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ABSTRACT

A COMPARISON OF DEEP NEURAL NETWORK ARCHITECTURES FOR COVID-19
DETECTION USING CT CHEST IMAGES

SARIOĞLU, Mehmet Tunahan

M.S., Department of Health Informatics

Supervisor: Prof. Dr. Ünal Erkan Mumcuoğlu

September 2022, 52 pages

Coronavirus Disease 2019 (COVID-19) has rapidly spread around the world since December 2019.
Due to the low confidence in the real-time reverse transcription-polymerase chain reaction (RT-PCR)
test, which is considered the gold standard, CT images are frequently consulted for diagnosis. CT
findings of COVID-19 patients has been analysed and documented in the literature, which are ground-
glass opacities (GGOs), air bronchograms, vascular enlargement and halo sign. But, these CT findings
encountered in COVID-19 disease are not very specific and vary during the course of the disease. In
addition, it has common CT appearance and symptoms with many other infectious and non-infectious
diseases. This thesis compares various deep transfer learning structures used to distinguish COVID-
19 from other diseases using image processing techniques. In this study, the performances of the
classification methods using five different convolutional neural network structures were compared.
Unlike other similar studies, two public CT dataset was used together to train, test and validate the
methods. Overfitting issues with the train data had been experienced and best scores are obtained using
augmented data. Accuracy values of 81.65%, 86.08%, 90.82%, 79.75% and 81.01% were obtained in
Xception, VGG 16, ResNet 50, Inception v3 and Inception ResNet v2 convolutional neural networks,
respectively. The importance of hyper parameters such as epoch number, loss and activation functions
used during training is also mentioned in this study.

Keywords: CT, COVID-19, Neural Networks, Transfer Learning, Classification
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ÖZ

GÖĞÜS BT GÖRÜNTÜLERİYLE COVID-19 TESPİTİNDE DERİN SİNİR AĞI
MİMARİLERİNİN KARŞILAŞTIRILMASI

SARIOĞLU, Mehmet Tunahan

Yüksek Lisans, Sağlık Bilişimi Bölümü

Tez Yöneticisi: Prof. Dr. Ünal Erkan Mumcuoğlu

Eylül 2022, 52 sayfa

Koronavirüs hastalığı 2019 Aralık ayından itibaren hızla tüm dünyaya yayıldı. Altın standart olarak
kabul edilen gerçek zamanlı ters transkripsiyon-polimeraz zincir reaksiyonu (RT-PCR) testine olan
güvenin düşük olması nedeniyle tanı için BT görüntülerine sıklıkla başvurulmaktadır. COVID-19 has-
talarının BT bulguları, buzlu cam opasiteleri, hava bronkogramları, vasküler genişleme ve halo işareti
olarak literatürde analiz edilmiş ve yayınlanmıştır. Ancak COVID-19 hastalığında karşılaşılan bu BT
bulguları çok spesifik olmayıp hastalığın seyri sırasında da değişiklik göstermektedir. Ayrıca diğer bir-
çok bulaşıcı ve bulaşıcı olmayan hastalık ile ortak BT görünümü ve semptomlarına sahiptir. Bu tez,
görüntü işleme tekniklerini kullanarak COVID-19u diğer hastalıklardan ayırt etmek için kullanılan
çeşitli derin transfer öğrenme yapılarını karşılaştırmaktadır. Bu çalışmada, beş farklı evrişimli sinir
ağı yapısını kullanan sınıflandırma yöntemlerinin performansları karşılaştırılmıştır. Diğer benzer ça-
lışmalardan farklı olarak, yöntemleri eğitmek, test etmek ve doğrulamak için iki genel BT veri seti
birlikte kullanıldı. Eğitim verileriyle aşırı uyum sorunları yaşanmış ve en iyi puanlar artırılmış veri-
ler kullanılarak elde edilmiştir. Xception, VGG 16, ResNet 50, Inception v3 ve Inception ResNet v2
evrişimli sinir ağlarında sırasıyla %81.65, %86.08, %90.82, %79.75 ve %81.01 doğruluk değerleri
elde edilmiştir. Eğitim sırasında kullanılan epoch sayısı, kayıp ve aktivasyon fonksiyonları gibi hiper
parametrelerin önemine de bu çalışmada değinilmiştir.

Anahtar Kelimeler: BT, COVID-19, Sinir Ağları, Transfer Öğrenimi, Sınıflandırma
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CHAPTER 1

INTRODUCTION

This chapter includes brief introduction of this study. Problem definition, background research, classi-
fication techniques and similar studies are stated in this chapter.

1.1 Motivation and Problem Definition

SARS-CoV-2 virus was first diagnosed in Wuhan, China in November 2019. SARS-CoV-2 was defined
as a pandemic disease by World Health Organization in March 2020 that continues to be effective all
over the world [8]. When it was examined as a coronal shape in electron microscope, it was named
as corona virus disease (COVID). Due to the high rate of spread, the disease reached a pandemic size
in a short time. The total number of cases reported in the more than 2 years since its emergence is as
seen in Table 1. Not only patients and healthcare workers, but all people in the world are affected by
the COVID-19. Its impact on the world economy has dragged many countries into an economic crisis.
Especially in underdeveloped and developing countries, cheaper solutions are needed. According to
Bedford et al., both technical and financial supports are needed by the lower-income and middle-
income countries to prevent and diagnose the COVID-19 disease [9].

Table 1: Number of COVID-19 cases reported on 1st July of 2022[1]

Country Total Cases Total Deaths Active Cases

World 553,919,775 6,360,499 18,994,099
USA 89,515,140 1,043,303 3,466,984
India 43,500,504 525,168 123,746
Brazil 32,434,200 671,764 888,754
France 31,208,925 149,585 1,438,403

Germany 28,392,629 141,292 1,525,537

The Reverse transcription-polymerase chain reaction (RT-PCR) test is considered the gold standard for
identifying patients with COVID-19. Wang et al. show that specimens collected from bronchoalveolar
lavage fluid result highest positive rates [10].

Cross-infection risk, inadequate test kits, cost, and test result wait time highlight the importance of
machine learning approaches [11].
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1.2 Medical Imaging in COVID-19 Diagnosis

When the suspicion of COVID-19 is evaluated by the doctor during the acute course of the disease,
the RT-PCR test is initially requested from the patient. Chest imaging is requested for patients whose
PCR test is considered suspicious by the doctor. Radiologists try to diagnose by comparing COVID-
19 and other types of pneumonia on chest imaging. Mostly applied imaging techniques are computed
tomography(CT) and chest X-ray(CXR).

As statistically described in Das et al., the abnormalities found in chest CT include findings on chest
X-ray images for the same patients [2].

Figure 1: A patient with positive COVID-19 RT-PCR test. (A) Frontal chest radiograph (B) Coronal
lung window CT image [2]

1.3 Findings in CT Images

Duration of the patient’s symptoms, patient history, clinical signs, and other imaging findings are
considered when diagnosing COVID-19. Computed Tomography (CT) and Chest X-ray (CXR) are
also considered as significant imaging techniques. In order to make a consistent assessment, it is
important to know the findings of other diseases beforehand.

CT findings are not very specific and COVID-19 disease has common symptoms with many infectious
and non-infectious diseases [12]. As it is stated in the Figure 2, the similarities between COVID and
non-COVID patients make it very difficult for radiologists to diagnose COVID-19.

CT findings in COVID-19 disease vary during the course of the disease. The early stage findings are
unilateral or bilateral ground glass opacities (GGOs) in CT images. Day after day, GGOs become
to consolidate. Appearance of ground glass opacities in CT images is also called as crazy-paving
pattern. In addition to the peripheral distribution, vasodilation, and reverse halo sign, the crazy-paving
pattern is one of the most common findings [13]. Findings in COVID-19 pneumonia and Non-COVID
viral pneumonia diseases have similar features such as consolidation of the GGOs, peripheral lesion
distribution and rounded morphology.
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Figure 2: CT images of the non COVID-19 patients (a, b) and COVID-19 positive patients (c, d) [3]

1.4 CNN

Convolutional Neural Network (CNN) is a kind of an Artificial Neural Network (ANN) which has at
least one layer containing convolution process in place of simple matrix multiplications [14]. CNNs
are mainly designed for image diagnosis and classification studies. Number of studies using CNN is
increasing, mostly in image classification field.

A convolutional neural network is structured with an input layer, an output layer and hidden layers.
The layers between input and output layers are called as hidden layers. Outputs on hidden layers are
masked by the activation function. Convolution operations are executed on the hidden layers. The
output of the one layer is the input of the next layer. In a CNN, the input is a three dimensional tensor.
The feeding image data for a convolutional layer has a shape of input height x input width x input
channels. Pooling layers are designed to reduce the dimension before the next convolutional layer by
combining multiple neurons into a single neuron. It’s fully connected layer when every neurons in a
layer connect with every neurons in the next layer.

The learning includes iteratively adjusting bias and weights. These biases and weights are used in the
function computed by the neural network. Every neuron computes an output value using input values,
biases and weights.

3



1.5 Network Training

The main purpose of the network training is finding best weights for the model. Networks are trained
through predetermined number of iterations. Each iteration of the training procedure is called epoch.
Weights are updated for every epoch. In the end of each epoch, an error gradient is calculated with the
current state of the model. For most of the studies, it is not possible to feed the neural networks with
the whole train data set in one epoch. The main reason for this is that it requires high memory to feed
the neural network with an excessive amount of input. Therefore, in each epoch, the network model is
trained with the subsets of the training data set. The batch is a subset of the images in the training set
used in feeding the neural network at once. The number of images contained in a batch is the batch
size. Error gradient is updated after every trained batch. After each batch in an epoch has been trained,
the weights are updated by calculating estimates based on the validation set.

One of the objectives of network training is to achieve good performance on both of the training and
test runs. This is an undesirable result if the network model performs well with the training set but
cannot reach the same predictions with a new data. When the model learns the training set well but
does not perform a good performance with the test data, it is called overfitting. Overfitting is a serious
problem in network training. In order to avoid overfitting; dropout, data augmentation, early stopping
and cross validation are commonly used on neural networks.

1.5.1 Dropout

Dropout means ignoring some random neurons on every iteration. In the study of Srivastava et al., the
main purpose of dropout is explained as preventing neurons from adapting too much [15]. To drop out
a neuron, input of this neuron is set to 0. Dropout layer works only when training the model, when
evaluating scores with the test set this layer is not used. Dropping random neurons on every iteration
means training different neural networks. Different neural networks cannot fit the same data in the
same way, and it helps reduce overfitting.

1.5.2 Data Augmentation

Data Augmentation is a technique often applied to feed neural network with more training data. Aug-
menting the data helps the network adapt to more complex data, and provides flexibility for researchers
working with few inputs. Transformation, cropping, scaling, contrast and brightness adjustment are
augmentation techniques applied in image datasets. Combinations of rotation, flipping, zooming,
stretching, shearing can be used for increasing transformed image count. Labels for the transformed
samples should remain as originals[16].

1.5.3 Early Stopping

Early stopping is used for the same purpose as dropout. Both of these techniques aim to prevent
overfitting. When the lower loss value is targeted, early stopping parameters stop the network training
when the loss does not decrease by the desired amounts after a few iterations. Iteration count and
minimum delta for the loss value are parameters for the early stopping function.
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Otherwise, if the goal of the training is maximizing accuracy value, it can be considered to use delta for
change of the accuracy. For this purpose, network training is stopped when the accuracy value is not
increased as desired amount after several iterations. Parameters should be set as aiming to maximize
the accuracy value.

Without early stopping, network models are trained more than satisfying number of iterations. After
training for a longer period, the probability of overfitting the data increases and it is seen that the test
accuracy begins to decrease.

1.5.4 Cross Validation

Most research studies start with splitting data between train and test sets. Cross validation aims to
select the best model by testing with a separated part of the train dataset. For this, the data set is
divided into multiple folds. The number of folds can vary according to the study; it is called K-
fold Cross Validation. For every iteration, one of the folds is used as a test dataset, and the training
procedure is called for every single fold. It results better estimates by training the model with multiple
train/test sets. But it means cross-validation has a higher computation time. When number of folds
increases, the time required for training also increases.

1.6 CNN Architectures

Convolutional neural networks have two main features that affect the operating speed and performance,
network depth and convolutional filter size. In 2015, The VGG 16 and VGG 19 architectures were first
introduced by the study of Simonyan et al., the effect of network depth was investigated on very small
filters containing 16 and 19 layer depths, respectively [17]. VGG architecture was pre-trained on
the ILSVRC-2012 dataset, and comparisons with the previous state-of-the-art solutions on large-scale
image recognition was made using different datasets. Due to the comparison results, VGG architecture
is applicable to different image classification fields such as medical imaging. Layers of the VGG
network are described in Figure 3.

Residual networks are firstly explained as a solution of the vanishing gradient problem. Vanishing
gradient is the problem with the extremely small gradient preventing the weights from updating [18].
Training is meaningless when the weights are not updated. In order to overcome this problem, shortcut
connections added between layers. He et al. explained improvements on this architecture by comparing
with the VGG nets [5]. Up to 152 layers, ResNet is 8 times deeper than VGG nets, however it has
lower complexity. Instead of presenting this architecture with training on ImageNet dataset, He et al.
mentioned that their study contains analysis of training on CIFAR-10 dataset. Layers of the ResNet
architecture are stated in Figure 4.

Instead previously described architectures, it is aimed to achieve a good performance at relatively low
cost using Inception network. There are variety of inception networks that contains similar architec-
tures, Inception-v1, Inception-v2, Inception-v3, Inception-v4 and Inception - ResNet v1 and v2. The
defined convolutional layers are explained as in Figure 5. The main evolution between the versions
is the idea of having neurons with smaller input channels. To achieve this purpose, 1x1 convolution
layers are added before other layers (3x3 and 5x5 convolution layers). In the study of Szegedy et al.,
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Figure 3: VGG architecture described by Ferguson et al.[4]

proposed a combination of ResNet and Inception architectures which is called Inception ResNet [6].
There are two variations of Inception ResNet network, v1 and v2, and Inception Resnet v2 suggested
better results compared to v1.

Chollet et al. described Xception architecture into three parts, entry flow, middle flow and exit flow
[7]. At the beginning of the entry flow, 299x299x3 images are expected as input, and at the end of the
exit flow, 2048 dimensional vectors are output. Complete architecture of the Xception is drawn from
the study of Chollet et al., and can be illustrated in Figure 6.

1.7 Performance Metrics

This section explains the meaning of the comparison metrics used in this study. Since this study
classifies the binary problem, this section focuses only on metrics related to binary classes.

From Table 2, TP means the number of times it predicted correctly as COVID-19 positive, FP means
the number of times it predicted correctly as COVID-19 negative, FN shows the number of wrong
predictions as COVID-19 negative, and FP indicates the number of wrong predictions as COVID-19
positive.

Evaluation metrics used to check the performance of deep learning architectures: Accuracy, Sensitivity
(Recall), Specificity, Precision.
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Table 2: Confusion Matrix

Predicted
Positive Negative

True
Positive TP FN
Negative FP TN

Accuracy is the number of correctly predicted cases divided by the total number of images in the test
set, and given as:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity(Recall) is one of the critical metric used in medical studies. Shortly explained as the number
of correctly predicted COVID-19 positive cases divided by the total COVID-19 positive cases.

Sensitivity(Recall) =
TP

TP + FN
(2)

Specificity is the number of correctly predicted COVID-19 negative cases divided by the total predicted
COVID-19 negative cases.

Specificity =
TN

TN + FN
(3)

Precision is the number of correctly predicted COVID-19 positive cases divided by the total predicted
COVID-19 positive cases.

Precision =
TP

TP + FP
(4)

1.8 Similar Studies

This study proposes a COVID-19 diagnosis method that uses CT scan images. In this section methods
used in COVID-19 pneumonia diagnosis studies are investigated.

Many of the articles in the literature mention that deep learning techniques are less costly than RT-
PCR test. The Study of Wang et al. describes a deep learning system for diagnosis in less than
10 seconds after a CT scan within minutes [19]. It was mentioned that the findings described in
previous radiological studies were determined by this deep learning system. Deep learning techniques
are very successful in differentiating two patients with very similar CT findings despite being COVID-
19 positive and COVID-19 negative [20]. Semi-supervised learning methods also studied to make
diagnosis on COVID-19 CT findings. Ma Jun et al., offers a method combining classical active contour
model with convolutional neural networks [21]. Combination of pre-trained models with different
classifiers gives promising results. DenseNet with SVM classifier is experimented in order to make a
diagnosis about the severity of the COVID-19 patients by Zekuan et al. [22].
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When performing CT chest imaging, respiratory movement has a significant impact on CT slices.
To eliminate motion artifacts, CT images are captured when patients hold a single long breath. Due
to the acute development of COVID-19, determining the severity of the disease is an important area
of research. By analyzing histogram data, Berta et al. analyzed images of COVID-19 positive and
negative patients and studied the respiratory cycle [23].

Some of the studies include different stages of the COVID-19 infection. Xiong et al. highlighted
38% of the patients developed into severe disease 7 days after the admission [24]. Using radiomics in
COVID-19 detection is hypothesized by Xiong et al.. Radiomics is previously used in diagnosing the
severity of lung cancer by detecting pulmonary nodules [25].

Data is one of the most valuable things for any research field. Limited data availability is one of the
major problems of health and medical research. Researchers apply data augmentation techniques to
increase the number and types of data. Turkoglu’s study showed differences between working with
augmented data and working without data augmentation [26]. Most of the deep architectures (SVM,
KNN, LDA, AlexNet, GoogleNet, etc) give better results with data augmentation than without data
augmentation described in Turkoglu’s work.

Instead of studying with only binary classes(COVID-19 and non COVID-19), some of the studies
mentioned multiple classes containing other diseases that is identified by chest imaging techniques.
In Le’s work, chest X-ray images are processed for COVID-19 detection and 98.54% and 99.06%
accuracy values are resulted on binary and multiple classes respectively [27]. COVID-19 findings in
chest CT images have common signs with different diseases. Current studies contributed to detect
and diagnose the COVID-19 pneumonia. After this pneumonia, valuable informations and studies will
remain to be used in other diseases such as cancer, pneumonia, cystic fibrosis, and other acute lung
diseases [28].

In this study, unlike most of the similar studies, the number of samples in the training set is increased
with data augmentation techniques and the use of multiple data sets.
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Figure 4: ResNet architecture described by He et al [5]. A is the VGG-19 model as a reference. B is a
network with 34 layers. C is a residual network with 34 layers.
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Figure 5: Inception architecture described by Szegedy et al [6]. A,B and C are the grid modules of the
Inception ResNet 2 network, 35 x 35, 17 x 17 and 8 x 8 grid modules stated from left to right. D is the
overall schema for the Inception ResNet v1 and v2 network. The stem of the Inception ResNet v1 is
drawn as E.
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Figure 6: Xception architecture described by Chollet et al [7]. The data follows the path from the entry
flow, then passes through the middle flow eight times, and finally ends the path with the exit flow.
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CHAPTER 2

METHOD

In this chapter, methods are given in detail. In this study, Zhao’s data set and SARS-CoV-2 CT-
scan data set are used [29, 30]. Data augmentation techniques applied on image data set. After pre-
processing steps are applied, deep transfer learning process was executed. The following sub sections
explain these steps.

2.1 Data Set

Publicly shared data sets are used in this study. Zhao’s dataset is one of the earliest published CT
image data sets of the COVID-19 pandemic [29]. SARS-CoV-2 CT-scan data set is one of the largest
COVID-19 CT image data sets published publicly [30]. 301 COVID-19 positive CT scan images are
selected from Zhao’s dataset, and combined with the images from SARS-CoV-2 CT scan dataset. 371
images from non COVID-19 patients on Zhao’s dataset are combined with the non COVID-19 images
from SARS-CoV-2 CT scan dataset. After combining images from two data sets, 1601 COVID-19+
CT scan images and 1627 non-COVID-19 CT scan images are used in this study. Table 3 shows the
number of images collected from data sets.

Table 3: Number of COVID-19 Images in Data Sets

Data Set COVID-19+ non-COVID-19

All 1553 (301+1252) 1601 (371+1230)
Zhao’s Data Set[29] 349 397

SARS-CoV-2 Data Set[30] 1252 1230

2.1.1 Zhao’s Data Set

Zhao’s data set contains 349 COVID-19 CT images from 216 patients, and 397 non-COVID-19 CT
images. These images are collected from preprints from medRxiv and bioRxiv by the first quarter
of the 2021 [31, 32]. PDF files are analyzed and images are extracted with including patients’ age,
gender, and label about COVID-19 positive or not. Also after gathering images from PDF files, there
is a significant loss on resolution. Instead of using all slices of the CT scans, some for the key slices
are selected and added into the data set by the author. After communicating with an experienced
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radiologist, authors of this data set commented that current image resolutions and single-slices of the
images contains enough clinical evidence [29]. Due to the different resolutions on the images, this
data set needs to be resized before feeding the neural network.

In this study some images from this data set are eliminated due to containing manually added signs of
radiological findings. 48 COVID-19 and 26 non-COVID-19 images are excluded from the data set in
this study. Some of the randomly selected images can be shown in Figure 7.

Figure 7: Randomly selected images from Zhao’s CT scan data set

2.1.2 SARS-CoV-2 CT-scan Data Set

SARS-CoV-2 data set contains 1252 COVID-19 positive, 1230 COVID-19 negative images collected
from an hospital in Sau Paulo, Brazil [30]. Images in this dataset were collected from 120 patients,
half of whom were infected with SARS-CoV-2 and the others were not. Figure 8 shows some of the
sample images from this data set.

This data set is used in a DenseNet based deep learning study [33]. Moreover, authors of that study
mentioned the need of using multiple data sets for achieving better results.

2.2 Data Augmentation

Before the data augmentation step, the data was divided into 80%, 10%, and 10% segments as train,
validation, and test, respectively. Train set contains 2.522 images, validation and test sets contain 316
images. Data augmentation was not applied to validation and test sets. The total number of images in
the train set has been increased up to 8 times by augmentation techniques. After data augmentation,
20.176 images are generated to feed the model. In this study data augmentation was used with rotation
between -/+5 degree with random probability and 50% probability of left/right flip. Samples from
augmented images are shown in Figure 9.
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Figure 8: Randomly selected images from SARS-CoV-2 CT scan data set

Data augmentation techniques were performed using the Augmentor python library [16]. This library
contains a wide variety of data augmentation techniques, such as rotating by desired angles (90, 180,
270), rotating by random angles, flipping up/down, flipping left/right, cropping to size, performing
gaussian distortion and random distortion on the image. Moreover zoom, resize, scale, skew and shear
operations can be performed using Augmentor library. In addition, Augmentor library provides an
option to create and use augmented images on runtime istead of saving images on the disk.

2.3 Pre-processing

Data set is splitted into train, validation and test sets. After splitting data, data augmentation steps are
executed. Number of images in the training set is increased to 20.176 as previously described in the
Section 2.2.

As shown in Figure 7 and Figure 8, images on the data sets have different resolutions. After data
augmentation, the number of samples with the same resolution was increased as seen in Figure 9.
Each layer in the neural network expects the same input shape for each iteration. All images have been
reshaped to have the same width and height. Since original images are not square, resizing is done
keeping the aspect ratio and images are zero padded to fit the desired dimensions.

2.4 Loss Functions

For each classification problem, loss and activation functions are applied to observe the performance
of the trials. There are several options for the loss functions used on deep learning approaches. Mean
absolute error, mean bias error, mean squared error functions are some types of the loss functions
mostly used on regression problems. Mean absolute error (MAE) is one of the most simple loss
functions. MAE function takes the sum of the absolute differences between predicted and actual
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Figure 9: A series of images used in train set.

values. The mean absolute error is simply defined as:

MAE =

D∑
i=1

|xi − yi| (5)

Mean bias error (MBE) is not used as much as the other functions because of the probability of the
cancellation of positive and negative errors. MBE function takes the sum of the actual differences
between actual and predicted values. The formula of the mean bias error is defined as:

MBE =

D∑
i=1

(xi − yi) (6)

Mean squared error (MSE) is also the choice of the most data scientists for regression problems. MSE
function takes the sum of the squared distances between predicted and actual values. The mean squared
error is simply defined as:

MSE =

D∑
i=1

(xi − yi)
2 (7)

For the classification problems, binary cross entropy, categorical cross entropy, Hinge loss, Kullback-
Leibler divergence loss functions are frequently consulted. In this study, binary cross-entropy is used
to calculate the loss for the binary classification problem. Cross-entropy loss between true labels
and predicted labels are computed in this study. Binary cross entropy is commonly used for binary
classification tasks with two classes. Binary cross entropy loss function penalizes the predictions
depending on how close or far from the actual values. The formula of the binary cross entropy is given
as:

Binary cross-entropy = −(y log(p) + (1− y) log(1− p)) (8)

Categorical cross-entropy is a loss function very close to binary cross-entropy. This loss function is
commonly used for categorical classification tasks. Categorical cross-entropy is the sum of binary
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cross entropies for multiple classes. Equation of the categorical cross-entropy is defined as:

Categorical cross-entropy = −
M∑
c=1

yo,c log(po,c) (9)

One of the commonly used loss function for classification problems is the hinge loss. This function is
strongly used for support vector machines. Hinge loss is defined as:

Hinge Loss = max(0, 1− y · ŷ) (10)

Kullback-Leibler (KL) divergence loss is a measure of how much a distribution differs from a reference
distribution. KL is defined as:

KL(ŷ||y) =
M∑
c=1

ŷc log
ŷc
yc

(11)

2.5 Activation Functions

In artificial neural networks, activation functions are used to define the output of the nodes. Sigmoid,
tanh, softmax, rectified linear unit (ReLU), leaky ReLU, and exponential LU (ELU) are some of the
commonly used activation functions. In this study, the sigmoid activation function set in the last layer.
Therefore, outputs are transformed into range between 0 and 1 by sigmoid activation function. This
transformation process helps to solve the binary classification problem. Sigmoid activation function is
defined as:

Sigmoid = σ(z) =
1

1 + e−z
(12)

Tanh is an activation function which is closer to sigmoid function, additionally tanh function’s range
is between -1 and 1. Tanh function is defined as:

tanh(x) =
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
(13)

Softmax activation function is one of the different activation functions. This function transforms output
values into probabilities. Softmax function is defined as:

Softmax(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K (14)
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ReLU activation function is one of the most commonly used activation function. It is developed to
solve the vanishing gradient problem. This activation function returns the positive values as is and
returns zero for negative values. The formula of the ReLU activation function is defined as:

ReLU(x) = max(0, x) (15)

Leaky ReLU is the improved version of ReLU. For the negative values, this function returns minor
values instead zero. Formula of the leaky ReLU is defined as:

LeakyReLU(x) = max(0.1x, x) (16)

Exponential linear unit (ELU) shares all the benefits of ReLU, and negative side of this function is
more robust than leaky ReLU. Formula of this function is defined as:

ELU(x) =

{
α(ex − 1) for x ≤ 0

x for x > 0
(17)

On Keras framework, there is also an option not to set any activation functions in the last layer. Linear
results are obtained when the activation function is not set. However, so by adding the "from_logits"
parameter to the loss function, sigmoid transformed results can be obtained.

2.6 The Proposed Framework

In order to eliminate limited data size transfer learning was used in this study to fine-tune pre-trained
deep neural networks. Network models are trained using images from train and validation sets. At the
end of the training, prediction results are evaluated using images from the test set. Prediction results
are explained in detail in the next chapter. Weights are saved for the model with the best results at the
end of the training process. Thus, it can be reused later without the need to retrain that model.

2.6.1 Optimization

Adam optimizer is used in this study due to convergence speed. Only learning rate parameter of
the Adam optimizer is set as 1e-5. Since Adam optimizer do well using default values for the other

18



parameters, Adam optimizer’s other parameters are used as default values. As mentioned in the study
of Kingma et al., the advantage of two popular optimization methods are combined in Adam optimizer,
AdaGrad’s ability to deal with sparse gradients and RMSProp’s ability to deal with non-stationary
objectives[34]. Adam optimizer is simple to implement and does not need high memory.

2.6.2 Hyperparameter Selection

As described in Section 1.5, epoch count and batch size need to be set before training phase. Number
of epochs is set as 1000 for the runs in this study. Since early stopping callback function stops training
before all epochs are finished, models are trained for 60 to 400 epochs on several runs. Different batch
sizes are experimented in this study. Larger batches require more memory, so batch sizes smaller than
64 are used in batches.

Also there are other hyperparameters used in the runs such as trainable, weights, and include top pa-
rameters of base models. Firstly, trainable parameter takes true or false as value to determine whether
layers of base models are trainable or frozen. Some of the runs in this study contains trainable layers,
some others have done using frozen layers on base models. Usage of the trainable parameter is de-
scribed in details in the next sections. Then weights parameter is used as imagenet to load weights of
the neurons as previously trained using ImageNet dataset. The use case of the include top parameter is
whether to include the last dense layer of the model. In this study, include top parameter is set as False
due to a dense layer is already used on the last layer of the complete model.

2.6.3 Transfer Learning

Transfer learning is widely used in studies where there are not enough training samples [35]. With
transfer learning, the deep learning process starts with initial weights that already good. After fine-
tuning the model, satisfying results can be achievable.

Model spesific preprocess layers are added before functional layer of the base model. Input image or
array is prepared by the preprocess layers to feed the next neurons with appropriate tensors. Details of
the preprocess layers differ for the experimented architectures, and described in the following sections
in this chapter.

Initially, base model was freezed and only input and output layers were fit for only one epoch. The
purpose of doing that single run is updating initial weights with the train data, previously weights
are set using ImageNet dataset. After this single run, the base model was unfreezed and fine-tuning
of the entire model started. In this study the performance of five pre-trained models are evaluated,
Xception[7], VGG 16[17], ResNet 50[5], Inception v3 and Inception ResNet v2[6]. The following
sections contain detailed explanations.

Output of the functional layer feeds the global average pooling layer. Global average pooling layer
takes the averages of the input feature maps. The operations on this layer does not require a parameter
to optimize. This layer helps to avoid overfitting.

Another layer used to avoid overfitting is dropout layer. Dropout means dropping out randomly se-
lected neurons on the layer. With dropout operation applied in every iteration, different model is trained
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to avoid overfitting. Dropout rate can be adjustable depending on the study. In this study dropout rate
is set to 0.2. 20% of the neurons are randomly dropped out in every epoch.

The last layer is dense layer. Dense layer transforms previous layer’s output into desired dimension.
Output of the dense layer represents the number of classes used in classification result. In this study,
due to the binary classification (COVID-19 positive or not) dense layer outputs a tensor with one value.
Dense layer’s output is the output of the entire model.

Plotted models for every architecture experimented in this study are stated on the following sections.

2.6.4 Model Specific Layers of Xception

The Xception architecture used in this study was trained under ImageNet with the input pixels between
-1 and 1. The original image data used in this study contains data range between 0 and 256. For
the preprocessing step, rescaling layer is added before functional layer of the Xception architecture.
Rescaling layer scales the image data between -1 and 1. This procedure is required to get the better
output from the functional layer. Rescaling formula is given in Equation 18.

outputs = inputs ∗ (1/127.5)− 1 (18)

Rescaling Formula

The summary of the layers using Xception architecture are described in the Figure 10. To sum up, an
input layer, two preprocessing layers, a functional layer, a pooling layer, a dropout layer and a dense
layer are processed to get the output for every input.

2.6.5 Model Specific Layers of VGG 16

Model specific preprocessing steps of VGG 16 are converting input values from RGB to BGR, and
zero-centering each color channel without scaling. The pre-trained VGG network is trained with this
data shape on ImageNet dataset. In this study, grayscale CT images are used in RGB format due to
the weights of the pre-trained models are previously trained using RGB formatted images with three
dimensional channels. Keras’s utility lib-rary supports means for importing grayscale images in RGB
format with simply copying the grayscale channel into second and third channels. Since the number
of parameters of the preprocessing layers is very low compared to all layers, the pre-process steps in
the Keras library are used as they are. For the VGG 16 and ResNet 50 architectures, the pre-process
step that converts images from RGB format to BGR format was used as defined in the Keras library
and does not have any impact on the performance of these architectures. As the Keras library did not
separate the pre-process steps that involve zero-centering and converting the color channels for these
architectures, these two pre-process steps had to be used together.

The network layers using VGG 16 architecture are described in the Figure 11. In summary, an input
layer, two preprocessing layers, a functional layer, a pooling layer, a dropout layer and finally a dense
layer are processed to get the output for every input.
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Figure 10: Plotted model using Xception architecture

2.6.6 Model Specific Layers of ResNet 50

Preprocessing steps of ResNet 50 architecture are the same as VGG 16 architecture. Input values are
converted RGB to BGR, then each color channel is zero-centered without scaling.

Figure 12 describes the network layers containing an input layer, two preprocessing layers, a functional
layer, a pooling layer, a dropout layer and a dense layer.

2.6.7 Model Specific Layers of Inception v3 and Inception ResNet v2

Preprocessing steps of Inception v3 and Inception ResNet v2 architectures are the same as the prepro-
cessing steps of Xception architecture. It expects input pixels between -1 and 1, and a rescaling layer
is implemented before functional layer as described in Equation 18.

Network layers of Inception v3 and Inception ResNet v2 models are shown in Figure 13 and Figure 14
respectively.
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Figure 11: Plotted model using VGG 16 architecture

Figure 12: Plotted model using ResNet 50 architecture
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Figure 13: Plotted model using Inception v3 architecture

Figure 14: Plotted model using Inception ResNet v2 architecture
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CHAPTER 3

RESULTS

In this chapter, comparisons and experiment results are presented. The augmented data specified in the
tables in this section contain 20.176 augmented images, and 2.522 images are used to train the network
without augmentation. Test results are evaluated using 160 COVID-19 positive CT scan images and
156 COVID-19 negative CT scan images from test set.

The implementation of the codes used in this study was made on python. The Keras framework was
chosen to use pre-trained network models as functional layer [36]. Written python scripts are run on
64 bit Ubuntu 20.04 operating system with 32 gigabytes of memory, Intel(R) Xeon(R) CPU E5-1650
v4 @ 3.60GHz CPU, GeForce GTX 1080 Ti GPU.

Network performances that are explained in this chapter are calculated as follows. For each network, 6
training processes are performed. Network models are trained using both augmented data and original
data. Different batch sizes (32, 48, 64) are experimented in the training phase. Then, the metrics
explained in details of this chapter are calculated from the confusion matrices. A confusion matrix is
calculated for each training result with the combination of augmentation status and batch size.

3.1 Evaluation of Xception Network

In this section performance results of Xception network model are provided. Confusion matrices of
the evaluated results on Xception network can be seen in Table A.1-A.6. According to Table 4, highest
sensitivity, specificity, precision, and accuracy scores are recorded with augmented data and batch size
of 48 as 95.63%, 95.65%, 98.71%, 97.15% respectively. Using same batch size, trained Xception
network with augmented data results higher accuracy with batch sizes of 48 and 64, however the
trained network without augmentation shows higher accuracy with using batch size of 32.

3.2 Evaluation of VGG 16 Network

This section contains evaluated performance results for VGG 16 network model. For the evaluated
results of VGG 16 network model, confusion matrices are shown in Table A.7-A.12. Using the VGG
16 network model, the highest sensitivity score is recorded as 97.50% and specificity score of 97.26%,
but the lowest precision score is 91.76% and accuracy score is 94.40% without data increase and batch
size of 48.The highest accuracy of 97.15% was achieved using data augmentation with a batch size of

25



Table 4: Xception evaluation results. Best scores are bold.

Model Augmentation Batch Size Sensitivity Specificity Precision Accuracy
Xception Yes 32 93.75 93.83 97.40 95.57
Xception Yes 48 95.63 95.65 98.71 97.15
Xception Yes 64 93.75 93.87 98.04 95.89
Xception No 32 94.38 94.44 98.05 96.20
Xception No 48 94.38 94.30 95.57 94.94
Xception No 64 94.38 94.34 96.18 95.25

48. According to the Table 5, the VGG 16 network model gives higher sensitivity and specificity scores
with augmented data, but results without augmentation have higher precision and accuracy scores.

Table 5: VGG 16 evaluation results. Best scores are bold.

Model Augmentation Batch Size Sensitivity Specificity Precision Accuracy
VGG 16 Yes 32 96.25 96.18 96.86 96.52
VGG 16 Yes 48 96.25 96.23 98.09 97.15
VGG 16 Yes 64 94.38 94.48 98.69 96.52
VGG 16 No 32 96.25 96.23 98.09 97.15
VGG 16 No 48 97.50 97.26 91.76 94.30
VGG 16 No 64 95.63 95.60 97.45 96.52

3.3 Evaluation of ResNet 50 Network

Performance results of ResNet 50 network model are provided in this section. Confusion matrices
of the provided results on ResNet 50 network can be found in Table A.13-A.18. As stated in Table
6, with the augmented data, the same sensitivity score is recorded with batch sizes of 48 and 64,
however specificity, precision and accuracy scores are higher with the batch size of 48. Without data
augmentation best result is recorded with the batch size of 48. The highest scores are equal with or
without data augmentation as 95.63% of sensitivity, 95.64% of specificity, 98.08% of precision and
96.84% of accuracy scores. All accuracy scores recorded with augmented data are higher than the
accuracy scores recorded without augmentation for the same batch sizes.

Table 6: ResNet 50 evaluation results. Best scores are bold.

Model Augmentation Batch Size Sensitivity Specificity Precision Accuracy
ResNet 50 Yes 32 95.00 95.00 97.44 96.20
ResNet 50 Yes 48 95.63 95.63 98.08 96.84
ResNet 50 Yes 64 95.63 95.57 96.84 96.20
ResNet 50 No 32 94.38 94.16 93.21 93.67
ResNet 50 No 48 95.63 95.63 98.08 96.84
ResNet 50 No 64 93.13 93.21 96.75 94.94
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3.4 Evaluation of Inception v3 Network

Test results with the Inception v3 network are explained in this section. Confusion matrices for the
evaluated results of this network are detailed in Table A.19-A.24. Training scores with data augmenta-
tion are significantly higher than the scores without using augmented data for all of the experimented
batch sizes. The highest sensitivity, specificity, precision and accuracy scores are achieved with the
batch size of 32 and using augmented data as 98.75%, 98.72%, 98.75% and 98.73% respectively. Ac-
cording to the Table 7, among tests without augmented data, highest scores are achieved with batch
size of 32 for all of the metrics except precision.

Table 7: Inception v3 evaluation results. Best scores are bold.

Model Augmentation Batch Size Sensitivity Specificity Precision Accuracy
Inception v3 Yes 32 98.75 98.72 98.75 98.73
Inception v3 Yes 48 94.38 94.30 95.57 94.94
Inception v3 Yes 64 95.63 95.63 98.08 96.84
Inception v3 No 32 95.00 95.06 98.70 96.84
Inception v3 No 48 94.38 94.27 94.97 94.62
Inception v3 No 64 95.00 94.74 92.68 93.67

3.5 Evaluation of Inception ResNet v2 Network

In this section, test results using Inception ResNet v2 network are explained. In Table A.25-A.30,
confusion matrices used to evaluate the results in this section are stated. Evaluated scores of this
network are similar to the Inception v3 network. Unlike Inception v3 model, batch size of 48 shows
better scores than 32. The highest scores of sensitivity, specificity, precision and accuracy are achieved
by using augmented data with the batch size of 32 as following 96.88%, 96.79%, 96.88% and 96.84%,
respectively. As shown in Table 8, test results with augmented data are higher than the achieved results
without using augmented data.

Table 8: Inception ResNet v2 evaluation results. Best scores are bold.

Model Augmentation Batch Size Sensitivity Specificity Precision Accuracy
Inc. ResNet v2 Yes 32 95.63 95.54 96.23 95.89
Inc. ResNet v2 Yes 48 96.88 96.79 96.88 96.84
Inc. ResNet v2 Yes 64 96.25 96.13 95.65 95.89
Inc. ResNet v2 No 32 95.63 95.39 93.29 94.30
Inc. ResNet v2 No 48 92.50 92.64 96.73 94.62
Inc. ResNet v2 No 64 93.75 93.67 94.94 94.30
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3.6 Evaluation of Network Models Using Seperated Datasets

For all of the runs in the previous subsections, the training accuracy scores reached 100% while loss
values decreased to the zero. Considering the high prediction rates of previous runs, the effects of the
data on the results are investigated in more depth with the runs described in this subsection. After
recording previous results using the combination of the two datasets, the models are trained using
both datasets separately. Since the effect of batch size ws not detected in previous runs, batch size
is used by default at 32 for the training process of seperated datasets. Network models are trained
using images from one of the datasets. However, test results described in Table 9 are saved from the
predictions made using the same test set used in previous runs. This means that the test set used in the
runs explained in this section contains the same set of images as the previous sections.

Table 9: Training performances of the network models when images in the training set are used only
from one of the data sets. Batch size is used by default at size 32.

Network Train data set Sensitivity Specificity Precision Accuracy
Xception Zhao’s 73.13 60.91 56.80 58.23

ResNet 50 Zhao’s 70.63 59.83 56.78 57.91
Inception v3 Zhao’s 91.88 75.00 55.68 58.86

Inception ResNet v2 Zhao’s 68.13 61.07 58.92 59.81
VGG 16 Zhao’s 69.38 55.05 53.62 54.11
Xception SARS-CoV-2 81.88 83.80 95.62 88.92

ResNet 50 SARS-CoV-2 78.13 81.38 97.66 87.97
Inception v3 SARS-CoV-2 80.00 82.22 94.12 87.34

Inception ResNet v2 SARS-CoV-2 80.63 82.97 96.27 88.61
VGG 16 SARS-CoV-2 83.75 85.06 94.37 89.24

Since the number of images in Zhao’s dataset and the SARS-CoV-2 CT scan dataset is not equal, the
test set contains a different number of images from these two datasets. When we look at the datasets
from which the image is obtained, we see an unbalanced distribution. Data distribution of the test set
can be shown in Table 10. Accuracy scores of the test results appear to be in different ranges depending
on the dataset. While the accuracy scores of the models trained using the Zhao dataset vary between
54% and 60%, the accuracy scores of the models trained using the SARS-CoV-2 dataset are between
87% and 90%.

Table 10: Data distribution in the test set.

Dataset COVID-19 non-COVID-19 Total
SARS-CoV-2 131 140 271

Zhao’s 25 20 45

3.7 Evaluation of Network Models Without Using Trainable Layers

When the high accuracy scores obtained in the previous runs and the relatively lower training accuracy
scores obtained with separated datasets are examined, it is seen that the models overfit the data. All
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the results were evaluated together, it was determined that high accuracy scores were achieved after
less than 20 iterations for all of the runs. At the same time, it was observed that the training accuracy
value increased constantly, reaching 100%.

In this section, it is useful to mention some details about making the base model trainable. The neural
network architectures used in this study contain millions of parameters. These parameters represent
the weight values of neurons that can be updated in each iteration during training. In other words,
while training the model, millions of weight values are updated according to the input values and the
best estimation ratio is tried to be achieved. The fact that all parameters are updated causes overfitting
in a short time with the effect of working with a small data set. In order to prevent this, it was preferred
to train by freezing the base model. With this change, the weights of the pre-trained base model are not
updated, only the existing parameters in the input and output layers are updated when the models are
trained. Number of epochs is set to 1000 for these training runs. Iterations were terminated manually
and the threshold value controlled for early stop was determined as 1×10−2. When the trained models
were terminated in accordance with the parameters in the early stop function, it was observed that the
training and validation accuracy values did not reach 100%.

Table 11 shows the results of the latest runs when layers of the base models are frozen. Since there
is no significant effect of batch size is detected, results of the trained models are compared for default
batch size of 32. According to the table, ResNet 50 base model makes more successful predictions
than other models. Using ResNet 50 architecture 89.38% of sensitivity, 88.67% of specificity, 86.14%
precision and 86.14% of accuracy scores are achieved.

Table 11: Training performances of the network models using freezed base models. Batch size is used
by default at size 32.

Network Augmentation Sensitivity Specificity Precision Accuracy
Xception Yes 81.25 79.87 77.84 78.80
VGG 16 Yes 79.38 79.88 83.55 81.65
ResNet 50 Yes 89.38 88.67 86.14 87.34
Inception v3 Yes 75.63 75.16 76.10 75.63
Inception ResNet v2 Yes 87.50 83.74 72.54 76.90
Xception No 65.00 67.82 73.24 70.25
VGG 16 No 79.38 72.95 65.46 68.35
ResNet 50 No 75.63 75.47 77.07 76.27
Inception v3 No 78.75 68.22 60.29 62.97
Inception ResNet v2 No 68.13 66.45 66.46 66.46

Validation accuracy and loss curves for the runs with augmented data are shown in Figure 15 and Figure
16 respectively. Accuracy scores are very low in early epochs, but performance rapidly improved in
the very first epochs. The accuracy score for the ResNet 50 architecture rises above 0.80 in the first
10 epochs, then gradually reaches the highest accuracy. According to the Figure 16, the minimum
validation loss value is seen below 0.45 using ResNet 50 model. As shown in the graphs, runs were
stopped after trained with different number of epochs by early stop callback function.
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3.8 Evaluation of Network Models With Optimized Parameters

The results of the runs using lower minimum delta value for the early stopping function are described
in this section. Since the slope in the validation loss is still trending downwards in Figure 16, the idea of
increasing the number of epochs was evaluated. The trained models does not achieve maximum epoch
count due to early stopping function. Even if number of epochs was set a higher value, performance
of the model was not affected as the training was stopped by the early stopping function. Models
are trained again with optimizing early stopping function parameters. Minimum delta parameter of
the early stopping was set as 1 × 10−2 on all of the previous runs. The next runs were made using
minimum delta value as 1 × 10−3 and validation accuracy and loss curves for this runs are shown
in Figure 17 and Figure 18, respectively. As shown in Figure 18, lower validation loss scores than
previous runs were achieved.

The slope of the validation loss graph still looks bearish. Ignoring the time constraint, it was decided to
train the models during the maximum epoch number without using the early stopping function. After
early stopping function was excluded, models were trained for 1000 epochs as defined on all of the
runs in this study. Without early stopping, it was seen that the decline in the slope of the loss curve had
come to an end.

According to the Figure 19, maximum validation accuracy score was achieved by ResNet 50 archi-
tecture as 0.85. Figure 20 shows a significant improvement in the minimum validation loss score of
0.35. Table 12 shows the results of the runs without using early stopping function. Highest scores are
achieved by ResNet 50 model with 90.63% of sensitivity, 89.80% of specificity, 92.26% precision and
90.82% of accuracy scores.

Table 12: Training performances of the network models using freezed base models without early
stopping. Batch size is used by default at size 32.

Network Augmentation Sensitivity Specificity Precision Accuracy
Xception Yes 79.38 79.88 83.55 81.65
VGG 16 Yes 83.75 84.15 88.16 86.08
ResNet 50 Yes 89.38 89.44 92.26 90.82
Inception v3 Yes 83.13 81.51 78.24 79.75
Inception ResNet v2 Yes 86.25 84.29 78.41 81.01
Xception No 86.25 84.51 79.31 81.65
VGG 16 No 84.38 84.57 87.66 86.08
ResNet 50 No 90.63 89.80 85.80 87.66
Inception v3 No 77.50 77.50 79.49 78.48
Inception ResNet v2 No 80.00 79.22 79.01 79.11

3.9 Comparison of Experimented Network Models

Since sensitivity (recall) is one of the significant measures in medical research area, sensitivity scores
are compared in Table 13. Higher sensitivity scores are recorded using augmented data for Inception
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v3, and Inception ResNet v2 models. However sensitivity score of the Xception, VGG 16 and ResNet
50 network models without data augmentation are higher than using augmented data.

Table 13: Comparison of sensitivity scores of the proposed network models. Best scores are bold.

Model With Augmented Data Without Augmentation
Xception 79.38 86.25
VGG 16 83.75 84.38

ResNet 50 89.38 90.63
Inception v3 83.13 77.50

Inception ResNet v2 86.25 80.00

According to Table 14, highest accuracy score is achieved with augmented data and ResNet 50 net-
work model. The accuracy values of experiments with augmented data for all network models are
higher than those without augmentation when there is no difference recorded on accuracy scores for
the Xception and VGG 16 architectures compared to the augmentation. According to the accuracy
scores, data augmentation has a positive effect on diagnosing COVID-19 positive cases for most of
the experimented network models in this study. Compared to the previous run, the maximum accuracy
score achieved in the final runs has been improved by 4 percent.

Table 14: Comparison of accuracy scores of the proposed network models. Best scores are bold.

Model With Augmented Data Without Augmentation
Xception 81.65 81.65
VGG 16 86.08 86.08

ResNet 50 90.82 87.66
Inception v3 79.75 78.48

Inception ResNet v2 81.01 79.11

3.10 Evaluation of Results

In this section results evaluated in this study are summarized and compared to other studies.

As stated in the previous chapters, sensitivity is one of the critical metrics used in medical studies.
Early diagnosis plays a very important role in overcoming the disease. Incorrect predictions about the
diagnosis of the disease lead to the detection of the disease process after it has worsened. Radiologists
and doctors request more than one examination to diagnose the disease. As mentioned in the study
of Bai et al, radiologists had high specificity scores however average sensitivity scores diagnosing
COVID-19 patients using chest CT scan [13]. Radiologists stated by Bai et al. have sensitivity scores
ranged from 70% to 94%. Most of the experimented deep learning models have higher sensitivity
scores than the radiologists stated on Bai et al..

CT scan images from two data sets, Zhao’s data set and SARS-CoV-2 CT Scan data set, are used in
this study. Studies using these two data sets are compared in the Table 15. Among these studies,
Soares et al. proposed an xDNN classification approach using SARS-CoV-2 CT Scan data set that
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(a) Xception (b) VGG 16

(c) ResNet 50 (d) Inception v3

(e) Inception ResNet v2

Figure 15: Validation accuracies of trained models using augmented data without trainable layers
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(a) Xception (b) VGG 16

(c) ResNet 50 (d) Inception v3

(e) Inception ResNet v2

Figure 16: Validation losses of trained models using augmented data without trainable layers
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(a) Xception (b) VGG 16

(c) ResNet 50 (d) Inception v3

(e) Inception ResNet v2

Figure 17: Validation accuracies of trained models using augmented data without trainable layers and
with lower minimum delta value for early stopping callback function
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(a) Xception (b) VGG 16

(c) ResNet 50 (d) Inception v3

(e) Inception ResNet v2

Figure 18: Validation losses of trained models using augmented data without trainable layers and with
lower minimum delta value for early stopping callback function
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(a) Xception (b) VGG 16

(c) ResNet 50 (d) Inception v3

(e) Inception ResNet v2

Figure 19: Validation accuracies of trained models using augmented data without trainable layers and
without early stopping callback function (1000 epochs)
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(a) Xception (b) VGG 16

(c) ResNet 50 (d) Inception v3

(e) Inception ResNet v2

Figure 20: Validation losses of trained models using augmented data without trainable layers and
without early stopping callback function (1000 epochs)
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shows highest performance with more than 97% of accuracy and sensitivity scores [30]. Using same
data set, DenseNet201 based COVID-19 classification model is proposed by Jaiswal et al.[37]. This
study performs 96.25% accuracy and 96.29% sensitivity scores. In studies using Zhao’s data set,
performance results are not as good as SARS-CoV-2 CT-scan data set. Among these studies, highest
accuracy as 89% is performed by the study of Yang et al and the highest sensitivity score as 95% is
reported in the study of Wu et al [29, 38].

Table 15: Studies in the literature including the data sets used in this study. Scores not specified in
cited articles are shown as "-". A) Zhao’s data set, B) SARS-CoV-2 CT scan data set.

Authors Dataset Method Accuracy Sensitivity

Soares et al. [30] B
eXplainable Deep Learning
classification approach, xDNN

97.38% 97.15%

Jaiswal et al. [37] B
DenseNet201 based COVID-19
classification model

96.25% 96.29%

Yang et al. [29] A
Multi-task learning and
self-supervised learning

89.00% -

Wu et al. [38] A
Joint Classification and
Segmentation System

- 95%

Mobiny et al. [39] A Detail-Oriented Capsule Networks 87.6 91.50%

Loey et al. [40] A
CGAN based on a deep transfer
learning model

82.91% 77.66%
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CHAPTER 4

CONCLUSIONS

4.1 Discussion

In this work, comparison of five deep neural network architectures are presented. Discussion of the
results is outlined in this section.

This study includes the comparison of the performances of different neural network models on COVID-
19 detection using CT scan images. The effect of augmented data on performance is also noted among
the comparisons made in this study. Since data is the most valuable element of studies in medical re-
search, this study contains evaluation of multiple models between different data groups. As described
in previous chapters, more accurate estimates are obtained in this study by using the multiple datasets
combined. The models trained after the combined dataset was expanded with data augmentation tech-
niques show the highest percentage results among all of the comparisons included in this study. As
stated about the first series of runs using trainable layers on base models, significantly high scores are
achieved. Accuracy scores of around 95% were obtained in all trials. When the accuracy and loss
values of training and validation were examined, it was important to catch the overfitting situation.
Overfitting is one of the major problems on deep learning studies, and the models are compared us-
ing frozen layers to overcome overfitting. As a result of this study, the evaluations of the runs using
frozen layers in the basic models were examined. Overall, ResNet 50 network model achieved up to
the COVID-19 detection results in obtaining sensitivity score of 89.38%, specificity score of 89.44%,
precision score of 92.26% and accuracy score of 90.82%.

There is no significant finding explained in this study about the effect of batch size on performance
of the models. Due to the large neural network models and limited hardware capacity on the working
computer, the network models proposed in this study cannot be trained using higher batch size.

The reliability of the results is impacted by containing images extracted from previous studies. Images
in Zhao’s dataset may have been subject to possible distortion during extraction from pdf files. Image
sizes are quite small compared to original CT images with high resolution.

The last runs in this study show the significant effect of limiting the number of iterations. When the
number of iterations or epochs in a training model does not allow the model to converge sufficiently,
iterations should continue. The same happens when the early stop function stops training before the
model converges.
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Since this study was completed in a limited time period, it was preferred to use the early stopping
function in order to quickly conclude the runs. When this study reached a certain maturity, stretching
or even removing the early stop function was tried. In order to increase the scores achieved after these
trials, different values can be used for other hyperparameters. Loss and activation functions do not
differ between runs, changing these parameters may affect training performance. Binary cross-entropy
is mostly preferred in binary classification studies and diagnosis of COVID-19 from other diseases
can be examined by using categorical classification. When training the deep learning model for a
categorical classification problem, categorical cross-entropy loss function can be used as loss function.

4.2 Future Work

As described in previous chapters, neural network models trained using multiple datasets have more
accurate predictions. Better test results can be achieved by working with more than two datasets. Since
access to personal health data is limited, the number of public datasets studied is limited. Future works
can also benefit from the datasets referenced in this study. The datasets combined in this study are
publicly accessed from [29] and [30].

Considering that better performance results are obtained by using augmented data, further studies can
be made by feeding network models with more augmented data. Apart from enlarging the data set,
machine learning techniques can be studied on using the patient’s symptoms such as fever, cough and
other findings as input. The number of days passed through the RT-PCR test result and the time period
of the disease can also be important inputs. Since different variations are encountered in different time
periods, the research area can be expanded by examining the periodic differences in CT findings.

The results in this study show that ResNet 50 deep learning model has the best performance among
the five models used in this study. As future work, other deep learning models can be tried to get
higher performance measurements. Batches with lower than the size of 64 is used in this study. Since
computation power is limited with the studied computer, network models can be re-trained with a
better computer. With an increased video ram in GPU higher batch sizes can be examined in the future
works.

With the widespread use of machine learning approaches, its use in the interdisciplinary field is be-
coming more and more popular. It is important to show the reasons for the outputs in areas such as
economy, health, and education. At the forefront of the areas studied on this subject is explainable
artificial intelligence (XAI). XAI aims to explain the reasons for the decisions made in the predictions
made. In Phillips’ study, it was mentioned that different types of explanations are required for different
users and that in addition to the explanation, how accurate this explanation should be stated [41]. The
machine learning approaches used in this study and many other approaches do not explain the reasons
for the outputs, the focus is on achieving higher scores. In addition to aiming to reach higher scores
in the studies, it is also very important to conduct studies that provide better explanations. For this
need, which is not addressed in most of the machine learning and artificial intelligence approaches, a
solution is sought with approaches such as explainable artificial intelligence.

In this study, CT scan images were used in RGB format. Although the CT images used in this study
are grayscale, they are used in RGB format to feed the pre-trained models with three-channel data.
Kanan et al. highlighted the importance of the RGB to grayscale conversion method [42]. As stated in
their study, the method of converting color to grayscale affects the performance of image recognition
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approaches, as demonstrated by multiple experiments using different datasets. CT images are origi-
nally scanned in grayscale format and there is no need to convert images from RGB. Since Kanan et
al.’s study highlights the effect of multiple grayscale formatted versions of the same images in deep
learning approaches, different deep learning approaches can be studied using CT images with single
channels considering the effect of RGB to grayscale conversion.

Since the rapid increase of COVID-19 cases reaching pandemic size, computed tomography scanning
has been used more and more. It was not predictable that such a large amount of data would be
produced. The fact that so much data are being produced provides the appropriate conditions for
increasing the popularity of studies on CT scans. All of the pre-trained convolutional neural network
models included in this study emerged with the ImageNet dataset in 2015 and later. With the huge
number of images to be collected from COVID-19 and other diseases, a CT dataset with a high number
of images can be created. By working with a large number of images, new CNN models trained on
these images can be created. The similarity of the images in the dataset used in transfer learning studies
and the images in the dataset where the model was previously trained can be examined.

4.3 Conclusion

The performances of deep neural networks is compared in this study.

SARS-CoV-2-CT Scan dataset and Zhao’s dataset are combined together and data augmentation tech-
niques are applied on all images. As a pre-processing step, images are resized to provide the required
dimensions to the input layers.

Performance for classification of the COVID-19 disease are investigated. The performance of the five
deep neural network architectures are compared, Xception, VGG 16, ResNet 50, Inception v3, and
Inception ResNet v2. ResNet 50 shows the best result for all of the metrics described in the results
chapter. Since sensitivity is previously explained as one of the most valuable metrics on COVID-19
diagnosis results, the performances are compared using sensitivity and accuracy scores.

As mentioned in the previous chapter, this study shows the desired results when compared with similar
studies. Since machine learning becomes more popular day by day on solving classification problems,
the best accuracy score of 91% in this study shows about 2% of improvement on diagnosing COVID-
19 disease on CT images compared to machine learning studies using Zhao’s dataset in the literature.
This tiny performance improvement in diagnosing COVID-19 disease, which has reached very large
masses, is invaluable due to the number of people the virus has reached all over the world.

Training studies in deep neural network structures can be improved by changing many variables such as
batch size, number of epochs, optimizer, loss function, activation function, and early stopping callback
function. In this study, several runs were performed changing the training dataset, batch size, and early
stopping function.

In summary, in this study comparisons are made about solving the binary classification problem on
diagnosing COVID-19 using CT images. Since the data used in this study is limited, more accurate
training performances are achieved on most of the architectures with data augmentation. Performance
tests were performed on both augmented and non-augmented data. The results indicate that there is
a significant performance improvement on using augmented data. However, batch sizes of more than
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64 have not been examined, as the computation power is limited by the GPU of the studied computer.
For the batch sizes lower than 64, experimented network models do not show any significant change.
Among all of the test results, the highest sensitivity, specificity, precision, and accuracy scores are
collected using ResNet 50 architecture.
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APPENDIX A

CONFUSION MATRICES OF EACH EXPERIMENTED
NETWORK

Table A.1: Confusion Matrix of Xception Using Augmented Data with 32 Batch Size

Predicted
Positive Negative

True
Positive 150 10
Negative 4 152

Table A.2: Confusion Matrix of Xception Using Augmented Data with 48 Batch Size

Predicted
Positive Negative

True
Positive 153 7
Negative 2 154

Table A.3: Confusion Matrix of Xception Using Augmented Data with 64 Batch Size

Predicted
Positive Negative

True
Positive 150 10
Negative 3 153

Table A.4: Confusion Matrix of Xception Using Without Augmentation with 32 Batch Size

Predicted
Positive Negative

True
Positive 151 9
Negative 3 153
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Table A.5: Confusion Matrix of Xception Without Data Augmentation with 48 Batch Size

Predicted
Positive Negative

True
Positive 151 9
Negative 7 149

Table A.6: Confusion Matrix of Xception Without Data Augmentation with 64 Batch Size

Predicted
Positive Negative

True
Positive 151 9
Negative 6 150

Table A.7: Confusion Matrix of VGG 16 Using Augmented Data with 32 Batch Size

Predicted
Positive Negative

True
Positive 154 6
Negative 5 151

Table A.8: Confusion Matrix of VGG 16 Using Augmented Data with 48 Batch Size

Predicted
Positive Negative

True
Positive 154 6
Negative 3 153

Table A.9: Confusion Matrix of VGG 16 Using Augmented Data with 64 Batch Size

Predicted
Positive Negative

True
Positive 151 9
Negative 2 154

Table A.10: Confusion Matrix of VGG 16 Without Data Augmentation with 32 Batch Size

Predicted
Positive Negative

True
Positive 154 6
Negative 3 153
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Table A.11: Confusion Matrix of VGG 16 Without Data Augmentation with 48 Batch Size

Predicted
Positive Negative

True
Positive 156 4
Negative 14 142

Table A.12: Confusion Matrix of VGG 16 Without Data Augmentation with 64 Batch Size

Predicted
Positive Negative

True
Positive 153 7
Negative 4 152

Table A.13: Confusion Matrix of ResNet 50 Using Augmented Data with 32 Batch Size

Predicted
Positive Negative

True
Positive 152 8
Negative 4 152

Table A.14: Confusion Matrix of ResNet 50 Using Augmented Data with 48 Batch Size

Predicted
Positive Negative

True
Positive 153 7
Negative 3 153

Table A.15: Confusion Matrix of ResNet 50 Using Augmented Data with 64 Batch Size

Predicted
Positive Negative

True
Positive 153 7
Negative 5 151

Table A.16: Confusion Matrix of ResNet 50 Without Data Augmentation with 32 Batch Size

Predicted
Positive Negative

True
Positive 151 9
Negative 11 145
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Table A.17: Confusion Matrix of ResNet 50 Without Data Augmentation with 48 Batch Size

Predicted
Positive Negative

True
Positive 153 7
Negative 3 153

Table A.18: Confusion Matrix of ResNet 50 Without Data Augmentation with 64 Batch Size

Predicted
Positive Negative

True
Positive 149 11
Negative 5 151

Table A.19: Confusion Matrix of Inception v3 Using Augmented Data with 32 Batch Size

Predicted
Positive Negative

True
Positive 158 2
Negative 2 154

Table A.20: Confusion Matrix of Inception v3 Using Augmented Data with 48 Batch Size

Predicted
Positive Negative

True
Positive 151 9
Negative 7 149

Table A.21: Confusion Matrix of Inception v3 Using Augmented Data with 64 Batch Size

Predicted
Positive Negative

True
Positive 153 7
Negative 3 153

Table A.22: Confusion Matrix of Inception v3 Without Data Augmentation with 32 Batch Size

Predicted
Positive Negative

True
Positive 152 8
Negative 2 154
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Table A.23: Confusion Matrix of Inception v3 Without Data Augmentation with 48 Batch Size

Predicted
Positive Negative

True
Positive 151 9
Negative 8 148

Table A.24: Confusion Matrix of Inception v3 Without Data Augmentation with 64 Batch Size

Predicted
Positive Negative

True
Positive 152 8
Negative 12 144

Table A.25: Confusion Matrix of Inception ResNet v2 Using Augmented Data with 32 Batch Size

Predicted
Positive Negative

True
Positive 153 7
Negative 6 150

Table A.26: Confusion Matrix of Inception ResNet v2 Using Augmented Data with 48 Batch Size

Predicted
Positive Negative

True
Positive 155 5
Negative 5 151

Table A.27: Confusion Matrix of Inception ResNet v2 Using Augmented Data with 64 Batch Size

Predicted
Positive Negative

True
Positive 154 6
Negative 7 149

Table A.28: Confusion Matrix of Inception ResNet v2 Without Data Augmentation with 32 Batch Size

Predicted
Positive Negative

True
Positive 153 7
Negative 11 145
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Table A.29: Confusion Matrix of Inception ResNet v2 Without Data Augmentation with 48 Batch Size

Predicted
Positive Negative

True
Positive 148 12
Negative 5 151

Table A.30: Confusion Matrix of Inception ResNet v2 Without Data Augmentation with 64 Batch Size

Predicted
Positive Negative

True
Positive 150 10
Negative 8 148
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