
STOCHASTIC ANALYSIS OF HUMAN POSTURAL SWAY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

STOCHASTIC ANALYSIS OF HUMAN POSTURAL SWAY

Yaradanakul, NACİ Barış

M.S., Department of Engineering Sciences

Supervisor: Assist. Prof. Dr. Senih Gürses

September 2022, 116 pages

"The decisive step in the transition from ape to man", in other words, inherently unsta-

ble dynamics of human erect posture, is investigated throughout the thesis considering

the random features with a spatiotemporal perspective employing stochastic dynam-

ical system theory and statistical mechanics. During the investigation, mechanistic

reasoning and control theory is not mentioned, but the complex dynamical output

of four basic sensors somatosensory, vestibular, visual and proprioceptive, physico-

chemical actuator striated muscles, multidegree of freedom plant having redundancies

depending on the task, and the nervous system, namely postural sway, is modeled as

a black box that is characterized by CoPx time series.

Keeping this objective in mind, the first chapter is devoted to the explanation of the

loaded philosophical content of postural sway with a phylogenetic and ontogenetic

point of view. Furthermore, the contrast between Newtonian determinism in time and

Boltzmanian understanding of chance in space are considered in terms of the concept

of time, its direction, causality, and entropy to clarify the spatiotemporal domain, in

which the dynamics of interest to be analyzed with stochastic analytical tools. In this

context, in Section 1.2, philosophical ideas that have been developed were employed
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in an attempt to explain the particular problem by means of stochastic process and

cybernetics to answer the question "What is the dice ruling the postural sway?".

Besides the philosophical content, Chapter 2 continued with neurophysiological rea-

sons behind the never-ending postural sway, possibly serving for the ecological search

of the equilibrium point (conservative level) and the boundaries of stability (oper-

ative level) with trial and error. For instance, the output of this complex system,

CoPx, two superposed oscillations at different frequencies constituting postural sway

are explained considering the works of Zatsiorsky’s rambling trembling decompo-

sition, Gurfinkel’s conservative and operative levels, Feldman’s λ-threshold theory,

and Hogan’s virtual trajectory explanation; in spirit, all reconciling similar dualities.

Considering the neurophysiological aspects in Section 2.2, measurement methods of

postural sway are explained for the quantification of the problem.

Later, stochastic dynamics of the CoPx signal are investigated in a pathwise manner

with proposed stochastic differential equations starting from the visual verification

of normality of decision makings, i.e., displacements. The first step is started with

the integration of the Wiener process obeying σ (∆t)1/2N (0, 1). Due to the linearly

increasing variance, which would result in falling down, linear mean reversion was

imposed on the dice ruling the sway to constraint the variance inside the area under

the foot. While the resulting process is named as Ornstein Uhlenbeck, it is linked

to viscoelasticity known as Langevin Equation. For the analytical consideration of

the two-level nature of postural sway, the double Ornstein Uhlenbeck process was

defined. In this way, the baseline fluctuations around zero are converted into oscilla-

tions around θt which describes the rambling equilibria. The covariance function of

the proposed system of differential equations having a double exponential form re-

vealed distinct time scales consistent with the posture literature. A final improvement

was performed by imposing a cubic nonlinearity on the model for the assessment of

the multimodality of sway.

Keywords: postural sway, stochastic process, threshold dynamics
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ÖZ

İNSAN DİK DURUŞUNUN OLASILIKSAL ANALİZİ

Yaradanakul, NACİ Barış

Yüksek Lisans, Mühendislik Bilimleri Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Senih Gürses

Eylül 2022 , 116 sayfa

Bu tezde insan dik duruşunun kararlı olmayan dinamiği olasılıksal özellikleri dikkate

alınarak uzay zaman perspektifine sahip bir şekilde stokastik dinamik sistem teori-

sinin ve istatistiksel mekaniğin araçlarının kullanılmasıyla incelenmiştir. Araştırma

sırasında mekanik yaklaşım ve kontrol teorisi göz önünde bulundurulmazmıştır. Fa-

kat dört duyunun, eyleyici kasların, vücudun ve sinir sisteminin ortak çıktısı CoPx

sinyali üzerinden bir kara kutu olarak karakterize edilmiştir.

Tezin ilk kısmı postür salınımlarının felsefi içeriğe yoğunlaşmıştır. Bunun yanında

Newton determinizmini Boltzmann anlayışıyla zaman, zamanın yönü, nedensellik an-

lamlarında karşılaştırılmasına yer verilmiştir. Kısım 1.2’de ise önceki kısımda gelişti-

rilen fikirlerin incelenecek dinamik sistem üzerine uygulamalarından bahsedilmiştir.

Ayrıca postür salınımlarını idare eden rastgelelik yapısını anlamaya yönelik girişim-

lerde bulunulmuştur.

Devamında gelen Kısım 2’de asla durmayan postür salınımlarının arkasındaki nöro-

fizyolojik nedenler incelenerek devam edilmiştir. Söz konusu karmaşık sistemin te-

mel çıktılarından olan CoPx zaman serisinin ikili salınım yapısıyla ilgili Zatsiorksky,
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Gurfinkel, Feldman ve Hogan’ın benzer çalışmaları açıklanmıştır. Devamında postür

salınımlarının ölçüm prensipleri özetlenmiştir.

Takip eden Kısım 3’te ise CoPx zaman serisini temsil eden stokastik diferansiyel

denklemin formu aranmış ve hızların normal dağıldığı görsel olarak kanıtlanmıştır.

Birinci aşamada difüzyon denklemi ve Wiener süreci kullanılmıştır. Fakat bu mo-

dellerin rastgeleliliği yakalasa bile varyansları sürekli olarak arttığı için uygun bir

seçim olmadığına karar verilmiştir. Bu yüzden ikinci aşamada Ornstein Uhlenbeck

süreci kullanılarak varyansın artışı kısıtlanmıştır. Daha sonra postür salınımlarının

ikili yapısının incelenmesi gözetilerek çift Ornstein Uhlenbeck stokastik süreci ta-

nımlanmıştır. Yeni tanımlanmış stokastik sürecin çift üstelli formu üzerinden postür

literatürüyle tutarlı sonuçlar bulunmuştur. Son olarak ise kübik bir polinomun kulla-

nılmasıyla CoPx’in çok modlu olasılıksal dağılımına ulaşılmıştır.

Anahtar Kelimeler: postür salınımları, stokastik süreçler, eşik dinamikleri
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CHAPTER 1

INTRODUCTION

1.1 Phylosophical Content of the Subject

Friedrich Engels underlines the role of human erect posture as the first cornerstone

for the establishment of civilization, "the decisive step in the transition from ape to

man", through the labor created with hands which converts the materials into wealth

[7]. Engels asserts that by courtesy of raising on foot to stand upright in an agile

manner, hands are departed from the ground and become free to execute motor tasks.

Thanks to operational hands, which are not carrying load anymore, mankind rapidly

differentiated from its ancestors, apes, as hands put forward the labor that is the source

of all wealth. In this way, throughout the thousands of years of perfection of the hu-

man hand, which is not only the organ of labor but also the product of the labor,

mankind created itself. As the hands became more dexterous, early human ancestors

became able to build society. The surplus value was then created via hands-foot-eyes

and brain through which exploited "wealth" became possible and would then be the

promoter of the civilized society organization for tens of centuries. Throughout the

gradual advancement, they started thinking; therefore, they had opinions to share. In

this way, languages are developed parallel to the larynx for communication. Under the

influence of labor created by hands and the stimulus of language, the human brain got

ready for abstraction and deriving conclusions with clarity of consciousness. Consec-

utively, early human beings learned agriculture, performed metal working and poetry,

settled trading and industries, and also performed art and science. In this way, na-

tions are born, and tribal life morphed into states, so the domination of nature became

possible. In short, until our time, humankind established civilized society on the path

of searching for the truth and revealing the unknown with a never-ending motivation,
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setting higher aims, and overcoming the obstacles faced. All advancements along the

route became possible with the involvement of the hands, without which, would be

impossible in the absence of erect posture.

Besides the attempts of different apes to rise on foot, they can not stand properly but

only in a very clumsy way in case of urgency. Yet, man is the one and the only crea-

ture that exploits the proactive erect posture for the benefit of hands to build every

single piece of civilization. Rather than its millions of years long phylogenetic devel-

opment, i.e., evolution, individual infants spend more than one year to learn standing

independently in an ontogenetic perspective compared to newborn quadripedal ani-

mals walking immediately in several minutes. In other words, they allocate the very

first year of their lives to achieving the most complicated motor task among all living

creatures. Either in a phylogenetic or ontogenetic point of view, the question arises

in anyone’s mind, "How is erect posture maintained?" which is not only the most

fundamental building block of the enlightenment in terms of human society but the

inevitable skill required for almost every single daily life activity along the lifespan.

As claimed by Engels, proactive rather than reactive erect posture, which is the ac-

complished motor skill, ends up with the advancement of different parts of the body.

Particularly, the associated senses involved in the maintenance of the balance are

enhanced, that are the exteroceptors, including somatosensory afferents located in

plantar cutaneous (foot sole), vestibular apparatus, semicircular canals, and otolith

organs, together with vision. As he cited, Charles Darwin proposes the same as "the

law of correlation of growth" with the words if man goes on selecting, and thus aug-

menting, any peculiarity, he will almost certainly unconsciously modify other parts of

the structure, owing to the mysterious laws of the correlation of growth." [8] together

with many examples derived from the animal kingdom in his well-known work "The

Origin of Species". It is clear that the dynamics of erect posture is associated with the

exteroceptive senses, which collect information from the external world, and intero-

ceptors named proprioception, gathering kinematic information related to joint angles

and velocities, which are employed together to form the self-perception. Besides the

senses, either exteroceptors or the interoceptors, actuators, namely striated muscles,

the plant which is the body, and the greatest mystery of all times, the human brain and

the nervous system are also shaped to work together collectively for the maintenance
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of upright balance in a proactive manner despite a passive, reactive way of behavior.

Besides the temporal development of erect posture, either phylogenetic or ontoge-

netic, each distinct spatial segment contributing to balance must work together. Oth-

erwise, the maintenance of bipedal stance becomes impossible in the absence of bidi-

rectional information flow [9], either mechanical or electrochemical, between the ac-

tuators and senses. In other words, the quiet stance is the outcome of the states of

distinct segments, including redundantly many striated muscles obeying the laws of

biochemistry and four basic sensors in a multijoint plant together with the most com-

plicated and mysterious product of nature, the human brain or neurological system

including reflex loops and hierarchically structured divisions. Therefore, in addition

to the temporal development of posture, a spatial analysis of segments that give birth

to erect posture is the sine qua non for a concrete understanding.

Spatial analysis of states of different segments is a complicated problem, so it has

to be handled carefully. René Descartes suggests four laws he strictly obeyed for

methodological reasoning in his book Discourse on the Method of Rightly Conduct-

ing One’s Reason and Seeking Truth in the Sciences[10]. Firstly, he advises never

accepting the truth of anything unless there exists evident proof about its truth which

keeps him away from hasty conclusions and prejudgements. Secondly, he suggests

dividing the complete complex problem into as many parts as possible to deal with

each separately. Thirdly, one should start from the simplest to the direction of more

and more complicated for ordering the sequence of thoughts. Finally, he suggests

checking every single aspect of the problem to be sure about noticing all points. Even

if the method proposed by Descartes puts one reasoning into a well-grounded ba-

sis, segmentation of the complex dynamics, in our particular case of erect posture,

into parts such as actuator, senses, or plant may lead to significant misinterpretations

due to the existence of nonlinear crosstalks rather than linear, and bidirectional in-

formation flow rather than unidirectional, between distinct segments. Interestingly

the information flow in the actuator, striated muscle is bidirectional [11],[12], which

will be discussed in the next section. Furthermore, sensory fusion involves nonlinear

relations[13],[14]. In other words, even if we would be able to explain every single

aspect of all senses, actuators, plant, and nervous system, we can not fully compre-

hend all facets of quiet stance since it is more than the assembly of disjoint segments
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due to the coupling between divisions. Under the existence of linear and nonlin-

ear crosstalks, redundantly many degrees of freedom, mysteries of the central and

peripheral nervous system, together with missing information about the core of the

dynamics, probabilistic reasoning is inevitable rather than a deterministic Newtonian

point of view in which everything is known, in other words, the missing informa-

tion is nothing but zero. Besides those troubles, it is well known that deterministic

Newtonian understanding can not explain adapting and learning dynamical systems

whether the equations employed are linear or nonlinear [15], since the infinite future

and past are well defined by initial conditions and boundary conditions, so even an

infinitesimal deviation from certainly defined trajectory is impossible in the absence

of missing information.

On the other hand, probabilistic analysis of spatial facets is named statistical me-

chanics, starting with the efforts of many talented scientists, including Ludwig Boltz-

mann [16], Albert Einstein [17], and Louis Bachelier [18] from various fields. Any-

one studying statistical mechanics realizes that considerations are restricted in space,

S = KBlog(Ω) or p(Ei) = eEi/KBT∑
i e

Ei/KBT where only the arrow of time is present in

the direction which entropy increases according to the second law of thermodynam-

ics, besides its magnificent fertileness which is mentioned as “It is the only physical

theory of universal content, which I am convinced, that within the framework of appli-

cability of its basic concepts will never be overthrown.” by Albert Einstein. Entropy,

denoted with S, can be interpreted as a measure of surprise and ignorance. Still, it

has nothing to do with time except the direction in which every spontaneous reac-

tion increases the entropy, missing information, or surprise of the universe (union of

system and surroundings). Therefore entropy can be deciphered as the accumulation

of surprise as time progresses, even if the time is implicit in the relations. In other

words, thermodynamics deals with the spontaneity of the reactions indicated by the

arrow of time. However, it has nothing to say about temporal analysis, including the

required time that the reaction is completed, even though the reaction necessitates an

infinite amount of time since the temporal variable t is implicit. On contrary, in New-

tonian description of the problem the spatial facets are missing, and all differential

equations are solved over time explicitly as ˙⃗x = f(x⃗) for some x⃗ ∈ Rn whether the

function f(x⃗) is linear or nonlinear. By employing a nonlinear f(x⃗), one can consider
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aperiodicity and initial condition sensitivity, so the model comes close to reality with

a trade-off of abandoning explicit solutions of the differential equation. In this route,

the most common intuitive interpretation is Geometrical Way of Thinking. Anyone in-

terested in the subject may read the well-known introductory book written by Steven

Strogatz for further information [19].

At this point, before going further and deeper, it is better to distinguish Newtonian me-

chanics, Newtonian time, against the concept of time in statistical mechanics which

the direction of time is guided by the increasing entropy. Therefore the events fol-

lowing each other increase the total entropy of the universe rather than causality. In

Newtonian mechanics, such as two celestial objects rotating around each other, any-

one can not see any distinction if the arrow of time is reversed, where the consecutive

events are linked with causality. In other words, from a Newtonian point of view,

time is symmetric forward and backward through the reversion of causes and effects.

Imagine watching a video where the earth rotates around the sun, a pendulum swing-

ing back and forth, or an object following a parabolic trajectory in the presence of

gravitational force. For all of those situations, nobody can notice if the film is re-

versed or not. Yet the reversion of a video showing turbulence or sprayed liquid from

a vaporizer looks unusual. The main reason behind the difference is the existence of

missing information between two distinct classes of dynamical systems. In the first

kind, like celestial bodies, due to well-defined relations between a few particles, re-

version of time does not have qualitative or quantitative effects. In terms of Shannon

Information Theory [20], anything is known in this case. However, in the second kind

of examples, due to the existence of almost infinite many particles in which all initial

conditions and cross relations are ill-posed, time can not flow symmetrically. In those

cases, entropy, i.e., missing information, increases following the arrow of time, giving

rise to asymmetry in the direction of the time flow. Therefore rather than the posi-

tion of each particle, against to the celestial body, everything can not be determined

precisely. So that the method inevitably must depend on distributional properties to

investigate the system. As longer times pass, even the distributional properties van-

ish, and the predictions deteriorate due to growing missing information. Yet, in a

moderate time scale, the missing information, namely spatial facets, can be followed

with statistical moments which are not considered in Newtonian mechanics of celes-
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tial bodies. In this perspective, the nonlinearity of deterministic dynamics does not

impose anything on the reversibility of time but changes the properties related to pre-

dictability which Lyapunov exponents can measure, basically the measurement of the

rate of divergence of two paths starting arbitrarily close to each other. In other words,

when the dynamics are selected to be nonlinear, one may find room for chance in the

absence of missing information unless the initial condition of the trajectory is fully

determined.

Therefore one can conclude that statistical mechanics involves spatial facets, but the

time is missing; on the other hand, Newtonian mechanics involve time but miss the

space. In order to benefit from the advantageous aspects of each, the next step must

be fusing space with asymmetrical time to form a spatio-temporal domain where the

range is the probability density function denoted as p(x, t). Different than Newtonian

trajectory x(t), in a stochastic perspective domain has two distinct variables one is

associated with space, and the other one governs the flow of time explicitly. There-

fore investigation of the spatio-temporal domain is possible with partial differential

equations. In this sense, the most basic relation explaining diffusion on the real line

x ∈ (∞,−∞) can be stated as Fick’s second law, namely diffusion equation, and it

can be expressed as ∂p(x,t)
∂t

= D ∂2p(x,t)
∂x2 . The left-hand side of the relationship dic-

tates the temporal evolution of probability density, and the partial derivative on the

right-hand side is nothing but the spatial second-order derivative. The solution for

the given initial condition, which is a Dirac delta located at zero δ(x), evolves into

a Gaussian density in which the variance increases linearly with time 2Dt, and the

mean remains constant at zero. The initial condition can be interpreted within two

distinct perspectives [21] (namely ergodicity [22]). The first one is an ensemble of

indistinguishable particles located at the origin at t = 0 and diffusing for t > 0. The

other interpretation is a single particle located at the origin; therefore, the distribution

stands for its fate, so the probabilities represent its location at t > 0 standing for the

realization of some certain fate. Yet, the solution says nothing about the pathwise

features of a single particle, but it describes the evolution of an ensemble of particles

or infinite possible fates of a single particle. Please note that in terms of distribution,

dynamics is still deterministic due to deterministic moments, even though the fate of

a single particle is random. While considering the difference between the pathwise
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random appearance of the stochastic process against the deterministic evolution of

distribution, a further explanation is required involving spatio-temporal aspects of the

dynamical systems. To the best of our knowledge, the most concrete explanation of

the relation can be found in Hegel’s Philosophy of Nature. He clearly explains the

relation between space and time by considering the fate of a particle and determin-

istic spatial distribution with a dynamical perspective with the words "As space, in

which time is suspended, the body is enduring, and as time, in which the indifferent

subsistence of space is suspended, the body is transitory. ... In motion, time posits

itself spatially as place, but this indifferent spatiality becomes just as immediately

temporal: the place become another."

Either philosophically or analytically, space and time must be fused together to com-

prehend the dynamical system of interest by benefiting the power of calculus [23],

since "calculus is the limit of things that are easy to interpret" as defined by Clifford

A. Pickover. In this respect, two necessities emerge. As it is known from the times of

Newton, calculus is the only possible way for the quantitative handling of the prob-

lem, which is also seen in the words of Lord Kelvin that "When you can measure

what you are speaking about, and express it in numbers, you know something about

it; but... when you cannot express it in numbers, your knowledge is of a meager and

unsatisfactory kind.". So firstly, the problem must be quantified, then a proper model

involving calculus must be developed.

1.2 Implementing the Philosophical Ideas to the Particular Field

The main signals of human postural sway are the center of pressure, CoP , and the

center of mass, CoM . CoP can be defined as the location of net force applied to the

body through the foot and consists of two orthogonal coordinates at the horizontal

plane, CoPx and CoPy at anteroposterior (forth-and-back) and mediolateral (right-

and-left) directions respectively. The important distinction between anterioposterior

and mediolateral directions is the difference in the stability of the sway. Firstly, the

lateral (side) view (sagittal plane) of the posture seems like an inverted pendulum

which is inherently unstable and can be expressed as an open kinematic chain. Yet the

anterior (frontal) view of posture (frontal plane) looks like a four-bar linkage which is
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stable and is a closed kinematic chain [24]. Therefore, either CoM and CoP or x and

y directions are different than each other, and both aspects of the sway must be treated

with various analytical methods and perspectives. On the other hand, the center of

mass of the human body is mainly controlled through these two main signals because

the human body is defined as an open kinematic chain touching the environment from

the ground only, which will be discussed in the next chapter in detail. Even if CoPx

and CoM are dynamic outputs of the complex system, in the scope of the thesis,

CoPx is going to be used for the assessment of unstable manifold, and it is going

to be investigated. For the investigation, consideration of the explanations of Soviet

neurophysiologist Nikolai Bernstein (1896 - 1966) is inevitable, who is the founder

of motor control. Bernstein asserts that motor actions never repeat themselves. As

an example given by him, while hitting a nail with a hammer, any strike is different

than the others. Another daily life example is drawing circles on a piece of paper.

Anyone can notice that all circles drawn on paper looks different than each other,

and a circle can never be repeated exactly. Besides the intrapersonal time-to-time

variability, patterns vary in an intersubject manner among different people. Therefore

analysis of motor output is only possible with associated probabilistic properties of

time series rather than trajectories themselves.

Considering the difficulties of analyses with Newtonian deterministic methods, the

employment of partial differential equations is also subject to problems for two main

reasons. The first one is the impossibility of the great number of repetitions of the

same experiment to construct an ensemble in order to reveal stochastic characteristics

of sway. Secondly, the existence of signature characteristics of postural sway like

fingerprints has already been reported [24], [25], [26], [27]. Therefore in the scope

of the thesis, the output of the complex dynamics of postural sway, in a pathwise

manner, is going to be analyzed with the tools of Cybernetics and Stochastic Calculus.

Historically speaking, those two fields coincide with famous mathematician Norbert

Wiener (1894 – 1964), who is the founder of cybernetics. So Wiener’s life and his

works have to be considered at this point of the dissertation.

Besides the contributions of Norbert Wiener to many fields in mathematics and physics,

the process representing Brownian motion in stochastic calculus is named in his honor

as the Wiener process and denoted with his initial Wt. Also, he is the founder of Cy-
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bernetics, which his book named "CYBERNETICS or control and communication in

the animal and the machine" [28], includes the exact definition of cybernetics crystal

clear. Not surprisingly, just in the introduction chapter, Wiener defines a problem that

he deals with, an analogous physiological problem, which is explained in detail in

various chapters of the book. The story is about the time of onset of the second world

war, 1940 summer. Motivated by the war and the power of german airforces, Wiener

studied control theory with a group of engineers, scientists, and physicians to develop

anti-aircraft artillery. During their work, they realize that artilleries must depend on

two steps. The first step is the computation of the path of the aircraft, which must be

constrained to a smaller control surface which the pilot stays conscious, and the plane

is not disintegrated due to great accelerations. Then the second step is time prediction

through extrapolation to aim the missile, where the trajectory of the missile will coin-

cide with the plane for a successful annihilation. Luckily one of the group members,

Dr. Vannevar Bush, has a computing machine for solving partial differential equa-

tions. While they are progressing in the artillery, they start to study control theory,

bringing their attention to physiology. During their work, they realize the importance

of the term "feedback", and either lack of feedback or excessive feedback may lead

to significant deterioration under the presence of delays. After that, Wiener continues

his explanation with a physiological example of "picking a pencil up", which may be

treated similarly to the maintenance of the quiet stance. While one’s hand is coming

closer to the pen, the trajectory of the hand must be controlled with a feedback loop

through the information coming from the exteroceptive, namely eyes, touch, etc., and

interoceptive senses, proprioception which is mostly associated with the relative mo-

tion of the hand with respect to the body. If proprioceptive sense lacks (e.g., syphilis

of the nervous system, named as tabes dorsalis seen at the later stages of syphilis,

where the dorsal root of the spinal cord to which the sensory neurons enter has de-

teriorated), and if eyes are closed during a motor task execution (say, picking up the

pen) then it ends up with ataxia [29]. They also searched for the opposite case where

the excessive feedback deteriorates the process of picking the pencil up. Therefore

they asked Arturo Rosenblueth, researcher, physician, and physiologist, for a physi-

ological example of such a case where the hand oscillates while reaching the pencil

due to destructive feedback. Dr. Rosenblueth immediately answers them with a well-

known pathology "purpose tremor" associated with damage to the cerebellum. Please
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consider holding a pen at the tip of your finger. Due to neural delays associated with

the control of the pen, the task requires practice to accomplish. The related strategy

is named "Drift and Act", leaving the pen free to drift in the basin of attraction until

some point when control comes into play intermittently [30], [31]. Similarly, exces-

sive or lacking feedback ends up with the failure of falling off of the pen, which can

be learned by practice. After finding their physiologically analogous problem, they

publish their findings [32]. While Wiener and colleagues are developing their method

for handling the problem, they concluded that communication engineering and con-

trol engineering could not be treated separately, and both of them are centered on the

characteristics of the messages, which is named time series in the statistics literature.

Then they found out that there are two types of error in their prediction, a trade-off.

The more the prediction device anticipates the event trajectory as an extreme smooth

curve, the device becomes subject to greater sensitivity ending up with oscillations

that die out in greater times in the presence of small disturbances. Therefore they

grasp that "the best prediction" ends up with detrimental results, and good prediction

is only associated with a good "reasonable erroneous" apparatus rather than feedback

with a higher gain or better calculations. Besides, Wiener stresses that the problem

has something in common with the Heisenberg uncertainty principle. In this way, they

discuss the essence of optimal prediction, which can be understood with the methods

of statistical mechanics. He continues with the words, "Once we had clearly grasped

that the solution of the problem of optimum prediction was only to be obtained by an

appeal to the statistics of the time series to be predicted, it was not difficult to make

what had originally seemed to be a difficulty in the theory of prediction into what was

actually an efficient tool for solving the problem of prediction."

Before beginning the interpretation of the method depending on stochastic calculus,

the reader may benefit from a short conclusion related to the ideas demonstrated un-

til now. Up to this point, the contrast between the deterministic Newtonian method

and stochastic understanding is stressed. Firstly, the difference between the two is

explained in terms of the flow of time. In deterministic Newtonian mechanics, time

appears symmetric, unlike statistical mechanics, where entropy imposes the direction

of time. More specifically, entropy can be defined as the measure of surprise, chance,

or ignorance that accumulates as time progresses, so entropy induces an asymmetry
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in terms of the direction of time. Moreover, the infinite past and infinite future are

completely determined from a Newtonian perspective since the amount of missing

information, i.e. entropy, is zero from a deterministic point of view. Yet, in statistical

mechanics, due to the presence of missing information, any path can not be analyzed,

but all trajectories have certain probabilities represented by the probability density

function. In this way, under the presence of the room for chance where the future

is not determined precisely, one can consider the adaptability of dynamics through

"exploration and exploitation"[33], which is nothing different than learning. Besides

that, Newtonian determinism only considers the time evolution of a single trajectory,

and spatial facets of dynamical systems are not considered whether the equation of

motion is linear or nonlinear. Yet, in statistical mechanics through entropy, the spa-

tial characteristics are considered in terms of a probability density function, but time

remains implicit in the relations. In other words, the variance or other statistical mo-

ments are missing in Newtonian mechanics and implicit in statistical mechanics. For

the particular problem of the complex dynamical system, namely quiet stance, which

is characterized by its output variable CoPx time series, a probabilistic way of think-

ing is inevitable for the analysis of the statistical properties under interest rather than

the paths themselves. Therefore, neither the deterministic approach, which consid-

ers temporal evolution of path, nor statistical mechanics in which space is visible but

the time is implicit are proper. By considering Bernstein’s ideas about nonrepeating

features of patterns of motor behaviors, a statistical way of reasoning is necessary

together with considering the asymmetric evolution of time to exploit the power of

calculus and differential equations [23]. Moreover, because of the impossibility of

the construction of an ensemble due to experimental constraints, methods have to be

applied in a pathwise sense rather than distribution itself, such as pt = Dpxx. There-

fore in the scope of the thesis, stochastic calculus is going to be employed, and the

simplest general relation can be stated as follows. Besides that, please note that the

stochastic process is chosen to be continuous [34], [35] due to experimental obser-

vations, which can also be grasped by daily life experiences intuitively. If the jumps

were allowed to exist in CoP , then any people standing still may fall to the ground

frequently, which is against common sense, as long as the reader does not remember

the last time they fell down.
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dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (1.1)

For a more intuitive understanding of the stochastic differential equation given in

Equation 1.1, a time series related to CoPx under eyes open condition during quiet

stance is collected from the writer by a force plate, and it is presented below. The

data is collected at a 100 Hertz [Hz] sampling rate for a duration of 180 seconds.

Figure 1.1: Representative CoPx Data

The time series consists of 100 × 180 = 18000 data points, each of them is indexed

with i ∈ [0, 17999] and the location ofCoPx at that instant is denoted asXi discretely.

Furthermore, since the data collection frequency is 100 Hz, every time interval ∆t is

0.01 second. Each ∆t corresponds to a decision making which is the output of a black

box representing the overall effect of actuators, plant, sensors, and all kinds of neuro-

logical structures, either peripheral or central (spinal or supra-spinal). Therefore, any

decision-making in each ∆t can be denoted as ∆Xt, which is written as dXt at the

limit of time ∆t → 0, since ∆Xt is nothing but the change of location of CoPx in

the corresponding time interval. Then the rest is modeling the decisions in continu-
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ous time. Whether the infinite frequencies, i.e., ∆t → 0, are meaningful or not, it is

necessary to exploit the power of calculus, as mentioned by Steven Strogatz [23]. In

this way, one becomes able to write a differential equation representing the output of

the black box, symbolizing human postural sway.

In the presence of missing information related to almost every single segment of the

sway, ordinary differential equations in a Newtonian sense can not be used. Similarly,

partial differential equations involving Brownian motion are not plausible as the ex-

plicit solutions are almost impossible to be found for more profound analysis and due

to the impossibility of the generation of time series in a pathwise sense. Therefore

stochastic differential equations involving pathwise features are employed to model

and understand the dynamic properties of postural sway and, finally, to express ideas

about the dynamics. Since the dynamical system of interest is too complex to inter-

pret, writing down an equation of motion may be beneficial for further analysis of

the particular dynamics, even if it models the posture as a black box. In other words,

the differential equation written in the dissertation has no mechanical taste, which in-

volves inverted pendulums, sensory reweightings, actuator dynamics, and so on, but

the terms are borrowed from stochastic dynamical system theory. Still, the proposed

form can be enhanced further, just like any other model inevitably incomplete by na-

ture. Besides, there is still no attempt to write an equation of motion for the particular

problem known to us at that time.

If we turn back to the interpretation of Equation 1.1, differential random variable dXt

obeys the laws of an abstract dice, which can be completely determined by its first and

second moments. Then the decision-making in every single dt can be reduced to the

outcome of rolled dice at the corresponding time intervals. This abstract dice mak-

ing decisions has a mean µ(t,Xt)dt and standard deviation of σ(t,Xt)dWt where

Wt is Wiener process and distributed standard normal. In other words, in discrete

form the decision can be stated as ∆Xt and it obeys the law of Gaussian distribution

µ(t,Xt)∆t + σ(t,Xt)
√
∆tN (0, 1) = N (µ(t,Xt)∆t, σ

2(t,Xt)∆t). Anyone using

Equation 1.1 is also able to decide the mean and standard deviation of dice as a func-

tion of not all history up to now but only the current time t, together with the last

position of the CoPx denoted as Xt. So that it is better to note that the relationship

still has one-step memory so-called Markov property.
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The postural sway searches the vast ocean of unknowns with trial and error in the

presence of uncertainties and missing information, termed exploration, throughout

the life from birth to death by rolling the dice delicately shaped in ontogenetic and

phylogenetic development since the transition from apes to derive the information of a

drop. The search is in its unique way, which never repeats the past, similar to a blind-

folded child swinging the bat in random directions to find the hanging pinata [33].

Then the vital question of the dissertation can be asked without hesitation: "What is

the dice ruling the sway?".
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CHAPTER 2

POSTURAL SWAY

2.1 Neurophysiological and Biomechanical Aspects of Postural Sway

Motor control is thought to be the origin of the neurological system in the animal

kingdom. Daniel Wolpert explains the reason behind the brain is to produce adapt-

able and complex motions since movement is the only way we affect the world around

us, either by speech, gestures, or writing; all are executed by the contraction of mus-

cles controlled by the brain. He supports his ideas with an ecological example of a sea

squirt that swims in its juvenile times and then implants itself onto a rock that it will

never leave. Therefore after that stage, it no longer needs to produce motion, and the

first thing it does is digestion of its brain for food [36]. Even though motor control has

a driving role in the existence of life, the field emerges with the works of Bernstein

and Lord Sherington in relatively recent times, at the beginning of the last century.

While Lord Sherrington stresses its fundamental role with the words "to move things

is all that mankind can do, for such sole executant is a muscle, whether whispering

a syllable or in felling a forest", Bernstein is the first one to realize and express the

random character of motor behavior and explained it with a simple example of ham-

mering a nail. According to Bernstein, anyone hitting a nail with a hammer never

repeats the same path twice, but always there exists a certain amount of variation in

the execution of the complex task. The same can be seen in modern chess engines.

Even if chess bots easily win against grand-masters, thanks to today’s computation

power, still any robot arm can not move pieces better than a child [37]. The main dis-

tinction is the complexity of the task and the presence of uncertainty compared to the

discrete chess board with six distinct pieces; all are entirely defined. The complex-

ity in motor control arises from the complex interrelations between disjoint elements
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contributing to execution, such as biochemical probabilistic actuators, noisy sensors,

a multijoint plant having redundant many degrees of freedom, and the nervous system

existing with delays in the order of a few hundred milliseconds. While the actuator,

striated muscles, obey the laws of statistical mechanics due to the chemical kinetics of

cross-bridges, the plant has infinite many possibilities corresponding to the same task

due to the redundant degree of freedoms. The problem is named "Degree of Freedom

Problem" by Bernstein. When it comes to sensors, either exteroceptors or interocep-

tors, the presence of noise and feedback delays make the problem more complex.

Furthermore, the noise is not only present in the sensor, but the motor commands are

also subject to noise where the variance is proportional to the size of the control signal

[38], similar to a geometric Brownian motion. In the presence of such uncertainties

related to the core of the dynamics, simple biomechanical considerations are lacking

for the explanation of the reality, yet an analysis requires the assessment of many

different parts [39].

Besides the central role of motor control in animals, anyone may attempt to divide

it into two subcategories as posture and movement. Even if their differentiation is a

crucial question, a decisive answer is still absent [40]. Rather than two distinguished

approaches discussed by Massion in his paper, successful execution of any task re-

quires a well-defined movement and stabilized posture at the same time since posture

serves two different crucial functions. While the first one is the antigravity function

for maintenance of balance to keep the center of gravity inside the area spanned by

the foot by providing necessary torques and muscle stiffness through probabilistic ac-

tuators, secondly it behaves as an interface between self and the external world for

action and perception [24]. According to the definition of Alain Berthoz, "perception

is simulated action" [41], so those two concepts have to be unified into one. There-

fore they can be analyzed neither separately nor without informatic terms [42]. The

necessity of a point of view involving information theory can be understood through

developmental studies investigating infants who are learning independent stance and

then walking in the absence of a reference signal, which makes the dynamics of erect

posture completely different than linear time-invariant systems. In the field, Barella

and Jeka are the ones who found the striking fact of the evolution of mechanical sup-

port into an informatic source. In the scope of the experiment, during the learning of
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independent stance, the bar, analogous to a sofa or wall, serves as mechanical support

at the beginning. During the continuation of development, the mechanical support

morphs into an information source through somatosensory with the emergence of the

light touch of the infant’s hand, which is characterized by a change of force in mag-

nitude, approximately from 5-8 Newtons into less than one Newton together with the

appearance of a leading delay 200-300 ms for the achievement of quiet stance [43].

Therefore, the adaptable dynamics of stance capable of learning can not be viewed as

a summation of deterministic reflexes, but an informatics and inevitably probabilistic

understanding is necessary with employing the tools of statistical mechanics.

From a probabilistic point of view, motor variability, similar to Bernstein’s hammer,

can not be treated as an undesirable aftereffect of motor execution, but it has to be

understood as the fundamental precondition of motor learning as long as it is the un-

deniable result of the noisy nervous system and probabilistic actuators as explained

by Wu in his work inspired from songbird [44]. As asserted by him, juvenile birds

are the ones having greater variability compared to adults in singing for the benefit

of promoting the rate of learning. Besides that, in the presence of a potential mate,

variability is significantly decreased, showing the proactive temporal regulation of

variability. Thanks to the ecological influence, since the rate of variability is context

specifically adjusted, Wu experimentally concludes that the subjects having greater

variability at the initial phase of learning are the ones having greater learning rates.

In this way, dynamics become adaptable and stable at the same time [45], associated

with the "operative and conservative level of control" asserted by Gurfinkel. Sim-

ilar phenomena can be exemplified in the pinata game. While at the beginning of

the game, the stick has to be swung in random directions to locate the target with

explorative purposes, after the first hit, random swings reduce into deterministic ex-

ploitation of the necessary trajectory for successful hits [33]. Besides the temporal

adjustment of motor variability, it can be modified in desired directions spatially,

given that there exist redundant freedoms in the system from the point of control of

the given motor task [46]. In a spatial sense, the decomposition of the controlled dy-

namics into principal directions (manifolds) can be assessed with the "Uncontrolled

Manifold Theory". Later in the field, the notion of synergies based on the principle of

motor abundance, the uncontrolled manifold hypothesis as offering a computational
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framework to identify and quantify synergies, and the equilibrium-point hypothesis

described for a single muscle, single joint, and multi-joint systems [47] are fused in

order to describe a coherent field of science [48]. Particularly, for the experiment of

generating a required magnitude of force with two fingers (constructing a redundant

system), good and bad variabilities can be understood. If the produced force by using

two fingers fulfills the required level, the variation in the direction of produced force

is called good variability due to unequal sharing of force between the two fingers. On

the contrary, any variability deviating from the required level of force (orthogonal to

the previous direction) points to bad variance [49], [50]. Furthermore, Mussa Ivaldi

and colleagues have shown that the subjects are learned the directions that are less af-

fected by noise during the experiment, and the subjects trained with additional noise

generalized the training better for unseen movements. Then they asserted through

changing the relation of the movement and noise, the experimenter can affect the way

the subject behaves in the desired manner [51]. As long as the control of variability

is possible either temporally or spatially, the infants learning independent stance can

be given as an example to the ones who are constructing the spatio-temporal attractor

during motor development [42] with "trial and error", or "exploration and exploita-

tion" [33].

In adults, the remaining randomness continues to drive the never lasting postural

sway, and it is attributed to two fundamental aspects. Firstly, rather than minimiza-

tion of the sway, humans purposefully increase sway for the benefit of discovery

of dynamic characteristics of erect posture, including the boundaries of stability [52],

namely active search. So the sway can be linked to learning with the terms exploration

and exploitation. Secondly, the sway can be attributed to some level of ignorance re-

lated to the current state, in other words, the impossibility of exact determination of

position and velocity at any instant. Whether the reason behind sway is associated

with the search or estimation error, neither can be expressed without the employment

of informatic terms and tools of statistical mechanics, as long as the complex dynam-

ics of sway during quiet stance are highly probabilistic within a well-defined region of

space [53]. More specifically, estimation and sensorimotor integration is a challeng-

ing problem from a physiological point of view, as long as the complete determination

of complex systems is not possible with an understanding of distinct parts. Particu-
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larly speaking, the estimation of verticality during quiet stance is complex due to the

multi-integration of many senses, i.e., somatosensory, vestibular, vision, etc., and pro-

prioception inherently included [54]. In this way, the vestibular is not directly used

to estimate the state of the head; instead, through a downward chain, it is employed

for the estimation of the body orientation starting from the foot support through the

trunk and finally the head (bottom-up construction) [55]. In this way, the noise in the

vestibular signal becomes eliminated, so it is used by the brain for the internal recon-

struction of self motions and the environment we interact with. Internal representation

can also be analyzed with forward and inverse models that predict the sensory conse-

quences and calculate the necessary feedforward control signals from the information

of the desired trajectory, respectively [56]. Further, the subject is studied with an

engineering perspective by Mergner and van der Kooij in order to reveal the charac-

teristics of the control of erect posture, particularly in elder people [57] as they are

suffering in the maintenance of balance. Moreover, the statistical features of sensori-

motor integration are studied by Daniel Wolpert with Bayesian terms. In the studies,

the Bayes theorem is employed to understand the effects of "prior" knowledge on

accuracy in reaching task, which can only be understood with a probability distribu-

tion. In corresponding articles, they show that the greater the uncertainty related to

the task, the more reliance on "prior" knowledge increases [58]. In this way, the ef-

fects and characteristics of noise in motor planning and prediction [59] can be studied

by changing the sensory conditions in various motor tasks [60]. In the presence of

noise, the gravitational vertical may not be the absolute vertical (absolute frame of

reference) for the body to refer [61], [62], therefore Gurfinkel and colleagues showed

that during superslow platform tilts, posture is stabilized by some system around a

preselected and continuously updated a set of points determined by another system as

a result of many sensory states rather than a single parameter or sensory input [63].

Please remind that those two systems are named "conservative" and "operative", re-

spectively.

Historically speaking, Begbie (1967) is the first one to realize two superposed os-

cillations at 0.5-1 and 1.5-2.5 Hz only by visual inspection. A similar observation

is made by Arnblard as the existence of two mechanisms one is operated below 2

Hz and strobe resistant, and the other one is above 4 Hz, which is strobe vulnera-
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ble. Therefore the postural sway can be explained by at least two levels. On the

subject, one of the most profound methods is the Rambling Trembling decomposi-

tion proposed by Zatsiorsky and Duarte [1]. After the application point of the net

vertical force exerted to the foot CoPx, CoPy estimated by the force plate, the first

step of Rambling Trembling analysis is the determination of the positions of CoP

in the desired direction, x or y, when the equilibrium is instantly maintained. The

details related to force equilibrium and an inverted pendulum representing the erect

posture are presented in Appendix B. For that purpose, the instants at which the hor-

izontal force at either direction is zero are selected, i.e., the
∑
Fhorizontal = 0 in the

direction of interest. Then the position of CoP at that instant can be treated as an

"Instant Equilibrium Point", since the force equilibrium in the corresponding direc-

tion is satisfied as shown in Figure 2.1a. After that, by using cubic splines, the instant

equilibrium points are extrapolated in time which is named the "Rambling" trajectory

denoted as Rm. Therefore the intersections of the rambling trajectory and CoP are

instant equilibrium points presented in Figure 2.1b. As mentioned by Zatsiorsky, cu-

bic splines have no physical meaning, but they only impose smoothness, whether it

is a physical quantity or not. Still, the smoothness can be linked to minimum jerk

criteria for motor execution [41]. The same is explained by Hogan, involving a dif-

ferent analytical point of view. As asserted by him, at moderate speeds, wear and tear

in the neuromuscular system can not be responsible for the minimum jerk, even if

it was, it would be difficult to reconcile. Instead, through the minimization of jerk,

control is simplified by neglecting the higher order derivatives. Then, the information

required to specify, store and predict the desired trajectory [64] can be kept smaller in

this way. The same criterion can be explained by the minimization of effort too, and

it means smoothness with kinematic terms [51]. In this way, CoP becomes pulled

along a dynamically characterized rambling trajectory rather than a constant baseline

by restoring forces, and the associated distance betweenCoP and the rambling trajec-

tory is named "Trembling" trajectory denoted with Tr that is shown in Figure 2.1c. In

other words, the body sways with respect to the preselected and continuously updated

points assessed with rambling trajectory, so analytically Rm + Tr := CoP . Even if

the approach is similar to Gurfinkel’s operative and conservative systems, analytical

methods differ. For further visual understanding, the figure showing rambling and

trembling together with CoP is provided in Figure 2.1.
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Figure 2.1: A Sample Path for Rambling and Trembling Trajectories [1]

Anyone may notice two main characteristics of rambling and trembling directly from

Figure 2.1. Firstly, rambling has significantly greater variance compared to trembling,

almost three times. Therefore most of the sway must be associated with the migrating

reference point. Secondly, while the trembling determines the high-frequency behav-

ior, rambling rules the navigation in greater periods, which can be seen either visually

or from the power spectral densities in Figure 2.2 and phase portraits shared in Fig-

ure 2.4. In a similar perspective, Collins asserts the existence of two distinct control

strategies, open loop and closed loop, at short and long time scales, respectively [29].

Figure 2.2: Power Spectral Densities of Rambling Trembling and CoPx [1]

We can observe the frequency contents at low and high frequencies in the time do-

main by looking at Figure 2.1. Indeed Figure 2.2 represents the power spectral den-

sity function estimates of Rm, Tr and CoPx trajectories. On the other hand, phase

portraits are dynamical representations of time series under consideration by plotting

displacement with respect to the velocity of the dynamical event. The phase portraits
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of the decomposed CoPx are given in the top right corner of Figure 2.2, which visu-

alizes the frequency content and the scaling of the motion of each. Moreover, while

the trembling trajectory is explained by restoring forces similar to elastic forces, due

to intrinsic properties of muscles and the joints together with reflex loops, spinal-

peripheral, mechanistic, etc., the reasons behind rambling are not that clear. However,

it can be related to supraspinal divisions. Therefore one can say that the central ner-

vous system can be the one responsible for selecting and updating the point at which

the equilibrium will be maintained. Still, Zatsiorsky explicitly stresses that the reason

behind rambling is still unknown [65], [66].

It is better to keep in mind that the rambling trembling analysis says nothing about

mechanical sources and the reasons behind the dynamics of rambling. Also, it does

not support either pendular motion [67], [68] around a fixed joint or the opposite

perspective of free drift without corrections inside the margins of stability [69] similar

to "drift and act" strategy [30]. Rather it supposes that the equilibrium is maintained

around a preselected point represented by the rambling trajectory [2]. Furthermore,

Zatsiorky investigated (first table of the article [2]) variances and covariances between

Rm, Tr and CoPx and found a slightly positive correlation between Rm and Tr; i.e.

⟨Rm× Tr⟩ > 0 (Rm and Tr are not linearly independent), which makes the variance

⟨CoP 2
x ⟩ less than the sum of individual variances of Rm and Tr according to relation

⟨CoP 2
x ⟩ ≤ ⟨(Rm+ Tr)2⟩ = ⟨Rm2⟩ + ⟨Tr2⟩ + 2 ⟨Rm× Tr⟩ due to the cross-talk,

⟨Rm× Tr⟩ ̸= 0. In this way, this simple method relying on force equilibrium and

splines reveals many hidden quantities in experimental studies.

Even if, until now, the rambling is defined and its relation to CoP is discussed, the

dynamical characterization of the rambling trajectory is not explained thoroughly yet.

In the figure given below retrieved from Zatsiorsky [2], horizontal force applied at any

instant is provided with the position of CoP as shown. Anyone looking at the figure

notices at least two distinct poles rather than one, which is pointed by the arrows.
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Figure 2.3: Force Field and CoP Time Series [2]

While the trembling trajectory has a single stable point around zero after detrending

CoP with respect to the rambling trajectory, the rambling trajectory itself consists of

more than one equilibrium point. Similar characterization is possible through phase

portraits in that the position is plotted with respect to velocity. Phase portraits of

CoP , rambling, and trembling are provided below [2].

Figure 2.4: A Sample Path for Rambling and Trembling Trajectories [1]

In both of the figures, the multipolar structure of rambling is clearly visible, which

shows the existence of more than one stable point. The same phenomenon represents

itself as multimodality in the probability distribution function. If the aim is the prob-

abilistic representation of dynamics of CoP , the multimodal behavior of rambling
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has to be understood clearly, which is investigated experimentally by I.C. Lee, M.M.

Pacheco, and K.M. Newell [70]. In the scope of the experiments, subjects hold a pole

at various lengths to manipulate the stability of balance, similar to a wirewalker. With

the help of the pole held, the CoP time series is captured and entrapped in distant

regions. Even if they assert that the reason behind the migrating reference is still

unknown, they counted the number of stable points by employing a kernel density

estimation of CoP to count the number of peaks in the probability density function.

Furthermore, it is worth interpreting a few empirical studies Zatsiorsky himself con-

tributed for a deeper comprehension of the rambling trembling decomposition.

The first striking experimental design is the one in which Zatsiorsky and colleagues

manipulated the support surface area. In the scope of the experiment, they decreased

the support surface to an area greater than the region spanned by CoP as shown in

Figure 2.5. Interestingly, none of the different support conditions impose any prob-

lem related to balance if subjects basically ignore the decrement. Yet the area CoP

covered increased, which led the subject to fail to stand. The results are interpreted as

being consistent with the active search of sway, where the change is mainly observed

in rambling rather than trembling. Besides that, they reported different studies where

the sway area decreased at the surfaces elevated from the ground as it is perceived as

a threat; still, they mention that the experimental setup is not considered a danger for

subjects as it is very close to the ground and only making a step is sufficient and it

is highly safe. This exploratory behavior is explained as an active search for stability

boundaries in the absence of fear of fall, which has been estimated by constructing

83.35% confidence ellipses [3].

Figure 2.5: The Experimental Design for Support Surface Manipulation [3]
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Secondly, in another setup, the experimenters let the subjects watch their own CoP

live during the experiment. While they measured the area spanned by CoP time se-

ries in the first trial, for the latter trials, they defined two tasks, named easy and hard.

The hard task is to keep the CoP inside the predefined region, which has fifty percent

of the original area measured at the first trial, namely the challenging task. Moreover,

in the easy task, they used a region one and a half times 150% greater compared to

the original one. Either hard or easy tasks end up with greater sway, which shows

that the sway is at its minimum in the original. After the decomposition of the CoP

time series into rambling and trembling components, they have observed opposite

effects in rambling and trembling, as shown in Figure 2.6. While in the easy task,

the rambling increased due to greater active search, conversely during the hard task,

the increasing trembling is explained by greater activation of ankle muscles inducing

greater ankle stiffness for the accomplishment of the task. Therefore the writers asso-

ciated rambling with the supraspinal process and trembling with the spinal peripheral

part involving spinal reflexes, intrinsic properties of muscles, and elastic forces. In

Figure 2.6, one can see that CoP is affected less than each of rambling and trem-

bling due to respective opposite changes, so without the decomposition, the change

in dynamical characteristics could not be easily noticed. Therefore, the experimental

design is highly intuitive for the comprehension of rambling and trembling [4].

In contrast, according to another experimental paper, Latash and colleagues concludes

that the supraspinal and peripheral distinction of rambling against trembling could be

too simplistic according to the data collected from elder and young people. Even if

they hypothesized that increased co-contraction in old people would increase trem-

bling in the presence of sarcopenia due to decrement of α-motor neurons, deteriora-

tion of the central nervous system, sensory decline, and change of muscle properties,

they observed that rambling is affected more than trembling in contrast to the pro-

posed hypothesis [71].

In a fourth experiment, the ankle, hip joints, and trunks of subjects are constrained

with plasters. During the consecutive bottom-up immobilization, the dynamical char-

acteristics of sway are changed. Especially the most significant effect is seen when

the ankle is immobilized. For the rest of the further constraints, only minor changes

are observed. During trials, immobilization led to greater ankle activation, followed
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Figure 2.6: Effects of Easy and Challenging Task on the CoP , Rambling and Trem-

bling Time Series [4]

by greater stiffness around the ankles. Therefore the trembling increased significantly.

Yet no significant change is found in rambling under any constraint in AP direction

(mediolateral direction is skipped as it is out of scope). Then they concluded that a

single inverted pendulum might not be enough to explain sway since the trembling

and CoP showed significant change after all of the knee, hip and trunk were con-

strained in terms of measured metrics in anterioposterior direction [71].

Besides the comprehensive experiments, rambling trembling decomposition can not

be thought of on its own, but it can be linked to different approaches easily since it

investigates the evolution of equilibrium point. Zatsiorsky [1] mentions that instant

equilibrium points are the instants in which the force equilibrium at the horizontal

plane is maintained. Therefore even if those are not exactly the same, Zatsiorsky

says that there exists a certain analogy between Feldman equilibrium point [72] and

rambling trembling decomposition. In the same text, "Feldman equilibrium point" is

defined as a virtual trajectory that would be followed if the limb was massless, damp-
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ing was zero, and external loads were absent by citing Latash’s book [73]. Even if,

at first glance, two approaches are similar, Zatsiorsky mentions two basic distinctions

which are worth being aware of. Firstly he asserts that instant equilibrium points are

purely biomechanical terms defined over force equilibrium
∑
Fhorizontal = 0 sim-

ply. Secondly, instant equilibrium points have nothing to do with the configuration

of joints. Therefore, a short introduction to the Feldman equilibrium point may be

beneficial for a better understanding of distinctions and similarities.

As known to us, the example given in Feldman’s paper is the best for understand-

ing the equilibrium point theory [5]. Please imagine that you are holding books, and

suddenly the load is lifted over your hand. In this case, anyone can imagine the in-

voluntary upward movement of the arm due to the unloading reflex. The original

manipulandum experiment simulates this situation under laboratory conditions by es-

timating the angular position of the joint of interest and the corresponding resistive

torque [74], [75]. During the experiment, a robot arm with two joints involving two

torque motors (fully actuated) is handled. The endpoint of the robot arm is coupled

with the plastered wrist of the subject, while the remaining two joints, the elbow,

and shoulder, are left free. Therefore the experimental setup allows two degrees of

freedoms to be controlled by two independent torque motors, which guarantees the

solution for the system to be unique; i.e., for each angular position of the joint of in-

terest corresponds to a unique resistive joint torque generated by the subject [76]. For

every distinct set of experiments starting from a particular initial condition described

with a unique pair of joint angular position and corresponding resistive joint torque,

the path that the subject follows until the input torque is decreased to zero is unique.

In Figure 2.7, the initial conditions where the subjects start the experiment are shown

in black, whereas the white ones are employed for the experimental data measured on

the unique paths that the subject follows for every given initial condition. After all,

the dashed line in Figure 2.7 is obtained by interpolating the zero torque equilibrium

points (zero EMG tonic activity) on the given space, pointing to passive characteris-

tics of the joint of interest.
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Figure 2.7: Feldman Equilibrium Point Experimental Results [5]

At the plane of angular position and resistive torque, it is possible to define a function

describing the torsional spring Tr = Ktθ, where Tr is the resistive torque, θ is the

angular position, andKt stands for the joint stiffness. In this case, the torsional spring

curve is unique in the given plane; however, Figure 2.7 presents a family of curves.

So another freedom is required in the constitutive equation of the torsional spring

given above. Feldman proposes that the required freedom is nothing but the threshold

set by the nervous system while changing the initial condition intentionally from a

to b. Further, Feldman states that the freedom of the threshold serves as a system

invariant which implies the way the brain controls voluntary motion. Therefore he

concludes that by shifting the threshold, a movement is triggered against the previous

posture where the former threshold was resisting the newborn generated motion. In

other words, the one and only control variable, the threshold, is changed from posture

stabilizing into a movement generator. Specifically, the problem is defined as "Posture

- Movement Problem" by Feldman, and it has similarities with instant equilibrium

points and rambling trajectory towards which CoP is pulled, where the task is the

maintenance of posture.

28



Besides the Equilibrium Point Theory of Feldman, Zatsiorsky mentions another con-

cept, "virtual trajectory", which is "similar in spirit" and is defined over Feldman

equilibrium point [2]. Feldman himself mentions the same concept [5] as the gradual

change of equilibrium position for the construction of equilibrium trajectory during

the execution of the given motor task by citing Bizzi [77], Katayama and Kawato in

1993 [78] together with Flash and Hogan in 1984 [79]. Particularly Flash and Hogan

employ a method depending on the calculus of variation to minimize jerk for smooth-

ness while the limb is following a predefined virtual trajectory during a reaching task.

2.2 Measurement Methods and Quantification of Postural Sway

For the particular problem of answering "How is erect posture maintained?" before

attempting a mathematical model, quantification of the problem is the first necessary

step. Quantitative handling of erect posture during quiet stance, namely assessment

of postural sway, is possible with two distinct time series. The first one is tracking

the center of mass of the human body during quiet stance, which is located some-

where a few centimeters at the front of the lumbosacral joint, i.e., behind the belly

button [9]. The location of the center of mass can be obtained by motion tracker sys-

tems using LEDs located at the various sites of the body and the cameras tracking the

LEDs’ positions to extract three-dimensional positions of the corresponding sites in

time. An approximation of the position of the center of mass is possible by consid-

ering the weighted average of distinct parts of the body according to their respective

masses. In the case of raising arms, moving the head, bending down, and so on, the

location of center mass may change significantly relative to body segments, yet it can

be neglected for quiet stance, so the center of mass is assumed to be motionless with

respect to the body under small movements during quiet stance [9]. Besides, Mittel-

staedt [80], [81] proposes the existence of a gravitoceptor around the center of mass,

which makes it observable to the body whether it is controlled or not. Secondly, it

is possible to experimentally measure the location of the resultant of reactive forces

(Center of Pressure) applied to the body/foot by the ground; Ground Reaction Forces

(GRF). The location is also relevant to the subject due to mechanoreceptors embed-

ded in plantar cutaneous, which are measuring the pressure distribution on foot soles
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whether it is controllable or not [14]. The associated signal is named as Center of

Pressure (CoP), and it is measured by force plate which collects force and moment

signals; i.e., Fx, Fy, Fz andMx,My,Mz respectively, in a three-dimensional cartesian

coordinate system. CoPx and CoPy are defined as −My/Fz, Mx/Fz respectively.

Please note that CoM and CoP signals have quantitatively and qualitatively differ-

ent natures, which present themselves in the time domain, frequency domain, and

the phase space representation of the postural sway dynamics. Besides there exists

a hierarchical control relation between CoP and CoM [82]. The relation can be

understood through an example of holding a pen vertically to the ground on the tip

of the index finger. If the projection of CoM intersects with CoP at the horizontal

plane; i.e., ⃗CoP − ⃗CoM = 0⃗, the pen stands still. Yet any deviation from equal-

ity, ⃗CoP − ⃗CoM ̸= 0⃗ forms a moment arm inducing rotation to the pen. Then

the person has to change the direction of the rotation induced to the pen by revert-

ing the direction of the moment arm unless the pen is to fall down to the ground.

The pen example constitutes an analogy to the quiet stance in which the location of

CoP is governed by the active control of the foot instead of the active control of the

hand [83], [84], [85], [86], [87]. By following the example of the pen CoP is the ac-

tively generated signal either by the foot or hand, whereas CoM is the passive entity

controlled by the former [82]. In this way, CoP is the controlling variable responsible

for keeping the controlled CoM in a confined region. Therefore, CoP must be faster

than CoM motion, resulting in the body oscillations without falling. At any instant

relative positions of ⃗CoP and ⃗CoM create a moment arm proportional to the distance

| ⃗CoP− ⃗CoM | which induces a tendency to the ⃗CoM in the reverse direction [88], [6].

In his paper related to stiffness control, Winter explicitly asserts that CoP oscillates

at either side of CoM to keep it inside the confined region spanned by foot for the

maintenance of balance. Please remind that d⃗ := ⃗CoP − ⃗CoM forms a couple which

generates moment according to M⃗ = d⃗ × F⃗z where Fz is the weight of the subject.

In the article, Winter proves his ideas by employing the covariance between the dis-

tance |CoP − CoM | and acceleration | ¨CoM | which is found to be between −0.96

and −0.99 by using a mechanical model involving an inverted pendulum [88], [6].

Please refer to Appendix B related to the inverted pendulum for detailed derivations.

Further models involving similar duality in terms of center of mass and center of
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pressure can be found in the posture literature. In this point of view, CoM behaves

similarly to rambling, and CoP oscillates around it just like trembling. In the sub-

ject, Zatsiorsky’s articles comparingCoM , [89], [90] and rambling trembling decom-

position are enlightening [2] so they are referred in Appendix B related to inverted

pendulum. A further similarity with rambling trembling decomposition is observed

in terms of smoothness, such that CoM is much smoother than CoP , which is the

controlling variable. In other words, CoP is faster than CoM . In the subject recently

published article written by Alice Nicolai is worth attention [91]. The writers employ

the following stochastic differential equation.

dvCoP
t =

[
λ(CoMt − CoPt) + Γ(−vCoP

t )
]
dt+ ΣdWt (2.1)

While v is the velocity of CoP at the direction of interest, Λ, Γ, Σ are positive con-

stants, and dWt is the Wiener process which will be discussed later. According to the

given stochastic differential equation, CoP is pulled toward CoM due to the negative

sign in the first term. The next two terms have a form of Ornstein Uhlenbeck, i.e.,

Langevin equation, in terms of velocities where the ΣdWt is Wiener process together

with the second term keeping the variance of velocities bounded. The dynamics obey-

ing Equation 2.1 never come to rest in this form in the absence of the zeroth order

term ofCoPt, and it oscillates forever even if there was no noise term as long asCoM

never stops.

From this perspective, the proposed model in the following chapter should consist

of at least two processes. While the first one is for assessing the equilibrium points

corresponding to rambling, the second process represents the random walk around

the formerly defined equilibrium point like trembling. In this way, we attempt to

model the main outcome of the human postural sway, CoPx, that is proposed to be

the composition of those two processes. In this context, the model should involve

randomness due to the complexity of the dynamics and grasping the property of active

search to create room for learning. Nevertheless, the CoP must remain in some

certain area spanned by foot for the maintenance of balance; otherwise, the subject

falls.
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CHAPTER 3

DESCRIPTION OF THE STOCHASTIC DIFFERENTIAL EQUATION

This chapter aims to describe and design the dice ruling the decisions in the dynamics

of postural sway, which are represented as differential increments of the stochastic

process. So that, throughout the chapter, the stochastic differential equation will be

improved progressively by modification of terms to grasp the various properties of

postural sway and the representative time series CoPx. In addition, please note that

the model can be improved further for assessing different aspects of the dynamical

system related to quiet stance and then motor tasks. Moreover, any of the steps do not

involve control theory or neurophysiological aspects, and it also does not include a

biomechanic perspective, but it uses terms of stochastic dynamical system theory by

employing the tools of stochastic calculus. In other words, the models consider the

dynamics of postural sway as a black box that has a dynamical output CoPx denoted

with a random variable Xt.

Before presenting the first step, it is better to describe the random variable Xt sym-

bolizing the location of the output of postural sway CoPx at any instant t. Basically,

Xt denotes the random variable. Then the stochastic differential equation describes

the temporal evolution of the random variable without a mechanical taste involving

an inverted pendulum and related control theory. In this respect, Xt must have some

particular distribution that is entirely different than a path evolving in time according

to Newtonian mechanics, which is represented as ˙⃗x = f(x⃗). Therefore even if Xt is a

random variable described by its distribution, it is treated pathwise, which is a definite

dichotomy [21]. While on one side fate of a single particle following a random trajec-

tory is the first explanation; the other representation is a probability density spreading

along one-dimensional space in time standing for an ensemble. In this way, the time
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series of Xt related to a single experiment can be analyzed from a pathwise point of

view by capturing randomness and missing information. So that another time series

of CoPx is presented in the figure given below for any naive reader to gain deeper

insight in case they have not seen any data before. The data is collected with a 100

Hz sampling rate, again similar to Figure 1.1.

Figure 3.1: Another Representative CoPx Data

Furthermore, in all steps, the displacements, steps, are assumed to be distributed nor-

mal for employment of the central limit theorem. Therefore Q-Q plots of six time

series are provided below, which show the quartiles of velocities with respect to quar-

tiles of Gaussian distribution in the range ±3σ for the visual verification of the as-

sumption. Further details of Q-Q plots are explained in Appendix A. Anyone can see

that the quartiles at tails deviate from Gaussian, yet it is not discussed as it is out of

scope for the dissertation, but a curious reader may refer to Mangalam’s recently pub-

lished article about tail behaviour of postural sway [92]. Simply the linear appearance

implies that the collected data is distributed Gaussian in which the quartile values of

data coincide with Gaussian quartiles. Furthermore one can check the kurtosis values

of the same data after standardizing the distribution to N(0, 1). Then the kurtosis

values are found to be {3.24, 3.07, 3.18, 3.10, 3.06, 3.03}, and all are close enough to

three. In the scope of the thesis, the behavior at the tails is not important as long as

the dissertation does not involve analysis of extreme events during quiet stance. Still,

the analysis of tail behavior can be read from the influential book of Taleb [93].
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Figure 3.2: Q-Q Plots of Data

3.1 Step 0 White Noise

Zeroth step of the derivation of the stochastic differential equation is the simplest

case which is White Noise. According to the perspective mentioned until now, White

noise is throwing an abstract dice and determining the position of the associated ran-

dom variable Xt accordingly. Even if the decisions, namely ∆Xt, can be interpreted

as normal distributed random displacements for each time interval ∆t relying on Fig-

ure 3.2, white noise can not be a proper model as long as it does not accumulate

surprise, chance, and technically entropy. In other words, it corresponds to a zeroth-

order differential equation, yet the summation of consecutive steps decided by rolled

dice is necessary to assess the build-up of chance with time. In this way, integration

comes into play at the limit of time partition, so the relation corresponds to at least a

first-order differential equation. Then the velocities named decisions, can be denoted

with ∆x = σ∆tN (0, 1) in discrete form. The relation describes the random variable,

and it can be thought of as an abstract dice determining the next step in each ∆t. Then,

the decisions, i.e., the steps, can be integrated at the limit of ∆t → 0, which yields

the Wiener process. It is the most fundamental continuous process among all subjects

in stochastic calculus, representing the diffusion of a single particle, i.e., Brownian

motion. A sample figure representing white noise is not provided as it is known to

anyone, and to keep the discussion short enough by considering the structure. Still

the details of white noise is explained in Appendix A including its probability density

and spectral content.
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3.2 Step 1 Brownian Motion, Wiener Process

Firstly, it is better to start by describing the most straightforward stochastic process,

namely the Wiener process. It is denoted with Wt, and the corresponding differential

increments are dWt, which will be integrated in a Riemann-Stieltjes sense rather than

a well-known Riemann integral. About the subject, the best example is the calculation

of the definite integral given below retrieved from Dr. Peyam’s Youtube channel who

is teaches subjects of probability theory and fractional calculus clearly [94].

The integral can be computed with the common method by defining dg(x) := dx2,

and then substitution of the derivative dg(x) = g′(x)dx = 2xdx. Yet this is not the

only way, but the integral can be evaluated even if the integrator is a non-differentiable

function which a sketch of proof is provided in Equation 3.1.

∫ 1

0

xdx2 = lim
N→∞

N∑
i=1

i

N

[(
i

N

)2

−
(
i− 1

N

)2
]
=

lim
N→∞

[
2

N3

N∑
i=1

i2 − 1

N3

N∑
i=1

i

]
=

2

3
(3.1)

After expanding squares, one can see that the integral can be computed without find-

ing g′(x). Therefore in the case of g(x) is not differentiable; still, it is possible to

evaluate the integral. Further details of Riemann-Stieltjes integral are not provided

as it is out of scope in an applied sense. In the same respect, the Wiener process

dWt Gaussian distributed differential random variables has to be integrated over time.

Then one can define the first step as follows.

dXt = σdWt (3.2)

Before describing the terms one by one and providing the integrated form of a so-

lution, it may be beneficial for the reader to see the relation in discrete form, which

makes the understanding easier for further discussion.
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dXt = lim
∆t→0

σ (∆t)1/2N(0, 1)︸ ︷︷ ︸
∆Wt

(3.3)

The relation explicitly states the law that the random variable ∆Xt obeys. It can be

seen that the decisions ∆Xt are random variables distributed N(0, σ2∆t) where all

steps in time are "independent identically distributed". According to the central limit

theorem, the summation of N-many steps ∆x where all steps have finite variance

yields another normally distributed random variable. Please note that the central limit

theorem is valid only if all random variables summed up have finite variance. Further,

the random variable at any finite t > 0 has a variance equal to the summation of

variances of all steps up to that time. Algebraically speaking, it means "closed under

addition", which is necessary for consistency at the limit. Therefore the solution is

distributed as
∫ T

0
dXt =

∫ T

0
σdWt = σ(WT −W0) ∼ N (0, σ2T ).

As known to us, the most interesting part of the integral shown in Equation 3.3 is the

square root of ∆t. Firstly, at the limit of ∆t → 0, the square root converges to zero

slower than an ordinary first power, linear ∆t. Therefore the variation of ∆Wt be-

comes infinite in any "finite" time interval no matter how small it is. In the presence of

infinite variation, the quadratic variation proportional to ∆t becomes a positive finite

value which is zero in ordinary calculus. Quadratic variation is defined as the sum-

mation of squared steps, and in this particular case, it evolves with σ2∆t. Since the

variation of the Wiener process is infinite, the function is everywhere continuous,

nowhere differentiable, so the integration necessitates Riemann-Stieltjes integral as

mentioned before, where g′(x) does not exist. In addition, quadratic variation is usu-

ally confused with variance, yet those concepts have totally different meanings. Even

though the expectation of quadratic variation is equal to variance, they are distinct

concepts, as quadratic variation is a path-wise property. However, the variance is a

completely abstract statistical outcome that is about the ensemble of infinitely many

paths, i.e., fates. So the concept of variance is related to distribution. The detailed

discussion of distinction can be read in Shreve’s book [95]. Besides that, another

common confusion is the calculation of variance from a single path. It is also signifi-

cantly misleading since the variance is a property related to whole distribution, and it

is shown as the parabola ±3σ
√
t, in Figure 3.3. Therefore it is entirely different than
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the squared difference of all data points from the mean of the entire time series, and

the increasing standard deviation by following the parabola will be discussed later.

Secondly, the integral is somewhat half due to
√
∆t, which is unusual for anyone

who knows calculus at the level of undergraduate education. Besides, it is the reason

behind infinite variation; the branch of mathematics dealing with non-integer differ-

entiation is named fractional calculus, which is still a developing field. Integer order

derivatives can be easily generalized to real orders with the gamma function. In this

respect, the fractional order of derivatives is an old discussion in which the subject

can be traced back to the letters between Leibniz and L’Hopital, that Leibniz replied

with the words "...Thus it follows that d1/2x will be equal to x
√
dx : x". Non-integer

differentiation is associated with fractals in this context. In Mandelbrot’s paper [96],

fractional Brownian motion is derived and defined as a generalization as Wt → WH
t

where the variance increases with (∆t)2H rather than ∆t. In Wt Hurst exponent is

H = 1/2, and this generalization is out of scope for the dissertation.

By keeping all in mind Equation 3.3 is the first step and constant σ is nothing but the

scale of variance per unit time by considering X ∼ N (0, 1), a ∈ R =⇒ aX ∼
N (0, a). Therefore at any time T , the accumulated chance linearly increases to σ2T ,

which is the variance. In financial mathematics literature, σ is named volatility, and

modeling σ := σ(t,Xt, Yt) is a field that may be studied lifelong since it is directly as-

sociated with risk and option pricing theory as it determines the rate of accumulation

of surprise [97].

Equation 3.3 describes the rolled dice as Gaussian increments at each dt, and the dis-

tribution is N(0, σ2dt). For further understanding, the next plot is inevitable, which

shows many different trajectories generated in Matlab obeying the laws of the same

process. Therefore every single path is independent and identically distributed.

Firstly, all the trajectories shown in the figure obey the laws of Wt for all t ∈ [0, T ].

Please remind that it means ∆x = σ
√
∆tN(0, 1) in discrete form. Even if some

curves, such as the black one, look like it has a negative trend, there is no reason

for the drift, but it is completely due to randomness. In this point of view, anyone

who collected a single time series experimentally may misinterpret the data, which

is nothing but being "fooled by randomness" termed by Nicholas Nassim Taleb [98].
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Figure 3.3: Sample Paths Generated for Wt and 99.73% Confidence Interval at

±3σ
√
t

Besides the black one, the green trajectory lies around zero, again for no reason but

only due to chance. As it can be seen from the relation, there is no trend in Wt, so

the mean of all trajectories apparently stays at zero for all time. Another point about

the trajectories is their variance. Since a normal distribution can be characterized

completely by the first and the second moments, the variance has to be analyzed in

detail. It is already mentioned that the standard deviation of Wt is σ
√
t. Therefore

three standard deviations 99.73% confidence interval is shown in the figure with the

black parabola that 0.27% of trajectories barely stay outside the curve for any t. The

branches of the parabola expanding away from each other is the best way to show the

accumulation of surprise with the passing time, so-called the increment of the entropy.

Since the trajectories are distributed Gaussian at any instant, the mean is always zero,

and the variance increase with σ2t. Then anyone plotting the distribution for some

t ∈ [0, T ] see a Gaussian distribution with N (0, σ2t) at that particular time t.

Besides all it is known that addition of a real number a ∈ R to a random variable

only shifts the mean, but the variance remains unchanged X ∼ N (0, σ2), a ∈ R =⇒
a +X ∼ N (a, σ2). Therefore one can simply impose the deterministic drift (trend)

to the process by an additional differential term µdt, then the differential equation has

the form shown in the equation provided below for some T > 0.
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dXt = µdt+ σdWt =⇒ XT ∼ N (µT, σ2T ) (3.4)

Once again, the figure can be interpreted in two respects, which is the dichotomy

mentioned. The first explanation is a single particle located at the origin at the initial

time. In this respect, the trajectories generated represent possible fates for the partic-

ular agent. In addition, the trajectories can be explained as an ensemble of particles,

such as a mole of gas particles. Then the trajectories stand for the individual parti-

cles that are independent and identically distributed [21]. In either case, the entropy

accumulates with passing time. Furthermore, both interpretations have no difference,

either qualitatively or quantitatively, as long as they are independent and identically

distributed, commonly abbreviated as i.i.d.

Yet neither drifty one nor dWt is not able to explain the evolution of CoPx since the

variance increases unboundedly. If theXt has the formWt, then the variance becomes

infinite at the limit of t → ∞. In this case, no human can maintain the balance after

some intermediate t but falls to the ground as the CoPx leaves the area spanned under

foot. In mathematical words, at the limit of time, CoPx can not stay inside any open

interval represented by (−M,M) for M > 0 as follows due to linearly increasing

variance. For the particular problem, (−M,M) represents the area spanned by foot

that the probability of finding CoPx inside goes to zero at the limit of time according

to the squeeze theorem.

lim
t→∞

P (| Xt |< M) = 0 (3.5)

or

0 ≤ t1 ≤ t2 =⇒ P (| Xt1 |< M) ≥ P (| Xt2 |< M) ≥ 0 (3.6)
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Therefore CoPx can not be explained by Wt due to unboundedly increasing variance,

but mean reversion is the first necessity that keeps the variance bounded for large

t according to Equation 3.3. In other words, certain constraints have to appear in

the equation to limit the variance at a reasonable value for the maintenance of erect

posture. Therefore, the visually provided time series of CoPx can not be threated as

the diverging Markov paths shown in Figure 3.3.

Besides, in all steps of derivation, differential Wiener process dWt is used as ve-

locities, and intuitively decisions, which have constant power among all frequencies

ω > 0. Note that it is physically implausible as it requires infinite energy due to the

non-decaying power spectrum at greater frequencies, as shown in Appendix A. Even

if we know that Wt is absurd from a physiological perspective, it is employed to ben-

efit from the analytical solutions. Otherwise, the model may come closer to reality

by using band-limited white noise with losing analytical solutions, which is a definite

trade-off that one side has to be selected. The same can be grasped from the infinite

variation of process in any time interval, which makes the quadratic variation greater

than zero, as mentioned before. Intuitively it is impossible to find endless variation in

small ∆t, as it requires an immense amount of energy.

Furthermore, in the absence of µdt = 0, the first moment stays constant along time.

Analytically it can be expressed as E(Xt) = E(Xu) such that t > u > 0. The prop-

erty is named Martingale, and it is a crucial concept in stochastic calculus. Besides,

in Newtonian deterministic calculus, the variance is always zero, and only the mean

evolves in time which is the path itself. Therefore, the intersection of martingales and

deterministic calculus is only a constant function f(t) = c where c ∈ R in which the

velocities are always zero. In this way, the fertileness of stochastic calculus can be

seen, which is entirely different than ordinary calculus, thanks to dWt.

3.3 Step 2 Mean Reversion

Please remind that the general equation is stated as Xt = µ(t,Xt)dt + σ(t,Xt)dWt

in Equation 1.1 where µ determines the rate of change of mean, and σ is associated

with the scale of the standard deviation of the dice thrown for decision makings.
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The analogy of dice is used for decisions since the steps governed by relation can be

completely described by the first and second moments. In order to revert the paths

diverging to infinity, the dice have to be constrained properly through the µ(t,Xt)

term, but how? (For a detailed analysis, please refer to Appendix C)

If µ(t,Xt) is selected as a function of Xt, then the paths going further away from the

mean can be directed back by imposing a bias on the dice in the desired direction.

Still, some variance remains as long as the dice is not entirely constrained to stand

still, but some room is left for dynamics. The bias can only be enforced through its

first moment since the second moment is related to the square of ∆Xt, which has no

direction due to the positive definite nature of even powers. The most straightforward

choice is µ(Xt) := −Xt, which is nothing but a linear mean reversion. Furthermore,

the parameter λ > 0 may help to set the mean reversion rate. Therefore the following

relation is written in the following way.

dXt = −λXtdt+ σdWt (3.7)

Equation 3.7 can be interpreted as linear mean reversion, and the corresponding linear

process is named Ornstein Uhlenbeck. Similar to the discussion in the last part, the

process can be comprehended easily from discrete form, which explicitly shows the

structure of the dice. Therefore discrete representation of Equation 3.7 is provided

below.

∆Xt = −λXt∆t︸ ︷︷ ︸
deterministic

mean reversion

+σ
√
∆tN(0, 1)︸ ︷︷ ︸

random part

(3.8)

Equation 3.8 shows the architecture of the dice at any instant t, which the decision

depends on the current location as Xt ∼ N (−λXt∆t, σ
2∆t). If the current location

of time series Xt is at zero, then the mean of the thrown dice is zero −λXtdt = 0,

and dXt = dWt, so that the mean reversion disappears. However, as it goes further

away from the equilibrium point zero, the dice apparently gain bias in the opposite

direction due to the minus sign in front of it with a proportion of −λ. Therefore if the

particle goes further away, it is pulled back to the mean due to the minus sign from
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either direction. The corresponding stochastic differential equation is named Ornstein

Uhlenbeck process, and it is named "Fokker Plank Equation" in the physics literature,

as shown in the next relation.

ẋ = −λx+ σBt (3.9)

Fokker Plank equation can be derived from the Ornstein Uhlenbeck process by differ-

entiating both sides with respect to time. Therefore Bt is defined as dWt/dt, which

is nothing different than white noise, that is distributed standard normal. Therefore

Bt represents the randomness due to the dice. Similarly, σ stands for the standard

deviation of the noise and scales it accordingly. Another interpretation of the Fokker

Plank equation is a parallel connected spring and damper, namely Kelvin-Voight,

with an input of white noise. Since the spring always applies force according to

F = k(x − xth), the particle can not go far away from the equilibrium point in the

presence of white noise input due to the accumulation of chance. Furthermore the ex-

istence of damper makes the equation first order rather than a zero order spring which

get back to equilibrium position instantly as long as it does not have any room for

time similar to zeroth step discussed before. Furthermore the existence of a damper

makes the equation first order rather than a zero order spring which gets back to equi-

librium position instantly as long as it does not have any room for time, similar to

the zeroth step discussed before. Therefore the Fokker Plank equation can be writ-

ten as ẋ = −k/bx + σBt, which explicitly shows the damping and stiffness. In this

respect, the mean reversion rate is the ratio of stiffness to damping λ := k/b with a

physical unit of frequency 1/t. Please note that increasing stiffness of spring k cor-

responds to greater mean reversion rate λ that presents itself as less deviation from

equilibrium point and smaller variance respectively. Then any step of the Ornstein

Uhlenbeck process can be interpreted as a biased decision because of the negative

ratio of the distance from equilibrium, and it is proportional to λ in terms of its mean

N (−λ(Xi − 0)∆t, σ
√
∆t).

Another interpretation of the Ornstein Uhlenbeck process is possible with the "Ge-

ometrical Way of Thinking" proposed by Strogatz as mentioned before [19]. The

analysis involves plotting ẋ as a function of x in phase space, so the result is a line
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with the intersection at zero and a slope of −λ such that ẋ = −λx. Zero represents

the equilibrium point, i.e., rest length, and the negative slope shows the kind of sta-

bility at that point. As the slope is negative −λ < 0, the critical point is stable. In

detail, the paths at the negative side x < 0 converge to zero with positive velocity ẋ,

and the trajectories on the positive side do the same due to the opposite sign, which

is negative x > 0 =⇒ ẋ < 0. Additionally, the second term σdWt is nothing

but the error and randomness around the line in the phase space. In this respect, the

Ornstein Uhlenbeck process can be described as a search of the line consisting of a

stable equilibrium point at a given location.

Besides that, the Ornstein Uhlenbeck differential equation has an analytical solution

since it is a first-order linear non-homogeneous differential equation. Therefore the

differential equation should be solved for a more concrete understanding, and the

solution is provided below by following the procedure shown in Appendix C.

Xt = X0e
−λt + σe−λt

∫ t

0

eλsdWs (3.10)

In the equation, X0 is the initial condition representing the current location, and s is

the dummy variable for integration. Firstly the term X0e
−λt shows the exponential

decay of the initial position to the origin. Besides that, the most interesting part is

the second term. The integrator eλs behaves as a time window for the past steps

of dWs for 0 < s < t. The time window rules the influence of the distant and

recent past in an exponential sense. In discrete form the past decisions and respective

influences can be seen clearly such that σ
∑

i e
−λi∆t

√
∆tN (0, 1) where all steps are

independent identically distributed. Then the constant e−λt normalizes the result of

the integral for that particular t successfully since the integral of an exponential eλs

is again an exponential. It is worth noting that even if the bias is introduced through

the mean as −λXt, in the solution, it ends up with normalization of variance to keep

it bounded as desired. For a complete understanding, the solution can be traced step

by step from Appendix C. Besides that, the positive constant σ is only for the scaling

of the variance as it appears in front of the integral. Another way of expressing the

second term is
∫ t

0
e−λ(t−s)dWs to make the time window visible, which governs the

influence of history. Even if it is skipped, a different time window can be observed
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in fractional Brownian motion that is
∫ t

0
(t − s)H−1/2dWs, yet it is out of scope for

the thesis. Still, the time windows differ significantly. In fractional Brownian, power

relation ends up with a slow decay of correlations compared to exponential e−λ(t−s).

Further, it gains a fractal structure due to scale independence of power law as α ∈ R

and (αt)H/tH = αH is independent of the time variable. However, this kind of scale

independence can not be obtained with an exponential function.

Besides the solution, it is possible to compute the first and second moments of Xt

since it is distributed normal, and the distribution can be completely characterized by

those two moments. As there is no bias for drift, the mean can be intuitively found

as zero. Furthermore, the bounded variance must be a constant independent of t.

Therefore, the variance has to be proportional to the scaling of dice σ2 and inversely

proportional to the mean reversion rate λ, which is explained as the ratio of stiffness to

damping in the Langevin equation. Even if the variance given below with an intuitive

explanation detailed derivation can be found in Appendix C.

⟨Xt⟩ = 0 (3.11a)〈
X2

t

〉
=
σ2

2λ
(3.11b)

Moreover, by using the solution, the correlation function can be found. Please re-

mind that the integrand e−λ(t−s) is mentioned as a time window determining the influ-

ence of past decisions. Therefore correlation function can be nothing different than

ρ(XtXu) = e−λ(t−u), again a detailed derivation is provided in Appendix C. Then the

Fourier transform of the deterministic correlation function can be computed to reach

the frequency content of the process in the Fourier domain. The relation is named

Power Spectral Density and it is equal to λ
π(λ2+ω2)

where ω is the frequency with a

physical dimension [1/s].

Please note that only λ presents itself in correlation function and power spectral den-

sity, but both of them are independent of σ. This result is expected since σ is only the

scale for the variance, so it can not do anything different than determining the area

under the power spectrum. In contrast, λ governs the decay rate of spectral power

at greater frequencies since power spectral density can be interpreted as partition of
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variance over frequencies. Therefore σ affects only the area under the power spectral

density.

In this perspective, path-wise effects of each parameter have to be provided. The

best way known to us is using a three-by-three table, each plot having distinct λ and

σ for any row and column. The following figure is provided below, which has to

be investigated in a detailed way. During the creation of the table, the same set of

random variables is used, by setting the random seed, kernel, for a better comparison

among different parameter settings. In the figure λ increases from right to left and σ

increases from bottom to top.

Figure 3.4: Paths Generated with Different Values of λ and σ

Please note that as σ increases, the difference between the maximum and the min-

imum becomes larger, which is mentioned as σ scales the variance of increments.

Also, σ enlarges the interval spanned by the path faster than λ as the variance is pro-

portional to the square of sigma but inversely proportional to the first power of λ

according to Equation 3.11b. Moreover, σ is found to have no effect on the decay of

the power spectrum in the frequency domain, which is clearly visible to the naked eye.

However, the frequency content changes due to λ varying on rows. As λ increases the

46



power spectrum shift toward smaller frequencies according to λ
π(λ2+ω2)

. Please have a

look at the figure once again before continuing, especially the row at the bottom, for

a visual understanding.

Moreover, the mean of the Ornstein Uhlenbeck process can be shifted easily. Please

remind thatXt is pulled toward zero due to the minus sign. Therefore if one multiplies

−λ with (Xt − θ), than the process becomes pulled toward θ, since (Xt − θ) > 0 if

Xt > θ and vice versa. So, in either case, the dice become biased for pulling toward θ

rather than zero. It can be thought analogous to threshold, rest length, of the spring in

Fokker Plank, so the corresponding Fokker Plank equation can be apparently stated

as ẋ = −k
b
(x− xth) + σBt.

3.4 Step 3 Double Ornstein Uhlenbeck

At the end of the last step, the equilibrium point of the spring shifted from zero to xth,

and the corresponding value is denoted as θ. In this way, the stochastic process shown

in Equation 3.7 is rewritten in the following form. As mentioned before, the dice

gained a definite bias toward the long-term mean θ, since the mean of any decision

is no longer zero but pointing toward the equilibrium point θ or xth with keeping

the properties associated with the variance as the same. In this respect, the bias is

apparent in the first term of the differential equation and clearly visible through the

sign of −λ(Xt − θ), and the mean reversion rate is proportional to λ for each ∆t.

dXt = −λ(Xt − θ)dt+ σdWt (3.12)

Even if θ in Equation 3.12 is a constant representing the threshold of the spring, it

can also be chosen as a stochastic process too. Then it must be denoted as a function

of time θt, similar to the process Xt representing the dynamics of CoPx time series.

After that, this part defines the process θt obeys, to describe the system of stochastic

differential equations involving Xt and θt. Similar to the discussion up to this point,

θt can not diffuse unboundedly as Xt is pulled toward it. Therefore it has to be

selected as an Ornstein Uhlenbeck process to keep the variance bounded for all t > 0

such as dθt = −κθtdt + σdWt with some mean reversion rate κ and its own Wiener
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process denoted by W 2
t . Furthermore, the process has to be represented with terms

σ2dW
2
t to differentiate volatility terms σ and Wiener process from the other driving

noise associated with Xt. Therefore the following system of stochastic differential

equations can be written.

dXt = −λ(Xt − θt)dt+ σ1dW
1
t (3.13a)

dθt = −κθtdt+ σ2dW
2
t (3.13b)〈

dW 1
t dW

2
t

〉
:= ρdt = 0 (3.13c)

The third equation dictates the covariance structure between W 1
t and W 2

t which must

be selected ρ ∈ [−1, 1]. For the sake of simplicity, ρ is selected to be zero, but other

values of ρ may yield exciting results in the model in which the CoPx time series

is correlated with the diffusive equilibrium points θt. At first sight, the equation may

look complicated to understand, but one must not forget that it is only a "first order lin-

ear constant coefficient nonhomogenous system of stochastic differential equations"

in which the analytical solution is available. Besides that Equation 3.13 is presented

in matrix form in Appendix D.

After that, similar to Ornstein Uhlenbeck, the process can be analyzed by following

the same recipe with the steps of determination of the solution, computation of corre-

lation function, power spectral density, and providing a table representing the relative

effects of parameters. So that the first step is providing the solution to the system of

stochastic differential equations, as shown below. Please note that the solution is ob-

tained by threading the problem like an eigenvalue problem and employing Green’s

function, and a detailed step-by-step solution is provided in Appendix D.

Xt = X0e
−λt + θ0

λ

κ− λ

(
e−λt − e−κt

)
+ σ1

∫ t

0

e−λ(t−s)dW 1
t︸ ︷︷ ︸

A

+

σ2
λ

κ− λ

∫ t

0

e−λ(t−s)dW 2
t︸ ︷︷ ︸

B

−
∫ t

0

e−κ(t−s)dW 2
t︸ ︷︷ ︸

C

 (3.14)
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In the intermediate steps of the solution, eigenvalues are found as u1 = −λ and

u2 = −κ, which dictates the stability of paths. Since the λ and κ are selected positive

for mean reversion, eigenvalues can not be anything different than them. Therefore,

eigenvalues are negative for λ, κ > 0, so the paths can not diverge but remain arbitrar-

ily close to the equilibrium point θt at any instant, i.e., and then absolute equilibrium

at zero. Also, the denominator in the solution may yield infinite if κ− λ = 0, yet this

is not the case as shown in Appendix D due to the selection of distinct eigenvalues

λ ̸= κ. Furthermore, as mentioned in Appendix D, while Xt = θt is the instant equi-

librium points for t that it is satisfied, zero behaves as a global equilibrium according

to −κ(θt − 0) in Equation 3.13b.

After noting the points related to eigenvalues, the solution can be analyzed term by

term. In order to avoid any confusion while discussing all elements of the solution,

each term is denoted with A, B, and C, respectively, as shown with under braces in

Equation 3.14. Yet before discussing them, it is better to keep in mind that the first and

second terms are deterministic, and they dictate the relaxation of the initial condition,

the current position with an exponential rate to absolute equilibrium zero. Please

remind that the same term has appeared in the solution of the Ornstein Uhlenbeck

process as X0e
−λt in the absence of a moving threshold. Therefore, θ → θt added

additional decay according to initial θ0 as a function of λ and κ.

After the deterministic part, the term A involving integral with respect to W 1
t has

nothing to do with θt, but it is inherent randomness of Xt as A is function of σ1,

λ and W 1
t . The same can be seen from the matrix representation of the differential

equation provided in Appendix D as Equation D.8, where the lower left element of

the matrix is zero. So that it is the same as the integral that one can see in the Ornstein

Uhlenbeck process. On the contrary, the terms B − C represent additional variance

related to the moving threshold and equilibrium point as opposed to constant baseline

fluctuations of Xt following the Ornstein Uhlenbeck process in the last section.

ThereforeB andC are the interesting terms since the integrator isW 2
t in each of them,

so both of them are associated with the moving equilibrium point and corresponding

randomness. Before the interpretation, it is better to say that B − C can be rewritten

as
∫ t

0
e−λ(t−s) − e−κ(t−s)dW 2

s in a single integral. In this way, the time window de-
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termining the influence of the distant and recent past becomes visible. Then the time

window can be nothing different than the subtraction of two time windows as it rules

the decay to absolute equilibrium zero. If θt was following a Wiener process without

mean reversion, in other words, κ = 0, still B and C would appear in the solution.

However, mean reversion of moving θt decreases variance according to the integral

C, because of the minus sign in front of it compared to unbounded diffusion of θt. If

the mean reversion of θt was absent, then the integrand in C would be one, and then

the variance diverges with time. In the opposite case, κ → ∞, the process θt turns

into white noise, which is almost constant around zero. Therefore the integrand of C

remains around zero except for the limit s → t. In this way, the solution becomes

similar to Ornstein Uhlenbeck since the denominator κ − λ is almost either positive

or negative infinite, which vanishes B − C. Besides those two limits of κ → 0 and

κ→ ∞, the opposite signs of B and C decrease the variance accordingly. Moreover,

both B and C are scaled with σ2, and it is divided by the difference κ − λ. The sign

of κ − λ may change, whether λ < κ or the opposite, yet it does not matter as W 2
t

is symmetric around the mean, and the mean is not evolving in time, namely "mar-

tingale" such that E(Xt | Xu) = Xu for u ≤ t. In other words, as long as the mean

does not evolve with time, reversion of the sign has no effect on the process since

W 2
t is symmetric around its mean in the absence of skewness and all other odd-order

moments. Then inversion of the sign only makes the observed path symmetric with

respect to zero, which makes no difference in probabilistic measures as all of A, B,

and C are associated with the variance and squares having no direction. Therefore the

inverse signs of B and C is the only relevant thing as they are related to the stealing

phenomenon and constraint.

Furthermore, θt is nothing different than an Ornstein Uhlenbeck, so all the discussion

about threshold process θt mentioned in the last section is still valid and applica-

ble, except for the change of names of parameters. Therefore the discussion is not

repeated.

In conclusion, the solution is a linear superposition of two deterministic exponential

decays of initial conditions, together with randomness associated with W 1
t , similar

to Ornstein Uhlenbeck, and two other integrals. One of them corresponds to stolen

variance due to mean reversion in θt, but the overall B and C represent additional
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variance associated with θt moving threshold against the Ornstein Uhlenbeck process

where the rest length is constant xth. In other words, the additional θt rather than

constant θ converts the fluctuations around a baseline to a random equilibrium point

determined by θt. In this way, the variance of Xt increases. Then the next step is the

interpretation of moments, especially the second moment, as the mean is zero for all

t, so there is nothing interesting about it. Also, please note that the process is linear,

and Xt is normal distributed, so the rest of the moments are not applicable, but the

complete description of the distribution can be handled with only the first and the

second moments.

〈
X2

t

〉
=
σ2
1

2λ
+

σ2
2

(κ− λ)2
λ2

2λ
+

σ2
2

(κ− λ)2
λ2

2κ
− σ2

2

(κ− λ)2
2λ2

λ+ κ
=

σ2
1

2λ︸︷︷︸
<A2>

+

(
σ2λ

κ− λ

)2

 1

2λ︸︷︷︸
<B2>

+
1

2κ︸︷︷︸
<C2>

− 2

λ+ κ︸ ︷︷ ︸
<−2BC>


︸ ︷︷ ︸

(λ−κ)2

2λκ(λ+κ)

(3.15)

The first thing to notice in the relation is the additional term in the variance. While

Ornstein Uhlenbeck has a second moment σ2
1/(2λ), now a strictly positive expression

is summed up to increase the variance due to moving threshold compared to fluctua-

tions around a constant baseline. The positive definite nature of the second term due

to squares is shown with the outer underbrace.

One by one investigation of the relation requires the analysis of four distinct terms.

The integral represented withA in the solution ends up with a contribution of σ1/2λ in

variance, the same as the Ornstein Uhlenbeck process. Furthermore, the second term

is associated with a square of B, and similarly, the third term is a square of C. The

subtraction is due to the product of BC and the opposite sign, which decreases the

variance, as mentioned in the interpretation of the solution. Further grouping of terms

by taking them into common parenthesis makes it more suitable for comprehension.

In this setting, the sign of the terms inside the parenthesis can be questioned easily,

and it is strictly positive, which can be seen by bringing all fractions together under a

common denominator. Therefore moving θt can only increase the overall variance of
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Xt. Moreover, the parameter ρ indicating the correlation betweenW 1
t andW 2

t is zero.

So the cross terms involving A such as AB and AC must be zero as long as W 1
t , and

W 2
t are independent. Still the generalization ρ ∈ [−1, 1] is provided in Appendix E.

After the discussion of the variance, the correlation structure as a function of time

delay τ := t − u can be explained through the relation provided below. Again its

detailed derivation is given in Appendix D, and ⟨θtθu⟩ is not discussed since it is

shown in the last section as the Ornstein Uhlenbeck process.

⟨XtXu⟩ =

[
σ2
1

2λ
+

(
σ2λ

κ− λ

)2 [
1

2λ
− 1

λ+ κ

]]
e−λτ+[(

σ2λ

κ− λ

)2 [
1

2κ
− 1

λ+ κ

]]
e−κτ (3.16)

The covariance function has a form of double exponential in which the time constants

are determined by λ and κ, respectively. Even if there is an additional σ2
1/2λ, the rest

are similar except for the interchange of λ and κ in denominators. Obviously, the first

exponential decay with λ involves λ in the denominator, and the same is true for the

second exponential decaying with κ. Therefore the form is symmetric in terms of λ

and κ.

Furthermore, one of the correlations has to be negative, while the other one is positive,

either λ > κ or κ > λ. Since the exponentials are positive definite, the opposite signs

of correlations are associated with the difference κ−λ
2λ(λ+κ)

and λ−κ
2κ(λ+κ)

respectively. So

the negative and positive correlations at different frequency ranges according to de-

cay ruled by τ can be interpreted similar to persistence and antipersistence terms in

Collins’s article [29], even if those are completely distinct concepts related to fractal

structure. The desired range of parameters λ >> κ and σ1 << σ2 has to be consid-

ered for the assessment of the CoPx. Therefore the first term involving σ1 vanishes

because of the square, and either variance or correlations become a function of the

rest of the terms symmetrically. Moreover, as λ >> κ, the first term decaying with λ

governs the negative correlations, and the second term governs positive correlations

analogous to antipersistence and persistence, respectively. Once again, please note

that two phenomena are completely distinct concepts, and the difference originates
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from the form of the time window. In this relation, the integrands are exponential

functions, yet persistence and antipersistence in a fractional sense require integrands

obeying power law such as (t − s)H−1/2 for two distinct values of H greater or less

than 1/2, respectively in different frequency ranges. Interpretation of positive and

negative correlations can be clearly seen in all the tables provided in the next pages,

so it may be beneficial to check any of them now.

Those two exponential decays present themselves in power spectral density too, in

other words, the frequency domain. Importantly it coincides with Collins’s article

again. As two exponentials related to λ and κ decay with different rates, the fre-

quency spectrum becomes modified accordingly. The one decaying faster determines

the frequency content at greater frequencies, in our particular problem represented

with λ and σ1 are associated with greater frequencies in the desired range of param-

eters. Then, the further analysis is only possible with seeing relative effects of each

parameter {λ, κ, σ1, σ2}. In this way, everything about the processes Xt and θt be-

come clearly visible. Therefore presenting tables similar to Ornstein Uhlenbeck is

necessary.

Before presenting the tables, all terms have to be interpreted one by one. Firstly, κ

and σ2 have the same effects over θt similar to Equation 3.7, as discussed in the last

section related to ordinary Ornstein Uhlenbeck process diffusing around a constant

baseline. Furthermore λ determines the decay rate of Xt to θt. Also, σ1 pushes Xt

away from θt, and greater the σ1, Xt has more fluctuating appearance as discussed in

power spectrum. In other words, σ1 determines the smoothness of Xt. Moreover, if

λ→ ∞, Xt sticks to θt, and they move together as the decay rate is infinite.

Furthermore for the generation of all paths given below, parameters are selected ac-

cording to λ << κ and σ1 << σ2 to have a greater influence of θt on variance rather

than | Xt − θt | distance. In this way Xt remains close to θt compared to | θt − 0 |.
The relative influences on variance can be checked from Equation 3.15, as the contri-

butions to variance are proportional to σ2
i , then σ2

1 << σ2
2 becomes more significant.

Besides that, since θt is only an Ornstein Uhlenbeck process, the comparison involv-

ing κ and σ2 is not that much interesting, but the identification of λ and σ1 is the most

essential one so that it is going to be discussed at first.
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Figure 3.5: Paths Generated with Different Values of λ and σ1. Xt is blue, θt is red.

In all portions, κ and σ2 are kept constant so that the variance did not change sig-

nificantly like the ones in Figure 3.3. The same can be interpreted as Xt has no

other chance rather than following θt. Therefore it is visible that main contribution to

variance is associated with θt and σ2 in this parameter range, except σ1 >> σ2 and

κ >> λ. In this case, θt remains almost constant around zero, and Xt becomes in-

distinguishable from the Ornstein Uhlenbeck process, which is not interesting in the

scope of the dissertation and related literature. Furthermore, the main effect of λ and

σ1 are on the smoothness of the Xt blue curve. Please note that in the presence of the

Wiener process σ1 > 0, variation becomes infinite as mentioned before. Yet visually,

increasing σ1 decreases the smoothness of paths as shown from top to bottom. The

same can be concluded from Equation 3.16 relating it with high-frequency content.

As λ >> κ slowly decaying exponential e−κτ is directly proportional to σ2
1 . Along

the columns increasing λ makes Xt more sticky to θt through the rate of exponential

decay shown in −λ(Xt − θt)dt term. The stickiness of Xt is clearly visible in the

comparison of left-most and right-most columns. In this respect, Xt can be treated as

an exponential smoothing of an Ornstein Uhlenbeck θt plus some certain integrated

Brownian noise scaled by σ1. Also, the increased wiggly appearance at greater σ1 is

visible along each column.
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Figure 3.6: Paths Generated with Different Values of λ and κ

Another interesting comparison is the relative effects of λ and κ. While λ rules the

stickiness of Xt to θt, the other parameter κ determines the frequency content in

smaller frequencies due to different decay rates of exponentials, as it did to the regu-

lar Ornstein Uhlenbeck process. Long period navigation of the curves is determined

by κ, similar to the discussion of Ornstein Uhlenbeck. Please note that the frequency

content of θt is independent of σ2, but decreasing κ ends up with a gain in low fre-

quencies. Therefore along the columns, especially the right-most one, which is the

stickiest as λ = 8, the effect of κ is clearly visible. Further discussion of σ2 is not

that much necessary as it has no effect on frequency content but only a scale of noise

in θt, so it determines the area under the power spectrum. Anyone considering the

effects of σ2 may have a look at Figure 3.4. Still, visualization may seem interesting,

so the related figure comparing λ stickiness and σ2 scale of θt is provided below.
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Figure 3.7: Paths Generated with Different Values of λ and σ2

Even if σ2 has no effect on spectral content but only a scaling, it significantly changes

the variance of Xt according to ⟨θt⟩ = σ2
2/2κ. As Xt follows θt with an exponential

decay in this parameter range, an increasing variance of θt affects the scale of Xt

by leaving the frequency content the same. Therefore square of σ2 appears in the

variance of Xt. Anyone looking at the bottom row may see that the curve becomes

more sticky with increasing λ, as it variates with large fluctuations due to greater

values of σ2.

In conclusion, λ determines the stickiness of Xt to θt as it is an exponential smooth-

ing, so it can be seen from the system of differential equations presented in Equa-

tion 3.13. The second parameter σ1 determines the wiggliness ofXt as it is additional

noise added to (Xt − θt) distance, besides that it pushes Xt away from θt in either

direction. Please keep in mind that σ1 > 0 implies infinite variation. Therefore for

any value of σ1 > 0 implies infinite jitteriness, technically variation. Furthermore,

κ induces the long-range properties (power at low frequencies), as Xt has nothing to

do except following θt, which has a frequency spectrum determined by κ. Finally σ2
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is nothing different than scaling of θt and it has significant effect on variance of Xt

in the chosen range of parameters shown in Figure 3.5, Figure 3.6 and Figure 3.7.

Moreover, the behavior can be changed if λ << κ. In this case, Xt behaves like

an ordinary Ornstein Uhlenbeck as θt = 0 constant threshold, i.e. constant baseline

fluctuations. Then κ and σ2 have no significant effect on the dynamics of Xt different

than an Ornstein Uhlenbeck process.

Further interpretation requires the analysis of two distinct cross relations. The first

one involves the relation between Xt and θt through ⟨Xtθt⟩. Furthermore the dif-

ference Xt − θt itself and its relation with θt can be discussed with ⟨Xt(Xt − θt)⟩.
Secondly, the cross relation of W 1

t and W 2
t governed by ρ can be assessed similarly.

Moreover, covariance structures involving τ := t − u is also necessary. Please note

that variance is a special case of covariance in time which τ = 0.

Even if up to now all steps are followed similar to Ornstein Uhlenbeck process, an

additional step can be carried out by investigating relation between Xt and θt such

that ⟨Xtθt⟩ and ⟨Xtθs⟩. Therefore corresponding relations are provided below in the

absence of covariation between two Wiener processes dW 1
t dW

2
t = ρdt = 0.

⟨Xtθt⟩ =
λσ2

2

κ− λ

[
1

λ+ κ
− 1

2κ

]
=

λσ2
2

2κ(κ+ λ)
=
σ2
2

2κ

λ

λ+ κ
=
〈
θ2t
〉 λ

λ+ κ
(3.17)

The covariance between Xt and θt is found to be equal to multiplication of variance

⟨θt⟩ and a positive constant λ
λ+κ

. It is already mentioned that in this parameter range

λ >> κ, the multiplied constant becomes almost one, and cross relations becomes

⟨Xtθt⟩ ≈ ⟨θ2t ⟩ that is directly proportional to σ2
2 . Furthermore, one may generalize it

to t ̸= s, which grasps the decay rate of covariance as follows.

⟨Xtθu⟩ = e−λτ

[
λσ2

2

κ− λ

1

λ+ κ

]
+ e−κτ

[
− λσ2

2

κ− λ

1

2κ

]
(3.18)

Similar to the discussion up to that point, double exponential correlations appeared

again that are decaying with different time constants λ and κ. Moreover, two distinct

correlations have inverse signs again. While the fast decaying correlation associated

with λ has a negative sign, the other term governs the positive correlations, which
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remain at greater τ . Furthermore, the different denominators λ + κ and κ govern the

power of respective positive and negative correlations at different time scales. Once

again, please note that in this parameter range, λ >> κ, slow decaying correlations

have a positive sign.

⟨(Xt − θt) (Xt − θt)⟩ =
σ2
1

2λ
+

(
σ2λ

κ− λ

)2 [
1

2λ
+

1

2κ
− 2

λ+ κ

]
+
σ2
2

2κ
+−2

σ2
2

2κ

λ

λ+ κ
(3.19)

Another exciting relation is related to the difference between Xt and θt. The variance

of the difference can be derived from the other equations by employing the distributive

property of multiplication and linearity of expectation so no additional calculation is

not required such that ⟨(Xt − θt) (Xt − θt)⟩ = ⟨X2
t + θ2t − 2Xtθt⟩. For the interpre-

tation, at first, please note that in this parameter range, the first term can be neglected

as σ1 << σ2, which is associated with the square of σ1, even smaller. Moreover, the

relation explicitly shows the stolen part of the variance, which is twice of covaria-

tion 2Xtθt which can not be neglected since most of the variance ⟨X2
t ⟩ is associated

with θt rather than Xt − θt in this parameter range. Therefore one can conclude that

this relation yields a significantly smaller value compared to Xt similar to the figures

provided in this section.

⟨(Xt − θt)θt⟩ =
〈
Xtθt − θ2t

〉
=
σ2
2

2κ

[
λ

λ+ κ
− 1

]
=
σ2
2

2κ

−κ
λ+ κ

(3.20)

Finally the last relation shows the negative definite cross-relation between the differ-

enceXt−θt and θt. Furthermore, in this parameter range λ >> κ, this relation yields

a small value due to the division of κ << λ+ κ.

Further generalization of the system of stochastic differential equations can be han-

dled through ρ ∈ [−1, 1]. However, the variances and covariance become too com-

plicated for interpretation since they have more terms involving ρ. Still, the equations

are provided for a curious reader in Appendix E without detailed explanations.
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3.5 Step 4 Multimodality

At the cost of losing analytical solution and then sacrificing explicit determination of

temporal correlation structure and power spectrum, the model can be brought into a

multimodal distributed process. It can be reached if there exist two stable fixed points.

Then one can guess that the manipulation of relation is only possible by changing the

relation θt obeys since Xt can not do anything rather than following θt as discussed

before.

Please remind that the phase portrait of Ornstein Uhlenbeck is a line ẋ = −λx having

an intersection at zero and a slope −λ. In Ornstein Uhlenbeck, the negative slope

around the equilibrium point (origin is stable equilibrium point) made it mean revert-

ing due to opposite signs of ẋ and x at either side. Similarly, stable fixed point is

converted to a constant θ, threshold, by moving the intersection according to Equa-

tion 3.12. So that the simplest possible way to impose two stable fixed points that are

symmetric around zero is the employment of a third-degree polynomial that has three

roots. Therefore it is possible to use the polynomial θ̇ = −rθ3 + θ which has roots at

zero and ±
√
r. Since the slope is negative at either ±

√
r, those roots correspond to

stable fixed points. Inevitably, the polynomial around the middle root has a positive

slope, and it becomes an unstable fixed point, that is why the third-order polynomial

having three roots is used. Then the following nonlinear relation can be written by

keeping the first equation related to Xt the same.

dXt = −λ(Xt − θt)dt+ σ1dW
1
t (3.21a)

dθt = (−rθ3t + θt)dt+ σ2dW
2
t (3.21b)〈

dW 1
t dW

2
t

〉
:= ρdt = 0 (3.21c)

In this way, θt and Xt following it, hopes between two stable points at ±
√
r. Fig-

ure 3.8 visualizes velocities ẋ with respect to position x. While the directions of

velocities are shown with arrows, full circles and empty circles correspond to stable

and unstable fixed points, respectively. Furthermore integral of the polynomial, the

red curve, is provided for the visualization of the pseudo energy surface [99] in which
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the local minimums and maximums are representing the aforementioned fixed points.

Therefore θt can be interpreted as a ball rolling over the red polynomial. As there

are two symmetric local minimums at ±
√
r, the imaginary ball jumps in between ac-

cording to dice σ2dW 2
t . So that the main effect must be seen in smaller frequencies

even if the analytical solution and explicit expression of variance can not be found.

The detailed analysis of dθt = (−rθ3t + θt)dt + σ2dW
2
t can be found on Grigoriu’s

book [100].

Figure 3.8: Phase Portrait

Besides that, using the new relation involving the polynomial causes giving up the

analytical traceability still has an advantage from a computational perspective. While

estimating the parameters from any experimentally collected time series, introducing

nonlinearity to the model makes parameter identification easier as it offers freedom

for model fitting. Please note that up to that step, all models were linear. Since dWt is

distributed normal, then all the processes until now have nothing to do differently than

having a normal distribution as long as they all are linear. However, in this model,

Xt can not be distributed normal due to the nonlinear form used. Particularly the

distribution has a multimodal probability distribution which is impossible for Gaus-

sian distributed random variables, so the modes of the new distributions are located

at ±
√
r. In this way, even moments with all orders ⟨Xn

t ⟩, n = 2, 4, 6, ... become free

to be selected in order to match the experimentally collected time series, rather than
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only the first and second moments, which are the only ones for Gaussian distribution.

Please keep in mind that still, the distribution is symmetric around its mean, so the

odd moments are still zero, including the third-moment skewness. Since all moments

are independent of each other, five parameters, including ρ, can easily be determined

by employing some of the five moments. Then the rest is the Monte Carlo simulation

of an ensemble of paths to calculate moments; in other words, this is nothing but a

well-defined optimization problem. In contrast to previously proposed linear models,

the same fitting procedure is impossible as long as we have no more than the first and

second moments.
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CHAPTER 4

DISCUSSION

4.1 Probabilistic Features of Postural Sway

Human erect posture is defined as the decisive step in the transition from ape to man

by Friedrich Engels [7]. As long as it has a crucial role in the existence of humankind,

dynamical characterization of the never-ending sway of the erect stance is assessed

with stochastic calculus throughout the thesis. Since the center of mass of the human

body (a few centimeters at the front of the lumbosacral joint) is elevated from the

ground by approximately one meter, the area spanned by the foot is smaller in order

of magnitude depending on the ankle angle, which makes the dynamics of erect pos-

ture inherently unstable, especially in back and forth direction that is analogous to an

inverted pendulum rotating around the ankle joint. Still, mankind is the only creature

in the animal kingdom which maintains the proactive erect posture which is dynam-

ically characterized in terms of never-ending sway. Postural sway can be quantified

in terms of two distinct time series where a hierarchical order presents itself. While

the first time series is the projection of the location of the center of mass onto the

horizontal plane, CoMx and CoMy, it is kept inside the area spanned by the two feet

with ground reaction forces (GRF) exerted through the foot, which the application

point is assessed with the center of the pressure signal, CoPx and CoPy at the sagittal

and frontal planes respectively.

Even if the dynamics of quiet stance can be understood through an inverted pendulum

with a biomechanical perspective by considering the hierarchical relation between

CoPx and CoMx, the understanding remains somehow incomplete [40] if anyone

considers the dynamical elements contributing to the posture, including sensors, ac-
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tuators, plant, and the nervous system. At this point, it is worth noting that each of

those four elements has inherently complex natures besides the cross relations exist-

ing in between. Basically, there exist four distinct sensors somatosensory, vestibular

organ, vision, and proprioception. While the first three of them are exteroceptors

collecting "information" from the external world, the last one is the interoceptor re-

sponsible for gathering kinematic information related to respective joint angles and

velocities. Still, any of those sensors can not be evaluated on its own. Please remind

that in the second chapter, the role of proprioception in the internal construction of

self motion is explained in terms of its relation to the vestibular apparatus. Further-

more, its relation with somatosensory is also somehow complicated, which can be

discussed by mentioning three important experimental studies. While Simoneau is

studying diabetic patients having sensory neuropathy, deterioration of nerves, the ef-

fects of neuropathy on subjects’ balance can not be assessed clearly since diabetes

does not only affect the mechanoreceptors associated with the somatosensory system

under the foot sole but damages the nerves contributing to the proprioception related

to the ankle joint position and velocity at the same time. So the observed changes

can not be separated in a well-defined manner [13] due to the ambiguity in the senso-

rimotor control system and during the diagnosis. Therefore, the investigation of the

effects of somatosensory on the dynamics of quiet stance is only achievable with its

isolation, and it is either possible with anesthesia targeted to cutaneous foot sole so-

matosensory afferents or immersion of ice applied to the plantar side of the foot. After

the application of anesthesia which is affecting only somatosensory afferents, Meyer

observes statistically significant effects on CoPx if and only if the eyes are closed,

but he found that the effect is insignificant while the eyes of subjects’ are open. In

other words, when the vision is intact, two of the postural sensory systems of balance

(vestibular and vision) are enough to compensate for the imposed somatosensory de-

ficiency. This experimental finding is an indication of the two-of-the-three postural

control mechanisms triggered by exteroceptors is a necessary and sufficient condition

to maintain the balance. On the contrary, in the absence of vision during the afore-

mentioned experiment, the condition of "full compensation of sensory information"

with vision in the reduction of plantar sensitivity [14] is not fulfilled, which makes

the cross-relation between the two distinct sensors apparent. The maintenance of

balance requires sensory information, which serves as the first hierarchical level of
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postural organization and control, while the second level is about the perception of

the motion described as the simulation of the action [41] collectively employed for

the construction of the self. Further, McKeon observes a significant increment in the

area spanned by CoP together with mean excursion velocity after complete removal

of plantar sensation; on the contrary partial decrement of somatosensory information

ends up with the decrement of the area spanned by CoP . McKeon associates the

decrement of the area under partial removal with decreasing explorative behavior of

postural sway [101]. Even if it is possible to investigate those sensory cross relations

with sensory reweightings [102], the findings can be treated as inherent complexities

of the sensorimotor system that needs to be quantified by using "Information The-

ory" [20], requiring a probabilistic point of view. Since explorative search behavior

with trial and error involves missing information, i.e., entropy, an understanding con-

sisting of Shannon’s information theory and statistical mechanics becomes inevitable,

rather than a deterministic approach in which there is no room for either information

or missing information. In this perspective, anyone can assert that the probabilistic

postural sway is not tried to be minimized [103], but it is diligently escalated for the

sake of learning and search for dynamic characteristization [52] with trial and error.

Besides the sensors, the actuators of quiet stance, similar to any other motor behavior,

are striated muscles that obey the laws of statistical mechanics in terms of their mi-

crostates in the order of a few nanometers [104], [105], [99], [106], [107]. In terms of

posture, the actuators are not only responsible for the displacement of joints, partic-

ularly the ankle joint, but also the provider of joint stiffness, which has a significant

effect on the stability of the joint. Since the control of any dynamical system depends

on the characteristics of its actuators, probabilistic effects observed in the consecu-

tive biochemical reactions of actin and myosin filaments, i.e., motor proteins driving

the muscle cells, are likely to manifest themselves at the macrostates of quiet stance,

which can only be understood with a stochastic point of view. So that it is better

to change the understanding from Newtonian determinism to probability theory and

then statistical mechanics, which considers the missing information content, namely

entropy of chemical reactions occurring in the microstates.

Furthermore, the plant, the human body, including ankle joints, knee joints, verte-

brates stacked one on another, etc., imposes multidegrees of freedom and presents
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complex dynamics. Then it serves to an opportunity for many combinations of joint

angles corresponding to the same macro observable in the control of the endpoint

position during the execution of a given task, such as the position of the hand in writ-

ing. Bernstein, the founder of motor control, calls this issue as "Degree of Freedom

Problem", which is the reason behind the redundancy contained in the task. Therefore

again, a probabilistic understanding is suitable for the investigation of the task as the

joint space configurations do not map one-to-one to the endpoint task requirements.

Finally, the nervous system, which is responsible for processing and transferring in-

formation [108] is subject to noise, either in terms of sensory or motor signals acting

simultaneously. Therefore not only the position and velocity estimations are erro-

neous [59], but also it is shown that motor signals that are responsible for the exe-

cution of tasks are subject to noise having a variance proportional to the size of the

control signal [38].

Since any of the elements of the postural control; i.e., sensors having crosstalks, bio-

chemical actuators, plant consisting of multiple degrees of freedom, and the noisy

nervous system has inherent uncertainties, missing information, cross relations, re-

dundancies, and so on, it is impossible to consider the dynamics of quiet stance as

the summation of deterministic variables, yet it is a complex dynamical system in-

volving many distinct segments working in a collective way for the maintenance of

balance during quiet stance under the presence of uncertainties. Therefore a proba-

bilistic understanding equipped with the tools of Shannon’s Information Theory with

an awareness of Statistical mechanics becomes more suitable than the determinis-

tic mechanical approach, where the initial conditions make any deviation from the

calculated path impossible. Rather it is better to leave some room for randomness

at every time interval due to the existence of entropy in time. Besides that, Maurer

and Peterka’s attempt for the assessment of quiet stance with the injection of noise

is also subject to problems that can be seen from their words "however, we tested

the model with different sites of noise injection, and the simulation results were very

similar" [109]. Please note that their model consists of a superposed noise source

with a PID controller as opposed to using it at the core of the dynamics as a driving

factor of the sway, which can easily be associated with biochemically driven stochas-

tic muscles. In other words, it is more suitable to make the noise a part of the story
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rather than direct addition as a disturbance, which is the commonly used method in

posture research. Therefore the proposed model consists of noise as the driving factor

of the sway, either denoted with W 1
t or W 2

t at later stages of the derivation. Then the

rest is the exploitation of the proper constraints by structuring the stochastic differen-

tial equation to mimic the dynamical characteristics of postural sway, especially its

bounded nature, which keeps the subjects away from falling by preserving the CoP

inside the area under foot.

By employing stochastic reasoning, rather than the investigation of any particular mo-

tor execution path or sampled quiet stance time series, the attention can be focused on

probabilistic features of the postural sway, including statistical moments, correlation

function, and power spectrum.

4.2 Heuristic Approach to the Two-Level Dynamics of Postural Sway

Besides the rationales for the probabilistic features of quiet stance mentioned in the

last section, human postural sway is a complex dynamical system by definition, the

whole is more than its segments due to relations between distinct parts like the dy-

namics of sociology as opposed to independent individuals or materials formed by

different types of atoms. Since the postural sway is a reflection of a complex dy-

namical system, its dissection into parts like sensors, actuators, plant, and so on may

lead to misinterpretations, and pure analytical investigation of elements remains in-

complete [108]. With this point of view, the proposed model considers the dynamics

of postural sway as a black box that has an input of gravitational force, and the out-

put is CoPx time series. Still, further improvement of the model is possible, and the

proposed stochastic differential equation is the first step of the deductive approach

that can capture the aspects of mechanistic reasoning and control theory with fur-

ther improvements. Even if a mechanical taste is absent in the stochastic differential

equation written with the tools of stochastic dynamical system theory, the model has

advantages in terms of mimicking the complex outputs, including the randomness of

the sway [110]. While the complex outputs can be noted as search, exploration, and

so on, any of those complex characteristics are trivial to associate with any particu-

lar neuromechanical element mentioned above, even if it is not impossible. There-
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fore those features can be investigated by employing the proposed model involving a

"wholistic approach". Yet it is better to keep in mind that, like any other model, the

proposed form remains incomplete like any other model due to the nature of mathe-

matical modeling; still, further improvements to the model are possible. As long as

any biologically plausible, analytically consistent, and self-contained model provides

opportunities for asking new questions, they are worth paying attention even if they

are not complete.

An important characteristic of postural sway is its nature consisting of two super-

posed oscillations at different frequencies that are visually observed by Begbie first

and later by Arnbald, as discussed before. Similar to other complex outputs, it is

challenging to associate them with any of the neuromechanical elements [1]. Yet

those two processes can be assessed with the proposed system of stochastic differ-

ential equations denoted as (dXt, dθt) with a spatio-temporal perspective. Therefore

the proposed model discusses physiological aspects of quiet stance including two

levels [40], namely "conservative and operative levels" proposed by Gurfinkel [63],

Feldman λ-threshold theory [5], Hogan’s virtual trajectory [64], and rambling trem-

bling decomposition of Zatsiorsky [2].

Firstly Gurfinkel constructs an experimental setup that induces superslow platform

tilts to the subjects. In this way, due to imposed small velocities, even if the in-

herent reflex loops are not activated, higher levels are selectively addressed that are

associated with the conservative level. Then it is shown that gravity vertical is not

the absolute reference for orthograde posture, but the stabilization of equilibrium is

maintained around a position prescribed by the second level that is slowly and con-

tinuously updated in time. In other words, Gurfinkel asserts that while the upper level

is responsible for the determination of muscle activities, the lower level is respon-

sible for providing stability around it corresponding to the equilibrium point. Yet

those two levels, namely conservative and operative, are not associated with a sin-

gle sensory input, but it is the complex output of "multiple sources", as mentioned by

Gurfinkel himself [63]. While posture is following a set of dynamical points provided

by conservative level rather than absolute gravitational vertical, Gurfinkel observes

two superposed oscillations at different amplitudes and frequencies, and the one hav-

ing a greater period and amplitude is associated with the conservative level of control
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providing the equilibrium point at any instant. Following the idea in the proposed

model, rather than the absolute equilibrium point located at zero for all the time, at

any instant, θt represents the instant equilibrium point. Furthermore, the stability

of either the absolute equilibrium point around zero or the instant equilibrium point

around θt can be determined according to the signs of positive definite λ and κ system

parameters, which are the eigenvalues of the proposed stochastic dynamical system,

see Appendix D. This phenomenon is named "mean reversion" in the terminology of

stochastic calculus.

Secondly, the proposed process reminds the Feldman equilibrium point theory, in

which the trajectories are pulled toward θt at any instant. As explained before, the

Feldman equilibrium point is the complex output of the nervous system due to the

neural command to execute the voluntary motion. If the equilibrium point is to be

kept constant (static equilibrium) in time, then the current equilibrium needs to be

stabilized. Otherwise, when the body is forced to move, the current equilibrium point

is destabilized to shift the body toward the desired direction, which is the generation

of the movement explained from a dynamical perspective by Feldman [5]. While

the former case, namely static equilibrium, is mimicked with the proposed system

of stochastic differential equations, the latter one depending on the stability condi-

tion of the equilibrium point, has not been simulated yet with the current state of the

mathematical model. The dynamic extension of the Feldman equilibrium point can

be read from Hogan’s article [64] as well. He defines the "virtual trajectory" from

a Feldmanian perspective. Hogan employs the tools of the calculus of variations for

the construction of the virtual trajectory, which is defined as the path that would be

followed by the limb in the absence of damping, inertia, and any external forces [73].

Therefore the position of the limb can be considered as a sluggish response of the

limb to the continuously updated virtual trajectory. Since the proposed λ is the ratio

between stiffness and damping k/b with a Langevin sense, the absence of damping

b = 0 is nothing but an infinite λ which sticks the process Xt onto θt, in the absence

of inertial term Ẍt = 0 and σ1 = 0 that vanishes the disturbance of Xt away from

θt in any direction which is similar to the absence of external forces mentioned by

Hogan. Therefore either in Feldman’s or Hogan’s perspective built onto Feldman’s

approach, the limb is kept closed around, i.e., pulled toward, a virtual trajectory de-
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termined by higher levels of the central nervous system where the effector is a single

muscle or multiple neuromuscular elements. Furthermore, Feldman asserts that the

revealed kinematic information of the limb is with respect to the current equilibrium

point specified by the brain in terms of a deviation from it rather than the absolute po-

sition [5]. In fact, the proposed model involves a lumped correction term −λ(Xt−θt)
without underpinning the physiological mechanisms.

Thirdly, Zatsiorsky assesses two superposed oscillations with the rambling and trem-

bling decomposition method [1], [2] that is the most relevant understanding to com-

pare with the proposed stochastic differential equations where rambling and trembling

are linked to θt and Xt − θt respectively. In the scheme provided by Zatsiorsky, the

rambling trajectory is determined by the application of cubic splines to the CoP time

series for smoothening, later used for detrending the CoP signal to extract the trem-

bling trajectory. Even if the employment of cubic splines requires a set of points

where rambling and CoP intersect, which is experimentally determined by the in-

stants that the horizontal force equilibrium is satisfied, the proposed model can not

argue it as long as it does not involve a mechanical taste and is completely indepen-

dent of mechanistic reasons causing the sway. Still, both approaches involve two

superposed oscillations that are consistent in terms of respective time scales (fre-

quencies) and variances, where rambling has a variance almost three times greater

than trembling trajectory [2]. Furthermore, the differentiation of time scales is possi-

ble with the time constants of e−λt and e−κt forming the double exponential relation

in the correlation function as shown in Equation 3.16. At the desired range of pa-

rameters λ >> κ, almost one to eight, [53], [29] either the ratio of variances or the

exponential decay rates of respective correlations become visible by the utilization of

stochastic analysis.

Another issue related to the frequency content of either process is the smoothness

that is worth attention. Although the smoothness of rambling is referred in the second

chapter, it is crucial to recall that the rambling trajectory is much smoother than both

the trembling and CoP , according to Zatsiorsky. On the other hand, the proposed

process θt has more jitters than Xt that represents CoPx. While Zatsiorsky calls

smoothening of CoP as rambling, exponential smoothening of θt is called CoP in

the aforementioned stochastic model. Even if it is possible to make θt smoother via
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using a band-limited White noise W 2
t , then the dissertation would lose the capability

of explicitly showing the relation between the two time constants κ, λ and jittering

shown in Equation 3.16. In the proposed model, the slower decay in correlation

function and power spectrum is associated with κ, while the faster frequencies are

dictated by λ. Therefore θt dynamics govern the long-term behavior ofXt resembling

equilibrium point rambling in CoPx. Also, faster frequencies in CoPx (named as

tremble by Zatsiorsky) were simulated by λ in the model.

A further implication of rambling trembling decomposition can be seen from Fig-

ure 2.4 and Figure 2.3 where multiple stable equilibrium points of rambling are ob-

served as opposed to a definite unipolar appearance of trembling. The unipolar struc-

ture of trembling can be associated with the term −λ(Xt−θt), linear mean reversion.

Similarly, CoP definitely has at least two stable points that are also stressed out and

experimentally validated by Lee [70]. As long as the understanding is probabilistic

through the model, the number of stable points manifest themselves as multimodal-

ity rather than Gaussian unimodality. While trembling has one pole that is linked to

−λ(Xt−θt), the multipolar structure is imposed to the stochastic differential equation

in Equation 3.21 using a third order polynomial rθt−θ3t that has two symmetric stable

points and modes at ±
√
r together with an unstable fixed point at zero which corre-

sponds to the local minimum of the probability density function, see Figure 3.8. As

long as the roots are located symmetrically at ±
√
r, the model does not consider the

back-and-forth asymmetry seen in postural sway. Therefore rambling trembling de-

composition and the proposed model (Xt, θt) are neither similar to a pendular motion

around a fixed point nor a free drift inside the margins of stability, as explained before

in the second chapter. Because the inverted pendulum motion consists of at least one

unstable equilibrium point similar to the model involving third-order polynomial [24],

Zatsiorsky’s rambling trembling decomposition and the proposed stochastic model

coincide, although they involve multiple equilibrium points, which are all stable.

In the posture literature, the closest understanding to the proposed model can be seen

in the study of Dijkstra, which depends on the following differential equation [111].
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ẍ+ αxẋ+ ω2
0(x− u) +

√
Qxξt = cx(ṡ− ẋ) (4.1)

u̇+ αuu+
√
Quξt = cu(s− u) (4.2)

The equation introduced by Dijkstra can easily be compared with the proposed stochas-

tic differential equation. Besides that, the provided relation is in Langevin form, the

differentiation of both sides of the proposed stochastic differential equation yields a

similar form. At a first glance,
√
Qx and

√
Qu scales the variances of white noise as

σ1 and σ2 does to dW 1
t

dt
and dW 2

t

dt
respectively. Dijkstra uses a single Wiener process for

either x and u although the proposed model involves two distinct Wiener processes

W 1
t and W 2

t that are related with ⟨W 1
t W

2
t ⟩ = ρt. If ρ = 1 is selected, two Wiener

process becomes the same, and the proposed relation reduces to Dijkstra’s relation.

However, in the proposed model, the effects of ρ were not discussed even if the solu-

tion is provided in the Appendix E, but it is selected as ρ = 0, which implies that W 1
t

is independent of W 2
t .

The second distinction is the existence of a second order time derivative of Xt that

is denoted by ẍ in Dijkstra’s equation, pointing to the mass effect. This makes the

solution of the stochastic differential equation possible to oscillate rather than an ex-

ponential decay only. Two models can be compared with Akaike Information crite-

ria [112], [113], which quantifies how well data is explained by the addition of the

new term. In this particular case, Akaike Information criteria can be employed to see

whether consideration of the mass effect contributes to expressing the model from

a much more entropic point of view. The last distinction is the existence of nonho-

mogenous part denoted by cx(ṡ − ẋ) and cu(s − u) written at the right hand side of

Dijkstra’s equation that is missing in the proposed model. Since Dijkstra investigates

the postural sway under the existence of moving visual scene and somatosensory in-

put, the effects are imposed to the relation with those additional terms where x and u

are coupled to the input in terms of velocity and position, respectively. On the other

hand, quiet stance does not involve a varying visual scene, so those terms have to

be selected zero for our particular case where the dynamics are driven by the noise.

Similarly, Dijkstra explains cx = cu = 0 as the case where the input is absent, i.e.,

eyes are closed. Besides the distinctions, αx, and αu are akin to λ, and κ, respectively.
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Another point that is asserted by Dijkstra that is also captured with the proposed

stochastic differential equation is the existence of two distinct time scales. Those

time scales can be seen from the covariance function ⟨XtXs⟩ in Equation 3.16 that

has a double exponential form. While λ that is greater than κ determines the behavior

at higher frequencies, κ rules the behavior at longer periods, as discussed in the first

paragraph of this section. Besides, this behavior is apparent in Figures 3.5, 3.6 and 3.7

provided in Chapter 3, Collins [29] associates those two time scales with persistence

and anti-persistance dynamical characteristics of open-loop and closed-loop control,

respectively. Two distinct processes are further scaled by their own σi ("average ac-

tivity of stochastic process") and are employed for the evaluation of the power carried

by open loop and closed loop control mechanisms referring to multiscale fractional

Brownian motion [114], [115].

Before going further, it is better to stress that Gurfinkel’s operative and conservative

levels, Feldman’s equilibrium point with Hogan’s virtual trajectory, Zatsiosky’s ram-

bling trembling decomposition, and the proposed stochastic differential equations are

all similar in spirit involving "dualities" even though the neuromechanical sources

and the reasons of the everlasting postural oscillations are different.

4.3 Concluding Remarks

Throughout the thesis, a stochastic differential equation representing the dynamics of

postural sway in terms of its complex output CoPx is defined step by step with phys-

iological reasoning. In the beginning, the zeroth step was somehow trivial as it corre-

sponds to a zeroth order differential equation which does not allow the "accumulation

of surprise", so the necessity of at least a first-order differential equation is stressed.

Still, the Gaussian distribution of velocities is visually validated with Q-Q plots later

used for decision makings, i.e., displacements, represented with driving noise dWt.

Therefore in the first step, σdWt is integrated, yet it is then seen that the variance of

the process increased unboundedly in time due to the absence of proper constraint.

Since it is impossible for CoPx to diffuse unboundedly, the simplest constraint, lin-

ear mean reversion, is imposed, which ends up with the Ornstein Uhlenbeck process,

which is also called the Langevin equation. By considering neurophysiological motor
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control mechanisms, in the following step, the system of stochastic differential equa-

tions denoted by (dXt, dθt) are defined. The new set of differential equations differs

from the Ornstein Uhlenbeck process proposed at the former step in terms of fluctu-

ations around θt trajectory rather than oscillating around the baseline at 0. From the

proposed form, thanks to the availability of the analytical solution, the variance ⟨X2
t ⟩

and the covariance functions ⟨XtXs⟩ are employed for further analysis. Besides the

increase of variance due to the additional fluctuations of θt, the covariance function

revealed two distinct time scales related to the time constants of the two exponentials,

κ and λ. In the desired range of parameters λ ≈ 8κ, while fast decay is associated

with λ determining the behavior at smaller periods, κ is responsible for the power at

larger periods as Xt decays to θt faster than the rambling of θt. θt has greater power

at high frequencies due to the employment of the Wiener process dW 2
t that carries in-

finite energy and infinite variation because of the power at greater frequencies. Even

though the employment of the Wiener process is physically implausible, band-limited

noise was not used for smoothing the θt trajectory for analytical reasoning. On the

other hand, in the last step, a cubic nonlinearity is imposed on θt to asses the multi-

modal appearance of CoPx, which is derived from the normally distributed velocities

that were visually validated by Q-Q plots.

Lastly, the answer to the question "What is the dice ruling the sway?" was explored

through the proposed model with a spatio-temporal perspective involving Markovnian

randomness at every integration step constrained by an elastic element. The elas-

tic constraint imposed determinism in time to the particular path of the sway while

throwing the dice at every displacement of the path imposed spatial variation to the

ensemble of many paths of never lasting postural sway. While the former element

points to the fate of a particle, the latter refers to the determinism in the probability

distribution, estimated by ⟨XtXu⟩ and ⟨X2
t ⟩, respectively.
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Appendix A

Q-Q PLOTS

A.1 Q-Qplots

Q-Q plots are used to show whether the sampled data is distributed normal or not

by visual inspection. Q-Q plots are obtained by plotting quartiles of data with re-

spect to the quartiles of Gaussian distribution derived from its probability distribution

function. In other words, it is not a quantitative summary statistic that makes one

able to compare the normality with further statistical tests, but the associated statis-

tical method is called the "Kolmogorov Smirnoff test". For a deeper understanding

of Q-Q plots, four data sets are generated from uniform(0, 1), N (0, 1), N (1, 2) and

exponential with λ = 1 (s.t. p(x) = λe−λx) are provided below.

Figure A.1: Q-Q plots of Data Generated from Different Distributions

Top Left: Uniform(0,1), Top Right: N(0,1), Bottom Left: N(1,2), Bottom Right:

Exp(1)
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While the plot in the upper left corner shows the Q-Q plot of uniform distribution, it

is a sigmoid that coincides with the cumulative distribution of Gaussian distribution.

The ones at the top right and bottom left are the plots of random numbers sampled

from normal distribution with different means and variances, so each appeared linear

as the quartiles of data matched with the normal distribution. Still, the behavior at

the tails is not good enough due to an insufficient sample size that is selected to

be 100.000. Finally, the bottom right figure shows the Q-Q plot of exponentially

distributed sampled data, and it has no linear appearance.

Besides that, checking the normality of data is essential for modeling since the devi-

ations from normality may end up with significant misinterpretation of the data.

A.2 White Noise

Throughout the dissertation, white noise takes Gaussian distributed values in discrete

times with specified mean and variance. In the scope of the thesis, the mean is selected

to be zero in the absence of bias, and the unit standard deviation is scaled with a

constant σ > 0. Therefore the histogram of white noise appears to be distributed

normal, and it looks linear in the Q-Q plot. A sample path generated with Matlab is

provided below for the visualization of the white noise process.

Figure A.2: A Sample Path of White Noise

One of the most critical aspects of white noise is that it has constant power among all

frequencies by definition. In other words, the power spectrum in the Fourier domain
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does not decay at greater frequencies which is directly proportional to the square

of frequency according to E = 1
2
Iω2 where I is the moment of inertia. Therefore

one can say that white noise carries equal and finite power at all frequencies, and

it is physically not plausible as it requires an infinite amount of energy. The same

presents itself in the Wiener process Wt, too, as it has infinite variation in any finite

time interval according to lim∆t→0
∆t√
∆t

→ ∞, which necessitates an infinite amount

of energy.
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Appendix B

INVERTED PENDULUM

Since the rambling trembling analysis heavily depends on the instant equilibrium

of horizontal forces
∑
Fhor = 0 [90], [1], [2], [75], [89], the models proposed by

Winter [88], [6], together with the thought experiment about holding a pen at the tip

of the finger, are related to classical mechanics, it is inevitable to use a mathematical

model involving an inverted pendulum which covers the issue. Also, by using a single

inverted pendulum, one may understand the control of the posture easier with keeping

the plant as simple as possible. In this way, the attention can be focused on the other

aspects of the control scheme involving sensors, actuators, etc. Besides those, the

discussion throughout the dissertation can be improved to have a mechanical taste

since the thesis only considers the stochastic characteristics of the dynamical output

of the complex system without mentioning control theory and classical mechanics.

Therefore, the further understanding of the control of the pendulum has a central

position for future work. After that, like any other mechanical problem, the first step

is drawing the free body diagram by separating it into two as the foot and the body

represented by a single inverted pendulum with a mass m at the tip of the pendulum

with length l. Furthermore, the angular displacement from the absolute verticle is

defined as θ, and the control torque at the ankle joint is denoted as Ta as shown in

Figure B.1.

The first thing to notice in the free body diagram is that the discussion is restricted

to the anteroposterior direction, back-and-forth, which is inherently unstable. In this

plane, the sagittal plane, the inverted pendulum is an open kinematic chain. However,

in the mediolateral direction, frontal plane, the structure is a closed kinematic chain,

a four-bar linkage, which is stable. Yet the discussion is restricted to R1 in forth-and-

back for the sake of simplicity, so only CoPx and CoMx are going to be analyzed.
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Figure B.1: Free Body Diagram

According to the provided inverted pendulum, the mass oscillates around an unstable

fixed point at θ = 0 without leaving the confined area spanned by the foot compar-

atively small to the height of the center of mass elevated almost one meter from the

ground. While even an infinitesimal deviation from θ = 0 induces further accelera-

tion in either direction, on the contrary, the torque generated by the muscles around

the ankle joint, Tc in the opposite direction, keeps the θ at moderate values close to

zero. By keeping in mind that CoMx spans one or two centimeters in anteroposterior

directions, one can see that θ is on the order of one degree such that sinθ = x/l which

makes the local linearization (small angle approximation) of sinθ ≈ θ possible. By

considering the inverted pendulum provided in Figure B.1 and the control torque Tc

defined, one can write down the following relation according to the moment around

the ankle joint.

−Tc +mglsinθ =
(
IG +ml2

)
θ̈ (B.1)
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While the control torque Tc and the torque induced by gravity due to weight mg with

a moment arm lsinθ is presented on the left-hand side of the equation, the right-hand

side involves the angular acceleration multiplied with the superposition of moment of

inertia and additional rotation with respect to the ankle joint according to the "parallel

axis theorem". As IG represents the moment of inertia of distributed mass m, the

additional term ml2 represents the effect of rotation around the ankle joint, so that

Ia := IG + ml2 can be defined around the ankle joint. Then the next step is the

supposition of a proper form for control torque Tc around the ankle joint. In this

respect, one of the most straightforward supposition is Tc = ktθ + btθ̇, involving two

terms that consider torsional spring to keep the θ at relatively small values around

zero, together with a parallel connected torsional damper representing the actuator

viscosity spanning the joint. By substituting the supposed relatively simple Tc, one

can find the following relation governing the temporal evolution of sway (equation of

motion) in terms of angular displacement θ.

−ktθ − btθ̇ +mglsinθ =
(
IG +ml2

)
θ̈ (B.2)

It is already mentioned that θ is not only bounded by the area spanned by foot, but it

takes relatively small values in time, so the linearization of θ around zero is possible

sinθ ≈ θ for the simplification of the relation, namely small angle approximation.

Then the following equation can be written in terms of some constants and two vari-

ables involving angular position θ and its time rate of change θ, angular velocity

denoted by θ̇.

(IG +ml2)︸ ︷︷ ︸
IA

θ̈ + btθ̇ + (kt −mgl)θ = 0 (B.3)

According to Equation B.3, finding the roots is descriptive, whether they are complex

or real, to understand the characteristics of the type of damping that is possible to

be underdamped, overdamped, or critically damped Since the everlasting dynamics

of postural sway is oscillatory, the nonoscillatory response is out of question [116].

Then ∆ = b2 − 4ac, it can be easily shown that b2t − 4IA(kt − mgl) which is the

responsible term for the characteristics of roots to be complex. This implies that
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the sign of kt − mgl and the magnitude of bt [104] are the critical terms that can

be controlled. In this way, the critical value of kt with respect to the rest can be

determined, which makes the roots complex for assessing postural sway, and it is

named critical ankle stiffness.

Besides the moment equilibrium around ankle ΣMA, equality of forces under dy-

namic conditions in either direction is also necessary so that the related equations

around the ankle joint are provided below according to tangential and radial acceler-

ations.

a⃗tot = (r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ =⇒ (B.4a)

ΣFx : −Ax = mlθ̈cosθ −mlθ̇sinθ (B.4b)

ΣFy : Ay −mg = −mlθ̈sinθ −mlθ̇2cosθ (B.4c)

Please keep in mind that ṙ = r̈ = 0 as the length of the pendulum carrying the

mass at the tip is held constant, and the local linearization around θ ≈ 0 (small

angle approximation) is always valid throughout the Appendix. Therefore the term

involving sinθ ≈ 0 in Equation B.4. Furthermore, under static conditions, force

equalities can be written as follows for the foot in Figure B.1.

ΣFx = 0 : Ax = µsGRF (B.5a)

ΣFy = 0 : Ay = GRF = mg := W (B.5b)

ΣMA = 0 : −Tc + CoPxGRF = 0 =⇒ Tc = CoPxW (B.5c)

While the first subequation represents that the force at the ankle is equal to static

friction with a coefficient of friction is µs, the second equation dictates the equilib-

rium between GRF , ground reaction force, and mg. Furthermore, the last relation

is written according to the moment around the ankle joint for the foot, and it is the

only relation involving CoPx, which is the temporal variable under interest through-

out the dissertation. Moreover, for the calculation of ΣMA, the horizontal frictions

are neglected as its moment arm is too short, the height of the ankle joint is so close
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to the ground, and the frictional forces are very small. Still, it is better to keep in

mind that any human can not stand on a piece of perfect ice without friction, µs = 0,

due to the fact that even an infinitesimal small θ̇ leads to falling down according to

Equation B.4 and B.5. On the other hand, almost surely, never-ending postural sway

P (θ̇(t) ̸= 0) = 1 can be carried on under the presence of friction. In other words, if

θ̇ ̸= 0, friction forces are necessary for the force equilibrium in x direction.

Please note that geometrically lsinθ := CoMx, and employing it together with Equa-

tion B.5c to substitute into Equation B.3, it is possible to write down the following

equation without considering the damping term.

−Tc +mglsinθ = −Tc +mgCoMx = mgCoPx −mgCoMx = IAθ̈ (B.6)

By keeping in mind that GRF = mg = W , the final division of both sides with mg

yields the following relation. Please note that after linearization θ = CoMx/l implies

θ̈ = ¨CoMx/l.

(CoMx − CoPx) = − IA
mg

θ̈ ≈ − IA
mgl

¨CoMx (B.7)

This equation is nothing but the relation used by Winter [6] to determine the linear

correlation between lθ̈ ≈ ¨CoMx and the moment arm CoMx − CoPx. Therefore

one can say that CoPx controls CoMx by oscillating either side of it [82]. According

to the sign of CoMx − CoPx, the convexity of CoMx (i.e., the second derivative

with respect to time, ¨CoMx) must be reversed to keep the subject away from falling.

Figure B.2 clearly shows the inverse relation between the direction of the difference

between CoPx and CoMx and convexity around that instant. Therefore Winter [88]

shows that the linear correlation
〈
(CoMx − CoPx) ¨CoMx

〉
is between −0.96 and

−0.99, which is employed for the validation of the single degree of freedom inverted

pendulum model.
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Figure B.2: Time Series of CoPx and CoMx Retrieved from Winter [6]

Besides Winter, the instant equilibrium points of rambling trembling are the loca-

tions of CoPx at any instant where ΣFx = 0, which is nothing but the equilib-

rium of forces in the related directions. According to the aforementioned inverted

pendulum model Equations B.5a and B.4b, at any instant where
∑
Fx = 0, Zat-

siorsky defines the corresponding position of the CoM as an instantaneous equilib-

rium point [89], [90], [75]. Therefore we can say that equilibrium is instantly main-

tained when the moment arm is instantly zero CoMx −CoPx = 0, see Equation B.7.

So that Zatsiorsky [2] estimates the location of CoMx according to Newton’s second

law by using the following relation involving two initial conditions.

CoMx(t) = CoM(0) + ˙CoMx(0)t+

∫ t

0

∫ s

0

Fx(u)

m
duds (B.8)

Equation B.8 estimates the location of CoMx(t) from the measurements of force

plate Fx from one instant equilibrium point to the next as Fx = max at any instant

t. CoM trajectory estimated in between two equilibrium points [89] can be linked to

the rambling trajectory [2]. In this respect, the same method can be employed for the

estimation ofCoM trajectory in the absence ofCoM recordings [117]. In conclusion,

the CoM trajectory manifests itself as the smoothened version of the CoP signal in

all aforementioned posture models.
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Appendix C

ORNSTEIN UHLENBECK PROCESS

C.1 Ito Isometry Property

Before solving the stochastic differential equation representing the Ornstein Uhlen-

beck process, it is better to state the Ito Isometry property, which will be used in

Appendix C and Appendix D frequently for the calculation of variance and covari-

ance function.

〈(∫ T

0

f(t,Xt)dWt

)2
〉

=

∫ T

0

f 2(t,Xt)dt (C.1)

Equation C.1 asserts that the second moment of an integral with respect to the Wiener

process boils down to a deterministic time integral of the squared function. It can be

shown by the discretization of the integral as follows.

〈(∫ T

0

f(t,Xt)dWt

)2
〉

= lim
N→∞

〈(
N∑
i=1

f(ti, Xti)∆Wti

)2〉
(C.2)

After that, the square of the terms of the series can be multiplied by employing a new

index j as shown.

〈(∫ T

0

f(t,Xt)dWt

)2
〉

= lim
N→∞

〈(
N∑
i=1

f(ti, Xti)∆Wti

)(
N∑
j=1

f(tj, Xtj)∆Wtj

)〉
(C.3)

At this point, it is better to note that the Wiener process has Markov property which

97



means one-step memory. Therefore the steps in the mutually disjoint time intervals

are independent such that
〈
∆Wti∆Wtj

〉
= 0 if i ̸= j and

〈
∆Wti∆Wtj

〉
= ∆t if

i = j. So that all of the cross terms in the summation vanishes, and the equation

yields the following form involving the square of each term.

lim
N→∞

〈(
N∑
i=1

f(ti, Xti)∆Wti

)(
N∑
j=1

f(tj, Xtj)∆Wtj

)〉
= lim

N→∞

〈
N∑
i=1

f 2(ti, Xti) (∆Wti)
2

〉
(C.4)

It is possible to change the order of summation and expectation by exploiting the

linearity of expectation. Furthermore, f 2(tiXti) can be taken outside the expectation

since it is deterministic. In this way, the following relation can be obtained.

lim
N→∞

〈
N∑
i=1

f 2(ti, Xti) (∆Wti)
2

〉
= lim

N→∞

N∑
i=1

f 2(ti, Xti)
〈
(∆Wti)

2〉 (C.5)

As a final step, the term inside the expectation is the variance of the increments of

the Wiener process, and it is known that
〈
(∆Wti)

2〉 = ∆t. Accordingly, the discrete

summation can be converted back to the time integral to reach the statement of Ito

Isometry Property in Equation C.1.

lim
N→∞

N∑
i=1

f 2(ti, Xti)
〈
(∆Wti)

2〉 = lim
N→∞

N∑
i=1

f 2(ti, Xti)∆t =

∫ T

0

f 2(t,Xt)dt (C.6)

C.2 Analysis of Ornstein Uhlenbeck Process

By keeping in mind the sketch of the proof of the Ito Isometry property that will be

used for later calculations, we can start to solve the stochastic differential equation

provided below.

dXt = −λXtdt+ σdWt (C.7)

98



Before solving the differential equation, it may be beneficial for a reader to see the

differential equation in discrete form for interpretation.

∆Xt = −λXt∆t+ σ∆Wt︸ ︷︷ ︸
σ(∆t)1/2N(0,1)

(C.8)

In the discrete form, the probabilistic decision at every time interval ∆t becomes ap-

parent. While the probabilistic part characterized by standard deviation is the second

term which is absent in deterministic calculus, the first term is the deterministic con-

straint. For the second term, positive constant σ scales the variance at any single ∆t.

Therefore the increasing standard deviation can be seen as
√
∆tN(0, 1) analogous to

a dice thrown at every ∆t for the decision-making of the next step. In the absence

of the first term, the summation of discrete steps ends up with a linear increment of

variance as time passes. Evergrowing variance in time can be interpreted as "accumu-

lation of chance" and entropy where the paths are diverging from the initial position

according to linearly increasing variance, as shown in Figure 3.3. On the other hand,

the first term with λ > 0 restricts the increment of variance to a constant finite value

that is independent of time. Due to the presence of −λXt∆t, any path diverging to

the positive side at any instant Xt > 0 pulled back toward the long-term mean zero as

−λXt∆t < 0. Similarly, the paths diverging in the negative direction are also pulled

toward zero due to the positive sign of −λXt∆t > 0. Since the mean reversion is only

a function of Xt, the process remains to have one-step memory, the Markov property,

and λ > 0 determines the rate of linear mean reversion. In other words, the first term

−λXt∆t is the linear constraint that makes the decision biased toward zero according

to their current value Xt. According to the dice analogy constraint imposed through

the first moment of displacements as N(−λXt∆t, σ
2∆t).

In this point of view, considering the phase space where the position is considered

with respect to displacements, the Ornstein Uhlenbeck process can also be interpreted

as a search of the line that has a slope −λ and horizontal intercept at zero. For

any position, Xt > 0, the decisions gain bias toward the intercept (zero), and for

Xt < 0 same magnitude bias is observed toward the long-term mean again. Therefore

Ornstein Uhlenbeck can be interpreted as the noise driven search of the line ẋ = −λx.

In this perspective, Ornstein Uhlenbeck process can be understood as similar to a
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parallel connected spring and damper driven by Gaussian noise, which is named the

Fokker Plank equation in the physics literature. Therefore mean reversion rate λ is

nothing different than ratio of stiffness to damping k/b which can be determined by

differentiation of both sides of Equation C.7 with respect to time as ẋ = −k/bx+σBt.

After the interpretation, as the first step of the solution, λXtdt must be added to

both sides. Consecutively, the right-hand side only involves the nonhomogenous part,

which is particularly the Wiener process scaled with constant σ > 0.

dXt + λXtdt = σdWt (C.9)

Then the next step is the multiplication of both sides with the integrating factor eλt as

shown.

eλtdXt + eλtλXtdt = eλtσdWt (C.10)

After that, anyone can deduce the next relation as usual by observation.

d
(
eλtXt

)
= eλtσdWt (C.11)

By using Equation C.11, the integral can be computed from 0 to t by employing a

dummy variable s for integration.

∫ t

0

d
(
eλsXs

)
=

∫ t

0

eλsσdWs (C.12)

Even if it is possible to compute the integral on the left-hand side, the integral on the

right must be left as it is, which will be crucial for the interpretation of the solution.

eλtXt −X0 =

∫ t

0

eλsσdWs (C.13)

The addition of the initial condition X0 to both sides and a multiplication with con-

stant e−λt yields the solution of the Ornstein Uhlenbeck process.
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Xt = X0e
−λt + σe−λt

∫ t

0

eλsdWs (C.14)

Another representation of the solution is given below, which frequently appears in

textbooks and articles. Please note that e−λt is constant, therefore, the exponentials

can be fused together.

Xt = X0e
−λt + σ

∫ t

0

e−λ(t−s)dWs (C.15)

Whether the solution is represented as Equation C.14 or Equation C.15 the integrand

requires attention. Contrary to an ordinary diffusion equation Xt = σWt, the inte-

grand behaves as an exponential time window which determines the respective effects

of ∆Wi in "distant past" and "recent past". Particularly for the Ornstein Uhlenbeck

process, the constraint imposed from the first term in differential form reveals itself

in the integrated, furthermore effect of the time window reveals itself in the correla-

tion function that will be shown in Equation C.31. In this way, integrated respective

influences according to eλs are normalized with e−λt, which is outside the integral in

Equation C.14. In this way, the variance can be kept bounded for large t.

Besides the exponential time window in the solution of Ornstein Uhlenbeck, another

time window (t − s)H−1/2 is the integrand in fractional Brownian motion in which

the steps are dependent on time accordingly. Contrary to exponential form, power

law f(x) = xα fractal structure of diffusion can be modified with the generalization

of Hurst exponent H . [96] Even if it is out of scope for the dissertation, it is better

for the reader to keep in mind that through the integrand, time dependence can be

imposed on the model.

After finding the solution, the first and second moments have to be calculated as Xt is

distributed Gaussian, and its distribution can be completely characterized by the first

and second moments.

Calculation of the first moment does not involve any steps as ⟨∆Ws⟩ = 0 by defi-

nition. For further information, please refer to Shreve Theorem 11.4.5 [95] related

to integrations with respect to martingales. Intuitively, as long as all < ∆Ws >= 0,
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then by changing the order of summation and expectation, one can find that the first

moment is zero.

⟨Xt⟩ = 0 (C.16)

For the calculation of the second moment, the Ito isometry property derived in Sec-

tion C.1 should be used. Firstly start by taking the squares and expectations of both

sides of the solution presented in Equation C.14.

〈
X2

t

〉
=
(
X0e

−λt
)2

+

〈(
σe−λt

∫ t

0

eλsdWs

)2
〉

(C.17)

The first term involving initial condition X0 is taken outside the expectation as it

is deterministic. Furthermore one can take
(
σe−λt

)2 outside the expectation as it is

deterministic too.

〈
X2

t

〉
=
(
X0e

−λt
)2

+
(
σe−λt

)2〈(∫ t

0

eλsdWs

)2
〉

(C.18)

Then Ito Isometry property is applicable for the part inside the expectation as shown in

Equation C.1. Therefore the relation reduces into the following simple deterministic

form involving integration with respect to time. Please note that even if the process is

random, the moments are still deterministic which can be seen explicitly in this step.

〈
X2

t

〉
= X2

0e
−2λt + σ2e−2λt

∫ t

0

e2λsds (C.19)

Then the definite integral with an exponential integrand can be computed as usual to

find the next relation.

〈
X2

t

〉
= X2

0e
−2λt + σ2e−2λt 1

2λ

(
e2λt − 1

)
(C.20)

After that, for a better form e−2λt must be distributed into the paranthesis to differen-

tiate the term decaying to zero from the remaining constant value.
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〈
X2

t

〉
= X2

0e
−2λt +

σ2

2λ

(
1− e−2λt

)
(C.21)

For greater values of time t >> 0, exponential terms decay, and the variance can be

computed as the ratio of σ and λ as follows.

〈
X2

t

〉
=
σ2

2λ
(C.22)

Please remind that at the beginning σ is mentioned as the scale of standard deviation

of displacements, so in the variance its squared appeared at the nominator. Further-

more as long as λ is determining the rate of mean reversion it is inversely proportional

to variance of the Ornstein Uhlenbeck process.

In a similar way, covariance function can be computed which is the expectation

⟨XtXu⟩ for some u < t. In addition to variance, "independence of increments in

mutually disjoint time intervals" must be considered for the proof. Then it is bet-

ter to start with the following statement. Please note that for the sake of simplicity,

only the stochastic terms are considered as the deterministic one has nothing to do

with expectation and it will decay for t >> 0 due to the exponential term it is mul-

tiplied with. Also the cross multiplications are zero similar to calculation of mean of

Ornstein Uhlenbeck process, i.e. integration with respect to martingale.

⟨XtXu⟩ =
〈(

σe−λt

∫ t

0

eλsdWs

)(
σe−λu

∫ u

0

eλsdWs

)〉
(C.23)

As a first step, the deterministic exponentials together with constant σ can be taken

outside the expectation.

⟨XtXu⟩ = σ2e−λ(t+u)

〈(∫ t

0

eλsdWs

)(∫ u

0

eλsdWs

)〉
(C.24)

It is already chosen that u < t, so the integral between 0 and t can be written as a

summation of two integrals one is from zero to u and the other one is between u and

t, as shown below.
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⟨XtXu⟩ = σ2e−λ(t+u)

〈(∫ u

0

eλsdWs +

∫ t

u

eλsdWs

)(∫ u

0

eλsdWs

)〉
(C.25)

Applying distributive properties inside the expectation yields the following relation.

⟨XtXu⟩ = σ2e−λ(t+u)

〈(∫ t

u

eλsdWs

)(∫ u

0

eλsdWs

)
+

(∫ u

0

eλsdWs

)2
〉
(C.26)

Then as an intermediate step, due to the linearity of the expectation operator, one can

write the following relation.

⟨XtXu⟩ = σ2e−λ(t+u)

[〈(∫ t

u

eλsdWs

)(∫ u

0

eλsdWs

)〉
+

〈(∫ u

0

eλsdWs

)2
〉]

(C.27)

Please carefully look at the first expectation, which involves the multiplication of

Wiener processes at disjoint time intervals. Since the disjoint intervals are indepen-

dent, the first term must be zero. For the second expectation, the Ito Isometry property

can be applied similarly to the computation of variance. Then the following equation

can be obtained.

⟨XtXu⟩ = σ2e−λ(t+u)

〈(∫ u

0

eλsdWs

)2
〉

= σ2e−λ(t+u)

∫ u

0

e2λsds (C.28)

After that, the rest is the computation of the integral on time as usual.

⟨XtXu⟩ =
σ2

2λ
e−λ(t+u)

(
e2λu − 1

)
(C.29)

Finally, the terms on the left-hand side of the parenthesis can be distributed into sub-

traction, and defining delay as τ := t − u yields the final form of the covariance
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function.

⟨XtXu⟩ =
σ2

2λ
e−λ(t+u) =

σ2

2λ
e−λτ (C.30)

Since the correlation function is the normalization of the covariance with respect to

variances, the correlation function can be found as shown in the next relation, which

is only an exponential decay with delay τ := t− s.

⟨XtXu⟩√
⟨X2

t ⟩ ⟨X2
u⟩

= e−λτ (C.31)

The correlation function found is nothing different than the time window in the inte-

grand of Equation C.15, which was mentioned as the influence of distant and recent

pasts.

Finally, the Fourier transform of the exponential correlation function can be computed

with usual methods, so the Fourier integration is not shown but directly provided in

the next relation.

F {⟨XtXu⟩} (ω) :=
∫ ∞

−∞
e−jωτe−λτdτ =

λ

π (λ2 + ω2)
(C.32)

The relation is named power spectral density, and it shows the partition of variance

among frequencies ω. Therefore the area under power spectral density is variance

⟨X2
t ⟩. Since σ is only the scale of the standard deviation of displacements, as men-

tioned before, it does not affect the shape of power spectral density, i.e., decay rate,

but it only determines the area under the curve. On the other hand, decay in the fre-

quency spectrum is associated with λ. For smaller, the λ decay becomes slower, and

greater power is observed in longer periods, as shown in Figure 3.4. Therefore greater

power in longer periods is visible on the right-hand side of the figure.

Furthermore long term mean of Ornstein Uhlenbeck process can be changed from

zero to other constant values by subtracting Xt from θ as shown in the equation pro-

vided below.
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dXt = −λ(Xt − θ)dt+ σdWt (C.33)

In the equation the new parameter θ shifts the direction of bias without changing the

variance. If θ ̸= 0 then the trajectories diverging away becomes pulled toward θ as the

first term changes sign accordingly Xt < θ or Xt > θ. In phase portrait the change

shifts the intercept of the line from zero to θ with keeping the slope λ constant. Also

the new form appears as the equilibrium point of the spring in Langeving form as

follows.

ẋ+
k

b︸︷︷︸
λ

(x− θ) = σBt︸︷︷︸
d
dt
(σdWt)

(C.34)

Similarly if the equilibrium point of the spring is considered as θ than the dynamics

of x changes as a shift from zero to θ.
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Appendix D

DOUBLE ORNSTEIN UHLENBECK PROCESS

Before solving the system of the stochastic differential equations shown in Equa-

tion 3.13, equations are provided below to keep the reader away from going back and

forth during reading. Besides that, it may be beneficial to read Appendix C related to

the Ornstein Uhlenbeck process since some methods are going to be used in the same

way whenever they are needed.

dXt = −λ(Xt − θt)dt+ σ1dW
1
t (D.1a)

dθt = −κθtdt+ σ2dW
2
t (D.1b)〈

dW 1
t dW

2
t

〉
= ρdt (D.1c)

Before starting to solve, first and second relations can be expressed in matrix form, as

shown below. If anyone employs a Σ2x2 then the third relation can also be considered,

yet ρ = 0 is selected, which makes the nondiagonal elements of variance-covariance

matrix zero, Σi ̸=j = 0.

dXt

dθt

 =

−λ λ

0 −κ

Xt

θt

 dt+
σ1dW 1

t

σ2dW
2
t

 (D.2)

It is also possible to consider the given system of stochastic differential equations

as follows, similar to the stochastic differential equation of the Ornstein Uhlenbeck

process and the corresponding Fokker Plank equation.

˙⃗y = Ay⃗ + Ft ⇐⇒ dy⃗ = Ay⃗dt+ Ftdt (D.3)
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Then the next step is to follow the well-known route to solve Equation D.3, which

involves computation of eigenvalues, eigenvectors, fundamental matrix, and finally,

Green’s function for the nonhomogenous part. Please note that it is similar to the

solution of the Ornstein Uhlenbeck process given below but in vector form.

Xt = X0e
−λt + σe−λt

∫ t

0

eλsdWs (D.4)

Please remind that after determining eigenvalues and eigenvectors, the solution of the

homogenous system of differential equations can be found as x⃗t = ψtc⃗ with some

integration constant vector c⃗. After that, applying the initial condition by substitution

of x⃗0 = ψ0c⃗ and multiplication of both sides with the inverse of ψ−1
0 from left yields

ψ−1
0 x⃗0 = c⃗. Then found c⃗ can be substituted back to determine x⃗t as x⃗t = ψtψ

−1
0 x⃗0

in terms of initial initial conditions. As a final step, the definition ϕt := ψtψ
−1
0 yields

the solution of the homogenous part as given below.

x⃗t = ϕtx⃗0 (D.5)

For the sake of simplicity, further derivation of Green’s function is skipped for the

nonhomogenous part, but anyone can notice the similarities between Equation D.5

and Equation D.4. Besides the first one being scalar and the second one in vector

form, both equations are analogous such that e−λt corresponds to ϕt. Therefore the

solution of Equation D.8 can be written as follows as a function of ϕt and ϕ−1
s similar

to the solution of Ornstein Uhlenbeck process shown in Equation C.14. Still, please

note that matrix multiplication is not commutative.

y⃗ = ϕty⃗0 + ϕt

∫ t

0

ϕ−1
s d⃗F t (D.6)

In order to avoid any kind of confusion, all terms have to be defined one by one.

Firstly the coefficient matrix in the homogenous part is A =

−λ λ

0 −κ

 which

ϕt is computed accordingly, and remind that it is analogous to e−λt in the solution of
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Ornstein Uhlenbeck. Furthermore d⃗F t :=

σ1dW 1
t

σ2dW
2
t

 is going to be integrated with a

Riemann-Stieltjes sense.

After that, the first step is finding the eigenvalues and corresponding eigenvectors

associated with matrix A.

det(A−uI) = 0 =⇒ det

−λ− u λ

0 −κ− u

 = 0 =⇒ u1 = −λ, u2 = −κ

(D.7)

Found eigenvalues give an idea about the stability, and λ, κ > 0 are chosen for the

model. The mean reversion property associated with λ, κ > 0 with the terms of

stochastic calculus also determines the stability since they correspond to the eigenval-

ues. Furthermore, by equating velocities to zero in the absence of second derivatives,

it is possible to find the equilibrium points as follows.

Ẋt

θ̇t

 =

0
0

 =

−λ λ

0 −κ

Xt

θt

+

σ1B1
t

σ2B
2
t

 (D.8)

After taking the expectation of both sides, ⟨σ1B1
t ⟩ = ⟨σ2B2

t ⟩ = 0 vanishes and two

equations, Xt = θt and θt = 0, shows the equilibrium points. While θt = 0 is the

global equilibrium point, Xt = θt for any t shows the instants that the equilibrium is

satisfied. The same can be directly concluded from Equation D.1. Since Xt is pulled

toward θt due to −λ(Xt − θt) and θt is pulled toward zero because of −κ(θt − 0)

those two correspond to different kinds of equilibriums. Once again, please note that

the real equilibrium is at Xt = θt = 0 globally, further Xt = θt is something about

the equilibrium instants in terms of Xt in time.

Then, the next step is the determination of corresponding eigenvectors, as shown

below.

v⃗1 =

1
0

 , v⃗2 =
 λ

λ−κ

1

 (D.9)
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According to eigenvectors and eigenvalues, ψt can be defined as follows.

ψt :=
[
eu1tv⃗1, e

u1tv⃗2
]
=

e−λt λ
λ−κ

e−κt

0 e−κt

 (D.10)

After that, the matrix has to be inverted, which requires det(ψt) = e(λ+κ)t, therefore,

the following matrices can be obtained.

ψ−1
t =

eλt λ
κ−λ

eλt

0 eκt

 =⇒ ψ−1
0 =

1 λ
κ−λ

0 1

 (D.11)

Please be careful about the difference of sign in the denominator involving λ and κ to

avoid wrong calculation. After finding ψt and ψ−1
0 , it is possible to find ϕt as shown

below.

ϕt := ψtψ
−1
0 =

e−λt λ
κ−λ

(
e−λt − e−κt

)
0 e−κt

 (D.12)

Moreover, for the nonhomogenous part, ϕt has to be inverted, which is denoted as

ϕ−1
s with dummy variable s for time, similar to eλs in the solution of the Ornstein

Uhlenbeck process.

ϕ−1
s =

eλs λ
κ−λ

(
eλs − eκs

)
0 eκs

 (D.13)

As everything required for the determination of the solution, Equation D.12 and Equa-

tion D.13 must be substituted into Equation D.6 to solve Equation D.8. The substitu-

tion yields the following relation.
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dXt

dθt

 =

e−λt λ
κ−λ

(
e−λt − e−κt

)
0 e−κt

X0

θ0

+

e−λt λ
κ−λ

(
e−λt − e−κt

)
0 e−κt

∫ t

0

e−κs λ
κ−λ

(
eλs − eκs

)
0 eκs

σ1dW 1
t

σ2dW
2
t

 (D.14)

Finally, the matrix multiplications in Equation D.14 can be handled as usual. Please

note that similar to the Ornstein Uhlenbeck process, the integrals in the nonhomoge-

nous part are left as they are as it is impossible to do so.

Xt = X0e
−λt + θ0

λ

κ− λ

(
e−λt − e−κt

)
+ σ1

∫ t

0

e−λ(t−s)dW 1
s

+ σ2
λ

κ− λ

(∫ t

0

e−λ(t−s)dW 2
s −

∫ t

0

e−κ(t−s)dW 2
s

)
(D.15)

θt = e−κtθ0 + σ2

∫ t

0

e−κ(t−s)dW 2
s (D.16)

Please note that θt is nothing different than an Ornstein Uhlenbeck.

For the rest of the explanations, θt is not going to be considered to find the variance

and covariance since it is already found in the Appendix C in the scope of the Orn-

stein Uhlenbeck process. Moreover, for the determination of ⟨X2
t ⟩ and ⟨XtXs⟩ the

deterministic terms are not going to be considered to keep the calculations short, as

mentioned in Appendix C, so the relation representing Xt is given below by denot-

ing all three integrals with A, B and C. Please note that expectations involving the

deterministic part are zero because after taking deterministic terms out of the expecta-

tion, the remaining part is integral with respect to martingale dWt, which yields zero,

similar to Appendix C.

Xt = σ1

∫ t

0

e−λ(t−s)dW 1
s︸ ︷︷ ︸

A

+σ2
λ

κ− λ

∫ t

0

e−λ(t−s)dW 2
s︸ ︷︷ ︸

B

−
∫ t

0

e−κ(t−s)dW 2
s︸ ︷︷ ︸

C


(D.17)
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It is already given that W 1
t and W 2

t are independent in Equation D.1c as ρ = 0.

While ⟨X2
t ⟩ = ⟨A2⟩ + ⟨B2⟩ + ⟨C2⟩ + 2 ⟨AB⟩ + 2 ⟨BC⟩ + 2 ⟨AC⟩ due to linearity

of expectation, covariances involving A are zero ⟨AB⟩ = ⟨AC⟩ = 0 because of the

independence of W 1
t and W 2

t . Hence we only need the squared terms and 2 ⟨BC⟩.

Furthermore, ⟨A2⟩ is already computed in the Ornstein Uhlenbeck part Appendix C.

Then the required terms can be found as shown below by following the same proce-

dure involving Ito Isometry Property shown in Appendix C.

〈
A2
〉
=
σ2
1

2λ
(D.18a)〈

B2
〉
=

σ2
2

(κ− λ)2
1

2λ
(D.18b)

〈
C2
〉
=

σ2
2

(κ− λ)2
1

2κ
(D.18c)

2 ⟨BC⟩ = − σ2
2

(κ− λ)2
2

λ+ κ
(D.18d)

Summation of calculated terms yields the following relation which is the variance and

the second moment of Xt as the mean is zero.

〈
X2

t

〉
=
σ2
1

2λ
+

σ2
2

(κ− λ)2
1

2λ
+

σ2
2

(κ− λ)2
1

2κ
− σ2

2

(κ− λ)2
2

λ+ κ
(D.19)

Moreover, the variance can be shown in the following form after grouping the terms.

Please remind that exponential terms decayed to zero to find this simple relation for

large t such that t >> 0 as explained in the previous appendix about Ornstein Uh-

lenbeck. Therefore the newly proposed system of stochastic differential equations

has a variance independent of time, in other words, a bounded variance opposed to

unbounded diffusive dynamics of Xt = σdWt.

〈
X2

t

〉
=
σ2
1

2λ
+

(
σ2λ

κ− λ

)2 [
1

2λ
+

1

2κ
− 2

λ+ κ

]
(D.20)

Please remind that if θt was constant, the variance would be σ2
1/2λ, yet due to the

varying equilibrium point θt, the variance is increased, which is the second term in
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Equation D.20. The positive definiteness of the second term can be seen by equating

the denominators as follows.

(
σ2λ

κ− λ

)2 [
1

2λ
+

1

2κ
− 2

λ+ κ

]
=

(
σ2λ

κ− λ

)2
2λκ+ 2κ2 + 2λ2 + 2λκ− 8λκ

4λκ (λ− κ)

=

(
σ2λ

κ− λ

)2
2λ2 + 2κ2 − 4λκ

4λκ (λ− κ)
=

(
σ2λ

κ− λ

)2
λ+ κ

2λκ
> 0 (D.21)

After that, the next step is finding the covariance function for reaching the temporal

correlation structure of the process Xt in time. Therefore the covariance function can

be defined as given below.

⟨XtXu⟩ =<

σ1 ∫ t

0

e−λ(t−s)dW 1
s︸ ︷︷ ︸

At

+σ2
λ

κ− λ

∫ t

0

e−λ(t−s)dW 2
s︸ ︷︷ ︸

Bt

−
∫ t

0

e−κ(t−s)dW 2
s︸ ︷︷ ︸

Ct




σ1 ∫ u

0

e−λ(u−s)dW 1
s︸ ︷︷ ︸

Au

+σ2
λ

κ− λ

∫ u

0

e−λ(u−s)dW 2
s︸ ︷︷ ︸

Bu

−
∫ u

0

e−κ(u−s)dW 2
s︸ ︷︷ ︸

Cu


 >
(D.22)

Similar to determination of the variance, again ⟨AtBu⟩ = ⟨AtCu⟩ = 0 due to inde-

pendence of W 1
t and W 2

t where ρ = 0, so we only need ⟨AtAu⟩, ⟨BtBu⟩, ⟨CtCu⟩
and ⟨BtCu⟩. By following the same procedure of computation of covariance of Orn-

stein Uhlenbeck and the variance found in Equation D.18, one can write the following

relations where τ := t− u is the delay.
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⟨AtAu⟩ =
σ2
1

2λ
e−λτ (D.23a)

⟨BtBu⟩ =
σ2
2

(κ− λ)2
1

2λ
e−λτ (D.23b)

⟨CtCu⟩ =
σ2
2

(κ− λ)2
1

2κ
e−κτ (D.23c)

⟨BtCu⟩ = − σ2
2

(κ− λ)2
1

λ+ κ
e−λτ (D.23d)

⟨BuCt⟩ = − σ2
2

(κ− λ)2
1

λ+ κ
e−κτ (D.23e)

(D.23f)

The summation of found terms yields the covariance of the stochastic process Xt.

⟨XtXu⟩ =
σ2
1

2λ
e−λτ +

σ2
2

(κ− λ)2
1

2λ
e−λτ +

σ2
2

(κ− λ)2
1

2κ
e−κτ

− σ2
2

(κ− λ)2
1

λ+ κ
e−λτ − σ2

2

(κ− λ)2
1

λ+ κ
e−κτ (D.24)

Similar to variance, the terms can be taken into common parenthesis for the simplicity

of the representation. In this way, the double exponential form of the covariance

structure reveals clearly.

⟨XtXu⟩ =

[
σ2
1

2λ
+

(
σ2λ

κ− λ

)2 [
1

2λ
− 1

λ+ κ

]]
e−λτ+

[(
σ2λ

κ− λ

)2 [
1

2κ
− 1

λ+ κ

]]
e−κτ

(D.25)

Compared to the Ornstein Uhlenbeck process, new correlations emerged, decaying

with e−κt. In the desired parameter range, λ ≈ 8κ correlations of new process decay

slower than the correlations associated with λ. Hence the newly defined θt governs

the behavior at lower frequencies.

114



Appendix E

GENERALIZED DOUBLE ORNSTEIN UHLENBECK PROCESS

In this Appendix, the Double Ornstein Uhlenbeck process represented by Equation 3.13

and Equation D.1 is generalized in terms of ρ ∈ [−1, 1], and the associated variances

and covariances are provided below without explanations due to their complicated

appearances.

〈
X2

t

〉
=
σ2
1

2λ
+
λσ1σ2
κ− λ

ρ

(
1

λ
− 2

λ+ κ

)
+

(
λσ2
κ− λ

)2(
1

2λ
+

1

2κ
− 2

λ+ κ

)
(E.1)

⟨XtXu⟩ =

[
σ2
1

2λ
+
λσ1σ2
κ− λ

ρ

(
1

λ
− 1

λ+ κ

)
+

(
σ2λ

κ− λ

)2 [
1

2λ
− 1

λ+ κ

]]
e−λτ+[

−λσ1σ2
κ− λ

ρ
1

λ+ κ
+

(
σ2λ

κ− λ

)2 [
1

2κ
− 1

λ+ κ

]]
e−κt (E.2)

⟨Xtθt⟩ = σ1σ2ρ
1

λ+ κ
+

λσ2
2

κ− λ

(
1

λ+ κ
− 1

2κ

)
(E.3)

⟨Xtθu⟩ = e−λτ

[
σ1σ2ρ

1

λ+ κ
+

λσ2
2

κ− λ

1

λ+ κ

]
+ e−κτ

[
− λσ2

2

κ− λ

1

2κ

]
(E.4)

⟨Xt (Xt − θt)⟩ =
σ2
1

2λ
+
λσ1σ2
κ− λ

ρ

(
1

λ
− 2

λ+ κ

)
+

(
λσ2
κ− λ

)2(
1

2λ
+

1

2κ
− 2

λ+ κ

)
−

σ1σ2ρ
1

λ+ κ
+

λσ2
2

κ− λ

(
1

λ+ κ
− 1

2κ

)
(E.5)
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⟨Xt (Xu − θu)⟩ =
[
σ2
1

2λ
+
λσ1σ2
κ− λ

ρ

(
1

λ
− 1

λ+ κ

)]
e−λτ+[(

σ2λ

κ− λ

)2(
1

2λ
− 1

λ+ κ

)
− σ1σ2ρ

1

λ+ κ
− λσ2

2

κ− λ

1

λ+ κ

]
e−λτ+[

−λσ1σ2
κ− λ

ρ
1

λ+ κ
+

(
σ2λ

κ− λ

)2 [
1

2κ
− 1

λ+ κ

]
+

λσ2
2

κ− λ

1

2κ

]
e−κt (E.6)
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