
SECURE AND ENERGY-EFFICIENT RESOURCE ALLOCATION IN
NETWORK SLICING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

UMUT CAN GÜLMEZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2022

Approval of the thesis:

SECURE AND ENERGY-EFFICIENT RESOURCE ALLOCATION IN
NETWORK SLICING

submitted by UMUT CAN GÜLMEZ in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. Pelin Angın
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. İbrahim Körpeoğlu
Computer Engineering, Bilkent University

Assoc. Prof. Dr. Pelin Angın
Computer Engineering, METU

Assist. Prof. Dr. Serkan Sarıtaş
Electrical and Electronics Engineering, METU

Date: 02.09.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Umut Can Gülmez

Signature :

iv

ABSTRACT

SECURE AND ENERGY-EFFICIENT RESOURCE ALLOCATION IN
NETWORK SLICING

Gülmez, Umut Can
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Pelin Angın

September 2022, 66 pages

The one-size-fits-all idea of the previous telecommunication generations is no longer

suitable for current applications. The current network systems need to satisfy the

Quality of Service requirements of the different types of use cases such as enhanced

mobile broadband, ultra-reliable and low latency communications and massive ma-

chine type communications in the same physical infrastructure. 5G telecommunica-

tion networks aim to provide a solution to this problem through the network slicing

concept. Virtual Network Functions (VNF) play an essential role in the network slic-

ing concept and embedding these functions into the network is an important task to

achieve. As state-of-the-art research focuses on allocating these functions in-network

taking only energy efficiency into consideration, this research proposes a solution that

considers the security aspects too. We propose a VNF placement strategy using an

integer linear programming (ILP) model for 5G network slicing under strict security

requirements, which optimizes energy consumption by the core network nodes. As an

improvement to this approach, we also propose using Deep Reinforcement Learning

(DRL) methods to provide a dynamic, energy-efficient, resilient, and secure resource

allocation framework for network slicing. Hence, in this research, we compared var-

v

ious state-of-the-art DRL methods to find a suitable algorithm for energy-efficient

resource allocation under stringent security constraints. Simulation results demon-

strate that the proposed DRL-based models achieve significant energy optimization

compared to the ILP-based optimization model performing VNF placement under

the same QoS and security constraints. The results of the study show that DRL-based

methods provide faster allocation than ILP-based methods. Also, the results show

that DRL-based methods provide faster allocation than ILP-based methods.

Keywords: 5G and Beyond Mobile Networks, Network Slicing, Deep Reinforcement

Learning, Integer Linear Programming, Network Security, Energy Efficiency

vi

ÖZ

AĞ DİLİMLEMEDE GÜVENLİ VE ENERJİ-VERİMLİ KAYNAK TAHSİSİ

Gülmez, Umut Can
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Pelin Angın

Eylül 2022 , 66 sayfa

Önceki telekomünikasyon nesillerinin tek çeşit şebeke ile tüm kullanıcılara aynı hiz-

meti verme fikri artık günümüz uygulamaları için yeterli olmamaktadır. Mevcut şe-

beke sistemlerinin, aynı fiziksel altyapıda Gelişmiş Mobil Geniş Bant, Ultra Güvenilir

ve Düşük Gecikmeli İletişim ve Büyük Makine Tipi İletişim gibi farklı kullanım şekil-

lerinin şebeke iletişimi hizmet kalite (QoS) şartlarını karşılaması bir zorunluluk haline

gelmiştir. 5G telekomünikasyon ağları bu soruna bir çözüm önerisinde bulunuyor: Ağ

Dilimleme kavramı. Ağ fonksiyonlarının sanallaştırılması (VNF), ağ dilimleme kon-

septinde önemli bir rol oynamakta ve bu sanallaştırılan fonksiyonların şebeke üze-

rinde yerleştirilmesi önemli bir görev teşkil etmektedir. Literatürdeki araştırmalar, bu

fonksiyonları ağ üzerinde yalnızca enerji verimliliğini dikkate alarak tahsis etmeye

odaklandığından, bu tez çalışması güvenlik yönlerini de dikkate alan bir çözüm sun-

maktadır. Bu çalışmada, güvenlik gereksinimleri olan 5G ağ dilimleme konsepti için

çekirdek ağ fonksiyonlarının enerji tüketimini, tamsayılı doğrusal programlama (ILP)

modeli kullanarak sanal ağ fonksiyonlarını verimli bir şekilde yerleştirme stratejisi

ile optimize edilmektedir. Bu yaklaşım üzerine bir iyileştirme olarak, ağ dilimleme

için dinamik, enerji açısından verimli, esnek ve güvenli bir kaynak tahsis çerçevesi

vii

sağlamak için Derin Güçlendirmeli Öğrenme (DRL) yöntemlerinin kullanılması ek-

lenmiştir. Çalışmada, katı güvenlik kısıtlamaları altında enerji verimli kaynak tahsisi

için uygun bir algoritma bulmak için çeşitli son teknoloji Derin Güçlendirmeli Öğ-

renme yöntemleri karşılaştırmıştır. Simülasyon sonuçları önerilen DRL modellerinin,

aynı QoS ve güvenlik kısıtlamaları altında VNF yerleştirme gerçekleştiren ILP ta-

banlı yaklaşıma göre önemli ölçüde güç tasarrufu sağladığını göstermektedir. Aynı

zamanda, DRL tabanlı yöntemlerin ILP tabanlı yöntemlerden daha hızlı kaynak tah-

sis sağladığını da göstermektedir.

Anahtar Kelimeler: 5G ve Ötesi Mobil Ağlar, Ağ Dilimleme, Derin Pekiştirmeli Öğ-

renme, Tam Sayılı Doğrusal Programlama, Ağ Güvenliği, Enerji Verimliliği

viii

To my family and friends

ix

ACKNOWLEDGMENTS

I want to acknowledge and give my warmest thanks to my advisor Dr. Pelin Angin

for her helpful comments and feedback throughout the writing process. Her patience,

motivation, and immense knowledge in the area led me to point in the right direction

and improved the quality of work I produced. I would also like to thank my thesis

committee members, Dr. İbrahim Körpeoğlu and Dr. Serkan Sarıtaş.

A debt of gratitude is also owed to my mother Nuran, father Ferhat, and significant

other Dilara for believing in me throughout the thesis process and supporting me

spiritually throughout my life.

This study has been supported by Vodafone within the framework of 5G and Beyond

Joint Graduate Support Programme coordinated by Information and Communication

Technologies Authority. Being a scholar of this programme enabled this research to

be conducted at a level where both industry and academic contributions produced the

desired outcome most efficiently.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 2

1.2 Contributions . 3

1.3 Thesis Outline . 4

2 BACKGROUND AND RELATED WORK 7

2.1 An Overview of 5G Core Networks 7

2.1.1 Trusted Execution Environment 9

2.2 Network Slicing in 5G . 9

2.3 Deep Reinforcement Learning . 13

2.3.1 Reinforcement Learning Basics 13

xi

2.3.2 Deep Q-Learning . 14

2.4 Deep Reinforcement Learning Algorithms 15

2.4.1 Deep Q-Learning with Fixed Q-targets 15

2.4.2 Double DQN (DDQN) . 17

2.4.3 DDQN with Prioritised Experience Replay 18

2.4.4 Dueling DDQN . 18

2.5 Related Work . 20

2.5.1 Open Issues and Challenges 22

3 PROPOSED ILP-BASED OPTIMIZATION MODEL 23

3.1 Initial Version of the ILP-based Optimization 23

3.1.1 Definitions . 23

3.1.2 Model Parameters . 25

3.1.3 Decision Variables . 27

3.1.4 Objective Function . 28

3.1.5 Optimization Constraints . 28

3.1.5.1 Graph constraints . 28

3.1.5.2 Capacity constraints 29

3.1.5.3 Latency constraints . 29

3.1.5.4 Security Constraints 30

3.1.6 ILP Model . 30

3.2 Extended version of the ILP-based Optimization 30

4 PROPOSED DEEP REINFORCEMENT LEARNING BASED OPTIMIZA-
TION MODEL . 33

xii

5 EXPERIMENTAL EVALUATION . 41

5.1 Simulation Scenarios . 41

5.1.1 Simulation Environment for Initial version of ILP-based Model 41

5.1.2 Simulation Environment for DRL-based Model 42

5.2 Simulation Results . 43

5.2.1 Results for the Initial Version of the ILP-based Model 43

5.2.2 DRL-based Model Results 48

5.2.3 ILP vs DRL . 53

6 CONCLUSION . 59

6.1 Conclusion . 59

6.2 Future Work . 59

REFERENCES . 61

xiii

LIST OF TABLES

TABLES

Table 2.1 Agent Hyperparameters . 15

Table 4.1 Test Scenarios . 34

Table 4.2 VNF Capacities . 34

Table 4.3 Slice Types and Requirements . 36

Table 5.1 Dataset generation parameters used for the simulations 42

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 5G Core Network Architecture 8

Figure 2.2 Network Slicing Architecture 11

Figure 2.3 ETSI NFV Architecture . 12

Figure 3.1 Example network that consists of server and user equipment nodes 24

Figure 3.2 Example VNF placement that consists of paths between VNF

and user equipment nodes . 25

Figure 4.1 Graph Representation . 35

Figure 5.1 Total problem solving time by server node count plot, in loga-

rithmic scale . 44

Figure 5.2 Optimization result difference between Greedy Implementation

and ILP Implementation by server node count plot 45

Figure 5.3 Total problem solving times (model build time + model opti-

mization time) for non-power optimized and power-optimized ILP im-

plementation, by server node count plot, in logarithmic scale 46

Figure 5.4 Optimization result difference between non-power optimized

and power-optimized ILP implementation by server node count plot . . 47

Figure 5.5 Average Power Consumption for 5 Servers 49

Figure 5.6 Average Power Consumption for 10 Servers 49

xv

Figure 5.7 Average Power Consumption for 30 Servers 50

Figure 5.8 Average Reward Graph . 51

Figure 5.9 Power Efficiencies of DDQN Approach in Secure and Non-

secure Environments Based on Server Count 52

Figure 5.10 Power Efficiencies of DRL Agents for Secure vs Non-secure

Environments . 52

Figure 5.11 Average Optimization Time for 5 Servers 53

Figure 5.12 Average Optimization Time for 10 Servers 54

Figure 5.13 Average Optimization Time for 30 Servers 54

Figure 5.14 Average Power Consumption for 5 Servers 56

Figure 5.15 Average Power Consumption for 10 Servers 56

Figure 5.16 Average Power Consumption for 30 Servers 57

xvi

LIST OF ABBREVIATIONS

2G Second Generation

3G Third Generation

3GPP Third Generation Partnership Project

5G Fifth Generation

5GCN 5G Core Network

AI Artificial Intelligence

AMF Access and Mobility Management Function

API Application Programming Interface

AUSF Authentication Server Function

CapEx Capital Expenditure

CN Core Network

DDQN Double Deep Q-Network

DoS Denial of Service

DQN Deep Q-Network

DQL Deep Q-Learning

DRL Deep Reinforcement Learning

eMBB Enhanced Mobile Broadband

ETSI The European Telecommunications Standards Institute

EPC Evolved Packet Core

ILP Integer Linear Programming

IoT Internet of Things

KPI Key Performance Indicator

LTE Long Term Evolution

MANO Management and Orchestration

xvii

mMTC Massive Machine Type Communication

NF Network Function

NFV Network Function Virtualization

NN Neural Networks

ONAP Open Network Automation Platform

OpEx Operating Expenses

OSM Open Source MANO

OSS/BSS Operations Support System and Business Support System

QoS Quality of Service

RAN Radio Access Network

RL Reinforcement Learning

SBA Service Based Architecture

SDN Software Defined Network

SLA Service Level Agreements

SMA Session Management Function

UDM Unified Data Management Function

UDR Unified Data Repository

UE User Entity

URLLC Ultra Reliable Low Latency Communication

UPF User Plane Function

vMME virtual Mobility Management Entity

VNF Virtual Network Function

VNFI Virtual Network Function Infrastructure

VNSF Virtual Network Security Function

xviii

CHAPTER 1

INTRODUCTION

As the number of connected devices and use cases telecommunication networks aim

to support is increasing at a tremendous speed, legacy mobile networks are falling

short of achieving the bandwidth, throughput, and delay requirements of various net-

work applications. Given the potential of the Internet of Things (IoT) to create smarter

systems as "the next major economic and societal innovation wave" after Internet’s

evolution and expectations that worldwide 5G subscribers will exceed 4.4 billion by

2027 [1], it is essential to develop 5G infrastructures that will support massive IoT.

While 5G has immense potential to transform the world’s digital economy and help

create significant opportunities for sustainable computing, it is expected to incur up

to 170% increase in network energy consumption in macro, node, and network data

center areas by 2026 [2]. When considering the high costs of deploying the 5G in-

frastructure with high coverage globally and the fact that standards are still being

developed, the creation of frameworks for efficient management and resource provi-

sioning for 5G networks becomes paramount.

The network slicing concept is considered one of the enablers of 5G telecommunica-

tion networks using virtualization technologies to provide flexible, scalable, and ef-

fective end-to-end operation in 5G networks. With the combination of Network Func-

tion Virtualization (NFV) and Software-defined Networks (SDN), network slices sup-

port various network applications that have different service level agreements (SLAs)

to run on the same physical infrastructure. Allocating resources efficiently for these

different use cases is a critical issue to be resolved, as poorly allocated assets could

cost a fortune to the operators. Network slice embedding onto network topology

must be handled in a self-organized way to reduce the capital (CapEx) and opera-

1

tional (OpEx) expenses of the operators. In addition to that, one of the essential

purposes of automated resource allocation is to decrease energy consumption. The

research interest in establishing an automated resource allocation scheme in network

slicing generally focuses on this purpose. However, state-of-the-art research does not

consider the security aspects of the virtual network functions. Due to the different

vendors’ co-existence in the same physical environment, isolation between the slices

needs to be handled by the operators while keeping energy consumption at a mini-

mum.

1.1 Motivation and Problem Definition

While network slicing is seen as a compulsory technology for the successful oper-

ation of next-generation mobile networks, its effective implementation faces many

challenges to be solved before widespread adoption by telecommunication operators

can take place:

• Security is a critical problem [3], [4] due to sharing of physical resources

between slices, each of which may have different security requirements [5].

The security requirements of one slice could affect the overall performance of

other network slices.

• Given the concerns regarding the vast energy consumption expectations for 5G

networks, one of the key performance indicators will be energy efficiency [6]

as in other wireless networks [7]. Jointly optimizing energy consumption and

QoS parameters like delay, bandwidth, and throughput while meeting strict

security requirements is a challenge, as these are conflicting in most cases.

• In the network slicing concept, network slice instances share the same physical

infrastructure; hence isolation of security-critical network functions needs to

be handled by the operators. Optimizing the embedding of these functions is

an issue that needs to be solved.

• Network environment could change stochastically [8] as the demands of the

end-user types could change in time. Resource allocation methods should con-

2

sider this dynamicity. Instead of using mathematical models like ILP, data-

driven models that have proven themselves in stochastic environments such as

DRL methods should be used in highly dynamic environments.

1.2 Contributions

This thesis proposes a novel energy-efficient and secure network slice embedding

model for 5G core networks with Integer Linear Programming (ILP) based optimiza-

tion and Deep Reinforcement Learning based optimization to address the above chal-

lenges.

The proposed model contributes to the literature on energy-efficient secure network

slicing as follows:

• We propose a DRL-based optimization model that embeds virtual network

slices in a 5G network while maintaining QoS of different use cases. The pro-

posed architecture use cases (slice types) have different security constraints,

and the proposed method embeds these slice types in a secure and energy-

efficient way.

• The proposed method decreases energy consumption via disabling underuti-

lized virtual network functions. Apart from disabling VNFs, DRL agents and

the ILP-based model also deactivate the servers that do not run any VNFs.

• We compare promising state-of-the-art DRL algorithms to find an optimal so-

lution to the secure network embedding problem. Furthermore, we compare

the proposed method with our previous ILP-based work [9] in order to demon-

strate the difference between data-driven and mathematical optimization-based

approaches for energy-efficient and secure resource allocation in network slic-

ing.

• This thesis also shows that security requirements affect energy consumption

in 5G networks. Trained agents were used to optimize energy consumption in

both networks where security requirements were considered and those that did

not consider any security requirements.

3

• We propose an optimization model for the virtual network embedding problem

in 5G core network slicing that achieves significant energy savings in overall

core network energy consumption under strict security requirements for virtual

network function placement.

• We provide a network topology generator that can be used to test optimization

models on various topologies with different requirements.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 explains the network slicing concept, network slicing use cases, and net-

work slicing enablers, including NFV and SDN. In addition to that, this chapter sum-

marizes the Deep Reinforcement Learning algorithms that we used to allocate re-

sources. Finally, this chapter mentions state-of-the-art resource allocation schemes in

network slicing and compares them.

Chapter 3 introduces the architecture of the proposed approach for energy-efficient,

secure core network slicing for the ILP-based optimization model. Network con-

straints like bandwidth, latency, and how to generate the network topology are ex-

plained in this part. The mathematical details of the constraints given in the ILP

model are explained here.

Chapter 4 starts with the problem explanation and its solution using DRL-based op-

timization. Furthermore, environment generation for Deep Reinforcement Learning

algorithms is explained in detail. A heuristic method implemented for mapping traf-

fic into the network graph is presented. Security constraints of the servers and slice

types are given in detail, and slice types and their limitations regarding QoS are briefly

explained.

Chapter 5 includes the evaluation of the proposed method and compares the proposed

DRL-based method with the ILP-based model. This chapter illustrates the energy

efficiency of the different models, the proposed models’ effect on reducing energy

consumption on secure and non-secure versions of the architectures, and the conver-

4

gence of the deep reinforcement learning algorithms.

Chapter 6 concludes the paper with future work directions.

5

6

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 An Overview of 5G Core Networks

As in the previous generations of telecommunications technologies, 5G networks con-

sist of Radio Access Network (RAN) and Core Network (CN). While the RAN is

responsible for connecting user entities (UE) with the CN in a wireless fashion, CN is

the backbone of the telecommunications network, which handles voice and data rout-

ing. Network slicing can be applied on both RAN and CN. We focus on CN slicing

in this thesis and RAN slicing will be out of the scope of this work. In order to better

understand 5G CN, basic 5G CN concepts are explained below based on [10].

Until 5G, each generation of mobile networks (2G/3G/4G) had developed new pro-

tocols and interfaces for connecting radio and core networks and the network layer

itself. 5G CN, on the other hand, to prevent further complexities, aims to define an

access-independent interface that can be used by any relevant access technology, in-

cluding those that have not been specified in the standards yet. Therefore, it also aims

to address future access technologies.

As with the previous generations, 5G will be built on top of the nearest of its pre-

decessors, which is 4G. 4G is made up of Long Term Evolution (LTE) on RAN and

Evolved Packet Core (EPC) on CN. Since LTE is the most widespread radio access

technology today, 5G architecture has been developed so that the new 5G RAN can

cooperate with the existing LTE. On the CN side, comparing EPC and 5G Core Net-

work (5GCN) would show what improvements we expect from 5G. User data process-

ing and integration with RAN are very similar in EPC and 5GCN. On the signaling

functionality side, however, 5GCN will introduce the Service Based Architecture

7

Figure 2.1: 5G Core Network Architecture

(SBA), which marks the main difference in the networking paradigm. In order to

understand the SBA, we must understand the core network’s functional view and the

main Network Functions (NF). Many more NFs can be defined; however, without

diving into too much detail, the most fundamental core network functionality can be

summarized in six main NFs:

• Access and Mobility Management Function (AMF)

• Session Management Function (SMF)

• User Plane Function (UPF)

• Unified Data Management Function (UDM)

• Unified Data Repository (UDR)

• Authentication Server Function (AUSF)

Instead of network nodes connected via specific interfaces, SBA now allows different

NFs to offer services to other NFs via Application Programming Interfaces (API).

NFs which provide some services take the role of Service Producer, and NFs which

make requests to get those services will be Service Consumer.

8

Figure 2.1 explains the basic 5GCN. NFs whose abbreviations were specified are the

essential NFs. Other possible NFs are specified with nfn labels. AMF is responsible

for signaling between the User Entity (UE) and the RAN. UPF’s task is to process

and forward user data. SMF controls the UPF. All other NFs publish their services

and subscribe to each other’s services through the service-based interface (dashed

channel). Arrows on both sides of the horizontal dashed line indicate that various

other NFs can be present on this service-based interface.

2.1.1 Trusted Execution Environment

Trusted Execution Environments (TEEs) are secure, isolated areas of processing

that use special hardware to provide a high level of data protection. As stated in [11],

there has been much research conducted on TEEs and their attestation techniques in

both academia [12–14] and industry [15, 16]. Attestation of a Trusted Execution

Environment is the technique that measures the status of the TEE. In our work, we

assume some of the cloud nodes where NFVs are placed contain a TEE, a subset of

which have the attestation technique. TEE and attestation are added to the proposed

architecture because some slice owners would require to run their applications on the

servers that would provide TEE and even attestation of a TEE for security purposes.

2.2 Network Slicing in 5G

Network slicing can be described as the placement of various end-to-end virtual net-

works on top of shared physical infrastructure. Standardization of the network slicing

concept is underway by several institutions like 3GPP, ETSI, and IETF. According to

the standards accepted by the 3GPP foundation, a network slice is defined as a log-

ical end-to-end network that can be created on-demand, and users can access these

multiple slices over the same radio interface [17]. These slices contain network slice

instances that consist of several network functions. Network functions have detailed

functional behavior and well-defined 3GPP interfaces [17]. These logical networks

will provide various use cases like enhanced mobile broadband, ultra-reliable low

latency communications, and massive machine-type communications. Figure 2.2

9

shows the network slicing concept with several use cases of the slices and network

slice instances.

Network Function Virtualization (NFV) and Software Defined Networks (SDN) are

the critical technologies for network slicing [18]. Network Function Virtualization

is the virtualization of network functions on the shared hardware, examples of which

include firewalls, VPNs, and 5G Evolved Packet Core functions among others. ETSI

has published a standard [19] for NFV, which is widely accepted in both academia and

the industry. In Figure 2.3, three layers of network slices are shown. In the lowest

layer, which is called VNFI, there is the network’s physical infrastructure. This layer

consists of storage, computing and network hardware, hypervisors, and virtual ma-

chines that run on these physical infrastructures. The middle layer is virtual network

functions (VNFs) that provide various functionalities in the network [17]. The upper-

most layer is Operational Support Systems and Business Support System (OSS/BSS).

The OSS/BSS layer consists of management functions for network operators, such as

inventory, service provisioning, network configuration, and fault management.

These layers are managed by the network’s Management and Orchestration (MANO)

component. This component manages the lifecycle of the components of these layers.

Both 3GPP and ETSI have published standards for these tools. In 3GPP standards,

lifecycle management, performance monitoring, and self-organized network concepts

in network slicing are mentioned [20]. There are several tools and projects to manage

and orchestrate the network. However, there are two projects with a highly active

community and developer support. The first project, which is called ONAP, was de-

veloped by Linux Foundation. The second one by ETSI is an open-source project

called OSM. [21] compares these projects and concludes that OSM has far less re-

source footprint than ONAP.

Software-defined networks (SDN) decouple the data plane from the control plane.

While the control plane decides the path of packets over the network, the data plane

provides the flow of the packets in this path. One of the essential benefits of using

SDN is that it significantly decreases the capital expenses of the operator. Since the

control plane is separated into the cloud, the operator can use less expensive switches

in the transport network. SDN also has advantages while managing the network.

10

Figure 2.2: Network Slicing Architecture

11

Figure 2.3: ETSI NFV Architecture

12

Since the controller can monitor the traffic in the network, it can interfere with any

suspicious movement and hence maintains security. In addition, due to only one

controller in the SDN architecture, any policy configuration could be deployed more

efficiently compared to the classical network system that has multiple controllers [18].

2.3 Deep Reinforcement Learning

The advances in deep learning have accelerated the progress in Reinforcement Learn-

ing (RL), and the use of deep-learning algorithms within RL has emerged as a new

concept entitled deep reinforcement learning (DRL). DRL is considered a leveraging

technology for artificial intelligence (AI) that assists autonomous systems through

better interaction with the surrounding environment [22]. DRL algorithms have been

utilized in fields ranging from helping robots learn behavioral skills with minimum

human interaction [23] to new generation networks for more optimized resource al-

location [24]. Below we first introduce the basics of RL and continue with Deep

Q-Learning concepts.

2.3.1 Reinforcement Learning Basics

Kai et al. [22] introduced the basics of an RL setup. Machine learning-driven au-

tonomous agents learn to modify their behaviors according to the received rewards

through observations and interactions with the environment. An RL agent observes

a state st from the environment at time t. Then, the agent reacts to the environment

by taking an action at, and the agent changes its state as st+1 according to the action.

An agent takes the most reasonable action according to the state, which contains all

of the necessary information related to the environment. The agent’s action is deter-

mined by the scalar rewards rt+1, which are given as feedback by the environment at

a certain state. The agent aims to adopt a strategy (optimal policy, π) that gives the

maximum expected cumulative discounted return (value function) calculated by the

13

Bellman equation :

V π(ŝ) =Eπ

[
∞∑
k=0

γkR(s(k), π(s(k)))|s(0) = ŝ)

]
(2.1)

=Eπ

[
R(ŝ, π(ŝ))) + γ

∑
s′∈S

P (s′|ŝ, π(ŝ))V π(s′)

]
(2.2)

2.3.2 Deep Q-Learning

As Li et al. discussed in [24], Q-learning is an off-policy and model-free RL algo-

rithm. It consists of three steps. First, the RL agent takes action under the current

state according to a greedy policy ϵ, so that the agent chooses the action with the

maximum Q-value with a probability of ϵ and chooses other actions with a proba-

bility of 1−ϵ
|A| , where |A| is the cardinality of the action space. Then the agent takes

its reward as R(s, a) and transits to the next state s’. Finally, the agent updates the

Q-value function as: Q(s, a)← Q(s, a) + α(R(s, a) + γmaxa′ Q(s
′, a′)−Q(s, a))

For a large state space, function approximation methods are used to store the esti-

mated value function, that is, the Q-value function approximated by a linear combi-

nation of n orthogonal bases:

ψ(s, a) = {ψ1(s, a), · · ·ψn(s, a)} (2.3)

Q(s, a) = θ0 + θ1 · ψ1(s, a) + · · ·+ θn · ψn(s, a) (2.4)

Q(s, a) = θTψ(s, a) (2.5)

Q-learning means Q(s, a) = θTψ(s, a) must be as close as possible to the learnt tar-

get value Q+(s, a) =
∑

s P (s
′|s, a)

[
R(s, a) + γmaxa′ Q

+(s′, a′)
]

for all state/action

pairs.

The suitability of deep Q-learning (DQL) for both Experience Replay and Network

Cloning functionality of Neural Networks (NN) makes it a perfect candidate for the

resource allocation problem. For an Experience Replay operation, the agent stores

experience parameters (state, action, next state, reward) at a specific episode t in a

dataset. Then, it can use these experiences to update the Q-value NN. On the other

hand, the agent uses a separate network Q̂, and it is replaced with Q at a certain

period of episodes, where Q̂ is used for the selection of an action a in a state s.

14

DQL can gather the pairs of states, rewards, and actions and train its policy in the

background [24]. Also, the stored policies can be applied to similar scenarios. That is,

DQL can make the resource allocation according to its past experiences, i.e., already

learned policies [24].

2.4 Deep Reinforcement Learning Algorithms

There are several DQN agents in the state-of-the-art. These agents proved themselves

by solving discrete action-based reinforcement learning problems. Therefore, we im-

plemented four different versions of DQN agents in our proposed solution to compare

their results. Table 2.1 summarizes the hyperparameters used in these algorithms. We

selected them after several tries on training agents and chose them according to both

convergence of the algorithms and the convergence rate shown in the results section.

Table 2.1: Agent Hyperparameters

Agent Hyperparameter Value

learning rate 0.001

replay buffer batch size 256

replay buffer size 1000000

initial epsilon 1.0

discount rate 0.999

tau 0.1

linear hidden nodes 256, 1024 ,512

optimizer Adam

loss function L2

gradient_clipping_norm 0.7

incremental td error 1e-8

alpha prioritised replay 0.6

beta prioritised replay 0.1

2.4.1 Deep Q-Learning with Fixed Q-targets

The first agent we implemented in order to test the written environment is from the

Deepmind paper [25]. Algorithm 1 shows the process of DQN with a fixed Q target

15

agent. Improvement of this algorithm to the classic DQN uses a second network

called the target network. Using a second network resolves the problem known as

moving Q-targets. In classic DQN, only one network is used for training, and the

result of this approach is that there will be a high correlation between the Temporal

Difference target and the parameters we are using. Thus, we change Q values and the

target value when we train our data, causing oscillations during the training process.

Using a second target network with different weights and calculating the Temporal

Difference target with this network is proven to solve this issue. Weights of this target

network are updated every K step with the initial (evaluation) network’s weights. We

implemented our DQN with a fixed Q-targets agent according to this approach.

Algorithm 1 DQN with fixed Q targets
Initialize network Q with random weights ω

Initialize target network Q∗ with random weights ψ

Initialize replay memory M with a given capacity

episode = 0

while episode < episode count do

episode += 1

Initialize environment with randomly allocated vnfs on the server

while not done do

With probability ϵ select a random action at ∈ At

otherwise select at = argmaxaQ(st,a; ω)

Conduct action at on environment retrieve reward rt and next state s’

Store (st, at, rt, s
′, done) on replay buffer

Sample random minibatch from replay buffer M

for all experience in minibatch do

yi =

ri + γmaxa′Q
∗(st+1, a

′;ω), if not done

ri, otherwise

Loss = 1/N
∑N

0 (Q(si, ai)− yi)
2

Update Q using the SGD algorithm minimizing loss

every K step copy weights from Q to Q∗

end for

end while

end while

16

2.4.2 Double DQN (DDQN)

As an update to the DQN algorithm, Double DQN implements the following: The

DQN agent, which we implemented earlier, leads to over-optimistic value estimates

due to the max operator using the same values to both select and evaluate action.

DDQN overcomes this problem by using a second neural network that has a copy

of the last episode’s weights. With (2.6), while one network chooses the action, the

other could evaluate the action and become a solution to the maximization bias [26].

Algorithm 2 shows the update to the DQN with Fixed Q Targets we implemented.

Q∗(st, at) = rt + τQω(st+1, argmaxa′Qψ(st+1, a
′)) (2.6)

Algorithm 2 Double DQN
Initialize network Q with random weights ω

Initialize target network Q∗ with random weights ψ

Initialize replay memory M with a given capacity

episode = 0

while episode < episode count do

episode += 1

Reset environment with randomly allocated vnfs on servers

while not done do

With probability ϵ select a random action at ∈ At

otherwise select at = argmaxaQ(st,a; ω)

Conduct action at on environment retrieve reward rt and next state s’

Store (st, at, rt, s
′, done) on replay buffer

Sample random minibatch from replay buffer M

for all experience in minibatch do

Compute target Q value:

Q∗(st, at) = rt + γQω(st+1, argmaxa′Qψ(st+1, a
′))

Loss = 1/N
∑N

0 (Q∗(st, at) - Qω(st, at))2

Update Q using the SGD algorithm minimizing loss

update ψ = τ * ω + (1-τ)*ψ

every K step copy weights from Q to Q∗

end for

end while

end while

17

2.4.3 DDQN with Prioritised Experience Replay

Another update to the DDQN agent is using prioritized experience replay as a re-

play memory. As one might guess, some experiences would have more importance

in training than others. So we retrieved the more valuable experiences with the prob-

ability calculated in the paper [27]. Algorithm 3 shows the updated approach.

Algorithm 3 DDQN with prioritised replay memory
Initialize network Q with random weights ω

Initialize target network Q∗ with random weights ψ

Initialize replay memory M with replay period K, alpha value α, beta value β

episode = 0

while episode < episode count do

episode += 1

Reset environment with randomly allocated vnfs on the server

while not done do

With probability ϵ select a random action at ∈ At

otherwise select at = argmaxaQ(st,a; ω)

Conduct action at on environment retrieve reward rt and next state s’

Store (st, at, rt, s
′, done) on replay buffer with M maximal priority pt = maxi<tpi

if t = 0 mod K then

for all experience in minibatch do

Sample transition i P(i) = pαi∑
i p

α
i

Compute importance-sampling weight wi = (N∗P (i))−β

maxiwi

Compute TD-error:

δi = ri + γiQ
∗(si+1, argmaxaQ(si+1, a))−Q(si, ai)

Update transition priority pi = |δi|

Accumulate weight-change ∆ = ∆+ wi ∗ δi ∗ ∇ωQ(si, ai)

end for

Update weights ω+ = τ ∗∆

every K step copy weights from Q to Q∗

end if

end while

end while

2.4.4 Dueling DDQN

The Dueling DDQN agent calculates both the state value function and advantage

function, as can be seen in 2.7. Q values are calculated by the goodness of being

18

in a state and the advantage of taking an action in that state. When all actions have

a similar advantage, the Q value would be equal to the value of the state. Thus,

actions that do not have a particular effect on the Q value will not be taken into

consideration [28]. Algorithm 4 illustrates the described approach.

Q∗(st, at;ω, α, β) = V (s;ω, β) + (A(s, a;ω, α)

− 1

|A|
∑
a′

A(s, a′;ω, α))
(2.7)

Algorithm 4 Dueling DDQN
Initialize network Q with random weights ω

Initialize target network Q∗ with random weights ψ

Initialize replay memory M with a given capacity

episode = 0

while episode < episode count do

episode += 1

Initialize environment with randomly allocated vnfs on the server

while not done do

With probability ϵ select a random action at ∈ At

otherwise select at = argmaxaQ(st,a; ω)

Conduct action at on environment retrieve reward rt and next state s’

Store (st, at, rt, s
′, done) on replay buffer

Sample random minibatch from replay buffer M

for all experience in minibatch do

Compute target Q value

Q∗(st, at;ω, α, β) = V (s;ω, β) + (A(s, a;ω, α)- 1
|A|

∑
a′ A(s, a

′;ω, α))

Loss = 1/N
∑N

0 (Q∗(st, at) - Qω(st, at))2

Update Q using the SGD algorithm minimizing loss

update ψ = τ * ω + (1-τ)*ψ

every K step copy weights from Q to Q∗

end for

end while

end while

We implemented all of the described DQN agents in this work, and they all converged

into a model that could decrease the energy consumption in a network slicing problem

with stringent security requirements. In the next chapter, we describe the proposed

architecture and explain how we used these agents to increase energy efficiency.

19

2.5 Related Work

Network slicing is a new technology proposed to support effective management of

5G networks and beyond, for which many research and development efforts are still

in progress, with no mature standards in place. 5G is expected to provide increased

performance as compared to the previous generation of mobile networking technolo-

gies. As the utilized bandwidth gets wider, connected devices get more extensive in

number, and data rates become faster, the energy needed for these operations will

also increase. Therefore, it is a significant research problem to optimize the energy

consumption of 5G networks while providing the required services with the required

QoS. Below we provide an overview of existing approaches that address the aspects

of network slicing that we focus on in this work.

In [29], a security-aware slice instance allocation model for 5G core networks was

proposed. Security limitations, such as some of the VNFs having to be hosted on

the same server and some of the VNFs not being able to coexist on the same server,

were given to the ILP solver as constraints. This work showed a trade-off between

slice security and embedding performance metrics such as execution time and aver-

age revenue cost ratio for accepted requests. Although the authors considered security

aspects of resource allocation, they did not look at energy efficiency. [30] considered

virtual network security functions (VNSFs) placement as an ILP problem while con-

sidering the security and QoS requirements of the network slices. For this purpose,

the authors gave total maximum end-to-end latency as a QoS constraint and VNSF ex-

ecution order, VNSF network position, and operational mode as security constraints.

However, energy efficiency optimization was not considered in the model. Guan et

al. [31] also implemented an algorithm that places VNSFs onto a network topology

using routing characteristics instead of ILP and tested their security performance in

a simulation that mimics computer virus and worm attacks on the network. In [8],

an Integer Linear Programming model was presented for mobile network slice em-

bedding, resource allocation, and link mapping. Their work aimed to implement a

network slicing model maximizing the weights on network slices. In addition to that,

resource allocation and link mapping were provided by adding capacity, latency, and

graph constraints.

20

Research has been conducted on energy efficiency in 5G networks in every layer of

the 5G architecture, from base stations to radio access networks (RAN) and core 5G

networks. In this research, we focus on achieving an energy-efficient secure network

slicing scheme on the core network. Energy efficiency in networking is usually con-

sidered a fractional programming problem since providing more service with as little

energy as possible is, by its very nature, a trade-off problem. Therefore, researchers

have approached the energy efficiency issue as a "fraction" to be maximized, where

the numerator and denominator are two sides of a trade-off. Nguyen proposed in [32]

a hybrid resource allocation scheme that considers spectrum allocation, interference

alignment, and energy efficiency simultaneously since all three are essential for pro-

viding good performance in the network. In [33], Matthiesen et al. developed a QoS

framework for a sliced radio network (RAN), where two network parameters were

considered: throughput and energy efficiency. They built Pareto boundaries of two

different algorithms based on utility profile and scalarization, respectively. In [34], the

researchers focused on the energy efficiency vs. delay trade-off problem in wireless

network virtualization. They modeled the issue as a stochastic optimization problem

with predefined delay constraints, where users are queued on virtual base stations.

Mathematical optimization is not the only approach used in optimizing energy con-

sumption in networking. With the advancements in hardware technology and data

science in recent years, reinforcement learning-based models have proven success-

ful in network resource allocation and optimization. [35] proposed an algorithm that

considers both energy efficiency and spectral efficiency of the network while using

Dueling Deep Q-Network and shows successful results compared to Q-learning and

DQN. In [36], base stations’ sleep modes were optimized with the help of Q-Learning,

a variant of reinforcement learning. The aim was to find the optimal operating du-

ration of base stations concerning the delay and energy consumption requirements

and activate and deactivate them accordingly. Laroi et al. [37] developed a VNF slice

placement algorithm for core networks using Deep Reinforcement Learning (DRL)

algorithms as well as an ILP algorithm and compared their performances. Results

showed that the DRL model consumes less energy and time than ILP and reinforce-

ment learning algorithms. However, they did not consider the security aspects of

VNF placement. Particularly in network slicing, there have been many works op-

21

timizing the resource allocation between network slices [38], [39], [40], though not

particularly on optimizing the energy consumption in network slices.

2.5.1 Open Issues and Challenges

Although there exist approaches focusing on optimal network slicing/virtual network

embedding, none consider both energy efficiency and security constraints of the net-

work. As we show later in the following chapters, one should consider security while

optimizing network slicing since security comes with a cost. Our approach handles

the VNF allocation problem more comprehensively than other approaches in the state-

of-the-art. It solves the secure slice embedding problem while minimizing energy

consumption.

22

CHAPTER 3

PROPOSED ILP-BASED OPTIMIZATION MODEL

This chapter introduces the proposed ILP model for secure VNF placement in core

network slicing, which aims to minimize energy consumption while meeting the given

memory, throughput, and latency requirements. Our model is an extension of the

model proposed by Fendt et al. [8]. The primary purpose of the VNF placement

problem is to map VNFs into servers in the network in the most effective manner.

One of the main challenges in this virtual network embedding problem is solving this

embedding problem in a security-aware way. The presented mathematical model can

be used with an Integer-Linear Programming Solver, such as Gurobi1, which is used

in this work.

In the thesis study, we started with the ILP-based model and extended it with some

changes explained later in this chapter. Thus, in the first part of this chapter, we

describe the initial version of the ILP-based model published in [9]. After that, we

explain an extended version of this algorithm that is compared against Deep Rein-

forcement Learning based optimization algorithms.

3.1 Initial Version of the ILP-based Optimization

3.1.1 Definitions

This section covers essential parameters and definitions before delving into the details

of the ILP model.

An undirected graph G is an ordered pair (V,E), in which V stands for the set of v
1 Gurobi - The Fastest ILP Solver https://www.gurobi.com/

23

Figure 3.1: Example network that consists of server and user equipment nodes

nodes in the graph, and E stands for the edges. Each eij represents an edge between

two nodes vi and vj that are connected with each other.

V = {v1, v2, ..., vk} (3.1)

E = {e12, e23, ..., eij} , where vi, vj ∈ V (3.2)

Pij = {eir, ..., etj}, where vi, vr, vt, vj ∈ V (3.3)

P , an ordered set of edges, describes a path in the graph G. Note that P is a subset of

V . Pij defines a path between nodes vi and vj .

An illustration of an example network graph can be found in Figure 3.1, and Figure

3.2 shows an example placement of a VNF in the network. The colored lines between

user equipment nodes and VNF show the paths used for connections between them.

The paths are organized using the constraints and requirements, which is why the

paths used are not the shortest. For example, although there is a shorter path U-2,

S-8, VNF in Figure 3.2 between node U-2 and VNF, our algorithm picked the path

U-2, S-8, S-1, VNF to meet the constraints and requirements.

24

Figure 3.2: Example VNF placement that consists of paths between VNF and user

equipment nodes

3.1.2 Model Parameters

In the proposed model, it is assumed that a physical network contains several server

nodes and user equipment nodes. The main target of this solution is embedding VNFs

into the server nodes to optimize the total energy consumption under the given secu-

rity requirements and QoS constraints.

The set ∆ defines the list of VNFs which will be used in the network slices.

∆ = {δ0, δ1, ..., δm} (3.4)

Lk = {l0, l1, ..., li} (3.5)

Nk = (V,E,∆, L) (3.6)

Let us call a VNF δ, and let ∆ be a set of VNFs. We can define the kth network

slice, namely Nk = (V,E,∆, L), where V stands for nodes, E for physical links, and

∆ for virtual network functions, and L for virtual links that connect user equipment

nodes with server nodes. A virtual link l ∈ L is a set of edges (e) that connects a user

25

equipment node to a VNF running in a server node in the graph.

Fk = {δr, ..., δm} (3.7) LSk = {δr, ..., δm} (3.8)

The equations 3.7, 3.8 are used for providing security constraints, which will be cov-

ered in the following section.

The parameters of the model are given below:

• Nk: kth network slice.

• sw: wth server node.

• uv: vth user equipment node.

• ej: jth physical link.

• Fo: Forbidden set of VNF o.

• LSm: Locate-Same set of VNF m.

• δk,m: mth VNF which runs in the kth slice.

• lk,i: ith virtual link in kth slice, which connects a user equipment node and a

VNF. This value is computed using the the sets sw, uv, and δk,m.

• P δ
k,m: the additional energy consumption of the VNF δm in the kth network

slice, in addition to P s
w.

• M δ
k,m: the memory usage of the VNF m in the kth network slice.

• Rδ
k,m: the average requests usage of the VNF m in the kth network slice.

• T lk,i: the instantaneous throughput of the ith virtual link in kth slice, lk,i.

• Llk,i: the maximum latency of the ith virtual link in the kth slice, lk,i.

The parameters below are the constraints that will be used during the optimization

process.

26

• M s
w: maximum memory of the server node sw.

• Rs
w: maximum number of requests of the server node sw.

• P s
w: energy consumption of a virtual network function running in the server

node sw.

• T ej : maximum throughput of the physical link ej .

• Lej : maximum latency of the physical link ej .

These static parameters are part of the graph and constraints and cannot be changed

after the infrastructure has been set. In addition, some related dynamic parameters

change in the embedding process.

The variable Φr,j defines a physical link ej used for constructing Pr

Φr,j =

1 if Pr uses ej

0 otherwise
(3.9)

The integer variable in 3.9 is not a part of the proposed ILP model. It does not affect

the proposed solution. On the other hand, this variable is changed after the model

finds the optimized solution. It defines whether path P uses physical edge ej . By

using this variable, the visualized version of the network topology is created, which

will be demonstrated below.

3.1.3 Decision Variables

In the proposed ILP model, binary and linear decision variables whose values change

during the optimization process are the key points of ILP. By changing the values of

decision variables, the ILP model tries to find the optimized solution from among the

feasible solutions.

Here are some variables that have been adapted from [8] to our model:

27

µk,m,w =

1 if δk,m is mapped on sw

0 otherwise
(3.10)

ρk,i,r =

1 if Pr is used in lk,i

0 otherwise
(3.11)

The integer variable in 3.10 decides whether a virtual network function δ is mapped

on a server node sw. In addition, the variable in 3.11 performs the same operations

on virtual links over a physical path.

3.1.4 Objective Function

As mentioned earlier, the purpose behind the objective function is to minimize energy

consumption while mapping VNFs and server nodes by meeting the requirements

and limitations. In 3.12, there exists a static energy consumption of every VNF if it

is mapped to a server node, which increases the overall energy consumption of the

network.

min
∑
k

∑
m

∑
w

[(P s
w + P δ

k,m) · µk,m,w] (3.12)

3.1.5 Optimization Constraints

3.1.5.1 Graph constraints

∑
w

µk,m,w = 1 ∀k,m (3.13)

∑
Pr

ρk,i,r = µk,m,w ∀k, i where lk,i is a link from sw to δm (3.14)

The constraint in 3.13 maps every virtual network function to a server node in the

network slices so that every virtual network function is mapped to that slice at least

28

once.

The constraint in 3.14 ensures that the virtual links that connect virtual network func-

tions in slices and user equipment nodes are synchronized with the paths.

3.1.5.2 Capacity constraints

∑
k

∑
i

[(∑
r

ρk,i,r · Φr,j

)
· T lk,i

]
≤ T ej , ∀j (3.15)

∑
k

∑
m

(µk,m,w ·M δ
k,m) ≤M s

w, ∀w (3.16)

∑
k

∑
m

(µk,m,w ·Rδ
k,m) ≤ Rs

w,∀w (3.17)

The constraints above guarantee that if a VNF is mapped on a server node, that server

node must meet the QoS needs of the VNF. In addition, these requirements cannot

exceed the limitations of server nodes. Every server node has predefined throughput,

energy usage, and memory usage limits. These are given as static data. Every VNF

has a throughput requirement that needs to be provided by server nodes. The con-

straint in 3.15 ensures that the throughput on every virtual link does not exceed its

maximum value. In addition to that, for every VNF, there exist memory requirements

that should be maintained by the mapped server node. This gives the constraint in

3.16, which ensures the maximum memory usage does not exceed its maximum pos-

sible value. Similarly, 3.17 ensures that the maximum required number of requests

for each server node does not exceed the total number of requests in the server node.

3.1.5.3 Latency constraints

∑
j

[
∑
r

(ρk,i,r · Φr,j) · Llj] ≤ Lek,i ,∀k, i (3.18)

One of the critical points in network slicing is that while mapping the server nodes

and network functions, the latency requirements must be met. The constraint in 3.18

ensures that the latency in every virtual link is in the required range.

29

3.1.5.4 Security Constraints

µk,m,w · µk,o,w = 0 , ∀o ∈ Fm (3.19)

µk,m,w = µk,o,w , ∀o ∈ LSm (3.20)

Inspired by [29], two different static sets are defined to meet security requirements,

including Forbidden and Locate-Same. If VNF m contains VNF o in its forbidden

set, these VNFs will not be placed on the same server node. If VNFs create a security

vulnerability for each other or for a server node, then the Forbidden sets in 3.19 of

those VNFs will contain other VNFs that create a vulnerability. The Locate-Same set

works entirely in the opposite way. VNFs may need other network functions to have

a secure environment. For example, VNFs may require a firewall in the same server

node to have a secure environment. Then, in the Locate-Same sets in 3.20, these

VNFs will contain the network functions that are required for them. These are static

sets that never change while the proposed solution is running. These sets will change

the placements of VNFs so that they will meet the security requirements given with

these Forbidden and Locate-Same sets.

3.1.6 ILP Model

The proposed model uses the constraints in the previous section and creates the net-

work topology by optimizing the objective function. While doing this, graph, capac-

ity, latency, and security constraints are maintained by the optimizer. The network

topology generated using the ILP model is a system that meets all the requirements

and constraints and also a system that has minimum energy consumption in given pa-

rameters. In addition to that, the wanted VNF types, the memory, energy, or latency

constraints can be defined for each server node, physical link, or slice separately.

3.2 Extended version of the ILP-based Optimization

There have been a couple of changes in the extended version that compares the ILP-

based model to the DRL-based model. First, to have an ILP model closer to real-world

30

applications, the number of times VNFs are mapped on core nodes can be higher than

one. As a result, one of the constraints in the ILP model is changed. In the initial

model [9], the first graph constraint indicates a VNF can be mapped at most once.

We change it to the following constraint in the updated version:∑
w

µk,m,w ≥ 1 ∀k,m (3.21)

Regarding security constraints, in the proposed solution, the Locate-Same set and

constraint are removed from the ILP model to ease comparison with the DRL-based

model. In addition, we add TEE and attestation constraints to increase the reliability

of the security-aware ILP version. For this purpose, we hold an attestation and TEE

variable in every VNF type. Then, we map every VNF’s TEE and attestation value

for every server and slice.

31

32

CHAPTER 4

PROPOSED DEEP REINFORCEMENT LEARNING BASED

OPTIMIZATION MODEL

This thesis proposes a DRL model that optimizes energy consumption in network

slicing of a 5G core network. The proposed model is implemented using a custom

OpenAI Gym environment. We represent the 5G network topology as a connected

graph on the networkx1 library. As we will explain in detail in the experimental

evaluation section, the proposed architecture is tested with three different network

topologies and configurations. This section will explain the server graph structure and

the security constraints we implemented. We will also demonstrate agents’ actions on

the environment and how we calculate the comparison results.

Starting with the network graph represented in Figure 4.1, each graph vertex is con-

sidered as a server with VNFs running on it. Servers in the environment have idle

energy usage, and each VNF that works on these servers also has a VNF energy us-

age. These energy consumption values are taken from [41]. As seen in Table 4.1,

servers have limitations regarding their VNF capacity. We set the server capacity

value to 40 for all servers in the environment for ease of calculation. Furthermore,

virtual network functions that run on these servers also have limitations on how much

traffic they can handle in each timestep, which can be seen in the VNF package ca-

pacity column in Table 4.2. So, all servers have limitations on how much traffic they

can handle in a timestep. In addition, servers are capable of having different types of

VNFs running on them. However, we established security constraints on co-locating

these VNFs, where only some of them can coexist on the same physical server. For

example, VNFs that do not directly need to be isolated in a network slice could be

1 Software for complex networks - https://networkx.org/

33

running on the same server. VNFs that could coexist on the same server can be seen in

Table 4.2. Also, some of the VNFs could be desired to run on a server with a trusted

execution environment and servers that provide attestation. All of the requirements

and limitations on VNFs can be examined in Table 4.2. The initial configuration of

the servers is stochastically generated. Each VNF count is set to a value between 0

and server VNF capacity if they can coexist with the other VNF types on the server,

and the server holds the trusted execution environment and attestation requirements

of that VNF type. Servers also hold attestation and trusted execution environment

values since some network slices could desire these properties on the server.

Table 4.1: Test Scenarios

Server Count Server Capacities
Slice Type

Count

VNF Type

Count

Incoming Traffic

per timestep

Small Network 5 40 3 3 0-100

Medium Network 10 40 3 3 0-100

Large Network 30 40 3 5 0-100

Table 4.2: VNF Capacities

VNF Type id VNF Package Capacity Coexist
TEE

requirement

Attestation

requirement

VNF1 25 vnf1,vnf2,vnf4 False False

VNF2 50 vnf1,vnf2 True False

VNF3 100 vnf3,vnf4 True True

VNF4 50 vnf1,vnf3,vnf4 False False

VNF5 50 vnf5 True True

Edges of this graph represent links between servers. They have throughput and la-

tency attributes, so traffic mapping can be realistically done in terms of throughput

and latency-related QoS requirements. These latency and throughput values are taken

from [42]. While constructing the network graph, the throughputs of these links are

randomly set between 400 and 1000 Gbps [42] as it was claimed to be in this range

in the core network. In addition, each link’s latency values are randomly set between

1 to 3 ms again based on [43].

One of the main contributions of the proposed model to the state-of-the-art is that

34

Figure 4.1: Graph Representation

we introduce security-related constraints in the environment. There are three main

security constraints we implemented for this architecture. As can be seen in Table 4.2

some of the VNFs cannot coexist on the same servers. We put this constraint in the

model because some of the VNFs could be required to have strict hardware isolation

requirements. For example, an autonomous vehicles network slice instance could de-

sire to have a firewall VNF to be completely isolated from other slices. Secondly, the

environment contains servers with a trusted execution environment. As we explained

in Section 2, some network slices could be desired to have a trusted execution en-

vironment on the server where VNF will be deployed. Thus, we are generating our

graph vertices so that each vertice could have a trusted execution environment with a

probability of 0.5. The last security constraint we implemented is that if the server has

the trusted execution environment on them, it will also have an attestation property

with the probability of 0.5.

The environment maps the incoming traffic with Algorithm 5. Traffic arriving in

the environment is mapped to VNFs by this heuristic method. A random amount of

traffic is generated and held in the traffic buffer at each timestep. For each packet in

this buffer, the heuristic algorithm tries to find an available VNF for each packet’s

slice type requirements, which can be seen in Table 4.3. For example, eMBB types

require vnf1 and vnf3 in one scenario, and traffic mapping algorithms search for those

35

two vnfs in the network graph. For each VNF requirement in a packet, the search

algorithm looks at the closest server, and if a VNF is available, it maps the packet to

that VNF in that server. If there is no available VNF in the closest server, it searches

the neighbors. Hence, the iterative mapping algorithm finds the available VNF at a

specific server. Then, if the latency limit is satisfied, it finds the shortest available path

from the closest server to the found server. Suppose there are no available paths that

satisfy both the links’ throughputs and the packet’s latency limit. It searches other

neighbors until there are no servers left to look at.

Table 4.3: Slice Types and Requirements

Slice Type VNF requirements Latency limit

eMBB {vnf1,vnf3,vnf4,vnf5} 14 ms

mMTC {vnf2,vnf4} 10000 ms

URLLC {vnf2,vnf3,vnf5} 0.5 ms

The DQN agents we showed in the earlier section have a discrete action space, and

each discrete value represents how a VNF is deployed or shut down on a specific

server. So for each scenario, there would be server count × VNF count actions for

closing a VNF at a specific server and many actions for opening at a specific server.

In each step of the environment, the agent performs an action in the environment con-

cerning the Q values as explained in Section 2. The action predicted by the agent

changes the network server structure if and only if it holds all the given security re-

quirements of that VNF. So if a server has VNF types with which the given action

VNF type cannot coexist, the action will not be executed, and the server state will

remain the same. Therefore, to be conducted, the action should hold TEE and attes-

tation requirements of the action VNF type on an action server, and there should be

only VNFs that the action VNF type could coexist with on the action server.

At the end of each step, the reward value is calculated. The reward calculation 4.1

returns 1 if the energy consumption of the overall network is not increasing and 75

percent of the traffic is mapped to the servers. We set 75 percent as a design choice,

and this also gives an additional constraint to the models, such as a KPI limitation

for traffic mapping. If overall energy consumption increases, we check whether the

mapped traffic ratio has increased over the previously mapped traffic ratio. We are

36

letting agents only reward actions that decrease energy consumption by maintaining

the mapped traffic ratio or actions that increase the mapped traffic ratio. All other

actions would give 0 rewards and finish the current episode. Likewise, in the Atari

games that these agents [25–28] proved themselves, agents learn while the episodes

are not terminated. We implemented our reward function and how we ended the

episodes similar to their approach. If the protagonist is dead or unable to continue the

Atari game, they restart the game, or as we can see in the famous cart pole example

[44], while the pole does not fall from the cart, the system has rewards, and episodes

continue. If energy consumption is increased without changing the mapped traffic

ratio, we end the episode. Like in the Atari games and the cart pole problem, the

cumulative reward increases while the game is not over. Hence, the done condition for

each episode in this architecture is if the current energy consumption is more than the

previous energy consumption, the mapped traffic ratio decreases, or the mapped traffic

ratio is less than 75 percent. Until the done condition is set or the agent successfully

conducts 1000 actions on the environment, the cumulative reward increases by 1 in

each step. Thus, the environment’s maximum reward is 1000.

Ri =

1, if not done

0, otherwise
(4.1)

So far, we have talked about the DRL approach we implemented. We also imple-

mented an Integer Linear Programming-based optimization algorithm to compare our

results. We improved the implemented algorithm in [9] by adding a trusted execution

environment and attestation requirement as a constraint. Apart from adding these

two conditions, we changed energy consumption values to more realistic ones, as ex-

plained in this section. In the ILP version, the model tries to allocate all VNFs to

the servers without dynamic environment changes. However, the DRL version we

implemented dynamically allocates the VNFs while the environment changes. So, if

the traffic ratio is changed in the environment, DRL-based algorithms rapidly react

while ILP-based models need to be optimized again.

In the ILP model in [9], we changed the proposed solution so that the DRL version

and ILP model meet the exact environment. In the ILP model, the objective function

37

definition and some constraints are changed to calculate energy consumption more

accurately. Regarding the objective function, in the objective function in [9], we

calculate the energy consumption by checking whether VNFs are mapped on core

nodes. The proposed objective function tries to optimize energy consumption by

this calculation. Although each server’s idle energy consumption values are changed

according to the real-life values, 3.12 still calculates the total energy consumption by

the same equation.

38

Algorithm 5 Traffic mapping
while traffic_buffer.size()> 0 do

packet = traffic_buffer.pop()

for range(required vnf_counts) do

marked_servers = []

if closest_server has required vnf and closest_server.vnf_capacity> 0 then

closest_server.vnf_capacity -= 1

continue

else

marked_servers.append(closest_server)

non_traversed_graph_nodes = []

for all neighbors of closest server do

if marked_servers[neighbor] = false and path_exist(closest server,neighbor) then

non_traversed_graph_nodes.append(neighbor)

end if

end for

end if

while non_traversed_graph_nodes do

server = non_traversed_graph_nodes.pop()

if marked_servers[server]=false and server.vnf.capacity > 0 then

path = shortest_path(closest server, server)

if valid_path(path,latency limit) then

server.vnf_capacity -= 1

continue

else

for all paths in the available path(closest_server, server) do

if isvalidpath(path,latency_limit) then

server.vnf_capacity -= 1

continue

end if

end for

end if

end if

marked_servers[server] = True

for all neighbors of server do

if marked_servers[neighbor]=false and path_exist(server,neighbor) then

non_traversed_graph_nodes.append(neighbor)

end if

end for

return false

end while

end for

end while 39

40

CHAPTER 5

EXPERIMENTAL EVALUATION

As the earlier sections explain, two different environment versions have been mod-

eled. In this section, first, we will show the results of the initial version of the ILP-

based model, and then the results of the extended version of the ILP-based model

compared to the DRL-based model explained earlier.

5.1 Simulation Scenarios

5.1.1 Simulation Environment for Initial version of ILP-based Model

To evaluate the ILP algorithm we introduced in the previous section, we have devel-

oped a simulation framework using the Gurobi integer linear programming simulation

library. We have used Python to implement the algorithm and the simulation environ-

ment. We have run the benchmarks on a MacBook Pro 16, 2.6 GHz 6-Core Intel Core

i7 with 32 GB RAM. We have also developed a dataset generator to run the simula-

tions on our own generated comprehensive, fully customizable datasets. Below we

present the details of the evaluation environment and the results.

In the experimental evaluation, we used various simulation settings with different

parameters. The parameters used in the simulation are listed in Table 5.1. Each

configuration was used five times to generate 50 different datasets, and we took the

average of the metric values we obtained from the simulations.

As a baseline for comparison, we also implemented a greedy approach in Python that

performs VNF placement in the network topology. The greedy approach places VNFs

in server nodes with the given capacity, security, and graph constraints, without opti-

41

Table 5.1: Dataset generation parameters used for the simulations

Count of slices 2

Count of edge nodes 2

Min number of VNFs per slice 10

Max number of VNFs per slice 20

Min additional power usage per VNF 10

Max additional power usage per VNF 500

Min latency per physical link 5

Max latency per physical link 25

Min throughput per virtual link 100

Max throughput per virtual link 500

Min latency per virtual link 50

Max latency per virtual link 150

Min memory per VNF 16

Max memory per VNF 2048

Min request count per VNF 100

Max request count per VNF 1000

Min power usage per server node per VNF 1000

Max power usage per server node per VNF 50000

Min memory count per server node 2048

Max memory count per server node 10240

Min request count per server node 10000

Max request count per server node 100000

Min throughput per physical link 10000

Max throughput per physical link 20000

mizing power consumption. Moreover, to measure the cost of the power optimization

during the ILP-based optimization process, we have also run our ILP model on 10

of our datasets without an objective function, which does VNF placement under the

given constraints.

To verify the correctness of our ILP model and greedy approaches, we have also built

a verifier that checks each graph, security, and capacity constraint. The verification

code confirms that both the ILP and the greedy algorithms are compatible.

5.1.2 Simulation Environment for DRL-based Model

We tried several scenarios in the environment mentioned above to calculate power

consumption over time. The scenarios can be seen in Table 4.1. We constructed

three different sets of server counts to calculate the power consumption on small,

medium, and large networks. There are only three types of VNFs for simplicity in the

small and medium sets. However, in the large set, we put five different VNF types

to increase the complexity of the action space of the agent. In the small test set, the

agent conducts 2×5×3 (30) actions on the environment, the medium test set involves

conducting 2 × 10 × 3 (60), and the large test set involves 2 × 30 × 5 (300) actions

42

on the environment. These actions are used to decide which VNF will be opened or

closed on a specific server.

To show the performance of the trained agent, we also implemented an environment

with no security requirements. Small, medium, and large networks were also tested

in this environment, which has no security restrictions. Our results show that opti-

mization models led secure versions of the environments to consume less power than

those with no security requirements. This is due to the security constraints giving

more incentive to agents to disable certain VNFs, leading to better performance for

the models.

5.2 Simulation Results

5.2.1 Results for the Initial Version of the ILP-based Model

We have compared the evaluation results of the greedy and ILP algorithms, and the

comparison of these two algorithms both from the aspect of time and power can be

seen in Figure-5.1 and Figure-5.2. The line plot in Figure-5.1 shows the change in

problem-solving time with respect to the server node count. As shown in Figure-

5.1, the build time of the ILP algorithm is much more than the optimization time.

In addition, when the server node count increases, the build time of this model is

also increased. On the other hand, when the server node count increases, the time

difference between ILP optimization and the greedy algorithm decreases. The bar

plot in Figure-5.2 shows the total power consumption difference between the ILP and

greedy algorithms vs. server node count. The greater the value, the better the ILP

algorithm outperforms the greedy algorithm.

As seen in the optimization time versus server count in Figure-5.1, both algorithms

seem to follow an exponential time complexity for finding the solutions. Also, there

is a constant level of difference between the data points of both algorithms, and we

can say this difference is because of the model building time of Gurobi, the ILP

framework we have used.

On the other hand, the optimization unit difference in Figure-5.2 shows that the differ-

43

Figure 5.1: Total problem solving time by server node count plot, in logarithmic scale

44

Figure 5.2: Optimization result difference between Greedy Implementation and ILP

Implementation by server node count plot

45

Figure 5.3: Total problem solving times (model build time + model optimization time)

for non-power optimized and power-optimized ILP implementation, by server node

count plot, in logarithmic scale

46

Figure 5.4: Optimization result difference between non-power optimized and power-

optimized ILP implementation by server node count plot

47

ence in power consumption between the two algorithms follows a generally increas-

ing pattern as the server count increases. These units are calculated by our objective

function of the ILP model. These results show that our proposed improvements pro-

vide a high value of savings in power consumption.

Furthermore, as can be seen in Figure-5.3, while there is no considerable amount of

optimization time difference between non-optimized and optimized ILP algorithms,

Figure-5.4 shows a considerable value of power consumption difference between the

two algorithms. Considering the greedy algorithm results from Figure-5.2, we can

say that unless there is an optimization target, using the greedy approach rather than

ILP could perform better. However, our ILP solution results in substantial power

savings from the power optimization perspective.

5.2.2 DRL-based Model Results

In this part, we will illustrate the DRL-based optimization algorithm results. In addi-

tion, we will compare these results with the extended version of the ILP-based model

explained earlier.

Figures 5.5 5.6 5.7 illustrate average power consumption over episodes. Average

power consumption is calculated cumulatively so that for each episode, the cumula-

tive power consumption of the last 100 episodes is divided by 100. Hence, power

consumption in the last 100 episodes can be seen. As can be seen in the figures, the

average power consumption over episodes is steadily decreasing as the agent trains

itself. This proves that DRL-based methods allocate VNFs on servers in an power-

efficient way.

The average reward function of the agents over time can be seen in Figure 5.8. As can

be observed in the graph, all agents start to converge between 400 to 500 episodes.

The rewards in this figure are the average rewards of each agent on both non-secure

and secure versions of small, medium, and large network environments. Although

there is no significant difference between agents reward wise, DDQN with Prioritised

Replay performs better than other agents in reward convergence. On the other hand,

the DQN agent with fixed Q Targets seems to converge towards smaller rewards than

48

Figure 5.5: Average Power Consumption for 5 Servers

Figure 5.6: Average Power Consumption for 10 Servers

49

Figure 5.7: Average Power Consumption for 30 Servers

other agents.

Each episode starts with almost half of the VNFs being randomly open on the servers.

We start the environment with an initial power consumption level equal to almost uti-

lizing half of the capacity of the network for comparing how agents perform after

1000 episodes. At the end of the 1000 episodes, according to 5.1, we get the power

efficiency values of each agent and have a mean for each environment set. In 5.1, Ee

represents the power efficiency and δ is the initial power consumption value for the

episodes. Mn represents the power consumption value in episode n. In this experi-

ment, we took the average of the best 100 achieved results in the episodes. Figure 5.9

compares how agents performed on small, medium, and large networks and agents’

performance comparison on secure and non-secure environment versions. The re-

sults in this figure show the average performance of all agents used in this work under

secure and non-secure environments. Column bars represent the average power ef-

ficiency of the proposed methods in the scenarios. There are two main pieces of

information we interpret from this figure. Firstly, DRL agents performed better on

small networks due to the small amount of action space. As server count increases,

action space increases, and their relationship is exponential. In order to solve this

issue, we can utilize the method used in [45]. Since we are not focusing on a novel

solution for the implementation of DRL agents, we leave this issue as future work.

50

Figure 5.8: Average Reward Graph

Secondly, DRL agents perform better in security-constrained environments than in

non-secure ones. We interpret this occasion as security constraints on servers giving

DRL agents more information about the environment. Hence, agents learn better than

in an environment where no constraint exists. According to our interpretation, when

there are no constraints on the environment, the learning process of the agents cannot

find a profound directive to decrease power consumption and develops more primi-

tive strategies. On the other hand, when we set more rules for the environment, such

as the security constraints we explained earlier, agents develop intelligent strategies

related to the system’s limitations, leading to better power efficiency.

Ee = 100− (100 ∗ 1
n

n∑
i=1

Mn)/δ (5.1)

In Figure 5.10 the dark blue bar represents the secure environments’, whereas the cyan

bar represents the non-secure environments’ power efficiency. For example, DDQN

achieves around 40 percent efficiency on average for all secure environment sets,

while non-secure versions achieve 25 percent power efficiency. From the findings,

it is hard to say whether a particular agent performs better than others on average.

However, we can say that the implemented DRL methods can achieve up to 40 percent

power efficiency.

51

Figure 5.9: Power Efficiencies of DDQN Approach in Secure and Non-secure Envi-

ronments Based on Server Count

Figure 5.10: Power Efficiencies of DRL Agents for Secure vs Non-secure Environ-

ments

52

Figure 5.11: Average Optimization Time for 5 Servers

5.2.3 ILP vs DRL

The comparison of ILP vs. DRL-based optimization is made under two sections:

time-based and power-based. Figures 5.11, 5.12, 5.13 show the optimization times

for the different algorithms used in the prepared secure environments in ms. The

experiments were conducted on a computer with Intel(R) Core(TM) i5-7300HQ CPU

@ 2.50GHz and GeForce GTX 1050 Ti Mobile GPU.

DRL-based algorithms’ time costs are calculated according to the average episode

time of each agent. In each train session, the agent runs 1000 episodes, and in each

episode, randomly generated traffic is mapped into the simulated network environ-

ment at 1000 steps. As explained before, the agent runs until power consumption

increases. Also, in each step, the agent tries to map randomly generated 100 different

user equipments in the network simulator. The average episode time is then handled

by dividing the total time cost of a train session by 1000.

According to our results, DQN with Fixed Q-targets, DDQN, and Dueling DDQN

have almost the same optimization time in ms. However, DDQN with Prioritised

Replay costs almost double the time in all small, medium, and large networks. The

reason for this could be the extra steps taken when putting experience into the replay

memory, such as the computing importance-sampling weight and updating transition

53

Figure 5.12: Average Optimization Time for 10 Servers

Figure 5.13: Average Optimization Time for 30 Servers

54

priorities.

The same approach is used to calculate the time cost of the ILP-based optimization

algorithm. Randomly generated 100 user equipments are mapped in the network

topology. Based on our experiments, ILP-based algorithms cost almost seven times

more in terms of time than DRL-based algorithms. However, one must notice that the

total time cost of each agent’s training is 1000 more than what is seen in the figures.

Even though the initial training period is more than that of the ILP-based model,

after training is complete, a single run of mapping user equipment into the network

is at least five to seven times more efficient than linear optimization. In addition to

that, DRL-based agents can handle environment changes like different types of traffic

coming into the network, while the ILP-based agent does not. While DRL-based

models are working in a dynamic environment, they can retrain themselves in an

online manner. On the other hand, ILP-based models need to solve the optimization

problem for each changed environment parameter.

As seen in the Figures 5.11, 5.12, 5.13, the optimization time in larger networks

increases significantly for the DRL models. For example, while the 5-server opti-

mization time for DDQN is 33530 ms, the 30-server optimization time is 205726 ms,

which is more than six times, and this relation is the same for the other DRL algo-

rithms too. When the network sizes are smaller, the increase in the optimization time

is sublinear. For instance, while the 5-server optimization time for DDQN is 33530

ms, the 30-server optimization is 54347 ms, which is less than two times, and this

relation is the same for other optimization algorithms too.

As can be seen in Figures 5.14, 5.15, 5.16 DRL-based algorithms perform better in

terms of power consumption optimization as well. Optimization results are calculated

by subtracting the average power consumption result, which is calculated by 5.1 from

the average initial power consumption of an environment.

Since the general training strategy is the same for all of the agents, there seems not

to be significant power consumption optimization differences between the four DRL

agent types. They all converge to similar values. However, comparing ILP-based

algorithms vs. DRL-based optimization shows that optimization algorithms could

converge on different power efficiency values. ILP-based optimization of power

55

Figure 5.14: Average Power Consumption for 5 Servers

Figure 5.15: Average Power Consumption for 10 Servers

56

Figure 5.16: Average Power Consumption for 30 Servers

consumption optimization gives results such that DRL-based algorithms almost per-

formed better in all five, ten, and thirty server count environments. However, opti-

mization results for DRL and ILP get closer as server count increases; the reason for

that could be that as server count increases, the ILP-based solution could map VNFs

into the servers in a better way.

57

58

CHAPTER 6

CONCLUSION

In this chapter, we conclude this work and briefly discuss the possible future exten-

sions.

6.1 Conclusion

This thesis proposes DRL-based models for allocating VNFs on a 5G core network in

an energy-efficient and secure way. We benchmarked various DRL algorithms with

environments requiring strict security and those that do not have any security require-

ments. We tested our algorithms on small, medium, and large network sets to com-

pare their results. In addition to that, we compared our proposed solution with Integer

Linear Programming based optimization algorithms. It can be concluded that DRL

approaches are more efficient than integer linear programming-based optimization

algorithms since they can work in dynamic environments efficiently and perform bet-

ter in terms of energy efficiency in the same environment. Furthermore, we showed

that the DRL-based algorithms could be used for resource allocation where energy

efficiency and security requirements are strict.

6.2 Future Work

Larger action spaces for DRL methods could be implemented in future work to assess

their performance on massive 5G telecommunication networks. Dealing with large

action spaces is still an open problem in Deep Reinforcement Learning methods. In

addition to that, the algorithms we developed could be implemented on an actual

59

5G network structure to assess their performance on a real-life system. The current

approach only works on user-generated traffic and environment models. Lastly, the

methods could be extended to handle dynamic slice type additions to the network.

60

REFERENCES

[1] “Mobile Subscriptions Forecast, Ericsson Mobility Report

Q2 2022 Update.” https://www.ericsson.com/en/

reports-and-papers/mobility-report/dataforecasts/

mobile-subscriptions-outlook. Accessed: 2022-08-09.

[2] C. Dongxu, “5G power: Creating a green grid that slashes costs, emissions & en-

ergy use.” https://www.huawei.com/en/technology-insights/

publications/huawei-tech/89/5g-power-green-grid-

-costs-emissions-energy-use, Jul 2020. Accessed: 2022-06-11.

[3] H. Kim, “5G core network security issues and attack classification from network

protocol perspective,” Journal of Internet Services and Information Security (JI-

SIS), vol. 10, pp. 1–15, May 2020.

[4] S. Nowaczewski and W. Mazurczyk, “Securing future internet and 5G using cus-

tomer edge switching using DNSCrypt and DNSSEC,” Journal of Wireless Mo-

bile Networks, Ubiquitous Computing, and Dependable Applications JoWUA,

vol. 11, pp. 87–106, September 2020.

[5] X. Li, M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo, and R. Jain,

“Network slicing for 5G: Challenges and opportunities,” IEEE Internet Com-

puting, vol. 21, pp. 20–27, September 2017.

[6] S. Buzzi, C. I, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, “A survey of

energy-efficient techniques for 5G networks and challenges ahead,” IEEE Jour-

nal on Selected Areas in Communications, vol. 34, pp. 697–709, April 2016.

[7] A. M. Khedr, P. R. P. V, and A. A. Ali, “An energy-efficient data acquisition

technique for hierarchical cluster-based wireless sensor networks,” Journal of

Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applica-

tions JoWUA, vol. 11, pp. 70–86, September 2020.

61

https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-subscriptions-outlook
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-subscriptions-outlook
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-subscriptions-outlook
https://www.huawei.com/en/technology-insights/publications/huawei-tech/89/5g-power-green-grid-slashes-costs-emissions-energy-use
https://www.huawei.com/en/technology-insights/publications/huawei-tech/89/5g-power-green-grid-slashes-costs-emissions-energy-use
https://www.huawei.com/en/technology-insights/publications/huawei-tech/89/5g-power-green-grid-slashes-costs-emissions-energy-use

[8] A. Fendt, S. Lohmuller, L. C. Schmelz, and B. Bauer, “A network slice resource

allocation and optimization model for end-to-end mobile networks,” in 2018

IEEE 5G World Forum (5GWF), (Silicon Valley, CA, USA), pp. 262–267, IEEE,

July 2018.

[9] O. Akin, U. C. Gulmez, O. Sazak, O. U. Yagmur, and P. Angin, “GreenSlice: An

energy-efficient secure network slicing framework,” Journal of Internet Services

and Information Security (JISIS), vol. 12, pp. 57–71, February 2022.

[10] S. Rommer, P. Hedman, M. Olsson, L. Frid, S. Sultana, and C. Mulligan, “Chap-

ter 3 - architecture overview,” in 5G Core Networks (S. Rommer, P. Hedman,

M. Olsson, L. Frid, S. Sultana, and C. Mulligan, eds.), pp. 15–72, Academic

Press, 2020.

[11] M. Morbitzer, B. Kopf, and P. Zieris, “Guarantee: Introducing control-flow at-

testation for trusted execution environments,” 2022. https://doi.org/

10.48550/arxiv.2202.07380 Accessed: 2022-08-10.

[12] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware extensions

for strong software isolation,” in Proceedings of the 25th USENIX Conference

on Security Symposium, SEC’16, (USA), p. 857–874, USENIX Association,

2016.

[13] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and R. Ri-

ley, “Iso-x: A flexible architecture for hardware-managed isolated execution,”

in 2014 47th Annual IEEE/ACM International Symposium on Microarchitec-

ture, (Cambridge,UK), pp. 190–202, IEEE, 2014.

[14] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović, “Keystone: An

open framework for architecting tees,” 2019. https://arxiv.org/abs/

1907.10119 Accessed: 2022-02-05.

[15] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptol. ePrint Arch.,

vol. 2016, p. 86, 2016.

[16] J. Ménétrey, C. Göttel, M. Pasin, P. Felber, and V. Schiavoni, “An exploratory

study of attestation mechanisms for trusted execution environments,” 2022.

https://arxiv.org/abs/2204.06790 Accessed: 2022-07-20.

62

https://doi.org/10.48550/arxiv.2202.07380
https://doi.org/10.48550/arxiv.2202.07380
https://arxiv.org/abs/1907.10119
https://arxiv.org/abs/1907.10119
https://arxiv.org/abs/2204.06790

[17] 3GPP, “Technical Specification Group Services and System Aspects; System

architecture for the 5G System (5GS); Stage 2,” Technical Specification (TS)

23.501, 3rd Generation Partnership Project (3GPP), March 2020. Version

16.4.0.

[18] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5G network slic-

ing using SDN and NFV: A survey of taxonomy, architectures and future chal-

lenges,” Computer Networks, vol. 167, p. 106984, February 2020.

[19] ETSI, “ European Telecommunications Standards Institute,” GS NFV 002, Eu-

ropean Telecommunications Standards Institute, 10 2013. Version 1.1.1.

[20] 3GPP, “Technical Specification Group Services and System Aspects; Telecom-

munication management; Study on management and orchestration of network

slicing for next generation network,” Technical Report(TR) 28.801, 3rd Gener-

ation Partnership Project (3GPP), 01 2018. Version 15.1.0.

[21] G. M. Yilma, Z. F. Yousaf, V. Sciancalepore, and X. Costa-Perez, “Benchmark-

ing open source NFV MANO systems: OSM and ONAP,” Computer Commu-

nications, vol. 161, pp. 86–98, 2020.

[22] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep

reinforcement learning: A brief survey,” IEEE Signal Processing Magazine,

vol. 34, no. 6, pp. 26–38, 2017.

[23] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE

International Conference on Robotics and Automation (ICRA), (Singapore),

pp. 3389–3396, IEEE, 2017.

[24] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and H. Zhang,

“Deep reinforcement learning for resource management in network slicing,”

IEEE Access, vol. 6, pp. 74429–74441, 2018.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. A. Riedmiller, “Playing Atari with deep reinforcement learning,” CoRR,

vol. abs/1312.5602, 2013.

63

[26] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with dou-

ble Q-Learning,” Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 30, Mar. 2016.

[27] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”

in 4th International Conference on Learning Representations, ICLR 2016, San

Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (Y. Bengio

and Y. LeCun, eds.), 2016.

[28] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling

network architectures for deep reinforcement learning,” in Proceedings of The

33rd International Conference on Machine Learning (M. F. Balcan and K. Q.

Weinberger, eds.), vol. 48 of Proceedings of Machine Learning Research, (New

York, New York, USA), pp. 1995–2003, PMLR, 20–22 Jun 2016.

[29] H. Jmila and G. Blanc, “Towards security-aware 5G slice embedding,” Comput-

ers & Security, vol. 100, p. 102075, January 2021.

[30] R. Doriguzzi-Corin, S. Scott-Hayward, D. Siracusa, and E. Salvadori,

“Application-centric provisioning of virtual security network functions,” in 2017

IEEE Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN), (Berlin,Germany), pp. 276–279, IEEE, December 2017.

[31] J. Guan, Z. Wei, and I. You, “Grbc-based network security functions placement

scheme in SDS for 5G security,” Journal of Network and Computer Applica-

tions, vol. 114, pp. 48–56, July 2018.

[32] L. D. Nguyen, “Resource allocation for energy efficiency in 5G wireless net-

works,” EAI Endorsed Transactions on Industrial Networks and Intelligent Sys-

tems, vol. 5, p. 154832, June 2018.

[33] B. Matthiesen, O. Aydin, and E. A. Jorswieck, “Throughput and energy-efficient

network slicing,” in WSA 2018; 22nd International ITG Workshop on Smart

Antennas, (Bochum, Germany), pp. 1–6, VDE, June 2018.

[34] Q. Shi, L. Zhao, Y. Zhang, G. Zheng, F. R. Yu, and H. Chen, “Energy-efficiency

versus delay tradeoff in wireless networks virtualization,” IEEE Transactions on

Vehicular Technology, vol. 67, pp. 837–841, January 2018.

64

[35] Z. Liu, X. Chen, Y. Chen, and Z. Li, “Deep reinforcement learning based dy-

namic resource allocation in 5G ultra-dense networks,” in 2019 IEEE Inter-

national Conference on Smart Internet of Things (SmartIoT), (Tianjin, China),

pp. 168–174, IEEE, August 2019.

[36] F. E. Salem, Z. Altman, A. Gati, T. Chahed, and E. Altman, “Reinforcement

learning approach for advanced sleep modes management in 5G networks,” in

2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), (Chicago, IL,

USA), pp. 1–5, IEEE, August 2018.

[37] M. Laroui, M. A. Cherif, H. I. Khedher, H. Moungla, and H. Afifi, “Scalable

and cost efficient resource allocation algorithms using deep reinforcement learn-

ing,” in 2020 International Wireless Communications and Mobile Computing

(IWCMC), (Limassol, Cyprus), pp. 946–951, IEEE, June 2020.

[38] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and H. Zhang,

“Deep reinforcement learning for resource management in network slicing,”

IEEE Access, vol. 6, pp. 74429–74441, November 2018.

[39] C. Qi, Y. Hua, R. Li, Z. Zhao, and H. Zhang, “Deep reinforcement learning with

discrete normalized advantage functions for resource management in network

slicing,” IEEE Communications Letters, vol. 23, pp. 1337–1341, June 2019.

[40] L. Zhao and L. Li, “Reinforcement learning for resource mapping in 5G network

slicing,” in 2020 5th International Conference on Computer and Communica-

tion Systems (ICCCS), (Shanghai, China), pp. 869–873, IEEE, June 2020.

[41] ITU, “Measurement method for energy efficiency of network functions virtu-

alization ,” Recommendation L.1361, International Telecommunication Union

(ITU), 11 2018. ITU-T L.1361.

[42] Huangxi, “Bandwidth needs in core and aggregation nodes in the opti-

cal transport network.” https://www.ieee802.org/3/ad_hoc/bwa/

public/nov11/huang_01_1111.pdf, 2011. Accessed: 2022-01-09.

[43] J. Manner, “How to measure real latency, as experienced

by your customers?.” https://www.netradar.com/

65

https://www.ieee802.org/3/ad_hoc/bwa/public/nov11/huang_01_1111.pdf
https://www.ieee802.org/3/ad_hoc/bwa/public/nov11/huang_01_1111.pdf
https://www.netradar.com/how-to-measure-real-latency-as-experienced-by-your-customers/
https://www.netradar.com/how-to-measure-real-latency-as-experienced-by-your-customers/
https://www.netradar.com/how-to-measure-real-latency-as-experienced-by-your-customers/

how-to-measure-real-latency-as-experienced-by-your

-customers/, May 2021. Accessed: 2022-01-17.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “OpenAI Gym,” arXiv preprint arXiv:1606.01540, 2016.

[45] G. Dulac-Arnold, R. Evans, P. Sunehag, and B. Coppin, “Reinforcement learn-

ing in large discrete action spaces,” CoRR, vol. abs/1512.07679, 2015.

66

https://www.netradar.com/how-to-measure-real-latency-as-experienced-by-your-customers/
https://www.netradar.com/how-to-measure-real-latency-as-experienced-by-your-customers/
https://www.netradar.com/how-to-measure-real-latency-as-experienced-by-your-customers/
https://www.netradar.com/how-to-measure-real-latency-as-experienced-by-your-customers/
https://www.netradar.com/how-to-measure-real-latency-as-experienced-by-your-customers/

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Contributions
	Thesis Outline

	Background and Related Work
	An Overview of 5G Core Networks
	Trusted Execution Environment

	Network Slicing in 5G
	Deep Reinforcement Learning
	Reinforcement Learning Basics
	Deep Q-Learning

	Deep Reinforcement Learning Algorithms
	Deep Q-Learning with Fixed Q-targets
	Double DQN (DDQN)
	DDQN with Prioritised Experience Replay
	Dueling DDQN

	Related Work
	Open Issues and Challenges

	Proposed ILP-based Optimization Model
	Initial Version of the ILP-based Optimization
	Definitions
	Model Parameters
	Decision Variables
	Objective Function
	Optimization Constraints
	Graph constraints
	Capacity constraints
	Latency constraints
	Security Constraints

	ILP Model

	Extended version of the ILP-based Optimization

	Proposed Deep Reinforcement Learning based Optimization Model
	Experimental Evaluation
	Simulation Scenarios
	Simulation Environment for Initial version of ILP-based Model
	Simulation Environment for DRL-based Model

	Simulation Results
	Results for the Initial Version of the ILP-based Model
	DRL-based Model Results
	ILP vs DRL

	Conclusion
	Conclusion
	Future Work

	REFERENCES

