonal and trend components are

isolated and assign robustness weights to each point. Let R, =y, —T, —S, be the

remainder, the robustness weights indicate the degree of the extremity of R,. Then,

these weights are used in the next inner loop pass in steps 2 and 6.

(Theodosiou, 2011) investigated the performance of the STL decomposition technique
and compared the result with traditional methods like ARIMA and Exponential
Smoothing. He used a set of monthly and quarterly data and reported that STL provides
consistently well forecasts for a diverse set of data with different structures. Standard
STL produces a single seasonal component, however, STL can also be used to
decompose data with multiple seasonality into multiple cycling components (Ollech
2018). An algorithm for automated STL with multiple seasonality is recently
developed by (Bandara et al., 2021). The model with multiple seasonal adjustments is
referred to as MSTL. Their procedure first determines whether the time series contains
multiple seasonality or not. Then, the STL procedure is applied iteratively to remove
multiple seasonality starting from the lower seasonal length. The application of MSTL
combined with a simple time series method in forecasting day-ahead electricity load

is almost missing in the literature.
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Artificial Intelligence

Another group of widely used methods in electricity load forecasting is Artificial
Intelligence methods. Among many others, Artificial Neural Networks (Kouhi and
Keynia, 2013), Fuzzy Logic (Pandian et al., 2006), Support Vector Mechanism (Chen
et al., 2004), Gradient Boosting (Taieb and Hyndman, 2014) are some examples. In
addition, Artificial Intelligence is also used in Hybrid models such as ARMA SVM
(Nie et al., 2012).

Application to Specific Data

The performance of univariate methods in short-term load forecasting depends on
several factors. These factors are usually due to the structure of the methods, ie how
the method handles seasonality and the characteristics of the relevant data. For
example, methods such as dynamic harmonic regression, which represents seasonal
components in fixed terms, may yield poor results in periods when seasonality patterns
change. Also, the nature of the data is an important factor, and applying the methods
to different datasets may yield different model specifications and different results.
Thus, our case is a specific one concentrating on the short-term load profile of Turkey.
There are mainly examples of artificial intelligence in the literature on short-term load
forecasting of Turkey's electricity consumption such as in (Topalli and Erkmen, 2003),
(Bilgic et al., 2010), and (Akay and Atak, 2007). (Yukseltan et al., 2017) employs

regression methods whose periodic variations are captured with external variables.

5.2.1 Performance Evaluation

Measuring the performance of the forecast method is one of the critical tasks in
evaluating the validity of the method used and in comparison with the alternatives.
Nevertheless, there is not a single performance measure that is prevailing in every case.
There are several performance indicators used to measure forecast accuracy in the
literature. These performance indicators can be evaluated under two groups as scale-
dependent metrics and percentage-based metrics (Hyndman and Koehler, 2006).
Scale-dependent metrics provide error measures that depend on the scale of the data.

The most commonly used scale-dependent measures are:
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Mean Squared Error-MSE: MSE is defined as the mean of the squared forecast
errors:
13 -
MSE ==>" (v~ 9.)". (5.28)

t=1

Since each error term is squared, the impact of the error on MSE grows with the
increasing deviation from the original data. Thus, only a few large deviations may
result in a poor MSE score even if the rest of the forecasted values are pretty good
(Chatfield and others, 1988). Another issue with MSE is that due to the squaring, the

error metric is not on the same scale as the date.

Root Mean Squared Error-RMSE: RMS is described as the square root of the
average squared error. RMSE brings back MSE into the same scale as the data.

[1 n ]
RMSE = HZ(yt -9,y (5.29)
t=1

Some authors like (Armstrong, 2001) strongly suggest not to use “squared error”
metrics for both comparison and validation of forecast methods since these methods
are very sensitive to outliers and may provide misleading interpretations (Chatfield
and others, 1988).

Mean Absolute Error- MAE: MAE is the mean of the deviations of forecasted values

from the original data. All the errors are treated with the same weight.

MAE = %tznl]yt -9, (5.30)

MAE is useful when the volume of deviation from the original data is important. When
comparing forecast methods with different data sets, scale-based metrics may provide
misleading interpretations since the metric value is correlated with the level of the data
(Armstrong, 2001). When comparing across data sets as well as across alternative
methods, percentage-based metrics provide more reliable results. The most commonly

used percentage-based metrics are:
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Mean Absolute Percentage Error-MAPE: MAPE measures the accuracy of the
forecast by taking the average of percentage deviations. The percentage deviation is
calculated for each forecasted value separately and then their simple average is taken.

N _ A
MAPE = = Y=Y (5.31)
ey A

MAPE is one of the most commonly used and recommended error measures in the
literature (Bowerman et al., 2005). Feasibility and consistency in risk minimization of
MAPE usage are shown in (De Myttenaere et al., 2016). Scale independence and easy
interpretability of MAPE make it popular in industrial applications in addition to
academic studies (Byrne, 2012). However, MAPE has some disadvantages when the
level of the actual data is very small, especially when the actual data is close to zero
(Kim and Kim, 2016). The reason for this disadvantage is that MAPE expression in
(5.31) has the actual value in the denominator and a very small actual value may result
in large MAPE values. However, hourly electricity data fluctuates between a base point
and peak point which are quite far from the origin. Therefore, MAPE is one of the most

convenient performance metrics for forecasting hourly electricity consumption data.

Scale-dependent metrics can also be converted into percentage-based metrics.

However, the interpretation of the metric completely changes.

Root Mean Squared Percentage Error-RMSPE: This metric is a variant RMSE in

such a way that an error in RMSE is replaced by a percentage error

2
RMSPE = \/1 Z(—yt - yt}

N Yi

5.3  Data and Methodology

5.3.1 Data

Hourly electricity consumption data from 16.09.2019 to 09.12.2019 is used for
empirical analysis. The data is extracted from EXIST Transparency platform

database(https://seffaflik.epias.com.tr/transparency/tuketim/gerceklesen-
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tuketim/gercek-zamanli-tuketim.xhtml). The data set consists of 2016 hourly
consumption observations. The set of the last 368 observations which corresponds to
the last two weeks' hourly data is allocated as test data and the remaining data

consisting of 1680 observations are assigned as training data to optimize the model
parameters.

The complete data is depicted in Figure 5.1.
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Figure 5.1: Electricity Consumption in Turkey from 16.09.2019 to 08.12.2019

Source: https://seffaflik.epias.com.tr/transparency/tuketim/gerceklesen-

tuketim/gercek-zamanli-tuketim.xhtml

It can be seen from the figure that consumption is always well above the x-axis and
fluctuates within certain limits. The minimum level of demand over a period of time
is referred to as base load. Therefore, the base load also reflects the minimum quantity

of generation required for all time points in that period. The descriptive statistics of
the data are provided in Table 5.1.

Table 5.1: Descriptive Statistics of the Consumption Data

Consumption(MWh)
Minimum  Maximum Mean Median S.D. 1% Qu. 3" Qu.
23269 41933 31863 32348  3981.7 28246 35066
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In general, electricity consumption data exhibits daily and weekly cycling behavior
due to sunlight availability, daily routines such as working hours, weekly routines such
as weekend holidays, etc. Turkish electricity consumption data is not an exception to
this. The Daily and weekly cycles are visible in Figure 5.2 which presents a closer
view of the date for two weeks. Since the data is hourly, a period of 24 is set for daily
seasonality and 24*7=168 is set for the weekly seasonality.

Figure 5.2: Weekly and daily cycling of the data

Source: https://seffaflik.epias.com.tr/transparency/tuketim/gerceklesen-

tuketim/gercek-zamanli-tuketim.xhtml

There are some specific characteristics of daily cycles. Average hourly consumption

data for each day of a week is presented in

Figure 5.3. The line represents the average hourly consumption whereas the blue shade
corresponds to 95% confidence intervals for data. 95% confidence intervals are
generated using the sample variance of the load in each hour on every weekday. First
of all, all daily cycles are not identical and there are certain differences between
weekday and weekend days. In general, the cycling behaviors on weekdays are similar.
Electricity consumption decreases from midnight towards the morning and eventually

reaches the lowest point somewhere between 4:00 and 5:00. From this point, it
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gradually increases until noon-time. Then, there is a local drop in consumption
between 12:00 and 13:00.
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Figure 5.3: Average hourly consumption profiles for different days
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The main reason for this specific drop is the lunch break during which electricity
consumption of the industry and service sector decreases. Next, electricity
consumption ramps up to reach the daily peak around 19:00. On Friday, the period of
drop in noontime is longer than the periods on other weekdays which is due to Friday

prey.

Although the cycling pattern on Saturday is similar to that of weekdays, the level of
consumption during working hours is less. The situation is mainly due to the fact that
Saturday is a free day for only part of the industry and service sector. Sunday is totally
different from the other days. The lowest consumption on Sunday occurs around 7:00
and there isn’t any definite noon peak. Also, the level of consumption is considerably

lower than the other days during day time.

On Friday, the period of drop in noontime is longer than the periods on other weekdays
which is due to Friday prey. Although the cycling pattern on Saturday is similar to that
of weekdays, the level of consumption during working hours is less. The situation is
mainly due to the fact that Saturday is a free day for only part of the industry and

service sector. Sunday is totally different from the other days.

5.3.2 Methodology

In this study, three alternative univariate time series models, DSES, TBATS, and
MSTL+ETS are used. First, the model specifications that best fit the data are provided,

and forecasts out of these models are evaluated.
DSES

Double Seasonal Exponential Smoothing outlined in (5.17)-(5.21) is used in the
analysis. Different from many other forecasting methods, double seasonal exponential
smoothing does not involve a model specification step. However, in order to
implement the method, starting values of the levels and smoothing parameters must be
specified. There are some alternative ways to estimate the initial values such as using
the simple average of the first few data (Williams and Miller, Taylor 2003). However,
estimating all the parameters simultaneously from the data provides more reliable

results compared to the other alternatives. Starting values and smoothing parameters
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can be obtained by minimizing the sum of squared errors of one step ahead forecast.

Let & =Y, — 9t‘t_l be the residual from the forecast for time t, the sum of squared errors

for the data set consisting of N observation is given by

SSE = thz = Z(yt - yt\t—l)z (5.32)
N

N

Unlike the stochastic processes such as autoregressive models, no specific formula
provides SSE in exponential smoothing. Parameters that minimize SSE in (5.32) can
only be obtained through non-linear optimization methods.

TBATS

TBATS model is designated as TBATS(A,4,p,q,{m.k },....,{m; k;}). The

estimation and model selection process for TBATS module is explained in (De Livera
et al., 2011) in detail. TBATS estimation procedure is constructed on the reduced form
of the conditional likelihood function which is derived in Section 3 of (De Livera et
al., 2011):

£(Q)=nIog(SSE*)—Z(a)—l)ilog Y, (5.33)

t=1
where Q is the vector of parameters and SSE” is the optimized sum of squared errors.

There may be special TBATS model formulations for example with or without Box-
Cox transformation, with or without ARMA errors, etc. The final form of the model is
selected by AIC; the model with minimum AIC is selected among the alternatives. For
the inclusion of ARMA errors, a two-step procedure is followed. First, an appropriate
model without ARMA error is fitted and an ARMA model is applied to the residuals
to find the optimum p and g values. Then, in the second step, the TBATS model with
ARMA(p,q) error is fit. However, in this case, all the parameters including p and g are
estimated simultaneously. The final decision to keep ARMA error is based on the AIC;

ARMA error is kept if AIC is improved upon inclusion.
MSTL + ETS Model

In this study, the MSTL+ETS model is used. Seasonal and trend components are first
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modeled with the MSTL decomposition technique. Then exponential smoothing (ETS)
is applied to model the subsequent residuals. In general, exponential smoothing is
referred to as ETS(Error, Trend, Seasonal) and there are several alternative exponential
smoothing model formulations. Those alternatives arise from the possible combination
of error, trends, and seasonal components. Possible candidate components are as

follows:

e Error: Additive (A), Multiplicative (M),
e Trend: None (N), Additive (A), Additive damped (Ad),
e Seasonal: None (N), Additive (A), Multiplicative (M).

For example, ETS(A,N,M) corresponds to an exponential smoothing model with
additive error, without trend component and multiplicative seasonality. In total, there
may be 18 possible ETS models. Nevertheless, since trend and seasonal components
are modeled with STL decomposition in our case, possible candidate models for the
residuals are without trend and seasonal components. Therefore, the simple ETS
formulation of ETS(A,N,N) and ETS(M,N,N) are the only two feasible candidate
models that are suitable for detrended and deseasonalized data. The final selection of

the model between two feasible alternatives will be based on information criteria AlIC.

54  Empirical Results

Empirical analyses are carried out in order to assess the individual and combined
performances of the methods presented in the previous section. First, the model
parameter that best fits the data is calculated for all methods and then forecasts are
performed with specified models. Particularly, the day-ahead forecast of the next day’s
hourly demand for the entire 24 hours is performed. That is, after fitting the model
using training data, the forecast for the next 24 hours is performed and compared with
the test data to assess the performance. Then the training set is updated and the forecast
for the following 24 hours is performed. The procedure is repeated for 14 days in a
moving window forecast fashion. The procedure is visualized in Figure 5.4. Thereby,
forecast results for the three models are obtained for the test period. First, the
individual performances of the methods are analyzed and then compared with each

other.
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Figure 5.4: Moving Window Forecast

In our comparison, MAPE (Mean Absolute Percentage Error) is used as a performance
metric as it is an appropriate and commonly used error metric in forecasting electricity

load.

~

N —_—
MAPE = = S Y%
N Y

(5.34)

DSES

The model parameter estimated using the training set is given in Table 5.2. Note that
these parameters are estimated through a non-linear optimization technique, not based
on a likelihood function. Thus the forecast out of this model provides point estimates

rather than forecast intervals.

Table 5.2: Optimized parameters of Double Seasonal Holt-Winters Model

Double Seasonal Exponential Smoothing AR(1) adjusted

a A 1) w ¢
(Level) (Trend) (Seoasonal-1)  (Seoasonal-2)  (AR(1) error)
0.0117 0.0579 0.2189 0.2281 0.8937

Forecasts are performed for each day of the test series. A forecast for one day is

presented in Figure 5.5 as an example.
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Figure 5.5: Forecast of DSES for one day

TBATS

TBATS Model that best fit to the data is TBATS (0.127, {0,5}, -, {<24,11>,
<168,6>}). The daily seasonality is represented by 11 harmonics while the weekly
seasonality is represented by 6 harmonics. There is no AR part in the residuals and
MA part has five legs. Also damping for the trend is not applied in the final model. An

example forecast of TBATS for one day is presented in Figure 5.6
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Figure 5.6: TBATS Forecast example for one day
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MSTL+ETS

A segment corresponding to the last five weeks from MSTL decomposition of the data
is depicted in Figure 5.7. The plot on the uppermost panel of the figure belongs to the
original data. The panel under the original data is the trend component followed by
components for two seasonal cycles of 24-hour and 168-hour periods. The component
for the residual is on the bottom panel of the figure. As a second step, simple

exponential smoothing is fitted to the residuals.

Between two candidate ETS models of ETS(A,N,N) and ETS(M,N,N), ETS(M,N,N)
provides slightly better AIC value. Therefore, ETS(M,N,N) is selected to model the

residuals.
The resulting model turns out to be:
Model: MSTL+ETS(M,N,N)

Smoothing parameters for the simple ETS(M,N,N) is « =0.8753
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Figure 5.7: Multiple STL decomposition of the data

The forecast of MSTL+ETS method for one day is presented in Figure 5.8 as an

example
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Figure 5.8: STL+ETS Forecast Example for one day

Comparison of the performances

In this section, individual performances of the forecast methods are compared. The
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Figure 5.9: Day-ahead forecast MAPE for 7 days

comparison is carried out based on MAPE values. Day-ahead forecast MAPE values

for each model for 7 consecutive days are presented in Figure 5.9.
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MAPE of forecast from TBATS is always higher than MAPE of STL+ETS inall 7

days and higher than MAPE of DSHW in most of the days. DSHW and STL+ETS

have comparable MAPE values but STE+ETS provided a slightly better result. The
7-day-average day ahead MAPEs are presented in Table 5.3

Table 5.3: 7-day-verage MAPE values for

DSHW MSTL+EST TBATS

Average MAPE 1,234779 1,024888 1,948151

MSTL+ETS has the lowest average MAPE value. STL+ETS outperforms TBATS
both on average and on each day. Although STL+ETS has marginally lower MAPE
than DSHW on average, there are specific days in which DSHW performs better.

55 Conclusion

Over the last decades, there has been a growing need for a reliable electricity demand
forecast. Especially, short-term load forecasting become a very important component
of daily system and market operations. Various stakeholders of electricity systems and
markets need such forecasts for a variety of reasons. Moreover, the required level of
accuracy, complexity, resolution and forecast horizon, etc. may be rather different
from application to application. In addition, electricity load depends on many factors
such as weather conditions and exhibits cycling behaviors. The complexity of the
problem leads to a large number of methods for forecasting hourly load. Univariate
methods provide promising results for the aggregated load data. Yet, there is no single
method that is superior in every case. In addition, the performance of a method may

vary for different data sets.

In this study, we compare the performance of three alternative univariate forecasting

methods using hourly load data of Turkey. Among alternatives. MSTL decomposition

method provides better results than DSHW in forecasting most of the days and strictly

dominates TBATS in each case. In this kind of performance comparison, methodology

and problem setup have a considerable effect on the results. In this work, each time
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the forecast for 24 hours of the next day is performed, the average MAPE of the 24
hours forecast is calculated. This procedure is repeated for each of the 7 days in the
test data. The motivation behind this method is that in day-ahead markets studied in
Chapter 3 and also proposed Demand Response method in Chapter 4 both require
accurate forecasts for 24 hours of the next day.
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CHAPTER 6

CONCLUSION

Electricity markets face challenges from transitioning to low carbon generation.
Particularly, integrating large-scale renewable energy requires various changes in the
existing systems. To facilitate a smooth and sustainable transition, carefully designed
market mechanisms incorporating both technical and economic aspects, as well as the
policies to implement and support those mechanisms are required. Because of the
complexity of the systems and multidimensional challenges, a variety of fields may
contribute to dealing with these challenges. However, among many others, economic
analyzes are of great importance since the current transition is not technology bounded
but rather a network, resource, markets, and operations-oriented. This dissertation
aims to contribute to the current literature on electricity markets and the integration of

renewable energy by addressing several topics.

Chapter 2 provides the basics of the electricity value chain and electricity market.

Moreover, this chapter discusses the current challenges in the electricity markets.

In Chapter 3, inefficient equilibrium prices in the wholesale electricity market are
studied. Due to the intermittency and almost zero marginal cost of renewable energy,
equilibrium prices are affected negatively. Improper price signals threaten supply
security by discouraging new investment. In this study, specifically, the impact of
different support mechanisms, ownership structures, and cost structures are
investigated. The results indicate that non-market support mechanisms result in lower

equilibrium prices. Moreover, firms’ behavior is affected by ownership structure.

Chapter 4 proposes a novel Demand Response method. Demand Response methods

have great potential in mitigating the adverse effect because of the intermittency of

renewable resources by transferring flexibility from the supply side to the demand side.

The suggested model has numerous advantages compared to the alternatives in the
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literature. It is relatively easy to implement by consumers and provides greater
flexibility to the system operators. The model is also flexible to be modified to include

a variety of cases.

Chapter 5 models and compares three alternative univariate forecasting methods by
using the electricity load data of Turkey. Specifically, Load forecast performances for
the entire 24 hours of the next day are compared. MSTL which is relatively new
provides better results compared to TBATS and DSES. TBATS demonstrated the
worst overall performance on average and on each time. Although MSTL outperforms
DSES on average, there are some days on which DSES performs better. Thus DSES
is still comparable results with MSTL.
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APPENDICES
A. PROOF OF THEOREM 1

Without loss of generality assume that there are two time period iand jsuch that
O; > Di and gy, <Djand also g, =D« Vv eT where k =i, j. That is there is one

time period with excess renewable generation and there is one period with excess
demand whereas demand and renewable generation for other time periods are exactly

matching. Without the model implementation, additional conventional generation of
0 = D;- Og; fortime jisrequired to meet the demand while the amount of q, ; -Dj
is unused in time i . Therefore without implementation of the model, the revenue would

be pZBi — PY, = pZBi — p(D; —0g;) . Let this revenue be the base revenue
T T

B =pY.Di- pmax{(D;—dg,),0}.
T
The question is that is there any pg., < p that improve the baseline revenue?

Assume that system operator offers p,,, = p—7, z€R". In this case, some of the

demand in period jwhere there is excess demand could be shifted to other periods
(consecutively up to time j where there is excess generation with zero marginal cost).

Thus, required conventional generation would be reduced. In return, there is a revenue

loss due to lower price for flexible usage. Let q_ be the required conventional

generation when p,., is offered. The revenue as a result of the model is:

t+n
Z{ pdi”ﬂexvt + Z P fiex fi,t - pqzj} .
t-n

T

Rearranging as following:
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t+n
Z|: Py + Z( p- T) fii— qu,,}

T t-n

t+n

pzdinﬂex,t +(p - T)ZZ fiyt - pq:]

T T t-n
pZ(dinflex,t +d gy ) - TZ(d flex t ) - pq:,j
T %/——E T

pZBt - TZ(d flex,t ) - pq:J
T T

Here the required generation for time j is the excess demand Dj- Og,; Minus the total

j+n
of the demand shifted to other periods Z f,; fromtime j . Thus,

j-n

_ jn _
Qs | =D,~—qR’j—Zfi’j or0if Dj—qg; <0

j-n
So the revenue is:

j+n

1]

f. J Sum of the shifts from time
j—-n

PZBt - rZ(d floxct ) -p {max{(ﬁj —Og,), o} _

j to other periods must be equal to the total flexible demand available at time j which

is d After re-arranging revenue term could be written in two parts: baseline

flex *

revenue plus additional part due to model:

DZBt - p(maX {(51 _qR,i)’o})_TZ(d”exvt)_'_ pd flex,j *

baseline additional

Let this additional part be A(r):—rZ(dﬂexyt)+ pd ., ;- This additional part is the

T

revenue from reduction in conventional generation minus the cost of selling of flexible

at a discount. If there exist a 7 such that —rZ(dﬂex’t)+ pd e, ; > 0then pg, < pisthe
T

provides optimal solution.

Substituting the open form of d, ,:
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A(r)=
1
1 p - B
oy 1+5pmﬂe{5ﬂex+5{1%} ]
T

1

1
1 7o
p 1+6 pinflex l:é‘ﬂex + 6/1 |:1 - hj| :| I:_)j

Although the value of A(z)depend on the parameters, it is guaranteed that there

always be a positive additional revenue for some values of z since A(z) is always

positive since limA(z)>0.

T—>0
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C. TURKISH SUMMARY / TURKCE OZET

Elektrik Piyasalar1 biitiin tarihleri boyunca siirekli bir gelisim ve degisim igerisinde
olmustur. Daha Onceleri bu degisim ve gelisim teknolojik ilerlemeler ve genisleyen
talep gibi faktorlerden kaynaklanmistir. Bunun ile birlikte piyasalar1 rekabet¢i bir
yapiya getirerek ekonomik verimliligi artirmak i¢in elektrik sektoriinii liberallestirme
caligmalar1 yapilmistir. Fakat antropojenik iklim degisikliginden kaynaklanan
strdiiriilebilirlik kaygilari, daha 6nceki degisimlerden farkli olan ve politika temelli
bir degisimi baslatmistir. 2015 Paris antlagsmasinda 195 iilke kiiresel 1sinmay1, sanayi
devriminden 6nceki seviyelerin 1.5° altina ¢ekmeye yonelik ortak hedefi koymustur.
Bu hedefi gergeklestirmenin yolu ise fosil yakitlar1 yenilenebilir enerji kaynaklari ile
degistirmek olarak belirlenmistir. Fakat modern elektrik sistemleri biliyiik 6lgekli
yenilenebilir enerjiyi entegre edebilecek yapida degildirler. Elektrik giiniimiiz
kosullarinda biiyiik 6lgekli ve verimli bir sekilde depolanamamaktadir. Bu dogrultuda
elektrik sistemleri tarihsel gelisimleri boyunca iiretilen elektrigin eszamanli olarak
kullanilmas1 prensibi ile gelismistir ve sistemler giiniimiizde halen bu sekilde
islemektedir. Bu kapsamda elektrik {iretimi anlik talebe gore siirekli olarak
ayarlanmaktadir. Ozellikle toptan piyasa operasyonlar1 es zamanli olarak arz talep
dengesini saglayacak sekilde isletilmektedir. Dolayisiyla es zamanl olarak yapilmasi
gercken arz talep dengesinde yalniza arz tarafi aktif olarak gérev almaktadir.(Hu et al.,
2013). Yenilenebilir enerjinin {iiretim zamanlamasmin ve miktarmin kontrol
edilemiyor olmasi sistemlerdeki ve piyasalardaki isleyis yontemi ile uyum
saglamamaktadir. Arz tarafinda kaybedilen esnekligi talep tarafina kaydirmak {izere
esnek kullanimi1 miimkiin kilacak perakende piyasa modelleri gelistirmek bu sorunun

¢Oziimil i¢in potansiyel teskil etmektedir.

Bir diger 6zellik ise yenilenebilir enerjinin marjinal iiretim maliyetinin yaklasik sifir
olmasidir. Toptan piyasalarda denge fiyatlar1 giinliik olarak organize bir sekilde
diizenlenen rekabet ile belirlenmektedir. Yenilenebilir enerji bu rekabete sifir marjinal

iretim maliyeti ile katildigindan dolay1 denge fiyatlarin1 asagi yonlii bozmaktadir.
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“Merit-Order” etkisi olarak adlandirilan bu etki, uzun dénemde yatirim kararlarmi
olumsuz etkilemek, arz giivenligini tehlikeye atmak gibi faktorlerden dolay1 toptan
piyasalarin isleyisinde siirdiiriilebilirlik sorunlarini ortaya g¢ikarmaktadir. Buradan
anlagilacagi {izere, yenilenebilir enerji entegrasyonu ile ilgili sorunlar teknik
sorunlardan ziyade ekonomik verimlilik ve yonetim sorunlaridir. Bu motivasyon ile
birlikte bu ¢alisma, yenilenebilir enerji entegrasyonundan kaynaklanan sorunlar1

adresleyen ekonomik analizler ve modellemeler yapmay1 amaglamaktadir.

Ikinci boliimde elektrik sistemleri ve piyasalari ile ilgili temel bilgiler verilmektedir.
Bu alanda calisma yapabilmek i¢in ve tezin geri kalan kisimlarini anlayabilmek i¢in

bu boliim 6nem arz etmektedir.

Ugiincii boliim yenilenebilir enerjinin toptan piyasalardaki etkilerini analiz eden bir
makaledir. Bu boliimde, yenilenebilir enerjinin denge fiyatlarini asag1 yonlii bozmasi
durumu ile birlikte yenilenebilir enerjini destekleme yonteminin ve endiistriyel
organizasyonunun bu duruma etkileri analitik olarak incelenmistir. Sonuclar,
yenilenebilir enerjinin miktarinin denge fiyatlari ile ters orantili oldugunu gostermistir.
Rekabete giren firmalar konvansiyonel {iretimin yani sira yenilebilir enerji kaynaklari
da kullandiklar1 zaman bu etkiyi azaltabilmektedirler. Ayn1 zamanda yenilenebilir
enerjinin nasil desteklendigi de denge fiyatlar1 iizerine etki etmektedir. Bu bdliimiin
literatiire iic yonden katkis1 olmustur. Birincisi lineer ve 2. derece olmak iizere iki
farkli maliyet yapisi biitiin durumlar icin analiz edilip kararlastirilmistir. Sonuglar
farkli maliyet yapisi varsayimlarmin c¢ok farkli sonuglar ortaya cikarabilecegini
gostermistir. Tkinci katki ise ii¢ farkli tipte heterojen firma yapilarinmn incelenmesidir.
Son olarak da siibvansiyon mekanizmalarinin etkileri heterojen firma yapilar1 ve farkl
maliyet varsayimlari ile incelenmistir. Sonuglar karar vericiler i¢in faydali bilgiler

icermektedir.

Dérdiincii boliim yenilenebilir enerjinin kontrol edilemiyor olmasindan kaynaklanan
sorunu adresleyen bagimsiz bir makaledir. Bu calismada 6zgiin bir piyasa modeli
Onerilmis ve analiz edilmistir. Modelde elektrik kullanimi1 esnekliklerine gore iki farkli
kategoriye ayrilmistir. Sistem Operatorii esnek kullanim i¢in indirimli fiyat
onermektedir ve bunun karsiliginda kullanici esnek kullanimin kesin zamanlamasini
Sistem Operatoriine brrakmaktadir. Modelleme arz ve talep tarafinin ¢ok asamali
dinamik etkilesimine dayanmaktadir ve esnek kullanim imkéani saglanarak
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yenilenebilir enerjinin verimli kullanilmasint miimkiin kilmaktadir. Sonug¢lar modeli
kullanmanin ekonomik verimliligi siirekli artirdigini géstermistir. Bu model literatiirde
onerilen modellerden farklidir ve modelin kendisi literatiire yapilmis bit katkidir.
Ayrica bu boliimiin bir diger katkisi ise tiiketicinin esnek ve sabit kullanim arasindaki
karar verme siireci, fayda maksimizasyonu problemi olarak literatiirde ilk defa

modellenmistir.

Besinci boliim saatlik elektrik talebi tahminine yonelik bagimsiz bir makaledir. Bu
bolimde ii¢ farkli yontemin tahmin performanslar1 Tirkiye piyasalarindaki
gerceklesen tiiketim veriler1 kullanilarak analiz edilmistir ve performanslari
karsilastirilmistir. Kullanilan ii¢ yontem Cift Mevsimsel Ustel Yumusatma (DSES),
TBATS ve Coklu STL bilesenlerine ayrma (decomposition) olmustur. Sonuglar
Coklu STL metodunun diger iki yontemden daha iyi sonuglar verdigini gostermistir.
Coklu STL yontemi TBATS’ den her durumda, DSES’den de bir ¢ok durumda daha
1yl sonu¢ vermistir. Bu boliimiin literatiire ilk katkis1 bu yontemlerin Tirkiye nin
tiiketim verilerine uygulanip karsilastirilmasi olmustur. Bir diger katkisi ise nispeten
yeni olan Coklu STL ydnteminin glin dncesi saatlik talep tahmininde kullanilan ilk

orneklerinden olmasidir.

Biiyiik 06lcekli yenilenebilir enerji entegrasyonu, iistesinden gelinmesi gereken
ekonomik verimlilik problemleri ortaya ¢ikarmaktadir. (Henriot and Glachant, 2013).
Bu problemlerin en zor olanlarmdan biri de toptan piyasalarda ortaya ¢ikmaktadir. ilk
olarak, toptan piyasa rekabetinde konvansiyonel iiretim miktar1 bir karar degiskeni
iken, yenilenebilir enerji liretimi sabit durum degiskeni olarak hesaba katilmaktadir.
Bir diger ve ¢ok daha biiyiik zorluk getiren faktor ise yenilenebilir enerjinin neredeyse
sifir olan marjinal iiretim maliyetinden dolay1 toptan piyasalarda olusan denge
fiyatlarinin asag1 yonlii ¢ekilmesidir. Genel olarak toplam arz egrisi, fiyat-miktar
tekliflerinin toplanmasi ve “Merit Order” diye adlandirilan, artan bir siraya konulmasi
ile elde edilir (Deane et al., 2015). Yenilenebilir enerji, sifir olan marjinal iiretim
maliyetinden dolay1 toplam arz egrisini sag yonlii kaydirarak denge fiyatlarmin
diismesini saglamaktadir (Figueiredo and da Silva, 2019). Yenilenebilir kaynaklarin
“Merit Order” Etkisi olarak adlandirilan bu durum Figure 3.1 de gosterilmistir.
Yenilenebilir enerjinin marjinal liretim maliyeti her ne kadar sifira yakin olsa da

yatirim maliyetleri ve dolayisiyla uzun donemli ortalama iiretim maliyetleri diger
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alternatiflere nazaran oldukga yiikseltir. Bu nedenle yatirimi1 daha cazip kilmak i¢in
bir¢ok iilke yenilenebilir enerjiye devlet destegi saglamaktadir. Uygulanana destek
programlar1 birbirinden ¢ok farklilik gosterse de bu destekler iki ana grupta ele
alinabilir. Birinci ve en yaygin olarak uygulanan destek programi sabit fiyatli alim
programidir. Bu uygulamada yenilenebilir enerji, piyasadaki denge fiyatlarindan
bagimsiz olarak sabit (ve genellikle ortalama piyasa fiyatindan yiiksek) bir fiyattan
almir. Bu tip desteklere, yenilenebilir enerji toptan piyasalarda rekabete dahil
edilmedigi i¢in ve piyasada olusan denge fiyatlar1 ile yenilenebilir enerjinin alim
fiyatlar1 baglantili olmadig1 i¢in “piyasa tabanli olmayan” destekler denebilir. Diger
grup destek programlari ile “piyasa tabanli” desteklerdir. Bu tip destek programlarinda
yenilenebilir enerjiden yapilan tiretim, diger kaynaklardan yapilan iiretim gibi toptan
piyasada rekabete girer ve biitiin enerji kaynaklarindan yapilan iiretim i¢in tek bir sabit
fiyat belirlenir. Yatrim tesvikleri, vergi indirimleri vb. destekler bu gurupta
degerlendirilebilir. Sabit alim destegine ek olarak yenilenebilir enerjinin dncelikli
kullanim1 da yaygin olarak uygulanmaktadir (Antweiler and Muesgens, 2021). Bu
durumda var olan yenilenebilir enerji miktar1 toplam talepten diisiilmektedir ve geriye
kalan miktar net talebi olusturmaktadir. Sabit alim destegi ve oncelikli kullanim
programi oldugu durumlarda “Merit Order” etkisi Sekil 3.2 de gosterilmistir. Tam
rekabet¢i piyasalarda Sekil 3.1 de ve Sekil 3.2 de gosterilen etkiler sonunda olusacak
denge fiyatlarmin ayni olmasi beklenir. Fakat toptan elektrik piyasalarindaki rekabet
eksik rekabet olarak nitelendirilmektedir. Eksik rekabet kosullarinda, firmalarm farkl
destek tiirleri i¢in farkli davramig sergilemesi ve dolayisiyla her iki destek
mekanizmasinin birbirinden farkli denge fiyatlar1 olusturmasi muhtemeldir. Toptan
piyasalardaki denge fiyatlarini etkileyecek bir bagka unsur ise yenilenebilir enerjinin
endiistriyel organizasyonudur. Birden fazla kaynak ve teknolojiye dayali iiretim yapan
firmalar, farkli durumlar karsisinda elindeki ¢esitliligi maliyet optimizasyonu yaparak
en uygun sekilde kullanmaya yonelik stratejik kararlar verir. Ayni sekilde hem
geleneksel yontemlere dayali liretim kaynaklar1 olan hem de yenilenebilir enerjiye
dayali iiretim kaynaklar1 olan firmalar, iiretim maliyetlerini optimize edip karliligini
artirmak i¢in portfoy cesitliligini en etkin bicimde kullanacak sekilde kararlar verir.
Bununla birlikte yalnizca yenilenebilir enerjiye dayali iiretim yapan firmalarm, liretim

miktarlarmi kontrol edemedikleri i¢in denge fiyatlarini etkileyecek karar degiskenleri
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bulunmaz. Dolayisiyla, yenilenebilir enerjinin firmanmn iiretim portfoyiinde olup

olmamast durumunun da denge fiyatlar1 lizerinde etkisi olmaktadir.

Bu caligmada “Merit Order” etkisi ile birlikte yenilenebilir enerjinin desteklenme
mekanizmasinin ve yenilenebilir enerji liretiminin endiistriyel organizasyonunun
toptan elektrik piyasalarinda olusan denge fiyatlar1 lizerindeki etkileri analitik olarak
incelenmistir. Genis bir yelpazede bircok durumu ele alabilmek i¢in lineer ve ikinci
derece olmak tizere iki farkli maliyet yapis1 kullanilmistir. Yenilenebilir enerji destek
mekanizmalarmin etkilerini inceleyebilmek i¢in piyasa tabanli ve piyasa tabanl
olmayan destek mekanizmalar1 i¢in ayri durum ele alinmistir. Endiistriyel
organizasyonun etkilerini inceleyebilmek i¢in ise ii¢ farkli tipte firma yapisi
kurgulanmistir: Tip-1) yalnizca konvansiyonel enerji kaynaklarina dayali tiretim
yapan firmalar, Tip-2) hem konvansiyonel hem de yenilenebilir enerji kaynaklarina
dayal liretim yapan firmalar ve Tip-3) yalnizca yenilenebilir enerji kaynaklarindan
iiretim yapan firmalar. Denge fiyatlarinin s6z konusu parametreler karsisinda nasil
etkilendigi bir¢cok olasi durum i¢in incelenmistir ve sonuglar karsilastirilmistir. Ek
olarak firmalarm yapmis oldugu ikili anlagsmalar da modele eklenmistir ve bu
parametreler karsisinda ikili anlasma hacimlerinin nasil etkilendigi de analiz

edilmistir.

Literatiirde “Merit Order” etkisinin varhigina yonelik farkli iilkelerden veriler
kullanilarak yapilmis birgok calisma bulunmaktadir. Yenilenebilir enerjinin toptan
piyasalardaki denge fiyatlari diisiirdiigiine yonelik ¢alismalara; italya icin (Clo et
al., 2015), Almanya i¢in (Cludius et al., 2014) ve Ispanya igin (Ciarreta et al., 2014)
tarafindan yapilmis ¢alismalar 6rnek gosterilebilir. Ampirik ¢alismalarm sonuglarmi
genelleyebilmek icin teorik caligmalarin da yapilmasi gerekmektedir. Bu alanda
yapilacak teorik ¢aligmalarin temelini rekabetin modellemesi olusturmaktadir. Toptan
elektrik piyasalarindaki rekabet “eksik rekabet” olarak nitelendirilmektedir ve denge
fiyatlarmin genel olarak rekabet¢i fiyattan yliksek mertebelerde olugmaktadir
(Borenstein et al., 2002), (Mansur, 2008). Bu cer¢evede firmalarin denge fiyatlarini
artirabilmek icin iiretim miktarlarini azaltabildikleri ortaya konulmustur (Wood and
Blowers, 2018), (Twomey and Neuhoff, 2010). (McRae and Wolak, 2009) fiyat
esnekliginin diisiik oldugu periyotlarda firmalarm yiiksek teklifler verdigini

gostermistir. Biitlin bu ve benzeri ¢aligmalar toptan elektrik piyasalarindaki rekabetin
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eksik rekabet kosullarinda yapildigini gostermektedir. Bu durum genel olarak piyasada
kisith sayida biiyiik firmanin varligindan ve piyasanin ciddi bir sekilde kontrol
edilmesinden kaynaklanmaktadir. Toptan piyasalardaki bu oligopol rekabeti
modellemek i¢in iki farkli yaklasim bulunmaktadir: Cournot-Nash Rekabet modeli ve
Arz Fonksiyonu Esitligi. Cournot-Nash model (Bushnell, 2007a), (Borenstein et al.,
2002), (Neuhoff et al., 2005),(Sioshansi, 2014), (Rib6-Pérez et al., 2019) gibi bir ¢ok
calismada kullanilmistir. (Lundin and Tangeras, 2020) Nord-Pool toptan piyasasinda
gerceklesen degerlerin Cournot-Nash modeli ile uyumlu oldugunu gostermistir. Arz
Fonksiyonu Esitligi modeli (Klemperer and Meyer, 1989) tarafindan gelistirilmistir ve
elektrik piyasasina (Green and Newbery, 1992) tarafindan adapte edilmistir. Her iki
yontemin de giiclii ve zayif yonleri bulunmaktadir. (Willems et al.,, 2009) Alman
toptan piyasasi verilerini kullanarak yaptigi calismada her iki modelinde oldukca iyi
sonuglar verdigini belirtmistir ve esnek yapisindan dolay1 ve ilave kisitlarin modele
dahil edilebilmesinden dolay1 kisa donemli rekabet modellemeleri i¢in Cournot-Nash

modelin kullanilmasini1 6nermistir.

Bu calisma temel olarak yenilenebilir enerjinin toptan piyasalardaki denge fiyatlar1
iizerine olan etkilerini teorik ¢ergevede inceleyen ver yakin zamanda gelismekte olan
literatiir ile ilgilidir. (Twomey and Neuhoff, 2010), Cournot-Nash modeli kullanarak
bu rekabeti modelleyen 6ncii ¢alismalardan biridir. (Ben-Moshe and Rubin, 2015)
yenilenebilir enerjinin endiistriyel organizasyonunu teorik ¢ercevede c¢alismustir.
(Acemoglu et al., 2017) ileri kontratlar ve eksik bilgi durumlar1 ekleyerek calismay1
genigletmistir fakat analizlerinde temel olarak lineer maliyet fonksiyonu
kullanmislardir. Literatiirden farkli olarak bu ¢alisma hem lineer hem de ikinci derece
maliyet fonksiyonlar1 birgok durum i¢in kullanilmistir ve sonuglar karilastirilmistir.
Ayrica giincel literatiirden farkli olarak homojen olmayan endiistriyel organizasyon
yapilart kullanilmigtir. Maliyet yapisinin sonuglara biiylik dlclide etki ettigi ortaya
cikmustir.

Yenilenebilir enerji destek mekanizmalarmin denge fiyatlar1 {izerindeki etkisinin
incelenmesi bu calismanin bir baska 6zelligidir. Yenilenebilir enerjinin desteklenme
mekanizmasmin denge fiyatlar1 iizerine etkisinin oldugu literatiirde birka¢ ¢alismada
belirtilmistir (Brown and Eckert, 2020). Fakat bu konuda kapsamli bir teorik ¢aligma

giincel literatiirde bulunmamaktadir. Bu calismada giincel literatiire bir bagka katk1
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olarak heterojen firma yapilarinda ve farkli maliyet fonksiyonlar1 durumlarinda

yenilenebilir enerji destek mekanizmalarinin etkileri incelenmistir.

Calismada oOncelikli olarak modelin temel 6zellikleri tanimlanmistir. Modellemede
kullanilan temel varsayimlar Bolim 3.2.1 de listelenmistir. Biitiin ¢alismada talep
fonksiyonunun afin oldugu varsayilmistir. Ayrica ti¢ farkli firma tipinin oldugu

varsayilmistir.

Tip-1: Hem konvansiyonel hem de yenilenebilir enerji kaynaklarini kullanan firmalar.

Bu firmalarin setidir.

Tip-2: Sadece konvansiyonel enerji kaynaklarini kullanan firmalar. Bu firmalarin

setidir.

Tip-3: Sadece konvansiyonel enerji kaynaklarini1 kullanan firmalar. Bu firmalarin

setidir.

Konvansiyonel kaynaklardan iiretim yapan toplam firma sayisidir. Bir periyodda var
olan yenilenebilir enerji miktar1 R’dir ve bu mevcut yenilenebilir enerjinin Tip-1 ve
Tip-3arasindaki pay dagilimi gostermektedir. Tip-1 ve Tip-2 firmalar konvansiyonel
iretim miktarlarin1 stratejik olarak degistirebilirken Tip-3 firmalar iiretim miktar1
tizerinde herhangi bir karara sahip degillerdir. Toplam iiretim miktar1 olarak
verilmistir. Tip-1, Tip-2 ve Tip-3 firmalarin kar fonksiyonlari siras1 ile 3.2, 3.3 ve 3.4
deki denklemlerde verilmistir. Firmalarin amaclari, karlarini maksimize edecek
sekilde konvansiyonel iiretim miktarlarmi se¢gmektir. Analizlerde iki farkh
yenilenebilir enerji destekleme mekanizmasi durumu ele alinmistir. Durum 1:
Yenilenebilir enerji i¢in sabit alim politikas1 uygulanmaktadir ve sabit alim fiyati i¢in
uygulanmaktadir. Durum 2: Yenilenebilir enerji i¢in piyasa temelli destek
uygulanmaktadir ve denge fiyat: biitiin kaynaklardan yapilan iiretim icin rekabet
sonucu belirlenmektedir. Her iki durum ayni zamanda her iki farkli maliyet yapisi i¢in
incelenmistir. Sonug olarak Durum 1.1, Durum 1.2, Durum 2.1 ve Durum 2.2 olmak 4
temel durum i¢in teorik analizler yapilmistir. Bu durumlarda olusan denge fiyatlar
sirast ile Lemma 3.1, Lemma 3.2, Lemma 3.3 ve Lemma 3.4 de verilmistir. Bu

sonuglarin analizi ile elde edilen bulgular asagida verilen iki onermede 6zetlenmistir.
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Onerme 3.1: i) “Merit Order” etkisi piyasa tabanli olmayan destek programlarinda
stirekli daha fazladir. Boylelikle sabit alim destek mekanizmasi siirekli daha diisiik

denge fiyat1 olusturur. ii) Denge fiyat1 yenilenebilir enerji miktari ile ters orantilidir.

Onerme 3.2: i) esitlendirilmis iiretim portfoyii, yani konvansiyonel kaynaklara sahip
olan firmalarin ayn1 zamanda yenilenebilir kaynaklara sahip olmasi, “Merit Order”
etkisini azaltmaktadir. ii) piyasa temelli olmayan destek programlar1 madde i) de
verilen etkiyi ortadan kaldirmaktadir. Dolayisiyla sabit alim politikas1 uygulandig:

zaman yenilenebilir enerjinin endiistriyel organizasyonunun etkisi kalmamaktadir.

Bu analizlere ek olarak toptan piyasalardaki ticaretin biiyiik boliimiinii olusturan ikili
anlasmalar da modele dahil edilerek analizler genisletilmistir. ikili anlasmalar iki
asamali bir oyun olarak kurgulanmistir. Ilk asamada firmalar en uygun ikili anlasma
miktarlarin1 secerler. Ikinci asamada ise giin oncesi piyasalarda iiretim miktarlari
iizerinden rekabete girerler. Analizler yine iki farkli yenilenebilir enerji destek
progran tiirii igin yapilmistir. Ilk olarak piyasa temelli destek programi varsayimi ele

almmuistir. Bu problem ikinci asamadan baslayarak geriye dogru ¢oziilmiistiir.

Ikinci asamada firmalar ikili anlasma hacimlerini ve ikili anlasma fiyatlarin1 birinci
asamada verilmis olarak kabul ederek 3.28 de verilen problemi ¢ézer ve en yiiksek
karlilig1 saglayacak iiretim miktarlarini segerler. Bu asamadaki problemin ¢oziimiiyle
ortaya ¢ikan denge fiyatlar1 ve ilgili iretim miktarlar1 Lemma 3.5 de verilmistir.
Firmalar, birinci asamada sectikleri ikili anlasma miktarlarina gore, ikinci agsamada
Lemma 3.5 verilen ¢6ziimle karsilagsacaklarin1 dngorerek ikili anlagsma miktarlarmi
secerler. Bu asamadaki problem 3.40 da verilmistir. Bu ¢oziimlerde Asama 1°deki ikili
anlasma piyasasi ile Asama 2’deki gilin Oncesi piyasa arasinda arbitraj firsati
olusmamasi i¢in ikili anlagsma fiyat1 ile Asama 2 deki denge fiyatinin esit oldugu
varsayllmistir. Bu dogrultuda hesaplanan Asama 1’in ¢0ziimii Lemma 3.6 da
verilmistir. Firmalarn izleyecedi nihai strateji Onerme 3.3 de 6zetlenmistir. Benzer
bir sekilde piyasa temelli olmayan destek programi varsaymmi ile ayni hesaplar
yapilmistir ve bu durum igin olan sonuglar Onerme 3.4 de sunulmustur. Her iki
durumunda analiz edilmesi ile su dnermeler yapilmistir: 1) denge durumunda olusan
ikili kontrat hacmi, piyasa temelli olmayan destek programlarinda yenilenebilir enerji
miktar1 ile tamamen ters orantilidir. Fakat piyasa temelli destek programlari
durumunda bu iligki sistem parametrelerinin degerlerine gére degismektedir. ii) denge
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durumunda ikili kontrat hacmi Tip-1 firmanmn sahip oldugu yenilenebilir enerji orani
ile tamamen dogru orantilidir. iii) piyasa temelli olmayan destek programlari stirekli

daha diistik ikili kontrat hacmi saglamaktadir.

Teorik analizler ile elde edilen sonuglar1 gorsellestirmek icin sayisal 6rnekler verilerek
grafikler olusturulmustur. Sistem parametreleri, ¢alismanin yapildigi dénemde
Tiirkiye piyasalarinda gerceklesen denge fiyatlarini saglayacak sekilde secilmistir.
Sayisal oOrnekler ile elde edilen sonuglar Sekil 3.3 ile Sekil 3.6 arasinda

gorsellestirilmistir

Uzun yillar boyunca sistem operatorleri ve {lreticiler tarafindan son kullanicinin
kullanim profilinde esneklik saglamak ve kullanim zamanlamasi iizerinde etkili olmak
adina bir niyet bulunmaktadir. Tiiketim tarafinin kararlarini etkileme istegi Talep
Tarafit Yonetimi (Demand Side Management) fikrini ortaya ¢ikarmistir. Uzun ve kisa
vadeli bircok aktiviteyi barindiran Talep Tarafi Y onetiminin giinliik piyasa islemleri
ile ilgili bir alt bashg1 is Talep Tepki (Demand Response) programlaridir. Genel
anlamda Talep Tepki programlari, degisen fiyatlar dogrultusunda son kullanicinin
kullanim kararlarini etkileyecek fiyat ya da tesvik temelli mekanizmalari igermektedir
(US Dept. Energy, 2006). Bu mekanizmalarin ilk ortaya c¢ikis amaclar1 talep
tarafindaki dalgalanmalar1 azaltmak, zirve noktasi olan tiiketimimin bir kismini baska
zamanlara kaydirarak sistem giivenligini saglamak vb. gibi olmustur. Sistemlerin
normal igleyisi sirasinda kesintisiz bir sekilde enerji saglayabilmek i¢in en diisiik
kapasite ve altyapr gereksinimi talep tarafinda olusabilecek en yiiksek zirve
noktasindan daha fazla olmalidir. Fakat talep ¢ogu zaman zirve noktasinin altinda
gerceklesmektedir ve sistemler ¢ogu zaman diislik kapasite ile ¢alismak zorunda
kalmaktadir. Sistem giivenlik marjlar1 gibi diger faktorler de hesaba katildig1 zaman
sistemlerin bazi durumlarda kapasitesinin biiyiik bir kisminin kullanilmadig: ortaya
cikmaktadir (Strbac, 2008). Bu nedenle sistem verimliliginin artirilmast igin talep
tarafinda esnekligin saglanmasi 6nemli goriilmiistiir. Fakat yenilenebilir enerjinin
artan kullanim, talep tarafinda esnekligini yalnizca 6nemli olmaktan ¢ikarip belirli
Ol¢tide zorunlu kilmistir. Yenilenebilir enerjinin zamanlamasinin ve miktarinin kontrol
edilemiyor olmasi, arz tarafina bir belirsizlik getirmistir ve arz tarafinin esnekligini
kisitlamistir. Diisiik karbon politikalari ile belirlenen hedeflere ulagsmak yenilenebilir
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enerjinin paymin ¢ok 6nemli dlgiide artmasin1 gerektirmektedir (da Graga Carvalho,
2012). Bunun i¢in teknik yapilabilirligin 6tesinde biiyiik 6lgekli yenilenebilir enerji
kullanimindan kaynakli arz tarafinda olusan esneklik kaybini talep tarafina yansitacak
ve esnek kullanimi miimkiin kilacak piyasa modellerine ihtiya¢ duyulacaktir. Aksi
durumda yenilenebilir enerjini iiretiminin fazla oldugu zamanlarda kullanilamayan
iiretim bosa gidecektir ve bir siire sonra yenilenebilir enerjinin {iretiminin azaldig1
konvansiyonel yontemlerle liretim yapmak gerekecektir. Dolayisiyla, biiyiik 6lgekli
yenilenebilir enerji varligi durumunda arz talep dengesi i¢in yalnizca talep tarafinda
ayarlama yapmak, iiretimin tamamimin kontrol edilememesinden dolay1 etkin bir
yontem olmaktan ¢ikmaktadir. Alternatif olarak, Talep Tepki yontemleri ile tiiketim
profilinin var olan {iretime gore kaydirilmasi sorunun ¢6ziimii i¢cin potansiyel teskil
etmektedir. Yenilenebilir enerjinin getirdigi esneklik kaybiyla ortaya ¢ikan paradigma
degisimi Talep Tepki programlarmin da odagini degistirmistir. Yenilenebilir enerjinin
etkin kullanimi kapsaminda, Talep Tepki programlarmnin amaci, talebi zaman i¢in de

kaydirarak esnek olmayan iiretim profiline uyumlu hale getirmek olmustur.

Talep Tepki programlar tiiketim tarafinda esnekligin elde edilmesi i¢in umut verici
yontemler olsa da literatiirde var olan yontemlerin bir¢ogu yenilenebilir enerjiden
kaynakli arz belirsizligini tam anlamiyla karsilamamaktadir. Ornegin, “Critical Peak
Pricing” yalnizca talepte olusan zirve noktasi etkilerini azalmak i¢in kullanilabilir. Bir
baska yontem olan “Time-Of-Use (TOU)” ise yeterince dinamik degildir (Borenstein,
2005). Gergek zamanli fiyatlama toptan piyasalardan kaynaklanan maliyeti son
kullaniciya dogrudan yansitmasi agisindan teorik olarak etkin bir yontem olsa da
uygulamada kullanici tarafina getirdigi belirsizlik ve riskler gibi bir¢ok uygulama

sorunu ortaya ¢ikarmaktadir.

Talep Tepki yontemlerinin bir diger 6zelligi ise talep tarafinda esnekligin dogrudan ya
da dolayli olarak elde edildigi ile ilgilidir. Dolayli yontemlerde son kullanicinin fiyat
sinyallerini gdzlemleyip kullanim profilini degistirmesi beklenir. Dogrudan kontrol de

ise kullanim zamanlamasi bir fayda karsiliginda sistem operatoriine devredilir.

Bu c¢alijmada dogrudan kontrol prensibine dayali yeni bir piyasa modeli
onerilmektedir. Model son kullanicilarin, kullanimlarinin bir kisminin kontroliinii
saglanan tesvik karsiliinda Sistem Operatoriine devretmesini igermektedir. Bu
modelde elektrik kullanim1 esnek kullanim ve sabit kullanim olarak iki tipe ayrilmigtir.
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Her planlama periyodunun baslangicinda, sistem Operatorii tarafindan esnek kulanim
icin indirimli bir fiyat son kullanictya Onerilmektedir. Son kullanic1 6nerilen fiyata
gore toplam tiiketiminin ne kadarmi esnek kullanima ayiracagma karar vermektedir.
Boylelikle son kullanict indirimli fiyat formunda bir tegvik elde etmektedir ve Sistem
Operatoriine talep zamanlamasi konusunda bir esneklik saglamaktadir ve Sistem
Operatorii maliyeti sifir olan yenilenebilir enerjiyi daha etkin kullanarak gelirini

artirmaktadir.

Bu 6zgiin model yenilenebilir enerjinin etkin kullanilmasina yonelik ortaya c¢ikan
sorunlara dolayli yontemlere gore daha etkili ve glivenilir ¢oziimler sunmaktadir. Son
kullanict tarafindan bakildiginda fiyatlarmm belirsizliginden ve oynakligindan
kaynaklanan sorunlar ortadan kalkmaktadir. Ayrica son kullanicinin programa katilimi
diger dinamik fiyatlama modellerine gore daha az caba gerektirmektedir. Sistem
operatorii tarafindan bakildiginda ise gergek zamanl fiyatlama gibi yontemlere gore

daha giivenilir ve kontrol edebilir esneklik elde edilebilmektedir.

Talep Tarafi Yonetimi ile ilgili hizla biiyliyen bir literatiir bulunmaktadir. Bu alanda
yapilan yaymlar 2009 yilinda yillik 130 mertebelerindeyken 2020 yilina gelindiginde
yillik 1800 yaym mertebelerine ¢ikmustir. Talep Tarafi Yonetiminin faydalar1 ve
zorluklart ilgili farkli yonlere odaklara cesitli arastirma makaleleri bulunmaktadir
(OConnell et al., 2014), (Conchado and Linares, 2012). Digerlerine ek olarak bu
faydalar1 genel olarak finansal, operasyonel ve yenilenebilir enerjiyi daha etkin
kullanma seklinde {li¢ ana grupta toplamak miimkiindiir (De Jonghe et al., 2008),
(Miiller and Most, 2018), (Gottwalt et al., 2016), (Simshauser, 2019).

Literatiirdeki Talep Tepki modelleme 6rnekleri uygulanan strateji, 6lgek, problemin
kurgusu gibi bir¢cok faktore bagli olarak ¢ok cesitlilik gostermektedir. Bu nedenle
literatlire genel gecer kullanilabilecek bir Talep Tepki modelleme c¢ergevesi
bulunmamaktadir. Bir grup c¢alisma Talep Tepki potansiyelini hesaplama
calismaktadir. Bunlardan bazilar1 herhangi bir analitik model bile kullanmamaktadir
ve sadece toplam talebin belirli bir ylizdesinin esnek talebe katilacagi varsayimina
dayali hesaplamalar kullanmaktadirlar. Biiylik bir grup caligma ise talebin fiyat
esnekligini kullanarak modelle yapmaktadir (Heydarian-Forushani et al., 2020),
(Allcott, 2011). Fakat bu yaklasim ile bir noktada azaltilan talebin zamanda baska bir
noktada telafi edilecegi (demand recovery) garanti edilmemektedir. Bunun i¢in ¢apraz
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fiyat esnekligini modele dahil eden g¢aligmalar bulunmaktadir fakat capraz fiyat
esneklikleri s6z konusu problemi tamamen ortadan kaldirmamaktadir. Bagka bir grup
caligma ise Talep Tepki potansiyelini iiretim tarafinda negatif yonlii liretim olarak

modelleyip kapasite planlama problemi ¢ozmektedir (McPherson and Stoll, 2020).

Calismalarda kullanilan optimizasyon metotlar1 da oldukga ¢esitlilik gostermektedir.
Lineer ve lineer olmayan programlama, tam sayili programlama, stokastik modelleme,
oyun teorisi, dinamik modelleme vb. optimizasyon yontemleri kullanan Grnekler

literatirde bulunmaktadir.

Bu calismada, mevcut literatiirden farkli olarak, arz ve talep tarafinin dinamik olarak
etkilesimi kapsamli bir sekilde modellenmistir. Ayrica, talep tarafinin esnek ve sabit
kullanim arasindaki se¢imi giincel literatiirdeki lineer varsayimin aksine fayda
maksimizasyonu problemi olarak modellenmistir. Bu tiir modelleme 6rnegi literatiirde
bildigimiz ol¢iide bulunmamaktadir. Ayrica modellemede kullanilan kosullar ve

yontem sayesinde talebin korunmasi (demand recovery) kesin olarak saglanmaktadir.

Calismada modelleme i¢in kurgulanan market elektrik saglayan bir Sistem Operatorii
ve elektrigin tek kullanicisi olan Temsili Tiiketiciden olusmaktadir. Sistem Operatorii
yenilenebilir ve konvansiyonel olmak {tizere iki farkli kaynaktan elektrik
saglamaktadir. Yenilenebilir kaynaklardan iiretilen enerjinin marjinal iiretim maliyeti
sifirdir fakat bu iiretimin miktar1 ve zamanlamasi tamamen doga kontroliindedir.
Sistem Operatorii konvansiyonel kaynaklardan yapilan iiretimin marjinal liretim
maliyeti elektrigin piyasa fiyatir olan p ye esittir. Sistem Operatorii her periyottaki
talebi karsilamak i¢in dnce maliyetsiz olan yenilenebilir enerjiyi kullanmaktadir ve
ihtiya¢ olmast durumunda maliyetli olan konvansiyonel yontemlerle iiretim
yapmaktadir. Yenilenebilir enerjiyi daha etkili kullanmak igin talebi yenilenebilir
enerjinin olmadig1 veya az iiretildigi zamandan yenilenebilir enerji liretiminin fazla
oldugu alana ¢ekmek istemektedir. Bunu yapabilmek i¢in kullaniciya iki farkli
kullanim seg¢enegi sunmaktadir. Sabit kullanim olarak nitelendirilen birinci se¢enek
her zaman oldugu gibi kullanicinin istedigi zaman elektrigi kullanmasidir. Esnek
kullanim olarak nitelendirilen ikinci segenek ise kullanicinin talep zamanmin +n
araliginda olmak kaydiyla kesin zamanlamasmi Sistem Operatoriine devrettigi
kullanim segenegidir. S6z konusu planlama periyodu, hava durumu, haftanin giinii vb.
iiretimi ve tiikketimi etkileyen biitiin harici bilgilerim oldugu set i¢in Doga (Nature) bir
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karar mekanizmasi olarak dinamik modellemeye eklenmistir. Her periyod igin

Doga’nin durumu s, € O olarak verilmistir.

Tiiketicinin giincel planlama donemi olan ¢ok kisa donem tiiketim plani yalnizca
Doga’nin durumundan etkilenmektedir. Diger faktorlerin hepsi bu ¢ok kisa donem i¢in

sabit kabul edilebilir. Planlama dénemi i¢in Doganmn durumu s, e Q ortaya ¢iktig1

zaman tiiketicinin de tiiketim plani belirlenmektedir ve bu plan ilgili donem i¢in sabit
kabul edilmektedir. Sistem Operatorii esnek kullanim igin belirledigi fiyat olan
karsisinda tiiketici bu donemsel planin her bir periyodu i¢in tiiketmek istedigi miktarmn
belirli bir kismini sabit kullanim ve esnek kullanim olarak ikiye ayirir. Esnek
kullanima adadigi kisim i¢in daha diisiik 6deme yaptigindan dolayr buradan bir
finansal gelir elde eder. Tiiketici sabit kullanimdan, esnek kullanimdan ve elde ettigi
kazanctan farl agirliklarda fayda saglamaktadir. Agirliklandirilmis fayda fonksiyonu
denklem 4.3 de verilmistir. Yapilan hesaplamalar ile bu fayda fonksiyonunu
eniyileyecek olan sabit kullanim ve esnek kullanim denklemler 4.7 de sunulmustur.
Sistem Operatoriiniin tiiketici davranisi lizerinde dogrudan etkisi yoktur fakat esnek
kullanim fiyatmi belirleyerek tiiketicinin karanin1 dolayli olarak etkilemektedir. Arz
tarafi olan Sistem Operatoriiniin karar siireci cok asamali bir yapida ve tiiketici tarafi
ile dinamik etkilesim icerisinde gerceklesmektedir. Biitlin model asagidaki dort

asamal1 dinamik probleme doniismektedir:

Asama 0: Doga’nin durumu ortaya ¢ikar. Tiiketicinin gelecek donem i¢in tiiketim plani
belirlenir ve sabitlenir. Gelecek donem igin yenilenebilir enerji miktar1 {iretimi

belirlenir.

Asama 1: Sistem Operatorii ve ’i gdzlemler. Thtiyag duyacagi esnek kullanimi elde

edebilmek i¢in esnek kullanim fiyatini belirler.

Asama 2: Tiiketici ’i gozlemler ve kullanim planmin ne kadarimi esnek kullanima

gecirecegine kadar verir.

Asama 3: Sistem Operatorii Asama 0 da belirlenen yenilenebilir enerji {iretim
miktarlari, Asama 1 de sunulan fiyatlar1 ve Asama 2 de belirlenen sabit ve senek
kullanim planlarmni gozlemleyerek konvansiyonel kaynaklardan yapacag: iiretimi en

aza indirmek i¢in her bir periyottaki esnek kullanimim bir kismimi t zamanindan t
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zamanmma kaydirir. Boylelikle her periyot i¢in ne kadar konvansiyonel kaynak

kullanilacagmin da karar1 verilmis olur.

Bu problemin ¢dziimii, son asamadan baslayarak geriye dogru yapilabilir. Asama 3 de,
Asama 2, Asama 1 ve Asama 0’dan gelen optimum kararlar verilmis olarak hesaba
katilir. Bu asamada iki temel kisit bulunmaktadir. Birincisi denklem 4.8 de verilen
talep kaydirma kisiti'dir ve digeri 4.9 da verilen enerji balans kisitidir. Sistem
operatorii diger asamalardan gelen degiskenler ve bu kisitlarla birlikte 4.11 de verilen
toplam gelir fonksiyonunu maksimize etmeye calisir. Asama 2 nin ¢6ziimii Tiiketicinin
esnek ve sabit kullanim kararini igermektedir. Sistem Operatorii, Asama 1 de Asama
2 ve Asama 3 den geriye dogru getirilen optimum ¢6ziimleri kisit alarak gelirini
maksimize edecek olan sabit kullanim fiyatin1 belirler. Biitiin problemin ¢6ziimii

denklem 4.16 da verilen iki seviyeli (bi-level) optimizasyon problemine indirgenir.

Nihai olarak elde edilen iki seviyeli optimizasyon probleminin sonucunun var oldugu
4.3.3.1 boliimiinde gosterilmistir. Oncelikli olarak alt seviye problemin olasi en iyi
degerleri ile sekillenen {ist seviye problemin kisit seti olan indirgenebilir bolge
tanimlanmistir. Bu bolgenin kapali ve kompakt oldugu gosterilmistir ve Weierstras
teoremine gore optimum ¢dziimiin var oldugu gosterilmistir. Fala yenilenebilir enerji
iretiminin oldugu donemlerde oOnerilen bu modeli uygulamanin mutlak fayda

saylayacagi Teorem-1 de ispatlanmistir.

Baz model Sistem Operatoriiniin gelirini artirmak iizere kurgulanmistir. Bu model,
gelirden bagimsiz olarak yenilenebilir enerjinin kullanimini artirmayi amacglayan
Sosyal Planlamaci i¢in de kullanilabilir. Bu duruma esnek kullanim i¢in olan fiyati
Sosyal Planlamaci belirler ve amaci yenilenebilir enerji kullanimini maksimize
etmektir. Ilave bir kisit olarak da Sistem Operatdriiniin gelirini eski seviyesinin altina
diistirmeme kriteri probleme eklenmistir. Yapilan bu uyarlamalar neticesinde ortaya

¢ikan nihai model denklem 4.22 de verilen optimizasyon problemi olmustur.

Her iki model i¢in de elde edilen sonuglar1 gorsellestirmek icin gercek verilere ve
iretim profillerine dayali uygulama 6rnegi sunulmustur. Tiiketim verisi olarak ve
yenilenebilir enerji liretim profili olarak Sekil 4.1 de verilen Kaliforniya bolgesinde
2020 yilinda gerceklesen veriler kullanilmistir. Bu verilere dayali olarak Sekil 4.2 de

verilen iki farkli senaryo olusturulmustur. Birinci senaryoda bir giinliik yenilenebilir
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enerji iiretiminin o gilinkli toplam tiikketimi karsilayacak kadar oldugu varsayilmistir
fakat yenilenebilir enerjinin iretim zamanlamasmin talep edilen tiiketim
zamanlamasindan farkli olmasindan dolay1 ortaya ¢ikan sorun vurgulanmustir. Ikinci
senaryoda ise toplam yenilenebilir enerji liretiminin toplam talebin yarisini karsiladig1
varsayilmistir. Tiiketici tarafi i¢in ise esnek kullanima daha ¢abuk adapte olan iyimser
ve daha direngli olan kotiimser olmak tizere iki farkli profil tanimlanmistir. Sekil
4.3°de iki farkl tiiketici profili i¢in sunulan indirimli fiyata karsilik gelen esnek

kullanim katsayilar1 gosterilmistir.

Iki seviyeli optimizasyon probleminin ¢dziimii i¢in kullanilan hesaplama metodolojisi

Sekil 4.4.” de 6zetlenmistir. Yapilan hesaplar neticesinde elde edilen pg,, "lere karsilik

gelen toplam gelirler biitiin durumlar i¢in Sekil 4.5 de gosterilmistir. Buradaki sonuglar
Teorem-1 ile tutarlidir: modelin kullanimi, fazla yenilenebilir enerji oldugu her
durumda mutlak fayda saglamaktadir. Thtiya¢c duyulan toplam konvansiyonel iiretim
grafikleri de Sekil 4.6 da gosterilmistir. Daha az yenilebilir enerji liretiminin oldugu
Senaryo 2 ve daha hizli tiiketici adaptasyonu olan iyimser durum birlesiminde istenen
fayda ¢ok diisiik bir fiyat indirimi ile saglanmistir. Tablo 4.1 de Sistem Operatorii ve
Sosyal Planlamacinin optimum ¢6ziimleri biitiin durumlar i¢in verilmistir. Model
uygulamasi sonucunda nihai olarak talebin bir zaman periyodundan bagka bir zaman

periyoduna kaydirilarak tekrar diizenlemesini igeren sonuclar Sekil 4.7 de sunulmustur

Elektrik talebine olan talebin tahmin edilmesi sistem operasyonlari, piyasa isleyisleri
ve planlamalar i¢in son derece Onemli olmustur. Elektrik piyasalarinda hayata
gecirilen liberallesme ¢alismalari; kararlarini talep tahminine dayali 6n bilgiye gore
alan sistem operatdrleri, liretim ve dagitim firmalari, piyasa katilimecilar1 gibi bir¢cok

paydas icin giivenilir bir talep tahminine olan ihtiyac1 olduk¢a artirmistir.

Genel olarak elektrige olan talebin tahmini tahmin periyodunun uzunluguna bagl
olarak ii¢ farkl kategoride ele almir. Uzun donemli tahmin aylardan yillara kadar olan
donemi kapsamaktadir ve genellikle kapasite yatimlar1 ve zamanlamalari, network
tasarimi vb. kararlar i¢in ihtiya¢ duyulur. Orta donem tahinim ise haftalardan aylara
kadar olan donemi iceren tahmini kapsamaktadir. Orta donem tahmin risk yonetimi,

kapasite planlamalari, bakim onarim faaliyetlerinin planlanmasi vb. konular i¢in
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kullanilir. Kisa donemli talep tahmini birkag¢ dakikadan giinler mertebesine kadar olan
donemleri kapsamaktadir. Genel olarak Talep tahmin ¢aligmalarmin ¢ok biiyiik bir
boliimiinii kisa donem tahminler olusturur. Giincel elektrik sistemlerine elektrigin ¢ok
biiyiik 6l¢ekli depolanmasi heniiz yapilamadig icin elektrik arz talep dengesi anlik
olarak {tretim miktarin ayarlayarak yapilmaktadir. Bu nedenle biitiin sistem
operasyonlar1, piyasa operasyonlari vb. iglemlerin hepsi kisa donemli talep tahminine
stirekli olarak ihtiyag duymaktadir. Farkli elektrik iiretim kaynaklarmin farkl
esneklikleri vardir ve bazi iiretim teknolojileri anlik olarak devreye alinamaz veya
cikis gliclerinde anlik olarak biiyiik degisiklikler yapilamaz. Bu nedenle bu tiir iiretim
sistemlerinin bir siire 6nceden planlanmasi kesiksiz liretim ve talep karsilama igin
bliylik oOnem tasimaktadir. Dolayisiyla kisa donemli talep tahmini sistem
operasyonlarinin ve piyasa islemlerinin en temel unsurlarindan biridir. Yenilenebilir
enerjinin biiyiik Olcekli entegrasyonu arz tarafinda olan esnekligi azalttigi igin
planlamalar ve operasyonlar ¢ok daha karmasik bir hale gelmistir ve kisa donemli talep

tahmininin 6nemi daha da artmustir.

Bu ¢alismada tek degiskenli ti¢ farkli talep yontemi Tiirkiye’nin toplam elektrik talebi
verileri kullanilarak modellenmistir ve performanslar1 karsilastirilmistir.  Bu
yontemler: Cift Mevsimli Ustel Yumusatma (Double Seasonal Exponential
Smoothing-DSES), TABTS ve Coklu STL Ayristrma (Multiple STL-MSTL)
yontemleridir. Spesifik olarak, bu ii¢ alternatif yontemin bir giin sonrasinin 24 saatlik

elektik tiiketim tahmin performanslari analiz edilmis ve karsilastirilmistir.

Saatlik elektrik talebi verisinin karmasik mevsimsellik, yiiksek frekans, 6zel giin
farklilagsmalar1 gibi kendine has birgok Ozelligi vardir. Bu 6zellikler genel olarak
ekonomik aktivitelerden, giinliik aktivitelerden ve ¢evre kosullarindan kaynaklanir.
Buna bagh olarak talep giin icin de bir dip noktasi ile bir zirve noktasi arasinda
dalgalanir. Bu dalgalanma giinliik mevsimsellik yapisini olusturur. Haftanin farkl
giinleri i¢in giinliik mevsimsellik birbirinden farkli yapilar olarak ortaya ¢ikabilir fakat
diger haftalarin ayni giinii ile benzerlik gosterir ve haftalik bu dongii de haftalik
mevsimligi olusturur. Sonug olarak saatlik elektrik verisinde biri 24 saat digeri de 168
saat periyodlarda olmak tizere ¢ift mevsimsellik vardir. Bu 6zelliginden dolayi standart
yontemler ile tahmin yapmak olanaksizdir. Ayrica basit mevsimsel ¢ikarim (seasonal

differencing) veriyi duragan hale getirerek mevsimsellikten armdirmak icin yeterli
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gelmemektedir. Bu nedenle saatlik elektrik talebi tahminin yapan yontemler, verinin

bu karakteristik 6zelliklerini de modele dahil eden yontemler olmasi gerekmektedir.

Literatiirde birgok talep tahmin yontemi Onerilmistir. Standard otoregresif hareketli
ortalama yontemleri (ARMA) temel yapilarinda mevsimsel veriler iizerinde
kullanilamadig1 i¢in mevsimsellikleri da modele dahil edecek sekilde Cift Mevsimli
Otoregresif Hareketli Ortalama (DSARIMA) yontemi gelistirilmistir (Box et al.,
2015). Bu modellerin kapali formlar1 seklinde verilmektedir. Agik formlar: denklem
5.9, 5.10 ve 5.11 da verilmistir. Bir baska alternatif ise mevsimsellik davranislarini
Fourier terimleri ile temsil etmektir. yapisindaki Fourier terimleri modele harici
degisken olarak eklenebilir. , . Alternatif olarak otoregresif terimlerin katsayilarina
carpan olarak eklenerek periyodik otoregresif modeller gelistirilebilir (Taylor et al.,
2006), (Franses and Paap, 2004). Periyodik otoregresif formiilii denklem 5.12 de

verilmistir.

Ustel Yumusatma tek degiskenli zaman serilerinin tahmininde oldukca yaygin olarak
kullanilmaktadir. En yaygm kullanilan {stel yumusatma uygulamasi, istel
yumusatmanin seviye, trend ve mevsimsel bilesenlerine uygulandigi yontemdir ve
Hold-Winters yontemi olarak bilinen bir yontemdir (Winters, 1960). Fakat bu yontem
tek bir mevsimselligi igermektedir. (Taylor, 2003), bu yontemi ¢ift mevsimli verilere
uygulanacak sekilde uyarlamistir. Cift Mevsimli Ustel Yumusatma(DSES) olarak
adlandirilan bu yontemin metodolojisi, denklem 5.17-5.21 arasinda gosterilmistir.
Taylor (2003, 2006) bu yontemin DSARIMA yonteminden daha iyi sonuglar verdigini
gostermistir. DSES yOnteminin uygulamalar1 ile ilgili literatiirde bir¢ok caligsma
bulunmaktadir (Gould et al., 2008), (Bernardi and Petrella, 2015), (Taylor and
McSharry, 2007), (Souza et al., 2007) (Taylor et al., 2006), (Taylor, 2012).

Ustel Yumusatmanm kisitlarini ortadan kaldirmak ve daha genis kapsamli hale
getirmek i¢cin TBATS (Trigonometric terms, Box-Cox transformations, ARMA errors,
Trend, and Seasonality) ydntemi gelistirilmistir (De Livera et al., 2011). Ustel
yumusatmaya ek olarak mevsimselligi temsil etmesi icin Fourier terimleri
kullanilmaktadir. Ayn1 zamanda sonuglarda iyilesme saglamalarina gore veriye Box-
Cox doniisiimii ve hata terimlerini ARMA ile modelle uygulamasi de yapilmaktadir.

Sonuglarin 1iyilestirme kriteri olarak da AIC metrigi kullanilmaktadir. Model
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dinamikleri denklem 5.22-5.27 arasinda verilmistir (De Livera, Hyndman, & Snyder
(2011)).

Kisa donemli elektrik ihtiyaci tahminlerinde bilesenlerine ayirma (decomposition)
yontemi de kullanilabilmektedir (Wang et al., 2012), (Shao et al., 2017). Bu yonteme
ana fikir veriyi mevsimsellik ve trend gibi etkilerden arindirip geri kalan kismi standart
yontemler ile modellemektir. Bir zaman serisi, mevsimsel, trend ve diizensiz kisim
olarak seklinde ii¢ bilesene ayristirilmaktadir ve bilesenleri ayristirma yontemi ile
temsil edilirken, bileseni standart yontemler ile modellenmektedir. SEATS, X11 ve
STL gibi bir¢ok ayristirma teknigi kullanilabilir. Bu ¢alismada STL (Seasonal and
Trend decomposition using Loess) tekniginin ¢oklu mevsimsellik igerecek sekilde
uyarlanmig versiyonu olan MSTL (Multiple STL) kullamilmustir. STL tekniginin
parametrik olmamasi, her tiirlii mevsimsel bilesenin modellenebiliyor olmasi, hatali

verilere kars1 glirbliz olmasi gibi bir¢ok avantaji bulunmaktadir.

Performans Ol¢limii ve karsilastirmasi i¢in literatlirde birgok metrik Onerilmistir.
Performans karsilastirmalarinda sonuglarin verinin biiyiikliigiinden etkilenmemesi i¢cin
yiizdesel hatalar1 temel alan metriklerin kullanimi daha uygundur. Hatanin karesinin
almdig1 yontemler bilgi kaybma neden oldugu i¢in bazi arastirmacilar tarafindan
kullanilmamalar1 6nerilmistir (Armstrong, 2001). Bu calismada literatiirde en yaygin
kullanilan Ortalama Mutlak Yiizdesel Hata (Mean Absolute Percentage Error-MAPE)

kullanilmistir. Model se¢imi igin AIC metrigi kullanilmastir.

Bu caligmada 16.09.2019 - 09.12.2019 tarihleri arasinda Tirkiye’de gerceklesen
elektrik tiiketimi verileri kullanilmistir ve veriler Sekil 5.1 de gosterilmistir. Tiiketim
miktarmnin stirekli dalgalandigi grafikten goriilebilmektedir. Elektrik kullanimi genel
olarak giinliik ve haftalik periyodlar1 olan mevsimsellik gostermektedir. Tiirkiye’de
gerceklesen tiiketim verisi de her iki mevsimselligi gdstermektedir. Iki haftalik tiiketim
verilerinin sunuldugu Sekil 5.2 deki grafikte giinliik ve haftalik dongiiler acikca
gbzlemlenebilmektedir. Toplam tiiketim verisinin haftanin her giinii i¢in ayr1 ayri
hazirlanmis grafikleri Sekil 5.3 de verilmistir. Koyu ¢izgi, ilgili giin i¢in ortalama
tiikketimi gosterirken agik mavi aralik ise biitiin verinin %95 araligina diisen kismini
gostermektedir. Tiketimin en disiik oldugu seviye genel olarak giin dogumundan bir
slire dnce olmaktadir. Sonrasinda giindogumu ile birlikte baglayan faaliyetlerle 6gle

saatlerine kadar stirekli artmaktadir. Tiiketimde 6gle arasma bagl olarak bolgesel bir

158



diisiis olmasina ragmen aksam saatlerine kadar artmaya devam ederek zirve noktasina
gelmektedir. Bu noktadan sonra en diisiik seviyeye dogru tekrardan diisiise
geemektedir. Boylelikle giinlik mevsimsellik dongilisii olugsmaktadir. Bu dongii
haftanin bazi giinleri igin birbirine benzese de 6zellikle hasta sonu giinleri i¢in oldukc¢a
farklidir. Boylelikle, her hafta tekrarlanan giinliik dongiiler de haftalik mevsimselligi

olusturmaktadir.

Bu calismada incelenen yontemlerin model parametrelerini belirlemek igin kendine
Ozgli yontemler kullanilmistir. DSES yontemi bir istatistik yontem olmadigi igin
olabilirlik fonksiyonu tanimlanamamaktadir. Bu nedenle model parametrelerini
belirlemek i¢in hatalarin karelerinin toplami, lineer olmayan optimizasyon yontemleri
ile elde edilmistir. TBATS in model parametrelerinin belirlenmesi i¢in ise (De Livera
et al., 2011) nin tiirettigi olabilirlik fonksiyonu kullanilistir ve AIC ye gére model
secimi yapilmistr. MSTL ile bilesenlerine ayrilan verinin geri kalan kismini
modellemek i¢in kullanilacak basit Ustel yumusatma, mevsimsellik ve trend ortadan

kalktig1 i¢in iki aday model kalmistir. Model se¢imi AIC ye bagli olarak yapilmistir.

Tahmin sirasinda izlenen metodoloji, verileri kullanarak model se¢imi ve
parametrelerini belirlemek ve model ile bir giin sonrasinin 24 saati i¢in tiiketim
tahminini yapmak seklinde olmustur. Sonrasinda veri seti giincellenerek bir sonraki
giiniin 24 saati icin tahmin yapilmistir ve 7 giin icin veriler elde edilmistir. 1zlenen
yontem, Sekil 5.4 de gosterilmistir. DSES, TBATS ve MSTL ile yapilan giinliik
tahminlere Ornekler sirasi ile Sekil 5.6, Sekil 5.7 ve Sekil 5.de gosterilmistir. Bir
haftalik tahmin periyodu sonunda elde edilen ve performans metrigi olarak kullanilan
MAPE degerleri Sekil 5.9 da verilmistir. Buna gére MSTL, TBATS’ den biitiin giinler
icin, DSES’den ise bir¢ok giin i¢in daha iyi sonug¢ vermistir. Biitiin periyod icin MAPE
ortalamalar1 Tablo 5.3 de sunulmustur. Sonuglara gére MSTL en iyi performansi

gostermistir
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