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ABSTRACT

PROFIT MAXIMIZING SHIPMENT CONSOLIDATIONWITH
UNCERTAIN SHIPMENT REQUESTS

Master of Science, Industrial Engineering
Supervisor: ci

Co-Supervisor:

August 2022, 90 pages

In this study, a profit maximizing shipment consolidation problem is under

consideration. There are multiple shippers characterized by uncertain shipment

requests, who consolidate their orders and make dispatch decisions jointly, in order

to maximize total profit. The problem is modeled as a continuous-time Markov

Decision Process. For the two-shipper setting the structure of the optimal policy is

characterized under certain conditions. For the multiple-shipper setting obtaining the

optimal policy is difficult due to the curse of dimensionality. Heuristic policies are

proposed and performance of the policies are evaluated.

Keywords: Shipment Consolidation, Markov Decision Process, Heuristics, Policy

Iteration Method
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CHAPTER 1

1 INTRODUCTION

Logistic activities are significant cost items for any business that ships products to

its customers. For the outgoing products, outsourcing the logistic activities within

the supply chain to third-party logistic providers (3PL) is becoming increasingly

common across various industries (Marasco, 2008). Decision of not outsourcing

logistic activities to 3PL would require significant investment and additional

management effort which is not desirable for most businesses. 3PL companies

function as a hub receiving shipments from multiple shippers. Different shipments

with the same destination can be consolidated to be sent together.

Shipment consolidation is the action of collecting a number of shipments to utilize

the capacity of the freight vehicle to achieve cost savings compared to shipping the

loads individually. Utilizing the capacity of the freight vehicle more lowers the

freight cost per shipment due to freight cost being shared by more shipments. Ergun

et al. (2007) states that repositioning a freight vehicle is very expensive and

considering a significant portion of repositioning movements are empty, it was

estimated as of 2007 that empty-load related losses are in billions of dollars for the

US market only. Considering the increasing desire of companies for better

efficiency, shipment consolidation becomes more important.

A single shipper may not benefit the cost efficiency obtained through capacity

utilization to the highest extent. This is due to earlier shipment requests waiting a

large amount of time until the vehicle is dispatched. When there are delivery

deadlines and/or shipment quality depreciation over time, large waiting times for

shipments are not desirable. Multiple shippers from the same origin that are sending

shipments to the same destination can consolidate their shipments in the same freight

vehicle to tackle long waiting times. Collaborating shippers will get to benefit
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through economies of scale. Logistics service providers tend to offer better prices for

collaborating shippers as it decreases the empty movements, and it provides more

repetitive jobs for the drivers (Ergun et al., 2007). Such benefits are shared by the

collaborating shippers in forms of additional profitability or efficiency.

Besides the cost efficiency achieved by utilizing the capacity, decreasing the CO2

emission levels caused by transportation industry is an emerging motivation due to

increasing concern regarding global warming. An example study is Pan et al. (2013)

that considered a transportation pooling problem for retail supply chains in France

with the objective of minimizing the CO2 emissions. It is suggested that pooling the

product flows using road and rail transport modes could lead to 52% reduction in

CO2 emissions. Increasing public awareness on the carbon footprint of the products

is likely to encourage firms to consider lowering their emission levels to present an

environmentally friendly public image.

In this study, we consider a shipment consolidation setting where multiple shippers

with same origin and destination collaborate in consolidating their loads on the same

freight vehicle. It is aimed to maximize the benefits of the shippers obtained from

collaboration by determining load acceptance and vehicle dispatching levels. We

characterize the optimal policy structure and propose heuristic policies that are

applied to large problem instances. Performance of these heuristics are evaluated and

compared with each other and the optimal policy, whenever it was obtainable.

In Chapter 2, we review the literature on related problems and position this study

regarding its similarities and differences to other studies. In Chapter 3, we describe

the Markov Decision Process (MDP) model for this problem, and we study the

optimal policy structure based on the MDP formulation. In Chapter 4, we use the

findings on the optimal policy structure and use them for developing heuristic

policies to propose solutions for large sized problems. In Chapter 5, we assess the

performances of the proposed heuristics. In Chapter 6, we discuss the main findings.
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CHAPTER 2

2 LITERATURE REVIEW

Shipment consolidation (SC) problems aim to optimize the cost tradeoff between

fixed cost of dispatching the vehicle with consolidated shipments and cost of holding

these shipments until the time of dispatch. This tradeoff also exists in a typical

inventory replenishment problem as well with inventory holding costs and fixed cost

of order placement.

Suppose a problem environment with constant deterministic arrivals of demand (in

an inventory replenishment problem) or shipments (in a SC problem). In a SC cycle,

inventory level increases until the dispatch point which is the end of the cycle. Hence,

maximum inventory level is observed at the dispatch point. In an inventory

replenishment cycle, inventory level begins from the maximum and depletes until

the end of the cycle. Decision variable in both problems is the maximum inventory

level in a cycle that begins (or ends) with 0 inventory. In calculation of average cost

per time unit for both problem settings, fixed cost incurs once per cycle and expected

holding cost per time is calculated using the average inventory level in a cycle.

Due to this observation, it can be said that SC problems and inventory replenishment

problems study an equivalent decision environment. Extensive literature for both is

available with different problem settings such as single/multiple types of loads,

deterministic/stochastic arrivals of demand or shipments, inventory capacity

limitation etc.

Threshold policies are common in both SC and inventory replenishment literature.

Heuristic policies in this study are proposed by coming up with such thresholds and

conducting policy improvement procedures over threshold policies.
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2.1 Shipment Consolidation (SC) Literature

In this section, papers studying SC problems are reviewed.

quantity-based and time-based threshold

policies for the dispatch decision for consolidation cycles with the aim of minimizing

expected cost per unit time. There is a single type of shipment. Quantity-based

threshold dispatches once the accumulated quantity reaches the threshold while time-

based threshold dispatches once the time since the beginning of the cycle reaches the

threshold. Demand for shipments arrive according to a Poisson process. Problem is

modelled as a renewal process. Optimal values for both thresholds are characterized

analytically. The setting where a logistics provider offers a quantity discount after a

threshold is also studied. Optimal threshold policies are characterized for this setting.

Papadaki and Powell (2007) studied the monotonicity of the value function for

h multidimensional state-space. Monotonicity observations were

illustrated on the batch dispatch model where multiple types of products exist and

the vehicle has limited capacity. Available decisions are to wait for the next arrival

or dispatch an amount from each type and the aim is to minimize expected total

discounted cost. Under this setting, it is shown that value function is partially

nondecreasing for states with increasing number of loads.

Mutlu et al. (2010) have studied time and quantity (TQ) based policy and compared

to the time-based and quantity-based threshold policies within a shipment

consolidation scheme with a single type of shipment that arrives according to a

Poisson process. TQ-based policy uses both thresholds and chooses to dispatch

whenever one of the time-based or quantity-based thresholds are exceeded. The

objective is to minimize the expected long run average cost. It is shown that quantity-

based policy provides minimum cost. Whenever there is an explicitly stated time

limitation for a shipment consolidation, it is suggested that TQ-based policy can be

useful and the expressions to find optimal quantity threshold for a given time limit

is provided.
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multiple

shipment type environment with constant deterministic arrival rates. Two

optimization models are developed for this problem. The first model aims to

maximize the cost difference between employing an immediate shipment policy that

ships each period versus the shipment consolidation policy. In the second model,

difference between the emission levels of each policy is also considered within the

objective. Due to proposed models being non-linear and integer programs, optimal

solutions were found through an enumeration procedure. Along with the

optimization models, numerical study is made to observe the sensitivity of the

optimal solutions with respect to problem parameters.

a shipment consolidation problem with

multiple shippers consolidating their loads at different dispatch locations. Loads

arrive according to a Poisson process. Problem is modeled as an MDP with states

being number of loads from each shipper at each dispatch location and decisions

being which location the shipper arrivals will be assigned and when to dispatch at

each location. Each shipper obtains utility once their loads are dispatched. Following

the formulation for the total utility maximization (coalition), shipper strategies are

proposed to model the shipper behavior in the absence of coalition. Multiple saving

allocation schemes are proposed that would motivate the shippers to collaborate.

Computational study is conducted to observe the performances of the proposed

shipper strategies and sensitivity of the model parameters.

Lai et al. (2016) have studied quantity-based and time-based threshold policies for

the dispatch decision for consolidation cycles with the aim of minimizing expected

cost per unit time. Multiple suppliers exist in the environment providing different

types of shipments each having different Poisson arrival rates and inventory holding

costs. Suppliers consolidate their loads at the warehouse of a third-party logistics

provider. Threshold values for quantity and time are found for both dispatch policies

using a procedure similar to finding the economic order quantity (EOQ). Cost

allocation in cooperative inventory consolidation game is also studied. A rule for

proportional cost allocation is proposed. It is found that time-based policy works
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better with this rule while the performance of the quantity-based policy in a

cooperative structure is highly dependent on the number of suppliers and ratio of

fixed cost versus holding cost.

et al. (2018) studied a shipment consolidation environment with two types of

shipments where one of them being expedited. Shipments arrive according to a

Poisson process. Problem is modeled as an MDP where states are the number of

loads from each shipment type that are waiting. Decisions are dispatching (all of the

accumulated load or a portion) or waiting at a decision epoch. Dispatching incurs a

one-time fixed cost while holding costs that differ for each shipment type incur for

the loads as they wait. Objective is to minimize the total discounted cost. Optimal

threshold policies for capacitated and uncapacitated settings that are quantity-based

are observed. In light of these observations, a solution procedure is proposed to be

applied to larger sized problems. Through simulation, performance of the policy

obtained through proposed solution procedure is found to be better than

performances of time-based threshold policies applied by two logistics providers.

2.2 Inventory Replenishment Literature

Among the papers reviewed in this section,

problem setting with a single product. Remaining papers are Joint Replenishment

Problems (JRP) that study replenishment decisions of multiple types of products.

nt problem of a

warehouse facing deterministic demand for a product at a constant rate. Demand can

be backordered at the warehouse, until a predetermined amount, , is consolidated.

Each time accumulates, a shipment is made to the customers and inventory at the

warehouse is depleted by , Replenishment of inventory as well as dispatching the

amount, each has a fixed cost. There is a unit cost of keeping inventory, as well

as a unit cost of backordering customer demand. Aim is to determine the optimal

dispatch and replenishment quantities. Under the restriction that there is a constant
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dispatch cycle, an EOQ-like optimal dispatch cycle length is found. Under the same

restriction, replenishment cycle length is taken as an integer multiple of shipment

consolidation cycle length. The problem is also studied under a capacitated setting.

An enumerative solution procedure is proposed for this problem, searching the

integers for shipment consolidation cycles, and finding the best combination. Main

finding is that unequal dispatch cycle lengths of dispatch and replenishment cycles

results in lower cost under both capacitated and uncapacitated settings.

Porras & Dekker (2006) have studied joint replenishment setting with minimum

order quantities under a deterministic demand rate. An analytical procedure is

proposed for finding the base cycle length and its integer multiples for individual

stock item types that minimize sum of ordering and inventory keeping costs.

Numerical analysis is conducted using data from a real-life case to assess the

performance of the proposed solution method. A separate numerical analysis is

conducted to observe the sensitivity of the problem to varying parameters.

Moon et al. (2006) has studied a joint replenishment setting with a capital investment

restriction that would limit the maximum inventory levels. Replenishment period

lengths of individual stock item types are determined as an integer multiple of the

base period length that aim to minimize total cost per unit time. The RAND

algorithm that previously existed in the literature is modified to be applied to

resource constrained joint replenishment problem. A genetic algorithm is also

proposed. Numerical analysis is conducted to compare the performances of these

algorithms. It is suggested that modified RAND algorithm performed better than the

genetic algorithm. However, genetic algorithm has extension ability that makes it

useful for constrained joint replenishment problems.

al. (2010) studied a stochastic joint-replenishment problem where the

inventory system is modeled as a continuous-time Markov chain. Demand of

demands are independent. Objective is to minimize expected cost per unit time.

Optimal policy is found through an enumerative procedure. The policy is
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proposed where total order size is placed and allocated to each individual item

whenever inventory level of one of the units drop to . It is suggested that described

policy outperforms the policy where an amount is ordered whenever

inventory position is below especially when lead times are small and

backordering costs are large. Optimal values were found through a search procedure

and performance comparisons were made in numerical analysis.

In Fung et mpound

Poisson demand and positive lead times is considered while having service level

constraints to be met. Periodic order-up-to level policy is mathematically

modeled for multi-product case. The objective is to determine the optimal period

lengths and order-up-to levels for individual products that minimizes the expected

cost. Heuristic methods are proposed for the solution of this problem that find local

optimum values through an enumeration procedure. It is suggested that policy

outperforms the well-studied can-order policy especially when lead times

are significant.

Salameh et al. (2014) studied joint replenishment problem under a constant

deterministic demand rate where two products can be partial substitutes of each

other. When inventory level of a product is zero, the other product observes an

cost solution procedure by solving non-linear programs is proposed to find the

optimal order quantities for both products within this setting. Numerical study is

conducted to compare the performance of substitutable product case with no

substitution case. It was shown that when product substitution is available,

significant cost savings could be achieved.

Feng et al. (2015) studied a multi-product inventory control system where demand

arrivals follow a Poisson process. Problem is formulated as an MDP. Demand in a

period may consist of multiple products of multiple types. Hence it is observed by a

joint pdf of product types within the subset of all types. Optimal inventory control

policy is observed for smaller experiments while heuristic procedures are proposed
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for larger problems. The policy is where a replenishment order is triggered

once inventory order of a product type drops to , types with inventory level less

than are ordered up to a level between and . This way, excess

inventory holding costs are balanced compared to pure order up to level of . This is

shown by numerical examples and algorithms to find values are presented.

Kouki et al. (2016) considered the replenishment decision for a multi-item inventory

control system. Demand follows a Poisson distribution for each item. Items have

lifetimes distributed exponentially. Inventory system is modeled as a Markov chain

where states denote the inventory level. For zero lead time setting, optimal

values that minimize the expected total cost are characterized for the replenishment

policy using a decomposition approach. For positive lead time setting, a heuristic

procedure is proposed based on the findings from zero lead time setting. Numerical

study is conducted to observe the performance of the proposed heuristic as well as

observing sensitivity of the model for varying parameters.

Braglia et al. (2017) has studied a joint-replenishment problem for a supplier dealing

with a family of products. Unlike most replenishment studies, lead times and the

fixed cost of ordering are controllable. Incentive to decrease the lead times and the

fixed cost is balanced by costs associated to these decisions. Only information

available regarding the demand distribution is its mean and variance. Objective is to

determine the replenishment cycle lengths for each individual product as an integer

multiple of the global cycle length as well as the lead times and fixed cost. Under

this setting, an algorithm to find the optimal replenishment policy was proposed

which was inefficient for large problems. Two heuristic methods are proposed, and

numerical study is conducted to compare the performances of proposed algorithms.

It was suggested that the heuristic methods could be of use for large size problems.

In the study of Muriel et.al. (2022), joint-replenishment problem is considered in a

constant demand environment. Instead of accounting for fixed cost of orders of

individual items, a minimum order quantity (MOQ) is used. Multi-item

replenishment cycle length that minimizes the cost per unit time is proposed. It is
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suggested that ordering a constant amount whenever inventory level is zero is

suboptimal in MOQ environment. Numerical experiments are conducted to compare

the performance of these policies as well as observing the sensitivity of the model to

changing parameters.

Creemers & Boute (2022) studied the joint replenishment problem with a base case

first and then its extensions with positive lead times, backorders, and compound

demands. A Markov chain is developed for exact evaluation of the policies studied

based on costs they incur. It is shown that exact optimal policy is only marginally

better than can-order policy with optimal parameters. Using the exact

evaluation method, the optimal policy parameters for the can-order policy can be

found.

Noblesse et al. (2022) have studied a two-product joint replenishment production-

inventory model employing can-order policy as a markov decision process.

Demand arrives according to a compound Poisson process. Lead times for orders are

positive and endogenous as they are affected by the order amount. Steady-state

distribution of the system is characterized. Using enumerative methods, policy

parameters that minimize the costs are found. Scenarios where joint replenishment

with can order policy performs better than independent replenishment is

discussed.

2.3 Dynamic Stochastic Knapsack Literature

Dynamic Stochastic Knapsack Problem (DSKP) is the problem of accepting or

rejecting arriving items. Accepted items consume a resource (capacity) and rewards

are obtained for the item. Rejecting items can incur a penalty cost that represents the

loss of goodwill from the sender. Aim is to maximize the sum of rewards minus the

sum of costs.

Stochasticity of the problem is due to the uncertainty of the item arrival times and

possibly the rewards. Problem is said to be dynamic when parameters become known
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at the times of the item arrivals (Range et al., 2018). In the dynamic case, inventory

holding costs can be included in the models as time becomes an aspect in decision

making with sequential item arrivals. These problems are related with capacity

allocation problems with uncertain arrivals in various environments, including

transportation problems as in this thesis. Accepting or rejecting random and

sequential arrivals with a capacity limitation are common actions in this thesis and

DSKP literature.

Kleywegt and Papastavrou (1998) has proposed a generic DSKP model and

suggested possible applications of this model to multiple industries. In the

description for application of the model to a transportation environment, loads

(transportation requests) from different senders arrive in uncertain times. Arrivals

are modeled as a Poisson process. Arriving items have random rewards that become

known at the arrival. It is assumed that arrivals have the same size (capacity

consumption). Decision at each load arrival is to accept or reject the load where a

penalty cost exists for rejection. There is a waiting cost per unit per time. Problem is

modeled as a continuous-time MDP. Dispatch decision is embedded as a stopping

state in the Markov chain. The optimal solution to this problem is characterized as a

threshold policy based on the reward and remaining capacity. Calculation method

for optimal time of stopping is provided.

Kleywegt and Papastavrou (2001) have extended their study in 1998 where item

sizes are random and become known at arrival along with reward parameters. It was

found that optimal policy is characterized using thresholds in this scenario as well.

Lu (2018) has studied a DSKP where an initial inventory is depleted over time with

arriving demands of random quantity and prices. Demand price and quantity are due

to a discrete probability distribution. Once demand arrives and corresponding

quantity and price becomes known, seller decides to accept or reject the demand.

Structural properties of the value function are studied for unit-arrival case and

generalizations are made for the random arrival quantity case. Time and price-based

threshold heuristic policies are proposed.
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2.4 Rationing Literature

Rationing problems aim to determine the rations of resources allocated to satisfy

different classes of demand. Objectives could be cost minimization or profit/benefit

maximization. A variety of decisions are studied depending on options in the

formulation such as lost sales and backordering. Unlike the knapsack problems,

capacity limitation for the stock level may not exist in rationing problems.

Rationing problems that study sequential demand arrivals with uncertain rates are

related with this thesis. with state

definition being the stock level at a given time.

Ha (1997a) has studied a production system with a single type of product being

produced to stock with a finite rate of production. Unit demand from different

customer classes arrive according to a Poisson process. Arriving demand may be

accepted or rejected. Rejecting a demand incurs a penalty cost. Production can be

continued or stopped. Problem is modeled as anMDP. Aim is to minimize the system

cost where cost is incurred for holding inventory. It is shown that a base-stock level

is optimal for production decision and thresholds for demand classes exist for

accepting (when the threshold is exceeded) or rejecting the demand arrivals.

Ha (1997b) has studied the modified setting of Ha (1997a) where backorders are

allowed instead of rejecting demand arrivals. The setting with two demand classes is

studied where it is costlier to backorder demands from the first class. It is shown that

base-stock level for production decision still holds. Sensitivity of the rationing level

is characterized for changing number of backordered demands in place.

the problem of Ha (1997b) for classes of

demand instead of two. An algorithm to find optimal rationing levels as well as the

base-stock level for production is proposed.

Bulut & (2011) studied another modification of Ha (1997a) where there

can be multiple servers for production instead of one and this number can be
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increased. It is shown that base-stock policy is optimal for production and threshold

policies are optimal for rationing decisions.

2.5 Contribution of This Work

In this section, contribution of this work in terms of the studied problem environment

and solution approach is discussed.

Threshold policies are proposed in a number of studies in the reviewed literature for

each of the four problem types. In this study, threshold policies for the MDP are

proposed following the structural observations on the optimal policy that has shown

monotonous behavior. To propose policies for the MDP, a constant arrival rate model

is formulated that made use of the monotonicity observations.

In formulating a constant arrival rate model in this study, a global cycle length was

determined which is common in JRP models. Process of determining this cycle

length follows an EOQ-like solution procedure where average profit per time is

maximized. Note that among the reviewed literature for inventory replenishment

studies, a profit maximization objective does not exist. Loads of individual shipment

types were accepted in a proportion of the global cycle length and individual cycle

lengths were embedded into the formulation. Most JRP literature considers an

uncapacitated problem environment. In this study, maximum shipments that can be

dispatched is limited by the vehicle capacity. Formulations of the optimization

models were made accordingly.

In this study, a shipment consolidation setting is studied where there are loads

arriving from different shippers each having a rate of arrival. Each shipper gains a

unit revenue from each load shipped, which is obtained when the consolidated loads

are dispatched. Unit revenue can be interpreted as the sum of additional benefits

obtained per unit when the shipper engages in the collaborative shipment

consolidation scheme.
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In mathematically modeling a shipment consolidation problem, approaches such as

representing waiting time related issues as cost incurred per shipment per unit time

are used. This is a common approach in the literature where shipments with tighter

due dates or shipments that have more importance have a large cost per unit time.

This way of modeling the costs discourages long waiting times for such shipments.

There is a fixed cost of dispatching the freight vehicle.

It is aimed to maximize the profit of the coalition, that is the sum of profits obtained

by individual shippers. In other words, aim is to balance the fixed cost and inventory

holding costs with existence of revenue. In this setting, arriving shipments with large

costs incurred per unit per time may be rejected. It is assumed that such shipments

are sent separately where they do not obtain the additional benefits from the SC

scheme which are defined as the unit revenue.

This study differs from the SC literature on different levels. The SC problem in place

is modeled under a stochastic shipment arrival setting. Solution approach is based on

the MDP formulation and heuristics proposed that make use of the observations on

the structure of the optimal policy for the MDP. Main focus on other SC studies were

determining the dispatch point that minimizes the costs. In this study, each load

brings revenue on dispatch making the objective function a profit maximization.

(2012) tha

-assignment of

the arriving shipments besides the dispatch decision.

al. (2018) which also modeled the problem as an MDP,

dispatch action may dispatch a portion of the consolidated loads while in this study,

the loads are consolidated within the vehicle and all of them will be shipped when

al. have proposed a linear staircase heuristic

policy based on the quantity of loads at hand, heuristics in this study propose

thresholds based on the accumulated inventory holding cost up to given states.
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Moreover, heuristics proposed in this study can be applied to a setting with any

number of different shippers.

Besides determining dispatch levels, rejecting the arriving loads is an available

option which is also observed in optimal policies in the computational study.

Thresholds for rejection action for each type of shipment are proposed along with

dispatch threshold in the heuristic methods that were proposed to be used in large

sized problems.

Summary of problem setting and solution approach aspects of this study and

reviewed literature is presented in Tables 2.1 to 2.3 for the reviewed literature.

Note that abbreviations for the objective function are for cost minimization (CM)

and profit maximization (PM). Uncapacitated problem settings are denoted by (U)

while capacitated ones are denoted by (C). Stochastic distribution of demand or

arrival (depending on the problem type studied) is abbreviated as (S) while

deterministic setting is abbreviated as (D).
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Table 2.1 Papers studying inventory replenishment problems
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Table 2.2 Papers studying shipment consolidation problems
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Table 2.3 Papers studying DSKP and Rationing (RT) problems
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CHAPTER 3

3 THE MODEL

In the shipment consolidation setting, there are different shippers consolidating

their shipments in a freight vehicle that can carry up to loads. Loads from each

shipper arrive one by one where interarrival times are uncertain. In the

literature, uncertain interarrival times are commonly modeled using the exponential

interval follows a Poisson distribution when interarrival times are exponentially

distributed. Hence, load arrival process is modeled as a Poisson process with rate

units per time unit.

accumulates or when total accumulated loads reach . When the vehicle is

dispatched, all of the accumulated loads are dispatched. Whenever total number of

accumulated loads reach with the new arrival, vehicle dispatches. Note that

dispatching a full vehicle may not be an optimal decision as it is forced in this

formulation. Arriving loads are directly assigned to the vehicle, not to a warehouse

where it was possible to dispatch a portion of available loads.

Not considering this option can also cause suboptimality in this formulation.

Whenever a vehicle dispatches, a new empty one is assumed immediately available.

It is assumed that shippers obtain benefits for each load shipped when participating

in the shipment consolidation setting. Each shipper has a revenue per unit load

that represent these benefits. There is a unit holding (waiting) cost per unit per unit

time, for each load. Holding cost represents the due dates and/or depreciation

factor for the loads. Shipments that have to be dispatched with less waiting time have

a large value of holding cost. Dispatching the freight vehicle to the destination has

fuel and labor costs. Sum of these costs is represented as fixed cost of dispatching
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the vehicle denoted by . The process continues throughout an infinite horizon.

Problem parameters are summarized as below.

: Arrival rate of shipper i in

: Revenue per unit load shipped for shipper i in

: Inventory holding cost per unit load per unit time for shipper i in

: Vehicle capacity in units

: Fixed cost of dispatching the vehicle in monetary units

In this setting, the aim is to maximize the profit per unit time of shippers. The

profit maximization problem is modeled as a continuous-time Markov Decision

Process (MDP) with average reward criterion. Note that all of the described

parameters have positive values.

States of the Markov chain are the number of available loads from each shipper in

the vehicle denoted by . Due to Markovian property, time index is

dropped, and the states are defined as the number of loads waiting for each shipper.

Due to memoryless property, the decisions are made only upon customer arrivals.

This is an equivalent definition without loss of optimality. Furthermore, in the MDP,

an equivalent discrete-time MDP is constructed by defining the duration of a stage

as average time between consecutive arrivals. Lump and continuously accruing costs

are defined accordingly (see Serfozo, 1979).

Since the vehicle has to be dispatched every time its capacity is full, the set of feasible

states is . State transitions occur when a new load arrives or

when the vehicle is dispatched.

For each state , decisions are made regarding the load arrivals and vehicle

dispatches. Two types of actions are possible regarding an arriving load from shipper

that are accepting or rejecting the load. When load of shipper is accepted, in

the current state is increased by one. If rejected, current state does not change.
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Other two types of actions exist to decide whether the vehicle should wait for the

next unit load to arrive or be dispatched with consolidated loads. Wait option incurs

the holding costs of the loads consolidated on current state while dispatch option

dispatches the consolidated loads earning revenue from each unit load incurring the

fixed cost of dispatching and holding costs for consolidated loads (excluding the last

arriving load).

The action set consists of combinations of load related and vehicle related decisions.

Available actions are Accept&Wait (AW) that adds the arriving load to the vehicle

and waits for the next arrival; Reject&Wait (RW) that dismisses the arriving load

and waits for the next arrival with the same load composition and Accept&Dispatch

(AD) that adds the arriving load to the vehicle and immediately (without incurring

additional holding cost for the arriving load) dispatches the vehicle and earns revenue

from consolidated loads incurring the fixed cost of dispatching and holding costs.

Note that Reject&Dispatch decision is suboptimal as dispatch decision does not incur

any additional unit cost for the last arriving load. Reject&Dispatch would not bring

any additional revenue for the last arriving load and incurs holding cost for an

additional period.

Action for the unit load arrival from shipper at state is denoted by

. Action vector denotes

. Since unit loads of each shipper have

different contributions to revenue and holding cost, it is useful to treat their arrivals

and actions differently.

The optimality equation of the MDP is as follows.

(3.1)

In (3.1), denotes the bias function for state and denotes the gain, i.e., profit

obtained per state transition (Note since state is reachable under all possible
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policies, the MDP is well-defined and under optimal policy and exist and are

finite). Bias of a state is defined as the total expected reward gained when initial

state is relative to a benchmark state, say . Parameter is the arrival rate

of a new load from an arbitrary shipper and corresponds to the expected time

between two consecutive load arrivals. Given that denotes profit per transaction,

profit per unit time is obtained as .

Expected holding cost of spending a transition interval in state is expressed as

. Let be a by vector with entry equal to 1 and other entries equal to

0. Then, when action for the next state becomes .

If RW action is in place for . When action for

shipp , that is a 1 by vector consisting

of zeros corresponding to an empty vehicle.

In contrast to AW and RW actions where no additional cost or revenue incurs except

from the inventory holding cost, AD brings revenues from the consolidated loads

and the newly arriving loads incurring the fixed dispatch cost besides the holding

cost.

Let function denote the one stage expected reward for a given state-action pair

expressed as follows.

Where is a binary function that is equal to one if the specified condition is satisfied.

One stage transition probabilities are expressed as follows.
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Hence, probability that the next arrival being from shipper is expressed as .

3.1 Optimal Policy Structure for the Two-Shipper Uncapacitated Setting

In this section, optimal policy structure is studied to characterize monotonous

behavior of optimal actions, if any exists. Such observations are helpful in terms of

approximating the optimal policy for large size problems that are costly to solve in

computation time. For the simplicity of the analysis the structure of the optimal

policy is characterized under discounted reward criterion. We limit the analysis to

the two-shipper setting.

Define as the expected discounted total reward then the chain starts at state

and when per stage discount factor is

Theorem (Ross, 1983, p.95)

If there exists a finite value, say such that

then

A bounded function and a constant exist satisfying the optimality

equation

Where is the one-stage reward in state and action is taken.

Transition probability from state to under action is denoted by . Note

that this is a maximization formulation.

For , where denotes the

transition. Note that corresponds to no discount.
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This theorem indicates that the structure of the value function under discounted

reward criteria is preserved under average reward criteria. We continue our analysis

under discounted reward criteria.

Under discounted reward criterion, one-stage expected reward is expressed for

continuous time discount factor as follows.

Here one may interpret per period discount factor as . In other words, as

, and the setting becomes undiscounted. To apply the discount, following

modification is made over transition probabilities.

Resulting optimality function under total expected discounted reward criteria under

discount factor is as follows.

(3.2)

In (3.2), is the expected discounted total reward when initial state is (For the

simplicity of notation remove the discount index in is removed).

Structure of the optimal policy is studied for the two-shipper setting to characterize

any monotonous behavior over state-action pairs. Note that findings are not

dependent on and can be generalized to the average reward criterion.

Definition 1. Let denote the optimal value function as defined in (3.2).

is defined as follows.
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Lemma 3.1 states that the optimal value function increment between states and

is less than .

Lemma 3.1

(3.3)

(3.4)

Proof.

The proof is done by induction: It is assumed that the inequalities hold for the value

functions when there are transitions to go, the inequalities are shown to hold for

the value functions when there are transitions to go. For the sake of simplicity,

the index for transition number is dropped.

Suppose the optimal actions at state are , (Accept and

Dispatch when shipper 1 arrives, Accept and Wait when shipper 2 arrives). The

following expression holds by the optimality equation in (3.2).
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Following relation holds by definition of .

Following relation holds for the differences in the value functions.

Left hand side of the above relation can be expressed as follows.

By (3.3) (note that (3.4) is applicable when comparing states and ), this

expression is less than which is less than . Thus,

it can be concluded that below expressions hold true.

When optimal action is other than under it is still possible to

show that (3.3) holds (the proof follows similar lines and is skipped). For (3.4) the

proof follows similar lines.
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Lemma 3.2 states that the optimal value function increments are nondecreasing with

same.

Lemma 3.2

where (3.5)

where (3.6)

Proof.

Following arrangement can be made for (3.5).

Suppose the optimal action at state is .

Where the first inequality follows from definition of , the second inequality

follows from (3.5) and the last equality follows from the assumption that under

optimal action is
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Different action pairs are omitted as same result can be attained using this approach.

Note that (3.6) is the symmetrical case for increasing loads from shipper 2 while

loads from shipper 1 are constant.

Lemma 3.3 states the supermodularity of the optimal value function.

Lemma 3.3

(3.7)

Proof.

Following relation holds due to Definition 1.

Suppose the optimal action pairs for states are

and respectively. Then (3.7) holds if following relation holds.

Value functions are extended as follows.
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This expression can be arranged as follows.

The inequality holds due to Lemma 3.1. We extend the analysis to the cases where

we assume optimal action pairs for states and are

and respectively and and respectively.

Analysis under other possible optimal actions follow similar lines and are thus

skipped.

Suppose the optimal action pairs for states are

respectively. Again, the following relation holds due to

Definition 1.

(3.7) holds if following relation holds.

(3.8)

Value functions are extended as follows.
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This expression can be arranged as follows.

Note that the inequality holds due to Lemma 3.2 and induction assumption in (3.7).

Hence, (3.8) holds.

Next, suppose the optimal action pairs for states are

respectively. Following relations hold due to Definition 1.

(3.7) holds if following relation holds.

(3.9)

Value functions are extended as follows.
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This expression can be arranged as follows.

By Lemma 3.1, the following expressions hold.

Thus, the inequality (3.9) holds, and it is concluded that the value function is

supermodular.

Given these lemmas, action pairs are compared to observe monotonous behavior of

optimal actions for increasing load levels. It is shown that value function increments

are nondecreasing (Lemma 3.2) for increasing loads of one of the shippers and the

increment has an upper bound (Lemma 3.1). Supermodularity of the value function

(Lemma 3.3) is also shown. Based on these observations, a typical optimal action

sequence in the optimal policy is described for states with increasing load levels.

3.1.1 AD vs AWMonotonicity for Increasing Loads

Here it is shown that when upon arrival of shipper , , action AD is preferred

over AW in a given state , then AD is preferred over AW in state , .

If it is known that action AD is preferrable to (provides higher value) action AW for
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an arriving shipment from shipper 1 at , following expression holds from the

optimality function definition.

(3.10)

Adding to both sides of (3.10):

From Lemma 3.1, following relation can be observed.

Thus, it can be concluded that following relation holds

which implies AD is a better option than AW at state upon an arrival

from shipper 1.

Adding to both sides of (3.10), following expression holds.

From Lemma 3.2, following relation can be observed.

Thus, it can be concluded that following relation holds

which implies AD being a better option than AW at state upon an arrival

from shipper 1.

If AD is a better option than AW for one of the shippers at state , AD is a

better option than AW for new arrivals from that shipper at states where

and .
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3.1.2 AW vs RWMonotonicity for Increasing Loads

Here it is shown that when upon arrival of shipper , , action AW is preferred

over RW in a given state , then AW is preferred over RW in state , .

If it is known that AW action is preferrable compared to RW for an arriving shipment

from shipper 1 at , following relation holds from the optimality function

definition.

(3.11)

By Lemma 3.1 and (3.11), following relation is observed

which implies AW is a better action than RW at state upon an arrival

from shipper 1.

By (3.11) and Lemma 3.3, following relations hold

which implies AW is a better option than RW at state upon an arrival

from shipper 1.

Hence, it can be said that given action AW provides larger value compared to RW

at state for an arrival from a given shipper, at states where

and , action AW will provide larger value compared to RW.

3.1.3 AD vs RWMonotonicity for Increasing Loads

If it is known that action AD is preferrable to action RW for an arriving shipment

from shipper 1 at for being nonnegative integers, following relation

holds from the optimality function definition.
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(3.12)

Adding to both sides of (3.12):

From Lemma 3.1, following relation can be observed.

Thus, it can be concluded that following relation holds

which implies AD is a better option than RW at state upon an arrival

from shipper 1.

Adding to both sides of (3.12):

From Lemma 3.1, following relation can be observed.

Thus, it can be concluded that following relation holds

which implies AD is a better option than RW at state upon an arrival

from shipper 1.

Hence, it can be said that if AD is a better option than RW at a state for one

of the shippers, AD is a better option than RW for new arrivals from that shipper at

states where and .
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Given the monotonicity findings for pairs of actions, typical action sequence

observed in the optimal policy is when observing

states for increasing number of loads.

It can be said that once it is optimal to choose AW for arrivals from a shipper at state

satisfying for every shipper .

Same conclusion can be made for AD action compared to both AW and RW. Once

it is optimal to choose AD for arrivals from a shipper at state , AW or RW will not

be optimal actions satisfying for

every shipper .

Example.

Example optimal policy for a 2-shipper instance including all three actions is

provided in Figure 3.1. Parameter values for this problem are as given below.
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CHAPTER 4

4 HEURISTIC POLICIES

Due to curse of dimensionality, optimal policies cannot be obtained in reasonable

computing times for problem instances with more than three shippers as state space

grows. To handle this issue, heuristic policies are proposed based on the observations

on the structure of the optimal policy.

First one is an EOQ-based heuristic that uses the solution obtained for a constant

arrival rate model (abbreviated as CM) of the problem into developing a threshold

policy for the MDP which is called the Workload Threshold Heuristic (WLH). Two

other heuristics are also developed based on the CM model, in which the aim is to

modify actions in certain states, with an effort to obtain an improved performance.

First of these is the policy iteration-based look ahead policy One-Step Policy

Improvement Heuristic (PI). Second one is the Whole-State Policy Improvement

Heuristic (WPI). Each of these policies modify the WLH policy differently. Finally,

-Capacity Dispatch Heuristic (FC)

which updates the WLH policy only considering the vehicle capacity.

4.1 Constant Arrival Rate Heuristic

This is a heuristic that initially obtains a solution for a model where discreteness of

load arrivals and stochasticity no longer holds. In other words, the loads are assumed

to arrive deterministically at a constant rate over time, as in an EOQ model. Let

denote the time between two dispatch decisions, i.e., the cycle length in this problem.

To solve the problem, global dispatch cycle length and individual cycle lengths for

each shipper that are proportions ( ) of .
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Using the cycle lengths and problem parameters, thresholds are found to be used to

propose policies for the MDP.

4.1.1 The Model Under a Constant Arrival Rate

The shipment consolidation cycle can be considered as a reverse inventory

replenishment cycle where instead of depleting inventory over time, it increases up

to a point where the consolidated loads are dispatched, and zero-inventory is reached

again.

In shipment consolidation model, maximum inventory is reached at the end of the

cycle. Under constant arrival rate, quantities can be continuous, and they increase

linearly from the start to the end of a cycle, during units of time. Since rejecting

arrivals is also an available option, this is integrated to the model by shippers having

individual cycle lengths that are a proportion of the global cycle. Note that

this representation is also consistent with the optimal policy under MDP especially

because of the observation on the optimal policy structure where shippers are

rejected at the beginning of dispatch cycles (states with small number of loads in

them). Once large enough states are reached, (later in a dispatch cycle) shippers that

were rejected before can also be accepted. This structure is also valid in the constant

arrival rate model (CM) by admitting loads from shippers for the last time units

of the cycle.

A model where shippers with constant continuous arrival rates and unit revenue

as well as unit inventory holding costs per time is developed. As in the MDP

model, the vehicle has a limited capacity and fixed cost of dispatching the vehicle

is . As stated earlier, this model relaxes the discreteness and randomness of the

arrivals in the MDP model. Objective is to determine the decisions that maximize

average total profit per unit time. These decisions are the dispatch cycle length and

acceptance proportion of that is, for every shipper .
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Figure 4.1 Representation of CM with two shippers

In Figure 4.1, a graphical representation of the accumulated loads over time for the

CM with two shippers is presented. Note that first shipper is a full shipper ( )

and second shipper is a partial shipper ( ) whose loads were rejected at

the beginning of each cycle until its acceptance threshold is reached.

Below is the formulation of the problem

(CM) (4.1)

(4.2)

where is the vector of acceptance proportions (equivalently fraction

of time spent in cycle) for each shipper. In the following subsections 4.1.1.1 and

4.1.1.2, optimal solution of CM is studied for uncapacitated and capacitated settings.
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4.1.1.1 Uncapacitated Setting

Optimal solution in the absence of the capacity constraint can be determined by

finding the optimal for a given and then finding the optimal .

Step 1: Determining given a cycle length

Treating as a constant in the profit function in (4.1) and ignoring the upper bound

on for the moment, first order condition (FOC) yields the following expression.

Since second derivative w.r.t. of the profit function with constant yields

which is negative, the function is concave with respect to and has a global

maximum at satisfying the FOC. Then, optimal can be expressed as follows

considering its boundaries.

This relation ensures is a positive value less than or equal to one since problem

parameters are positive. Additionally, for every finite value, cannot be zero for

the uncapacitated setting. Note that, for a given , the problem is decomposable with

respect to index . Thus, optimal value of can be determined only considering the

terms with index in (4.1), independent of the other terms.

Shippers with are named as full shippers whose loads are always accepted

until the dispatch point is reached. Shippers with are partial shippers

whose loads are rejected for the initial proportion of the dispatch cycle beyond

which accepted until the dispatch point. A shipper with is a null shipper and

its loads are never accepted to the vehicle. Note, in the uncapacitated setting, for a

given , none of the shippers are null shippers under optimality.
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Step 2: Determining optimal cycle length

For where denotes the set of shippers, let and be sets

of full and partial shippers for a given respectively expressed as below.

Plugging in the expression for optimal values, the profit function can be expressed

as follows in terms of only.

This is a piecewise function as its expression changes for different values having

different and members. Let be an arbitrary shipper and and

be defined as stated earlier for . Following expressions hold for left

and right limits of the profit function at .

Plugging in both expressions, the following relation holds.

Since both left and right limits at have the same value, is continuous at

points where members of and change.
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Left and right limits of the derivative of at are observed to check for

differentiability.

Plugging in both expressions, following relation holds.

Since both left and right limits of the derivative of at have the same

value, is differentiable at points where members of and change.

Let shippers be ordered in increasing and let be the shipper that satisfies

following relations.

Second derivative of the profit function as follows.
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Definition 2. Let an interval for be called as the interval, a convex subset of

, if . Note that is used in this definition and shippers

are ordered in increasing .

Let profit function of an interval be the function where full and partial shippers are

selected according to the corresponding value within the given interval e.g.,

is the profit function where and . By

Definition 2, is expressed as follows.

Let be the optimal cycle length found for the profit function arranged for full and

partial members if given is in interval. For instance, in a setting with 5 total

shippers, would be expressed as follows.

Note that when by this definition.

Before describing the approach to find , the Lemma 4.1 is introduced.

Lemma 4.1

Let optimal lie in the interval, .

For the optimal , following relation holds.

Proof.

This lemma holds if,
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(4.3)

holds where is the profit function for interval and is the profit

function for optimal interval . If the optimal is in interval ( ),

will hold. (4.3) holds if the profit function of interval is maximized at a

smaller compared to the optimal . Derivatives of and are written as

follows.

For , difference of derivatives of and are written as follows.

(4.4)

Let for every . Note that decreases for increasing . Then, (4.4) can be

written as follows.

(4.5)

Plugging in for each , following expression is obtained.
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Since are ordered as described in Definition 2, for . Note that the

smallest value of for is . Hence by (4.5), following relation holds when

.

For , difference of derivatives of and are written as follows.

This expression can be written using the earlier definition of as follows. Note that

increases for decreasing .

(4.6)

Plugging in for each , following expression is obtained.

Since are ordered as described in Definition 2, for . Note that the

largest value of for is . Hence by (4.6), following relation holds when

.

Since leads to ,
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holds for every and the proof is complete.

Knowing that is concave for from earlier observations, it can be

concluded that there is only one interval where which will be the

global maximum of the profit function . Lemma 4.1 guarantees that a search

procedure over the optimal values for intervals will not exceed the global

maximum . Knowing that when , following search algorithm will

converge to the optimal .

Algorithm 1.

1. Order shippers in increasing order of and set

2. If , then a positive profit solution does not exist and

approaches infinity. Set for every shipper and stop. Otherwise

proceed to step 3.

3. Find

4. Find satisfying

If , stop. , otherwise set and go to 3.

Once is determined, optimal

.

After obtaining the solution of the CM for uncapacitated setting through Algorithm

1, let variable be the expected dispatch quantity for shipper at the end

of the cycle. Then, expected number of loads accumulated right before the vehicle is

dispatched can be calculated as . If is less than or equal to , then the

optimal solution can be used for the proposed heuristic in section 4.1.2. The heuristic
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in 4.1.2 uses and to obtain a policy to be used in the MDP with thresholds for

accepting and dispatching the loads.

If exceeds , then we discuss the possible computational approach in 4.1.1.2

below.

4.1.1.2 Capacitated Setting

Capacity constraint which is Eq (4.2) in (CM) is binding if in the

uncapacitated setting exceeds . In this case, a solution can be obtained using

Karush-Kuhn-Tucker (KKT) optimality conditions. Theorem 9 in Winston (2003,

Section 11.9) states the conditions for a solution to be optimal in a maximization

problem given as follows.

subject to

For a solution to be optimal, following expressions must hold with

multipliers .

Let and be the left-hand sides of the constraints in CM where are the

constraints and the capacity constraint while are the non-negativity constraints.

Let the dual variables corresponding to constraints be and dual variables

corresponding to constraints be . For the general model with shippers, KKT

conditions are expressed for the following modification as the constraints have to be

less or equal to type.
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subject to

For this formulation, following expressions have to hold for a solution to be optimal

based on the given theorem.
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These expressions can then be simplified to obtain the conditions for shipper case

as follows.

Dual variables for are positive when corresponding shipper is a

full shipper that is, . for are positive when corresponding

shipper is always rejected that is, . Note that is positive when capacity

constraint is binding. Also note that is always 0 for a feasible solution with a

positive .

A special case with two shippers was intended to be studied with the aim of

generalizing its solution to the model with shippers. For the problem with

shippers, KKT conditions can be written in open form as follows. Note that

always holds for solutions where capacity constraint is binding in 2-shipper case.

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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Motivation of observing this special case is to come up with parametric conditions

that would make it possible to determine the resulting , without resorting

to computational methods. There are several possible cases where different

constraints are binding leading to different multipliers being positive such as

existence of a zero-shipper (say shipper ) making or a full shipper making

.

Note that for any solution where capacity constraint is binding, is positive by

(4.10) and for a positive value, is always zero by (4.13).

In the following, we only present three possible cases of the analysis. Due to the

complexity of the analysis, the remaining cases are left as future work.

Case 1:

For this case, following conditions must hold.

Value of is obtained by (4.10):

Conditions for are obtained by solving equations (4.7), (4.8), and (4.9)

together using the expression for .
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Case 2: ,

Note that , is the symmetrical case and the indexes of the given

expressions can be reversed to find the corresponding conditions. Following

conditions must hold for this case.

Value of is obtained by (4.10).

Condition for partial shipper , condition for corresponding to the full

shipper, and condition for are obtained by solving equations (4.7), (4.8), and (4.9)

together using the expression for .
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Case 3: ,

Note that , is the symmetrical case and the indexes of the given

expressions can be reversed to find the corresponding conditions.

Value of is obtained by (4.10).

Conditions of for the null shipper, for the full shipper, and condition for are

obtained by solving equations (4.7), (4.8), and (4.9) together using the expression for

.

Due to complexity of the equation system under cases where for both

shippers, and , , analysis of these cases is left as future work.

Characterization of optimal policy under capacitated setting when the number of

shippers is more than 2 is not further pursued due to the complexity of the problem.

Optimal solution is obtained via off-the-shelf solvers.
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4.1.2 Workload Threshold Heuristic (WLH)

WLH is a heuristic that uses obtained from CM to propose a policy for the

MDP. It is shown that under optimal policy in uncapacitated stochastic unit load

problem, there exist thresholds, in terms of the loads in the vehicle, that define when

to accept a load of an arriving customer and when to reject the load. On the other

hand, dispatch threshold determines whether the current state is eligible to be

dispatched at the time of next arrival. Thus, thresholds indicate upon arrival of each

shipper which action is to be taken in a given state. Even though existence of such

thresholds were not shown to be optimal under capacitated setting in MDP, it is

conjectured that similar threshold structure exists. In WLH heuristics, these

thresholds of MDP are derived from the optimal policy of CM.

Inventory holding cost accumulated at the end of the cycle (cycle of length units

of time) for CM is calculated to be used as the dispatch workload cost threshold

. This cost level is used as the threshold cost level that would trigger the

dispatch of the vehicle in MDP.

Suppose and values are obtained to optimality in CM. Then,

This threshold is used in the MDP by comparing cost weighted workload of

each state to . Cost weighted workload at state is calculated as follows:

Suppose for shipper under CM. This implies loads of the shipper are not

accepted until time units into a cycle. At the time point where loads of
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shipper are started to be accepted, the expected accumulated holding cost level is

calculated for the shippers with .

Note that equivalently, o

loads can be accepted. Note that a full shipper ( ) will have while

a null shipper (with ), has . Smaller values of indicate

that the shipper is more prioritized.

In Figure 4.3, calculation method of is visualized. This figure represents a 2-

shipper case where is the full shipper and is the partial shipper.

Loads from shipper 2 are accepted after units of time within a cycle. At

time , there are shipments from shipper 1 in the system.

Hence, inventory holding cost incurred until time which is is found

as follows.

Note that if another shipper exists in the system satisfying , area of another

triangle multiplied by will be added to .

Figure 4.3 Representation of workload threshold for acceptance measure
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Acceptance threshold is used in the MDP by comparing cost weighted workload

of each shipper at each state to . Cost weighted workload for acceptance of

shipper at state is calculated as follows.

This way, a partial shipper is rejected until enough full shippers are accepted. Note

that cost weighted workload calculation is limited to full shippers due to the

observation that condition alone leads to longer rejection periods that

result in less profitable solutions. Following these calculations, WLH policy is

executed using procedure explained below.

For an arrival from shipper at any state where :

If assign action

Else if and or ,

Otherwise

Note that any shipper

satisfying will have AD action for its arrivals if or

.

in the same state in a WLH policy.

Another possible threshold method that can be utilized is a quantity-based threshold

that uses and in terms of load quantities. Computational results have

shown that using cost weighted thresholds is better in terms of expected profit.
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4.2 One-Step Policy Improvement Heuristic (PI)

Following observations after solving numerical examples, it was seen that WLH

policy underestimates the dispatch points (by dispatching in states with less loads)

compared to the optimal policy. One-step policy improvement procedure (PI) over

WLH is applied to obtain an improved policy.

Tijms (1995, p.193) describes the three-step policy iteration algorithm as follows.

Step 0: Choose an initial policy, say .

Step 1: Find the solution for policy solving the following system of

equations.

, where is the state space.

where state is an arbitrary reference state.

Note that in this notation refers to one-stage expected cost of employing

policy in state and this is a minimization setting.

Step 2: Choose best actions for each state to obtain improved policy .

Step 3: If , stop with improved policy being . Otherwise set and go

to Step 1.

In the PI heuristic, starting with the initial policy WLH, Step 1 and Step 2 of the

policy iteration algorithm is executed. Step 2 is executed over a limited subset of

states (to be defined as ) to obtain an improved policy. This limited subset is

defined as follows. The WLH is conjectured to result in a policy that takes AD

decisions in states with smaller number of loads compared to the optimal solution

(due to the computational observations). Since it is the states with AD action that

needs improvement, only those AD states under the WLH policy are considered. For
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those states, it is checked whether AW improves the value, if feasible. The feasible

states are the ones where number of loads in the vehicle are at most . Let

denote the specified subset of states.

At Step 0, WLH policy is obtained as the initial policy to be used in PI.

PI is only applied to the states in . Due to the property of the WLH policy that

it can allow a mixture (both actions exist in given states for different arrivals) of AD

and RW decisions in a given state (but not AD and AW in the same state), following

expression is applicable for the value equations of states in . Note that term

is omitted since its value is close to 0.

This expression is arranged for as follows.

(4.14)

In these calculations, an approximate value of is used which is the average profit

per unit time value found for the constant demand rate model used in finding WLH

policy. Expression for finding the value used is as follows.

Where is the CM objective function from Eq. (4.1).

Policy improvement step is made over the desired subset of states as follows.

(4.15)
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State action pairs obtained as form the PI heuristic policy. Note that there is no

requirement to solve a system of equations since is estimated.

4.3 Whole-State Policy Improvement Heuristic (WPI)

WPI is another modification to the WLH that aims to increase the number of states

in which action is taken. This heuristic adjusts the WLH using the following

procedure:

1. Let for shipper , be defined as the maximum total load value in which

AW action is taken upon arrival of shipper under WLH.

2. For each shipper , identify all states that have a total number of loads less

than . For shipper , consider the actions taken at those states under

WLH. (Note those actions would be RW, AW and AD). Identify the border

states for shipper , those that satisfy the relation and

.

3. Assign for states that are not border states.

4. Let denote the set of border states under WLH.

5. For , calculate

(4.16)

Evaluating assuming that AD action is taken for all shipper arrivals:
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Suppose at given state , upon any shipper arrival AW decision is taken

(regardless of the type of the shipper), and in the following state ( ),

upon any arrival AD decision is taken. Let denote these successive

actions. Then the value function would be expressed as follows.

Comparing the value functions under these two approaches: upon any shipper

arrival take AD vs. upon any shipper arrival take AW and then in the

following state, upon any arrival take AD:

=

=

=

We name the expression on RHS as . Note that is a value

independent of the arriving shipper.

If , for all shipper arrival, assign . Update the

set of border states by removing , and for all adding to .

Otherwise, do not change , remove from .

Repeat Step 5 until becomes empty.
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Following this procedure, actions are obtained for every state for each shipper

arrival.

Note that the number of states that possibly assume different actions under WPI

compared to WLH is bounded by for each arrival . The reason for a bounded

search is the empirical observations which have shown that WPI policy tends to

choose at states with larger number of loads compared optimal policy in the

absence of this bound. In other words, an unbounded search leads to WPI overusing

the capacity compared to the optimal policy.

4.4 Full-Capacity Dispatch Heuristic (FC)

This heuristic forces the vehicle capacity to be fully utilized in every dispatch cycle

while keeping the RW decisions (if any exists) as they are in the WLH policy.

FC can also be interpreted as a method that extends the AW decisions inWLH policy

to states with larger number of loads. In contrast to the heuristics discussed earlier,

within states is replaced by AW decision.
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CHAPTER 5

5 COMPUTATIONAL RESULTS

In this chapter, details and the results of computational experiments are presented.

These experiments are conducted to evaluate and to compare the performance of the

proposed policies.

Recall that problem size is sensitive to the vehicle capacity and number of shippers

as number of possible states increase for increasing and . Along with different

values of and , experiment instances are generated according to the details given

below.

Experiments are run for , in total six different number of shipper

types are tested. Under each number of shipper types, 100 random instances are

generated. Distributions to randomize the parameters are chosen in a way that would

allow existence of fully and/or partially rejected shippers in the optimal solution as

well as both capacitated and uncapacitated policies. Distributions for the parameters

are given as follows. Note that $ is the monetary unit.

in

in

in

in

Capacity variable is dynamically adjusted for different values of . This is to

ensure a stable utilization level as changes, as more shippers in the system lead to

more frequent arrivals and requirement for more capacity for the system to behave

as desired. To be able to observe a combination of capacitated and uncapacitated
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runs for each setting, following lower and upper limits are considered for the range

of possible values that can take. This range is based on the capacity level

observations over the uncapacitated CM solution for the experimental instances

created by the given parameter distribution.

in

Instances are created using the random number generator in MATLAB. Each

instance is a distinct parameter combination according to the distributions given

above in addition to the number of shippers . Exact evaluation of policies was

intended to be made through solving the linear programming formulation (see

Puterman, 1994) of the MDP using CPLEX solver. GAMS 23.9 is used as the

programming language. For 2-shipper case, policies could be evaluated within

seconds. Runs with 3-shippers could be evaluated within a few minutes at most

(depending on ). Hence, exact values of the objective function and the heuristic

policies are obtained on GAMS for each run instance with .

For , optimal policies are obtained through the exact approach. For

, run times are long due to large problem size. For instance, in 4-shipper case,

desired distribution of leads to average capacity of an instance with to be

14. However, due to GAMS run time exceeding an hour for a single instance with

without a result, optimal policy is not evaluated for . Simulation

model for evaluating the heuristics is developed and implemented in MATLAB.

Note that comparing the simulated results with exact results for run instances with

, it was observed that their difference was not significant. Further discussion

on this comparison is available in Section 5.1.

5.1 Simulation Model

In this section, details of the simulation model and the implementation procedure is

discussed.
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Set of simulated policies are for . Note that

is the abbreviation for the optimal policy, results of which was obtained only for

via exact evaluation.

Constant arrival rate model (CM) has to be run for each instance to generate the

heuristic policies. Resulting CM profit is also included in the comparisons of policy

performances.

Each instance is replicated 10 times in simulation. Let denote the resulting

average profit per unit time being the index for instances and

being the index for the replications and subscript being the policy

employed to obtain the given result.

Let defined as the average profit per time value obtained for the policy .

Values of and as well as evaluations of heuristic policies of

instances where correspond to the exact evaluations obtained through

GAMS. These values are not obtained through simulation. Thus, they do not have

any replications. When is obtained by simulation, it is calculated as the mean

of over 10 replications.

To have the simulated results significantly close to the exact evaluation, it is desired

to choose a replication length that is long enough. Length of each replication is

determined according to a precision threshold based on the coefficient of variation.

Coefficient of variation of a run instance is defined as follows.

Here, is the standard deviation of results for 10 replications in instance,

and is the mean of the simulated profit values for the instance over 10

replications.

Number of transitions (equivalently, arrivals) for a simulated instance is determined

such that coefficient of variation is sufficiently low. Specifically, it is ensured that
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for all given , for at least 97% of the instances . This condition is

satisfied for each simulation run when the number of transitions is set to 1,000,000.

Simulation of each replication begins from state and transitions occur following

load arrivals. Number of load arrivals in a replication is 1,000,000. Interarrival times

were assumed constant which is equal to the mean interarrival time . Thus, the

continuous-timeMarkov chain is treated as a discrete-time Markov chain. Under this

setting, average inventory holding costs are incurred per transition.

Common seeds are used for creating the random arrivals to eliminate the additional

variance in the performance comparisons of different heuristic policies. In particular,

common shipper arrival times and common shipper types along with the same

number of arrivals are used in the simulation of heuristic policies.

Validity of the simulation results are checked as policies were simulated for 2-

shipper and 3-shipper settings as well. Exact evaluations obtained from GAMS are

compared with simulated results using paired t-test. Differences of simulated results

and exact results did not differ significantly, as the relative difference between the

simulated and the exact profit values was at most among all instances.

5.1.1 Simulation Procedure

At the beginning of the simulation, and values are obtained solving the CM for

the parameters of the given run instance. Solution for CM is obtained using

Algorithm 1.

When exceeds for the solution obtained by Algorithm 1, result is obtained

by CONOPT solver in GAMS. If does not exceed , Algorithm 1 solution is

used. Solution time for CM is momentary when using Algorithm 1. It takes several

additional seconds to obtain the solution from GAMS when required for any in

the experiments. Resulting is kept as the CM profit for the given run instance.
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When the CM result , run instance is skipped with

being the average profit.

Every interval beginning at and ending at the next dispatch (equivalently the next

arrival at ) is called a cycle. To evaluate the average profit of the run instance for

the simulated heuristic, number of transitions as well as the total reward obtained

until the next arrival at are kept.

Let be the number of steps since the last arrival at and be the total reward

since the last arrival at for th cycle. Let be the state after arrival where

is the set of arrivals in the replication.

Step 0. Simulation is initialized with variables provided as follows where

denotes the first cycle.

, , , ,

Step 1. Shipper of an arrival is determined according to the arrival rates of each

shipper. A random variable is created for each arrival, say . That

arrival belongs to shipper which satisfies . Note that is

used in this expression.

Step 2. For the current state and arriving load type , WLH action is

determined using the workload of the state and thresholds calculated using and

as described in section 4.1.2.

Step 3. According to the simulated heuristic policy, say , the details of how the

current action is obtained are presented below.

:

If current state is not in as defined in Section 4.2, .
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If current state is in , and are calculated using

Eq. (4.14). Recall that is estimated using CM objective by . PI

action for arrival of shipper in state is determined as in Eq. (4.15).

:

If and , check if as in Eq.

(4.16).

When , set . When .

Otherwise .

Note that WLH simulation is done prior to WPI to obtain for each

simulation instance.

:

If and ,

Set .

Otherwise .

Step 4. For simulated heuristic , once the action at the current state is determined,

following updates are made.

If , then

If , then

If , then

If , following updates are made sequentially where is the average

profit obtained through cycle .
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Step 5. If , set and return to Step 1.

If , calculate the average profit of the replication as follows.

Once 10 replications of a run instance are complete, mean of the results over 10

replications are found as follows.

5.2 Policy Performance Comparisons

In this section, the results of the performance comparisons of the heuristics are

presented in detail. In the first approach, amount of average profit differences are

reported in percentages. In this approach, comparisons are made to assess how profit

differences behave.

In the second approach, a statistical test called the sign test based on the number of

times a policy outperforms the other is conducted. Results of the sign test are

presented to assess the overall performance of the heuristics in terms of the median

profit differences.
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5.2.1 Percentage Comparisons

The percentage difference between average profits per unit time of and a

benchmark policy, is obtained using the Eq. (5.1). Note that is the maximum

number of instances.

(5.1)

Note that in obtaining , run instances where CM profit is 0 are discarded.

Since heuristics are based on the CM result, none of them propose a policy for such

instances. Also note that this result is consistent with the optimal policy since the

proposed optimal decisions for an instance where were not accepting

any loads e.g., a zero-profit solution.

Recall that, if the exact average profit per time value can be obtained (as in

for each policy and every result for ), is the corresponding average

profit per time value in instance of policy . If the average profit can be obtained

only through simulation, is the 10-replication average as explained in Section

5.1.

For each shipper setting, Tables 5.1 - 5.6 present the results of percentage

difference comparisons of policies. In these tables, percentiles of the comparison

results are presented that give an insight on the distribution of the results. Mean of

the percentage differences is also provided.

In Tables 5.1 and 5.2, presented values represent given percentiles or the mean of

for being the heuristic policy in the columns.
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Table 5.1 for 2-Shipper runs

2 shippers CM WLH PI WPI FC

min 1.34 0 0 0 0

25% 3.53 0.10 0 0 0

median 7.30 0.34 0.05 0.06 0.30

75% 12.4 1.07 0.32 0.63 3.03

max 68.2 22.2 22.2 22.2 39.5

mean 10.3 1.43 0.57 0.76 4.23

Table 5.2 for 3-Shipper runs

3 shippers CM WLH PI WPI FC

min 0.95 0.07 0 0 0

25% 2.28 0.39 0 0 0

median 3.15 0.81 0.02 0.02 0.10

75% 5.66 2.42 0.11 0.20 2.78

max 65.6 75.1 5.57 4.56 48.0

mean 5.64 3.48 0.23 0.31 3.12
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In Table 5.1 and Table 5.2, comparisons of heuristic policies versus the optimal

policy are presented for and . Results in both tables are the exact results

obtained through GAMS. Recall that does not correspond to an MDP policy, but

it is the difference comparison value for CM profit function that was obtained as in

Eq. (4.1).

By results for run instances with shippers, it can be said that and

are similar with median percentage differences from optimal value of both

policies being less than in both tables. It can be inferred that in close to half

of the instances, PI and WPI proposed the optimal policy. Median values for

and are less than , but their 75 percentile values are both larger

than . and have at most difference at 75th percentile.

Regarding the mean values, PI has the smallest percentage difference versus

that is closely followed by WPI. WLH and FC performed worse than PI and WPI.

However, it is not possible to suggest one of them has outperformed the other. It can

be observed that CM provided worse average profit values compared to results from

other heuristics.

In Tables 5.3 to 5.6, presented values represent given percentiles or the mean of

for being the policy in the columns. is selected as the benchmark

for since resulted in better profits compared to other policies almost all the

time.
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Table 5.3 for 4-Shipper runs

4 shippers CM WLH WPI FC

min 0.86 0.19 -0.6 -0.6

25% 1.75 0.60 0 0

median 2.34 1.25 0 0.02

75% 3.32 3.71 0.16 5.26

max 17.9 19.4 0.69 40.3

mean 3.12 3.14 0.09 3.36

Table 5.4 for 5-Shipper runs

5 shippers CM WLH WPI FC

min 0.62 0.28 -0.1 0

25% 1.23 0.77 0 0

median 1.73 1.39 0.06 0.14

75% 2.38 3.39 0.13 2.78

max 8.55 14.7 4.36 56.0

mean 2.17 2.83 0.22 3.77
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Table 5.5 for 6-Shipper runs

Table 5.6 for 12-Shipper runs

12 shippers CM
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For the experimental instances with (results in Tables 5.3 5.6), results for

the optimal policy are not available due to computational complexity. Since PI is the

heuristic with the best performance, it was selected as the benchmark policy.

It can be observed that WPI performs slightly worse than PI with median value of

being at most for shippers. Mean value of was at

most for shippers. Maximum percentage difference between WPI and

PI is at most for .

Average capacity of instances increases by since distribution of is a function of

. For smaller capacity runs, having a different action leads to a more significant

difference between policies. This can be observed from comparisons with smaller

as maximum differences are larger compared to comparisons with larger values.

Also note that there is a significant increase for values from 75 to 100

percentile (max) showing large differences are rare observations for every

comparison in Tables 5.1 to 5.6.

For increasing where , it can be said that performance gap between

PI and other heuristics increase. Only exception is the difference between CM and

PI. Expected arrivals per unit time increases with . This is due to

distribution of is kept the same but as number of shippers increase, there are more

shippers leading to more frequent arrivals. This makes to model behave similar to

continuous arrivals, making results of the CM larger.

From the results of the percentage comparisons, it can be inferred that PI is the

heuristic with the best performance. It is closely followed by WPI. WPI is followed

by FC and WLH based on the mean and median of the percentage differences.

However, FC and WLH had more extreme gaps either for comparisons versus

or PI. Maximum percentage differences of PI and WPI were not as extreme as FC

and WLH. Although FC seemingly performs better than WLH based on the median

difference, it could be far fetching to suggest that FC performs better than WLH

especially since WLH performed better in terms of mean difference for



76

. Further discussion is available in the following sections where heuristics

are compared based on the sign test and sensitivity of the heuristic results were

observed for varying capacity.

5.2.2 The Sign Test

In this section, results are statistically tested whether a policy outperforms the other.

For this comparison. the sign test as described in Montgomery & Runger (2018) and

Hines et. al. (2003) is adopted. This procedure tests the hypotheses to see if the

median of paired samples is significantly different. Let the values in the samples be

and where is the set of sample entries. Median of these samples

are and . Tested hypotheses are as follows.

If medians and does not differ significantly (null hypothesis), then the sign of

expression has equal probability 0.5 of being negative or positive for any .

Two-sided test is done by first finding number of positive and negative

values, say and respectively. Let . Note that it is assumed

that there are no ties with . If ties exist, it is suggested to disregard them and

test using remaining values. Test statistic is the cumulative

binomial probability of observing up to successes multiplied by 2. If is less

than specified significance level , null hypothesis is rejected e.g., sample medians

are different from each other.

Let and denote the medians of samples and which are the

average profits for experimental instances of and . In comparing

the policies, null hypothesis is set to observe if and differ significantly in

terms of median profit performance.
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If positive and negative values of this difference are significantly different from half

of the instances, null hypothesis is rejected. Note that different heuristics can produce

exactly the same actions for each state and f Due to exact

evaluation of policies for and same seed being used in simulation runs for

, resulting average profit for different heuristics proposing exactly the same

policy are equal. Hence, can be observed as a tied result. In

conducting the sign test, instances with compared heuristics having the same average

profit value are left out.

Let , , , be defined as follows.

Test statistic is calculated as where is the

remaining sample size after tied entries are removed.

If where is the significance level for this two-sided test, null hypothesis is

rejected. In this case, it is said that medians of the samples are not equal with

significance. Median profit of is said to perform significantly better than

median profit of if and . If and , median profit
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of is better than median profit of . When , median profits of the

tested policies do not differ significantly.

For every shipper setting, each heuristic pair is compared using

the sign test with . Results can be viewed from Tables 5.7 to 5.12. For an

example comparison between (rows) and (columns), table cell provides

the information ( ) and the -value.

Table 5.7 Sign test results for 2-Shipper runs

From Table 5.7, it can be observed that median difference was insignificant in

comparisons between and . Median profit for PI is

significantly larger than medians of other policies. Instances where WLH profit are

larger than PI were investigated since it was expected that PI would improve the

WLH performance.

It was observed that these instances had a large gap (up to 66.7%) in favor of WLH

between results of CM and WLH leading to inaccurate approximation of which

was used in deriving PI actions.

PI was evaluated again using after observing the average

percentage gap between CM and WLH for was . With this adjustment

in place, WLH profit was larger than PI for only a single instance. This instance had

a gap of between CM and WLH.



79

Due to CM performance improving with increasing , approximation of becomes

more accurate for run instances with larger number of shippers.

Note that there are consider amount of equal profit observations between different

heuristics. As number of shippers increase, such encounters become less common

due to larger problem size making more state-action pairs available. In smaller

problem instances in terms of and , these encounters are more common.

Table 5.8 Sign test results for 3-Shipper runs

From Table 5.8, it can be observed that median difference was insignificant only in

comparison between for run instances with shippers. Notice that

median difference between WLH and PI has become more apparent compared to

results for .

Table 5.9 Sign test results for 4-Shipper runs
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It can be observed from Table 5.9 that median difference was insignificant only in

comparison between for run instances with shippers. Notice that

median difference between PI and WPI has become more apparent compared to

results for .

Table 5.10 Sign test results for 5-Shipper runs

Table 5.11 Sign test results for 6-Shipper runs
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Table 5.12 Sign test results for 12-Shipper runs

From the results presented in Tables 5.10 to 5.12, it can be observed that PI has

performed better than each heuristic in terms of the median profit value. WPI also

performed better than FC and WLH. Comparisons for median profits of FC and

WLH were either in favor of FC or the difference was insignificant.

Note that there are equal profit observations mainly between PI, WPI, FC. Also note

that number of such observations decrease for increasing number of shippers as seen

from Tables 5.7 to 5.12.

Results of the sign tests are consistent with percentage differences where it could be

inferred that PI performed better than other heuristics. Comparisons of median

profits through the sign test for PI either resulted in an insignificant median

difference (at versus WPI) or resulted in favor of PI. PI is followed by WPI

which only performed worse than PI in terms of median profits. Comparisons of

median profits between FC and WLH either resulted in favor of FC or median

difference was insignificant. Due to insignificant difference being observed for

multiple values, FC performing better than WLH in terms of median profits is not

a strong conclusion.
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5.2.3 Heuristic Performance Sensitivity to Capacity

In previous sections, the whole of experimental instances for each value is studied.

In this section, it is aimed to observe how the heuristics perform under different

capacity conditions.

In Figure 5.1, values of percentage difference comparisons for are presented

in a scatter plot for instances with increasing vehicle capacity . Note that these

values are from where since PI is the benchmark

policy for .

Figure 5.1 Percentage differences of heuristics with PI for 12 shippers versus
vehicle capacity

From Figure 5.1, it can be observed that percentage differences of WLH and FC

versus PI are highly sensitive to changing levels of . For smaller capacity instances,

WLH (diamonds) has more extreme results while for larger capacity instances, FC
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(empty circles) results are more extreme. WPI (filled circles) is more consistent

except for run instances with very small capacity.

Following this observation, runs are grouped for capacity levels of instances

. Small capacity group consists of where and large capacity group

consists of where . Note that is the mean of the capacity levels of

instances. Mean values of the percentage comparisons are presented in Table 5.13

for each heuristic with instances being grouped for capacity levels.

Table 5.13 Percentage difference comparisons of low and high capacity runs versus
PI for shippers

WLH 4.65 2.25

WPI 0.84 0.23

FC 0.66 5.98

From the results in Table 5.13, it is observed that WLH has a better average

performance for larger capacity runs compared to FC. While FC has worse

performance compared to other heuristics for larger capacity runs, it has better

performance compared to WPI for smaller capacity runs.

This behavior can be explained intuitively since FC updates the policy obtained by

WLH to dispatch the vehicle only when capacity is full. For large capacity runs, this

leads to larger inventory holding costs as number of periods to wait increases.

Recall the observation on the WLH policy that it does not utilize capacity level as

much as the optimal policy does. For lower capacity runs, it is more likely that the

optimal policy is to fully utilize the capacity. Since WLH does not utilize capacity
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as much, it is expected that WLH performance will be worse for lower capacity

instances.

WPI performance is worse for lower capacity instances, but it is still within

of the PI performance. Recall the observation made for WPI that when a bound for

states to be improved ( as defined in Section 4.3) does not exist, WPI tends to

overuse the vehicle capacity. By results from instances with smaller capacity, it is

apparent that this bound occasionally leads to not utilizing the capacity level as much

as PI does.

Scatterplots as in Figure 5.1 are observed for other problem parameters ( , , )

to look for performance patterns of the heuristics depending on the values of the

parameters. Heuristic profit results for these parameters did not follow a visible

pattern that was observed for the parameter as in Figure 5.1.
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CHAPTER 6

6 CONCLUSIONS

In this study, a shipment consolidation problem is studied. In the studied problem

setting, there are multiple shippers consolidating their shipments in a vehicle that has

a limited capacity. Shipments arrive according to a Poisson process with arrival rates

differing for each shipper. For each load, revenue is obtained once the vehicle is

dispatched and inventory holding cost is incurred per load per unit time. There is a

fixed cost for dispatching the vehicle. It is aimed to maximize the average profit

obtained per unit time.

Problem is modeled as a continuous-time MDP with states being the number of

shipments available from each shipper. At each decision epoch, actions related to

accepting or rejecting the incoming arrival and dispatching the vehicle or waiting for

the next shipment arrival are determined.

Optimal policy structure is observed to propose heuristic methods that would provide

policies with comparable performance to the optimal policy for large-sized

problems. Monotonicity of the optimal decisions were characterized for the 2-

shipper setting. It was found that optimal sequence of actions is Reject &Wait (RW)

(if exists), then Accept & Wait (AW), and lastly Accept & Dispatch (AD) for states

with increasing number of loads.

Heuristic policies that make use of the findings from the observations on the optimal

MDP policy for the 2-shipper setting. Constant arrival rate model (CM) is formulated

to propose threshold policies for the MDP. First heuristic policy is WLH, which

derives an MDP policy from the optimal values for consolidation cycle lengths for

each shipper obtained by solving CM. Other heuristics which are called PI, WPI, FC,

modify the WLH policy in different ways.
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Performance of the proposed policies were evaluated in terms of the average profit

per unit time. Computational experiments were made for different values for number

of shippers . Optimal solutions of the MDP could be found for

instances where . Exact evaluations of the heuristic policies were made for

as well. For instances with , heuristic policies were evaluated

through simulation. For instances where , optimal policy was not evaluated

due to long computation time.

Heuristics were compared based on the percentage differences of their profits and

number of times each heuristic performed better than another. Among the alternative

heuristics, PI provided better results compared to WLH, WPI, and FC. Although

comparison versus the optimal policy could not be made for instances with more

than 3 shippers, results for 2-shipper and 3-shipper instances showed the average

percentage difference between PI and the optimal policy is found to be 0.57% for 2-

shipper runs and 0.23% for 3-shipper runs.

Sensitivity of the heuristics to varying capacity level is also observed. It was seen

that WLH performed better in instances with larger vehicle capacity compared to

FC, which performed better than WLH in smaller capacity instances.

This study focused on maximizing the total profit of the system, not focusing on

possible individual objectives of shippers. A possible extension to this study is

considering collaborative strategies of shippers aiming to maximize their individual

profits.
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