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Head of Department, Cryptography

Assoc. Prof. Dr. Oğuz Yayla
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ABSTRACT

RANDOM SEQUENCES IN VEHICLE ROUTING PROBLEM

Gülşen, Mehmet Emin

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

September 2022, 47 pages

Vehicle Routing Problem (VRP) is a classical combinatorial optimization and integer
programming problem. The goal of VRP is to find the optimal set of routes to given
set of destination points with a fleet of vehicles. In this thesis, we have focused on the
a variant of VRP which is Capacitated Vehicle Routing Problem (CVRP) and present
two different combination of heuristic algorithms with random projection clustering
technique and also provide comparison of random number generators on Monte Carlo
Simulation to solve CVRP instances with combination of random projection cluster-
ing algorithm. In the first part, we show that the random projection clustering ap-
proach improves the cost compared to the core heuristic solution. In the second part,
we study the choice of the random number generators on simulation based techniques
on CVRP. A Monte Carlo simulation based Clarke and Wright’s Savings (CWS) al-
gorithm implemented and experiments conducted with five different random number
generators. Results have shown the choice of random number generators affects the
performance of the simulation.

Keywords: Monte Carlo simulation, Random number generators, Capacitated vehicle
routing problem, Random projection clustering
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ÖZ

ARAÇ ROTALAMA PROBLEMİNDE RASTGELE DİZİLER

Gülşen, Mehmet Emin

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Eylül 2022, 47 sayfa

Araç Rotalama Problemi, klasik bir kombinatoryal optimizasyon ve tamsayı program-
lama problemidir. Araç Rotalama Probleminde amaç, bir araç filosu ile belirli varış
noktalarına en uygun rota grubunu oluşturmaktır. Bu tezde, Araç Rotalama Problemi-
nin bir çeşidi olan Kapasiteli Araç Rotalama Problemi üzerinde duruldu ve iki farklı
sezgisel algoritmanın, rastgele izdüşümsel ağaç yapısını kullanan bir kümeleme tek-
niği ile birleşimini sunduk ve ayrıca Kapasiteli Araç Rotalama Problemini çözmek
için Monte Carlo Simülasyonu üzerinde rastgele sayı üreteçlerinin karşılaştırmasını
yaptık. Çalışmanın ilk kısmında, rastgele izdüşümsel ağaç yapısının, araç rotalama
problemlerinde kullanılan sezgisel algoritmalarla birleşimi sonucu ortaya çıkan iyi-
leştirmeler gösterildi, İkinci kısımda ise rastgele sayı üreteçlerinin, Monte Carlo si-
mülasyonu ve rastgele izdüşümsel kümelendirme algoritmaları kullanılarak geliştiri-
len yöntem üzerindeki etkileri üzerine ilişkisi sunuldu. Bu ilişki ile ilgili deneylerin
yapılabilemesi için Monte Carlo simülasyonunun, Clarke ve Wright tasarruf algorit-
masıyla birleşiminden oluşan bir yöntem kullanıldı ve yöntem beş farklı rastgele sayı
üreteci ve çeşitleriyle test edildi. Bu deneyler sonucunda rastgele sayı üreteçlerinin
Monte Carlo simülasyonu üzerindee etkisi gözlemlendi.

Anahtar Kelimeler: Monte Carlo Simülasyonu, Rastgele sayı üreteçleri, Kapasiteli
araç rotalama problemi, Rastgele izdüşüm kümelemesi
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CHAPTER 1

INTRODUCTION

In order to improve the delivery services of goods to customers with different de-

mands, distribution centers must arrange optimal vehicle routes to ensure the lowest

transportation and distribution costs. Planning optimal routes for the distribution of

goods to customers can generate important savings for companies; several benefits

can be obtained if the vehicle routing problem (VRP) is solved. Consequently, VRP

is an important task in many private and public corporations. VRP has became the

one of the mostly studied problems in the field of combinatorial optimization. The

first example of the problem was introduced by Dantzig [10] in 1959 and is applied to

the design of optimal routes, which seek to serve a number of customers with a fleet

of vehicles. The objective of this problem is to determine the optimal route to serve

multiple clients, using a group of vehicles to minimize the overall transportation cost.

VRP and its variants are classified as NP-hard problems. Because of this reason, for

finding an optimal solution, many factors are has to be considered with many possi-

bilities of permutation and combinations. VRP becomes more complex as constraints

and number of customers increase. There are multiple variations of VRP with dif-

ferent type of constraints such as Capacitated VRP (CVRP), Multi-depot VRP (MD-

VRP), Periodic VRP (PVRP), Stochastic VRP (SVRP), and VRP with Time Windows

(VRPTW), among others [9].

The aim of this study is to both propose a hybrid approach to solve the CVRP in-

stances and make a comparison based on pseudo random number generators in the

use case of Monte Carlo Simulation for generating routes. Since the CVRP is also

NP-Hard and the problem instances contains high number of customer nodes, the
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study is built around the cluster-first-route-second approach. For the purpose of clus-

ter part of the hybrid approach we have tested different type of clustering algorithms

with combination of Nearest Neighbor Insertion (NNI) and Clarke and Wright’s Sav-

ings (CWS) algorithms [8]. The random projection tree structure is adopted as the

clustering part of the hybrid approach and the results of experiments show that the

employing clustering as the pre-process for solving CVRP instances with heuristics

can improve the solutions.

The contribution of the study can be examined in two perspective, first is to provide

results about the importance of random number generator choice on solving VRP

and second is to proposing a cluster-first-route-second approach for solving VRP in-

stances. In order to test the performance of pseudo random generators on Monte

Carlo simulation for solving CVRP instances, the Binary-CWS-MCS algorithm from

the study [29] adopted with random projection clustering method. Linear Congru-

ential Generator (LCG), Multiple Recursive Generator (MRG), Inversive Congruen-

tial Generator (ICG), Permuted Congruential Generator (PCG) and Mersenne-Twister

(MT) pseudo random generator are employed for a comparison of their cost perfor-

mances. The results show that the PCG and MT pseudo random number generators

are better performing than the others. In addition, using the shift transformation with

LCG and MRG can increase the cost performance on Monte Carlo Simulation appli-

cations. The implementation of the method can be seen on the following repository

[19]:

https://github.com/mehmetemingulsen/rpc-binary-cws-mcs.

The outline of the thesis is as follows. In the next chapter, detailed information and

problem formulation are presented with the solution methods in the literature. After

giving information about the problem and the methods, the random number genera-

tors that used in this study are briefly introduced. Finally, the results about the both

type of experiments are given in details.

2
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CHAPTER 2

VEHICLE ROUTING PROBLEM

The objective of this section is to briefly present the problem studied in this thesis,

Capacitated Vehicle Routing Problem (CVRP). Traveling Salesman Problem, Vehicle

Routing Problem (VRP) and the variants of the VRP will be introduced to provide a

deeper knowledge about the core of the problem. Each problem will be introduced

in words and mathematical definitions. Firstly, TSP will be examined to give a brief

introduction about the evaluation of the VRP and CVRP.

2.1 The Traveling Salesman Problem

Traveling Salesman Problem (TSP) is a well-known NP-Hard problem in computa-

tional mathematics. Objective of the TSP can be described as finding the the cheapest

way starting from the depot to all destination points and return to depot with a given

finite set of destination points with the known cost of travel between each destina-

tion points [1]. The problem domain of the TSP can be introduced as an undirected

weighted graph where the destination points are the vertices and the paths between

them are the edges of the graph. Let G = (V,E) be an undirected graph with the set

of vertices V and set of edges E = {(x, y)|x, y ∈ E}. Each edge e ∈ E has a cost of

ce. Let H be the set of all Hamiltonian cycles, the objective of the TSP is to find the

cycle h ∈ H with the sum of costs ce is minimized. A simple visual example of TSP

can be seen in Figure 2.1.
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Figure 2.1: A solution for an instance of TSP

Problem Formulation

TSP can be expressed as integer linear programming formulation with letting the

destination points in the problem start from 1 to n and let the cij be the distance

between i and j [26].

min
n∑

i=1

n∑
j 6=i,j=1

cijxij

n∑
i 6=j,i=1

xij = 1

n∑
j 6=i,j=1

xij = 1

xij =

1 if the path goes from i to j

0 otherwise
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2.2 The Vehicle Routing Problem

The Vehicle Routing Problem was first introduced by Dantzig as “Truck Dispatching

Problem” with the concern of generation of expanded form of Traveling Salesman

Problem (TSP) in 1959 [12]. The Truck Dispatching Problem was concerned to find

the optimum routing of a fleet of gasoline delivery trucks between a bulk terminal and

a number of stations supplied by terminal. The aim in the vehicle routing problem is

to establish the optimized routes for serving the set of customers by the given fleet of

vehicles. A simple visual example of a VRP instance is given in Figure 2.2. A VRP

instance also can described as an undirected weighted graph same as TSP G = (V,E).

The customers in the VRP are the vertices in the graph and the paths between them

are the edges of the graph G [10].

Figure 2.2: A solution visualization for an instance of Vehicle Routing Problem

2.2.1 Problem Formulation

VRP also can be described as integer linear programming formulation. Let the des-

tination points in the problem start from 0 to n and let the 0 to be the depot of the

problem. Let cij is the distance between point i to j, K is the total number of ve-

5



hicles in the problem instance and each vehicle expressed as k. Assigning a binary

value to k makes each edge appears once while the capacity of the vehicles can not

be exceeded as given in Equation 2.1.

min
n∑

i=1

n∑
j 6=i,j=1

cijxij (2.1)

K∑
k=1

n∑
i 6=j,i=1

xijk = 1,∀i ∈ V − {0}

xijk =

1 if the vehicle k goes from i to j

0 otherwise

2.3 Variants of Vehicle Routing Problems

Vehicle Routing Problem has many variants due to the specific requirements in the

field of transportation and logistics. Since the problem can be extended with other

constraints such as time, capacity and demands. The each VRP variant also can be

combined and used for generating new variants with more complex structures. In

this section, Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing Problem

with Time Windows (VRPTW), Multi-depot Vehicle Routing Problem (MVRP) and

Open Vehicle Routing Problem (OVRP) will be introduced to give better understand

about the topic.

2.3.1 Capacitated Vehicle Routing Problem (CVRP)

The Capacitated Vehicle Routing Problem is one of the most common and known

variant of VRP. The difference between the VRP and CVRP is the vehicles used in

the CVRP has a capacity unlike VRP. There are two sub-variants of CVRP which

are changing with respect to the capacity variability of the problem. The first variant

is the Homogeneous Capacitated Vehicle Routing Problem, the vehicle capacity in

6



this variant of the problem is same for all the vehicles in the instance and the other

variant is the Heterogeneous Capacitated Vehicle Routing Problem, the vehicles in

this instance may have different capacities than each other, this variant also called

Mixed Capacity Vehicle Routing Problem. The formulation of CVRP with homoge-

neous capacity constraint and heterogeneous capacity variants are given below. The

destination points in the problem start from 0 to n and node with index 0 is set to be

the depot of the problem. The cij value presents the distance between point i to j, K

represents the total number of vehicles in the problem instance and each vehicle ex-

pressed as k and each vehicle has capacity of Q for homogeneous variant and the Qi

for heterogeneous variant. The qi value in the instance represents the demand value

of each destination points. As given on both of the equations below, the xijk values

represents edges from i to j assigned to vehicle k.

Homogeneous Capacited Vehicle Routing Problem Formulation:

min
n∑

i=1

n∑
j 6=i,j=1

cijxij

K∑
k=1

n∑
i 6=j,i=1

xijk = 1,∀i ∈ V − {0}

n∑
i=1

qi

n∑
i=1

xijk ≤ Q,∀k ∈ K

xijk =

1 if the vehicle k goes from i to j

0 otherwise
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Heterogeneous Capacited Vehicle Routing Problem Formulation:

min
n∑

i=1

n∑
j 6=i,j=1

cijxij

K∑
k=1

n∑
i 6=j,i=1

xijk = 1,∀i ∈ V − {0}

n∑
i=1

qi

n∑
i=1

xijk ≤ Qi,∀k ∈ K

xijk =

1 if the vehicle k goes from i to j

0 otherwise

2.3.2 Vehicle Routing Problem with Time Windows

The most prominent constraint of this variant is its time window for delivering a

product or demand to the destination on the specified range of time. The goal on

solving VRPTW is to generate the route list with minimum cost without violating

the time windows and vehicle capacities [21]. Since, the problem require the vehicles

serve at a specific range of time, the vehicles may arrive early or late to the destination

points. This possibility generates two different situations for VRPTW variant which

is the acceptance of early or late delivery with some form of penalty. The models

which accepts the early or late delivery with penalty called as "soft" VRPTW and the

other type of models called as "hard" VRPTW. Most of the studies has been made on

"hard" variant of the problem.

2.3.3 Open Vehicle Routing Problem (OVRP)

Open Vehicle Routing Problem also contains the same constraints with the traditional

VRP but the main difference is the OVRP does not have the constraint of the returning

to the depot. This implies to the routes to be non-cyclic and the space of solutions

in this variant to be increased. Today, the OVRP is encountered in practice in the

home delivery of packages and newspapers. Contractors who are not employees of

8



the delivery company use their own vehicles and do not return to the depot. A visual

example of an OVRP instance can be seen in Figure 2.3. Detailed information about

OVRP variants can be seen on [23].

Figure 2.3: A solution visualization for an instance of Open Vehicle Routing Problem

2.3.4 Multi Depot Vehicle Routing Problem (MDVRP)

The case of MDVRP is posed if a company may have more than one depots from

which it can serve its customers. If the customers are clustered around depots, then a

number of independent VRPs or TSPs can be performed to serve customers. A visual

example of a solution of an MDVRP instance can be seen in Figure 2.4. There can

be constraints such as the total number of vehicles that has left a depot must be equal

to the total number of vehicles that arrive to that depot at the end of the procedure.

Furthermore, there can be a constraint for each vehicle assigned to a depot and they

should be on that assigned depots at a given time window.

9



Figure 2.4: A solution visualization for an instance of MDVRP

2.3.5 Stochastic Vehicle Routing Problem (SVRP)

Stochastic Vehicle Routing Problem has became an popular research topic due to in-

creasing service demands on supply chains with uncertainty in real life conditions.

Stochasticity in VRP can be provided by expressing the aspects of the problem in-

stance with probability. The SVRP variant is a generalized definition for all the

variants that includes stochastic constraints. One of the SVRP variant includes a

probability of presence of the customer in problem which is called as CVRP with

stochastic customers (CVRPSCD), another variant includes stochasticity to problem

by concerning changing demands for each customers that variant is called as CVRP

with stochastic demands (CVRPSD). The time windows that the customers have to

be served also can be stochastic and this variant called as the CVRP with stochastic

time windows (CVRPTW) [16].

2.4 Solution Methods

The CVRP is mainly focused in this study. There are exact methods, heuristic meth-

ods and meta heuristic methods in the literature to create feasible solutions for the
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CVRP. In this section, the mostly known two heuristic algorithms, will be examined

and after, the binary version of CWS Algorithm with Monte Carlo Simulation (MCS)

technique will be presented as Binary-CWS-MCS. Finally, mostly known and used

clustering will be represented with random projection trees.

2.4.1 Nearest Neighbor Insertion (NNI)

Nearest Neighbor Insertion algorithm is one of mostly known heuristic algorithms for

solving TSP and VRP by constructing a route list with appending the nearest node to

the route. The process is initialized with randomly chosen node from the problem

set and continues until all the vehicle capacities got consumed or all the demands are

satisfied. The pseudo code of the NNI can be seen in Algorithm 1. NNI algorithm

requires the number of vehicles, capacity of the vehicles and the node list to conclude

on a feasible solution.

Algorithm 1 Nearest Neighbor Insertion Algorithm
Require: Demand list D, Number of vehicles k, Vehicle Capacity (C), List of Un-

visited Nodes (N)

1: RouteList = Empty list for routes

2: v = 0

3: while v < k do

4: route = []

5: capacity = 0

6: j= Random Unvisited Node

7: while capacity + D[j] ≤ C do

8: Append j to route

9: capacity = capacity + D[j]

10: j = Nearest Unvisited Node

11: end while

12: end while

13: return RouteList

11



2.4.2 Clark & Wright’s Savings (CWS) Algorithm

The best known approach for generating feasible solutions for the single depot CVRP

is Clark and Wright’s Savings algorithm. The CWS algorithm is an iterative process

that enables of the quick selection of near-optimum routes [8]. The algorithm requires

distances to be representing in the form of an (n + 1) × (n + 1) matrix called as

distance matrix, C. The entries cij of C are the distance between nodes i and j for

i, j ∈ 0, 1, 2, ..., n. An example for a distance matrix is given in Table 2.1. A saving

matrix S with the values sij is built using the equation, sij = c0i + c0j − cij , with the

distance matrix.

Table 2.1: Distance Matrix
cij i0 i1 i2 i3 i4 i5
i0 0 28 31 20 25 34
i1 0 21 29 26 20
i2 0 38 20 32
i3 0 30 27
i4 0 25
i5 0

If we consider Table 2.1 as the input of the CWS algorithm, the saving matrix S can

be computed as Table 2.2.

Table 2.2: Saving Matrix
sij i1 i2 i3 i4 i5
i1 0 38 19 27 42
i2 0 13 36 33
i3 0 15 27
i4 0 34
i5 0

The steps of CWS algorithm can be seen in Algorithm 2. While producing a feasible

solution to a VRP, CWS algorithm firstly require the saving matrix which is generated

using Algorithm 3. After generating the saving matrix, the CWS algorithm process

starts with a for loop and continues until the savings list is empty as seen in Algorithm

4.
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Algorithm 2 CWS Algorithm
Input: Distance matrix C, number of nodes n

Output: Route List

1: Route List = []

2: S : Generate Savings Matrix(C,n)

3: for k = 0, k < length(S), k++ do

4: Route List : Process(S[k]], Route List)

5: end for

Algorithm 3 Generate Saving Matrix
Input: Distance matrix C, number of nodes n

Output: Saving Matrix

1: S : Saving Matrix

2: for i in range (1, n+ 1) do

3: for j in range (1, i) do

4: Sij = C0i + Cj0 − Cij

5: end for

6: end for

7: Sort S descending respect to Sij

8: return S

CWS algorithm also provides savings with process step with assigning the nodes to

routes based on the nodes given to the process function, the nodes analyzed on the

basis of three criteria can be seen on Algorithm 4. If both i and j not assigned to

a route, a new route initialized by connecting the nodes. The savings obtained in

this function comes from the second and third criteria which are related if one of the

nodes is assigned to a route, if only one of i or j is assigned to end of a route, then

the function link the other node to end of that route. If both are existed at the end of

two distinct routes and the capacity of a vehicle is enough then both routes merged.

13



Algorithm 4 Process
Input: i, j, routeList

Output: routeList

1: if Both i and j not assigned to a route then

2: Initialize a new route with (i, j)

3: Add new route to routeList

4: end if

5: if i or j exists at the end of a route then

6: Link (i, j) in that route

7: end if

8: if Both i and j exists at the end of route then

9: Merge two routes into one route

10: Remove old routes from routeList

11: end if

12: return routeList

2.4.3 Monte Carlo Method

Monte Carlo method firstly introduced by John von Neumann and Stanislaw Ulam

increases the accuracy of decision making. Monte Carlo method has wide range of

applications in the industry including computational physics, computer graphics to

artificial intelligence for games [4]. More details about Monte Carlo simulations and

the theory can be seen in the study [5].

2.4.3.1 Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) is one of the earliest methods in the field of artifi-

cial intelligence. MCTS is mostly used in NP-Hard problems since using determin-

istic models is not applicable. The summary of MCTS steps can be seen on Figure

2.5.
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Figure 2.5: Steps of Monte Carlo Tree Search

The steps of MCTS can be examined on four different steps as Selection, Expansion,

Simulation and Back propagation. The selection process basically starts from a root

node and spans the tree based on an evaluation function. The selection of nodes iter-

ates through the tree with getting the value of the evaluation function and continues

with the maximum value generating option. The expansion step adds child nodes to

the candidate solution and the process continues with simulation step that performs

strategies until a feasible solution is obtained under the given constraints of the prob-

lem.

2.4.4 Monte Carlo Simulation Applied on CWS

In order to compare the random number generators on CVRP instances, the binary

version of the Clarke and Wright’s Savings algorithm with Monte Carlo simulation

approach called Binary-CWS-MCS is given in [29].

2.4.4.1 Binary-CWS

The Binary-CWS algorithm can also be expressed as the selection process of the

simulation. The most significant difference of the Binary-CWS from the CWS is to

apply a threshold before processing the ordered node from the savings list. The binary

expression arises from the probability threshold p of the process step from the CWS,

see Algorithm 5. The required inputs are the savings list S, which is built such that

within S the edges are ordered by descending saving value, and probability value,

p. The S is the representation of the savings matrix in the form of (i, j, sij) and the

p value represents the probability threshold. Process follows the same steps as CWS
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Algorithm 5 Binary-CWS Algorithm
Input: Savings List (S), probability (p)

Output: routeList

1: Initialize the empty list routeList

2: Initialize tempList as [1,2,...,length of S]

3: while tempList is not empty do

4: rand = random() mod 100

5: for i in tempList do

6: if rand ≥ p*100 then

7: Process (S[i],routelist)

8: Remove i from templist

9: end if

10: end for

11: end while

12: return routeList

except the decision point for processing the following node from the savings list. This

means that for some portion of savings list, the node will be skipped and carry on with

the next node.

2.4.4.2 Binary-CWS-MCS

The Binary-CWS-MCS algorithm is built around the MCTS logic using the Binary-

CWS algorithm with bulk operations. The Binary-CWS-MCS algorithm iterates

through the savings matrix and for each iteration it computes the average of bulk

operation for two different directions to manage the selection of next customer on the

route. The simulation continues until the demand of each node is satisfied.

The critical decision for the Binary-CWS method which is presented in Algorithm 5,

is to set the correct range for the p value. Because if the range for the p value set to

close 0, the cost value of the Binary-CWS will converges to the cost value of CWS

algorithm and reduces the improvement for the simulation, and if the range for the p

value set to larger values both the time consuming of the algorithm will increase and
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Algorithm 6 Binary-CWS-MCS Algorithm
Input: Distance Matrix C, number of nodes n

Output: Route List

1: Generate Savings Matrix(C, n)

2: list-ordered = order list descending with respect to savings sij

3: route list = []

4: while list-ordered is not empty for s in range do

5: t1: average of 1000 calls of score Binary-CWS(s, list-ordered)

6: t2: average of 1000 calls of score Binary-CWS(s+ 1, list-ordered)

7: if t1 ≥ t2 then

8: Process(list-ordered[s], route list)

9: Remove list-ordered[s] from list-ordered

10: end if

11: end while

12: return route list

the cost value of the routes will be resulted on unsatisfactory performance compared

to CWS cost/distance value.

Two different CVRP instances are chosen to test the p-value in order to distinguish

a better range. The E-n22-k4 (1 depot, 21 clients, 4 vehicles, vehicle capacity =

100) and E-n51-k5 (1 depot, 50 clients, 5 vehicles, vehicle capacity = 160) instances

have been tested with both Binary-CWS and Binary-CWS-MCS algorithms. As it

can be seen in Figure 2.6b and Figure 2.7b, the cost/distance value is mostly biased

to p-value. Also, it can be seen from the figures, when p-value increases also the

cost of the routes created increases. Thus, the p-value has been chosen such that

0.05 ≤ p ≤ 0.26.

2.4.5 Clustering Approach on Vehicle Routing Problem

Clustering is the act of grouping comparable items into various groups, or more accu-

rately, the partitioning of a data collection into subsets so that the data in each subset

is sorted according to some distance metric. Since the CVRP instance requires to
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Figure 2.6: Probability Tests of E-n51-k5 instance
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Figure 2.7: Probability Tests of E-n22-k4 instance

have more than one path or vehicles to conduct feasible solutions, the problem can

be solved by clustering first and routing second approach. The most known and early

development of cluster-first, route-second approach conducted by Gillett and Miller

[17] and Fisher and Jaikumar [15]. Clustering the VRP and CVRP is widely using

method for simplifying the instance complexity to decrease the time consume of the

solution proposes. There are several types of clustering analysis techniques and al-

gorithms in the literature used for different type of cases. Further explanations and

types can be found in the study by Castro [13]. Major clustering techniques can be

summarized into several techniques as follows;

• Connectivity-based clustering (also known as hierarchical cluster analysis or

HCA) is a cluster analysis approach that aims to establish a hierarchy of clusters

in data mining and statistics. The hierarchical clustering algorithms produce a

dendrogram, which represents the layered grouping of items and the similarity
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levels at which groupings change. By cutting the dendrogram at the chosen

similarity level, a clustering of the data items is produced. Clusters are com-

bined or separated depending on a similarity metric which is chosen to optimize

some requirement such as a sum of squares.

Figure 2.8: An example of connectivity-based clustering

• Centroid-based clustering is a vector quantization approach derived from sig-

nal processing that tries to divide n observations into k clusters, with each

observation belonging to the cluster with the closest mean (cluster centers or

cluster centroid), acting as a prototype of the cluster. The process of clustering

can be summarized as, the first step is to finding the centroids of clusters and

second step is to assign the objects or nodes to the nearest cluster center with

given distance functions. A visual example of a centroid-based clustering can

be seen in Figure 2.9.
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Figure 2.9: An example of centroid-based clustering

• Distribution-based clustering method considers that data is formed of distri-

butions, and that as a node departs from the distribution’s center, the likelihood

that a point belongs to the distribution decreases. The probability decrease is

illustrated by the bands. If the distribution of data is not known, different ap-

proach should be chosen.

Figure 2.10: An example of distribution-based clustering

• Density-based clustering defines areas of higher density as clusters and extract

the low density areas or nodes as noise in data. The idea behind this type of

clustering method is that in a given radius of a node data set required to contain

nodes or points.
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Figure 2.11: An example of density-based clustering

Clustering analysis for a given data set or a problem also can be achieved by other

methods like machine learning or statistical distribution fit tests. Methods to divide

a given data set can be expanded by any other evaluations based on the problem and

the constraints. There are also methods that are seeking to find the similarity between

data points to divide the data into similar sets like random projection based methods.

2.4.5.1 Random Projection Trees to Cluster the CVRP Instances

Random projection trees used mostly to reduce the dimensionality on big data appli-

cations and for use cases of k-nearest neighbor search on the data sets that contain

higher number of columns for each entity.

(a) E-n101-k8 CVRP Instance (b) Clustered E-n101-k8 CVRP Instance
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Algorithm 7 MakeTree
Input: nodes in x, y coordinates (points), threshold (k), clusters

1: if length of points < k then

2: add points to clusters

3: return

4: end if

5: dotProductList = []

6: vector = GenerateRandomVector()

7: for i in range length of points do

8: val = dot(vector,points[i])

9: Add val to dotProductList

10: end for

11: median : Median of dotProductList

12: for i in range length of points do

13: dst = dot(vector,points[i])

14: if dst ≤ median then

15: Add dst to the left

16: else

17: Add dst to the right

18: end if

19: end for

20: MakeTree(left, k, clusters)

21: MakeTree(right, k, clusters)

Popular digital platforms and e-commerce systems mostly refer to random projection

like methods to provide its users more relevant search systems with similar contents

or products. We have tried to employ this approach for dividing CVRP instances into

smaller sub problems. Mostly known use case of such a method is Annoy library

which motivated to recommend similar content to the similar user types that has the

potential content consumption habits [3].

A CVRP instance and clustering analysis of instance can be visualized as given in

Figure 2.12a. If we consider the E-n101-k8 (1 depot, 100 clients, 8 vehicles, vehicle

capacity = 200) instance given on Figure 2.12a as a sample input for the random
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Algorithm 8 RandomProjectionClustering
Input: nodes in x, y coordinates (points), threshold (k), number of tree (n)

Output: OptimalTree

1: OptimalTree = []

2: MakeTree(points,k,OptimalTree)

3: MeasureOptimalTree = MeasureTree(OptimalTree)

4: for i in range n do

5: Tree = MakeTree(points,k,clusters)

6: MeasureTree = MeasureTree(OptimalTree)

7: if MeasureTree < OptimalTree then

8: OptimalTree = Tree

9: end if

10: end for

11: return OptimalTree

projection clustering, the method behind the process starts with creating a random

vector and calculates dot product between each destination points and the vector.

After calculation step, the median value from the dot products gotten and accepted as

a threshold for clustering operation. If the median value is smaller or the point added

to the left leaf, if not the point added to the right leaf. The process continues until the

each leaf has at most k points. The detailed process can be seen in Algorithm 7.

The random projection tree generation in Algorithm 7 process can be executed multi-

ple times to gather a better tree structure. In order to establish this goal, Algorithm 7

is employed as the core function of Algorithm 8. The process starts with an initial tree

and measure the tree with respect to euclidean distance of each clusters, if the new

generated tree has lower distance than the optimal tree replaces with the new tree.

We have combined this clustering technique with Binary-CWS-MCS. This process

can be evaluated as a learning mechanism for the algorithm because by comparing

each member of the problem with a randomly generated vector creates a similarity

base data which can be used for clustering the points.
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Algorithm 9 RPC-BinaryCWSMCS
Input: nodes in x, y coordinates (points), threshold (k), number of tree (n)

Output: RouteList, TotalCost

1: RouteList = []

2: TotalCost = []

3: OptimalTree = RandomProjectionClustering(points,k,n)

4: for Leaf in OptimalTree do

5: Route,Cost = BinaryCWSMCS(Leaf)

6: TotalCost += Cost

7: Add all routes of Route to RouteList

8: end for

9: return RouteList, TotalCost
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CHAPTER 3

RANDOM NUMBER GENERATORS

Random numbers are utilized in many different applications, including modeling,

encryption, sampling, numerical analysis and simulation based algorithms. Since,

our study mostly focused on simulation based applications of random sequences, in-

formation about random number generators that employed mostly on simulations is

introduced in this chapter. Five different random number generators with different pa-

rameters were employed in this study to test the quality of random number generators

on Monte Carlo simulation.

3.1 Linear Congruential Generator

Linear Congruential Generator (LCG) firstly introduced by W.E.Thomson in 1958

[30]. LCG is the most widespread pseudo random number generator and easy to

comprehend and implement. It is defined by a recursion as given in (3.1).

Xn+1 = (a.Xn + c) mod m (3.1)

m, 0 < m, the modulus

a, 0 < a < m, the multiplier

c, 0 ≤ c < m, the increment

X0, 0 ≤ X0 < m, the start value, seed of the generator
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As it can be seen in (3.1), the generation of random sequence starts with an initial

value X0 and iterates through the each generated value obtained with the equation.

Although LCGs can generate pseudo random numbers that pass formal criteria for

randomness, the output quality is highly dependent on the values of the parameters

m and a. For instance, a = 1 and c = 1 generate a basic modulo-m counter with

a lengthy period but is clearly non-random. The detailed analysis and the tables of

known good parameters can be found in [24] and [28]. The period and parameters

used for LCG employed in this study can be found in Table 3.1.

Table 3.1: LCG Parameters
LCG Parameters
a b Period

18145460002477866997 1 264

3.1.1 LCG with Shift Transformation (LCGS)

Applying shift transformation to a random sequence is a mostly employed method to

improve the randomness of sequence. If we assume that the output of a given LCG

as r in binary form and the output of transformation operation as q, the operation of

LCG combination with shift transformation can be expressed as following operations.

The x � n operation denotes for n bit-shift of x to the right and x � n operations

denotes for n bit-shift x to the left.

t0 = r

t1 = t0 ⊕ (t0 � 17)

t2 = t1 ⊕ (t0 � 31)

t3 = t2 ⊕ (t0 � 8)

q = t3

The LCG parameters used in this study for LCG with shift transformation is same

with LCG and can be seen in Table 3.1. The shift transformations can be also seen in

the equation above.
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3.2 Multiple Recursive Generator (MRG)

Multiple recursive generators, a common type of pseudo random number generator

for simulation based methods, are based on a linear recurrence of the form given in

Equation 3.2. The prime modulus m was either chosen as Mersenne-Prime or Sophie-

Germain Prime. The parameters used for generating random numbers with MRG with

chosen Mersenne-Prime modulus can be seen in Table 3.2 and the chosen Sophie-

Germain Prime modulus can be seen in Table 3.3. There are several researches to

find good parameters for both MRGs and LCGs, the parameters used in this study

obtained from L’Ecuyer et al. [22].

Xn = (a1.Xn−1 + a2.Xn−2 + ...+ ak.Xn−k) mod m (3.2)

Table 3.2: MRG Parameters with Mersenne-Prime Modulus
a1 a2 a3 a4 a5 Period m

mrg2 1498809829 1160990996 262 231 − 1

mrg3 2021422057 1826992351 1977753457 293 231 − 1

mrg4 2001982722 1412284257 1155380217 1668339922 2124 231 − 1

mrg5 107374182 0 0 0 104480 2155 231 − 1

Table 3.3: MRG Parameters with Sophie-Germain Prime Modulus
a1 a2 a3 a4 a5 Period m

mrg3s 2025213985 1112953677 2038969601 293 231 − 21069

mrg5s 1053223373 1530818118 1612122482 133497989 573245311 2155 231 − 22641

3.3 Inversive Congruential Generator

Inversive congruential generators are a form of nonlinear congruential pseudo random

number generator that produces the next number in a series by using the modular

multiplicative inverse (if one exists). Modulo some prime q, the conventional formula

for an inversive congruential generator is given in (3.3):

Xn+1 = (a.X−1n + c) mod q, (3.3)
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where

q : the prime modulus

a, 0 < a < m : the multiplier

c, 0 ≤ c < m, : the increment

X0, 0 ≤ X0 < m : the start value, seed of the generator

3.4 Mersenne Twister Pseudo Random Number Generator

Mersenne twister algorithm was introduced in 1997 by Makoto Matsumoto and Takuji

Nishimura [25]. It has been proven that the period of 219937 − 1 can be established

with the good parameters, and equidistributed in (up to) 623 dimensions (for 32-bit

values), and runs faster than other statistically reasonable generators. The Mersenne

twister algorithm mostly used and chosen for simulations and models that requires

random number generators.

The Mersenne Twister creates integers in the range [0, 2w − 1] for a w-bit word

length. The method is a twisted generalised feedback shift register (twisted GFSR, or

TGFSR) with state bit reflection and tempering in rational normal form (TGFSR(R)).

The algorithm requires the following parameters ;

w : Word size

n : Degree of recurrence

m : Middile word, an offset used in the recurrence relation, 1 ≤ m < n

r : Seperation point of one word, 0 ≤ r ≤ w − 1

a : Coefficients of the rational normal form twist matrix

b, c : TGFSR(R) tempering bitmasks

s, t : TGFSR(R) tempering bit shifts

u, d, l : additional Mersenne Twister tempering bit masks

The x series is defined as a series of w-bit quantities with the recurrence relation :

xk+n = xk+m ⊕ ((xu
k | xl

k+1)A) , k = 0, 1, ...
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In the equation above, the | expresses the concatenation operation and the ⊕ denotes

the bit wise XOR operation. A value in the equation means the matrix with the form

below. Iw−1 denotes the (w − 1)× (w − 1) identity matrix.

A =

(
0 Iw−1

aw−1 (aw−2, aw−3, ..., a0)

)

Mersenne twister algorithm includes a tempering process as given in the expressions

below. The x value in the equations below denotes next random number from the

series, the y value is an intermediate variable and the z value the denotes the output

of the algorithm. In the given operations,� and� denotes the bit wise left and right

shifts, & means the bit wise and operation.

y ≡ x⊕ ((x� u)&d)

y ≡ y ⊕ ((y � s)&b)

y ≡ y ⊕ ((y � t)&c)

z ≡ y ⊕ (y � l)

The Mersenne Twister algorithm is used as default random number generator for

many softwares and operating systems. The most widely used version is based on the

Mersenne prime 219937 − 1 with the parameters given in Table 3.4.

Table 3.4: Mersenne-Twister Parameters
w 32

n 624

m 397

r 31

a (9908B0DF )16
u 11

d (FFFFFFFF )16
s 7

b (9D2C5680)16
t 15

c (EFC6000)16
l 18
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3.5 Permuted Congruential Generator (PCG)

The PCG family of pseudo random number generators developed by O’neill in 2014

[27] and commonly used with the newly developed technologies. PCG variants has

a common approach on generating random numbers, an RNG (LCG or MCG) is em-

ployed for internal state generation and the permutation function is applied to the out-

put of internal state generator with truncation of the value. The variants of PCG are

named with the permutation function applied to the internal generator. The members

of PCG family algorithms are can be expressed as PCG-XSH-RR (XorShift, Ran-

dom Rotation), PCG-XSH-RR (XorShift, Random Rotation), PCG-XSH-RS (Xor-

Shift, Random Shift) and PCG-XSL-RR (XorShift Low bits, Random Rotation). The

random number generation process of PCG algorithm can be generalized as given in

Figure 3.1.

Figure 3.1: Permuted Congruential Generator

The LCG function used as internal state generator of PCG-XSL-RR and the permuta-

tion function of the PCG is given in the following equation. The ≫ operation denotes

the right rotation and the ⊕ denotes the XOR operation.

Si+1 = aSi + c mod 2128

Xi =
(
Si[0 : 64]⊕ Si[64 : 128] ≫ Si[122 : 128]

)

As it can be understood from the equation above, first part of the sequence generation

is same as the LCG. In the second part of the equation, the first 64 bit and second 64

bit of the binary of the generated random number used as the input values of XOR

function and the output of the XOR operation rotated at most 127 bit.
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CHAPTER 4

RESULTS

In this chapter, after giving a brief information about the CVRP benchmark instances,

our results of the clustering with random projection trees approach combination with

two heuristic methods NNI and CWS results on different set of benchmarks will be

given. Finally, comparison of five different pseudo random number generators with

changing parameters on Binary-CWS-MCS method will be introduced.

4.1 CVRP Benchmark Instances

There are several benchmarks for TSP, VRP and VRP variants in the literature. The

most known benchmark for CVRP is Set E which is conducted based on different

studies on CVRP [8, 12, 11]. The node and depot locations in the instances of Set E,

generated in both from uniform random distribution and real world problem which is

UK cities with customers located far from the depot. An instance from Set E called

E-n76-k8 with single depot, 75 customer nodes with vehicle capacity of 180 from Set

E can be seen in Figure 4.1.

Christofides et al. [7] had generated Set M by combining the locations of nodes from

the Set E to gather larger problem instances in 1979. Location based scatter plot of an

instance from Set M called M-n151-k12 with single depot, 150 customer nodes with

vehicle capacity of 200 can be seen in Figure 4.2.
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Figure 4.1: E-n76-k7 Instance

Figure 4.2: M-n151-k12 Instance

Set F has built by combining two different real life problems from a day of grocery

deliveries from the Peterboro (Ontario terminal) of National Grocers Limited and data

obtained from Exxon associated to the delivery of tires, batteries and accessories to

gasoline service stations in 1994 by Fisher [14].

Rochat and Taillard had conducted another set of instances, Set Tai, each instance

includes 75 to 150 customers and the data of the instances generated with a scheme
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that centers the depot and the nodes are clustered. The most customer including

instance from Set Tai called Tai385 instance node location based scatter plot can be

seen in Figure 4.3. The Tai385 instance includes 385 customer nodes with vehicle

capacity of 65 were generated on real demand values gathered from the canton of

Vaud in Switzerland.

Figure 4.3: Tai385 Instance

A larger set of instances, Set G, produced in 1998 [18]. The node locations of Set G

instances, follow concentric geometric patterns in shape of circles, stars and squares.

Golden 9 instance with 256 customer nodes with vehicle capacity of 1000 from Set

G, can be visualized as given in Figure 4.4.
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Figure 4.4: G9 Instance

Set X, mostly used set of benchmarks is generated in 2017 with range of 100 to 1000

number of nodes in each instance [31]. An instance called as X-n219-k73 with 219

customer nodes with 3 vehicle capacity node location based scatter plot can be seen

in Figure 4.5. More information about the CVRP benchmark instances can be found

in [31].

Figure 4.5: X-n219-k73 Instance
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4.2 Applying Clustering with Heuristic Methods

Two different types of heuristic methods, NNI and CWS are chosen to be used with

clustering approach to distinguish a combination of clustering with heuristic method

gives better results than the core heuristic methods in this study. The experiments

conducted on Golden, E, M, Li, Tai and X benchmark sets. In this section, results of

topological clustering and the random projection clustering are given.

It is also important to note that we have also tested DBSCAN and K-means algorithms

to cluster the CVRP instances and solving the sub-instance with heuristic methods

such as CWS, NNI but the results of the process was not successful on any set of

CVRP. Juan et. al had developed a hybrid algorithm called SR-GCWS [20] for solving

the CVRP instances, pseudo code of the algorithm can be seen in Algorithm 10.

Algorithm 10 SR-GCWS Algorithm
Input: Nodes N , Capacity C, Distance Matrix M

Output: Route List

1: savingsList = GenerateSavingMatrix(C,n)

2: cwsSol = ConstructCWSSolution(N ,M ,S,C)

3: while stopping criteria not satisfied do

4: routeList = constructRandomSolution(N ,M ,S,C)

5: routeList = improveSolUsingRoutesCache(routeList,M )

6: if Cost of routeList < Cost of cwsSol then

7: routeList = improveSolUsingSplitting(N ,M ,S,C)

8: end if

9: end while

10: return routeList

It can be seen in the pseudo code that SR-GCWS algorithm is an iteration based ap-

proach of starting from an initial solution and applying cache and splitting techniques

to improve the obtained initial feasible solution. We have tried to improve the method

by changing splitting approach with K-means clustering. The cache mechanism have

implemented successfully but applying K-means clustering as a splitting policy on

SR-GCWS algorithm did not perform compared to the both Binary-CWS-MCS and
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the results from [20].

4.2.1 Applying Topological Clustering with Heuristic Methods

The experiments made by adopting persistence based on the clustering technique

is called as Topological Mode Analysis Tool (ToMaTo) from the study of Chazal

et. al. [6]. The experiments have been conducted based on the idea of cluster-first-

route-second approach by adopting ToMaTo as clustering algorithm and CWS as rout-

ing algorithm tested on Golden, Tai, M and E benchmark instance sets. The results

of the experiments can be seen on Table 4.1. The results has shown that employing

clustering on Golden benchmark set gives better results but as given in the CVRP

Benchmark Instances section, the benchmarks contained in Golden set follow an ar-

tificial pattern and also the demand required by nodes in the set contains statistical

weakness as discussed in [31].

Table 4.1: Results of ToMaTo with CWS - Golden Set
Problem CWS ToMaTo-CWS Diff
Golden_10 722 602 16.62%
Golden_12 1072 905 15.58%
Golden_11 875 763 12.80%
Golden_15 1483 1382 6.81%
Golden_14 1214 1133 6.67%
Golden_9 557 524 5.92%
Golden_16 1812 1715 5.35%
Golden_13 940 906 3.62%
Golden_17 753 776 -3.05%
Golden_18 1079 1140 -5.65%
Golden_19 1467 1553 -5.86%
Golden_20 1972 2104 -6.69%

Because of the statistical weakness of Golden Set, other experiments made on another

two different benchmark sets which are M, E and Tai Sets. It can be seen in Table 4.2

that the combination of ToMaTo with CWS algorithm did not perform better than the

CWS algorithm.
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Table 4.2: Results of ToMaTo with CWS - M Set
Problem CWS ToMaTo-CWS Diff
M-n151-k12 1116 1439 -28.94%
M-n200-k16 1377 1745 -26.72%
M-n200-k17 1377 1745 -26.72%
M-n121-k7 1053 1194 -13.39%
M-n101-k10 836 1116 -33.49%

The results of experiments made on E Set can be seen in Table 4.3. The given method

better perform on smaller instances on E Set. Especially, the performance of routes

generated for E-n33-k4 (Single depot, 32 customer nodes and capacity = 8000), E-

n23-k3 (Single depot, 22 customer nodes and capacity = 4500) instances is better

performing compared to results obtained with CWS algorithm. Also, the performance

of results gathered for E-n76-k7 (Single depot, 75 customer nodes and capacity =

220) and E-n51-k5 (Single depot, 50 customer nodes and capacity = 160) is slightly

better. But, for the rest of results the cluster-first-route-second approach combination

of ToMaTo and CWS is not performing better. The experiments made on Tai Set can

be seen in Table 4.4.

Table 4.3: Results of ToMaTo with CWS - E Set
Problem CWS ToMaTo-CWS Diff
E-n33-k4 843 654 22.42%
E-n23-k3 621 537 13.53%
E-n76-k7 747 734 1.74%
E-n51-k5 582 580 0.34%
E-n76-k10 896 898 -0.22%
E-n76-k8 781 785 -0.51%
E-n76-k14 1062 1078 -1.51%
E-n30-k3 485 498 -2.68%
E-n31-k7 612 631 -3.10%
E-n22-k4 387 422 -9.04%
E-n101-k8 880 1072 -21.82%
E-n101-k14 1140 1400 -22.81%
E-n13-k4 257 348 -35.41%

As a result of all experiments conducted on different benchmark sets with cluster-

first-route-second approach built with adopting ToMaTo as clustering and CWS as
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clustering algorithm did not perform better than the CWS algorithm.

Table 4.4: Results of ToMaTo with CWS - Tai Set
Problem CWS ToMaTo-CWS Diff
tai75c 1343 1306 2.76%
tai150c 2438 2385 2.17%
tai385 25214 24951 1.04%
tai100d 1578 1622 -2.79%
tai100b 2037 2139 -5.01%
tai150b 2876 3076 -6.95%
tai100c 1435 1605 -11.85%
tai75b 1354 1533 -13.22%
tai75a 1643 1879 -14.36%
tai150a 3290 3778 -14.83%
tai75d 1415 1828 -29.19%
tai150d 2774 3656 -31.80%
tai100a 2176 2929 -34.60%

4.2.2 Applying Random Projection Clustering with Heuristic Methods

In this section, you can see the results of the heuristic methods combined with clus-

tering approach with random projection trees. We have chosen two mostly known

heuristic methods which are Nearest Neighbor Insertion (NNI) and the Clarke and

Wright’s Savings (CWS) algorithms to use with random projection clustering ap-

proach. The experiments made on five different types of CVRP instance sets for the

purpose of avoiding dependence between instance set type and method. The RPC-

NNI values represents the NNI algorithm combined with random projection cluster-

ing and the RPC-CWS value represents the CWS algorithm combined with random

projection clustering.

The Diff. NNI value represented on the table stands for the difference between the

RPC-NNI and NNI and the Diff. CWS represented on the table stands for the differ-

ence between RPC-CWS and CWS value in percentile about the improvement on the

performance. As the difference values given on Table 4.5, the RPC-NNI method has

performed average of %7.17 than the Nearest Neighbor Insertion algorithm and RPC-

CWS method has performed average of % 2.4 better than the Clarke and Wright’s

Savings algorithm based on the travel costs. RPC-NNI method has improved result
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8.76% percent at most and had gathered worse results than NNI on two instances with

average 2.75% percent.

Table 4.5: Comparison of NNI, CWS and RPC-NNI, RPC-CWS
Problem NNI RPC-NNI Diff. NNI CWS RPC-CWS Diff. CWS
tai100b 2465 2279 7.55% 1997 1998 -0.05%
tai100d 1979 1829 7.58% 1665 1640 1.50%
tai100a 2533 2463 2.76% 2166 2149 0.78%
tai75b 1852 1606 13.28% 1368 1368 0.00%
E-n76-k10 1049 977 6.86% 868 864 0.46%
E-n22-k4 459 413 10.02% 388 375 3.35%
E-n101-k14 1373 1295 5.68% 1136 1108 2.46%
Golden_4 16388 15334 6.43% 17198 16338 5.00%
Golden_16 1944 1804 7.20% 1752 1736 0.91%
Golden_6 10157 9385 7.60% 9942 9451 4.94%
Golden_7 12252 11179 8.76% 12242 11448 6.49%
Li_26 29146 27471 5.75% 27874 27109 2.74%
Li_32 47578 44246 7.00% 41131 38955 5.29%
M-n200-k16 1613 1585 1.74% 1347 1321 1.93%
M-n101-k10 1143 1037 9.27% 837 837 0.00%

The results of RPC-NNI and RPC-CWS can also be analyzed by concerning the type

of routing algorithms. It can be said that the results generated with neighbor search

type of algorithms such as NNI, can be improved by guiding its policy of neighbor

search. Also, the performance of construction type of heuristic algorithms can be

improved with the adoptation of clustering approach as the preparation step for gen-

eration of routes.

4.3 Comparison of Pseudo Random Generators on Binary-CWS-MCS

In order to compare the pseudo random number generators, the Binary-CWS-MCS

method with random projection clustering implemented. For the purpose of Monte

Carlo Tree Search, the Binary-CWS method has employed as selection process and

simulation is accomplished with the bulk operations given in Algorithm 6. The com-

parison made on the basis of cost performances of the Binary-CWS-MCS combina-

tion of random projection clustering method. In order to compare the cost functions,

the selection process at MCTS step is chosen and the different PRNGs used in this

function to evaluate the differences. LCG, LCGS, MRG, MRGS, ICG, MT and PCG
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generators has been employed for comparison. The PRNGs that has been used in

this thesis, has been implemented from two different well-known PRNG libraries and

detailed information about the PRNGs can be obtained from the study [2]. While

choosing the pseudo random number generators, the consideration is to both test the

mostly used PRNGs on Monte Carlo Simulation and relatively new methods in the

field. For this purpose, the LCG, LCGS, MRG, MRGS and ICG is adopted with MT

and a variant from PCG family.

Three different sets of CVRP instances is chosen considering time required for run-

ning Monte Carlo simulations. Thus, we choose E, M and X instance sets. The

analysis of comparison is made by using five different perception as the number of

best solutions, number of worst solutions, loss against the median cost value, loss

against the average cost value and the average loss against to average solution. As

given in Table 4.6, the best performing PRNG was the PCG64 followed by MT by

concerning the number of best solutions and number of worst solutions. If the num-

ber of worst solutions considered as the performance indicator, it can be seen that

the minimum value appears on three different PRNGs, MRG3, MRG5 and PCG64.

If we examine the average loss against to best solution parameter, minimum values

appear on PCG64 and MRG5S, also it is important to note that MRG5S performs

better compared to MT on the contrary to number of worst solutions. MRG5S also

performs better than MT considering the average loss against median solution and the

average loss against the average solution. The analysis also shows that shift transfor-

mation variants of LCG and MRG is better performing than the LCG and MRG. It can

also can be examined that using different parameters for generating pseudo random

numbers using MRG can produce better impact on results if we compare the results

of MRG1, MRG3, MRG4 and MRG5. It is also important to note that while both

MRG3S and MRG5S uses shift transformation, the performance indicators shows

that MRG5S generates better solutions based on the cost function.
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CHAPTER 5

CONCLUSION

The improvements of the technology and rapid growth of population result in more

demand for transportation and delivery services. In order to overcome the increasing

resource consumption, better performing algorithms for problems like VRP and its

variants are required. Therefore, the capacitated vehicle routing problem (CVRP) has

been studied in this thesis. The CVRP is a problem concerned with the finding the

optimum routes to traverse a given set of customers with a given fleet of vehicles.

Two different types of experiments have been made on this thesis, firstly we have

tried to combine different clustering approaches with two different heuristic meth-

ods and the second type of experiments made to compare the pseudo random number

generators with a Monte Carlo simulation type of algorithm is called as Binary-CWS-

MCS combination with random projection tree based clustering technique. The first

type of experiments has been done with four different clustering techniques which

are K-means, DBSCAN, ToMaTo and random projection clustering, combined with

two heuristic routing algorithms called as NNI and CWS. As the results showed, the

clustering approach with heuristic methods can improve the performance of the so-

lutions. For the second part, we have conducted experiments based on the pseudo

random number generator types and their variants on three different CVRP instance

sets and on twenty different instances. The random number generators used in this

study is gathered from on respect to two perspective, our first aim was to compare the

mostly known and used RNGs on simulation based studies and we have implemented

the library known as Tina’s RNG library [2] and the others chosen concerning the

improvements in the random number generator algorithms which are MT, PCG. Ad-

43



ditionally, our results have shown that the choice of RNG can affect the performance

of the solutions. As results of experiments presents, the best performing random

number generator for the given set of instances was from the family of Permuted

Congruential Generator(PCG-64). If we compare the number of best solutions for

LCG and LCGS, LCG with shift transforms has concluded on better results than the

normal LCG and also the average loss values were better for LCGS. Parallel to this

result and parameters, MRGS generators also has produced better results than the

MRG. PCG64 and MT has concluded on better results than other RNG types on the

concern of both number of best solutions value and average loss parameters. ICG has

performed relatively bad than the other RNGs.

The research in this manner can be continued by both adding a feedback mechanism

to the simulation process for improving the performance. Also the improvements in

the random projection clustering with a guided approach can be made in the specific

case of VRP and its variants.
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