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ABSTRACT 

 

KEYSTROKE TRANSCRIPTION FROM ACOUSTIC EMANATIONS USING 

CONTINUOUS WAVELET TRANSFORM 

 

 

Özkan, Abdullah 

MSc. Department of Cyber Security 

Supervisor: Prof. Dr. Banu Günel Kılıç 

Co-Supervisor: Assoc. Prof. Dr. Cengiz Acartürk 

 

September 2022, 62 pages 

 

One of the most common methods of communication is written communication. Written 

communication has been found in various forms over the years and has changed shape 

with technical and technological developments. Today, written communication has shifted 

to digital media and keyboards have become one of the most frequently used entry points. 

This makes keyboards a critical node in the flow of information. There are several ways 

in which information entered through the keyboard can leak. Acoustic propagation is one 

of these leakage pathways. In the literature, various approaches have been proposed for 

this attack type, which aim to process the keystroke sounds and capture the information. 

However, the usage of continous wavelet transform for this purpose has not been explored 

before. Continous wavelet transform provides better resolution in both time and frequency 

for impulse-like signals. Therefore, this transformation is better suited to the analysis of 

keystroke sounds than other conventional transforms. 

In this thesis, we propose a method based on the continuous wavelet transform for 

transcription of keystrokes from the acoustic emanations of a keyboard, using wave files 

as input and recovering the written text as output with up to 57.2% accuracy. Initially a 

dataset was generated by recording keystroke sounds of 38 keys pressed multiple times in 

different ways. These were then analysed using the continuous wavelet transform in order 

to detect, segregate and obtain features of keystroke sounds. Various classification 

algorithms were tested and performances were recorded. Recommendations were made 

for improving the system output by using dictionaries and language models, as well as the 

information obtained from the confusion matrix itself. 

 



vi 

 

Keywords: Acoustic Propagation, Text Extraction, Keyboard, Machine Learning, 

Continuous Wavelet Transform 

  



vii 

 

ÖZ 

 

SÜREKLİ DALGACIK DÖNÜŞÜMÜ KULLANILARAK AKUSTİK 

YAYILIMLARDAN TUŞ ÇIKARIMININ YAPILMASI 

 

 

Özkan, Abdullah 

Yüksek Lisans, Siber Güvenlik Bölümü 

Tez Yöneticisi: Prof. Dr. Banu Günel Kılıç 

Ortak Tez Yöneticisi: Doç. Dr. Cengiz Acartürk 

 

Eylül 2022, 62 sayfa 

 

En yaygın iletişim yöntemlerinden biri yazılı iletişimdir. Yazılı iletişim yıllar içinde çeşitli 

biçimlerde bulunmuş, teknik ve teknolojik gelişmelerle şekil değiştirmiştir. Günümüzde 

yazılı iletişim dijital ortama kaymış ve klavyeler en sık kullanılan giriş noktalarından biri 

haline gelmiştir. Bu, klavyeleri bilgi akışında kritik bir düğüm haline getirir. Klavyeden 

girilen bilgilerin sızmasının birkaç yolu vardır. Akustik yayılım bu sızıntı yollarından 

biridir. Literatürde, tuş seslerini işlemeyi ve bilgiyi yakalamayı amaçlayan bu saldırı türü 

için çeşitli yaklaşımlar önerilmiştir. Ancak, bu amaçla sürekli dalgacık dönüşümünün 

kullanımı daha önce araştırılmamıştır. Sürekli dalgacık dönüşümü, darbe benzeri sinyaller 

için hem zaman hem de frekansta daha iyi çözünürlük sağlar. Bu nedenle, bu dönüşüm, 

diğer geleneksel dönüşümlere göre tuş seslerinin analizine daha uygundur. 

Bu tezde, bir klavyenin akustik yayılımlarından gelen tuş vuruşlarının transkripsiyonu 

için, dalga dosyalarını girdi olarak kullanarak ve yazılı metni %57,2'ye kadar doğrulukla 

çıktı olarak geri alarak, sürekli dalgacık dönüşümüne dayalı bir yöntem öneriyoruz. 

Başlangıçta, farklı şekillerde birden çok kez basılan 38 tuşun tuş seslerini kaydederek bir 

veri seti oluşturuldu. Bunlar daha sonra tuş vuruşu seslerinin özelliklerini saptamak, 

ayırmak ve elde etmek için sürekli dalgacık dönüşümü kullanılarak analiz edildi. Çeşitli 

sınıflandırma algoritmaları test edilmiş ve performanslar kaydedilmiştir. Sözlükler ve dil 

modelleri kullanılarak sistem çıktısının iyileştirilmesi ve ayrıca hata matrisinin 

kendisinden elde edilen bilgiler için önerilerde bulunulmuştur. 

  



viii 

 

Anahtar Sözcükler: Akustik Yayılım, Metin Çıkarımı, Klavye, Makine Öğrenmesi, 

Sürekli Dalgacık Dönüşümü  



ix 

 

 

 

 

 

 

 

 

 

 

DEDICATION 

 

 

To my family, who continued to believe in me even when my 

trials failed, and to my advisors who helped me complete the 

work by showing family compassion 

  



x 

 

ACKNOWLEDGEMENTS 

 

The author wishes to express his deepest gratitude to his supervisor Prof. Dr. Banu Günel 

Kılıç and co-supervisor Assoc. Prof. Dr. Cengiz Acartürk for their guidance, advice, 

criticism, encouragements and insight throughout the research. 

  



xi 

 

TABLE OF CONTENTS 

 

 

ABSTRACT ....................................................................................................................... v 

ÖZ ................................................................................................................................... vii 

DEDICATION .................................................................................................................. ix 

ACKNOWLEDGEMENTS ............................................................................................... x 

TABLE OF CONTENTS .................................................................................................. xi 

LIST OF TABLES ......................................................................................................... xiii 

LIST OF FIGURES ........................................................................................................ xiv 

CHAPTER 

1.     INTRODUCTION ................................................................................................... 17 

1.1. Problem Statement ............................................................................................ 18 

1.2. Motivation ......................................................................................................... 19 

1.3. Contribution ....................................................................................................... 19 

1.4. Scope ................................................................................................................. 19 

1.5. Limitations ......................................................................................................... 20 

1.6. Structure of the Thesis ....................................................................................... 20 

2. LITERATURE REVIEW ........................................................................................ 23 

2.1. Side-Channel Attacks Using Acoustic Emanations to Recover Input............... 23 

2.2. Life of a Keystroke ............................................................................................ 24 

2.3. Keystroke Detection .......................................................................................... 24 

2.4. Keystroke Detection .......................................................................................... 25 

2.5. Keystroke Detection .......................................................................................... 26 

2.6. Keystroke Detection .......................................................................................... 28 

2.7. Keystroke Detection .......................................................................................... 29 

2.7.1. Tree Models ............................................................................................... 29 

2.7.2. Linear Discriminant Analysis .................................................................... 29 

2.7.3. Naive Bayes Classifiers.............................................................................. 29 



xii 

 

2.7.4. Support Vector Machines ........................................................................... 30 

2.7.5. K-Nearest Neighbors .................................................................................. 30 

2.7.6. Ensemble Models ....................................................................................... 30 

3. DATASET CONSTRUCTION ................................................................................ 31 

4. KEYSTROKE TRANSCRIPTION.......................................................................... 35 

4.1. Continuous Wavelet Transform ......................................................................... 35 

4.2. Keystroke Detection and Segmentation ............................................................ 36 

4.3. Normalization and Feature Extraction ............................................................... 37 

4.4. Keystroke Classification .................................................................................... 38 

5. RESULTS................................................................................................................. 39 

5.1. Segmentation Results ........................................................................................ 39 

5.2. Feature Extraction Results ................................................................................. 42 

5.3. Classification Results ........................................................................................ 46 

6. DISCUSSION .......................................................................................................... 53 

6.1. Mitigations ......................................................................................................... 53 

7. CONCLUSIONS ...................................................................................................... 55 

REFERENCES ................................................................................................................. 57 

APPENDICES .................................................................................................................. 60 

APPENDIX A .................................................................................................................. 60 

APPENDIX B .................................................................................................................. 61 

APPENDIX C .................................................................................................................. 62 

 

  



xiii 

 

LIST OF TABLES 

 

Table 2.1 The four constraint types and their meanings. Adapted from Dictionary Attacks 

Using Keyboard Acoustic Emanations, by Berger et al., 2006, Proceedings of the 13th 

ACM conference on computer and communications security. Copyright (2006) ........... 27 
Table 5.1 Validation and test accuracies of all optimizable models in classification learner 

for part 5 ........................................................................................................................... 47 

Table 5.2 Training and test datasets of the classification phases ..................................... 47 

  



xiv 

 

LIST OF FIGURES 

 

Figure 2.1. Training phase (above) and recognition phase (below). Adapted from 

Keyboard Acoustic Emanations Revisited, by L. Zhuang, F. Zhou and J. D. Tygar, 2005, 

ACM Transactions on Information and System Security 13, 1. Copyright (2005) .......... 26 

Figure 3.1. The keyboard showing the 38 keys (red boxed) considered in the study ...... 31 

Figure 3.2. Recording setting where the datasets “TwentyFives”, “Panagrams” and 

“ThreeStates” were recorded, where the distance between the keyboard and the 

microphone was 50 cm ..................................................................................................... 33 

Figure 4.1. The block diagram of the proposed system. .................................................. 35 

Figure 5.1. Plot of MeanRealCWTForDetection with filter bank frequency range from 100 

Hz to 9000 Hz .................................................................................................................. 40 

Figure 5.2. Plot of MeanRealCWTForDetection with filter bank frequency range from 

1000 Hz to 9000 Hz ......................................................................................................... 40 

Figure 5.3. Plot of MeanRealCWTForDetection with filter bank frequency range from 400 

Hz to 6000 Hz .................................................................................................................. 41 

Figure 5.4. Plot of MeanRealCWTForDetection with filter bank frequency range from 400 

Hz to 12000 Hz ................................................................................................................ 41 

Figure 5.5. Plot of signal obtained after processing with CWT with frequency range from 

400 Hz to 9000 Hz ........................................................................................................... 42 

Figure 5.6. Confusion matrix of validation while using the standard deviation to reduce 

dimensionality .................................................................................................................. 43 

Figure 5.7. Confusion matrix of test while using the standard deviation to reduce 

dimensionality .................................................................................................................. 43 

Figure 5.8. Confusion matrix of validation while using the maximum to reduce 

dimensionality .................................................................................................................. 44 



xv 

 

Figure 5.9. Confusion matrix of test while using the maximum to reduce dimensionality

 .......................................................................................................................................... 45 

Figure 5.10. Confusion matrix of validation while using the mean to reduce dimensionality

 .......................................................................................................................................... 45 

Figure 5.11. Confusion matrix of test while using the mean to reduce dimensionality ... 46 

Figure 5.12. Confusion matrix of validation for part 1 .................................................... 48 

Figure 5.13. Confusion matrix of test for part 1 .............................................................. 48 

Figure 5.14. Confusion matrix of validation for part 2 .................................................... 49 

Figure 5.15. Confusion matrix of test for part 2 .............................................................. 50 

Figure 5.16. Confusion matrix of validation for part 3 .................................................... 50 

Figure 5.17. Confusion matrix of test for part 3 .............................................................. 51 

Figure 5.18. Confusion matrix of validation for part 4 .................................................... 51 

Figure 5.19. Confusion matrix of test for part 4 .............................................................. 51 

 



16 

 

 

 

 

 

 

  



17 

 

CHAPTER 1 

CHAPTER 

INTRODUCTION 

Communication is one of the building blocks of the human adventure. Communication 

has made it possible for people to stay together, work together, and to advance the 

accumulation of humanity by division of labor. We can divide communication into three 

as verbal, written and body language. Of these, written communication is the most 

permanent. For this reason, the way of transferring the valuable information to be 

protected is written. All valuable information such as financial records, military plans, 

patent information, source codes are available in written form. However, this value has 

made written communication the most attacked communication method. 

In a world that is increasingly digitized and digital information is equated with 

permanence, the keyboard is among the main tools through which information passes. 

However, it is often overlooked when it comes to protecting information. One of the main 

weaknesses in the use of the keyboard is that the sound produced by pressing the keys 

contains the information of the pressed key. The first study stating that this information 

could be targeted by attackers was made in 2004 by Asonov (Asonov & Agrawal, 2004) 

and his team. Since this date, the academy has approached the subject from different 

angles and introduced different methods of accessing the text entered from the keyboard 

by using the keyboard acoustic emanation. 

Keystroke transcription of recorded keyboard emanation by analyzing it after various 

transformations is not the only way to extract keystrokes from audio data. In a study 

conducted after Asonov and Agrawal (2004), the position of the key on the keyboard was 

tried to be determined by using the difference between the arrival times of the keystroke 

sound to different microphones (Zhu et al., 2014). In other studies, text entered has been 

obtained by using the sound produced by the touch screen when the virtual keyboards of 

smartphones are used (Shumailov et al., 2019; Teo et al., 2021). 

All these efforts demonstrate the impact of keystroke emanation on privacy. This effect is 

often underestimated and necessary precautions are not taken to prevent attacks. We hope 

that our study will contribute to taking the necessary countermeasures by showing how 

easily the attack can actually be carried out. The possibility that even a low-level attacker 

can capture high-critical information by using non-invasive and inexpensive methods 

shows how big risks are created by keyboard acoustic emanation attacks. 

When the studies are examined, in the method followed in general; It can be seen that the 

features of the audio data recorded with microphones are extracted with various 

techniques, and then these features are processed with supervised or unsupervised 

machine learning methods, and the audio data and keyboard keys are matched. 
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Studies that perform keystroke transcription using the sound emanation of the keyboard 

alternate between a limited number of methods such as FFT and MFCC in extracting 

sound characteristics. Despite the fact that many studies have been carried out on the 

subject over the years, the lack of a systematically prepared and labeled keystroke audio 

data that can be used in future studies is another shortcoming of the academy. Our study 

aims to contribute to the solution of both these problems. In the study, a unique technique 

that was not used in previous studies was prefered to extract the features of audio data and 

the keystroke audio recordings of the study were presented to the academy. 

In this part of the thesis; the problem statement, motivation, aim of the study, scope of the 

thesis, and outline of the thesis are presented. 

1.1. Problem Statement 

Obtaining the text entered using keystroke acoustic emanations is a serious problem in 

terms of information security. It has been shown by academic studies that this risk does 

not occur only in laboratory conditions, but also affects our daily life routine. When the 

attack scenarios of the existing studies were examined; a student writing his thesis in the 

library (Zhu et al., 2014), an employee holding meeting notes with his keyboard while 

meeting over a video meeting application such as Skype (Compagno et al., 2016), or even 

a businessman typing the password of his phone (Shumailov et al., 2019) can be affected 

by the attack surface brought by acoustic emanations. 

When a key is pressed on the keyboard, the key vibrates at the base of the keyboard, 

making a sound. The reason why keyboard acoustic emanation attacks are possible is 

because different keys make different sounds since each key causes the keyboard to 

vibrate differently. The difference between the sounds is related to the position of the key 

on the keyboard (Asonov & Agrawal, 2004). Keys that are close together on the keyboard 

make similar sounds. Therefore, the probability of confusion with each other during the 

prediction phase is high (Berger et al., 2006). 

There are also factors that affect the sound created by the keystroke on the keyboard and 

the success of the model, apart from the position of the key on the keyboard. Pressing 

force on keys, keyboard model (Asonov & Agrawal, 2004), typist speed (Slater et al., 

2019) are some of these factors. 

In addition to all these, there are attacks that do not deal with the characteristics of the 

sound coming out of the keyboard. In this study by Berger (Berger et al., 2006) et al., 

instead of the structural features of the sound, the time it takes for the sound to reach the 

microphones from the keyboard is used in the extraction of the text.  

As a result, keyboard acoustic emanations can turn into a threat in the hands of attackers 

by using both the structural properties of the sound and the speed of sound. The limited 

number of academic studies conducted in this area actually reveal how large this threat 

can reach. However, in the current situation, the studies that progress by extracting the 
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structural features of the keystroke sound are stuck in certain methods in the feature 

extraction stage. The fact that the audio recordings used in the studies are not shared adds 

another difficulty to the new studies, making it difficult to examine the subject in wider 

circles. These two situations can negatively affect the understanding of the criticality of 

the problem. 

In this study, we aim to obtain the entered text by revealing the structural features of the 

sound with a new method and evaluating it within the original model we have created. At 

the same time, we hope to support future work by sharing the audio recordings we created 

during the study. 

1.2. Motivation 

The main motivation of this study we have prepared was to approach the problem from a 

different angle and to find the opportunity to get to know the keystroke emanations better. 

At the same time, by sharing the research dataset we have prepared, it is to ensure that this 

ignored security weakness is on our agenda with new studies. 

1.3. Contribution 

With this study, we bring a new model to the studies on the topic of keystroke transcription 

by using acoustic keyboard emanations. 

The most important contribution of our study is the use of continuous wavelet transform 

method, which is much more suitable for the analysis of spiky signals such as keystroke, 

instead of feature extraction methods such as FFT, Cepstrum or cross-correlation, which 

were used before. With this method, more detailed features of the keystrokes can be 

extracted. 

Another important contribution comes from our dataset. The scarcity of labelled sound 

data that can be used in the analysis of acoustic emanations has been mentioned in 

previous studies. With this study, we present the labelled, systematically obtained raw 

audio dataset to the service of the academy. 

1.4. Scope 

The study deals with extracting the structural features of keystroke acoustic emanations 

and obtaining the entered text with machine learning models. Other features of acoustic 

emanations such as speed and time were out of the scope of this study. Machine learning 

has been carried out with labelled data, and clustering methods were out of scope. Only 

38 keys, covering Turkish and English alphabets, were included in the study. The keys in 

scope were shared under Chapter 3. 
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1.5. Limitations 

In the prepared records, the typist was asked to write the given text using a single finger. 

This makes keystrokes very easy to distinguish; however, it also distances the work from 

real-world conditions. Slater and his team (2019) stated that in the dataset they created in 

a room where real world conditions are imitated, the overlapping keystrokes situation, 

where the sound of the next key starts before the sound of a key is completed, occurs for 

31.6% of the keys. As a result, it is impossible to completely parse overlapping keys.    

The second limitation of the study is the manual determination of the MinPeakHeight 

parameter used in the keystroke detection stage. This parameter is used to locate 

keystrokes in the signal. It prevents the values below the value specified for the parameter 

from being marked as keystroke. In the current study, this value is determined manually. 

Since keystroke detection is performed on the continuous wavelet transform signal and 

not on raw audio recordings, there is a clear difference between the amplitude of the range 

with the keystroke and the amplitude of the range that is not. Therefore, a MinPeakHeight 

value that can be used for all recordings can be easily determined on the signal plot. 

The use of different keyboards is a common limitation of keystroke transcription from 

acoustic signals studies. The fact that the keyboards used in the training and test stages 

are the same seems to be effective on the success of the model. In their study, Asonov and 

Agrawal (2004) tested the model trained with keyboard A with keyboards B and C. The 

model, which showed 88% success when training and testing with the recordings taken 

from the same keyboard, showed a success of approximately 47% when different 

keyboards were used for the recordings taken during the training and testing stages. This 

situation reveals the need to know the model of the attacked keyboard in the performance 

of the study. 

Another common limitation is the assumption that the analyzed audio data belongs to a 

typing session. Although a specially noise-prevented laboratory environment was not used 

during recordings, impulsive sounds that could be confused with key sounds were not 

specifically added to the recording. The operability of the model in a sound data where all 

these sounds are present at the same time has not been examined within the scope of this 

study. 

1.6. Structure of the Thesis 

Thesis continues as follows: 

In Chapter 2, studies that perform keystroke transcription from keyboard acoustic 

emanations were grouped according to the acoustic feature they use in a detailed literature 

review. 

In Chapter 3, the preparation method of the dataset consisting of keystroke sound 

recordings, the environmental conditions where the recordings were taken, the 
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characteristics of the recordings and the specifications of the recording materials were 

explained. 

Chapter 4; explains the stages of the study sequentially, introduces the developed model. 

Here, the stages of the model were considered as black box and the details of the stages 

were not mentioned except for the input and output data. 

Chapter 5 describes the results of the study and the attempts made to achieve the best 

results. 

Chapter 6 is the discussion of the results and future work. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

Keytroke transcription from acoustic signals attracted the attention of the academy with 

the study “Keyboard Acoustic Emanations” conducted in 2004 (Asonov & Agrawal, 

2004). This study is the first one in the field. Since then, several studies have examined 

the topic and increased the percentage of accurate predictions with the help of new 

perspectives and techniques. 

2.1. Side-Channel Attacks Using Acoustic Emanations to Recover Input 

Keystroke transcription from acoustic signals is a type of side-channel attack. Side-

channel attacks (SCAs) aim at extracting secrets from a chip or a system, through 

measurement and analysis of physical parameters (Bhunia & Tehranipoor, 2019). 

Characteristics that can be exploited in a side-channel attack include timing, power 

consumption, and electromagnetic and acoustic emissions (Side-Channel Attack - 

Glossary | CSRC, n.d.). 

One of the offensive uses of keyboard acoustic emanations is on keystroke recovery. 

Keystrokes are recorded and their features are extracted. The sound of each key is unique. 

These features are used in machine learning models to classify sounds. Corrections can 

also be made with language models to improve model performance. 

Acoustic emanations is not only used for keystroke recovery (Shumailov et al., 2019). 

Virtual keyboards on phones produce sound when used. It has been shown that these 

sounds are also distinguishable and can be returned to the input using sound data 

(Shumailov et al., 2019; Teo et al., 2021). 

There is also variation in studies that perform keystroke recovery using keyboard acoustic 

emanations. Although most of the studies in this field have tried to obtain the input by 

using the features of the audio data, there are also studies that want to reach the input 

entered with the time difference of arrival method. In this method, using at least two 

microphones, the difference between the times the keystroke sound reaches these 

microphones is examined and the position of the key on the keyboard is tried to be 

determined by considering the sound velocity. The necessity of knowing the distance of 

the microphones from the keyboard appears as a limitation (Zhu et al., 2014). 
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The subject of this thesis is about detecting the entered text using the features of keyboard 

acoustic emanations. The next part of the Chapter will consider the work done on this 

topic. 

2.2. Life of a Keystroke 

This section describes the general features of a keystroke. These features are important in 

understanding why keystrokes sound different and how this difference can be used. 

In early studies (Asonov & Agrawal, 2004), a keystroke duration was found to be 

approximately 100 ms. A keystroke signal has two peaks: during push and release, 

respectively. There is relative silence between these peaks. The push peak has two active 

intervals: the touch peak when the keyboard is touched, and the hit peak when the key is 

pressed and the key touches the keyboard base, respectively. It has been stated that touch 

peak is more suitable for feature extraction. However, if the entire active interval is used, 

the result is more successful. 

Asonov & Agrawal (2004) also investigated why different keys make different sounds. In 

experiments, they found that this is because each key is in a different position on the 

keyboard and therefore vibrates the base of the keyboard differently. 

Zhuang et al. (2005) found the keystroke time to be 100 ms. similar to the previous study. 

2.3. Keystroke Detection 

Keystroke detection is the first step of the study and the difficulty level changes depending 

on the typing style. In order to overcome this problem, some studies have introduced 

typing with the "Straw Man Typing" style as a constraint (Asonov & Agrawal, 2004). In 

straw man typing, each key is pressed using the same finger vertically to ensure the same 

force and same angle (Halevi & Saxena, 2015). There is also a clear interval between each 

press. In this way, the silence and keystroke data are clearly visible on the signal. 

However, in the analysis of texts written using multiple fingers at the same time, it has 

been shown that the data of different keystrokes are intertwined (Slater et al., 2019). This 

means that the next key starts before the touch-press-release phases of a key are complete. 

Slater et al. (2019) demonstrated this phenomenon in their work. In the plot of the writing 

of the letters O-N-E, they showed that the touch and press peaks of the "N" key are 

included in the signal before the release peak of the "O" key. (Slater et al., 2019)Another 

possible obstacle that can be extracted from the work is the background noise. In intense 

noisy environments, background noise can be confused with key sounds. This makes 

keystroke detection even more difficult. They showed that some peaks created by noise 

can be mixed with the key sound.  
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Zhuang et al. (2005) divided the signal into time windows and calculated energy levels 

for each window. The Discrete Fourier Transform was used in this calculation. The energy 

level difference between the keystroke data and silence is high. They accepted the sudden 

increase in energy level as the start of the keystroke. This method was used by many later 

studies (Halevi & Saxena, 2015; Kelly, 2010; Wang et al., 2016; Zhu et al., 2014). 

After the keystroke start is found, a certain range around this point is reserved as keystroke 

data. While some studies give this range as 100 ms (Asonov & Agrawal, 2004; Berger et 

al., 2006; Zhu et al., 2014), some studies have stated that 40 msec gives better results 

(Kelly, 2010; Slater et al., 2019; Zhuang et al., 2005). 

2.4. Keystroke Detection 

Asonov & Agrawal (2004) used direct frequency spectrum features. Since the signal is 

stronger, the frequency distribution was calculated in the push peak part. Using the FFT, 

the features were extracted from the 2-3 ms long touch peak region in the push peak part. 

In addition, in this study, it was determined that higher frequencies contain less 

information. To reduce the computation time and the memory required by the DFT, Fast 

Fourier Transform (FFT) is preferred (Mneney, 2008),  

Zhuang (Zhuang et al., 2005) et al. found that Cepstrum features, in particular MFCC 

(Mel-Frequency Cepstral Coefficients), yielded better results. A 40 ms interval after the 

start of the keystroke was used for the calculation of the feature. This period covers 

approximately the entire push interval. 

MFCC features were later preferred by many studies (Anand & Saxena, 2018; Cecconello 

et al., 2019; Compagno et al., 2016; Wang et al., 2016). MFCC calculation consists of five 

steps; windowing the signal, applying the DFT, taking the log of the magnitude, and then 

warping the frequencies on a Mel scale, followed by applying the inverse DCT (Discrete 

Cosine Transform) (Rao & K E, 2017). 

Berger et al. (2006) stated that they got the best results with simple cross-correlation for 

their study, instead of using the FFT or the Cepstrum. With these properties, they 

calculated similarity matrices for both the press and release parts of each keystroke. Thus, 

for a word consisting of N letters, they formed two matrices of N x N dimensions. These 

matrices were then combined under a single similarity matrix by taking their unweighted 

average. 

Kelly (2010) tried both FFT and Cepstrum features in his study, but stated that the highest 

success was achieved with the combination of these two features. The combined feature 

dataset was created by simply concatenating the two sets of values. He found that 

Cepstrum features achieves accuracies as high as 88.9% on labelled training data and FFT 

features show similar performance. However, when these features are combined, accuracy 

goes up to 93.9%. 
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Slater et al. (2019) said that the FFT was more successful for their dataset. This is due to 

the very small size of the datasets used by previous studies. 

2.5. Keystroke Detection 

In the 2004 study (Asonov & Agrawal, 2004), classification was performed with labeled 

data using a neural network. In order to train the neural network, the raw signal was 

normalized and the training was done with the created feature-key pairs. The study showed 

that the effect of different typing styles on the model was low. Therefore, if the keyboard 

is the same, the model can be trained for one person and tested for a different person. Even 

with different keyboards, only performance drops, but transcriptions can still be made. 

Zhuang et al. (2005) used a model that does not need training with labeled data in the 

study. Linear classification was preferred instead of a neural network. The basic 

assumption in this article was that the written text was not random and was influenced by 

the language model. Here, the classifier was first trained in a training set, then tried both 

in the training set and in two more sets. 

 

Figure 2.1. Training phase (above) and recognition phase (below). Adapted from Keyboard Acoustic 

Emanations Revisited, by L. Zhuang, F. Zhou and J. D. Tygar, 2005, ACM Transactions on Information 

and System Security 13, 1. Copyright (2005) 

Figure 2.4 shows the stages of the work done by Zhuang et al. In the training phase, the 

model builds a keystroke classifier using unsupervised learning. Then in the recognition 

phase, it recognizes keystrokes using the classifier from training phase and feedback to a 

sample collector to improve the classifier. Unlabelled training data is clustered into one 

of the K classes in the unsupervised learning module. K must be a value greater than the 

number of keys in the scope of the study. As K grows, more information is collected from 

the sound samples, but the sensitivity to noise increases. Therefore, the optimum K must 

be found. The best result was obtained when K=50 was selected. 

The second step is to extract the text from these clusters. For this, the Hidden Markov 

Model (HMM) was used. In this article, the feedback-based training process was run over 

and over again. The output of the previous iteration was used as the labeled data of the 

next. 
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Three different machine learning models were used and the results were compared. The 

best method has been linear classification, then Gaussian mixtures, and then neural 

networks.  

Berger et al. (2006) calculates a binary called constraint, which expresses the relationship 

between two keystrokes. A similarity matrix was used to calculate these constraints. A 

word has a certain set of constraints; however, there can be more than one word with this 

set of constraints. For example; the words help, “Iraq”, “nose” and “path” all have the 

same set of constraints. The types and meanings of constraints are shown in Table 2.1. 

Table 2.1 The four constraint types and their meanings. Adapted from Dictionary Attacks Using Keyboard 

Acoustic Emanations, by Berger et al., 2006, Proceedings of the 13th ACM conference on computer and 

communications security. Copyright (2006) 

Type Meaning 

EQ Ki=Kj means that the i’th keystroke and the j’th keystroke stem from 

the same key on the keyboard 

ADJ Ki~Kj means that the j’th keystroke stem from a key that is adjacent to 

tke key which the i’th keystroke stems from. For example, Q=W but not 

Q=E since E is located two positions away from Q on QWERTY 

keyboard. 

NEAR Ki~Kj means that Ki and Kj are at most two keys apart on the keyboard, 

e.g., keys NEAR G include R,D,N,J etc. 

DIST Distant keys are those that are not NEAR to each other. 

 

Words suitable for these constraints were brought from the dictionary. Scanning the 

dictionary can be done quickly with suitable data structures. The critical point here is to 

be able to calculate the correct constraints. Even one incorrect constraint can result in 

completely different words. A set of candidate words was created by bringing words 

suitable for constraints from the dictionary. Performance evaluation was made by looking 

at the rank of the entered word in the set. 

Compagno et al. (2016) tested a number of machine learning models in action. These 

models were Logistic Regression (LR) classifier, Linear Discriminant Analysis (LDA), 

Support Vector Machines (SVM), Random Forest (RF) and K-Nearest Neighbors (KNN). 

Extensive grid search method was preferred in order to optimize the models in the tests 

where MFCC features are used. 

Slater et al. (2019), unlike previous studies, did not prefer a factored approach and 

developed an end-to-end model. In this model, detection, feature extraction and 

classification stages were resolved in a single block. At this stage, they benefited from the 

recurrent neural network architecture. In their work, they present a comparison of the 

factored approach and the end-to-end approach. 
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2.6. Keystroke Detection 

Some studies have made corrections on the predictions and improved the predictions by 

using the features of the language of the text after the classification phase. At the most 

basic level, predictions are checked with the help of a dictionary and corrected if a word 

in the dictionary is reachable with a certain number of letter changes. This number usually 

varies according to the length of the word. For example, while the words that can be 

reached with only one letter change in a five-letter word are searched in the dictionary, up 

to 3 letter changes are allowed in a word with ten or more letters. This method is called 

“spell checking” (Levenshtein, 1966).  

However, with spell checking, the word “fur example” will remain uncorrected. Spell 

checking does not take into account the relationship between words, the frequency of use 

of words, and sentence structures. The most appropriate candidate words in the dictionary 

can be decided by looking at the context of the sentence or the words before and after the 

related word. This method is called the "n-gram language model" (Zhuang et al., 2005). 

In addition, some studies have calculated a probability for each letter in the next prediction 

based on the letters in the word using developed language models, and have given a certain 

weight to the probabilities coming from the language model while choosing the 

appropriate one among the possible predictions obtained using audio features. 

Asonov and Agrawal (2004) did not attempt to improve their results with error checking 

or the language model. However, 88% of the keys pressed were predicted correctly in the 

first three attempts in the recordings obtained using the same keyboard and the typist. 

Zhuang et al. (2005) performed error correction with the spell checking method. In 

addition, they improved the predictions with the trigram language model they created. 

When they took a 10-minute audio recording of an English text as input, they were able 

to return 96% of the entered text. 

Berger et al. (2006) did not need to make improvements with the language model, as they 

assumed that the entered word was a word that exists in the dictionary. While they could 

find words with 10+ characters 90% correct in the first 50 tries, this rate was 73% for all 

words.  

Cecconello et al. (2019) used an English dictionary to develop their results and selected 

each word by ordering them according to their probability of use. In tests using different 

laptops, it was stated that 98% of the 20 predictions for the MacBook Pro laptop were 

correctly predicted. 
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2.7. Keystroke Detection 

There are various statistical and machine learning methods that can be explored for 

clustering (unsupervised) and classification (supervised) of keystrokes. Due to time 

constraints, only some of these methods were tested, which are briefly mentioned below. 

2.7.1. Tree Models 

Tree-based machine learning is one of the most widely used methods. The decision tree 

can be a classification tree or a regression tree. The former predicts a class, whereas the 

latter predicts a number. Tree learning can be carried out in various ways. Random Forest, 

Rotation Foresty and MARS are some of the notable algorithms. Each node of the tree 

created in the decision tree method has a feature statement (except for the last nodes that 

report the result). The tree is divided into branches according to these nodes. In this 

method, the aim is to assign the features that differentiate the cluster the most to the highest 

level nodes (Quinlan, 1986). 

2.7.2. Linear Discriminant Analysis 

Discriminant Classifier or Linear Discriminant Analysis is a model that works on numeric 

values. It makes the classification by looking at the statistical features of the classes. When 

determining the axis it will form between the classes, the LDA uses two criteria (Fisher, 

1936): 

1. Maximize the distance between the means of the two classes, and 

2. Minimize the variation within each class. 

2.7.3. Naive Bayes Classifiers 

Naive Bayes is a probabilistic machine learning algorithm based on the Bayes Theorem 

(Hand & Yu, 2001). 

𝑃(𝑌|𝑋) =  
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
 (2.1) 

The Bayes Theorem formula shows the reduction of conditional probability to set 

probabilities. The probability that the C character to be classified in the S class is the 

product of the probability that all the characters in the text are in the S class. (Hand & Yu, 

2001). 
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2.7.4. Support Vector Machines 

The purpose of the SVM classification method is to ensure that the boundary line to be 

drawn between the classes on a plane passes through the furthest point to the elements of 

both groups. Maximizing the margin distance provides some reinforcement so that future 

data points can be classified with more confidence (Cortes & Vapnik, 1995). 

2.7.5. K-Nearest Neighbors 

While classifying each new data in the KNN algorithm, it is decided which class it belongs 

to by looking at the K nearest neighbors. The value of K is variable and should be defined 

neither too small nor too large. There are different distance metrics that can be used when 

measuring the distance between data. Euclidean, Manhattan, Cosine distances are some 

of them. 

2.7.6. Ensemble Models  

It is a method that aims to achieve more successful results by using more than one 

technique together. There are two main varieties of the method. In the Bagging method, 

the classification of a data in all used machine learning models is checked and the class is 

assigned to whichever class the majority puts the data. In the Boosting method, it applies 

the same method, but not all models are given the same weight, their weights vary 

according to their individual success (Opitz & Maclin, 1999).  
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CHAPTER 3 

 

3. DATASET CONSTRUCTION 

While recording, a Dell brand KB212-B model keyboard and a Logitech brand C510 

model microphone were used. Records were created with Matlab program in wav format 

with 24 bits and 48 kHz. sampling frequency. The recordings were taken in a room, similar 

to an office environment where sounds such as the street and air conditioning were present 

in the background with an average SPL of  61 dBA.  

During the study, only 38 frequently used keys were considered, which are shown as 

boxed in red in Figure 3.1. 

 

Figure 3.1. The keyboard showing the 38 keys (red boxed) considered in the study 

The recording process was completed in three stages. In the first stage, a dataset was 

created by pressing each of the 38 keys for 100 times in succession. In this way, using one 

finger to press the same key multiple times is called "Straw Man Typing" in the literature 

(Halevi & Saxena, 2012). To reduce the file sizes 100 keystrokes were divided into four 

separate sound files, each one containing 25 keystrokes. The microphone was placed 

behind the keyboard in the same plane. There was a distance of approximately 20 cm 

between the microphone and the keyboard during the recording. From now on this dataset 

will be called “Hundreds”. 

In order to test the effect of changing acoustic conditions due to the recording setting and 

the environment, two other datasets were also recorded. The aim was to investigate the 
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hypothesis that a dataset that is not prepared in the same environment as the test data can 

also improve the performance of the model when used in training. 

In the second stage, each of the 38 keys in the scope were pressed 25 times in succession 

with the same “Straw Man Typing”. Each sound file contains 25 keystrokes and there is 

only one sound file for each of the 38 keys. From now on this dataset will be called the 

“TwentyFives”. There was a distance of approximately 50 cm between the microphone 

and the keyboard during the recording and the keyboard was on an office table. The image 

of the recording environment is shown in Figure 3.2. 

The recording of the third stage was made in the same environment as the second stage. 

In this stage, unlike the previous stages, the writing of two texts were recorded instead of 

pressing the keys in succession. Typing is still done using one finger, but following a text 

so that the keys pressed in succession are different. This writing style is called "Hunt and 

Peck Typing" in the literature (Halevi & Saxena, 2012). 

 The first text was a panagram for Turkish: “Vakfın çoğu, bu huysuz genci plajda 

görmüştü.”. In the spelling of the capital letter v, “caps lock” is turned on and off. 

When the sentence is completed, the “enter” and “backspace” keys are pressed, 

respectively. In this way, 35 of the 38 keys in the scope were obtained. This text 

contains 49 keystrokes and has been recorded by typing it 20 times. Note that in 

this panagram, not all of the 35 keys are pressed equal number of times. In order 

to prevent biased results, only the first press of each unique key was considered. 

From now on this dataset will be called “Panagrams”. 

 The second text was “new york quebec texas” prepared to get the remaining 3 

keys, namely w, q and x. This text contains 21 keystrokes and has been recorded 

by typing 20 times. From now on this dataset will be called “ThreeStates”. 

The 35x80 matrix from the "Panagrams" records and the 3x80 matrix from the 

"ThreeStates" records were combined. As a result of the process, 20 matrices of 38x80 

dimensions were obtained. From now on this dataset will be called the “Panagrams and 

ThreeStates”. 

Looking at the whole datasets; there are 3800 keystrokes in total in 152 records in the 

"Hundreds" dataset, 950 keystrokes in total in 25 records in “TwentyFives” dataset, 760 

keystrokes in total in 20 records in the "Panagrams and ThreeStates" dataset. The datasets 

are available at https://github.com/aozkantr/KeystrokeRecordings. 
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Figure 3.2. Recording setting where the datasets “TwentyFives”, “Panagrams” and “ThreeStates” were 

recorded, where the distance between the keyboard and the microphone was 50 cm 
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CHAPTER 4 

 

4. KEYSTROKE TRANSCRIPTION 

 

The block diagram of the proposed system is shown in Figure 4.1. 

 

Figure 4.1. The block diagram of the proposed system. 

Each one of these blocks are explained in detail in the next sections. 

4.1. Continuous Wavelet Transform 

Continuous Wavelet Transform (CWT) was used in the analysis of non-stationary signals. 

It was developed as an alternative to STFT to solve the resolution related problems. To 

achieve this aim, the continuous wavelet transform analyses the signal with different 

resolutions at different frequencies. The continuous wavelet transform was computed by 

changing the scale of the analysis window, shifting the window in time, multiplying by 

the signal, and integrating over all times (Torrence & Compo, 1998).  
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With CWT, high frequencies are better located in time, while low frequencies are better 

located in the frequency domain. It is suitable for the analysis of the signals that travel at 

low frequencies for a long time, while the high frequencies of the signal last for a short 

time. This is the nature of many signals in the real world. Impulsive signals such as 

keystrokes can be analyzed most accurately with CWT. 

4.2. Keystroke Detection and Segmentation 

The continuous wavelet transform of the raw signal was used in the keystroke detection 

stage. Detection stage is handled in the function named “KeystrokeExtractor”. In order to 

prevent the noise and to detect the peak point more clearly, a narrower frequency range 

was preferred compared to the filterbank frequency range to be used in the segmentation 

stage. In the tests performed by trying different intervals, it was seen that the range from 

400 Hz to 9000 Hz provided the most effective results for detection. Details of the trials 

are given under Chapter 5. 

When the transform operation was performed with the created filterbank, the resulting 

signal for each scale had imaginary and negative values. In order to accurately detect the 

positive peaks pointing to the keystroke, the absolute value of the real part of the signal at 

each scale was taken. Then the mean value of the resulting signals were calculated. This 

process cleaned the signal and emphasized the peaks for keystroke detection. 

In order to detect the peaks, a known peak detection algorithm was used, whose 

implementation in Matlab is known as the “findpeaks” function (Find Local Maxima - 

MATLAB Findpeaks, n.d.). Findpeaks function returns two vectors with the local maxima 

(peaks) of the input signal vector and the locations of these peaks. By using the parameters 

of the function, the minimum distance between the consecutive peaks (MinPeakDistance) 

or the smallest amplitude value that a peak should have (MinPeakHeight) can be 

configured. 

In the study, the MinPeakHeight value was determined heuristically. This value is related 

to the amplitude of the signal and the amplitude value is affected by a number of factors, 

such as the quality of the microphone, microphone preamps, the distance between the 

microphone and the keyboard, and the force amount of keystrokes. However, due to CWT-

based pre-processing, there was a significant difference in signal amplitudes between the 

times when keystroke was present and absent. Thanks to this difference, MinPeakHeight 

could be set to a value to cover all keystrokes. Since the keystroke signal is an impulse-

like signal, it has high amplitude values in a narrow time interval, while it has relatively 

lower values in the remaining times. 

While determining the MinPeakDistance, another limitation, which is the typist’s use of 

one finger while typing, makes our work easier. Since one finger is used and the 

keystrokes do not overlap each other, the distance specified as MinPeakDistance can cover 

the entire keystroke quite safely. 
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After the keystroke onset time was detected, the raw audio data of this keystroke must be 

isolated from the record. At this stage, called segmentation, it was preferred to receive all 

of the keystroke data, including the press and release phases.  

In order to get all the keystroke data, a total of 300 ms long blocks (50 ms before the peak 

point and 250 ms after the peak point) were taken for each keystroke. These values 

correspond to 2400 and 12000 samples, respectively, with the sampling frequency of 48 

kHz. The created segments were combined in a matrix named RawKeystrokes. Each row 

of the RawKeystrokes matrix holds 14400 samples for a separate keystroke. Code for 

keystroke detection and segmentation is given in Appendix A as “Keystroke Extractor”. 

4.3. Normalization and Feature Extraction 

The data obtained after the detection and segmentation stages is still raw audio signal data. 

Energy normalization is required to prevent the force differences applied to the keys 

during the recording from misdirecting the model. A function (RawAudioNormalizer 

function) was written for this purpose, which takes the raw signal data and normalizes the 

values between -1 and 1. 

Normalized segments were then used in feature extraction (FeatureExtractor function) 

which also utilizes continuous wavelet transform. Different from the filterbanks used in 

the keystroke detection stage, in the filter bank specified for feature extraction, the 

frequency range was kept wider, i.e., from 400 Hz to 24 kHz. The reason for this is that 

data at different frequencies are wanted to be evaluated with minimum loss. While 

choosing the 24 kHz value, the sampling frequency of 48 KHz was taken into account, 

due to the Nyquist Theorem (Lévesque, 2014). The lower bound of 400 Hz was selected 

because keystrokes’ data start from this frequency as reported in the study (Kelly, 2010). 

For this frequency range, the CWT has 80 scales. 

After calculating the CWT of the keystrokes, we obtain a data matrix of size N x T x S, 

where N is the number of keystrokes, T is the segment size, which is 14400, and S is the 

number of CWT scales, which is 80 for the selected frequency range.  

A 3-dimensional matrix makes it difficult to work with most of the machine learning 

models. The solution here is to reduce the dimensions of the matrix. After various trials 

detailed in Chapter 5 Results, the most appropriate method was found to take the standard 

deviation value of each segment, resulting in a feature vector of size 1xS for each 

keystroke. Then, these vectors were combined under a single matrix of size N x S to 

produce the data matrix. Code for normalization and feature extraction is given in 

Appendix B and C as “Normalizer” and “Feature Extractor”, respectively. 
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4.4. Keystroke Classification 

"Classification Learner", an application offered by Matlab, was used in the 

implementation of machine learning models. In Classification Learner app, one can 

explore his/her data, select features, specify validation schemes, train models, and assess 

results (Train Models to Classify Data Using Supervised Machine Learning - MATLAB, 

n.d.). 

Working with the Classification Learner app starts by creating a new session from the 

workspace. In the classification stage, after selecting the data matrix resulting from the 

feature extraction stage as the Data Set Variable, the label prepared for this matrix was 

added to the response header from the workspace. Default values were preferred in the 

validation section. For validation 5-fold cross validation was applied.  

Due to the high speed and accuracy it offers, the most suitable model was found to be the 

“Optimizable Discriminant” model. "Grid Search" was determined as the optimizer. Grid 

Search is an approach, which tests every unique combination of hyperparameters in the 

search space and returns the best performance (Liashchynskyi & Liashchynskyi, 2019). 

The number of grids was left at the default value of 10. For validation, 5-fold cross 

validation was applied. In the configuration of the optimizer parameters, the default values 

“Number of Grid Divisions” = 0 and “Training Time Limit” = Unchecked were selected. 

PCA option was not used as they did not improve performance drastically. 
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CHAPTER 5 

 

5. RESULTS 

 

5.1. Segmentation Results 

One of the parameters affecting the keystroke detection and segmentation stages is the 

“frequency range of filter bank”. In order to accurately detect the keystroke peak, the 

signal must be cleared of noise and the peaks must be made clear. 

CWT processing was applied to the raw audio signal using filter banks configured with 

different frequency ranges. While lower frequency value candidates are selected as 100 

Hz, 400 Hz and 1000 Hz; higher frequency candidates were determined as 6000 Hz, 9000 

Hz, 12000 Hz and 24000 Hz. Trial results are plotted in Figures from 5.1 to 5.4. 
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Figure 5.1. Plot of MeanRealCWTForDetection with filter bank frequency range from 100 Hz to 9000 Hz 

 

Figure 5.2. Plot of MeanRealCWTForDetection with filter bank frequency range from 1000 Hz to 9000 Hz 
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Figure 5.3. Plot of MeanRealCWTForDetection with filter bank frequency range from 400 Hz to 6000 Hz 

 

Figure 5.4. Plot of MeanRealCWTForDetection with filter bank frequency range from 400 Hz to 12000 Hz 

When the lower frequency value for the filter bank drops below 400 Hz, it will be seen 

that noise starts to occur in the signal, and when the upper frequency value is above 9000 

Hz, there will be a decrease in the peak amplitude value. Therefore, the optimum 

frequency range was found to be between 400 Hz and 9000 Hz.The plot of this trial is 

given in Figure 5.5. 
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Figure 5.5. Plot of signal obtained after processing with CWT with frequency range from 400 Hz to 9000 

Hz 

Only the real values of the CWT output were used, and then their absolute values were 

calculated. In order to reduce the dimension, the resulting values were averaged across the 

dimension of scales.  

This processing made it easier to detect the keystrokes with the peak detection algorithm 

mentioned in Chapter 4. Using this technique all the keystrokes in the datasets were 

successfully detected, which was verified by manual checking. 

5.2. Feature Extraction Results 

As we stated earlier, machine-learning models have difficulty working with 3D matrices. 

Our solution at this point is to reduce the size of the matrix. It was decided to reduce it by 

taking either the mean, maximum or standard deviation values across the time dimension. 

The dimension reduction technique can affect the classification performance obtained at 

the end of the day. Indeed, taking the standard deviation has been found to give the best 

performance among the three. 

The records in the TwentyFives dataset were divided into train/test datasets by splitting 

the keystrokes by 20/5 for each character.  

When standard deviation was used to reduce dimension, the validation accuracy was 

89.3%, and the test accuracy was 94.7%. The confusion matrices are given in Figure 5.6 

and Figure 5.7 for validation and test evaluations, respectively. 
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Figure 5.6. Confusion matrix of validation while using the standard deviation to reduce dimensionality 

 

Figure 5.7. Confusion matrix of test while using the standard deviation to reduce dimensionality 

When mean was taken to reduce dimension, the validation and test accuracies were 83.0% 

and 86.3%, respectively.  
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When maximum values were used to reduce dimension, the validation and test accuracies 

were 78.2% and 81.6%, respectively. The confusion matrices of these two statistical 

features were shared in figures from 5.8 to 5.11. 

 

Figure 5.8. Confusion matrix of validation while using the maximum to reduce dimensionality 
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Figure 5.9. Confusion matrix of test while using the maximum to reduce dimensionality 

 

Figure 5.10. Confusion matrix of validation while using the mean to reduce dimensionality 
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Figure 5.11. Confusion matrix of test while using the mean to reduce dimensionality 

5.3. Classification Results 

There are many models offered by the Classification Learner app. It was decided to work 

with “Optimizable” variants of all models. Optimizable models aim to achieve the highest 

performance by configuring the model's hyperparameters (Hyperparameter Optimization 

in Classification Learner App - MATLAB & Simulink, n.d.). Tested models were Tree, 

Discriminant, Naive Bayes, SVM, KNN, Ensemble and Neural Network. In order to 

compare the performances of these models, the datasets specified in Part 5 in Table 5.1 

were used. Results are shared in Figure 5.12 and 5.13. 

The datasets were used in five different ways in order to test the effect of the recording 

setup and the key press method. In the first part of the study, the records in the 

"TwentyFives", “Panagrams and ThreeStates” datasets were used. All of the 

“TwentyFives” records and 50% of the “Panagrams and ThreeStates” records were 

combined to form the training set. The remaining 50% of the “Panagrams and 

ThreeStates” records were reserved as the test set. When the training dataset was trained 

with Optimizable Discriminant method, the validation accuracy of 80.1% was found. 

Then, the test dataset was loaded, and the test accuracy was found to be 72.9%. Confusion 

matrices of all the phases for both training and test stages are in figures from 5.14 to 5.19. 
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Table 5.1 Validation and test accuracies of all optimizable models in classification learner for part 5 

Models Validation Accuracy Test Accuracy 

Optimizable Tree 35.8 27.6 

Optimizable Discriminant 79.6 80.3 

Optimizable Naïve Bayes 50.2 42.8 

Optimizable SVM 72.8 67.1 

Optimizable KNN 57.9 52.0 

Optimizable Ensemble 50.4 38.8 

Optimizable Neural Network 68.6 66.4 

 

Table 5.2 Training and test datasets of the classification phases 

Part Training Dataset Test Dataset Validation 

Accuracy 

Test 

Accuracy 

1 TwentyFives + 50% of 

(Panagrams and ThreeStates) 

Other 50% of (Panagrams 

and ThreeStates) 

80.1 72.9 

2 Hundreds + TwentyFives + 

50% of (Panagrams and 

ThreeStates) 

Other 50% of (Panagrams 

and ThreeStates) 

72.4 22.4 

3 80% of (Panagrams and 

ThreeStates) 

20% of (Panagrams and 

ThreeStates) 

71.5 70.4 

4 TwentyFives Panagrams and 

ThreeStates 

91.3 35.7 

5 TwentyFives + 80% of 

(Panagrams and ThreeStates) 

20% of (Panagrams and 

ThreeStates) 

79.6 80.3 
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Figure 5.12. Confusion matrix of validation for part 1 

 

Figure 5.13. Confusion matrix of test for part 1 
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Figure 5.14. Confusion matrix of validation for part 2 
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Figure 5.15. Confusion matrix of test for part 2 

 

Figure 5.16. Confusion matrix of validation for part 3 
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Figure 5.17. Confusion matrix of test for part 3 

 

Figure 5.18. Confusion matrix of validation for part 4 

 

Figure 5.19. Confusion matrix of test for part 4 
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In the second part, all the records were used together. This time, all the records in the 

"Hundreds" dataset have been added to the training set created in the first stage; while the 

test dataset was used unchanged. When the training dataset was trained with Optimizable 

Discriminant, validation accuracy was found to be 72.4%. Then, by loading the test 

dataset, the test accuracy was found to be 22.4%. 

In the third part of the study, the records in the "Panagrams and ThreeStates" dataset were 

used together. They were randomly divided into two as training and test datasets, at a ratio 

of 16/4. When the training dataset was trained with Optimizable Discriminant, the 

validation accuracy was 71.5%. Then, the test dataset was loaded, and the test accuracy 

was found as 70.4%. 

For the fourth part, the training was made with only the “TwentyFives” dataset, while the 

testing was made with the “Panagrams and ThreeStates” dataset. Validation accuracy was 

91.3%, while test accuracy was 35.7%. 

In the last part of the study; the record in the “TwentyFives” dataset and 80% of 

“Panagrams and ThreeStates” dataset were combined for training. Test dataset consisted 

of the remaining 20% of the “Panagrams and ThreeStates” dataset. In this case, the 

validation accuracy was 79.6%, while the test accuracy was 80.3%. 
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CHAPTER 6 

 

6. DISCUSSION 

When the classification results performed with the optimizable discriminant model in 

Table 5.1 are examined, it can be seen that the model achieves higher accuracy in the 

records taken under the same conditions. The accuracy value obtained with part 1 datasets, 

all of which were recorded under the same conditions, decreased when a dataset recorded 

under different conditions was added to the training phase in part 2. Especially, it 

drastically reduced the accuracy obtained during the test phase. 

Another conclusion that can be drawn from the table is that the typing style also has an 

effect on the results. In Part 3, both the training and test datasets consisted of key sounds 

typed in the "Hunt and Peck Typing" style. However, in part 4, the training dataset was in 

the style of "Straw Man Typing" and the test dataset was in the style of "Hunt and Peck 

Typing". For this case, the test accuracy decreased significantly compared to part 3. 

Finally, although the model trained with one typing style does not show great success in 

the test of a different typing style; the presence of both typing styles at the training phase 

affects the results positively. In Part 3, the training and test datasets consisted of the same 

typing style. When a new dataset recorded with a different typing style was added to the 

training datasets in Part 5, it is seen that the accuracy values increase for both the training 

and test phases. 

The amount of accuracy increase is also related to the split ratio of the dataset between 

training and testing. While the increase in test accuracy in part 1 was limited compared to 

part 3, the increase in test accuracy was higher in part 5, where most of the dataset was 

allocated to the training stage, compared to part 3. 

6.1. Mitigations 

Anand and Saxena (2018) made two suggestions against keyboard acoustic emanation 

attacks. The first of these, white noise, was produced with matlab and added to the entire 

recording for signal masking in the 400 Hz – 12 kHz frequency range. As a result of the 

study, they showed that white noise had no effect on the success of the model. While many 
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microphones and audio recording applications even offer background noise suppression 

by default, this result is not surprising. 

The second recommendation is to use fake keystrokes. Fake keystrokes are real keystroke 

sounds that have been previously recorded. Anand and Saxena stated that fake keystrokes 

are not filtered in their study on Skype. Fake keystroke sound cannot be distinguished 

from real keystroke sound. This will cause the attacker model to identify keys that are not 

included in the text, and the language modeler enhancements will not work properly.  

It can be protected from attack not only by adding artificial sounds, but also by removing 

the noises made by the keys. In this context, there is a need to test the model with the use 

of quiet keyboards. Quiet keyboards do not cause a mechanical release when used. Thus, 

the entered text will remain secure. 

Finally, one of the most effective solutions is to leave the recording devices out, not to 

take them into places where sensitive data is transferred using the keyboard. While 

applying this solution, it should not be forgotten that the laptop or webcam microphones 

are also disabled. 

  



55 

 

 

 

 

 

 

CHAPTER 8 

 

7. CONCLUSIONS 

In the thesis study, our first aim was to present the academy with a systematically prepared 

and labeled keystroke recordings dataset that can be used in keystroke transcription from 

acoustic emanations research. We believe that the datasets we have prepared in this 

direction are successful both because they contain different typing styles and because they 

have a very wide scope. 

The work is also valuable because it demonstrates that continuous wavelet transform 

features can also be used in keystroke analysis, while presenting an original model for 

keystroke detection and feature extraction. 

We have also shown the detrimental effect of using a training dataset that is not prepared 

in the same way as the test data on the performance. When the first and second stages of 

the classification study are examined, it can be seen that the inclusion of "Hundreds" 

records in the training dataset significantly reduces both validation and test accuracy. At 

this point, we can say that although the same keyboard and the same typist are used, the 

change in the typing style will negatively affect the performance of the attack. However 

in practice the training data can be collected while a typist is typing a known text, such as 

a known website address, their names, email addresses, etc., which would be matching the 

same typing style and environment for transcribing an unknown typed text.  

Since the considered keys also include “backspace”, it is also possible to see the deleted 

characters and texts, during text editing, for example while a person is composing an 

email. This may be useful for analyzing the typist’s intentions and thoughts, even if they 

do not appear in the final text.  

As a future work, the transcribed texts can further be corrected or improved by using 

dictionaries and language models. The number of letters in a written word is clearly 

understood, especially because of the high distinguishability of the "space", "enter", "caps 

lock" and "backspace" keys. The inclusion of the Turkish alphabet in the scope allows this 

study to be carried out for Turkish, a language that has not been considered in previous 

keystroke transcription studies. 
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It has also been observed in the study that certain keys can be confused with each other. 

In particular, this takes place between keys with close positions on the keyboard. The 

knowledge of frequently confused keys can be exploited together with a language model 

to increase the accuracy of transcribed text. 

Shift key is not included in the scope of the study. Including this key in the scope is of 

great importance, especially for successful password attacks. The shift key is used when 

writing special characters and even when entering capital letters for some users. 

Cecconello et al. (2019) shared a tip for distinguishing the shift key they gave as future 

work. Accordingly, in order to detect the use of the shift key, the sections where a new 

key is inserted between the press and the release peak can be examined. In addition, our 

recommendation is to treat the keys pressed while the shift key is pressed as a separate 

key group from the keys pressed alone. The key tones are distinguishable because they 

vibrate the keyboard base differently due to their position. Since the vibration of the 

keyboard will change while the shift key is pressed, we anticipate that the same key 

pressed alone and the same key pressed while the shift key is pressed will produce 

different sounds. 

The use of different microphone types and different numbers of microphones is also worth 

examining. In the study, one and only one modeled microphone was recorded. Asonov 

and Agrawal (2004) tried different microphone models but used this to see the effect of 

distance on the model's success. The effects of recordings taken from various devices with 

microphones used in attack scenarios such as laptop, webcam, mobile phone on the model 

can be examined. The increase in the performance of the model with the use of a large 

number of microphones is also one of the possible results. 

The future works proposed so far have been to increase the success of the attack. Another 

point of view that is at least as important as this one is on how to minimize being affected 

by this attack. At this point, since we share the codes and dataset produced in the study; 

proposed mitigations can be tested directly as a continuation of this study. The results 

produced in the current study showed how easily keystroke emanations can be used and 

how large data leaks they can cause. These results are an important source of motivation 

for working on mitigations. We hope that the mitigations to be determined by future works 

will be made available to make the data more secure.  
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APPENDICES 

 

APPENDIX A 

 

KEYSTROKE EXTRACTOR 

 

function [RawKeystrokes, Fs] = KeystrokeExtractorV03 (AudioPath) 

    % Reading Audio 

    [Audio, Fs] = audioread(AudioPath); 

    SignalLength = length(Audio); 

    % Keystroke Detection 

    FbDetection = cwtfilterbank('SignalLength', SignalLength, 'SamplingFrequency', Fs, 

'FrequencyLimits', [400 9000], 'wavelet', 'amor'); 

    [CWTAudioForDetection, ~] = cwt(Audio, 'Filterbank', FbDetection);  

    MeanAbsRealCWTAudioForDetection = mean(abs(real(CWTAudioForDetection))); 

    [~, Locations] = findpeaks(MeanAbsRealCWTAudioForDetection, 

"MinPeakHeight",1/300 , "MinPeakDistance", Fs/4); 

    % Segmentation 

    SegmentSize= 1920; 

    SegmentLengthBeforePress = 5*SegmentSize/4;  

    SegmentLengthAfterPress = 25*SegmentSize/4;  

    RawKeystrokes = zeros(length(Locations), 

SegmentLengthBeforePress+SegmentLengthAfterPress); 

end 
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APPENDIX B 

 

NORMALIZER 

 

function [NormKeystrokes, EnergyLevels] = NormalizeRawAudioV03 

(RawKeystrokes) 

    NormKeystrokes = zeros(length(RawKeystrokes(:,1)), length(RawKeystrokes(1,:))); 

    EnergyLevels = zeros(length(RawKeystrokes(:,1)), 1); 

    for i = 1:length(RawKeystrokes(:,1)) 

        TempRaw = RawKeystrokes(i,:); 

        TempNorm = TempRaw/sqrt(mean(TempRaw.^2)); 

        TempEnergy = sqrt((mean((TempNorm).^2))); 

        NormKeystrokes(i,:) = TempNorm; 

        EnergyLevels (i) = TempEnergy; 

    end 

end 
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APPENDIX C 

 

FEATURE EXTRACTOR 

 

function [MaxFeatureAggregated] = FeatureExtractionV03 (NormKeystrokes, Fs) 

    Size = size(NormKeystrokes); 

    SignalLength = Size(2);  

    FbSegmentation = cwtfilterbank('SignalLength', SignalLength, 'SamplingFrequency', 

Fs, 'FrequencyLimits', [100 24000], 'wavelet', 'amor');      

    for i = 1:Size(1) 

        [Feature, ~] = cwt(NormKeystrokes(i,:), 'Filterbank', FbSegmentation);  

        Feature = abs(Feature);  

        MaxFeature = std(Feature'); 

        if i==1  

            ScaleNumber = length(Feature(:,1)); 

            MaxFeatureAggregated = zeros(Size(1),ScaleNumber); 

        end 

        MaxFeatureAggregated(i,:) = MaxFeature; 

    end 

end 

 


