
IMAGE GENERATION USING ONLY A DISCRIMINATOR NETWORK WITH
GRADIENT NORM PENALTY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CANSU CEMRE YEŞILÇIMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2022





Approval of the thesis:

IMAGE GENERATION USING ONLY A DISCRIMINATOR NETWORK
WITH GRADIENT NORM PENALTY

submittedb CANSU CEMRE YEŞILÇIMEN in partial fulfillment of the require-
ments for the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assist. Prof. Dr. Emre Akbaş
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assist. Prof. Dr. Ramazan Gökberk Cinbiş
Computer Engineering, METU

Assist. Prof. Dr. Emre Akbaş
Computer Engineering, METU

Assist. Prof. Dr. Cemil Zalluhoğlu
Computer Engineering, Hacettepe University

Date: 02.09.2022



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Cansu Cemre Yeşilçimen

Signature :

iv



ABSTRACT

IMAGE GENERATION USING ONLY A DISCRIMINATOR NETWORK
WITH GRADIENT NORM PENALTY

Yeşilçimen, Cansu Cemre

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

September 2022, 50 pages

This thesis explores the idea of generating images using only a discriminator network

by extending a previously proposed method (Tapli, 2021) in several ways. The base

method works by iteratively updating the input image, which is pure noise at the be-

ginning while increasing the discriminator’s score. We extend the training procedure

of the base network by adding the following new losses: (i) total variation, (ii) N-way

classification (if labels are available), and (iii) gradient norm penalty on real exam-

ples. Our experiments show that while the total variation and N-way classification do

not significantly improve the performance, the gradient norm penalty results in better

generative examples and faster convergence. Combining all three modifications yield

the best model. Using a small convolutional network, we achieve an FID score of

25.26 on the MNIST dataset. We demonstrate additional generation results on the

EMNIST and Yale Face datasets and present scores for out-of-distribution detection

on FashionMNIST, EMNIST, and KMNIST datasets.

Keywords: computer vision, gradient penalty, convolutional neural network, image

v



generation

vi



ÖZ

YALNIZCA AYIRICI AĞ KULLANARAK GRADYAN BÜYÜKLÜĞÜ
CEZASI İLE GÖRÜNTÜ ÜRETİMİ

Yeşilçimen, Cansu Cemre

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Eylül 2022 , 50 sayfa

Bu tez, daha önce Taplı (2021) tarafından önerilmiş olan sadece bir ayırıcı ağ ile

görüntü üretme fikrini çeşitli iyileştirmeler ile genişletmektedir. Sözedilen yöntem,

ayırıcı ağın çıktı puanlarını arttırarak başlangıçta saf gürültü olan görüntüleri yine-

lemeli şekilde günceller. Eğitim prosedürünü, şu yeni kayıp fonksiyonları kullanarak

genişletmekteyiz: (i) toplam değişimsel kayıp, (ii) N-sınıflı ayırma (eğer sınıf etiket-

lerine erişilebiliyorsa) ve (iii) veri kümesindeki görüntüler için hesaplanan gradyan

büyüklüğü cezası. Deneylerimiz gösteriyor ki, toplam değişimsel kayıp ve N-sınıflı

ayırma üretim performansını önemli ölçüde değiştirmemesine rağmen, gradyan bü-

yüklüğü cezası daha iyi görüntü üretimine ve daha hızlı yakınsamaya sahip olmasını

sağlar. Bahsedilen üç değişikliği birleşik şekilde uygulamak ise en iyi sonuç çıktıla-

rını oluşturur. Küçük bir evrişimli sinirsel ağ kullanarak MNIST veri kümesi üzerinde

25.26 FID puanına erişiyoruz. EMNIST ve Yale Face veri kümeleri üzerinde görüntü

üretimi sonuçları ile belirsizlik kestirimi problemi için FashionMNIST, EMNIST ve

KMNIST veri kümeleri üzerinde alınmış ekstra sonuçlar sunuyoruz.

vii



Anahtar Kelimeler: bilgisayarlı görü, gradyan cezası, evrişimli sinirsel ağ, görüntü

üretimi

viii



To my beloved mother

ix



ACKNOWLEDGMENTS

Above all, I would like to express my gratitude to my supervisor, Assist. Prof. Dr.

Emre Akbaş for his unwavering support throughout this process. I am able to accom-

plish this task with his treasured wisdom and guidance.

I would like to thank my committee members, Assist. Prof. Dr. Ramazan Gökberk

Cinbiş and Assist. Prof. Dr. Cemil Zalluhoğlu for their time and valuable advice.

I am grateful to my dear friend Melisa Idil Şener, for the love and tireless support she

has shown me through the years.

Finally, I would like to thank my classmate and friend Merve Taplı for her endless

passion on the research topic and our precious debates.

The numerical calculations reported in this paper were partially performed at TUBITAK

ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

We also gratefully acknowledge the computational resources kindly provided by METU-

ROMER, Robotics and Artificial Intelligence Technologies Applications and Re-

search Center.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Problem Definition . . . . . . . . . . . . . . . . . . 1

1.2 Proposed Methods and Models . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions and Novelties . . . . . . . . . . . . . . . . . . . . . . 3

1.4 The Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . 5

2.1 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . 8

2.4 Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

xi



2.5 Score Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 PROPOSED METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Initial Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Total Variation Loss . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 Objective Function of Image Generation . . . . . . . . . . . . 16

3.4 Fine-tuning of Network . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Gradient Norm Penalty on Real Images . . . . . . . . . . . . 17

3.4.2 Cross Entropy Loss on Real Images . . . . . . . . . . . . . . 18

3.4.3 Objective Function of Fine-tuning . . . . . . . . . . . . . . . 18

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Method Simulation on 2D . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Main Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3.1 Fréchet Inception Distance . . . . . . . . . . . . . . . . 26

4.2.4 Implementation and Parameter Details of Proposed Method . . 27

4.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.5.1 Generated Image Diversity . . . . . . . . . . . . . . . . 37

4.2.5.2 Uncertainty Estimation . . . . . . . . . . . . . . . . . . 37

xii



4.2.6 Compared Models . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xiii



LIST OF TABLES

TABLES

Table 4.1 Comparison of different discriminators with varying modifications

trained on MNIST dataset following our image generation method. FID

score and from which epoch the best score is gathered are also presented. . 30

Table 4.2 Comparison of the AUROC scores gathered from our method and

state-of-the-art uncertainty estimator. FM stands for FashionMNIST. Both

scores express the capability of models distinguishing datasets from MNIST. 39

Table 4.3 Comparison of the FID scores and learnable parameter counts, in-

cluding state-of-art generative models, the base model we improved on,

and our proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4.4 Comparison of the FID scores gathered from our method and previ-

ous work by Taplı [1] on two different datasets; EMNIST and Yale Face. . 41

xiv



LIST OF FIGURES

FIGURES

Figure 1.1 Flow of the proposed method. . . . . . . . . . . . . . . . . . . . 2

Figure 3.1 The network architecture of our model. . . . . . . . . . . . . . . 13

Figure 3.2 Examples illustrating the scrambling process. . . . . . . . . . . 14

Figure 3.3 Steps of the generation pipeline. . . . . . . . . . . . . . . . . . 16

Figure 4.1 Original data of the simulation setup visualized on a 2D plane. . 22

Figure 4.2 Data distribution of dataset and randomly generated data before

and after applying first gradient descent on generated data. . . . . . . . 22

Figure 4.3 Data distribution of original and randomly generated data before

and after round 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 4.4 Data distribution of original and randomly generated data before

and after round 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 4.5 Data distribution of original and randomly generated data before

and after round 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 4.6 Data distribution of original and randomly generated data before

and after round 250. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 4.7 Overview of the loss values of the simulation network experiment. 25

Figure 4.8 Overview of the loss values in initial training. . . . . . . . . . . 29

xv



Figure 4.9 FID score comparison of the baseline and the total variation loss

versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.10 FID score comparison of the baseline and the cross-entropy ver-

sions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.11 FID score comparison of the baseline and the gradient norm

restricted versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4.12 Overview of the FID scores of different discriminators with

varying modifications trained on MNIST dataset. . . . . . . . . . . . . 33

Figure 4.13 Overview of the FID scores from two new discriminators where

we add individual modifications of total variation loss and cross-entropy

loss on a gradient norm restricted version. . . . . . . . . . . . . . . . . 34

Figure 4.14 Qualitative results from effects of different additions to the base-

line method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.15 Qualitative results from our combined method trained on MNIST

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.16 Qualitative results from our combined method trained on EM-

NIST dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.17 Qualitative results from our combined method trained on Yale

Face dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.18 Qualitative results for checking the diversity of our generated

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.19 Histogram of the output values collected by inputting Fashion-

MNIST and MNIST into our discriminator. . . . . . . . . . . . . . . . 40

Figure 4.20 Histogram of the output values collected by inputting KMNIST

and MNIST into our discriminator. . . . . . . . . . . . . . . . . . . . . 40

Figure 4.21 Histogram of the output values collected by inputting EMNIST

and MNIST into our discriminator. . . . . . . . . . . . . . . . . . . . . 41

xvi



LIST OF ABBREVIATIONS

ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

AE Autoencoder

AUROC Area Under the Receiver Operating Characteristics

DCGAN Deep Convolutional Generative Adversarial Network

DUQ Deterministic Uncertainty Quantification

ELBO Evidence lower bound

FID Fréchet Inception Distance

GAN Generative Adversarial Network

GPU Graphics Processing Unit

IS Inception Score

KL Kullback-Leibler

PCA Principal Component Analysis

PresGAN Prescribed Generative Adversarial Network

VAE Variational Autoencoder

xvii



xviii



CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Image generation is one of computer vision’s most fascinating and prominent research

areas. Novel loss functions, architectures, and models are currently being researched

in the scientific community to improve generation quality and diversity. Generative

models can be grouped into two categories, likelihood-based [2] and implicit genera-

tive models [3]. GANs [4] have been a very active research topic in implicit generative

models. Likelihood-based models explicitly calculate the likelihood, which leads to

either maximizing likelihood or, in other words minimizing Kullback-Leibler (KL)

distance. They usually need a specialized architecture for each problem, and non-

symmetrical divergence between distributions can create issues like mode-dropping.

GANs are proven to behave unstable during training, and like other generation mod-

els, metrics for evaluation are still open to discussion and further research. GANs

require two distinct networks, a generator, and a discriminator. Balancing these two

networks in the training process is a challenge, and if the discriminator is too success-

ful at classification, the generation network tends to fail due to vanishing gradients.

They also show tendencies towards mode collapse and often require additional adver-

sarial attacks, such as injecting noise into input data and batch statistic modifications

to stabilize training.

Considering the complexity and the meticulous nature of balancing two networks

in GANs, rather than stabilizing these individual networks, this thesis focuses and

improves on the method introduced by Taplı [1], where, unlike GANs, only a dis-

criminator network is used for generating images. We aim to achieve comparable

1



Figure 1.1: Flow of the proposed method.

qualitative results on MNIST, EMNIST and Yale Face datasets using a smaller archi-

tecture while adding regularization terms such as total variation loss, N-way classi-

fication (cross-entropy) loss, and gradient norm penalty on the discriminator. In this

study, we also explore the idea of using the discriminator as an uncertainty estimator

for out-of-distribution point detection.

1.2 Proposed Methods and Models

Contrary to GANs, we use only a discriminator to generate images. We train our

discriminator network on the dataset prior to the generation process. Initial training

consists of training the discriminator as a binary classifier. This is achieved by in-

putting images from the dataset as real labeled and pixel scrambled dataset images

as fake labeled while minimizing hinge loss on inputs. Later, we sample a random

noise from a multivariate normal distribution where its standard deviation and mean

are set to be the same as the dataset. This random image is then fed through the

discriminator network, and gradient descent is applied to the image based on the cal-

culated gradients that maximize the discriminator’s output scores. This is a type of

adversarial attack applied to the input image. We continue this loop until a specific

stopping point, or a maximum number of updates is reached. After we perturb the

data in several iterations, these images are labeled as fake, and the discriminator is

further trained (fine-tuning) on these examples. For the training of the discrimina-

tor, we explore three regularization terms in this thesis: total variation loss, N-way

2



classification loss, and the gradient norm penalty on real examples. Figure 1.1 sum-

marizes the flow of our proposed method and all qualitative and quantitative results

are generated through this model.

1.3 Contributions and Novelties

Our contributions can be summarized as follows:

• This thesis expands and explores the idea of using only a discriminator network

introduced by Taplı [1] for generation purposes.

• In this study, we explore the idea that as the network discovers the correct

boundaries on data space while generating new images, the gradient norms of

discriminator output with respect to its inputs should be close or get close to

zero with each iteration in process. We show that this restriction on gradient

norms improves the generated image qualities.

• We show that our discriminator has a high capability of rejecting out-of-distribution

data points and has comparable AUROC scores with state-of-the-art uncertainty

estimators.

• We add N-way classification (cross-entropy) loss in fine-tuning step as a mea-

sure of the divergence from semantic labels to improve the generation process.

• This thesis includes the addition of total variation loss in the generation ob-

jective function to add a measure to the spatial pixel complexity of generated

images.

• We produce on-par qualitative generation results to previous work and state-of-

the-art GANs on the MNIST dataset with a smaller network architecture both

in the number of parameters and layers.

• We reach an FID score of 25.26 on MNIST, 35.37 on EMNIST, and 45.85 on

Yale Face datasets outperforming previous work by Taplı [1].

3



• Our method has a high capability of detecting out-of-distribution data points

with an AUROC score of 0.998 on FashionMNIST, 0.999 on KMNIST, and

0.938 on EMNIST datasets.

1.4 The Outline of the Thesis

The remaining sections of this thesis will follow the outline described below.

Chapter 2 explains previous research and related work on the thesis subject.

Chapter 3 describes the proposed method in detail with explanatory figures and tables.

Chapter 4 demonstrates the experiment setup and process and presents numeric and

visual results.

In Chapter 5, we provide the conclusion to this thesis and general commentary.

4



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we provide a background for generative models and describe related

research in the literature. Generative models have many applications in the field of

computer vision such as high fidelity image generation [5, 6, 7], style transfer [8,

9], text to image translation [10, 11], 3D modelling [12] and artistic creation [13].

Likelihood-based models include VAEs [14, 15, 16] and autoregressive models [17,

18]. Implicit models include GANs [4], one of the most influential generative models

in recent years. We also provide background information on score networks and

diffusion models, explaining the intuitive ideas of gradient norm restrictions and the

behavior of scores of the inputs.

2.1 Autoencoders

Autoencoders were first introduced by Rumelhart et al. [19] in the late 80s as a means

to offer a solution to the problem of achieving back-propagation in an unsupervised

manner. A general autoencoder framework consists of an encoder and a decoder. The

main goal is to map the input data into a compressed representation on a latent space

and then decode it as similar as it can get to the original data. This conceptually

simple idea has many application fields in the machine learning area. Autoencoders

are used by Tomczak and Welling [20] as a method to perform space reduction, de-

noising images [21], anomaly detection [22, 23] and for clustering purposes [24].

Later on formally defined by Baldi [25], autoencoders attempt to solve the objective

function defined in Eq. (2.1). Where A : Rn → Rp is defined as the encoder and

B : Rp → Rn is defined as the decoder. The objective function tries to minimize

5



the expectation over input x and ∆ is the dissimilarity function between the input

and output. Divergence functions are usually chosen to be in the form of Lp norm or

Hamming distance.

min
A,B

[
m∑
t=1

∆(A ◦B(xt), xt)

]
(2.1)

A and B are usually set as neural networks. However, if they are linear operations,

the autoencoder can be defined as a linear autoencoder. Flaut [26] shows that when

linear autoencoders are used for space reduction, the reduction is equivalent to using

Principal Component Analysis (PCA).

The bottleneck layer between the encoder and the decoder captures a compressed

representation of the latent space. This bottleneck creates some setbacks in the pro-

cess of autoencoder training. For example, suppose the bottleneck’s hidden nodes

are equal to or greater than the input data size. In that case, the encoder might not

learn any valid information and become an identity function. On the other hand, if

the hidden node size is too small, the network still has the chance to overfit. Further-

more, the bias-variance trade-off is one of the acute issues to consider while tackling

autoencoder training.

2.2 Variational Autoencoders

Kingma and Welling [14] proposed significant progress in the abilities of autoen-

coders where the latent variables are represented by a probability distribution rather

than a fixed vector. When we consider the marginal likelihood defined in Eq. (2.2) it

can be seen from Eq. (2.3) that the true posterior is intractable, which creates a prob-

lem, especially in learning models with non-linear layers. VAEs answer the question

of how to achieve learning where the continuous latent variables have intractable pos-

terior distributions.

pθ(x) =

∫
pθ(z)pθ(x|z) (2.2)

6



pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
(2.3)

Let us define the dataset X = {x(i)}Ni=1 where the N is the number of samples from

variable x. The process has 2 main steps. It starts by sampling z(i) from pθ∗ , then

xi is generated from the conditional distribution pθ∗(x|z). As shown by Kingma and

Welling [14], the aforementioned prior and likelihood are assumed to be members of

the same parametric families as pθ and pθ(x|z) but as with likelihood maximization

tasks the true values of θ∗ and z(i) are unknown. To ease the maximum likelihood

calculation of pθ(x
i), a new approximation of intractable posterior defined in Eq.

(2.3) can be employed. Let us assign θ to the probabilistic encoder variable and ϕ to

the probabilistic decoder variable as parameters to be learned. Then it can be assumed

that qϕ(z|x) recognition model can solve the probabilistic distribution of z from which

the x could have been generated. With this perspective, the main objective function

can be summarized as maximizing ELBO on the marginal log-likelihood using the

approximated posterior distribution qϕ(z|x).

log pθ(x
i) = DKL(qϕ(z|xi)||pθ(z|xi)) + L(θ, ϕ;xi) (2.4)

can be restated as

log pθ(x
i) ≥ L(θ, ϕ;xi) = Eqϕ(z|x) [− log qϕ(z|x) + log pθ(x, z)]

which can also be written as

L(θ, ϕ;xi) = −DKL(qϕ(z|xi)||pθ(z|xi)) + Eqϕ(z|xi)

[
log pθ(x

i|z)
]

The first term of the objective function defined in Eq. (2.4) is the KL divergence

between the approximate model and the true posterior of the term z. The objective

function tries to minimize the divergence term with respect to parameter ϕ. The

second term is defined as the marginal lower bound and aimed to be optimized for the

parameters θ and ϕ. While composing the Monte Carlo expectations we can state Eq.

(2.5) with the purpose of using differentiable function gϕ(ϵ,x
i). The main motivation

7



in the reparameterization trick is to solve the problem created by our density being

parameterized by θ.

Eqϕ(z|xi) = Epϵ

[
f(gϕ(ϵ,x

i))
]
≃ 1

L

L∑
l=1

f(gϕ(ϵ
l,xi)) where ϵl ∼ p(ϵ) (2.5)

The use of Gaussian posterior approximation creates some limitations on the abilities

of VAEs. The forenamed models show tendencies to explore the spaces with lower di-

mensionality compared to their allowed capacity, as shown by Tomczak and Welling

[27], and by Burda et al. [16]. Furthermore, VAEs tend to ignore some latent vari-

ables in these space reductions and might generate blurry outputs. Gregor et al. [28]

shows that vanilla VAEs require manual annealing of KL divergence term. Expanding

the posterior and using complex posteriors to overcome these issues create problems

compared to vanilla VAEs during training with generalization and optimization.

2.3 Generative Adversarial Networks

GANs were proposed by Goodfellow et al. [4] in 2014 as a new implicit generative

model and are one of the most popular and prominent developments in generative

modeling. GANs are utilized in many fields in the computer vision area such as image

synthesis [5, 6], image inpainting [29, 30], style transfer [31, 32] and text to image

translation [33, 34]. They work by sampling from data distributions assembled via

Gaussian transformations utilized by deep neural networks. Given a class of models

Q, GANs try to find the best model q that belongs to this family by matching it to

the input data. The main logic behind GANs is to train two models simultaneously

and improve them via minimizing opposing objective functions, which forces the

networks to compete. The first model, namely the generator G, tries to generate data

G(z) from noise z as close to the real dataset as possible. Meanwhile, the second

network, the discriminator D, tries to distinguish whether the input is taken from the

dataset or was generated via the generator. Both of these models usually are chosen

to be neural networks for differentiability.

8



min
G

max
D

V(D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] (2.6)

Vanilla GANs try to minimize the objective function defined in Eq. (2.6). The latent

variable z is sampled from the latent distribution pz(z). The generator G offers a

mapping from random latent variable z to data space, and the discriminator D out-

puts a scalar probability of input being a genuine dataset sample. Because the GAN

training requires finding Nash equilibrium in high dimensional space, they tend to

fail to converge, especially when back-propagation is used for learning. GANs also

tend to experience mode collapse when trained with fewer input data and create fewer

modes than the multi-modal input dataset. Mode collapse pushes the discriminator

D to overfit and removes the ability to create significant gradients to improve the

generator G, reducing the quality of generated data. They also show inclinations to

encounter vanishing gradient and unstable gradient behavior based on the chosen dis-

tance function. Several techniques have been introduced to stabilize GAN training

and overcome well-known problems faced in the training process [35]. Jacobian reg-

ularization for local convergence, gradient penalty and weight normalization for Lip-

schitz continuity, and data augmentation to reduce overfitting can be listed as some of

these techniques [36]. By utilizing Lipschitz continuity, Arjovsky et al. [37] proposed

a key improvement in the training of GANs. Other research followed enforcing Lip-

schitzness [38, 39], and this constraint motivated improvements like gradient penalty

and spectral normalization. It achieved state-of-the-art generation results [7, 5].

Our model employs an idea similar to GANs, but in our method, we use only a dis-

criminator network to overcome issues faced in training processes. We aim to reach

equilibrium among discriminator states by balancing the gradients by further training

the discriminator after the image generation loop.

2.4 Diffusion Models

Sohl-Dickstein et al. [40] proposed a variation to the latent variable methods named

diffusion models, and they have shown great success in image generation. Diffusion

models create new data by slowly adding Gaussian noise to input and learning to

9



reverse this process through a fixed Markov chain. Diffusion models employ two

processes: forward diffusion and reverse diffusion. In the forward diffusion, data x0

is sampled from its prior distribution q(x) and is destroyed by injecting Gaussian

noise. Eq. (2.7) summarizes the forward diffusion process where the conditional

Gaussian is combined with Markov formulation leads to. β represents the variance

schedule.

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1)

=
T∏
t=1

N (xt;
√

1− βtxt−1, βtI) (2.7)

The reverse diffusion process model learns a variational decoder where it reverses the

diffusion process and perturbs noise into data. By starting from pure noise pxT
∼

N (xT , 0, I) the model learns a joint distribution defined in Eq. (2.8). The equation

being dependent on time affirms that each iteration of the distribution depends only

on the previous.

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt)

= p(xT )
T∏
t=1

N (xt−1;µθ(xt, t),
∑

θ(xt, t)) (2.8)

The reverse diffusion process model learns a variational decoder where it reverses

the diffusion process and perturbs noise into data by starting from pure noise where

pxT
∼ N (xT , 0, I).

2.5 Score Matching

Probabilistic models in many cases have an unknown normalization term that is in-

tractable. Let’s assume we want to estimate parameter θ from a random vector

x ∈ Rn, in other words we want to approximate the probability density function

10



of x denoted by px(.) by using estimated parameter θ̂. The setback, in this case, is

that we can only compute the pdf defined in Eq. (2.9). The distribution p(ξ; θ) can

be learned by maximizing the log-likelihood of the training data though this would

require it to be a normalized function. The normalizing constant Z(θ) can usually

be defined as an intractable integral defined in Eq. (2.10), hence calculating the log-

likelihood would be an infeasible choice for our problem scope. By solving the prob-

lem of estimating non-normalized probabilistic models from unknown distributions,

score matching was introduced by Hyvärinen [41]. This method builds on the gen-

eral probabilistic tool used for obtaining the bounds of distances among distributions

presented by Stein [42]. Score-based models can be utilized to learn normalizing

constants directly. Score networks utilizing score matching approaches are employed

in many ways in generative learning, such as image generation [43, 44] and audio

synthesis [45].

p(ξ; θ) =
1

Z(θ)
q(ξ; θ) (2.9)

Z(θ) =

∫
ξ∈Rn

q(ξ; θ)dξ (2.10)

The main idea of score matching is to minimize the divergence between the gradi-

ent of log density of ground-truth data and the gradient of log density calculated by

the model. For a distribution p(x) score function can be summarized as ∇x log p(x).

Song and Ermon [43] suggested that a score network sθ(x) can be trained for estimat-

ing ∇x log p(x) without the need to train a model for the term p(x) and this model

is called a score-based model. The objective function Eq. (2.11) for score match-

ing minimizes Fisher divergence between the model and score network. After the

score network is trained, Langevin dynamics [46] can be used for sampling from its

distribution. Langevin sampling simulates sampling from prior distribution p(x) by

sampling from log p(x).

Ep(x)

[
||∇x log p(x)− sθ(x)||22

]
(2.11)

11



Song et al. [47] presents state-of-art inception scores on CIFAR dataset by perturb-

ing data with different scales of noise. This approach initiated many studies that tie

diffusion models and score networks. Ho et al. [48] showed that the ELBO term in

diffusion models is analytically equivalent to score-network objective functions.

Our model employs a similar idea to score networks where we calculate the gradients

of the real data on the discriminator. Rather than training a separate network for

score-matching, we use the norm of the gradient values as a gradient penalty term

similar to the idea proposed by Gulrajani et al. [49] to restrict the gradient update.

12



CHAPTER 3

PROPOSED METHOD

In this chapter, we describe our proposed image generation method that involves only

a discriminator network. The method can be summarized in three main steps, ini-

tial training, image generation, and fine-tuning of the network. Generation and fine-

tuning steps are repeated until convergence criteria. In the sections below, we explain

the implementation details of these steps, the choice of loss functions, and the overall

network architecture.

3.1 Network Architecture

Discriminator network in this thesis, illustrated in Figure 3.1, is chosen similar to a

minimalistic version of VGG-Net [50] where filters of size 3× 3 with small receptive

fields are made use of. It takes a 28× 28 image and outputs a scalar score. Architec-

tural structure has 4 convolutional layers, followed by a concatenation layer and three

Figure 3.1: The network architecture of our model.

13



Figure 3.2: Examples illustrating the scrambling process. The first row shows original

samples from the dataset. The second row is the respective original image’s scrambled

versions based on different patch sizes.

fully connected layers. The concatenation layer flattens and concatenates outputs of

the first and last convolutional layer to pass information through. We use the third

fully connected layer’s output as class energies in cross-entropy loss for classification

purposes. The output layer is used as a score value of the input images.

3.2 Initial Training

Before the generation process is initiated, the network is trained as a discriminator to

distinguish real vs fake images. By previously training, we aim to start the generation

process where the network has already started to explore data space. Real labeled

images are chosen to be from the dataset. Fake labeled images are then created by

a scrambling algorithm. The algorithm randomly chooses an integer for each image

from a predefined range, then this value is used as the number of adjacent pixels that

will be moved through the horizontal axis. Figure 3.2 illustrates examples of scram-

bled images created by this method using different patch sizes. These scrambled

images are labeled fake and fed through the network with real labeled images.

14



Linit = Ex∼X [max(0, 1−D(x))] + Ef∼F [max(0, 1 +D(f))] (3.1)

Eq.(3.1) represents the main objective function minimized during the initial training

process. X is the dataset and x is a sample image taken from it. F represents images

labeled fake, scrambled images in this case, and f is an image taken from this set. It

can be seen that Eq.(3.1) is a modified version of minimax loss defined by Goodfellow

et al. [4] and this equation will be made use of in the upcoming sections as well.

3.3 Image Generation

After initial training, our method continues from the remaining two main steps, first

applying gradient descent on images and then further training the network. Applying

gradient descent on randomly sampled data to generate realistic-looking images and

further training (fine-tuning) the discriminator where its weights are updated based

on generated images.

The flow starts by sampling random noise data from a multivariate normal distribu-

tion where its mean and variation are chosen to be the same as the dataset. Sampled

noise is then fed through the discriminator to get score results. These scores are used

for calculating objective function and by utilizing the loss values, back-propagation is

applied to gather gradients. Based on the outputs of back-propagation, the appropri-

ate amount of gradient descent is then applied to sampled noise which is equivalent

to subtracting the gradient vector from images at each iteration. Gradually, randomly

sampled noise data starts to transform into images resembling the input dataset. The

idea of applying gradient descent on data and its effects are investigated and substan-

tiated in Chapter 4.

After certain stopping conditions are met or a certain number of iterations is reached

the image update loop is broken and generated images are labeled as ‘fake’. These

images are then passed through a process called fine-tuning. By labeling generated

images as fake we aim to challenge the discriminator to generate higher quality im-

ages that correlate to higher scores on fake images. Figure 3.3 summarizes generation

15



Figure 3.3: Steps of the generation pipeline.

and fine-tuning steps after the discriminator had been initially trained.

3.3.1 Total Variation Loss

Total variation loss is used in the overall generation objective as a measure of the

complexity of images with respect to the spatial variation of pixel values. We add this

term by summing the squares of differences on horizontally and vertically adjacent

pixels. The division is used as a batch and image-wise normalization term. In Eq.

(3.2), x represents individual images taken from dataset X. H and W represent the

height and width of images respectively. C is the channel size of input images and

B is the batch size of the algorithm. λttl is used as a multiplication factor of the total

variation loss term.

Lttl = λttl

[∑W−1
i=1

∑H
j=1(xi+1,j,c − xi,j,c)

2 +
∑W

i=1

∑H−1
j=1 (xi,j+1,c − xi,j,c)

2

(C ∗H ∗W ∗B)

]
(3.2)

3.3.2 Objective Function of Image Generation

In addition to Eq. (3.2), hinge loss and dataset statistics are added to the general

objective function of the image generation loop. Eq. (3.3) is the hinge loss of real

16



images. Eq. (3.4) is added as a term to enforce similar batch statistics of the generated

images and dataset. X is the original images and X̂ is generated images. λstat term

is used as a scale factor to adjust the overall value and its effect on the objective

function. The first term in Eq. (3.4) is the L2 distance between the mean of the

dataset and the mean of the generated image set. The second term is the distance

between the variances of two sets.

Lupdate = max
x∈X

(0, 1−D(x)) (3.3)

+ λstat

[
W∑
i=1

H∑
j=1

[µX − µX̂]
2
ij +

W∑
i=1

H∑
j=1

[
σ2
X − σ2

X̂

]2
ij

]
(3.4)

The overall objective function of the image update step can be summarized as Eq.

(3.5). Gradients are calculated to minimize this function and the gradient vector is

then subtracted from the sampled noise as a way to apply gradient descent to the

image itself.

Lgen = Lupdate + Lttl (3.5)

3.4 Fine-tuning of Network

The main goal of fine-tuning the discriminator is by labeling generated images as

‘fake’; we aim to force the network in a way that after each iteration it is forced

to generate higher-scored images and will try to balance out the effect created by

applying gradient descent on data.

3.4.1 Gradient Norm Penalty on Real Images

We present a similar idea to score matching, where we calculate the gradients of input

images. Rather than training a separate network to learn these gradients we approach

from a different perspective and use these gradients on dataset images as a penalty

17



term. Assuming the discriminator learns the correct decision boundaries while gener-

ating images, in this thesis we propose that the update gradient on a real image chosen

randomly from a dataset should be close to or approach zero while updating discrimi-

nator weights at each iteration. The main motivation of this standpoint is limiting the

change in discriminator weights as the input changes. Hence, enforcing no action in

the case of inputting dataset images while applying parameter update. In other words

for an ideal world where the discriminator generates authentic images, its gradient

norms on these dataset images should be zero. The objective function presented in

Eq. (3.6) is based on minimizing the gradient norms of outputs of the discriminator D

with respect to its inputs. λgnorm term is used as a scale factor in the overall objective

function.

Lgnorm(X) = λgnorm||∇x∈XD(x)|| (3.6)

3.4.2 Cross Entropy Loss on Real Images

We add multi-class cross-entropy loss as a regularization term to the objective func-

tion to calculate the divergence from original labels to predicted labels. In Figure 3.1

the third fully connected layer has 10 nodes as output. This layer is then used as the

class energies of the classification model. In Eq. (3.7) loss for each class is calculated

for each image and then summed. yc(x) is the true label of x and pc(x) is the softmax

probability of image x belonging to class c.

Lce(X) = λce

[
−

C∑
c=1

yc(x) log(pc(x))

]
(3.7)

3.4.3 Objective Function of Fine-tuning

Eq. (3.8) utilizes a similar approach used in Eq. (3.1) where the hinge loss between

real and fake images is calculated similarly to minimax loss. In fine-tuning step dis-

criminator parameters are updated based on the minimization of the equation defined

below.

18



Lftune = max
x∈X

(0, 1−D(x)) + max
f∈X̂

(0, 1 +D(f)) (3.8)

+ Lgnorm(X) + Lce(X) (3.9)

3.5 Summary

This chapter explains the details of objective functions used in the proposed method

and gives an intuitive understanding of some of the approaches utilized. Figures

and explanatory sections are provided to explain network architecture and how we

generated fake labeled data.

In the next section, we give concrete results of the experimentation of the proposed

method.

19



20



CHAPTER 4

EXPERIMENTS

4.1 Method Simulation on 2D

To substantiate the proposed method, we implemented a flow that simulates the over-

all process. The main purpose of this simulation is to show the effects of gradient

descent on data and the effect of adding gradient norm restriction as a loss term to

fine-tuning flow on the results of Taplı [1]. We generated a mock dataset consisting

of points distributed along a spiral shape on a 2D plane ranging through [−1, 1]. This

dataset is then fed through a simplified process that encapsulates initial training, data

generation, and fine-tuning steps. Gradient norms are added as a regularization term

in the fine-tuning objective function explained in Chapter 3. The discriminator net-

work used in this simulation consists of 3 linear layers, Tanh as an activation layer

in between linear layers and sigmoid is used for predicting 2-class probability on the

last layer as the output of the simulation network.

The network is first trained as a discriminator on the generated dataset for 25 epochs

and after this initial training step, the accuracy of the discriminator was 0.84. Figure

4.1a represents the network’s boundaries after initial training on real labeled data from

the dataset. The decision boundary on each round is decided where the probability on

a certain point is bigger than 0.5. Figure 4.1b represents the probability distribution

of the model on data space. Red and light areas have a higher probability than blue-

colored areas.

After discriminator training, at each loop, 1 batch which consists of 75 randomly

generated data points, is fed through the ‘generation’ process where back-propagation

is applied to calculate gradients and then gradient descent is applied on data points to

21



(a) (b)

Figure 4.1: Original data represented as blue points visualized on a 2D plane ranging

within [−1, 1]. The decision boundary divides the data space where red areas are

labeled as real and blue area is labeled as fake. a) Original data consisting of 400 data

points visualized on top of the decision boundary right after the initial training. b)

Original data consisting of 400 data points visualized on top of the decision boundary

represented as probability ranges, right after the initial training process. Blue areas

have lower probability and red areas have higher probability values.

(a) (b)

Figure 4.2: Data distribution of dataset and randomly generated data before and after

applying first gradient descent on generated data. Red points represent dataset entries

labeled real and blue points represent randomly generated data labeled fake. a) Orig-

inal data and 1 batch of randomly generated data on top of the decision boundary. b)

Original data and 1 batch of generated data after gradient descent had been applied

and fake labeled generated data points moved into the decision boundary.

22



(a) before (b) after

Figure 4.3: Data distribution of original and randomly generated data before and after

round 50.

(a) before (b) after

Figure 4.4: Data distribution of original and randomly generated data before and after

round 100.

move them into decision boundary, where real labeled data resides. At each update

round, data points are clamped into the range [−1, 1] to ease comparison with initial

data. Figure 4.2a visualizes randomly generated data and original data on top of the

decision boundary right before the first round of the process is started. The process

follows the same algorithm as the main method, first, back-propagation is applied

to data, then data points that were moved in the plane are labeled as ‘fake’ and fed

through the fine-tuning process. Back-propagation effect on data after 25 updates is

represented on Figure 4.2b. This process has been repeated a total of 250 times. At

each round which is a multiplication of 50 the state of the decision boundary and the

data points are visualized.

23



(a) before (b) after

Figure 4.5: Data distribution of original and randomly generated data before and after

round 200.

(a) before (b) after

Figure 4.6: Data distribution of original and randomly generated data before and after

round 250.

24



0 50 100 150 200 250 300 350 400
Epoch

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Lo
ss

baseline
gradient_norm

Figure 4.7: Overview of the loss values of the simulation network experiment.

By comparing Figure 4.2a and Figure 4.6b we conclude that the decision boundary is

increasing to tightly squeeze distributed data into the space and randomly generated

data are successfully being moved into the decision boundary.

We then implemented a baseline version where the gradient norm term is removed

from fine-tuning loss and we run these versions for 400 epochs. Figure 4.7 illustrates

the effect of gradient norm term on loss values at each epoch which is represented by

the vertical axis. As can be observed from the figure, our version with the gradient

norm penalty converges both faster and to a lower loss value than the baseline version

in 2D plane simulation experiments.

4.2 Main Method

4.2.1 Setup

Experiments were partially run on TRUBA resources with Ubuntu 18.4 operating

system using CUDA 11.3. Workers with multiple GPU slot capacities ranging from

25



4 to 8 resided mainly in partitions akya-cuda and barbun-cuda were made use of.

4.2.2 Datasets

In the upcoming experimental sections, we provide qualitative and quantitative results

from networks trained on MNIST [51], EMNIST [52] and Yale Face [53] datasets.

MNIST dataset consists of 28 × 28 gray-scale handwritten digit images. EMNIST

is a dataset similar to MNIST and consists of 32× 32 gray-scale handwritten letters.

Yale Face includes 32 × 32 gray-scale human face images, taken in different illumi-

nation conditions. For our out-of-distribution experiments addition to the previously

mentioned datasets, we also use FashionMNIST [54] and KMNIST [55].

4.2.3 Metrics

In the case of out-of-distribution experiments, we use the Area Under the Receiver

Operating Characteristics (AUROC) score to compute how well our discriminator

distinguishes between classes. It gives a measure of the degree of separability. Higher

scores in AUROC mean the discriminator can reject out-of-distribution points better.

Loss plots are also provided for tracking network performance and plateau points. We

present image sets sampled from models trained on different datasets by utilizing our

method.

4.2.3.1 Fréchet Inception Distance

Fréchet Inception Distance (FID) score is used to measure the quality of generated

images. Images are first encoded into a feature space by Inception Net, then regard-

ing this latent layer as a multivariate Gaussian distribution, the Fréchet distance is

calculated by comparing the mean and variance of generated images and dataset im-

ages. Heusel et al. [56] shows that FID is more robust to noise injection than the

Inception Score (IS) and more similar to human judgment. Numerically smaller val-

ues correlate to a more similar distribution between two sets when using FID scores.

We use the same Inception Net provided with FID calculation script [57] for all exper-

26



iments to have a more stable comparison among previous work Taplı [1] and related

experiments.

4.2.4 Implementation and Parameter Details of Proposed Method

We implemented our method using Python programming language and made use of

PyTorch [58] as the Graphics Processing Unit (GPU) acceleration package. Datasets

are loaded using TorchVision [59] package. We use the following Alg. 1 for the

implementation of our method. Images are computed as batches and batch size is

128. Before the generation flow is started, the discriminator is initially trained as

a binary classifier for 10 epochs. Samples from the dataset are labeled real, and

scrambled images are labeled fake. The training step uses Adam [60] as the optimizer

for discriminator parameters and the learning rate is chosen to be 0.0001.

For generation purposes, the Adam optimizer is used for wrapping the random data

sampled from a multivariate normal distribution and we use a learning rate of 0.01. In

the training procedure, we use the ReduceLROnPlateau optimizer from the Pytorch

package, which automatically reduces the learning rate depending on the stagnation

of learning metrics. The optimizer has a factor of reduction by 0.5, patience is 10, and

the minimum learning rate that can be reduced to is 0.00001. The main image gen-

eration loop is run for 40 epochs. Lambda values related to the generation objective

function in Eq. (3.2) and Eq. (3.4) are chosen to be 0.001 and 100 respectively. The

inner loop is controlled by the mean of the output scores. By this criteria, we aim to

break the loop when the overall scores of images within a batch have reached a point

where they are closer to real images in data space.

At each iteration of the inner loop, gradient descent is applied to random noise. After,

the mean of output scores is updated. If the mean has not reached 1 we manually break

the loop and the max update number for this is 500. On line 11 in Alg. 1, after the

image generation loop, updated images via back-propagation are labeled as fake and

appended to the dictionary that stores generated images. We then check the scores of

images in F. If the amount of generated images exceeds 3 times the size of the dataset,

we then collect the top 3 scored images from F. Our aim with this approach is to feed

the discriminator higher-scored images as fake, therefore further forcing the network

27



in a way where it tries to discover boundaries between fake and real images. The

discriminator is then further trained (fine-tuned) and model parameters are updated.

In the fine-tuning step of the proposed method, we calculate Eq. (3.8) with 1 batch

of real labeled data taken from the dataset and 3 batches of fake labeled data taken

from F. We use 50 for λgnorm in Eq. (3.6) and 0.0001 for λce in fine-tuning objec-

tive function. Based on the structure of our algorithm, images are generated in an

intertwined way, where image generation updates noise data and fine-tuning applies

parameter updates on the discriminator. Because of this flow, it can be said that our

discriminator generates 1 batch of images after fine-tuning.

Regarding the FID score calculation, we call the FID script for the difference between

two sets, the generated images, and the dataset to have a more consistent approach.

We randomly collect images from the dataset consisting of an equal number of images

as the generated set for our problem scope.

Algorithm 1 Proposed Method
Require: Discriminator D, Dataset X, Normal distribution N, Scrambled data S

1: s← S, x← X, L← |X|
2: Train(D) with s as fake and x as real

3: for predefined number of rounds do

4: n← N, mean← 0, count← 0

5: while mean < 1 and count < max update number do

6: out← D(n)

7: n← Apply gradient descent on n

8: mean← Calculate mean of out

9: count← count+ 1

10: end while

11: F← F⊕ n

12: if |F| ≥ 3 · L then

13: F← Get top 3 · L from F

14: end if

15: D ← Fine-tune(D)

16: end for

28



0 2 4 6 8
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Figure 4.8: Overview of the loss values in initial training.

4.2.5 Results

Figure 4.8 shows the loss values of Eq. (3.1). Our main goal of initial training is

to start the generation flow from a point where the discriminator already understands

the data distribution in the data space. After the initial training, we calculated the

accuracy of our discriminator to be 0.9945.

To compare our proposed improvements onto Taplı [1], we first implement a model

called the baseline version and apply additional modifications to have a more coherent

cumulative progression. In our experimentation results, this version will be named the

baseline. Therefore, any other version can be assumed to be additions made on top

of this initial implementation. The baseline version has the architecture visualized in

Figure 3.1. All parameters from Taplı [1], are modified to be the same as our method,

which depends on the discriminator’s structure and is tuned for our method.

We first start by identifying the individual effects of total variation loss, cross-entropy

loss, gradient norm restriction, and all 3 terms combined as additions to the baseline

version. To achieve distinction among these modifications, we train 5 discriminators

29



with dataset MNIST, each having the respective change applied. Figure 4.9 represents

the behavior of the FID score of the baseline version and a second version where the

total variation loss is added as a regularization term. It can be seen that the baseline

version can reach a numerically smaller score value around epoch number 41, and the

version with total variation loss seems to be reaching a plateau quicker than the base-

line version. We present the score value change created by adding cross-entropy loss

in the fine-tuning objective function in Figure 4.10. The addition of a cross-entropy

term to the baseline version does not seem to improve the scores of the generation

measurably, but when compared to each other, both reach numerically close score

values in the generation process. Last but not least, we investigate the gradient norm

restriction effect on the baseline version in Figure 4.11. Compared to the other modi-

fications proposed, the gradient norm penalty affects the score values in a more quan-

tifiable manner. The gradient norm version reaches a much smaller FID score than the

baseline version but seems unstable in behavior and starts to increase after reaching

a minima point after epoch 20. We illustrate the FID scores from all trained models

in Figure 4.12. Baseline, total variation loss, and cross-entropy loss versions seem to

be converging at the same rate, but Table 4.1 shows that cross-entropy loss reduces

the FID score much faster compared to the other modifications. We also show the

best FID scores and which epoch it is gathered from in Table 4.1. As previously men-

tioned, gradient norm restriction on the fine-tuning loss is numerically more effective

than the aforementioned.

Model FID Score Epoch

Baseline 57.16 41

Total Variation 63.29 45

Cross Entropy 60.38 29

Gradient Norm 30.96 20

Combined 25.26 23

Table 4.1: Comparison of different discriminators with varying modifications trained

on MNIST dataset following our image generation method. FID score and from

which epoch the best score is gathered are also presented.

30



0 10 20 30 40 50
Epoch

50

75

100

125

150

175

200

225

FI
D 

Sc
or

es

baseline
ttl

Figure 4.9: FID score comparison of baseline version and our addition of total varia-

tion loss as a regularization term in the image update loop.

0 10 20 30 40 50
Epoch

50

75

100

125

150

175

200

225

FI
D 

Sc
or

es

baseline
cross_entropy

Figure 4.10: FID score comparison of baseline version and our addition of cross-

entropy loss as a regularization term in the fine-tuning loop.

31



0 10 20 30 40 50
Epoch

50

100

150

200
FI

D 
Sc

or
es

baseline
gradient_norm

Figure 4.11: FID score comparison of baseline version and our addition of gradient

norm restriction in the fine-tuning loop.

When we pay attention to the version named ‘all’ in Figure 4.12, which consists of all

improvements formerly noted, it can be seen that the FID scores are stabilizing and

reaching a plateau after epoch 23. This points to the conclusion that while gradient

norm restriction improves generation’s quantitative and qualitative results, other reg-

ularization terms such as total variation loss and cross-entropy loss are meaningful

additions for a more stable generation process. To see whether an individual addi-

tion of total variation loss or cross-entropy loss is enough to stabilize and improve

the training of a gradient norm restricted version, we train two new discriminators.

These new discriminators have gradient norm restriction and an individual additional

modification of either total variation loss or cross-entropy loss. Figure 4.13 represents

the comparison of individual affects made by these additions. The total variation loss

version has a minimum FID score of 34.60, and cross-entropy loss has a minimum

FID score of 27.69. It can be concluded that the individual regularization effects con-

tributed by total variation loss and cross-entropy loss stabilize the training process of

a version where real sample gradient norms are restricted. We conclude that in a case

where the semantic labels of the dataset samples are not available, only total variation

32



0 10 20 30 40 50
Epoch

50

100

150

200

FI
D 

Sc
or

es

baseline
ttl
cross_entropy
gradient_norm
all

Figure 4.12: Overview of the FID scores of different discriminators with varying

modifications trained on MNIST dataset following our image generation method.

loss can be used to stabilize training. By combining all three modifications we obtain

the most successful model, but still, the advantages and disadvantages of adding both

total-variation loss and cross-entropy loss are open to discussion.

Figure 4.14 presents the qualitative results of the generation process from different

discriminators taken from the best-scored epoch detailed in Table 4.1. Figure 4.15

presents successful qualitative results chosen within a 1 batch of generated data cre-

ated from a discriminator trained on MNIST using our combined method. The FID

score of this result set is 25.26. In Figure 4.16, we give qualitative results from the

discriminator trained using the EMNIST dataset, and the FID score of this result set

is 35.37. Figure 4.17 presents sampled generation results from a discriminator trained

in the Yale Face dataset and the FID score of this model is 45.85. Our method outper-

forms previous work by Taplı [1] which has an FID score of 70.82 on the Yale Face

dataset and 115.68 on the EMNIST dataset (See Table 4.4).

33



0 5 10 15 20 25 30 35 40
Epoch

25

50

75

100

125

150

175

200

FI
D 

Sc
or

es

cross_entropy
ttl

Figure 4.13: Overview of the FID scores from two new discriminators where we add

individual modifications of total variation loss and cross-entropy loss on a gradient

norm restricted version.

34



(a) Baseline

(b) Total variation loss

(c) Cross Entropy loss

(d) Gradient Norm

Figure 4.14: Qualitative results from effects of different additions to the baseline

method. a) Baseline version. FID Score : 57.16 b) Uses total variation loss in gener-

ation objective function. FID Score : 64.01 c) Uses cross-entropy loss on finetuning

objective function. FID Score : 60.28 d) Enforces gradient norms on real images.

FID Score : 30.96.

35



Figure 4.15: Qualitative results from our combined method. Images are chosen from

1 batch of generated data. The discriminator is trained using the MNIST dataset. FID

Score : 25.26.

Figure 4.16: Qualitative results from our combined method. Images are chosen from

1 batch of generated data. The discriminator is trained using the EMNIST dataset.

FID Score : 35.37

36



Figure 4.17: Qualitative results from our combined method. Images are chosen from

1 batch of generated data. The discriminator is trained using the Yale Face dataset.

FID Score : 45.85.

4.2.5.1 Generated Image Diversity

We test our discriminator’s generation ability in regard to overfitting. In Figure 4.18

we present generated images from our discriminator and the nearest example from the

dataset to see whether our model memorizes the images rather than generating new

examples. Euclidean distance is used to find the nearest samples from the dataset. The

first row of Figure 4.18 presents sampled images from one batch of images created

via the most successful epoch of our combined model presented in Table 4.1. In the

second row, we show the most similar image from the dataset. By comparing these

two sets, we show that even though our model generates similar data to the dataset,

there are subtle differences. We conclude that there is no memorization of images,

and we are able to generate new MNIST data.

4.2.5.2 Uncertainty Estimation

In Table 4.2, we present the AUROC scores of our discriminator. We compare our

scores with a state-of-art deep neural network [61], used for uncertainty estimation.

We save the most successful model state on epoch 23 from our combined method

listed in Table 4.1. The discriminator is trained on MNIST. This version is then

loaded to a new script and run on FashionMNIST, KMNIST, and EMNIST datasets

37



(a) Generated images

(b) Nearest image from dataset

Figure 4.18: Qualitative results for checking the diversity of our generated images

against memorization of dataset images. a) Sampled images from 1 batch of generated

data from our discriminator. b) Nearest dataset sample of the generated image from

the aligned column.

to see its discrimination abilities with respect to the MNIST dataset. Our model has

a high capability of distinguishing data points that do not belong to the dataset it

was trained on, which is MNIST for our problem scope. From the FashionMNIST

(FM) column on Table 4.2, it can be seen that our model has suppressed the state-

of-art uncertainty estimator DUQ [61], for separating MNIST and FashionMNIST

datasets. We also present the results of our discriminator on the EMNIST and KM-

NIST datasets. To sanity check our AUROC scores, we collected the histogram of the

output scores from our saved model. Figure 4.19 shows that our model has a tendency

to score MNIST data between [−1.10,−0.95] while scoring FashionMNIST data

around [−1.20,−0.99]. Figure 4.20 shows our discriminator scores KMNIST data

around [−1.20,−0.99] therefore increasing the AUROC score. Figure 4.21 shows

our discriminator scores EMNIST data around [−1.07,−0.97]. This clear distinc-

tion among scores allows our model to detect out-of-distribution points successfully

and histograms are in line with the high scores we get from the area under the curve

calculations.

38



4.2.6 Compared Models

Table 4.3 compares FID scores based on generated images from different models

trained on the MNIST dataset and the learnable parameter counts of respective mod-

els. It can be seen that our method’s FID score is on-par with different generative

models. Respected models such as DCGAN [62], PresGAN [63] and Duelgan [64]

has multiple networks similar to vanilla GANs. The most comparable work to ours

is Taplı [1] and only has a discriminator network similar to ours. We show that our

parameter count is much smaller than the most similar work of Taplı and the model

with the best FID score Duelgan. Table 4.4 compares our method’s FID scores to the

previous work presented by Taplı [1]. We improve the scores on EMNIST and Yale

Face datasets significantly.

FM KMNIST EMNIST

DUQ [61] 0.955 - -

Our method 0.998 0.999 0.938

Table 4.2: Comparison of the AUROC scores gathered from our method and state-of-

the-art uncertainty estimator. FM stands for FashionMNIST. Both scores express the

capability of models distinguishing datasets from MNIST.

Model FID Score Parameter Count

DCGAN [62] 10.85 1,148,098

PresGAN [63] 42.01 6,338,176

Duelgan [64] 7.87 69,154,696

Taplı [1] 28.76 98,902,997

Our method 25.26 14,995,477

Table 4.3: Comparison of the FID scores and learnable parameter counts, including

state-of-art generative models, the base model we improved on, and our proposed

method.

39



1.25 1.20 1.15 1.10 1.05 1.00 0.95
Scores

0

250

500

750

1000

1250

1500

1750
Fr

eq
ue

nc
y

MNIST
FashionMNIST

Figure 4.19: Histogram of the output values collected by inputting FashionMNIST

and MNIST into our discriminator.

1.20 1.15 1.10 1.05 1.00 0.95
Scores

0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

MNIST
KMNIST

Figure 4.20: Histogram of the output values collected by inputting KMNIST and

MNIST into our discriminator.

40



1.100 1.075 1.050 1.025 1.000 0.975 0.950 0.925
Scores

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

MNIST
EMNIST

Figure 4.21: Histogram of the output values collected by inputting EMNIST and

MNIST into our discriminator.

Taplı [1] Our Method

EMNIST 115.68 35.37

Yale Face 70.82 45.85

Table 4.4: Comparison of the FID scores gathered from our method and previous

work by Taplı [1] on two different datasets; EMNIST and Yale Face.

4.3 Summary

In this chapter, we presented the experimental results of our method. To substantiate

the proposed method, we first simulated on 2D plane, the idea of applying gradient

descent on data and showed that by this action, we move randomly generated data into

real data boundaries. We then implemented the idea of calculating gradient norms

of real images to this simulation and showed that the loss function of the classifier

converges faster and reduces to numerically smaller values during training.

41



We trained the main discriminator on MNIST, EMNIST and Yale Face datasets. Our

experiments showed that by applying gradient norm restrictions, cross-entropy loss

and total variation loss as regularized terms significantly reduce the FID score, im-

proving the generation abilities. Even though our network uses a much smaller archi-

tecture than the base method, it can generate on-par images to the base method and

state-of-the-art generative models. We also explore the idea of using our discrimi-

nator as an uncertainty estimator and show that our model has a high capability of

rejecting out-of-distribution data points belonging to FashionMNIST, EMNIST, and

KMNIST datasets.

42



CHAPTER 5

CONCLUSION

In this thesis, we explored the idea of generating images using only a discriminator

network proposed by Taplı [1]. We extended the generation process by employing

total variation loss as a measure of the spatial pixel complexity, N-way classification

as a measure of the divergence from semantic labels, and gradient norm penalty on

real examples. We present the effects of individual modifications previously men-

tioned. Our experiments show that the additions of the total variation and N-way

classification losses do not significantly enhance the generative performance of the

discriminator. Applying the gradient norm penalty on real images results in better

generative examples. Combining all three modifications result in the best model with

a more stable generation process and better FID scores. We showed that our mini

convolutional discriminator improves the baseline method’s results and can generate

realistic-looking images on the MNIST, EMNIST and Yale Face datasets. We reduce

the FID scores of generation results to 25.26 on the MNIST dataset. With a discrimi-

nator trained on the EMNIST dataset, we get the FID score of 35.37 and on the Yale

Face dataset, we reach the FID score of 45.85. We also explored the idea of using

our discriminator as an uncertainty estimator. Experiments show that our discrim-

inator trained on the MNIST dataset outperforms state-of-art uncertainty estimator

DUQ [61] and has an AUROC score of 0.998 on the FashionMNIST dataset. We also

presented the results on KMNIST with a score of 0.999 and EMNIST with a score of

0.938.

43



5.1 Limitations

One of the drawbacks of our method is having reduced control over the input’s gen-

eration process and latent space representation. We also need to conduct more ex-

periments to see the effects of our generation method on more complicated datasets

with higher dimensionality of the data space, like CIFAR and NORB datasets. An-

other disadvantage of our model is the reduced classification ability of our model on

N-way classifications.

44



REFERENCES

[1] M. Taplı, “Image generation by back-propagation on input using a discriminator

network,” Master’s thesis, Middle East Technical University, 2021.

[2] P. J. Diggle and R. J. Gratton, “Monte carlo methods of inference for implicit

statistical models,” Journal of the Royal Statistical Society: Series B (Method-

ological), vol. 46, no. 2, pp. 193–212, 1984.

[3] S. Mohamed and B. Lakshminarayanan, “Learning in implicit generative mod-

els,” arXiv preprint arXiv:1610.03483, 2016.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural

information processing systems, vol. 27, 2014.

[5] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high

fidelity natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[6] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for gen-

erative adversarial networks,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pp. 4401–4410, 2019.

[7] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for

improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196,

2017.

[8] A. Gonzalez-Garcia, J. Van De Weijer, and Y. Bengio, “Image-to-image trans-

lation for cross-domain disentanglement,” Advances in neural information pro-

cessing systems, vol. 31, 2018.

[9] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image synthesis for

multiple domains,” in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 8188–8197, 2020.

45



[10] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative

adversarial text to image synthesis,” in International conference on machine

learning, pp. 1060–1069, PMLR, 2016.

[11] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas,

“Stackgan: Text to photo-realistic image synthesis with stacked generative ad-

versarial networks,” in Proceedings of the IEEE international conference on

computer vision, pp. 5907–5915, 2017.

[12] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a prob-

abilistic latent space of object shapes via 3d generative-adversarial modeling,”

Advances in neural information processing systems, vol. 29, 2016.

[13] Y. Jin, J. Zhang, M. Li, Y. Tian, H. Zhu, and Z. Fang, “Towards the automatic

anime characters creation with generative adversarial networks,” 08 2017.

[14] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[15] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and

variational inference in deep latent gaussian models,” in International confer-

ence on machine learning, vol. 2, p. 2, Citeseer, 2014.

[16] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoen-

coders,” arXiv preprint arXiv:1509.00519, 2015.

[17] A. Van Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural

networks,” in International conference on machine learning, pp. 1747–1756,

PMLR, 2016.

[18] H. Larochelle and I. Murray, “The neural autoregressive distribution estimator,”

in Proceedings of the fourteenth international conference on artificial intelli-

gence and statistics, pp. 29–37, JMLR Workshop and Conference Proceedings,

2011.

[19] D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, eds., Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, Vol.

1: Foundations. Cambridge, MA, USA: MIT Press, 1986.

46



[20] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,”

Neurocomputing, vol. 184, pp. 232–242, 2016.

[21] L. Gondara, “Medical image denoising using convolutional denoising autoen-

coders,” in 2016 IEEE 16th international conference on data mining workshops

(ICDMW), pp. 241–246, IEEE, 2016.

[22] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis, “Learn-

ing temporal regularity in video sequences,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp. 733–742, 2016.

[23] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and

A. v. d. Hengel, “Memorizing normality to detect anomaly: Memory-augmented

deep autoencoder for unsupervised anomaly detection,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision, pp. 1705–1714, 2019.

[24] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based data

clustering,” in Iberoamerican congress on pattern recognition, pp. 117–124,

Springer, 2013.

[25] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Pro-

ceedings of ICML Workshop on Unsupervised and Transfer Learning (I. Guyon,

G. Dror, V. Lemaire, G. Taylor, and D. Silver, eds.), vol. 27 of Proceedings of

Machine Learning Research, (Bellevue, Washington, USA), pp. 37–49, PMLR,

02 Jul 2012.

[26] E. Plaut, “From principal subspaces to principal components with linear autoen-

coders,” arXiv preprint arXiv:1804.10253, 2018.

[27] J. M. Tomczak and M. Welling, “Vae with a vampprior,” 2017.

[28] K. Gregor, F. Besse, D. Jimenez Rezende, I. Danihelka, and D. Wierstra, “To-

wards conceptual compression,” Advances In Neural Information Processing

Systems, vol. 29, 2016.

[29] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context en-

coders: Feature learning by inpainting,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 2536–2544, 2016.

47



[30] U. Demir and G. Unal, “Patch-based image inpainting with generative adversar-

ial networks,” arXiv preprint arXiv:1803.07422, 2018.

[31] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsupervised

image-to-image translation,” in Proceedings of the European conference on

computer vision (ECCV), pp. 172–189, 2018.

[32] A. Royer, K. Bousmalis, S. Gouws, F. Bertsch, I. Mosseri, F. Cole, and K. Mur-

phy, “Xgan: Unsupervised image-to-image translation for many-to-many map-

pings,” 2017.

[33] Z. Li, M. R. Min, K. Li, and C. Xu, “Stylet2i: Toward compositional and high-

fidelity text-to-image synthesis,” 2022.

[34] J. Sun, Q. Deng, Q. Li, M. Sun, M. Ren, and Z. Sun, “Anyface: Free-style

text-to-face synthesis and manipulation,” 2022.

[35] K. Xu, C. Li, J. Zhu, and B. Zhang, “Understanding and stabilizing gans’ train-

ing dynamics with control theory,” arXiv preprint arXiv:1909.13188, 2019.

[36] Z. Li, X. Wu, M. Usman, R. Tao, P. Xia, H. Chen, and B. Li, “A sys-

tematic survey of regularization and normalization in gans,” arXiv preprint

arXiv:2008.08930, 2020.

[37] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.

[38] C. Chu, K. Minami, and K. Fukumizu, “Smoothness and stability in gans,” arXiv

preprint arXiv:2002.04185, 2020.

[39] W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and

I. Goodfellow, “Many paths to equilibrium: Gans do not need to decrease a

divergence at every step,” 2017.

[40] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsu-

pervised learning using nonequilibrium thermodynamics,” in International Con-

ference on Machine Learning, pp. 2256–2265, PMLR, 2015.

[41] A. Hyvärinen and P. Dayan, “Estimation of non-normalized statistical models by

score matching.,” Journal of Machine Learning Research, vol. 6, no. 4, 2005.

48



[42] C. M. Stein, “A bound for the error in the normal approximation to the distribu-

tion of a sum of dependent random variables,” 1972.

[43] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the

data distribution,” Advances in Neural Information Processing Systems, vol. 32,

2019.

[44] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Ad-

vances in Neural Information Processing Systems, vol. 33, pp. 6840–6851,

2020.

[45] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave: A versatile

diffusion model for audio synthesis,” arXiv preprint arXiv:2009.09761, 2020.

[46] G. Parisi, “Correlation functions and computer simulations,” Nuclear Physics B,

vol. 180, no. 3, pp. 378–384, 1981.

[47] Y. Song and S. Ermon, “Improved techniques for training score-based gen-

erative models,” Advances in neural information processing systems, vol. 33,

pp. 12438–12448, 2020.

[48] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” 2020.

[49] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Im-

proved training of wasserstein gans,” Advances in neural information processing

systems, vol. 30, 2017.

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[51] L. Deng, “The mnist database of handwritten digit images for machine learning

research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[52] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending mnist to

handwritten letters,” in 2017 international joint conference on neural networks

(IJCNN), pp. 2921–2926, IEEE, 2017.

[53] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many: Illumi-

nation cone models for face recognition under variable lighting and pose,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 643–660, 06 2001.

49



[54] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms,” 2017.

[55] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha,

“Deep learning for classical japanese literature,” CoRR, vol. abs/1812.01718,

2018.

[56] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are gans cre-

ated equal? a large-scale study,” Advances in neural information processing

systems, vol. 31, 2018.

[57] M. Seitzer, “pytorch-fid: FID Score for PyTorch.” https://github.com/

mseitzer/pytorch-fid, August 2020. Version 0.2.1.

[58] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-

tala, “Pytorch: An imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems 32, pp. 8024–8035, Curran

Associates, Inc., 2019.

[59] S. Marcel and Y. Rodriguez, “Torchvision the machine-vision package of torch,”

pp. 1485–1488, 10 2010.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[61] J. van Amersfoort, L. Smith, Y. W. Teh, and Y. Gal, “Uncertainty estimation

using a single deep deterministic neural network,” 2020.

[62] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015.

[63] A. B. Dieng, F. J. Ruiz, D. M. Blei, and M. K. Titsias, “Prescribed generative

adversarial networks,” arXiv preprint arXiv:1910.04302, 2019.

[64] J. Wei, M. Liu, J. Luo, A. Zhu, J. Davis, and Y. Liu, “Duelgan: A duel between

two discriminators stabilizes the gan training,” 2021.

50

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	Background and Related Work
	Autoencoders
	Variational Autoencoders
	Generative Adversarial Networks
	Diffusion Models
	Score Matching

	Proposed Method
	Network Architecture
	Initial Training
	Image Generation
	Total Variation Loss
	Objective Function of Image Generation

	Fine-tuning of Network
	Gradient Norm Penalty on Real Images
	Cross Entropy Loss on Real Images
	Objective Function of Fine-tuning

	Summary

	Experiments
	Method Simulation on 2D
	Main Method
	Setup
	Datasets
	Metrics
	Fréchet Inception Distance

	Implementation and Parameter Details of Proposed Method
	Results
	Generated Image Diversity
	Uncertainty Estimation

	Compared Models

	Summary

	Conclusion
	Limitations

	REFERENCES

