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Dean, Graduate School of Informatics

Dr. Ceyhan Temürcü
Head of Department, Cognitive Science

Prof. Dr. Cem Bozşahin
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ABSTRACT

SEMANTIC DIMENSIONALITY REDUCTION DURING LANGUAGE
ACQUISITION: A WINDOW INTO CONCEPT REPRESENTATION

Özcan, Rojda

MSc, Department of Cognitive Science

Supervisor: Prof. Dr. Cem Bozşahin

August 2022, 75 pages

We explore the dimensionality in the semantic representations derived from the Eve fragment
of the CHILDES database to gain insights into whether or not semantic dimensionality reduc-
tion (DR) occurs during language acquisition, and if so to gain insights into how this reduction
of dimensions could look like. We start exploring these representations that are in the form
of lambda terms (LTs) by trying to find different representations for them which would be
more suitable for the use of DR techniques on them. Seeing as they make the data set more
suitable for the application of DR, we prepare a version of the original data set where the
LTs are turned into De Bruijn terms (DBTs). After coming up with vectorial representations
for the LTs and DBTs (For DBTs we prepare 2 different versions of the data set.), we study
the dimensionality in these 3 data sets by utilizing Principal Component Analysis, Cosine
Similarity Comparisons, and Affinity Propagation Clustering, and report the results.

Keywords: language acquisition, semantics, dimensionality reduction, de bruijn index, lan-
guage of thought
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ÖZ

DİL EDİNİMİ SIRASINDAKİ ANLAMBİLİMSEL BOYUT İNDİRGEME:
KAVRAM TEMSİLİNE AÇILAN PENCERE

Özcan, Rojda

Yüksek Lisans, Bilişsel Bilimler Bölümü

Tez Yöneticisi: Prof. Dr. Cem Bozşahin

Ağustos 2022, 75 sayfa

Dil edinimi sırasında anlambilimsel boyut indirgemenin (Bİ) gerçekleşip gerçekleşmediğine,
eğer gerçekleşiyorsa boyutların bu indirgenmesinin nasıl görünebileceğine dair içgörü kazan-
mak için CHILDES veritabanının Eve bölümünden elde edilmiş anlambilimsel temsillerdeki
boyutluluğu araştırıyoruz. Lambda terimi (LT) biçiminde olan bu temsilleri araştırmaya on-
lar için üzerlerinde Bİ tekniklerinin kullanımına daha uygun olacak farklı temsiller bulmaya
çalışarak başlıyoruz. Veri setini Bİ uygulamasına daha uygun bir hale getirmeleri sebebiyle
orijinal veri setinin LTlerin de Bruijn terimlerine (DBTler) dönüştürüldüğü bir versiyonunu
hazırlıyoruz. LTler ve DBTler için vektörel temsiller oluşturduktan sonra (DBTler için veri
setinin 2 farklı versiyonunu hazırlıyoruz.) bu 3 veri setindeki boyutluluğu Temel Bileşen Ana-
lizi, Kosinüs Benzerliği karşılaştırmaları ve Affinity Propagation Kümelemesi kullanarak in-
celiyoruz ve sonuçları raporluyoruz.

Anahtar Kelimeler: dil edinimi, anlambilim, boyut indirgeme, de bruijn dizisi, düşünce dili
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CHAPTER 1

INTRODUCTION

The current work is an exploratory study concerned with semantic dimensionality reduction
during language acquisition. The approach that is taken in this thesis study is to computation-
ally explore the semantic representations of the words in a child-directed utterance data set,
which is the Eve fragment (Brown, 1973) of the CHILDES database (MacWhinney, 2000).
The semantic representations of these words are in the form of lambda terms (Church, 1941).
The exploration of these lambda terms starts with the process of trying to come up with new
ways of representing them in a way that would be most conducive to applying dimensionality
reduction techniques to them. The focus is on the predicate-argument structure of the verbs
in this data set of semantic representations, particularly on the way these verbs take their
arguments as it relates to their semantic properties.

It becomes apparent that a method called De Bruijn index which allows one to remove the
variable bindings in lambda terms by representing them numerically could be just what is
needed for the purposes here (de Bruijn, 1972). This is because numerical data is, without
a doubt, more conducive to the application of computational dimensionality reduction, and
the De Bruijn index method helps transform at least part of the semantic representations into
a numerical representation. Therefore, the data with the lambda terms was transformed into
one with De Bruijn terms, and this data set was the second data set that was used in the
thesis along with the original lambda terms with the goal of computationally exploring their
dimensionality. Yet, the representations at hand still were not desirable as there still were
non-numerical parts in the representations.

After an exploration of existing representational frameworks for non-linear and non-numerical
data, a vectorial representation approach was taken for both of the data sets. In case of the
De Bruijn indexed version, some features were attributed to the data to create feature vectors
that capture the important information in the data. In the case of the original representations
with the lambda terms, the vectorial representation was completely based on a Bag of Words
approach.

In the upcoming section, a detailed account of the various research questions this thesis aims
to gain insights into are presented, and the following sections make a deeper dive into some
of the specific research questions that were laid out in the upcoming section.
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1.1 Research Questions

The research questions this thesis sets out to answer are as follows:

• The question of whether or not a process of reduction in the dimensionality of the
predicate-argument structure takes place during language acquisition is the main re-
search question of this thesis, and the hypothesis is that such a dimensionality reduction
does take place. (Addressed in Section 1.1.1.)

• Another research question behind the work in thesis is the question of how verbs’ se-
mantics may shape the way they take their arguments (i.e. argument realization (Levin
& Rappaport-Hovav, 2005)). The exploration of this question starts, in this thesis, with
the dimensionality reduction of semantic representations. Since a successful reduc-
tion would yield new semantic representations containing less semantic features than
before, that would further the understanding of semantic features that may play a sig-
nificant role in the syntactic behavior of verbs. (Addressed in Section 1.1.2.)

• In this thesis, the operationalization of the notion of semantic representations is achieved
by denoting word meanings with expressions based on lambda calculus (Church, 1941)
and De Bruijn indexing (de Bruijn, 1972). What the work in this thesis has shown time
and time again is that exploratory work on the previous questions requires much more
than sticking with the representations that come from any one formalism. It requires
more exploratory work, this time about finding some flexibility in working with the rep-
resentations by finding suitable encoding tools to transform them. For these reasons,
the consequences of one’s initial choice of representational formalism and the questions
about how to encode these kinds of semantic representations are integral parts of this
work. (Addressed in Section 1.1.3.)

1.1.1 Dimensionality Reduction

A well-known language acquisition phenomenon is that children are exposed to various sur-
face structures that resemble each other in significant ways, yet ones that may have different
semantic meanings and warrant different semantic representations. Also, they are exposed to
surface structures that are vastly different yet that are similar in meaning. Yet, once the lan-
guage is acquired, they will have solved this complex problem and have learned how syntax
and semantics work in that they understand how similar syntactic structures may have dif-
fering semantics and how different syntactic structures may have similar semantics. Despite
the level of complexity in what they encounter during language acquisition, they acquire the
language and learn the words in their language. They build a lexicon in the sense that they
have a vocabulary of words for which they understand the rules of use syntactically and also
understand the fit of those words into contexts where they are conceptually appropriate. This
phenomenon is the main phenomenon of interest to this thesis, and this subsection explains
how what goes on during this process could be framed as a dimensionality reduction process.

Dimensionality reduction problems are ones where the amount of variables that seem to de-
termine the outcome of a dependent variable are vast and this vastness is a hindrance to under-
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standing the variable of interest. Word learning and representation during language acquisi-
tion could be approached as a matter of dimensionality reduction. This is because during the
acquisition process, children can be thought to be in a constant process of assigning represen-
tations to the utterances they hear. The task in front them is one of understanding particularly
the syntactic and semantic information that determine the meaning of a particular utterance
they hear, so that they will then be able to create their own utterances with the lexical rules
they have gathered before. In other words, one can think of them as trying to figure out just
which variables they observe in an utterance (also including the information in the physical
environment and linguistic context) determine the meaning of individual words and sentences
as a whole.

Yet, it is quite clear that the information children receive is too complex and even messy.
Them being exposed to so many surface structures can be thought of as them being exposed
to many variables that they have to sift thorough to figure out whether or not they contribute to
the meaning of the words they are so desperate to understand. What is even more perplexing
is the fact that, in spite of the variation in the dimensionality of the data native speakers of
the same language are exposed to as children, they can acquire the same language. These
observations suggest that a dimensionality reduction mechanism may indeed be taking place
whereby children take only the relevant information from the linguistic data they are exposed
to.

Of great interest to this thesis is how this hypothesized process of dimensionality reduction
may take place. Particularly the questions of how the initial semantic dimensionality the
children are exposed to may look like, and of how the final dimensions may look like after
these dimensions are reduced are the questions that are explored throughout the methodology
and data analysis chapters of this thesis.

1.1.2 Argument Realization

Argument realization is a name that is used to refer to the particular kinds of relationships
verbs have to their arguments (such as the maximum number of arguments a particular verb
may take), which is a syntactic relationship that is thought to be related to the way a verb
would be semantically categorized (Levin & Rappaport-Hovav, 2005). The nature and the
direction of this relation in terms of whether it is the semantics of a verb that determines the
syntactic phenomena of argument realization (semantic bootstrapping) or it is the syntax that
precedes and facilitates the learning of the meanings of verbs (syntactic bootstrapping), is
not very well understood and there is no consensus on it (see (Borer, 2004) for a survey of
these arguments). The direction of this interaction between syntax and semantics in argument
realization is of interest to the current thesis, particularly as it pertains to gaining insights
about the role of semantics in this phenomena.

In other words, one question this thesis ponders is this: If it is the semantics of verbs that
determine argument realization phenomena and if verbs could be semantically categorized
such that the ones with similar semantic categories would behave similarly with their argu-
ments, how would the semantic features that would need to be included in such an account
of semantics and semantic categorization look like? This thesis aims to answer the previous
question by means of reducing the dimensionality in the semantic representations to the min-
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imum number of dimensions where the verbs’ semantics are still intact to then see what these
new dimensions could stand for as semantic features.

1.1.3 Selecting a Framework for Representing Semantics

The questions in the previous sections take at face value the representational framework that is
used in this thesis, which is based on lambda calculus (Church, 1941) and De Bruijn indexing
(de Bruijn, 1972) which gives a notational variant of the former. However, the representational
formalism one uses to convey semantic phenomena becomes, naturally, the very subject of
the inquiry when one sets out to computationally explore the representations based on that
formalism to try and answer questions about semantic dimensionality reduction and argument
realization.

In other words, an important focus area in this thesis was the semantic representations them-
selves. The research questions specific to the choice of representational frameworks stem
from their evaluation with regards to their suitability for semantic dimensionality reduction.
For this reason, the frameworks are evaluated based on the distinctness in dimensionality the
framework allows so that these dimensions can then be reduced. A framework being con-
ducive to the identification of distinct semantic dimensionality in its representations is really
about whether or not there are independently extractable semantic features in the representa-
tions which can then be computationally explored. This process also requires coming up with
suitable encoding methods for the non-numerical parts of the data. Identifying dimensionality
and reducing dimensions is also about making sense of what is required from a semantic word
representation by pondering about the fundamental components such a representation should
have and trying to come up with ways to represent only the features that are necessary and
sufficient. These questions are explored in this thesis, either during the process of identifying
the dimensions in the existing representations or during the evaluation of the newly reduced
dimensionality in the data.

In conclusion, another research question this thesis explores is whether or not semantic repre-
sentations denoted with De Bruijn indexed lambda terms are better representations than ones
with regular lambda terms when it comes to understanding and modeling the way dimension-
ality reduction can occur during the acquisition of the lexicon by the child. For reasons that
will be made clear in Chapter 3, the hypothesis here is that the De Bruijn indexed represen-
tations are more robust than the regular lambda representations when it comes to modeling
language acquisition.

1.2 Contributions of the Thesis

The contributions of the work done in this thesis are three-fold. The first one has to do with
the main subject of interest, in that the thesis gives a computational account of how semantic
dimensionality reduction could be taking place during language acquisition, how reduced
semantic dimensions may look like, and what these reduced semantic representations tell
about semantics’ affect on argument realization phenomena.
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The second contribution of the thesis is in the way De Bruijn Indexing is used to more suc-
cessfully reduce semantic dimensionality and to cluster unreduced vector representations of
words, suggesting that it is a good candidate as a representational framework that could be
integral to the kind of computational mechanism that is involved in the acquisition of the
lexicon.

The thesis work required coming up with a numerical encoding method for the semantic
representations with lambda terms for the purposes of studying their dimensionality using
pre-existing methods, and this has started a side-quest within the thesis for coming up with a
way to represent the compositional structures in the data with vectors. Therefore, with the cre-
ation and exploration of three types of vectorial representations for the entries in data, a third
contribution of this thesis was one of insight into how compositional phenomena could be
accounted for in a distributional fashion and whether or not structures like De Bruijn indexed
lambda terms may be a way to linearize compositional structures.

1.3 Organization of the Thesis

With the upcoming chapter, Chapter 2, the thesis continues with a brief review of the literature
that is organized around the of theories about semantics and representation, as these terms are
understood in cognitive science and linguistics. Chapter 2 aims to acquaint the reader with
some of the literature and the theoretical challenges around these themes, and tries to make
clear the theoretical commitments behind this research (and sometimes lack thereof) either
in terms of the philosophical stances that are taken or the linguistic and cognitive scientific
theories that served as foundational ideas.

Chapter 3 starts with an introduction of the data set that was used in this thesis, where the
original child-directed utterance data came from, and the transformations it went through un-
til the lambda terms that were used in this thesis came to being. The chapter then explains the
process of how and the reason why a second data set with De Bruijn terms was created based
on the first one. In this chapter, the methodology of the thesis is explained in a step-by-step
fashion, making it clear along the way why the lambda terms and De Bruijn terms had to be
numerically represented, and what a successful numerical representation of them would look
like according to the aims of the thesis. This explanation also serves as a survey of some of
the literature regarding numerical encoding methods that could be suitable for the data sets at
hand. The chapter then closes with the description of the encoding methodologies the thesis
landed on for the data sets, specification of the rationale behind choosing these representa-
tional methods, and how and why two versions of the De Bruijn indexed representations were
created for use in the analyses.

In Chapter 4, the analyses that were conducted for the 3 data sets are described, along with an
explanation of the reasoning behind using particular methods of analyses and reports of the
results of these analyses. The analyses follow a three-pronged approach. The first one con-
sists of the use of dimensionality reduction on the data sets (with the Principal Component
Analysis (PCA) (Pearson, 1901; Hotelling, 1936) and with t-distributed Stochastic Neighbor
Embedding (t-SNE) (van der Maaten & Hinton, 2008)) and comparisons of their reductions
with different number of target dimensions. The second prong of the approach to understand-
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ing and exploring the data sets was using a similarity metric (cosine similarity) in order to
explore the similarities of semantic representations within each particular data set and also to
aid in the comparisons between data sets (with varying dimensionalities) by way of cosine
similarity-based heatmap visualizations. This analysis was meant to serve as a metric of com-
parison for the unique representational scheme of each of the data sets that were involved in
the analysis in that the scheme for the semantic representations of the words within a data set
would be considered more successful if an observation can be made that the pair-wise cosine
similarity scores of the representations approximate the similarity scores that would be ex-
pected of the actual word meanings the representations stood for. Cosine similarity was also
used as a measure of success of the linearly reduced representations for certain data sets.

The last prong of the approach to exploring the data sets that was reported in Chapter 4 is the
use of Affinity Propagation (AP) clustering (Frey & Dueck, 2005) to visualize and see what
kinds of clusters could be found within the De Bruijn Vectors (DBVs) data set, so as to gain
insight into the success of this particular representational scheme. The chapter also explains
how and why different subsets of the verbs in the DBVs data set were used in employing
the analyses above. The thesis concludes, in chapter 5, with a brief discussion of the results,
possible implications of the findings, and some pointers for future work that are given based
on these findings.
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CHAPTER 2

BACKGROUND

In this chapter, a survey of related work is presented. Note that in Chapter 3, which is about
the selection of a representation method for the data set, there will be coverage of literature
as well. In this chapter, the studies are grouped into sections that cover the theoretical back-
ground relating to the issues that are of interest to this thesis. Most of these sections are about
notions on which the scientific community has not arrived at a consensus. Very broadly, these
issues relate to the topic of the nature of semantic representations in the mind, particularly
as it relates to linguistic meaning and thought. These sections are non-exhaustive surveys of
some conflicting theoretical approaches that are important for the questions this thesis sets out
to answer, hence they are conceptualized as a matter of theoretical commitment that change
significantly one’s approach to linguistic meaning.

2.1 Committing to a Theory of Semantic Representations and Representation
of Content

There are many conflicting ideas in the literature about what meaning is in the context of
cognition, how it is represented, what relationship linguistic meaning has to this more general
notion of meaning, and many others. This section is a short survey of how these notions are
understood nowadays, focusing only on the aspects of the discussion that are relevant to the
current work. The section also tries to make clear the theoretical tendencies behind the work
in this thesis towards certain camps of thought on these matters.

One important divide in the field is regarding the notion of meaning in cognition. The divide is
in identifying the set of structures and the kinds of mechanisms that would be necessary in the
facilitation of the mind’s capacity for meaning-bearing cognitive processes, and in identifying
those, defining the conditions for the approximation of such capabilities in a computer. Since
this thesis takes on a computational modeling approach to tackling the questions about various
psycholinguistic phenomena of interest, the underlying assumptions in the thesis about the
structures and mechanisms required for a computer to model meaning-bearing processes are
equally important as the assumptions about those required for a meaning-bearing process in
the human mind. Hence, this disagreement in the literature will be mentioned here so as to
clarify the assumptions of the thesis.
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2.1.1 Searle’s Chinese Room

A brief overview of Searle’s Chinese Room argument (1980) is perhaps the best way of con-
veying the decades-long disagreement about the kinds of structures and mechanisms that must
be at work in the mind when it comes to meaning, or ones that must be employed for a notion
of meaning for a computer. Searle (1980) puts forth a thought experiment in which he, as a
person who does not speak Chinese, is put in a room where the only interaction he has with
the outside world is when Chinese expressions are sent to him, for which he then needs to find
appropriate answers in Chinese to write down and send out. The question he poses is that, if
the only thing aiding him in this task is that he has a rule book in which there are orthographic
demonstrations and rule descriptions in English (a language which Searle knows) showing
exactly and without fail which kinds of surface forms should be answered with which kinds
of other Chinese surface forms, could we say that the Searle in this room understands Chinese
(Searle, 1980)? Searle proposes that in this scenario he would be following a program that
is based on pure symbol manipulation without any information about the semantic content
underneath and that for this reason we could not say that he understands Chinese. The ar-
gument is made to make the same point about computers, namely, that they do not have an
understanding of what they are doing, that all they are doing is engaging in formal operations
over symbols.

There were many answers to the Chinese Room argument (Searle, 1980), and ever since
its initial reception, it shaped the discussion around syntax, semantics, and their place in a
computational theory of mind. Another line of argumentation that is related to the former
(Searle, 1980) follows from another work of Searle’s (1990) regarding the nature of digital
computers and whether or not brains can be characterized as digital computers. In this work
(1990), Searle makes the claim that computers are solely syntactic engines and do not have
semantics that is intrinsic to them, while brains are capable of semantics by virtue of the
causal powers that stem from their biological makeup. Here (Searle, 1990), the claim that is
made is about the nature of computers and not just about the issue of computers not being
capable of understanding the referents or the meaning of the programs they can run as it was
in the case of Searle (1980).

These two arguments spanning the nature of computers (as in the claim about them being
purely syntactic engines (Searle, 1990)) and the nature of running a program in a computer
(as in the claim about programs being purely syntactic processes with no underlying seman-
tic correlate for the computer (Searle, 1980)) are important for the purposes of making clear
the theoretical commitments involved in this thesis as it relates to the possibility of compu-
tationally modeling natural language and its semantics. The thesis endorses the account of
computers outlined in Bozşahin (2018) as being partially syntactic engines that are built up
from the semantic primitives that are involved in the physical manifestations of said engines.
The thesis also endorses the view that the programs that are run on the computers (as the kinds
of engines described in the previous sentence) are syntactic symbol manipulation operations
with semantic primitives involved in the physical manifestation of particular computations
(Bozşahin, 2018).

Contrary to some accounts in the literature which, in an attempt to reconcile Searle’s criticisms
(Searle, 1980, 1990) resort to accounts that reduce semantics to being an emergent property of
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other linguistic aspects of the natural language such as the syntax or the pragmatics, this thesis
takes semantics as distinct from syntax in fundamental ways and denies that any sufficient
account of natural language semantics could be deemed as syntactic just on the basis of it also
involving computational manipulation over structures. The work here focuses on uncovering
and highlighting the key features of semantic meaning representations that set them apart
from the syntactic dimension of the same representations, mostly on the basis that they are
compositional structures.

2.1.2 Language of Thought

Subscribing to a theory of semantic content that not only successfully bypasses the philosoph-
ical challenges posed by Searle (1980, 1990) and many others not mentioned here but also
meets the criterion of being compatible with a model of natural language that fits psycholin-
guistic observations and related literature on theoretical linguistics is of utmost importance to
the theoretical backbone of this thesis. The exploration in the thesis is on semantic representa-
tions, and ingrained in the process is an approach that posits that the semantic representations
of the words in the data contained in their compositions individual concepts that contribute
to the meaning of that particular word. In other words, by way of exploring compositional
semantic representations of words, the thesis also explores the conditions for a possible con-
ceptual structure in the mind which could then be considered as a precursor to a study of
compositions of thoughts from concepts. The exploration just mentioned is motivated by the
desire to explore the language of thought (LOT) hypothesis (Fodor, 1975, 2008), which holds
that thought and language resemble each other in some key respects in that they both operate
on compositional structures and have systematicity in their productions of meaningful tokens
of thought and language. This thesis accepts and operates under these assumptions in that the
semantic representations in the thesis are taken to be compositional and systematically pro-
ducible, which are seen as semantic properties that should ideally be preserved in each truthful
transformation of these representations either for dimensionality reduction or encoding.

In keeping with this goal of subscribing to a psycholinguistically plausible theory of content
that also aligns with the linguistic properties that LOT proposes, let us revisit the challenges
posed by Searle (1980, 1990) to a computational theory of mind. These challenges neces-
sitate that one takes a different stance about the nature of semantic content and the kinds of
structures that are involved in their creation so as to meet the strict satisfaction conditions for
a process to be cognitive or computational by Searle’s accounts (1980, 1990) and they there-
fore pose a threat to a computational model of natural language semantics. Therefore, the
approaches in the literature to semantic content that try to address and reconcile those chal-
lenges land on significantly different claims about the content of semantic representations in
the mind, and about how they can be computationally studied.

It is important for the conceptual groundwork of this thesis to briefly mention one particular
approach to semantic content that is called Conceptual Role Semantics (CRS) as introduced
in (Block, 1986), which seems to have gained traction among cognitive scientists and philoso-
phers that tackle empirical and philosophical problems similar to the ones mentioned in this
literature survey. This approach to semantics argues that words and expressions take their
meaning-bearing content inside the context of the utterance in which they occur and thus
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from their role in that particular context (Block, 1986). The conceptual role which is thought
to be an emergent property of utterances is taken to be the meaning of individual expressions,
however, the conceptual roles that are supposed to stand for word meanings are underdeter-
mined by the theory itself unless clearly and more or less arbitrarily specified for a small set of
expressions that are used to demonstrate the way the theory should work. Another way to de-
scribe this approach is that it is a use theory of meaning, inspired by Late Wittgenstein (1953),
where the words do not bear meanings until they are used in syntactic constructions. Close
neighbors of CRS (by virtue of them being use theories of meaning that also seem practically
indistinguishable from CRS) are Inferential Role Semantics and Functional Role Semantics
(see Block (1986) for an introduction). This approach to semantic content will later be ad-
dressed in Chapter 3 when discussing the possibility of making use of an implementation of
CRS by S. T. Piantadosi (2021).

The kind of the theory of semantic content this thesis tries to give insights about is one
where the systematicity of thought and language are utilized in a way that will allow big-
scale computations on the meaning-bearing constituents in utterances. This thesis aims to
give an account of natural language semantics that is based on compositional and system-
atic representations (see Fodor and Pylyshyn (1988) for arguments on why systematicity and
compositionality are important properties semantic representations should have), while also
keeping in mind the need to later bring together any emerging theory of semantic content with
the greater scale of linguistic operations including but not limited to the syntax-semantics in-
terface.

2.2 Committing to a Theory of Argument Realization and Language Acquisi-
tion

As it was clarified in the introduction chapter, the thesis takes into consideration a data set of
child-directed speech where it sets out to gain insights into the factors that go into the child’s
internalizing argument realization phenomena during language acquisition. To better appre-
ciate the complexity of the questions regarding language acquisition and argument realization
phenomena, one has to get acquainted with the related literature in linguistics, specifically
in lexical semantics, and this section aims to give a brief overview of the discussions in the
literature.

There are two different explanations that have a foothold in the literature with regards to the
language faculties that are theoretically involved when the child is to acquire the language,
which are the Semantic Bootstrapping hypothesis and Syntactic Bootstrapping hypothesis
(Borer, 2004). The first one of these approaches, the Semantic Bootstrapping hypothesis
(see (Grimshaw, 1990; Abend, Kwiatkowski, Smith, Goldwater, & Steedman, 2017; S. Pi-
antadosi, Tenenbaum, & Goodman, 2012)), purports that the lexical semantic information in
the predicate-argument structure of verbs give way to their syntactic properties. The latter
approach (see Gleitman, Liberman, McLemore, and Partee (2019)), on the other hand, pur-
ports that the syntax of the argument structure aids the child in acquiring the semantics of the
predicate-argument structure. While these approaches differ in the emphasis they give to the
syntax or to the semantics of verbs, they both depend on an ongoing interface between syntax
and semantics.
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Although these two approaches are prominent in the field, there are some other approaches
that outright reject the idea that the child has to come to the world equipped with certain facul-
ties (Chater & Christiansen, 2018) which predisposes the child to favor syntactic or semantic
representations. These approaches try to overcome the problems that come with assump-
tions about the innateness of certain faculties in the child during language acquisition, and
they emphasize learning in a way that makes it possible to study the acquisition phenomena
with predominantly experimental methods (Chater & Christiansen, 2018) that do not rely on
most of the assumptions of theoretical linguistics which may, for those in this camp, make it
seem like language acquisition is a mysterious phenomena that is hard to make sense of (see
Gleitman et al. (2019) for a discussion).

This thesis tries to make sense of language acquisition and argument realization phenomena
in a way that favors the Semantic Bootstrapping hypothesis, because the approach here tries
to come up with a model of dimensionality reduction for the semantic representations which
could possibly reveal the syntactic properties of verbs.

2.2.1 Perspectives on Dimensionality Reduction During Language Acquisition

The motivations behind the goal of the thesis to give an account of semantic dimensionality
reduction were laid out in Chapter 1. In this subsection, related literature is briefly reviewed
to give a better picture of the approaches to semantic dimensionality that can be found in the
literature.

The most notable findings on the topic suggest that the framework of dimensionality reduction
may work to learn the compositional structures (Ellis, Dechter, & Tenenbaum, 2015; Katz,
Goodman, Kersting, Kemp, & Tenenbaum, 2008). For instance, the approach in Ellis et
al. (2015) makes use program induction to learn representations of compositional structures,
doing, along the way what they call symbolic dimensionality reduction. The approach in
Katz et al. (2008), in a similar vein, takes dimensionality reduction as a fundamental aspect
of the acquisition of semantic knowledge by taking into account the sparsity that is inherent
to learning from knowledge that is not rich enough for seamless learning, which, in a way,
counteracts the curse of dimensionality that is encountered when acquiring concepts.
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CHAPTER 3

THE DATA SET AND THE REPRESENTATION
METHODOLOGY

As explained in the introduction chapter of the thesis, the main aim of the thesis is to gain
insights into whether or not a process resembling dimensionality reduction as what is usually
understood by the term goes on in children’s minds during the acquisition of language, and if
so, in what kind of abstractions then this reduction of semantic representations would result.
The scope of the thesis is narrowed to include only the study of semantic dimensionality
reduction during language acquisition because of time limitations.

The process started with the extraction of the semantic representations from a pre-existing
child-directed utterance data set which was in the English language. The methodology is built
around the aim of taking these logical forms (which are lambda terms) and reducing their
dimensions using various methods to later compare and contrast a variety of reduced meaning
representations that are created in the process. The reason why there was a need for a chapter
specifically dedicated to the data and its representation has to do with the nature of the data,
namely, with the semantic representations that made up the data being lambda terms which
were not seen to be adequate in themselves for use in dimensionality reduction.

In the first section of this chapter, the data set which was the source of the lambda terms used
in the thesis was introduced and described in detail with some examples where it was deemed
necessary. Afterwards, brief introductions to lambda calculus and De Bruijn index method
was given along with descriptions and exemplifications of the lambda terms in the data and
the De Bruijn indexed lambda terms that were created using the data.

The second section is dedicated to explaining why the non-linearity in the data structure did
not seem satisfactory for computational exploration and to surveying ideas and methods of
creating a more desirable representation before attempting any dimensionality reduction. The
section includes a report of the research that went into the exploration of the literature regard-
ing possible numerical encoding methods for the lambda terms and De Bruijn terms, none
of which was used for the encoding of these terms in this work. The section addresses the
reasons why these methods were not seen as feasible methods for the data at hand, and what
their application to the data would result in for some methods so as to make the rationale
behind the ultimate representation methodology clear.

The third and the last section goes into the details of the representation method the thesis
landed on to linearly represent three different versions of the data set (the original lambda
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terms, De Bruijn indexed lambda terms, and the De Bruijn indexed lambda terms with their
lambda symbols removed).

3.1 Data Set

The data set that was used in this work comprises lambda expressions that are extracted from
a lexicon that consists of the words that appear in a child-directed utterance data set, which
is the Eve fragment of the English Brown Corpus (Brown, 1973) in the CHILDES Corpora
(MacWhinney, 2000).

The description of the data set creation process is presented in two parts. In the first part, the
process of the construction of the Eve fragment by Brown and colleagues (Brown, 1973) is
described. In the second part, the process of how, then, a lexicon was built using this data
before the work that is done in this thesis began is laid out, together with the characteristics
of the said lexicon.

3.1.1 Eve Fragment of the CHILDES Corpora

The Eve fragment is part of a longitudinal study on the acquisition of the English language
by Roger Brown and his colleagues Ursula Bellugi and Colin Fraser which went on between
the years 1962 and 1966, (Brown, 1973) during which they conducted interviews that lasted
about 2 hours with 3 children once every two weeks. The data sets with the transcriptions
of the child-directed speech for children given the monikers Adam, Eve and Sarah make up
the CHILDES English Brown Corpus (Brown, 1973), and the data that is used in this study
comes from the transcriptions involving the child called Eve. Eve was 18 months old when
the study first started in 1962, and has left the study at 27 months old, which amounted to 20
sessions in total. She left the study because her family moved out of the city where the study
was being conducted. The Eve fragment comprises the utterances directed to the child by her
parents and also the researchers conducting the study and the utterances of the child herself,
all of which are transcribed from the recordings of the conversations that take place between
them.

Following is a fragment from the transcriptions for Eve. Note that ’CHI’ stands for the child,
’COL’ stands for Colin Fraser, one of the researchers conducting the study (Brown, 1973).

(1) CHI: where Mom ?
COL: I don’t know .
COL: where’s your Mom ?
CHI: where Mom ?
COL: I don’t know ?
CHI: in Papa study ?
COL: in Papa’s study ?
COL: oh that’s where you Mom is .
CHI: where my Mom ?
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COL: I don’t know .
CHI: in Papa study .

Aside from the purpose of giving an actual example from the data, this particular example
is picked because it was deemed to be a representative sample of the data in that it captures
a repeating pattern. Notice how during these interactions between Fraser and Eve, Fraser
makes some assumptions about what Eve is trying to convey, and repeats those back with
a corrected version. For instance, when Eve says "in Papa study?" Fraser says "in Papa’s
study?" based on the inference he makes in the context of Eve’s previous questions. This is a
pattern in communication which is pervasive throughout the data whether Eve is interacting
with a researcher, her mother, or her father. Brown and Bellugi in their work (Brown &
Bellugi, 1964) call this phenomena imitation with expansion, a work where they list many
other interesting phenomena they observed while conducting the aforementioned study.

The reason why this particular phenomena is mentioned here is to highlight how assumptions
are made about the child’s use of language during the acquisition process by the observers
of this process. Of course, the assumptions do not stop there. Assumptions are present when
transcriptions of the speech are made, they are present when the researchers annotate the data.
As we shall see, they are going to be present when other researchers find the dependencies in
the data, when yet others create a lexicon using these dependencies, and when, finally, fea-
tures of the semantic representations of the words in the lexicon are represented for use in this
work. Despite the effects of these assumptions on the data set that stem from the original ob-
servations which may skew the representations at each attempt at abstraction, it is a fair price
to pay when it comes to studying phenomena as complex as language acquisition and seman-
tic representation. The silver lining is having the opportunity to work on language acquisition
data that a lot of researchers over the years took interest in and worked on, rendering it an
invaluable data set that is filled with the assumptions that come from their intuitions about the
English language and their expertise on linguistics.

3.1.2 Lexicon Construction

The lexicon of the some of the words in the Eve fragment that is used in this thesis was
constructed by Şakiroğulları (2019) for use in a previous master’s thesis. The lexicon creation
process (Şakiroğulları, 2019) was carried out using the data set obtained from Abend et al.
(2017) study where they selected 5123 of the utterances in the original Eve fragment based
on their usefulness for their study on semantic bootstrapping during language acquisition.
Abend et al. (2017) excluded utterances that were longer than 9 words and ones that were
too short, such as one-word interjections. Utilizing a Bayesian learning algorithm, their goal
was to use pairs of 5123 utterances and their corresponding meaning representations to train a
Probabilistic version of a Combinatory Categorial Grammar (PCCG) (See (Steedman, 1996)
for the CCG formalism) lexicon to discover the acquisition of various aspects of language.
For the meaning representations, Abend et al. (2017) used the semi-automatically constructed
Davidsonian logical forms Kwiatkowski (2012) created for the Eve fragment by making use
of the dependency annotations in Sagae et al. (2010).
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Şakiroğulları (2019) took the Abend et al. (2017) data set consisting of the utterances in the
Eve fragment and he turned it into a data set of 5134 utterances by breaking down some of
the utterances and by making some other slight modifications. Şakiroğulları (2019) needed to
use utterance-meaning representation pairs to train a PCCG model to study the bias towards
accusativity and ergativity. While he used a modified version of the utterances he took from
Abend et al. (2017) as the utterances needed for training, he did not use the meaning represen-
tations of Kwiatkowski (2012) like Abend et al. (2017) did and constructed the logical forms
corresponding to each utterance himself.

The CCG lexicon Şakiroğulları ultimately used, which contained entries for words that came
up during the utterances, became the data set that was to be used in this thesis to study se-
mantic dimensionality reduction during language acquisition. In this lexicon, each word entry
consists of the surface form of the word, the part of speech (PoS) tag of the word, its syntactic
representation that reflects the combinatory properties of specific syntactic classes that would
interact with a given word, and the semantic representation of the word. Semantic represen-
tations in the lexicon are denoted with lambda calculus, and this part of the original lexicon
was the part that was used in this thesis with the aim of studying the dimensionality of these
representations.

To get a glimpse of some of the properties these word entries can have, see (2), an example
word entry from the original lexicon (Şakiroğulları, 2019). In the data, which consisted of
4054 entries, there were 14 instances with the surface form "move" with differing syntactic
and semantic categories, one unique representation out of those 14 is shown in the example
(2).

(2) move tv1> := s [type=inf] \np / np : λxλy.simp′ prt′ move′ x y

Per the CCG lexicon specifications followed here, the word forms are followed by their part
of speech (PoS) tag (’tv1>’ in this example stands for the word being a transitive verb (’tv’)
in the basic form (marked with ’1’) and one that is accusative (marked with the symbol ’>’).
Following the ":=" symbol comes the syntactic category of the word (Mind that this syntactic
category is based on the CCG formalism. ’[type=inf]’ in S means that the final version of
a syntactic construction with this particular representation will result in an informative sen-
tence construction). Non-informative sentence constructions in the data set include questions,
imperatives and non-sentential utterances (Şakiroğulları, 2019). The colon marks the end of
the syntactic category and the beginning of the semantic category, which is a lambda term.
What this particular lambda expression means will be explained in the next section to accom-
pany a very brief overview of lambda calculus (Church, 1941) as a denotational formalism
for linguistic meaning.

In this thesis, only the logical forms (LF) or the semantic representations of the words which
were denoted by lambda terms (LT) were taken into account. Note that, since one of the early
aims of the thesis was to gain insights into argument realization and the syntax-semantics in-
terface, incorporating a study of the dimensionality of the syntactic representations in the data
into the framework for semantics that was built in this thesis by studying their dimensionality
reduction in relation to each other remains to be a future goal.
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3.1.3 Introducing and Exploring the Data Set: Lambda Terms and De Bruijn Indices

In this section, the lambda terms arising from the previously described lexicon are introduced
along with their transformation into the De Bruijn indexed (de Bruijn, 1972) lambda terms.
Later on in the section, a survey of possible encoding methods that could be used on the data
is presented together with an explanation of the reasons why there was a need for an encoding
and the rationale behind not using any of those methods in this thesis.

It is a common practice in linguistics to denote word meanings with logical forms, and specif-
ically with lambda calculus (Church, 1941). This practice is followed here, not only by virtue
of it being used in the CCG lexicon data set that is being explored, but also because it is a
robust formalism for representing compositional structures.

Lambda calculus is a mathematical formalism created by Alonzo Church (1941) whereby one
can write abstract function applications by representing this abstraction by making use of the
λ symbol to bind any variable that is in that lambda’s range and that has the same name that
the λ symbol accompanies (i.e. λx binds any variable in its range with the name ’x’ and
not ’y’). As a lambda expression takes arguments, the variables in the body of the lambda
(i.e. the part of a lambda expression that comes after all the λ symbols in that expression)
get substituted by the arguments, which is a process the order of which is determined by the
ordering of the variable names that are attached to the λ symbols and requires one to keep
good track of where a given λ ’s binding starts and where it ends.

There is no need to delve into the principles for the order of substitution and other properties
of lambda calculus since they are not necessary to understand the lambda expressions in the
data set. This is because even though most of the lambda terms in the data have a nested
structure and are therefore complex at first sight, the boundaries of the lambda bindings are
easy to understand, so one can easily make the correct substitutions. Also note that in the
context of this thesis and under the representational scheme that the formalism itself brings,
any term -with or without an actual lambda symbol in it- will be called a lambda term (Note
that any expression without a lambda in it could be rewritten using a lambda.).

Of utmost importance for the purposes here is to convey what a lambda term denotes regard-
ing the semantics of a given word in the data set, so that the next steps in the methodology
regarding the ways to represent and reduce the dimensionality of lambda terms will be clear.
For these purposes, see the lambda term (3) extracted from the entry in (2).

Before going into the explanation of the meaning the term conveys, note that the strings in the
lambda body that are immediately followed by the prime (′) symbol are what, from now on,
will be called the concept words. Whenever they are referred to in this text or in examples,
they are either followed by the prime symbol or written in all capitals letters (e.g. ’simp′’
versus ’SIMP’). The concept words can be thought of as qualifiers of the relationship the ar-
guments will have with each other (when the variable names, ’x’ and ’y’ in this example, are
substituted with the arguments that are received.). The way the potential arguments and the
constituent concept words relate to each other is reflected in the structure and the composi-
tionality of the lambda term itself, particularly in the information about the number and order
of the arguments, and it is this structure that is the most central to the meaning of the word
entry that is taken into account. The concept words themselves that are a part of the kinds
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of structures that are used in this formalism, on the other hand, are not taken as semantic
units that have internal constituent structures that could be subjected to scrutiny here. Rather,
echoing the referentialist sentiment in Fodor (2008), they can be thought of as atomic units
that serve as conceptual primitives that take their meaning from their arbitrary reference to
the world.

The concept words in the data set as constructed by Şakiroğulları (2019), on the other hand,
are the components of a lambda term that are informative about the tense (like ’PRT’ in (3),
standing for ’present tense’) or aspect (like ’SIMP’ in (3), standing for ’simple’) of the con-
structions that are possible with that particular meaning representation. All of the utterances
start with the concept words for aspect and tense, in that order. Other short-hands for as-
pects that appear in the data set are ’CONT’ (meaning ’continous’) and ’PRFT’ (meaning
’perfect’). When it comes to the tenses, ’PST’, ’FTR’, ’GNG’ stand for ’past’, ’future’ and
’going-to/gonna’ respectively. Modal verbs in the data (’can’, ’must’, and ’would’) also have
their respective concept words and they are preceded by ’SIMP’ at the beginning of the mean-
ing representation.

One of the concept words in the lambda terms directly denote the concept behind a word entry
(in the case of (3) the concept word ’MOVE’). Some word entries in the data, for instance,
are various word forms that contain in their semantic representation the same concept word.
However, since in those instances, the overall structures of the lambda terms containing that
common concept are significantly different, the resulting meanings are distinct from each
other.

(3) λxλy.simp′ prt′ move′ x y

When it comes to understanding the structure of the lambda term and the overall meaning
of the expression in (3), a parenthesized version of it as shown in (4) might help. One rule
for parenthesizing the elements in a lambda term to keep in mind is that the components
in the body associate to (so are parenthesized with) the component to their left while the
lambdas themselves associate to the right. If one is to start with the innermost parenthesized
expression in (4) which is ’(simp′ prt′)’, operating under the knowledge that the expression on
the left is the function and the one to its right is its argument, we can see how the expression
tells us that the aspect-tense pair modifies the concept ’move′’. If we take into account the
next parenthesized expression with the modified verb concept as its first element, we see that
this first component will apply to the variable ’x’ when it takes an argument and thereby
reduces the lambda binder λx. This means that this first argument will be an entity which
is affected by the function in the concept words (one of being ’moved’ under these tense-
aspect restrictions), creating in the next innermost parenthesis a function that stands for this
relationship. This function will then be applied to ’y’ when it takes its argument, which will
be the causer of ’x’ being moved. Note that when ’y’ takes an argument and λy is removed,
the lambda term does not possess any further reduction possibilities so what is called ’the
normal form’ is reached.

(4) (λx ( λy ( ( ( ( simp′ prt′ ) move′ ) x ) y ) ) )
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Having had access to lambda terms from the Eve fragment, the question was one of coming
up with a way to reduce their dimensions by computational means. The thing that should be
emphasized is that the nature of the data was one that made it hard to attribute it dimensions,
let alone actually reducing any of this dimensionality in them since they contain nested func-
tion applications. One should keep in mind that lambda expressions denote states of affairs
that are compositional and that these representations are therefore non-linear. Although these
expressions are non-numerical, they are not exactly textual either. Where they denote concept
names they have textual data (Prime(′) symbols are removed during computation.), and they
may otherwise have multiple lambda symbols and variable names (like x, y, z..). To under-
stand how complex some lambda terms in the data can get, see example (5) from the data set
that has 5 lambda binders.

(5) Word: doing
Lambda term: λo λx λy λz λa. cont′ z do′ (o a) x y

Since the hypothesis was that the current structure of the data, with them being made up of
lambda terms, would not be very useful as they stand to try out techniques to reduce the
semantic dimensionality of the overall data, it was clear in the beginning of the exploration
that transforming them into a numerical structure would have the benefit of opening up new
ways of computationally studying these representations. There exists a method that can be
used on the lambda terms (LTs) to transform some parts of the representations into a numerical
representation, which is called the De Bruijn index. In the upcoming subsection, the De Bruijn
indices are described in detail along with examples from the data set to demonstrate how the
data was transformed.

3.1.3.1 De Bruijn Index

In 1972, Nicolaas Govert de Bruijn came up with a method to numerically represent the
variable bindings in lambda terms. The goal was to get rid of the variable names so as to
solve the variable binding problem whereby the variable names in the lambda expressions
made it harder to use them in computation because it was hard for the computer to keep track
of which variable name is within the bounds of a particular lambda binder and to name each
new variable with a different name which necessitated keeping track of all the others.

The application of De Bruijn indexing involves taking every variable name in a LT one by one
and replacing it with an index that stands for its distance to the lambda that binds it (smaller
numbers denoting them being closer) until there is no variable name left in the lambda body
and there is no lambda binder left (de Bruijn, 1972).

For instance, the upcoming examples show the conversion of the lambda term (6) to a De
Bruijn term . Since the lambda binder that binds the variable ’y’ is not the first but the second
lambda binder, it gets an index of 2. The closest lambda binder is the one that binds ’z’ so it
gets the index 1. Finally, the third lambda binder when we count starting from the closest one
is the one which binds ’x’, so it gets the index 3.
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(6) λxλyλz. give′ y z x

λλλ give′ 2 1 3

Realize how it was clear that De Bruijn indexing would be very promising for the purposes
here because it would help to reduce and abstract away parts of the entries in the data that were
the hardest to deal with, namely the lambda binders and particular variables that were bound
by those binders. The most attractive benefit of using De Bruijn indices was that they made
a significant portion of the lambda terms in the data numerical. Also note that representing
lambda bindings numerically meant that one of the most informative parts of LTs (informative
in terms of compositionality) would have a numerical representation now, which would make
it easier to study their dimensionality.

Given these perceived benefits, a new data set with the transformed versions of LTs into De
Bruijn terms (DBTs) was created 1. While DBTs were seen as a chance to use lambda terms
in a way that is true to their nature (as a way of capturing their compositionality and non-
linearity in a linear fashion), linear representations of the original lambda terms were created
as well, so that they could be used as a metric of the success of De Bruijn indexing (Since
these linear representations for the original LTs would be naive representations and could
work as random controls -in terms of feature representation choice- and a baseline.).

Another promising aspect of the De Bruijn Index method comes from the original purpose of
its creation by de Bruijn. In his work where he introduced the method (de Bruijn, 1972), he
suggested that the De Bruijn indexed terms are more computer-readable, while it is thought
that lambda terms are much easier for human beings to read and understand since the bindings
are explicitly stated in a way that is more trackable. However, when we take into account the
computational complexity using the lambda terms brings, an interesting angle to keep in mind
while using and comparing these representations could be to investigate whether or not De
Bruijn terms and dimensionality reduction done with them would be, from a modeling per-
spective, more akin to the process that goes on in the child’s mind during the dimensionality
reduction in language acquisition.

3.1.3.2 The Characteristics of the Data Sets

The DB indexed LTs and the LTs range from having no lambda bindings in them to having
at most 5 lambdas. The number of unique concept words or markers in these logical forms
is 1040. The total number of word entries in the lexicon was 4054, 2 of them were there to
denote semantic rules regarding the use of the lambda terms in CCG during parsing, so they
were dropped from the data set.

Since the main focus in this thesis is the argument realization phenomena in the data, of
particular interest is the number of verbs in the data. Out of 4052 word entries, 2700 of them
are for verbs. These verb tokens are of 255 distinct types of PoS. Note that, even though the

1 For the implementation that was used in this thesis, see (Bozşahin, 2021)
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main focus is on the verbs in the data, most of the techniques that were employed to explore
the dimensionality in the data were also applied to the whole data set. More information
about the statistics about the verbs were laid out in the next chapter where certain analyses
were performed for certain subsets of verbs in the DBV data set.

3.2 Exploration of Methodology for the Problem of Representation

Now that a more promising representation of the data was found and the De Bruijn indexed
representations were created, a search for computational means of reducing the dimension-
ality in these semantic representations began. In two of the upcoming sections, two distinct
approaches to this task of dimensionality reduction for both the lambda terms and De Bruijn
terms are laid out.

3.2.1 Theory-Driven Algorithmic Approach

One way to approach the problem would be to come up with a model of semantic represen-
tations with LTs and DBTs so as to build an algorithm that would find the commonalities
across the data entries for each data set to minimize and make denser the representations and
therefore to reduce their dimensionality.

The structural commonalities in the data with LTs could be found by looking for:

• commonalities in the binding patterns of across the data (Note that DBTs conveniently
abstracted these bindings to a format where pattern recognition is possible.)

• repeating lambda terms that are nested in most of the lambda terms to reduce them to a
higher level abstraction (e.g. We could find an abstraction for the tense-aspect pattern
’(SIMP PRT)’)

• LTs where only the concept words differ with the same structure in the term itself so as
to then cluster them.

The structural commonalities in the DBTs indexed data could be found by checking:

• whether or not there are repeating patterns in the De Bruijn indices across the data
(e.g. repeating ’1 2’s that are standalone or that occur in combination with a certain set
of patterns like with ’3 4’ and with ’4 3’), or patterns such as symmetrical De Bruijn
indices in certain representations like ’1 2 3’ and ’3 2 1’

• the patterns of co-occurrence involving the appearance of certain concept words with
certain De Bruijn index patterns

• to find DBTs where only the concept words differ with the same structure in the term
itself so as to then cluster them.
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Writing an algorithm to find these kinds of commonalities could aid in the understanding of
exactly which structures are redundant in the LTs or DBTs when it comes to predicting the
meanings these terms denote, so that they could be explained away in the reductions. It could
also aid in the understanding of the kinds of structures that could be the building blocks across
the representations in each data set in that they are essential in distinguishing one meaning
from another by finding denser representations for them.

The problem with finding and representing these kinds of patterns in these data sets is really
a problem of not knowing what kind of patterns are actually relevant without a theoretical
commitment to argument realization. When making a decision about whether a pattern is
actually redundant or not, it would not be enough to use one’s intuitions and knowledge as a
semanticist. Knowing the role of the semantic representations in argument realization would
be fundamental for making a decision about which features could be considered negligible
and could therefore be reduced completely, and about which features were the ones to keep
because they are essential for argument realization.

However, committing to a theory of argument realization was not possible (for the reasons
why, see the relevant literature survey in Chapter 2) and also not really attractive for the
purpose here, which was to give an exploratory account and an empirical study of the di-
mensionality in the data without making any more assumptions than what was already made
during data set construction and later, as the thesis progresses, in the phase of feature vector
creation for the two data sets. Creating numerical representations for the data sets and let-
ting dimensionality reduction and clustering algorithms do the job of finding and reducing the
patterns in the data seemed to be a straightforward and unbiased way of working on the data.

3.2.2 Formal Approaches

The algorithmic approach such as the one outlined in the previous section did not seem fea-
sible, so a numerical representational approach for the two data sets was sought out. It is
also important to note that the computational exploration of the dimensions in the data by
way of creating numerical representations of them was seen as something that would aid in
the advancement of the understanding of argument realization phenomena in that the reduced
dimensions could point to the semantic features that are most relevant to argument realiza-
tion. Numerical representations that are obtained in the process could be reduced by utilizing
one of the frequently used linear dimensionality reduction techniques in the field of machine
learning such as Principal Component Analysis (Pearson, 1901; Hotelling, 1936) so as to start
somewhere with the exploration of the data, continuing with the broadening and the refining
of the types of techniques that are used as the data sets and their characteristics in terms of
dimensions are better understood.

A numerical representation could be a vectorial representation based on feature vector cre-
ation or could be obtained by any other kinds of encoding methods. While some numerical
encoding techniques were surveyed in this chapter, it became clear during the exploration that
trying to come up with vectorial representations would be more congruent with the use of
the kinds of dimensionality reduction techniques that were being considered as exploration
tools. The desirability of creating feature vectors for the representations comes from this
method of numerical encoding being a method that requires one to try to come up with sen-
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sible numerical representations for the features in the data that are seen as important. These
representations maybe simplistic, such as in a binary encoding scenario where the a bag of
words technique is used, just representing whether or not a particular feature that is present in
the overall data is also present in a single data point. Yet, for the purposes here, feature vectors
were considered to be more useful than any other encoding method where the assignments of
numbers are arbitrary thus, in most cases, hard to make sense of. One could, on the other
hand, look at a hand-crafted feature vector and understand precisely the term it stands for.

Conceptually, the idea of using vectorial representations help frame the problem of dimen-
sionality reduction in language acquisition more concretely. One can think of the number
of dimensions in a certain surface structure that the child has to deal with as the number of
features in a vector that represent the unique meaning of that surface structure. Thus, one can
conceptualize the task of reducing this dimensionality as a task of finding features or indepen-
dent variables -based on the original feature vector- that more prominently, consistently, and
accurately predict the meaning of a surface form which can be seen as a dependent variable.

An important reason why a vectorial representation of the data would be beneficial is that
it would make it possible to work on the data in the vector space and get access to their
distributional semantic properties. It would be possible to reason about the similarities of the
representations even before applying any dimensionality reduction technique to them, which
could then can be compared to the similarities of the ones with reduced dimensionalities. This
comparison, in turn, could be informative with regards to making a choice about how many
dimensions should the original representations be optimally reduced to so as to get similarity
scores that are more correct, thereby gaining insights about dimensionality reduction during
language acquisition. Also, if the vectorial representations that are created for the DBTs or
LTs are successful to some degree, these vectors could be investigated further by way of
examining their combinatorial properties and the similarity outcomes for the combinations
of these vectors under some linear algebraic operation, which could serve as a test of the
success of the vectorial representations of these compositional structures in the first place
and as a method of gauging the kinds of improvements that could be made in their vectorial
representations.

Since the DBTs had some numerical representations already, for DBTs at least, the task turn-
ing those into a form where they had a numerical encoding was off to a good start. In case
of the LTs, the numerical representations one could come up with would be non-ideal in that
trying to represent them sequentially even though they have multiple nested structures with
function applications could hardly do these representations justice. The problem of represent-
ing LTs with an encoding method or with feature vectors is that it is hard to tell what features
they actually do have given that they are non-linear.

In the remaining subsections, before going into the representational framework that was used
in this thesis, a survey of the encoding strategies that were explored and a literature survey of
some of the attempts to linearly represent compositionality and lambda calculus are laid out.
The justifications for why none of these surveyed methods were used in this thesis are given
as well.
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3.2.2.1 Gödel Encoding

Since the purpose was to turn the data sets into ones with numerical representations that would
enable the usage of one of the widespread dimensionality reduction techniques, encoding the
data with Gödel numbering (Gödel, 1931) was one of the techniques that was explored. Gödel
numbering is an encoding method that can be used for the expressions of a formal language.
Each symbol in the language is assigned its own natural number. So, when encoding a se-
quence of symbols, each symbol in the sequence is replaced with the natural number that was
previously assigned to it. The resulting encoding is a sequence of numbers that is unique to
a particular sequence of symbols (Gödel, 1931). Also, Gödel used prime factorization for
integers, which is relevant here because the DBTs contain DB indices.

The problem with using Gödel encoding for this data was that it was not a technique that
could give the uniform representations that were needed (i.e. representations that are num-
ber sequences of same length). Even the slightest change from one lambda term to another
resulted in a whole different Gödel number. LTs and DBTs in the data sets have different
combinations of concept words, varying numbers of lambda symbols and variable names/DB
indices. So, when Gödel numbering was applied to samples from the data sets, it would yield
number sequences with lengths that significantly varied. These representations were also hard
to make sense of, in that, just by looking at the resulting Gödel number, one could not tell
much about the underlying LT or DBT.

While Gödel numbering makes it possible to assign unique numbers to each semantically
significant unit that could possibly appear in these data sets (such as a lambda symbol or a
specific concept word), the significant length variation in the resulting Gödel numbers was a
discouraging factor. Another discouraging factor was that, even though there was the afore-
mentioned opportunity to give unique abstractions to each type in the data, the arbitrary nature
of these assignments would make it hard to trust the dimensionality reduction manipulations
that were based on the resulting Gödel numbers. The previous point is especially valid when
it comes to the number assignments to the concept words, which could enjoy less arbitrary
and less misleading number assignments.

Take the example of these two word entries in the data sets which have an underlying common
concept: ’vitamin′’ and ’vitamin-time′’. If we were to assign them unique natural numbers,
their representations would significantly differ. As long as these kinds of cases are tracked, the
situation could be remedied by coming up with a consistent coding for the string they have in
common, which is ’vitamin’. The real problem arises when one realises that there are subtler
versions of the problem above such as the one-time appearance of the concept ’blankie′’ and
the concept ’blanket′’ in the utterances in the data. Considering the subtle similarities of
some concept word in the data, it is hard to decide how far one should go trying to control for
these kinds of cases while using Gödel numbering given that if they are not controlled for, the
arbitrary nature of the natural number assignments could make the number given to each as
different as night and day.

Another issue that would arise with the use of Gödel numbering had to do with the De Bruijn
indices. As stated earlier, the numerical representations in the De Bruijn indices were mean-
ingful for the purposes here in that they provide simple numerical representations to denote
where the variable bindings lie in the word entries. If the De Bruijn indices were to be used in
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conjunction with the use of Gödel numbers for the rest of the DBTs that were not numerical,
the resulting meaning representations would be inconsistent, barring the problem of Gödel
numbers causing huge variations in the length of the entries. They would be inconsistent if
the De Bruijn indices were kept as they are, because of systematic and simplistic nature of
the De Bruijn indices as compared to the encodings Gödel numbering would bring for the
concept words, where these indices represent exactly the features they aim to represent and
where they have a small range of numbers they can take which are ’1, 2, 3, 4, 5, 6’ in the case
of this specific data set of LTs, does not match the ever-increasing natural numbers that the
Gödel numbering would make use of. Changing the values of these De Bruijn sequences was
not desirable, but if they were changed, it would mean that prime factorization would be used
on these digits, and this, again, would result in inconsistencies throughout the representations
because of the discrepancy that would occur with the Gödel numbers that are generated for
the concept words, versus for the De Bruijn sequence digits.

3.2.2.2 Compression Approach

Another approach that was considered during the exploration was making use of a compres-
sion method. What compression methods do is that they produce a way of representing the
information that the data represents with its current form with a new representation that is of
a smaller length than the original one, thereby reducing the redundancies in the data (Lelewer
& Hirschberg, 1987). To see if a lossless compression (i.e. one without any information loss)
for the LTs and DBTs was possible, one would have to compress and decompress them to see
if the decompressed versions are the same as the original ones.

For the result of a lossless compression to be a good re-representation of the data entries,
though, the result of the compression should be readable in the sense that they could be
studied to make judgements about the kinds of semantic features the compressed versions
consist of. Realize that, if a lossless compression could be done on the data and it results
in a readable data structure; the aim of reducing dimensions could, in a sense, be achieved.
This is because, as stated earlier, compression methods find a denser representation for the
same information that is contained in the data by removing redundancies from it. Yet, since
a lossless compression does not result in any information loss, it may not be the best method
of reducing the dimensionality in the data by virtue of it not actually getting rid of some of
the features in the data. In any case, a compression of some sort is still a good candidate for
the explanation of the underlying mechanism that maybe involved in the main phenomena of
interest where the children have to make sense of a lot of variables that are tied to the meaning
of the words they encounter to successfully acquire a lexicon, regardless of whether or not this
mechanism is to be defined as dimensionality reduction.

With these goals and standards in mind, the data sets were compressed using the Pickle library
of Python (van Rossum, 2020). As expected, the results of this compression was not meant to
be understood by human beings in that they did not turn each data point into a solely numerical
encoding like the one that was sought out here or into a solely textual encoding containing
remains from the original strings in the data which could at least be read and interpreted as to
what they could mean.
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3.2.2.3 Category Theoretical Approach

Clark (2013) describes that he had an aim that is similar to the one here, one of finding and
working on the distributional properties of the semantic representations he used in the compu-
tational linguistics framework he had been using, which was Combinatory Categorial Gram-
mar (Steedman, 1996). In Clark (2013), he describes the process by which one could find
linear representations for semantic representations and in what ways they could be subjected
to algebraic operations, building on the work in Coecke, Sadrzadeh, and Clark (2010) which
he was a part of. This work (Clark, 2013) describes the process by which they constructed
vector space rewrites for the semantic representations of words according to the words’ corre-
sponding syntactic representations, representations which were based on pregroup grammar
(Lambek, 2008).

Lambek (2008) proposed a grammar formalism called pregroup grammar to create a system
that overcomes the limitations of categorial grammars, which he found to be unsuitable for al-
gebraic operations. This grammar formalism is built around Category Theory (see Eilenberg
and Mac-Lane (1945)) in such a way that the semantic representations the system affords
could be seen as vectorial representations by virtue of them being suitable for the applica-
tion of linear algebraic operations such as summation or taking the tensor product of vectors
(Clark, 2013).

Since the framework that was built in Clark (2013) and Coecke et al. (2010) depended on a
very specialized grammar (Lambek, 2008) in that it was based on Category Theory, it did not
fit the representational framework in this thesis which is based on lambda calculus and De
Bruijn indices. A future goal might be to try and reconcile LT and DBT representations with
a category theoretical approach to representing meanings.

3.2.2.4 Smolensky and the Tensor Product Representations

It has been Paul Smolenksy’s goal to come up with a way of using connectionist methods to
represent compositional structures and constituency relations (1990). He claimed in many of
his works that vectorially representing symbolic structures would become an achievable goal
with the use of what he called Tensor Product Representations (TPRs) (Smolensky, 1990). A
type of symbolic structure that contains constituency relationships Smolensky claims could
be vectorially represented with the TPR method is the tree structures. One way to go about
applying the method involves looking at the nodes of the tree to assign each of them a repre-
sentation of their location information with respect to the other nodes in the tree, for instance.
Other kinds of information about the relations in the tree could be encoded as well.

While LTs and DBTs could be conceptualized and written as having a tree structure which
would reflect the nested relations in the function applications, taking these structures as trees
and encoding them based on various relationships between the nodes (such as their respective
locations) would increase the dimensionality in the data sets rather than reduce it because of
the richness of the kind of information Smolensky (1990) suggests one should encode, and
rightfully so. However, one caveat of having such a rich representation for these data sets
is that the representations would get exponentially bigger with every added lambda binder,
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which would be a problem not only because this would mean that the resulting data sets could
not have uniform vectors of same length, but also because they would be computationally
taxing.

Another caveat of using TPRs in this thesis has to do with the aim the thesis set out to achieve
by using dimensionality reduction, and is related to the point made above. If the representa-
tions of the LTs and DBTs are constructed such that they are too rich in information, finding
the similarities in the representations could become harder and not easier because with richer
and richer representations comes the risk of increasing redundancy and these redundancies
could create significant noise in the data that would be misleading during computational anal-
yses. This would be true especially after the application of a dimensionality reduction tech-
nique in that it would make it harder to address the kinds of semantic features that have the
most significant contribution to the meaning of a given word entry because the features are
now hard to recognize because the representations they come from do not bear any resem-
blance to the structure of the original LTs or DBTs. Since the goal in this thesis is to make
inferences about a possible semantic dimensionality reduction mechanism that aids in the cre-
ation of a lexicon by the child during language acquisition based on the investigation of the
reduced data sets, aforementioned caveats are not ones that could be tolerated.

Last but not least, selection of the relevant tree structure information to be represented and
the actual process of encoding them would prove to be a challenging task in the LT and
DBT data sets because they stand for more than ordinary compositions of words or syntactic
constituency relations, they represent abstractions for function applications. If, in the future,
these caveats seem more manageable, pursuing a TPR representation for LTs and DBTs could
be worthwhile endeavor.

3.2.2.5 Piantadosi’s Combinatory Logic Framework for Concept Representation

S. T. Piantadosi (2021) builds a novel framework for representing concept meanings that is
based on the approach to meaning Conceptual Role Semantics (CRS) posits, and computation-
ally implements it in a system called Churiso. The name reflects the process of the ChurIso
model whereby it comes up with Church Encoding (Church, 1936, 1941) aided combinatory
logic representations (Schönfinkel, 1967) for an input (in the form of a set of concepts) that
are isomorphic to the symbolic structure in the input set. The type of inputs that are given
ought to be a set of related concepts and the symbolic specifications of the base facts about
the relationships between these concepts. The model takes into account the relationships
these concepts have with each other, and comes up with isomorphic structures for each one
of the concepts in a set that reflect their relation to one another, which are based entirely on
combinators (Schönfinkel, 1967).

In the exploration phase of this thesis, the Python implementation of the framework which is
made available to public 2, Pychuriso, was implemented using the input sets and base facts
that are also made available, to try and see whether this computational framework could be
used as a basis from which the lambda calculus based representations in the data set (Lambda
terms and De Bruijn terms) could be transformed into isomorphic combinator structures.

2 See (S. T. Piantadosi, 2016) to access the latest implementation.
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Remember that the lambda term representations in the thesis data came from a lexicon that
was created for use in parsing according to the Combinatory Categorial Grammar (Steedman,
1996) formalism where using these semantic representations in computation together with
accompanying syntactic representations relied heavily on function applications and combi-
nators. Also note that it is a long term goal of the research program behind this thesis to
later combine the semantic dimensionality reduction framework that is created here with a
coherent framework for syntactic dimensionality reduction, and to study language acquisition
at the level of the syntax-semantics interface back within a CCG parsing context. Therefore,
transforming the LTs and DBTs in the data into combinatory logic formulas using Churiso
to replace the word meanings these terms denote was seen as a viable methodology for the
exploration of the combinatory properties these lambda terms have that could be uncovered
by a reduction to combinators. A reduction to combinatory logical forms could be seen as
a dimensionality reduction in the sense that the resulting representations would potentially
denote only the most important properties of the semantic representations.

The implementation efforts started with running the model for every one of the concept sets
that were given in the data set (S. T. Piantadosi, 2016, 2021); trying out, in the process,
alternate representation strategies for each set by using Pychuriso’s feature where one can
select the type of combinator or a set of combinators on which the model should base the
combinatory formulas it outputs. In the process of getting to know the data provided by the
implementation S. T. Piantadosi (2016) better, noticing varying levels of base fact complexity
for certain data sets and how it factors into computations, and observing the speed at which
the outputs for certain data sets could be returned, it became clear that the data sets this thesis
was trying to explore could not, at this stage, be explored within the kind of representational
framework that Churiso requires as inputs and it could not benefit from the representational
framework that it returns in its outputs.

One reason for this contention, and perhaps the simplest one to resolve, is that even if the data
sets this thesis explores could be given to Pychuriso in an appropriate format where the word
representations are expressed in a way that are conceptually related to each other in the form of
base facts the model will use to come up with corresponding combinatory formulas (which is
already unlikely for reasons that will be given later), it was clear that, in the implementation’s
current version, the computational resources would not be sufficient for this task as the two
data sets were too big and the relationships in them were too complex yet disparate compared
to the data sets Pychuriso could work with.

An important and impressive feature of Churiso which would certainly have advantages in
tasks other than the one at hand but would work more like a bug when it comes to reducing
the dimensionality in the representations was that it returned as outputs, for most of the cases
and for most of the combinatory restrictions, around a thousand different ways in which a
combinatorial isomorphism could be found for a particular concept set. This, barring the fact
that the data sets in this thesis could not even be inputted to Churiso, would not be a desirable
way of going about investigating the dimensionality in the data sets. If anything, this feature
of Churiso could be used as an enumeration strategy for laying out unique sets of features the
semantic representations in the data sets (LTs and DBTs) could be conceived of as having.
Yet, note that it could also be the case that Churiso could not enumerate as many possibilities
for this specific data set because the data set is large and it would be hard to find one, let
alone more than one isomorphic combinatory structures for the relationships in the data set.
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Therefore, the presentation of this feature of the framework may be unfounded if the data set
could be given to Churiso in the way that is needed by the implementation.

The task of having to decide on an exact combinatorial representation option (or maybe on a
handful of options) that would reflect the true nature of the semantic representations with their
combinatory properties, would in fact become a dimensionality reduction problem that is even
more severe than the one that was present at the start of this thesis work. The dimensionality
problem would be exacerbated and not be reduced in this paradigm. The structures in the
lambda-based formalisms (representations with lambda terms and De Bruijn terms) provide
more specified information that would help individuate the combinatory properties the word
that is being denoted would have in sentential contexts, these structures are therefore lower in
dimensionality, or they can be said to be closer to the true dimensionality of a specific word
meaning phenomena the child’s mind relatively effortlessly captures during the acquisition of
language. Another aspect of the lambda-based structural formalism in the data sets that makes
them lower in dimensionality by these standards is that these representations have in them
as atoms the constituent concepts which further help individuate the meaning of particular
structures.

If all of these meaning representations are put in a like Combinatory Logic (S. T. Piantadosi,
2021) like in Churiso all at once, all referring to and constrained by the same set of base facts
(and in a theoretically equivalent way if all of the contents of one’s lexicon are represented
with this kind of Combinatory Logic all at once, being tied to each other in the ways specified
in the base facts about their conceptual roles), it would not matter if they became unidentifi-
able from a symbolic perspective in the sense that these are structures S. T. Piantadosi (2021)
proposes that could be similar to the subsymbolic/neural structures of representation in the
brain. Them becoming unidentifiable would not matter from a subsymbolic level of explana-
tion, however, only with the constraint that they are set up in ways all of the lexicon entries
are tied to each other, because that would be the only way in this paradigm the combinatory
logic would be computationally restricted and forced to come up with a unique formulaic
representation for each type of unique semantic representation.

If however, the specifications of base facts and therefore of the words’ conceptual roles are
constrained to partitions in one’s lexicon and are instantiated only with reference to a net-
work of related conceptual roles, the kind of like Combinatory Logic (S. T. Piantadosi, 2021)
in S. T. Piantadosi (2021) would not be guaranteed to have unique representations for any
particular semantic representation, and the combinatory logic would lose its individuating
properties in the subsymbolic level as well. There, however, should be unique representations
that separate concepts, regardless of the level of analysis being symbolic or subsymbolic. This
uniqueness challenge is already acknowledged by S. T. Piantadosi (2021) and also somewhat
addressed by them taking 3 different conceptual sets and computing the combinatory repre-
sentations for them by posing overall uniqueness constraints on all. The reason why these
challenges are outlined here, however, at least at first glance, has to do with the nature of
the problem being one of dimensionality reduction in this thesis and with the size and the
complexity of the data sets.

The dimensionality and uniqueness concerns above inevitably lead to the real issue with im-
plementing Churiso to study, in this particular case, the dimensionality and features in lambda
calculus based meaning representations, and it can be summarized with the question of "How
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does one go about tying these meanings to each other if they all have to be tied together to
get unique representations for each and if we do not know of any unifying base facts that
would tie them to one another?" Notice how the broadness of the knowledge of concepts that
is required to answer this question is probably not so different than that of the knowledge
that is demanded of a satisfactory theory of semantic dimensionality. However, there is a
marked difference between the kinds of answers that each of them demand, and it is in their
conceptions of dimensionality or features.

The dimensionality/features that would satisfactorily create the base cases for the former ques-
tion are being defined over atomic concepts baring some inferential relationship to each other
in the conceptual ontology, while the notion of dimensionality that is required in the latter
case (and for this thesis) is one that can be thought of as reducing structural dimensionality to
a handful of rich structural features such that they lead to a unique semantic representation for
a word which still allows for similarity judgements of words, albeit only based on their com-
positional properties until or unless a mapping to the real world is later added. This second
sense of dimensionality does not require base facts about the conceptual relationships one can
observe in the world, it requires a linguistic theory that describes the rules over which any
relation in the world could be described in the first place, whether in thought or in language.
Creating, on the other hand, for each of the LT and DBT representations, one large repre-
sentation of base facts is a task that could be achieved by creating an ontology of conceptual
relations, and it is not in the scope of this thesis.

3.3 Final Decision on the Representational Framework

This section gives a detailed account of the encoding method that was used to create three
different vectorial representations for the data set, and specific examples of how the data set
for the DBTs looked like when encoded in this way. Given that the methods and approaches
surveyed beforehand did not fit various criteria regarding the aims of this thesis, a novel
representational scheme was used to represent the DBTs, which involves coming up with
feature vectors for them based on elementary assumptions about the features that are present
in the entries in the data sets. In the first subsection, the representational scheme that is
followed to create feature vectors of the same length across the entries of the DBTs data set
is described in detailed.

Since there was no sophisticated way of representing the bindings in the LTs and since the
decision was to come up with simple vectors for them was motivated by the idea to compare
them to the feature vectors of the DBTs, they were represented by using the bag of words
(BoW) technique involving each type of token that could occur in a given lambda term. The
second subsection briefly describes this process of vectorization for the LTs. A third version
of the data, which was created by way of modifying the version for the DBTs, is introduced
in the last subsection.

Whenever a tokenizer was used in the encoding that are described below, the implementation
in this thesis used NLTK’s White Space Tokenizer (Bird, Klein, & Loper, 2009) and Scikit-
learn Feature Extraction’s CountVectorizer tool (Pedregosa et al., 2011).
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3.3.1 Vectorization of De Bruijn Indexed Lambda Terms

In the following subsections, one can see the assumptions that were made in terms of the
features that are present in the DBTs, and the way in which they were represented. The first
feature is the number of lambdas in a DBT, the second one is the concept words that are
present in a DBT, and the third one is the De Bruijn index sequence in a DBT.

3.3.1.1 The Number of Lambdas as Features

Each data point in the DBT set is a lambda term even though they may not have any lambdas
in them, and they may have 5 lambdas or 5 bindings at most. So, the number of lambdas could
be taken as a feature that would have some specific value for each of the word entries. This
feature representation task could be approached by adopting a thermometer encoding method
where with each increase in the number of lambdas, one more 0 turns into 1 in the encoding,
starting with [1,0,0,0,0,0] for 0 lambdas and ending with [1,1,1,1,1,1] for 5 lambdas.

See (7) for the thermometer encoding convention that is used for the number of lambdas which
will be the first feature in the DBT vectors.

(7) .

λ = 0 → 100000

λ = 1 → 110000

λ = 2 → 111000

λ = 3 → 111100

λ = 4 → 111110

λ = 5 → 111111

The reasoning for the choice of thermometer style encoding is that while it is known that
there is a hierarchical relationship between say, a lambda term with 0 lambdas and one
with 3 lambdas, the degree of this relationship is unknown and unquantifiable. There-
fore, the thermometer representation is the best encoding technique for reflecting this
hierarchy between the terms with differing numbers of lambdas.

3.3.1.2 Concept Words as Features

It was harder to choose a feature representation method when it came to the concept
words in the data, and the final decision was to go with a Bag of Words approach. Since
there are 1040 concept words in total, these vectors were bound to be sparse, which was
not very desirable.
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It was clear that such an approach could in no way be an ideal representation for DBTs
because with this technique the order of the concept words could not be preserved and
the concept words were separated from the De Bruijn indices that in some word entries
surround the concept words. However, this technique was the only one that was feasible.
A word embedding approach could not be pursued because a significant number of the
concept words in the data were not words that one could find an embedding for since they
were semantic annotations for tense, aspect (such as ’pre’ and ’simp’ in the examples
above) and many others.

Also note that the nature of the BoW technique which lead in the isolation of the De
Bruijn sequence digits from the concept words whenever they occur in between two
distinct concept words does not usually present a problem for this data set because the
concept words the digits could appear between are usually for the tense or the aspect of
the overall word representation.

3.3.1.3 De Bruijn Indices as Features

De Bruijn indices were included in the feature vectors without making any transforma-
tions on them since they were as informative as they could get and they were already
numerical. However, these indices were padded with zeroes until their array reached a
certain length (of 6 digits) to mirror the length of the array for the number of lambdas.
A slight problem with this feature representation was posed by the cases where these
indices did not continuously follow each other but were intertwined with concept words,
in which case they were isolated from them.

To understand how all these three representations were brought together, see a template
of the resulting feature vectors for the DBTs in (7).

(7)

[<#-of-lambdas thermometer><bag-of-words><de-bruijn indices padded with zeroes>]

See (8) and (9) as examples of the encoding method with two cases from the opposite
ends of the spectrum, first one a DBT with 0 lambdas and the second a DBT with 5
lambdas. Note that, for the sake of brevity, the sparse vectors that would result from the
BoW encoding are shown inside the symbols ’< .. >’ and are shortened with the use of
’...’ which is used to suggest the possible continuation of the digit patterns with zeroes.
Also note that the lambda symbol is denoted by the ’LAM’ token in these examples, and
also in the actual data set which was used in the analyses that will be laid out in Chapter
4.

(8) Word: Eve
De Bruijn Term: EVE
Vectorial Representation:
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[1 0 0 0 0 0 < 000...[1 instead of 0 wherever the location in the BoW dictionary is of the
concept word EVE]...000 > 0 0 0 0 0 0]

(9) Word: Think
De Bruijn Term: (LAM (LAM (LAM (LAM (LAM (((((SIMP 2) THINK) 4) (5 1))
3))))))
Vectorial Representation:
[1 1 1 1 1 1 < 000...[1 instead of 0 wherever the location in the BoW dictionary is of the
concept word THINK]...000...[1 instead of 0 wherever the location in the BoW dictio-
nary is of the concept word SIMP]...000 > 2 4 5 1 3 0]

The De Bruijn Vectors (DBVs) were of the length 1052, with 6 of them representing the
lambda array, 1040 of them representing the BoW for the concept words, and with 6 of
them representing each of the De Bruijn sequences.

3.3.2 Vectorization of the Original Lambda Terms

The original lambda terms were turned into sparse feature vectors with the use of the
BoW method. The dictionary that was used to build these vectors took into account
the array of length 6 for 6 lambda binders (e.g. "lambda x"), 1040 concept words (e.g.
"THINK") and variable names such as "x" (5 of them because one of those variable
names also stood for a concept word which is included in the array of 1040 just de-
scribed). The length of the lambda vectors was therefore 1051. Note that the vectors
that were created for the original lambda terms are from now on called lambda vectors
(LVs).

3.4 Summary of the Data Sets To Be Analyzed

The vectors for the DBTs (which will be called De Bruijn Vectors or DBVs) were used
to create a data set of with different kinds of DBVs where the only difference is that
these new representations will not have the feature array for the lambda terms. In other
words, this new version of DB vectors contain only the concept word array concatenated
with the array for DB indices. This new data set is called Bare DB Vectors or BDBVs for
short, which is of length 1046. Note that the arrays for the DB indices parts of the DBVs
were created by taking the DB indices and adding zeroes until the array length reached
to 6 so as to match the length of the arrays for the lambda binders. Even though the
BDBVs do not have lambda binder arrays, the added zeroes in the DB arrays were not
removed when creating the BDBVs because this convention had the benefit of keeping
the vectors in the BDBVs data set the same length.
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The next chapter lays out the analyses that were conducted for each of the 3 data sets,
and for various subsets in the DBVs data set such as verb-only subsets or subsets with
verbs with exactly 2 or exactly 3 lambdas.

3.4.0.1 A Step by Step Demonstration of the Type of Vectors the 3 Distinct Data
Sets Would Have

See how the utterance below is represented as a logical form, and the linguistic properties
of the word "making", along with 3 distinct vectorial representation possibilities for the
word that is based on lambda calculus and De Bruijn indices.

Utterance: Mommy is making coffee.
LF: (((("CONT" "PRT") "MAKE") "COFFEE") "MOMMY"))
Word: ’making’
PoS Tag: tving>
Syntactic Category: S[type=inf]\NP\AUX[type=be]\/NP
Lambda Term: λx.λy.λz.cont′ y make′ x z
De Bruijn Term: (LAM (LAM (LAM ((((CONT 2) MAKE) 3) 1))))
DB Vector: of Length 1052
[1 1 1 1 0 0 <000...[1 for CONT]0000[1 for MAKE]...000> 2 3 1 0 0 0]
Bare DB Vector: of Length 1046
[<000...[1 for CONT]000[1 for MAKE]...000> 2 3 1 0 0 0]
Lambda Vector: of Length 1051
[<000...[1 for CONT]000..[1 for MAKE]..1[for λx]...000>]
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CHAPTER 4

DATA ANALYSIS AND RESULTS

The data exploration process, the results of the data analyses and dimensionality com-
parisons for 3 different versions of the data that were specified in Chapter 3 are reported
in this chapter.

The methods that were used in this exploration are unsupervised machine learning tech-
niques that are frequently used to better understand the trends in data sets. One such
method is the use of dimensionality reduction for feature extraction, which is employed
in the analyses here both in terms of a systematic look at the reduction possibilities for
the dimensionality in the data sets and by visualizing the said data in 2-D and 3-D by
making even further reductions to the dimensionalities when necessary. These visualiza-
tions are used to make sense of the data sets and the dimensionality they have. Another
type of unsupervised machine learning that was employed in the analyses is the use of a
clustering method to find patterns and groups in the data. With the goal of gaining spe-
cific insights regarding specific lexical semantic representations, the word entries within
each data set were also evaluated and compared based on the cosine similarities of the
vectors that represent them.

The exploration of the dimensionality in the 3 data sets started with the evaluation of the
features that could be extracted from the data sets using Principal Component Analysis
(PCA) (Pearson, 1901; Hotelling, 1936), a linear dimensionality reduction technique.
After reporting the insights from the PCA of the 3 data sets, the analyses continue with
the application of t-SNE, a non-linear dimensionality reduction technique that is fre-
quently used for data visualization (van der Maaten & Hinton, 2008). After reporting
the results of the t-SNE visualizations, the report of the analyses continue with the dis-
cussion of some of the insights that were gained from the data sets and their represen-
tations with regards to the within-data representation similarity scores based on cosine
similarity (Huang, 2008). The last section of the analysis reports the results of the use
of the Affinity Propagation clustering algorithm (Frey & Dueck, 2005) for certain data
sets and their subgroups based on the number of arguments the verbs take.

4.1 Dimensionality Reduction

The curse of dimensionality (a term coined by Bellman (1966)) refers to the situations
where the amount of the variables that seem to mark the observations (the features/vari-
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ables) about a phenomena, in other words, the dimensionality in the phenomena, is an
amount which is hard to handle when analyzing the data, especially in situations where
the amount of observations about the phenomena (the number of individual data points)
is not a desirably sufficient amount for data analysis to begin with. The notion of the
curse of dimensionality captures the nature of the problem children successfully over-
come in acquiring their language, since they are exposed to a lot of dimensionality (i.e.
to a lot of features that could possibly be important to acquire the meanings of words)
and yet they are certainly not exposed to a lot of data that would serve as good examples
of various semantic phenomena when compared to the amount that would seem suffi-
cient from a machine learning perspective. The children overcoming this so-called curse
of dimensionality is the problem this thesis tries to model and make sense of with the
analyses that are reported in this chapter. The data set obtained from the child-directed
utterance data of Eve (Brown, 1973) reflects the dimensionality problem well in that
while there are only 4052 data points, each of those points are marked by more than
1000 dimensions in each 3 versions of the data set. The working assumption, as it is the
case when setting out to solve dimensionality reduction problems, is that the underlying
dimensionality in these data sets should be marked by a handful of dimensions only and
that these dimensions could, in principle, be discovered via dimensionality reduction
methods.

The application of dimensionality reduction (DR) techniques to the data was done with
two purposes in mind.

• To compare the dimensionalities of the 3 data sets to gain intuition about whether or
not the distinct structure in the representational scheme of the data set is more con-
ducive to having efficiently reduced dimensionality and therefore to providing a better
model for the semantic dimensionality and its reduction during language acquisition
(dimensionality that is reduced with PCA)

• To investigate the features of the 3 distinct representations after having reduced their
dimensionality to a reasonably low dimensionality with minimal loss in feature in-
formation (the first reduction with PCA) by way of visualizing the features that were
extracted from the data sets with another dimensionality reduction technique (dimen-
sionality that is further reduced and visualized with t-distributed stochastic neighbor
embedding (van der Maaten & Hinton, 2008))

4.1.1 Dimensionality Reduction with Principal Component Analysis

A dimensionality reduction technique that is called Principal Component Analysis (PCA)
was used on the 3 data sets, which is a technique that was independently discovered
and introduced by Pearson (1901) and Hotelling (1936), and was named by Hotelling
(1936). PCA is a linear technique for reducing dimensionality in data to a set number
of components that would explain most of the variation in the data (Jolliffe, 2002). It
is a linear DR technique because it involves the application of a linear function to the
original features to combine them to make up the principal components, which involves
linear projections of the original features (Jolliffe, 2002) to lower dimensions. The DR
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that is done with PCA in this thesis is an unsupervised process (compared, for example,
to Linear Discriminant Analysis which is a supervised linear dimensionality technique)
because there was no employment of class information that would come from doing
a labeling for the word entries that could be done based on the corresponding surface
forms of the words or their PoS tags, which could guide the process (see (Chao, Luo, &
Ding, 2019) for an overview of supervised versus unsupervised DR).

The reason why a supervised approach to DR was not taken is because imposing su-
pervision with the kinds of labels that could possibly be provided (for parameters like
a BoW encoding of a surface word form or a corresponding PoS tag) was not seen as
ideal considering this work’s aim of making sense of language acquisition in the light a
hypothesis that lines up with a semantic bootstrapping approach where the child is either
yet to learn certain parameters that lead to the classification of words in a certain way
(which is a milestone that in principal would be aided by the learning and reduction of
semantic dimensionality) or where the surface word forms are too noisy to be consid-
ered as informative labels for semantic representations because the same form or similar
forms could stand for representations that are vastly different.

While there are non-linear dimensionality reduction techniques in the literature that
could be potentially be used that operate with the underlying assumption that the data is
marked by non-linear relationships (also called Manifold Learning techniques (Chao et
al., 2019)), at least initially, a linear DR approach was intentionally sought for the anal-
yses in this thesis, especially when comparing the 3 versions of the representations. The
reason for this is that, as could be seen in the exploration process depicted in Chapter 3,
the methodological approach to the representation of semantics and its dimensionality
in this thesis is one that tries to linearize compositional structures that robustly represent
meaning (i.e. the representations with lambda calculus) and one that explores whether
or not certain versions of these structural representations could already be capturing the
compositionality in a linear way (i.e. the representations with De Bruijn indices). There-
fore, the use of PCA (an otherwise powerful DR technique the use of which is seen as
problematic when it comes to the cases with non-linearity in data) was seen as a good
approach to bring forth and evaluate the effects of linearity/non-linearity assumptions
for the data sets.

Rather than reducing the dimensionality in the data sets to any set number of compo-
nents, PCA was first used to explore the dimensionality in 3 distinct data sets to see the
maximum of the extent to which their dimensions could be reduced by deciding on a
trade-off of the least amount of principal components that would explain as much of the
variance within these data sets as possible. The word representation entries in all three
of the data sets are represented with more than a thousand features or dimensions. The
goal, with using PCA, was to find components in the original features/dimensions such
that they reflect most of the features in the data set that reliably and consistently affect
the outcome of the representations (i.e. the semantics of the words) independently from
any other feature’s individual affect. In other words, the goal here was to extract from
the data set highly representative features in order to gain insights about the patterns in
the semantic representations by accentuating the most informative ones and getting rid
of noise, which could then be used to find patterns that predict certain outcomes in terms
of leading a semantic representation to have certain combinatorial properties (such as
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revealing feature patterns that allow verbs to be grouped based on the number of argu-
ments they can take). Note that this technique does not select a set of features from the
existing ones, it rather makes up or extracts new features from the existing feature set.

The process of the exploration of the dimensionalities, the selection of the number of
components to reduce these dimensionalities to, and the evaluation of the extracted fea-
tures using the PCA technique are reported in the upcoming subsections for each respec-
tive data set. Note that in these analysis of the components, the data in the data sets was
not scaled, so no standardization was done on them. The decision to not to scale the data
was based on the observations that:

• The scaled versions of each of the 3 data sets (when standardized using Sklearn Prepro-
cessing’s StandardScaler which scales the features by subtracting the mean from each
and dividing them with the standard deviation (Pedregosa et al., 2011).) required signif-
icantly higher numbers of components to keep a decent level of explanation in variance
intact compared to the unscaled versions, leading to the contention that scaling the data
sets results in the loss of valuable information.

• Intricate knowledge of the encodings in the data, about the encodings being mostly
binary with sparse BoW arrays with the only difference emerging in the ones with De
Bruijn indices that vary within a very small scale of numbers (1-6), resulted in the idea
that the unscaled versions of the data sets are exactly as informative as it is needed from
them and are therefore would be unit-wise proportionate with regards to the variance in
their encoding.

• Normalizing the features to have values that lie somewhere between 0 and 1 was also
not desirable because of the sparsity in the data and because it was better in the case of
the De Bruijn Vectors and Bare De Bruijn Vectors if the features with values that are
greater than 1 indeed dominated the components to be found with PCA.

The implementation of the PCA that was used in the following analyses were done
in Python 3.8.12 (van Rossum, 2020) with the help of the PCA tool in Scikit-learn
Decomposition (Pedregosa et al., 2011).

4.1.1.1 De Bruijn Vectors and PCA

De Bruijn Vectors (DBVs) is a data set of 4052 entries, each of them consisting of 1052
features that were selected and encoded according to the process that was described in
detail in Chapter 3, which involved thermometer encoding for the number of lambdas,
BoW encoding for the concept words, and the use of additional arrays for the De Bruijn
indices that were padded with zero until the array length reached 6 digits for each data
point. The first step in the exploration of this data set was to get an overview of rela-
tionship between the number of principal components to select for and the amount of
variance in the data that would be explained as the number of components are increased;
which yielded the graph in Figure 1 for DBVs.
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The plots of the cumulative explained variance (as shown in Figure 1) for a certain
number of principal components (also called eigenvalues) are shown throughout the
PCA exploration of the 3 data sets. These eigenvalues, or principal components, are
based on the eigenvectors of the data covariance matrix, and in the implementation that
was employed here, they were computed using the singular value decomposition of the
data matrix (Pedregosa et al., 2011).

Figure 1. The plot showing the number of components that would be needed to explain more
and more of the variation in the De Bruijn Vectors Data Set

As it can be seen from the plot above, the dimensionality needs to be reduced to a number
that is close to the original number of 1038 dimensions to account for almost all of the
variation in the data (99 %). In Table 1, one can see some of these statistics in Figure 1
more clearly.

Table 1

The Ratio of Explained Variance per the Number of Principal Components for the DBVs

Number of Components % of Variance Explained

739 99%
170 95%
40 90%
11 85%
5 80%
4 75%

Looking at Table 1, one can get the sense that the trade-off between the reduction in the
dimensions and the reduction in the ability of the reduced dimensions to account for the
amount of variance in the data would be the most acceptable if one was to select for a
reduction to 40 components that would account for 90% of the variance in this data set.

In Principal Component Analysis, the very first principal component the linear function
yields from the original features in the data set is always the component that captures
most of the variance in the data and the numerical value of this component is as high as
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the percentage of variance in the data it captures. The amount of variance the second
component reflects is the second highest in value and this trend goes on until the last
principal component, with each new component reflecting a smaller amount of variance.
Most importantly, the values of the components reflect the amount of variance each of
them capture independently from other components.

As it can be seen in Table 2 under the independent effects of the components, the first
principal component captures 3.49% of the variance in the DBVs, followed by the sec-
ond, third and the forth principal components capturing respectively 0.84, 0.79 and 0.66
percent of the variance in the data, completely independently from the variance they
would predict in their interactions with the other principal components.

Table 2

First 10 Principal Components and The Variance They Independently and Collectively Cap-
ture in the DBVs

Independent Effects of the Components % of the Cumulative Effect

3.4903 46.16%
0.8450 11.17%
0.7928 10.48%
0.6622 8.76%
0.2621 3.47%
0.1044 1.38%
0.0860 1.14%
0.0667 0.88%
0.0568 0.75%
0.0448 0.59%

The cumulative effect of the number of components that takes into account the inter-
active effects of the components with each added component can be seen in Table 2 as
well. Note how the sum of the percentages for the collective effects of the first 5 com-
ponents make up 80%, exactly the amount of variance that would be explained with 5
components according to the statistics in Table 1.

Before going forward with this dimensionality reduction and visualization of the com-
ponents, see how these statistics play out for the other two data sets.

4.1.1.2 Bare De Bruijn Vectors and PCA

Bare De Bruijn Vectors (BDBVs) data set is a version of DBV with the features denoting
the number of lambda terms dropped (so, with 6 features removed). Just like DBVs, it
has 4052 individual data points, in this case with each data point consisting of 1046
features.

See Figure 2 for a plot of the cumulation of the ratio of explained variance in the BDBVs
as the number of components used in dimensionality reduction increase. This plot is
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pretty similar to the graph of DBVs, which is not surprising given the similarities of their
feature vectors. Their differences are worth looking into while trying to uncover more
and more information about their principal components given that one of the purposes
of the analyses is to compare these two representations that are based on De Bruijn
indexing to see whether or not there really is a need to encode the lambda symbols into
the semantic feature vectors even though they are normally a component of De Bruijn
indexed lambda terms.

Figure 2. The plot showing the number of components that would be needed to explain more
and more of the variation in the Bare De Bruijn Vectors Data Set

In the following table, one can see the number of components that the analysis yielded
for a select number of ratios of the amount of explained variance for the BDBVs data.

Table 3

The Ratio of Explained Variance per the Number of Principal Components for the BDBVs

Number of Components % of Variance Explained

765 99%
192 95%
49 90%
12 85%
5 80%
4 75%

These components should be explained further to make any judgements about the sig-
nificance in the differences that the comparison of BDBVs and DBVs yield in terms of
the components needed at different explanatory levels. It seems that the best combina-
tion of the number of components per the amount of explained variance will, in the case
of the BDBVs data, be a reduction to 49 components with 90% of the variance in data
explained.

See Table 4 for the first 10 principal components, which are also the most influential in
their caption of the variance of the BDBVs data, with their influence decreasing in every
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next component. The first principal component independently explains approximately
3.03% of the variation in this data, followed by the second, third, and the forth principal
components also independently capturing 0.78, 0.76, and 0.60% of the variance in the
data. The cumulation of the effects of each added component on the ratio of explained
variance can also be seen in Table 4.

Table 4

First 10 Principal Components and The Variance They Independently and Collectively Cap-
ture in the BDBVs

Independent Effects of the Components % of the Cumulative Effect

3.0301 44.51%
0.7841 11.52%
0.7614 11.19%
0.6087 8.94%
0.2581 3.79%
0.1008 1.48%
0.0772 1.113%
0.0517 0.76%
0.0377 0.55%
0.0334 0.49%

Further analyses regarding these comparisons and the actual DR in this data will be
reported after the following section on the exploration of the principal components of
the Lambda Vectors that are based on the original lambda terms.

4.1.1.3 Lambda Vectors and PCA

The Lambda Vectors (LVs) data set consists of the encodings of the original 4052 lambda
terms, which were vectorized based on the unique tokens in them such as unique lambda
binders (e.g. λx) and concept words (e.g. PL′). The vectorization yielded unique BoW
feature vectors with a set length of 1051 (1051 features) for these 4052 lambda terms.
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Figure 3. The plot showing the number of components that would be needed to explain more
and more of the variation in the Lambda Vectors Data Set

The plot above is a graph of the number of components that would be needed if more
of the variance in this data of LVs was to be explained after DR with PCA. As it can be
understood from the trend in Figure 3, optimally informative dimensionality reductions
of this data set seem to require significantly more number of components as compared
to both DBVs and BDBVs data sets, especially when it comes to lower and lower ratios
of explained variance. The following table makes explicit some of the ’ratio explained’
to ’number of components needed’ correspondences in this data set.

Table 5

The Ratio of Explained Variance per the Number of Principal Components for the LVs

Number of Components % of Variance Explained

909 99%
453 95%
198 90%
102 85%
52 80%
25 75%

Note how, even with the 75% of the variance explained, the number of components could
not be reduced to a single digit number for the LVs data set, as opposed to the DBVs and
BDBVs data sets where 5 components were enough to account for 80% of the variance
in the respective data sets. In keeping with the selection of the number of components to
reduce data to for the DBVs and BDBVs, which was to keep the explanation of variance
at 90%, the number of components the LVs will be reduced to was determined to be 198.

Table 6 above shows the variance that is independently accounted for by the first 10
principal components for the LVs. The first principal component accounts for 1.05% of
the variance, with the second and third components capturing 0.38 and 0.29 percent of
the variance respectively.

Further analyses to compare the reduced versions of the 3 data sets are reported in the
upcoming section. It seems clear from the principal component analyses so far that the
representations with the De Bruijn indices are more robust than the ones with regular
lambda terms in terms of their linear representations being more conducive to be repre-
sented with lower dimensionality while retaining low levels of information loss. At 90
% explained variance, the DBVs and the BDBVs respectively need 40 and 49 compo-
nents, which goes to show that a decent amount of reduction is possible for these two
data sets. It is also interesting how the number of components needed significantly in-
creases if one wants more of the variance in these data sets to be explained. Although
it seems at first glance that the data set with the De Bruijn indexed vectors that contains
an array representing the number of lambdas (DBVs data set) has a representation that
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Table 6

First 10 Principal Components and The Variance They Independently and Collectively Cap-
ture in the LVs

Independent Effects of the Components % of the Cumulative Effect

1.0565 31.56%
0.3897 11.64%
0.2919 8.72%
0.1870 5.59%
0.1087 3.25%
0.0899 2.68%
0.0780 2.33%
0.0460 1.38%
0.0332 0.99%
0.0268 0.80%

slightly increases the data set’s linear reducibility to smaller numbers of components (40
components as compared to 49 components for the BDBVs) compared to the represen-
tation without the array for the number of lambda symbols, more exploration is needed
to support this contention.

Also note that, the individual values that were to be found for a select number of prin-
cipal components that all 3 of these data sets could be reduced to are not useful in and
of themselves to tell anything about the nature of the reduced versions of the original
features that are made up of a select number of new features the PCA finds for each data
point, because the linear function that is applied to the original features makes up new
features that do not bear any resemblance to the original features. However, the results
of the PCA are still useful because they are informative about the dimensionality in the
overall data sets and the reduction possibilities for this dimensionality.

4.1.2 Visualizing the Principal Components with t-SNE

In the previous section, the exploration of the dimensionality in the 3 data sets that was
done using PCA was reported along with the decision on the optimal number of compo-
nents the dimensionalities in the data sets should be reduced to (which is 40 components
for the DBVs, 49 components for BDBVs and 198 components for LVs), and the ra-
tionale behind this decision (so that 90% of the variation within each data set will be
accounted for). As expected, after making the trade-off and reducing the dimensions
based on this decision, the dimensionality in each of the data sets was still too high to
allow for any meaningful exploration and it was especially too high for further explo-
ration that could be aided by visualization (because there were still much more than 2
or 3 dimensions in the data sets). While it would be possible to plot the 3 data sets by
reducing each of them to have as features 2 or 3 principal components such that there
would be 2-D and 3-D visualizations for each of them, doing this reduction was not
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meaningful since for each of the data sets, taking 2 or 3 components would mean that a
significant portion of the variance in these data sets would not be accounted for.

With the goal of gaining more insights into the reduced versions of the data sets (the ones
reduced to the PCA components reported in the previous chapter) by way of meaning-
ful visualizations and also continuing with the original aim of reducing the dimensions
that were north of 1000 for each of the 3 data sets, the t-distributed Stochastic Neighbor
Embedding (t-SNE) method was employed. It was introduced by van der Maaten and
Hinton (2008) as a non-linear dimensionality reduction algorithm that is also useful for
the visualization of the reduced versions of the data. It is a manifold learning algorithm
in that it reduces the data set’s dimensionality from an assumed high dimensional man-
ifold the original data lies to a manifold that is lower in dimensionality (Chao et al.,
2019), and the assumption about the data instances making up a manifold is why this
technique operates under an assumption of non-linearity.

PCA and t-SNE worked to compliment each other in this thesis because the use of t-
SNE by itself would not work efficiently with the high number of dimensionality in the
data sets at the start (each having data points that consist of 1000 and more dimensions),
so it would need preprocessing with another dimensionality technique to reduce the
dimensionality to around a maximum of 50 dimensions. This condition was already met
here with the use of PCA previously in the analyses.

The use of PCA, a linear dimensionality reduction technique, was previously justified
on the basis that it was seen as a good way to test the linearity assumptions about the
data sets with the De Bruijn indices, and its use has proven to be somewhat affirmative
with regards to these assumptions in that the principal components for the data set that
did not utilize the De Bruijn indices in its vectorial representations (the LVs) was less
robustly representative of the features in the data and that this data set’s DR with PCA
required significantly more components for the same ratios in the amount of explained
variance compared to the other two data sets. However, with the additional use of t-
SNE, which is a non-linear technique, the exploration takes a turn in that the assumption
about the dimensionality becomes such that non-linearity is assumed to mark the true
dimensionality in these PCA-reduced forms of the data sets.

This analysis was done in Python 3.8.12 (van Rossum, 2020) with the help of the t-SNE
tool in Scikit-learn Manifold (Pedregosa et al., 2011) and the results were visualized with
the help of Matplotlib (Hunter, 2007). The implementation that is used here takes the
pair-wise similarities of the data points which are calculated using Euclidean distance,
and converts these similarities to joint probabilities by assuming a Gaussian distribution
in the overall variance of the data (van der Maaten & Hinton, 2008; Pedregosa et al.,
2011). The algorithm finds a lower dimensional manifold for the data set by trying
to minimize the Kullback-Leibler divergence between the joint probabilities that were
calculated for the original high dimensional data and the joint probabilities possible
lower dimensional manifolds would have, and selects the lower dimensional manifold
that minimizes this divergence (Pedregosa et al., 2011).
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4.1.2.1 t-SNE Visualization for DBVs

4052 data entries of DBVs with 40 components as their new features were visualized
using t-SNE with dimensionality reduction to 3 components. The visualizations were
plotted to 2-D (see Figure 4) and 3-D (see Figure 5).

The 2-D and 3-D visualizations for the versions of the DBVs with 40 extracted features
point to some clusters that these features can capture, which account for 90% of the
variance in the data. The closer any two data points are in the 2-D and 3-D visualizations,
the smaller variance they represent between those two data points. An important point to
be noted is that all of the figures for the t-SNE visualizations that are shown in this work
for the 3 data sets do not have a color scheme because the use of t-SNE in each of these
cases was unsupervised, meaning that no information about categories each data point
may fall under was not given to the algorithm. Therefore, the algorithm takes every data
point as an independent from the others, showing each of them with the same color.

Figure 4. A 2-D plot showing the t-SNE visualization for PCA-reduced DBVs

Note that, in the 3-D plot shown in Figure 5, the 3 axes that the data points lie between
do not have any significance and cannot be interpreted. All that one can learn from these
2-D and 3-D visualizations is that there appears to be some distinct clusters in these
versions of the data considering that data points that are close to each other are lower
in variance compared to the ones that are further apart, and one can see many distinct
groups of close-nit data points in these visualizations.
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Figure 5. An image capture of a 3-D plot showing the t-SNE visualization for PCA-reduced
DBVs

The process above was repeated on the original DBVs with 1052 dimensions to evaluate
the effects of the initial PCA on the success of t-SNE. These visualizations were also
plotted to 2-D and 3-D (see Figures 6 and 7), and these figures show that t-SNE algorithm
was not successful in discovering groups in the original version of the data under the
non-linearity assumption, and it would not succeed until after the linearity was captured
with the reduction to the components the initial PCA provided as demonstrated in the
previous case.

Figure 6. A 2-D plot showing the t-SNE visualization for the unreduced DBVs
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One can see some peculiar outliers in the visualizations along with a huge cluster of
undifferentiated data points when all 1052 of the original features are used without first
linearly reducing the dimensions with PCA.

Figure 7. An image capture of a 3-D plot showing the t-SNE visualization for the unreduced
DBVs

The same trend can be observed from Figure 7 that is a 3-D visualization of the original
DBVs data set with t-SNE.

4.1.2.2 t-SNE Visualization for BDBVs

4052 data entries of BDBVs with 49 components as their new features were visualized
using t-SNE with dimensionality reduction to 3 components. The visualizations were
plotted to 2-D (Figure-8) and 3-D (Figure-9).
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Figure 8. A 2-D plot showing the t-SNE visualization for PCA-reduced BDBVs

Note, again, how it seems that the algorithm manages to capture distinct groups of data
points that are lower in variance.

Figure 9. An image capture of a 3-D plot showing the t-SNE visualization for PCA-reduced
BDBVs

The success of the t-SNE algorithm for the version of the BDBVs with linearly reduced
dimensionality is quite similar to the one achieved for the reduced DBVs. One can
see the formation of distinct groups within the data when 49 features that were linearly
extracted with PCA were further reduced to a 3 dimensional feature representation with
the use of t-SNE.

The same process of using only t-SNE to reduce the dimensionality to 3 dimensions was
repeated on the original BDBVs with all 1046 of the dimensions to evaluate the effects
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of the initial PCA on the success of t-SNE. These visualizations were also shown in 2-D
and 3-D plots (Figures 10 and 11).

Figure 10. A 2-D plot showing the t-SNE visualization for the unreduced BDBVs

Again, it can be seen that t-SNE is not successful under the non-linearity assumption for
the BDBV data if the dimensions were not first linearly reduced with PCA.

Figure 11. An image capture of a 3-D plot showing the t-SNE visualization for the unreduced
BDBVs

4.1.2.3 t-SNE Visualization for LVs

4052 data entries of LVs with 198 components as their new features were visualized
using t-SNE with dimensionality reduction to 3 components. The visualizations were
plotted to 2-D and 3-D (see Figures 12 and 13).
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Figure 12. A 2-D plot showing the t-SNE visualization for PCA-reduced LVs

The algorithm manages to somewhat differentiate the data points for the PCA-reduced
LVs even though the PCA reduction was to 198 components, which means that the
dimensionality was still high for t-SNE to handle.

Figure 13. An image capture of a 3-D plot showing the t-SNE visualization for PCA-reduced
LVs

To test the non-linearity assumption for the LVs data set, the dimensionality reduction
to 3 dimensions with t-SNE was done for the original LVs with 1051 dimensions to
evaluate the effects of the initial PCA to 198 components on the success of t-SNE. These
visualizations are shown in 2-D and 3-D plots (Figures 14 and 15).
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Figure 14. A 2-D plot showing the t-SNE visualization for the unreduced LVs

Figure 15. An image capture of a 3-D plot showing the t-SNE visualization for the unreduced
LVs

Again, it seems that the choice to first linearly reduce the dimensionality with PCA and
to later use a non-linear DR technique such as t-SNE seems to help in capturing more
refined groups in the data.

4.2 Analyses involving Cosine Similarity Measures

In order to test the success of the original representations that were based on lambda
calculus and De Bruijn indexing and also the success of the reduced representations,
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a similarity metric called cosine similarity was used (Huang, 2008). Cosine similarity
was preferred rather than using, for instance, a similarity metric that utilizes Euclidean
distance because cosine similarity is a measure that takes into account the similarity of
the directions of any two vectors (deeming vectors with similar angles from the origin
to be similar to each other), which leads to comparisons that are independent of the
magnitude each of the compared vectors may have (because it uses the normalized ver-
sion of the dot product) (Huang, 2008). It is therefore a more desirable method when
the data is high in dimensionality, and when the vectors are sparse. Note that cosine
similarity would yield the same results with the Euclidean measure if the data sets were
normalized prior to the comparisons. However, as it was reported in the first section of
this chapter, the data sets were not normalized, and hence the two metrics would yield
different results.

Cosine similarity was used as a metric of success of any and all vectorial representations
arising from the original data in various forms they can take (reduced or unreduced)
to compare these representations and determine the success of the formalism or the re-
duction of representations under certain formalisms. A similarity measure can be used
as such a metric because by using common sense knowledge about the actual semantic
similarities of words, one can tell apart successful representations schemes from less
successful ones. These similarity metrics could be further used and tested as part of a
clustering algorithm to categorize words into groups, which can, again, be tested against
the knowledge of the semantics of words to tell apart the success of the clustering algo-
rithms and the success of the representational scheme or the dimensionality level of the
data set that was used.

In the upcoming subsection, cosine similarity metric is used to get a bird’s-eye view of
the similarity relationships in the 3 versions of each 3 of the data sets: the version with
the original number of dimensionality, the one with the PCA reduction in dimension-
ality, and the version with the added t-SNE reduction. In the subsection that follows,
representation similarity is used to gain insights into individual word representations
within and across the three versions of the data sets.

4.2.1 Cosine Similarity Heatmaps for the 3 Data Sets

For each data set, 3 distinct similarity matrices composed of the similarity scores of
each and every data point with each other were created using the cosine similarity tool
in Scikit-learn in Python 3.8.12 (Pedregosa et al., 2011; van Rossum, 2020). These sim-
ilarity matrices were then used to generate heatmaps (with the aid of the Seaborn library
(Waskom, 2021) in Python (van Rossum, 2020)) that visualize with color the point-wise
similarity between 4052 representations within each 3 of the data sets and for 3 different
levels of their dimensionalities. This technique was employed to aid in general com-
parisons of the representational schemes of the 3 data sets, and the evaluations of their
dimensionality and the reduction of their dimensionality. The insights gained from these
visualizations are briefly described.

For all of the heatmaps that are shown in this section, in accordance with the color leg-
ends on the right side of each heatmap, as the number in the legend gets closer to 1, the
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corresponding colors in the legend indicate higher similarity between 2 word represen-
tations, which is reflected in the use of the said color inside the map where two word
representations’ similarity with each other is indicated. Each heatmap reflects the simi-
larity comparison of each word representation with all other 4052 word representations
(including itself).

Figure 16. Figure Consisting of the Cosine Similarity Heatmaps for the DBVs with 1052
dimensions (original), 40 dimensions (reduced w/ PCA), and 3 dimensions (reduced w/ t-
SNE) respectively

Figure 16 shows the heatmaps for the 3 versions of the DBVs data set side by side.
Even though the maps are hard to read because of the vast amount of data points that
are involved (4052), these 3 figures seem to capture a trend where, as the dimensionality
is reduced, the heatmap representations become more fine-grained or nuanced in the
overall similarity in the data, which is to be expected from the feature extraction that
comes with DR. Looking at the first heatmap that is constructed with the data set that
had all 1052 of the dimensions, one can identify consistent instances of individual data
points that are highly dissimilar to almost all other data points that they are compared
to. Indeed, the first heatmap seems to be marked by extremes other than the previously
mentioned outlier cases, where, there is an overall dominance in orange to yellow colors,
indicating the dominance of levels of similarity that are unrealistically high across the
data set. This observation seems to be consistent with the previous visualization and
dimensionality reduction of the 1052 dimensional DBVs with t-SNE where there were a
couple of outliers that were situated far away from one large and undistinguished cluster
consisting of all the remaining data points.

With the second heat map in Figure 16, finer groups seem to emerge, which, based on
their purple to black coloring, indicates quite low levels of similarity. It is important
to note that these are in the form of groups of certain representations rather than in the
form of a couple of outlier data points that result in types of coloring that are vertically or
horizontally consistent. With the final heatmap, one can see even smaller and even finer
chunks of coloring that are diverse across the heatmap, which is closer to the variance
in similarity that would be expected from this lexicon data.

Figure 17 consists of the heatmaps for 3 versions of the BDBVs. One can see that the
observations above regarding the change in heatmaps as the dimensionality decreases
also apply to the trend in Figure 17 for the BDBVs. Perhaps the only notable difference
is in the salience of these same trends that are observed in the case of the BDBVs.
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One can see that the outlier cases show even lower similarity scores in the outlier cases
of the BDBVs and the outliers even seem to be slightly higher in number compared
to the first heatmap in Figure 16 with the unreduced dimensionalities. As the BDBV
dimensionalities get reduced, the trends in the remaining two heatmaps turn out to be
quite similar to the ones in the last two heatmaps for DBVs, which is to be expected as
the data set gets closer to the true dimensionality of the data that is bound to be similar
to the one found in the reductions for the DBVs.

Figure 17. Figure Consisting of the Cosine Similarity Heatmaps for the BDBVs with 1046
dimensions (original), 49 dimensions (reduced w/ PCA), and 3 dimensions (reduced w/ t-
SNE) respectively

Finally, one can see the heatmaps for the 3 versions of the LVs data set in Figure 18,
each containing representations with fewer number of dimensions.

Figure 18. Figure Consisting of the Cosine Similarity Heatmaps for the LVs with 1051 di-
mensions (original), 198 dimensions (reduced w/ PCA), and 3 dimensions (reduced w/ t-SNE)
respectively

The comments that were made for the heatmaps of each three of the versions of DBVs
and BDBVs, which were comments that resulted from the effects of the dimensionality
reduction in these data sets, can also be made for the heatmaps for LVs. However, one
interesting observation that can be made from Figure 18 is about the second heatmap that
was achieved through PCA. One can see that the color that is dominant in this heatmap
(which has a more pink/purple tone) is different than the one that is dominant in the
second heatmap of the DBVs and BDBVs (which has a more red/orange tone) where
this color in LVs is more indicative of overall dissimilarity of the data points within the
LVs data set with 198 dimensions, even though the first heatmap of the LVs were more
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dominated by orange (showing more similarity). So, even though the dimensionality
reduction with PCA reduced outliers and emphasized the groups in the LVs data, it seems
that it also extracted features that accentuate the dissimilarities in the data which may be
due to the dimensionality reduction step here being a linear one and the dimensionality
still being too high to make sense of the important features in this data set. With the
t-SNE reduction, one can see the finer grained groups emerging and a return to the
domination of colors that signal similarity across the data points, which maybe due to
t-SNE’s success in discovering non-linearity in data.

4.2.2 Cosine Similarity Comparisons for the Evaluation of Selected Word Repre-
sentations Across Data Sets

Cosine similarity metric was implemented in Python 3.8.12 (van Rossum, 2020) using a
pair-wise cosine similarity function that uses the normalized dot products of the vectors,
in order to take a closer look at and compare the similarities of word representations
within a given data set, and the inferred accuracy in the outcomes of these comparisons
were used to evaluate the success of the representational scheme unique to the data sets
with the original dimensionalities.

Table 7, 8, and 9 list the cosine similarities between the same select group of word pairs
for the vectorial representations in DBVs, BDBVs and LVs data sets. Table 10 summa-
rizes two important characteristics of the original lexical entries for the words that were
compared in the aforementioned pairs: their PoS Tag and their semantic representation
with a unique lambda term.

Table 7

Pairwise Cosine Similarity Percentages for the Original DBVs Data Set

Pair Cosine Similarity Percentage for the Pair

(gave, take) 75%
(gave, get) 75%
(gave, did) 85%
(gave, put) 87%
(gave, Eve) 15%
(take, get) 97%
(take, did) 54%
(take, put) 80%
(get, did) 54%
(get, put) 80%
(did, put) 74%
(get, Eve) 11%

(furniture, Eve) 49.99%

The table above that lists the cosine similarities between the word pairs reveal certain
aspects of the semantics of the representations that were done with the DBVs. One can
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see that the verb representations and noun representations have low similarity ratios such
as 15% and 11% similarity, while verb-verb pairs or a noun-noun pairs start with a base
ratio of around 49% similarity. As the verbs get more similar in their combination prop-
erties (such as taking closer number of arguments), their similarity ratio increases. For
instance the gave-get pair which shares the property of being a verb taking respectively
3 and 4 arguments has a similarity score of 75% while the take-get pair which shares the
property of being a verb and the property of taking 4 arguments has a similarity score of
97%. Another verb-verb pair, gave-did which take 3 and 2 arguments respectively has
a similarity score of 85%. These kinds of trends in these similarity scores seems to be
consistent with what would be expected from the semantics of these verbs.

Table 8

Pairwise Cosine Similarity Percentages for the Original BDBVs Data Set

Pair Cosine Similarity Percentage for the Pair

(gave, take) 72%
(gave, get) 72%
(gave, did) 85%
(gave, put) 84%
(gave, Eve) 0%
(take, get) 96%
(take, did) 49.99%
(take, put) 79%
(get, did) 49.99%
(get, put) 79%
(did, put) 70%
(get, Eve) 0%

(furniture, Eve) 0%

In Table 8 one can see the pair-wise similarity scores of the same verbs denoted with
the BDBVs. One crucial observation is that, in this representation, the similarity scores
of words that belong to same broad categories (such as noun or verb) do not necessarily
show a baseline correlation. Instead, as can be seen in the result for the furniture-Eve
pair, the similarity could turn out to be 0. In a fashion that is consistent with the previous
observation, one can see that the BDBVs similarity pairs show similar trends to DBVs
in their pair-wise similarity, however, most of their values are 3-10% less than the ones
that are observed in the DBVs. This trend suggests that DBVs provide a baseline level of
similarity for the representations in the data set. It also seems that this baseline similarity
can work as a differentiating factor in the DBVs. Where the get-Eve and furniture-Eve
pairs have a similarity score of 0 in the BDBVs, the DBVs differentiate them as verb-
noun versus verb-verb pairs by virtue of their respective similarity ratios of 11% and
49.00%.

Lastly, Table 8 lists these pair-wise similarities for the LVs data set. One can see that
the similarity scores with the LV representation is even less differentiating then that of
BDBVs, with lower baseline similarity levels and score that could be as low as 0%.
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Table 9

Pairwise Cosine Similarity Percentages for the Original LVs Data Set

Pair Cosine Similarity Percentage for the Pair

(gave, take) 70%
(gave, get) 70%
(gave, did) 80%
(gave, put) 80%
(gave, Eve) 0%
(take, get) 88%
(take, did) 62%
(take, put) 75%
(get, did) 62%
(get, put) 75%
(did, put) 71%
(get, Eve) 0%

(furniture, Eve) 0%

Table 10

Semantic Representations and the PoS Tags of the Words in the Example Pairs

Word Form with Its PoS Tag Word’s Semantic Representation with a Lambda Term

gave dv2> λx.λy.λz.SIMP PST GIVE x y z
take dv1-outof> λx.λy.λz.λa.SIMP z TAKE y x a

get dv1-for λx.λy.λz.λa.SIMP z GET y x a
furniture n FURNITURE

Eve pn EVE
did tvd> λx.λy.SIMP PST DO x y
put tv1> λx.λyλz.SIMP y PUT x z
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In light of these observations from the data and considering the real properties of these
word entries, it seems that the DBVs are the more successful representations of word-
meanings compared to the BDBVs and LVs. It is certain that both the DBVs and BDBVs
are more successful than the LVs based on the cosine similarity scores they yield for the
selected word pairs. However, the success of DBVs in comparison to that of BDBVs was
worthy of further exploration, especially worth investigating was the possible reasons
for the claim that DBVs seem to provide a baseline similarity score for all of the pairs
compared in contrast to the lower baseline scores for the pairs in the BDBVs.

Remember that the only difference between the DBVs and the BDBVs was that the
DBVs have the additional array of length 6 that is based on the thermometer encoding
of the number of lambdas contained in each data point. This difference in their encoding
may be the reason why the pairs for the DBVs tend to have higher baseline similarities,
since they have additional arrays that in most cases add one or more 1’s to the encod-
ings along with some number of zeroes, which turns out to be a significant difference
given that the vectors in each of the data sets are sparse and any additional non-zero
value that could get added with the thermometer encoding has the power to change the
representations of the vectors significantly.

The sparsity in the data was intentionally left as is after creating 3 types of vectors from
the lambda terms and De Bruijn terms. In other words, no dense vector representation
was sought out for the sparse vectors in the 3 data sets. This is not only because the
PCA algorithm is capable of handling sparsity in the data, but also because the sparsity
in the vectors is generally found to be beneficial if PCA is to be implemented. Another
rationale for using the sparse vectors without making them denser was regarding the goal
of keeping the numbers in the De Bruijn sequences (which are included as arrays both in
the DBVs and BDBVs) intact and also so that the numbers in the De Bruijn sequences
which usually consist of values that between 1 and 6 have a more pronounced affect in
each of the otherwise sparse feature vectors in the data sets.

Given the considerations above, it seems reasonable and also desirable that the DBV
representation provides a more accurate measure of the cosine similarity between two
words, however, there may be reasons why this effect is not reflective of the true dimen-
sionality of the phenomena regarding the semantic representations of words. It may be
that the original, unreduced, versions of the DBVs and BDBVs were not able to account
for the independent effect of using the De Bruijn sequences in both, which is a feature
set that carries the most important representations (the linear representation of the func-
tion application phenomena found in the original lambda terms) in terms of it reflecting
the most important structural parts of the semantic representations and it carrying the
most weight in individuating a unique semantic representation together with the actual
content of the concept words (which were encoded with BoW).

If it is indeed the case that the original representations in the DBVs and BDBVs were not
reflective of the true dimensionality in the source data set, it could be that the additional
lambda array in the DBVs may be aiding them in the right direction by adding extra
information about the structure of the De Bruijn sequences (by giving the number of
lambdas), therefore yielding better similarity scores with higher baselines. One way of
testing the aforementioned claims about De Bruijn sequences themselves being impor-
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tant dimensions in the original data that could potentially be useful in and of themselves
but them not being reflected enough in the original versions of the DBVs and BDBVs is
to compare the pair-wise cosine similarities of these data sets using the versions where
their dimensionality is reduced with PCA. If one sees that the similarity scores for the
PCA-reduced DBV pairs remain as good as they were in the original versions, and if
they are still better than that of the BDBV pairs, it would be reasonable to claim that
the array indicating the number of lambdas should be considered to be an essentially
important part of the vectorial representations of the lambda terms and features that are
not redundant when it comes to the true dimensionality of the data.

To that end, PCA was applied to the DBVs and BDBVs to compare the pair-wise co-
sine similarities of the reduced versions. One important thing to note is that, as it was
seen in the first section of the chapter, the use of PCA to reduce both of these data sets
to significantly lower number of components results in a significant loss in the amount
of variance explained for these data sets. New version of the DBVs and BDBVs were
prepared where they were reduced to their principal components that account for 95%
of variance in each data set, reducing their number of features to 170 and to 192 respec-
tively, so as to test a version of these 2 data sets that still explained an important amount
of the variance (95%) in these data sets. New versions of the DBVs and BDBVs with
principal components that account for 90% of variance in the data were also created,
which meant 40 features for the DBVs and 49 features for the BDBVs.

Note that if the additional lambda array in the DBVs is given important weight when
PCA uses the sparsity in the data during DR (which is a likely outcome), it would be
expected that the effect of the lambda array will have a more pronounced effect in the
reduced versions of the DBVs along with the array for the De Bruijn sequences. In a
similar vein, it may be that the reduced versions of the BDBVs will better and more
prominently reflect the effect of the De Bruijn sequences, and this may mean that their
similarity scores for the PCA-reduced pairs will be more accurate than that of or now
will be as accurate as the DBVs, if it is indeed the case that the De Bruijn sequences are
the most important dimensions of the original data and that the array for the number of
lambdas is actually redundant. Also, if this is the case, the reduced versions of the DBVs
having more pronounced effects from the lambda arrays and the De Bruijn sequence
arrays may have an adverse effect in these representations, and could yield less accurate
cosine similarities for the pairs in question, as compared to their unreduced versions.

Table 11 shows side by side the cosine similarity scores that were found for the pairs
for the DBVs and BDBVs reduced to components accounting for 95% of the variance
in each respective data sets.

Table 12 shows the cosine similarity scores that were found for the pairs for the DBVs
and BDBVs reduced to components accounting for 90% of the variance in each of the
data sets.

Both of these tables show a collective trend towards PCA-reduced BDBVs having scores
closer to that of the reduced DBVs, and one can even see BDBVs becoming slightly
more accurate than the DBVs’ similarity scores in some instances. One can also observe
that the PCA-reduced DBVs, while still yielding pair-wise similarity scores closer to the
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Table 11

Cosine Similarities for the DBVs and BDBVs Reduced to Their Components That Explain
95% of the Variation

Pair Similarity for DBVs-95%-PCA Similarity for BDBVs-95%-PCA

(gave, take) 25.9% 24%
(gave, get) 26% 24%
(gave, did) 43.6% 48.5%
(gave, put) 55% 50%
(gave, Eve) -61% -59%
(take, get) 93% 92%
(take, did) -42% -43%
(take, put) 39% 38%
(get, did) -41.9% -42%
(get, put) 39% 38%
(did, put) 3.4% 5%
(get, Eve) -75.5% -79%

(furniture, Eve) 99.9% 1%

Table 12

Cosine Similarities for the DBVs and BDBVs Reduced to Their Components That Explain
90% of the Variation

Pair Similarity for DBVs-90%-PCA Similarity for BDBVs-90%-PCA

(gave, take) 27.9% 24.5%
(gave, get) 28% 24.5%
(gave, did) 46.8% 49%
(gave, put) 59% 51%
(gave, Eve) -65.6% -60%
(take, get) 93% 92%
(take, did) -42% -43%
(take, put) 39% 38.9%
(get, did) -42% -42.9%
(get, put) 39% 39%
(did, put) 3.4% 5%
(get, Eve) -75.5% -79%

(furniture, Eve) 1% 1%
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ones they yielded for the unreduced DBVs, started yielding some significantly different
similarity scores that were also less accurate compared to the original scores.

An important result to note is that, even though the exact same cosine similarity function
was used in the computations of the pair-wise cosine similarities, the cosine similarity
scores that were found for each 4 new case with reduced DBVs and BDBVs started
yielding similarity scores that can get negative values. Note that cosine similarity is
ought to be -1 and 1, and the function that is implemented here could yield results with
values that are smaller than 0 when it was used for the unreduced DBVs and BDBVs, but
it did not. It only started yielding results with values smaller than 0 and even ones that get
significantly close to -1 when the dimensionality was reduced in the two different cases
reported above. It means that the vectors of the reduced versions started to indicate for
the representations cases where the similarity of a word pair could indicate them being
opposite in a way (opposite in their directions in the coordinate system).

This effect of starting to get negative similarity scores with the reduced versions may
be due to the fact that the principal components that each 4 versions were reduced to
consisted of negative values in their features as well as positive ones. When these scores
that varied from -1 to 1 were scaled to be in between 0 and 1 using cosine distances,
it was again observed that the cosine similarities for the BDBVs started to get closer
to those of DBVs and the overall similarity scores seemed to be getting more selective,
yielding lower baseline similarity as compared to the scores from the unreduced versions
of the two data sets.

For instance, while the similarity score for the Furniture-Eve pair in the BDBVs was
previously 0, for the unreduced versions, the score for the pair became 1 in most of the
cases, which is an example of the cosine similarity scores becoming more accurate in
the right direction even if it was with a slight overshoot for the similarity scores for the
reduced versions of BDBVs. For the same pair, the unreduced version of the DBVs had
49% similarity while the reduced version started yielding 1. The convergence of most of
the similarity scores into a certain value for most of the reduced versions in both DBVs
and BDBVs seem to suggest that the PCA that was done in the reduction extracted fea-
tures that are predominantly reflective of the De Bruijn sequence values in the DBVs and
the BDBVs. It can be said that the reduced versions of the DBVs and BDBVs accentu-
ate the importance of the De Bruijn sequence values and they seem not to differentiate
the vectors based on the values in their concept arrays (since they are in most cases 1 or
more features with the value of 1, and since the concept arrays are usually same with or
quite similar to each other barring the ordering of the 1’s and 0’s). For instance, what
differentiated the original vector representation for the word "furniture" from the one
for "Eve" was that in their concept arrays, they had the value of 1 for either the concept
furniture′ or the concept Eve′ in different locations. It seems that the reduced versions
of the DBVs and BDBVs made this difference in their vectors redundant because the
cosine similarity for the pair started yielding 1 in most cases, making them equivalent
to each other, when really they should not be. However, using the PCA-reduced ver-
sions of these vectors seem to be a good strategy to use these vectors according to their
combinatory properties that are reflected in the specific De Bruijn sequences they have.

62



4.3 Cluster Analysis using the Affinity Propagation Algorithm

A clustering method called Affinity Propagation (AP) (Frey & Dueck, 2005) was em-
ployed to further explore the implications of the original dimensionalities and the re-
duced dimensionalities for the DBVs data set, which was considered to be the data set
with the most useful vectorial representation for the semantics of words based on the pre-
vious analyses. Clustering was employed especially with the purpose of seeing whether
verb classes could be found based on the DBV representations. In other words, cluster-
ing was used to see how successful the original DBVs were in them making it possible
to cluster verbs according to the order and number of arguments any verb may take.

The reasoning for choosing this clustering algorithm was based on its flexible parameter
selection possibilities, which did not require a specification with regards to the number
of clusters to be made, a restriction which this thesis would not benefit from imposing.
Affinity Propagation Algorithm, which was introduced by Frey and Dueck (2005) is an
algorithm that combines the strengths of many clustering algorithms such as the ones
that are hierarchical and the ones that are based on mixture models such as the Expec-
tation Maximization algorithm that is based on the Gaussian Mixture Model (Crouse,
Willett, Pattipati, & Svensson, 2011), all of which were reasons why AP was consid-
ered to be the ideal algorithm to use. AP takes the similarity of data points according to
some metric of similarity and by taking each and every data point as potential exemplars
that share information with other data points, it tries to come up with a way to cluster
them according to some converging preference for weights given to the effects of each
exemplar on each other data point (Frey & Dueck, 2005).

The AP that is implemented in this thesis was based on Scikit-learn Cluster’s Affinity
Propagation tool (Pedregosa et al., 2011).

4.3.1 Affinity Propagation For the DBVs

Out of the 4052 word entries in the data, 3508 entries had at most 3 lambdas in them,
1343 of which had exactly 3 lambdas, 818 of which had exactly 2 lambdas and 521 of
which had exactly 1 lambda, and 826 of which had zero lambdas. To discover fine-
grained clusters of verbs based on their argument realization properties, the analyses in
this section focused on finding clusters in verbs with at most 3 lambdas in them because
these were the ones that have sufficient (in terms of aiding in the discovery of clusters)
amount of instances in the data.

AP was used to find clusters in this collection of 3508 DBV entries with at most 3
lambdas in them to get a sense of the overall data, and then it was used to find more
specific clusters within the verbs in these 3508 entries that are in an equivalence class in
terms of the number of arguments they take. 2700 of the 4052 entries in the data set were
for verbs, and these verb representations were tokens belonging to 255 unique types of
part of speech tags. 2185 of these 2700 verbs had at most 3 lambdas in their semantic
representation. A further refinement was done to select a subset of the verbs where, out
of the 2185 verbs, only the verbs that belong to a subclass of PoS tags with transitive

63



(TV), intransitive (IV), and ditransitive verbs (DV). 1960 of 2185 verbs with at most 3
lambdas met this condition, while the amount of verbs that belong to those PoS classes
is 2471 out of 2700 in the verb-only subset of the overall data. Out of those, 1247 verbs
had exactly 3 lambdas in them, 638 verbs had exactly 2 lambdas in them, and 75 of them
had exactly 1 lambda in them. Since 75 instances was not enough to use in comparisons
of clusters, only the TV, IV, and DV verbs with exactly 2 and exactly 3 lambdas in them
were considered in specific verb subclass comparisons.

The reason why the verb subset of the overall data set was refined to only include PoS
tags that are TV, IV, and DV (thus, for instance, excluding verbs that have auxiliary verb
or modal verb as their PoS tag), was so that the analyses focused on the most informative
phenomena (because of the large number of their tokens in the data set) and the most
interesting verbs in terms of gaining some insights into argument realization phenomena.
The PoS tags with TV, IV, and DV make yup 245 unique PoS tags specifically, and 149
of these are for TVs, 33 are for IVs, and 63 are for DVs.

For a visual comparison of the clusters AP came up with for the 3508 entries with at
most 3 lambdas and the aforementioned 1960 verb-only entries with at most 3 lambdas,
see Figure 19. Within the second cluster in Figure 19 are the verbs that take exactly 1,
exactly 2, and exactly 3 arguments. Note that the AP algorithm that is used to generate
the clusters in both of the visuals in Figure 19 was specified such that it took into account
3 features while deciding on the clusters, which was a number that was intentionally
selected to use this clustering algorithm to consider a lower amount of dimensionality
while finding the clusters.

One can see how the algorithm manages to find visible clusters from both of the visual-
izations even when it is restricted to consider an amount of features that is as small as
taking into account only 3, and one can also see that the refined verb subgroup shows
even more distinct classes.

Figure 19. Side by Side Visualization of the AP Clusters for Words with at Most 3 Lambdas
and the AP Cluster for a PoS-specific Subclass of Verbs with at Most 3 Lambdas in the DBVs
Data Set

In the selected subclass, the number of verbs with exactly 3 lambdas was 1267, and
638 entries had exactly 2 lambdas. These two groups were the largest ones, and were
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isolated to take a closer look at the clusters AP yielded for them. The visualizations of
these clusters are given in Figure 20 below.

Figure 20. Side by Side Visualization of the AP Clusters for Verbs with Exactly 2 and Exactly
3 Lambdas in the DBVs Data Set

Note that these AP clusters were generated based on using all of the data points as
features both in case of the verb subset with exactly 3 lambdas and the one with verbs
that contain 2 lambdas. For instance, the AP clusters shown in Figure 20 were found by
making sure that the algorithm looks for 638 features (for it to consider every data point
as independent features). The aforementioned way of setting up the features turned out
to be a method which yielded successful clusters. Setting up the number of features to
be any lower than the number of data points for each of the subsets yielded unsuccessful
clusters.

Another important note about the implementation of AP which resulted in the clusters
that can be seen in Figure 20 is that the implementation made use of a cosine similarity
matrix of each of the data sets that were computed with Scikit-learn’s Cosine Similarity
tool (Pedregosa et al., 2011). The use of this metric was intentional in that when the AP
was implemented using Euclidean distances as a measure, the resulting clusters for each
of the data subsets were not deemed to be satisfactory because in these clusters, there
was not any differentiation between, say, a DBV which has a De Bruijn sequence that is
’1 2’, from a DBV which has a De Bruijn sequence that is ’2 1’. It seems that using a
similarity metric that does not take into account point-wise distances but is rather based
on the angle of the vectors from the origin (i.e. cosine similarity metric) is what enables
the AP implementation here to capture clusters based on structural similarities of DBVs.

For an example of the success of the implementation of AP that is done in the fashion
described above, see the two consecutive tables below (Table 13 and Table 14), which
show the contents of the 1st cluster and 4th cluster out of the 26 clusters that the AP
found for the data subset containing only the verbs with exactly 3 lambdas.

These two examples are representative of the overall success of the AP implementa-
tion for both the verb subset with 2 lambdas and the subset with 3 lambdas. Realize
how, barring a few outlier cases, the algorithm manages to group together the vectorial
representations that have the same De Bruijn sequence in the same cluster.
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Table 13

Cluster 1 of the 26 Clusters Found in the Verb Subset with Exactly 3 Lambdas

The Word and Its PoS Tag DB Terms for The 3-Lambda Verb Entries in Cluster 1 of 26

been tvb> (LAM (LAM (LAM ((PRFT 2) (3 1)))))
been tvb> (LAM (LAM (LAM ((((PRFT 2) EQ) 3) 1))))
done tv3> (LAM (LAM (LAM ((((PRFT 2) DO) 3) 1))))
eaten tv3> (LAM (LAM (LAM ((((PRFT 2) EAT) 3) 1))))

finished tv3> (LAM (LAM (LAM ((((PRFT 2) FINISH) 3) 1))))
got tv3> (LAM (LAM (LAM ((((PRFT 2) GET) 3) 1))))

had tvh3> (LAM (LAM (LAM ((((PRFT 2) HAVE) 3) 1))))
heard tv3> (LAM (LAM (LAM ((((PRFT 2) HEAR) 3) 1))))
lost tv3> (LAM (LAM (LAM ((((PRFT 2) LOSE) 3) 1))))
put tv3> (LAM (LAM (LAM ((((PRFT 2) PUT) 3) 1))))

used tv3> (LAM (LAM (LAM ((((PRFT 2) USE) 3) 1))))

Table 14

Cluster 4 of the 26 Clusters Found in the Verb Subset with Exactly 3 Lambdas

The Word and Its PoS Tag DB Terms for The 3-Lambda Verb Entries in Cluster 4 of 26

been tvb< (LAM (LAM (LAM ((((PRFT 1) EQ) 2) 3))))
been tvb< (LAM (LAM (LAM ((2 (PRFT 1)) 3))))
been tvb (LAM (LAM (LAM ((((PRFT 2) EQ) 1) 3))))

called dv3< (LAM (LAM (LAM ((((PRFT 2) CALL) 1) 3))))
done tv3< (LAM (LAM (LAM ((((PRFT 2) DO) 1) 3))))
done tv3 (LAM (LAM (LAM ((((PRFT 2) DO) 1) 3))))

eaten tv3< (LAM (LAM (LAM ((((PRFT 2) EAT) 1) 3))))
eaten tv3 (LAM (LAM (LAM ((((PRFT 2) EAT) 1) 3))))

finished tv3< (LAM (LAM (LAM ((((PRFT 2) FINISH) 1) 3))))
finished tv3 (LAM (LAM (LAM ((((PRFT 2) FINISH) 1) 3))))

got tv3< (LAM (LAM (LAM ((((PRFT 2) GET) 1) 3))))
got tv3 (LAM (LAM (LAM ((((PRFT 2) GET) 1) 3))))

had tvh3< (LAM (LAM (LAM ((((PRFT 2) HAVE) 1) 3))))
had tvh3 (LAM (LAM (LAM ((((PRFT 2) HAVE) 1) 3))))

heard tv3< (LAM (LAM (LAM ((((PRFT 2) HEAR) 1) 3))))
heard tv3 (LAM (LAM (LAM ((((PRFT 2) HEAR) 1) 3))))
lost tv3< (LAM (LAM (LAM ((((PRFT 2) LOSE) 1) 3))))
lost tv3 (LAM (LAM (LAM ((((PRFT 2) LOSE) 1) 3))))

put dv3< (LAM (LAM (LAM ((((PRFT 2) PUT) 1) 3))))
put tv3< (LAM (LAM (LAM ((((PRFT 2) PUT) 1) 3))))
put tv3 (LAM (LAM (LAM ((((PRFT 2) PUT) 1) 3))))

used tv3< (LAM (LAM (LAM ((((PRFT 2) USE) 1) 3))))
used tv3 (LAM (LAM (LAM ((((PRFT 2) USE) 1) 3))))
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It is not certain why in a minority of the clusters the AP clustering implementation yields
outliers in the verb subset with 3 lambdas where the De Bruijn sequence of the outlier
does not match the dominant sequence in the cluster. However, it is worth noting that
the clusters for the verb subset with 2 lambdas always returns clusters with matching De
Bruijn sequences. For examples of 2 of the 8 distinct clusters found for the verb subset
with 2 lambdas, see Table 15 and Table 16.

Table 15

Cluster 4 of the 8 Clusters Found in the Verb Subset with Exactly 2 Lambdas

The Word and Its PoS Tag DB Terms for The 2-Lambda Verb Entries in Cluster 4 of 8

done tv3 (LAM (LAM ((((SIMP 2) DO) 1) -)))
eaten tv3 (LAM (LAM ((((SIMP 2) EAT) 1) -)))

finished tv3 (LAM (LAM ((((SIMP 2) FINISH) 1) -)))
finish iv1 (LAM (LAM (((SIMP 2) FINISH) 1)))
got tv3 (LAM (LAM ((((SIMP 2) GET) 1) -)))

heard tv3 (LAM (LAM ((((SIMP 2) HEAR) 1) -)))
lost tv3 (LAM (LAM ((((SIMP 2) LOSE) 1) -)))
put tv3 (LAM (LAM ((((SIMP 2) PUT) 1) -)))

used tv3 (LAM (LAM ((((SIMP 2) USE) 1) -)))

Table 16

Cluster 5 of the 8 Clusters Found in the Verb Subset with Exactly 2 Lambdas

The Word and Its PoS Tag DB Terms for The 2-Lambda Verb Entries in Cluster 5 of 8

done tv3 (LAM (LAM ((((SIMP 1) DO) 2) -)))
eaten tv3 (LAM (LAM ((((SIMP 1) EAT) 2) -)))

finished tv3 (LAM (LAM ((((SIMP 1) FINISH) 2) -)))
finish iv1 (LAM (LAM (((SIMP 1) FINISH) 2)))
got tv3 (LAM (LAM ((((SIMP 1) GET) 2) -)))

heard tv3 (LAM (LAM ((((SIMP 1) HEAR) 2) -)))
lost tv3 (LAM (LAM ((((SIMP 1) LOSE) 2) -)))
put tv3 (LAM (LAM ((((SIMP 1) PUT) 2) -)))

used tv3 (LAM (LAM ((((SIMP 1) USE) 2) -)))

The most important insight that was gained from the success of AP that is implemented
with cosine similarity to cluster a subset of DBVs is that it seems that there may be a way
to successfully use lambda terms in the vector space if the lambda terms are represented
with De Bruijn indexing, which leads to the contention that De Bruijn sequences may
be a way of linearizing the compositional structure in the state-of-the-art lambda terms.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this final chapter of the thesis, the results of the analyses that were laid out in the
previous chapter are discussed and some future directions are given based on the findings
of the work that was done in this thesis.

The work in this thesis focused on semantic representation phenomena in a language ac-
quisition setting to come up with insights into whether or not a dimensionality reduction
can be said to occur in the child’s mind when acquiring the concepts in the language.
Another question that was pondered was about how and how much of a reduction in
the dimensionality may take place, if it indeed does. The thesis also aimed to utilize its
exploration of semantic dimensionality such that insights would emerge regarding the
role of semantics in the argument realization phenomena. Finally, the thesis aimed to
produce insights into what kind of representational formalisms could be preferred if one
is to represent the semantics of words, by way of comparing LTs to DBILTs.

By its investigation of the research questions summarized above, this thesis tried to make
use of its formalization of the questions about the curse of dimensionality in language
acquisition, in a manner that would serve as a window into how concepts may be repre-
sented in the mind once they are acquired either with a reduction in dimensionality (in
case of the similarity comparisons of the reduced versus unreduced versions) or without
a reduction (in the case of employing the AP clustering on the unreduced DBVs) but
under distinct formalisms such as LTs and DBILTs.

5.1 Discussion of the Results

The results, both from the cosine similarity comparisons and from the AP clusters, seem
to confirm the hypothesis that the De Bruijn indexed representations, particularly the
ones with the arrays representing the lambda binders, are more robust than regular
lambda terms in terms of their suitability for vectorial encodings that would allow for the
dimensionality in the data set to be computationally reduced. The representations that
utilized De Bruijn Indexing, namely the DBVs and the BDBVs, were found to be more
robust representations for the purposes in this thesis in that they required fewer princi-
pal components compared to the LV representations while still sufficiently explaining
the variance in the data. It could be argued that the dimensionality reduction during
language acquisition utilizes semantic representations that are more like the De Bruijn
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indexed ones than the ones with the regular lambda terms, on the basis that the ones with
the De Bruijn indices are more effectively reducible to lower dimensions under linear-
ity assumptions, but also under the non-linearity assumption brought by an additional
reduction aided by t-SNE visualizations.

An important indicator of the robustness of the DBVs was the accuracy of the cosine
similarity ratios they yielded in the comparisons of various word entries compared to
the same ratios in both the BDBVs and the LVs. It was also worth noting how the
reduced versions of the DBVs and the BDBVs started yielding comparable cosine sim-
ilarity scores, and how it may be indicative of the De Bruijn sequences’ prominence in
reflecting the true dimensionality of the semantics of words.

When the AP algorithm was utilized to further investigate possible clusters in the overall
DBVs data set and in two verb subgroups, the success of the clusters were seen to be
dependent on the similarity measure that was used, and the success of the cosine sim-
ilarity implementation for the AP seems to be in support of the contention that cosine
similarity which was also used as a success metric of the 3 data sets via the pair-wise
similarity scores was a good choice as a metric of the success of distinct types of vecto-
rial representations for the semantics of words.

Coming to the question of the semantics’ effect on the argument realization phenom-
ena, the successful clusters found with the implementation of AP seemed to suggest
that the structure of the semantics of verbs, even though they are compositional, if this
compositionality is accounted for via a more linear representation (such as DBVs), may
very well be tantamount in determining the syntactic phenomena of verbs where they
go on to take a distinct number of arguments. Still, more work is needed, especially
on the dimensionality reduction of syntactic representations to gain more insights about
the argument realization phenomena, and into whether or not semantic versus syntactic
bootstrapping is more likely during language acquisition.

One limitation of the work here is that since the thesis explored theoretical constructs
for concept representation that are arrived at after a lot of abstractions under a certain
formalism (lambda calculus), any evaluation of the results to the effect that the results
may be reflective of how concept acquisition works and how dimensionality may be
reduced is ultimately skewed by the assumptions in the encodings and in the layers of
abstraction that the original data had been subjected to. Note that the selection of a
formalism to represent semantic meaning and its later encoding ultimately comes with
assumptions about the dimensionality in the data, which may not be reflective of the true
dimensionality in the data. However, exploring certain reduction possibilities puts into
perspective the features that may indeed be prominent in the true dimensionality of the
data, one of which was claimed to be the De Bruijn sequences in this thesis.

The success of the clustering based on the vectors that were created with the De Bruijn
sequences seem to suggest not only that the De Bruijn representations are more con-
ducive to be used in computational exploration, but also that the systematic and compo-
sitional nature of the semantics of words could possibly be accounted for under the right
formalism since the successful clusters bring together the words that are similar in their
meaning in terms of the verbs’ combinatory properties.
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5.2 Future Directions

As stated earlier in the thesis, a future goal is to use the approach taken here to explore
syntactic dimensionality reduction during language acquisition using the lexicon data
for parts of the Eve fragment that was obtained from Şakiroğulları (2019), and combine
insights from both syntactic and semantic dimensionality to make sense of argument
realization phenomena. The results of this thesis indicate that the De Bruijn Index based
representations seem to be efficient tools for bridging the gap between the study of
semantics and its effect on the syntactic phenomena of argument realization, especially
considering the results that were obtained from the cosine similarity measures and the
AP clusters.

This thesis utilized a novel representational scheme to numerically represent lambda
terms and their De Bruijn term equivalents. As the literature in Chapter 3 makes clear,
there are frameworks in the literature that could possibly utilized in the future even
though they were not aligned with the goals of this thesis regarding the direct use and
exploration of lambda terms and De Bruijn terms. Trying to write the semantic represen-
tations in the data set in light of Category Theory to try out the method in Clark (2013)
and Coecke et al. (2010) could be another future goal, as well as trying to build a vec-
torization framework where Smolensky (1990)’s Tensor Product Representations could
be effectively utilized for the tree structures of the semantic representations. While the
thesis used lambda calculus based meaning representations and their De Bruijn indexed
rewrites, it is worth noting that various other techniques and formalisms (such as Lam-
bek’s (2008) pre-group grammar) that were explored in Chapter 3 which were not used
in the methodology of the thesis could, in the future, also be explored in terms of their
dimensionality and compared to the ones explored here after the groundwork that was
done in this thesis.

An important limitation of the work in this thesis was that the analyses that were con-
ducted were insufficient in that despite them being great feature extraction tools for
reducing dimensionality and exploring the characteristics of the data sets, they were not
tools for selecting features from the semantic representations. Since the work was one
of feature extraction rather than feature selection, the reduced representations for the De
Bruijn Terms or the Lambda Terms could not be made sense of with regards to their
prior compositional properties because they could not be reverted back to a notation
where they could be used in a parsing context for computations of semantics.

However, feature extraction can be seen as an achievement in that the data now could
be used in vector space operations because it now has distributional semantic proper-
ties. Building from the previous point about, an important future direction in this re-
search is to explore the distributional properties of the DBV representations by seeing if
they have latent combinatory properties such that these vectorial versions of the original
lambda terms can be composed with the application of a linear algebraic operation such
as taking their tensor products, an experimentation the success of which could, again, be
determined by the use of similarity metrics.
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