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ABSTRACT 

 

A NEW METHOD FOR DESIGN PARAMETER OPTIMIZATION OF 

PRODUCTS OR PROCESSES WITH AN ORDINAL CATEGORICAL 

RESPONSE 

 

 

 

Erdoğan, Pınar 

Master of Science, Industrial Engineering 

Supervisor: Prof. Dr. Gülser Köksal 

Co-Supervisor: Assist. Prof. Dr. Leman Esra Dolgun 

 

 

August 2022, 226 pages 

 

 

It is an important design problem to obtain the best parameter values that are 

insensitive to the variability of input, process or environmental factors of a product 

or process. Therefore, many industrial organizations use robust parameter design 

(RPD). While there are many methods in the literature for design parameter 

optimization with continuous quality characteristics, fewer studies are found for 

ordered categorical quality characteristics. This study proposes a new method for 

finding robust levels of design parameters of products and processes with ordinal 

categorical responses. Many approaches use expected value and variance as 

measures of location and dispersion respectively when the response is categorical. 

However, these measures used for numerical data are not meaningful to summarize 

categorical data. The developed method uses the median value and coefficient of 

ordinal variation (COV) for ordinal categorical data as location and dispersion 

measures, respectively. In addition, the Extreme Gradient Boosting (XGBoost) 

algorithm is presented as an alternative to Random Forests and Logistic Regression, 

which have been used in RPD studies in the literature. The classification 



 

 

vi 

performances of these algorithms are compared with Multi-Objective Decision 

Making methods. Based on this comparison, Random Forests algorithm is used to 

predict the category probabilities. These probabilities are used to calculate median 

and COV. Ordinal Logistic Regression and least squares regression are used to 

model these measures as functions of design parameters. The best parameter values 

are determined by solving a non-linear optimization problem. The proposed method 

is applied to different problems, and the results are discussed. 

Keywords: Robust Parameter Design, Coefficient of Ordinal Variation (COV), 

Median, XGBoost, Random Forest 
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ÖZ 

 

SIRALI KATEGORİK YANITA SAHİP ÜRÜN VE SÜREÇLERİN 

TASARIM PARAMETRESİ EN İYİLEMESİ İÇİN YENİ BİR METOT 

 

 

 

Erdoğan, Pınar 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Yöneticisi: Prof. Dr. Gülser Köksal 

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi Leman Esra Dolgun 

 

 

Ağustos 2022, 226 sayfa 

 

Bir ürün veya sürecin girdi, süreç veya çevre faktörlerindeki değişkenliğe karşı 

duyarsız en iyi parametre değerlerini elde etmek önemli bir tasarım problemidir. Bu 

nedenle, birçok endüstriyel organizasyon robust parametre tasarımını 

kullanmaktadır. Sürekli yanıta sahip kalite karakteristiklerinin tasarım parametre 

eniyilemesi için litertürde birçok yöntem bulunurken, sıralı kategorik yanıta sahip 

kalite karakteristikleri için daha az çalışmaya rastlanmaktadır. Bu çalışma, sıralı 

kategorik yanıt veren ürün ve süreçlerin tasarım parametrelerinin robust 

seviyelerinin bulunması için yeni bir yöntem önermektedir. Birçok yaklaşım, yanıt 

kategorik olduğunda konum ve dağılım ölçüsü olarak beklenen değer ve varyans 

kullanmaktadır. Ancak, numerik veriler için kullanılan bu ölçüler kategorik verileri 

özetlemek için anlamlı değildir. Geliştirilen yöntem, sıralı kategorik veriler için 

önerilmiş olan ortanca değer ve sıralı varyasyon katsayısını (COV) sırasıyla konum 

ve dağılım ölçüsü olarak kullanmaktadır. Ayrıca, Extreme Gradient Boosting 

(XGBoost) algoritması, literatürde bu alanda daha önce kullanılmış olan Rassal 

Ormanlar ve Lojistik Regresyona alternatif olarak sunulmuştur. Bu algoritmaların 

sınıflandırma performansı Çok amaçlı Karar Verme yöntemleri kullanılarak 

karşılaştırılmıştır. Belirli parametre değerlerinde yanıtın ortanca değer ve COV 
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ölçülerini modellemek için Rassal Ormanlar algoritması kullanılmıştır.  En iyi 

parametre değerleri bu iki ölçü için doğrusal olmayan optimizasyon probleminin 

çözülmesi ile elde edilir. Önerilen yöntem farklı problemlere uygulanmıştır, sonuçlar 

tartışılmıştır. 

Anahtar Kelimeler: Robust Parametre Tasarımı, Sıralı Varyasyon Katsayısı (COV), 

Ortanca Değer, XGBoost, Rassal Ormanlar
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CHAPTER 1  

1. INTRODUCTION  

It is a well-known fact that high quality products and services are closely related to 

reducing costs by reducing waste and at the same time increasing customer 

satisfaction. For this reason, it is important to produce high quality products or 

processes that are insensitive to variation. Robust parameter design (RPD) is a 

method developed to minimize variation caused by design and to achieve the best 

quality level.  

In RPD studies, design parameters are optimized so that the system becomes 

insensitive to sources of variation and at the same time achieves the desired quality. 

There are two types of design parameters which are input parameters or factors of 

the products or processes: controllable and uncontrollable (noise) factors. In this 

approach, controllable factors (design parameters) are selected so that the effect of 

noise variables becomes minimum. So, it is important to analyze both location and 

dispersion effect of controllable factors to adjust the mean of the response and 

minimize the variance. The quality characteristic (quality level, response) can be 

defined as either continuous or categorical. It is relatively easy to analyze continuous 

quality characteristics, and there are many methods that have been proposed for this 

purpose. However, in many real-life data, quality characteristics are measured as 

categorical. Therefore, it is important to analyze categorical data properly to provide 

a better understanding of response variables.  

All RPD studies involving the categorical response, use expected value and variance, 

which are mainly used to analyze continuous data, to see the effect of location and 

dispersion. Main contribution of this study is proposing a new method that uses 
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median and COV, which are better to explain location and dispersion of ordered 

categorical (ordinal) data. This method can be applied to the problems where 

response is naturally ordered such as bad / acceptable / good / excellent.  

In this thesis, dispersion and location measures are analyzed in terms of their values 

obtained for different probability distributions and correlation between them. Based 

on the literature review and this analysis, it is decided to use median and coefficient 

of ordinal variation (COV) as location and dispersion measures respectively in the 

proposed RPD with ordinal response method. These measures are based on category 

probabilities. Three methods as Ordinal Logistic Regression, Random Forest and 

XGBoost are considered for prediction of category probabilities. Once their 

parameters are tuned for four case studies, their performances, measured in terms of 

three criteria: precision, recall and area under curve (AUC), are compared using 

multiple criteria decision making (MCDM) methods TOPSIS and Multi-MOORA. 

A sensitivity analysis is also performed for the weights used in TOPSIS. Based on 

these analyses and by considering easiness in implementation, Random Forest is 

selected as the method to predict the category probabilities. The proposed method 

for RPD with ordinal response assumes that the data is collected according to an 

experimental design and predicts category probabilities at each experimental trial 

using RF and calculates median and COV at each experimental trial using these 

probabilities. Empirical models of the median and COV are built as functions of 

design parameters. Using these empirical models, a nonlinear optimization model is 

solved to find the levels of design parameters that produce desired median value and 

minimize the COV. The proposed method applied three case studies, one of them is 

smaller-the-better type and two of them are larger-the-better type of problems.              

The subsequent sections are organized as follows. The related literature review for 

RPD with an ordinal response, measure selection for ordered categorical data, data 

mining algorithms and MCDM methods are given in Section 2. The comparison of 

the data mining algorithms (Ordinal Logistic Regression, Random Forest and 

XGBoost), proposed method for RPD with ordinal response and application of the 
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proposed method to three case studies are shared in Section 3. The advantages and 

disadvantages of the method are discussed in Section 4. Finally, some conclusions 

and future research areas are proposed in Section 5.
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CHAPTER 2  

2. LITERATURE REVIEW 

The experiments conducted in the early production stages can improve the quality of 

a product or process significantly and help to decrease cost and waste (Logothetis, 

1992). Therefore, improving the quality of product or process in the pre-production 

stage (off-line) is important to reduce product development and lifetime costs and to 

increase product manufacturability and reliability (Kackar, 1985).  

This section is organized as follows. First, brief literature review of existing RPD 

with an ordinal response methods is given. Then, location and dispersion measures 

suggested for ordinal categorical data are explained and an overview of ensemble 

techniques such as XGBoost and Random Forest is provided. The background of 

MCDM methods is given as well.  

2.1 Robust Parameter Design with an Ordinal Response 

RPD is a technique that reduces the sensitivity of an engineering design to the 

sources of variation so that high-quality products or services can be produced 

quickly, consistently and at a low cost (Kackar, 1985; Phadke, 1989). There are two 

types of input in RPD: controllable factors (design parameters) and noise factors 

(uncontrollable factors). Control factors can be easily controlled by the system, but 

noise factors can be difficult to control or costly to control. RPD involves choosing 

optimal parameter setting to find an optimal response. The ultimate aim in the RPD 

approach is making a product or process insensitive to noise factors while keeping 

the quality at the target level (Robinson et al., 2004). 
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The response in an RPD problem can be continuous or categorical (can be binary, 

ordinal or nominal). RPD methods with continuous response have been studied by 

many researchers. However, when response is categorical there are few studies in 

the literature. In ordinal categorical response cases response is categorized using 

natural order such as: bad / fair / good / excellent. The problem type with ordinal 

response can be smaller-the better where the best quality level is the lowest category, 

or larger-the-better where the target quality level is the highest category. There are 

many real-life problems with ordinal or nominal responses.  

Taguchi (1974) proposes a method called Accumulation Analysis (AA) to analyze 

categorical response based on cumulative frequencies and then analysis of variance 

(ANOVA) is applied. The complexity of the procedure and its deficiency to not 

examine location and dispersion effects separately is criticized by many researchers 

(Box & Jones, 1986; Nair, 1986). Also, AA method is appropriate for the data with 

categorical controllable factors or the data that contains both categorical-continuous 

factors (Erdural, 2006; Gülbudak Dil, 2018; Logothetis, 1992). Scoring Scheme 

method is suggested by Nair (1986). This method calculates location and dispersion 

effects separately for parameter settings. Scores are given to each category for both 

location and dispersion and then ANOVA is applied. The combination of General 

Linear Model GLM) and Bayesian estimation techniques is used by Chipman and 

Hamada (1996) to analyze ordered categorical data. This method also uses 

uncertainty in the parameter estimation. However, Erişkin et al. (2021) mentions that 

one disadvantage of this method is the computational complexity compared to other 

methods.  

The other contributions to the RPD with ordered categorical response are: Weighted-

Signal-to-Noise Ratio (WSNR) is developed by Taguchi, and then, Wu and Yeh 

(2006) introduces and compares it with four different robust parameter design 

methods. Like AA, WSNR does not examine location and dispersion effects 

separately.  Weighted Probability Scoring Scheme (WPSS) is developed by Jeng and 
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Guo (1996) and Minimization of Expected Loss (MEL) is introduced by Asiabar and 

Ghomi (2007). 

Erdural (2006) proposes a method called Logistic Regression Model Optimization 

(LRMO). Erdural (2006) uses Logistic Regression to estimate class (category) 

probabilities of each experimental point using the logit link function and then 

calculates expected value and variance. Then, Signal to Noise Ratio (SNR) is 

calculated for each experimental point. ANOVA is applied to find the levels of the 

design parameters that maximize the SNR. This method is applicable for both 

smaller-the-better and larger-the-better types of problems. Köksal et al. (2006) 

mentions that LRMO method is an easy and effective way to find optimal parameter 

setting for both continuous and categorical controllable factors.  

Karabulut (2013) compares different RPD methods such as: LRMO, AA, WSNR, 

SS, WPSS in her M. Sc. thesis study. It is concluded that LRMO and AA show better 

performance among the Logistic Regression dependent methods and ANOVA based 

methods, respectively.  

Gülbudak Dil (2018) introduces a new method based on Random Forest in her M.Sc. 

thesis study. Random Forest is used instead of Logistic Regression to analyze the 

data and obtain probabilities. Once the class probabilities are estimated, expected 

value and variance of each experimental point are calculated, regression models that 

relate expected value and variance with the design parameters are built and 𝜀-

constraint method is applied to find the best parameter setting with minimum 

variance and target quality level.  

Lastly, Erişkin et al. (2021) proposes design parameter continuous optimization for 

the ordinal response (DPCOOR). The proposed method uses Ordinal Logistic 

Regression to estimate probability of observing each category as a function of control 

factors where logit link is used as the link function as shown in Equations (2.1) and 

(2.2). These probabilities are used to express location (expected value) and 
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dispersion (variance) as functions of control factors as given in Equation (2.3) and 

Equation (2.4), respectively.  

 �̂�(𝑌(𝑥) ≤ 𝑖) =  
𝑒𝑥𝑝 (𝛾�̂�+�̂�𝑥)

1+𝑒𝑥𝑝 (𝛾�̂�+�̂�𝑥)
 , 𝑖 = 1,2, … , 𝑚 − 1  

 

(2.1) 

 �̂�(𝑌(𝑥) = 𝑖) =  �̂�(𝑌(𝑥) ≤ 𝑖) − �̂�(𝑌(𝑥) ≤ 𝑖 − 1), 𝑖 = 1,2, … , 𝑚  (2.2) 

where 𝑚 is the number of categories for the response. 

 
�̂�(𝑌(𝑥)) =  ∑ 𝑖(�̂�(𝑌(𝑥) = 𝑖)) 

𝑚

𝑖=1

 

 

(2.3) 

 �̂�(𝑌(𝑥)) =  �̂�[(𝑌)2] − [�̂�(𝑌)]2 =  ∑ 𝑖2 (�̂�(𝑌(𝑥) = 𝑖))𝑚
𝑖=1 −

�̂�[(𝑌(𝑥))]2  

(2.4) 

The purpose of the method is finding the levels of the control factors that maximize 

(if the response is LTB type) or minimize (if the response is STB type) estimated 

expected value given in Equation (2.3) and minimize the estimated variance given 

in Equation (2.4). Erişkin et. al (2021) uses desirability function method to find 

optimal parameter design. DPCOOR is also useful for experimental datasets which 

have categorical and continuous controllable factors. Another advantage of 

DPCOOR is, it can analyze continuous data directly with Logistic Regression and as 

a result, it can generate better parameter levels for continuous factors than other 

methods in the literature.  Erişkin et al. (2021) mentions that instead of expected 

value and variance, using appropriate measures for ordinal data can be tried.  

None of the methods proposed for RPD with ordinal categorical response explained 

in the previous paragraphs use location and dispersion metrics defined for ordinal 

data, instead mainly expected value and variance are selected for this purpose. The 

aim of this study is to propose a new method to analyze ordinal response with 

appropriate metrics.  
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2.2 Selection of Location and Dispersion Measures for Ordinal Data 

There are two different opinions for analyzing data for ordinal categorical data. The 

first approach follows the idea that applying arithmetic calculations to ordinal data 

would be inappropriate because although the category numbers express an order, 

these are just arbitrary numbers. Instead of using mean and variance, which are 

meaningful location and dispersion measures for interval or ratio scale data, using 

median for ordinal and mode for nominal data as location measures and specifically 

designed measures for dispersion would be more meaningful to analyzing 

categorical data (Stevens, 1946). For this approach, proposed measures are mostly 

based on probabilities and cumulative probabilities of the categories. On the other 

hand, in the second approach categorical data is analyzed like continuous (interval 

or ratio scale) data, therefore mean and variance are used to calculate location and 

dispersion respectively (Allaj, 2018; Weisberg, 1992). In this approach integer 

scoring (or rank counts system) is adopted by researchers, assigning 1 to the first 

category and 2 to the second category, and so on. 

Before starting to explain the related literature, let us introduce the notation used in 

the rest of the thesis for the sake of simplicity. Let 𝑌 is the ordinal categorical 

variable with 𝑚 categories. The probability mass function is 𝑝𝑖 = 𝑃(𝑌 = 𝑖), 𝑖 =

1,2, … , 𝑚 or the vector of 𝒑 = (𝑝1, 𝑝2, . . , 𝑝𝑚)′ and the cumulative distribution 

function is the vector of 𝒇 = (𝑓1, 𝑓2, … , 𝑓𝑚)′. The two important cases for analyzing 

ordinal dispersion are: one point (the degenerate) distribution 𝒇𝒐𝒏𝒆 = (0,1, … ,1)′ 

and the polarized distribution where the probabilities are distributed evenly on the 

minimum and maximum categories such as: 𝑝1 = 𝑝𝑚 = 0.5 and 𝑝𝑖 = 0 otherwise. 

For ordinal data, minimum and maximum dispersions are associated with the one-

point distribution and polarized distribution, respectively (Kvålseth, 2011; Weiß, 

2019a). 
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Leik’s ordinal variation (LOV) is the first dispersion measure proposed for ordinal 

categorical data (Kvålseth, 2011) which is calculated as given in Equation (2.5). 

LOV = 1 indicates maximal dispersion and LOV = 0 indicates no dispersion at all.  

 
LOV = 1 −

∑ |2𝑓𝑖 − 1|𝑚−1
𝑖=1

𝑚 − 1
 

(2.5) 

Then Kvålseth (1995a) proposes ∆ for ordinal dispersion.  

 
∆=

1

2
∑ ∑|𝑖 − 𝑗|

𝑚

𝑗=1

𝑚

𝑖=1

𝑝𝑖𝑝𝑗 

 

(2.6) 

where |𝑖 − 𝑗| is the absolute value of difference between category numbers 𝑖 and 𝑗 

and by normalizing ∆ with the maximum category number, ordinal variation in [0, 

1] scale is obtained.  

 
∆∗=

∆

(𝑚 − 1 4⁄ )
=

2

𝑚 − 1
∑ ∑|𝑖 − 𝑗|𝑝𝑖𝑝𝑗

𝑚

𝑗=1

𝑚

𝑖=1

 

 

(2.7) 

Kvålseth (1995a) also mentions that ∆∗ equals to the index of ordinal variation (IOV) 

suggested by (Berry & Mielke, 1992a; 1992b) when sample size, 𝑁, is even and 

when 𝑁 is odd it is ∆∗= (1 − 1 𝑁2⁄ )IOV. The two drawbacks of ∆∗ according to 

Kvålseth (1995a) are: first ∆∗ can change in range [0, 1] which is unreasonably and 

misleadingly large. Second, since ∆∗ uses category numbers, although the category 

numbers show the rank or score, these are just arbitrary numbers. On the other hand, 

Blair & Lacy (1996) explains that |𝑖 − 𝑗| does not show the distance between 

categories, it is just counting the scores between categories.  

 In the same study Kvålseth proposes coefficient of ordinal variation (COV). For the 

one-point distribution case COV is 0, and it is 1 for the polarized distribution.  

 COV = 1 − √1 − ∆∗ 

 

(2.8) 
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Kvålseth (1995b) uses the cumulative probabilities for calculating the ∆ which is free 

from limitations of scoring system. As a results, ∆ and COV also can be calculated 

as follows.  

 

∆= ∑ 𝑓𝑖(1 − 𝑓𝑖)

𝑚−1

𝑖=1

 

 

(2.9) 

 

COV = 1 − √
∑ |2𝑓𝑖 − 1|2𝑚−1

𝑖=1

𝑚 − 1
 

 

(2.10) 

Blair and Lacy (1996) develops a new measure, LSQ, and explains the relationship 

between LSQ and LOV, IOV and COV. They treat cumulative probability of the 

ordinal data as 𝑚 − 1-dimensional array and this way the ordinal random variable is 

converted a point in Euclidean 𝑓-space, (𝑓1, 𝑓2, … , 𝑓𝑚−1). LSQ is also range between 

[0, 1]. LSQ= 0 shows the maximal dispersion, and LSQ = 1 shows no-dispersion. 

In this respect, LSQ evaluates dispersion differently from the other measures. For 

the cases where sample size is even, LSQ is calculated as given in Equation (2.11). 

 
LSQ =

∑ (𝑓𝑖 − 0.5)2𝑚−1
𝑖=1

(𝑚 − 1) 4⁄
 

 

(2.11) 

Blair and Lacy (1996) also shows that, the difference between LSQ and LOV is, 

LOV uses city-block metric for measuring the distance between categories. They 

mentions that IOV = 1 − LSQ and COV = 1 − (1 − IOV)
1

2, therefore, COV = 1 −

LSQ. For all cases, even when sample size is odd, they suggests measure of ordinal 

dispersion (MD). This is the simplified version of LSQ.  

 
MD =

𝐷 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛
 

 

(2.12) 

where 𝐷 is the distance between observed point and polarized distribution. 𝐷𝑚𝑖𝑛 is 

the minimum distance to the polarized distribution and 𝐷𝑚𝑎𝑥 is the maximum 

distance to the polarized distribution.  
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Kvålseth (2011) introduced a family of ordinal variation measures using Minkowski 

metric distance of  𝑞 ≥ 1 as shown in Equation (2.13).  

 

OV𝑞 = 1 − (
∑ |2𝑓𝑖 − 1|𝑞𝑚−1

𝑖=1

𝑚 − 1
)

1
𝑞

 

 

(2.13) 

In that case, LOV =  OV1 and COV = OV2, so LOV and COV uses city-block distance 

and Euclidean distance, respectively. Similar to LOV and COV other members of  OVq 

family range between [0, 1].   

Weiß (2019a) examines the asymptotic distribution of 𝑂�̂�𝑞 family and evaluates the 

results of approximations with simulations. While deriving the approximations, 𝑞 =

1 is separated from others because of the discontinuity at 𝑓𝑖 =
1

2
 .  

In the simulation study, 𝑖. 𝑖. 𝑑. ordinal data is generated by binomially distributed 

rank count 𝐼~ 𝐵𝑖𝑛(𝑚, 𝜋) where 𝜋 corresponds to the strongly asymmetric, 

asymmetric, and symmetric cases, 0.15, 0.3, 0.5, respectively.  

Table 2.1 shows the comparison of approximate and simulated standard deviations. 

Even for the smaller sample sizes such as 𝑛 = 50, there is nearly perfect agreement 

between the asymptotic standard deviations and simulated standard deviations for all 

values of 𝑞. 
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Similarly, asymptotic and simulated means are compared in Table 2.2, but this time 

in addition to the sample sizes given, 𝑛 = ∞ is also included in the study. When true 

value of 𝑂𝑉𝑞, 𝑛 = ∞, and simulated means are compared, there is a bias for smaller 

sample sizes. However, for 𝑞 ≥ 2 there is a perfect agreement between the simulated 

and asymptotic means for all sample sizes.  

Afterwards, Weiß (2019a) computes simple plug-in 𝐶𝐼s (level 95%) with limits 𝑂�̂�𝑞 

±𝑧0.975𝑛−1/2�̂�𝑞, results are given in Table 2.3.  When sample sizes increase, 

coverages approach to 0.95. There are deviations for 𝑛 ≤ 100. While 𝑞 increases, 

coverages become worse.  

 

 

 

Table 2.1 Ordinal data 𝑥1, … , 𝑥𝑚 with 𝑖. 𝑖. 𝑑. rank counts 𝐼, 𝐼~ 𝐵𝑖𝑛(𝑚, 𝜋); 

asymptotic vs. simulated standard deviation (a. SD vs. s. SD) of 𝑂�̂�𝑞 (Source: 

Weiß (2019a)) 
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Later in the study, Weiß (2019a) analyzes the approximation quality of OV̂1. Table 

2.4 shows the results with the means and standard deviations. Approximate standard 

deviation works well for 𝑛 ≥ 100, 𝜋 ≠  0.5. When 𝜋 = 0.5, deviations are observed 

because of the discontinuity problem. In Table 2.4, asymptotic and simulated means 

are compared for the 𝑂�̂�1 and there is a bias for smaller sample sizes, 𝜋 ≠  0.5. For 

𝜋 = 0.5 bias is more notable. Weiß (2019a) indicates that extent of bias correction 

Table 2.3 Ordinal data 𝑥1, … , 𝑥𝑚 with 𝑖. 𝑖. 𝑑. rank counts 𝐼, 𝐼~ 𝐵𝑖𝑛(𝑚, 𝜋); 

asymptotic vs. simulated mean (‘a. M’ vs. ‘s. M’) of 𝑂�̂�𝑞. (Source: Weiß 

(2019a)) 

Table 2.2 Ordinal data 𝑥1, … , 𝑥𝑚 with 𝑖. 𝑖. 𝑑. 
rank counts 𝐼, 𝐼~ 𝐵𝑖𝑛(𝑚, 𝜋); coverage rates of 

plug-in 95% 𝐶𝐼𝑠 based on 𝑂�̂�𝑞. (Source: Weiß 

(2019a)) 
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is not sufficient for 𝑞 = 1. In Table 2.5, the plug-in 95% − 𝐶𝐼s of 𝑂�̂�1 ±

𝑧0.975𝑛−1/2�̂�1 works well. Two exceptions are when 𝜋 = 0.5 and smaller sample 

sizes for 𝜋 = 0.15.  

 

 

 

 

 

 

Weiß (2019a) explains that asymptotic approximations of 𝑂𝑉𝑞’s are more 

problematic for 𝑞 < 2 because of the discontinuity and poles and suggest choosing 

𝑞 ≥ 2. Also, Weiß investigates the 𝑂𝑉∞, and do not suggest selecting 𝑞 too large 

because too much weight is put into sole deviations of 𝑝0, 𝑝𝑚 from 0.5, so selecting 

𝑞 from the interval [2; 3] might be useful. 

Since data is obtained from experimental design in this study, the data consists of 

small sample sizes, around 𝑛 = 50. Based on Weiß (2019a), it is investigated which 

value of 𝑞 would be appropriate for this study. Casella and Berger (2002) explains 

that a good estimator should have small bias and small variance. Based on this 

explanation, the quality of the estimation for the small sample size, 𝑛 = 50, is 

Table 2.4 Ordinal data 𝑥1, … , 𝑥𝑚 with 𝑖. 𝑖. 𝑑. rank counts 𝐼, 𝐼~ 𝐵𝑖𝑛(𝑚, 𝜋); 

asymptotic vs. simulated mean (‘a. M’ vs. ‘s. M’) and standard deviation (‘a. SD’ 

vs. ‘s. SD’) of 𝑂�̂�1. (Source: Weiß (2019a)) 

Table 2.5 Ordinal data 𝑥1, … , 𝑥𝑚 with 𝑖. 𝑖. 𝑑. rank 

counts 𝐼, 𝐼~ 𝐵𝑖𝑛(𝑚, 𝜋); coverage rates of plug-in 

95% 𝐶𝐼𝑠 based on 𝑂�̂�1. (Source: Weiß (2019a)) 
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summarized by looking at the asymptotic and simulated distributions of Weiß 

(2019a) and is shown in Table 2.6 below. 

Table 2.6 Approximation Performances of 𝑂�̂�𝑞, for 𝑛 = 50. 

 𝒒 = 𝟏 𝒒 = 𝟏. 𝟓 𝒒 = 𝟐 𝒒 = 𝟐. 𝟓 𝒒 = 𝟑 𝒒 = 𝟒 

Approximate 

Standard 

Deviation 

Higher 

deviation 

Small 

deviation 

Small 

deviation 

Small 

deviation 

Small 

deviation 

Small 

deviati

on 

Approximate 

Means 

Higher 

bias 

Could 

not be 

obtained 

Small 

bias 

Small 

bias 

Small 

bias 

Small 

bias 

 

According to Table 2.1 and 2.4, higher deviations are obtained for 𝑞 = 1 compared 

to 𝑞 ≥ 2. Similar situation is observed in Figures 2.2 and 2.4, for 𝑞 = 1 bias is more 

notable. Also, for 𝑞 = 1.5, approximations could not be obtained. Considering the 

suggestion of Weiß (2019a), 𝑞 = 1 or 𝑞 = 1.5 should not be chosen. In Figure 2.1 

and Figure 2.2, for 𝑞 ≥ 2, there are small deviation and small bias in the standard 

deviations and the means, respectively. This situation is parallel to Casella & Berger 

(2002) definition of a good estimator, but no distinctive difference is observed for 

𝑞 ≥ 2. For this reason, plug-in 95% 𝐶𝐼𝑠 estimates are considered. Considering the 

values other than 𝑞 = 1.5 in Table 3, coverage deteriorates as 𝑞 values increase for 

𝑛 = 50. However, 𝑞 = 2 performs better than the others.  

As noted previously, minimum and maximum dispersions for ordinal data are 

associated with the one-point distribution and polarized distribution, respectively 

(Kvålseth, 2011; Weiß, 2019a). Dispersion values obtained from different ordinal 

dispersion measures for different probability distributions are analyzed in Appendix 

A. It is observed that the LOV, COV, LSQ, ∆∗, OV2.5, OV3, V[I], disp0,2, and variance 

show similar behavior under different distributions. For location measures, median 
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produced different results than the expected value and rounded−𝐸[𝐼]. Correlation 

between the ordinal dispersion measures is also examined in Appendix A. All 

dispersion measures are highly correlated with each other. For the location measures, 

while expected value and rounded−𝐸[𝐼] are highly correlated, median does not have 

linear relationship with these measures. Following the suggestion of Weiß (2019a) 

and based on the analysis of ordinal dispersion measures presented in Appendix A, 

𝑂𝑉2, a.k.a. 𝐶𝑂𝑉,  is selected as dispersion measure for the rest of the study. 

Weiß (2019b) suggests a location measure for ordinal categorical data. He explains 

rank-count approach as, for an ordinal random variable 𝑌 with outcomes 𝑺 = {𝑠0 <

⋯ < 𝑠𝑚}, rank-count 𝐼 is defined by the relation 𝑌 = 𝑠𝐼 so that 𝐼 counts by how 

many categories 𝑌 departs from the lowest category. Based on this definition, the 

proposed measure uses distances in range 𝑆. The block and Euclidean distance 

examples are given below.  

 𝑑𝑂,1(𝑠𝑖, 𝑠𝑗) = |𝑖 − 𝑗| (2.14) 

 

 𝑑𝑂,2(𝑠𝑖, 𝑠𝑗) = (𝑖 − 𝑗)2 

 

(2.15) 

     

For the calculation of location for random variable 𝑌, the expected distance is used 

(Weiß, 2019b). 

 argmin
𝑦∈𝑆

𝐸[𝑑(𝑌, 𝑦)] 

 

(2.16) 

If the squared Euclidean distance is used, then the location value is the rounded value 

of 𝐸[𝐼].  

 

𝑟𝑜𝑢𝑛𝑑𝑒𝑑 − 𝐸[𝐼] = 𝑘 − ∑ 𝑓𝑖

𝑘−1

𝑖=0

 

 

(2.17) 

In the same study Weiß (2019b) also suggests a dispersion measure. 
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 𝑑𝑖𝑠𝑝𝑂,2 = 2𝑉(𝐼) (2.18) 

   

 

𝑉(𝐼) = ∑ 𝑓𝑖 (1 − ∑ 𝑓𝑗

𝑘−1

𝑗=0

) + 2 ∑ ∑ 𝑓𝑗

𝑖−1

𝑗=0

𝑘−1

𝑖=1

𝑘−1

𝑖=0

 

 

(2.19) 

 

The normalized value is obtained with (4 𝑘2⁄ )𝑉(𝐼). The location measures, rounded- 

𝐸[𝐼], median and expected value, are also compared in this master thesis (see 

Appendix A). The rounded- 𝐸[𝐼] and expected value have higher correlation and 

median is relatively less correlated with these measures. Based on this result and 

suggestion of Stevens (1946), median is used as location measure for the rest of the 

study.  

2.3 Data Mining Algorithms and Ensemble Learning 

Ensemble learning is a technique that aims to achieve better prediction performance 

by combining multiple base learners (Sagi & Rokach, 2018). Base learners (also 

known as weak learners) perform only slightly better than a random guess. However, 

a combination of these constructs a strong learner which is prediction performance 

is significantly better.  

Base learners are constructed with machine learning algorithms such as Naive Bayes, 

Decision Tree, Neural Network, etc. If the same learning algorithm is used to train 

all core learners, it is called homogeneous ensemble, if different algorithms are used, 

it is called heterogeneous ensemble (Zhou, 2012). 

One of the benefits of using ensemble learning is it reduces the prediction error. 

Prediction error consists of bias and variance, and there is a trade-off between them. 

Bias is a measure of how close the learning algorithm is to the target value. A high 

bias indicates that the model does not fit the training data well, in which case 

underfitting occurs. On the other hand, variance measures how different the 
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algorithm makes predictions for training data of the same size. High variance 

indicates that the model is overfitting the training data, and in this case, the model 

cannot be generalized. Low bias and low variance are two important properties of a 

well-constructed model. Rokach (2019) explains that using ensemble learning 

reduces the generalization error of individual learners because the different types of 

learners have different biases, and this diversity helps to decrease variance without 

increasing the bias. Therefore, one of the essential properties of good ensemble 

learning is diversity, that is, contributing base learners make different errors for the 

same instance. Another important feature of a good ensemble is accuracy; an 

ensemble should have base learners which are accurate (Rokach, 2019; Sagi & 

Rokach, 2018; Zhou, 2012). 

According to Sagi and Rokach (2018) and Zhou (2012) ensemble techniques are 

divided into two groups: dependent and independent techniques. In dependent 

techniques, the goal is to correct the error in the algorithm throughout the iterations. 

Therefore, base learners are created to correct the errors of the previous one. There 

is sequential learning in the dependent techniques. In the independent techniques, 

each base learner is created and trained independently from each other. Since there 

is parallel training in independent methods, the final prediction is made by majority 

voting or averaging. 

2.3.1 Bagging 

Bagging, abbreviation of bootstrap aggregating, is proposed by Breiman (1996). It 

is an example of independent ensemble techniques. In the bagging procedure, first, 

the dataset is divided into 𝑛 different subsets using the bootstrap sampling method. 

For each subset, data is generated randomly by sampling with replacement. 

Therefore, some instances in the original dataset may appear multiple times in one 

bootstrap replication, while others may not appear at all in that replication. However, 

in the bootstrap process, too many subsets are generated, and it increases the 
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probability that an instance will appear in at least one subset. In the training stage 𝑛 

base learners are trained using 𝑛 subsets. The final decision, aggregating, is made by 

combining the outputs of the base learners: voting for classification, averaging for 

regression. Kumar and Jain (2020), explains that randomly generated subsets lead to 

a diverse ensemble, resulting in better performance than from a single model. An 

illustration of the bagging algorithm (Kumar & Jain, 2020) is shown in Figure 2.1. 

 

 

 

 

 

 

 

2.3.2 Random Forest 

Random Forest (Breiman, 2001) is an independent type of ensemble learning 

technique and is preferred by many people due to its simplicity and good 

performance. It uses decision trees as base learners. In the algorithm, random subsets 

are generated with the same distribution as the original dataset. Decision trees are 

trained with the subsets. After a large number of trees have been grown, voting is 

used to make the final prediction. Breiman (2001) explains that the Random Forest 

algorithm will not present an overfitting problem because it uses the Strong Law of 

Large Numbers, so that generalization error always converges.  

Figure 2.1 Bagging with sampling with replacement (Source: 

(Kumar & Jain, 2020)) 
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Breiman (2001) emphasizes that Random Forest includes two types of randomness. 

The first one is bagging, that is, a new training subset is created by drawing instances 

from the original data. The training subset is generated with replacement, so some of 

the samples may be drawn several times while some of them may not appear in that 

training set at all. Then a decision tree is constructed with that subset using random 

feature selection, which is the second randomness factor. A random subset of 

features is used in each node to make an optimal split. Afterward, trees are grown to 

the maximum possible size and remain unpruned. 

Breiman (2001) explains a useful property of the Random Forest: out-of-bag (OOB) 

samples. 67% of the samples in the original dataset are used in the training of a base 

learner, while the other 33% are not included in the training. This 33% of the samples 

are called OOB samples. Since the base learner does not see the OOB samples 

throughout the training, these samples can be used to evaluate the learner's 

performance without requiring an external cross-validation method. Therefore, the 

test set is not necessary for Random Forest. The training and test set separation can 

be a problem when there are few instances in the dataset. However, Random Forest 

solves this problem using OOB samples. The performance of an ensemble can be 

evaluated by averaging the OOB errors (OOB estimates) of each learner (Géron, 

2019). In addition to this, Breiman (2001) mentions that cross-validation includes 

bias; on the other hand, OOB estimates are unbiased. 

According to Breiman (2001) Random Forest has comparable accuracy with 

AdaBoost, it is robust to outliers and noise. In AdaBoost, misclassified instances are 

weighted more, and the algorithm focuses on these instances throughout the 

iterations.  In this sense, AdaBoost is sensitive to noisy data and outliers. Since 

Random Forest does not use weights, the effect of noise is less noticeable. 

Furthermore, Random Forest works faster, it is simple to implement, and it can be 

parallelized (Breiman, 2001). Using random subsets and random features makes the 

trees less correlated and this helps to increase diversity. Also, Random Forest 

contains fewer parameters to be optimized. In this sense, it is easier to tune (Sagi & 
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Rokach, 2018). The two important hyperparameters of Random Forest are number 

of trees and number of attributes used in each node (Breiman, 2001; Sagi & Rokach, 

2018). The Scikit-learn library provides a “class weight” option which is helpful 

when data is imbalanced. It gives weights to the classes inversely proportional to 

their frequencies as given in Equation (2.20). 

 
𝑤𝑘 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × 𝑏𝑖𝑛 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘
 

 

(2.20) 

where 𝑤𝑘 is the weight of class 𝑘. Moreover, these class weights can be adjusted for 

bootstrap samples for every tree in the forest with the “balanced subsample” option 

(Pedregosa et al., 2011). Random Forest provides other useful properties such as 

feature importance, and proximity plots to deal with missing data. 

2.3.3 Boosting 

Boosting is simply the procedure of transforming weak learners into strong learners. 

It is an example of dependent ensemble techniques, so sequential training is used in 

boosting. At the beginning of the algorithm, a subset is generated randomly from the 

original dataset. A model is fitted with that subset. According to the output of the 

model, wrongly predicted instances are determined. A new subset is generated so 

that it includes misclassified instances of the first iteration and the instances which 

are not in the previous subset. In the second learner, a new model is built with this 

new subset to fix errors of the first learner. The algorithm aims to correct the mistakes 

of the previous learner by working in iterations. In the end, the final model is 

obtained which is the average of these models. 

2.3.4 AdaBoost 

AdaBoost (Freund & Schapire, 1997), abbreviation for adaptive boosting, is one of 

the most popular boosting algorithms. AdaBoost uses weights to obtain better-
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performed models.  First, equal weights are assigned to each instance in the dataset. 

A weak learner is trained and according to the prediction results, misclassified 

instances are determined.  Incorrectly predicted instances are given more weight, and 

similarly correctly classified instances are weighted less. This way, the weak learner 

concentrates more on the hard instances.   Afterward, the second weak learner is 

trained with the new weighted dataset. This process is repeated until the specified 

number of iterations or until the model performance reaches the desired level. Voting 

is used to obtain the final prediction results (Freund & Schapire, 1999; Kumar & 

Jain, 2020).  

In AdaBoost, not only instances are weighted, but also weak learners are weighted 

according to their accuracy. Higher weight is assigned to the more accurate predictor. 

AdaBoost provides a decrease in bias and performs well both for regression and 

classification. Freund and Schapire (1999) explains the advantages of AdaBoost as, 

● It is fast and easy to use, 

● It does not require hyperparameter tuning, 

● It is flexible, you can combine any method to use as a base learner. 

In Figure 2.2, a visualization of the AdaBoost algorithm (Kumar & Jain, 2020) is 

given. 

 

 

 

 

 

 

 

 
Figure 2.2 AdaBoost boosting (Source: Kumar & Jain, 2020)) 
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2.3.5 Gradient Boosting Machines 

Gradient Boosting Machines (GBM) (Friedman, 2001) is a nonparametric and 

dependent type of ensemble technique. It typically uses decision trees as base 

learners. As with the other boosting methods, in GBM, each base learner is iteratively 

added to correct the mistakes of the previous learner. However, the difference from 

the AdaBoost is that instead of building a model by weighting the incorrectly 

predicted observations, a model is built on the residuals of the previous model.  

Gradient descent optimization algorithm is used in GBM. The objective is to 

minimize the loss function when adding a new tree to the ensemble. This loss 

function is arbitrary and differentiable. In the final prediction, outputs of the base 

learners are aggregated in an additive manner (Rokach, 2019). 

In machine learning, the loss function is a metric that shows how well the model fits 

each sample. It measures the deviation between the predicted output and the actual 

output. A loss function can be described simply as 

𝐿(𝑦, �̂�) (2.21) 

Where 𝑦 is the actual target value and �̂� is the predicted value of the 𝑦. There are 

many loss functions available. The most popular of these are the squared-error (aka 

𝐿2-loss) (𝑦 − �̂�)2 and absolute error (aka 𝐿1-loss) |𝑦 − �̂�| for regression and the 

negative binomial log-likelihood loss function for binary classification problems 

(Friedman, 2001). The loss should be small as it expresses the deviation from the 

true value. 

Rokach (2019) explains the difference between GBM and other ensemble techniques 

as GBM uses many simple models, while other ensemble techniques use fewer but 

more complex models. Therefore, choosing the right number of predictors is an 

important parameter for GBM (Friedman, 2001; Rokach, 2019). Using large number 
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of predictors can cause overfitting while using a small number of predictors can 

cause underfitting.  

Friedman (2001) lists the advantages of using gradient boosting of regression trees: 

● Robustness: GBM gives the same result in any transformation of the input 

variable (feature), it does not require nonlinear transformation, and it is strong 

against skewed distributions. 

● Internal feature selection: GBM has internal feature selection methods, it is 

robust to the addition of unimportant features. It does not require external feature 

selection. 

● Handling missing values: It is also good at handling missing values; it can fill in 

missing observations without the need for an extra imputation method. 

● Accuracy and stability: Inaccuracy and instability are two problems that the 

decision trees are suffering from. However, with the GBM, the effect of these 

problems is mitigated. Friedman (2001) also mentions one disadvantage of the 

tree boosting system: single decision trees can be easily interpreted while boosted 

trees lack interpretability. 

 

Since it is a boosting type of technique GBM can overfit. To overcome the overfitting 

problem, using regularization provides useful results. Regularization works in a way 

that reduces model complexity, which is defined as a function of the number of 

leaves in the trees in GBM. By adding a penalty, instead of just minimizing the loss 

function in the objective function, both the loss function and complexity can be 

minimized (Rokach 2019). This is the working principle of XGBoost. 

2.3.6 XGBoost 

Chen and Guestrin (2016) introduces a new scalable boosting system called eXtreme 

Gradient Boosting (XGBoost). It is a tree-based ensemble learning algorithm based 

on gradient boosting. Similar to GBM, XGBoost minimizes the loss function in the 
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objective. However, it also tries to minimize the penalty in the objective function. 

The penalty is a function that is used to prevent the problem of overfitting and makes 

the model more conservative. With both algorithmic and system improvements, 

Chen and Guestrin (2016) makes XGBoost much faster and more accurate than many 

existing machine learning algorithms. These improvements are 

● Regularized objective function to prevent overfitting,  

● Approximate greedy algorithm to increase the speed, 

● Sparsity-aware Split Finding algorithm to handle missing data, 

● Weighted Quantile Sketch to help approximate greedy algorithm, 

● Parallel Learning to make computation faster, 

● Cache-aware Access, 

● Blocks for Out-of-core computation. 

 

The first step in XGBoost is to make an initial prediction. The initial prediction is 

0.5 by default, it does not matter what number the initial prediction is as it will 

converge to the correct result. Then, residuals are calculated by subtracting the initial 

prediction from the actual target values. In the next step, a decision tree is started to 

be built. All the residuals are added to the root node forming the tree, and the quality 

score (also known as the similarity score) is calculated for the root node. Then, a 

split is selected among the candidate splits using the Approximate Algorithm: for 

each of the candidate splits, the residuals in the first stage are placed on the child 

nodes and the quality score is calculated for these nodes separately. The gain 

calculation for each candidate split is obtained by subtracting the sum of the quality 

scores of the right and left nodes from the root node. The candidate with the highest 

gain is selected for splitting, and decision trees are constructed this way. Each tree is 

grown to compensate for the mistakes of its predecessor. The final decision is 

obtained by summing the predictions on the respective leaves of the trees. Figure 2.3 

shows how the final decision is made (Chen & Guestrin, 2016). 
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In an algorithmic framework, XGBoost is the optimized and enhanced version of the 

GBM algorithm. The most obvious difference is that it uses a regularized objective 

function which Chen and Guestrin (2016) defines as follows: 

𝐿(𝜙) = ∑ 𝑙(𝑦𝑖, �̂�𝑖)

𝑖

+ ∑ 𝛺(𝑓𝑘)

𝑘

 (2.22) 

𝑙(𝑦𝑖, �̂�𝑖) is the differentiable convex loss function which measures how close 

predicted value of the target, �̂�𝑖, is to the actual value of target, 𝑦𝑖. 𝛺(𝑓𝑘) in Equation 

(2.22) is a regularization term, which is used to prevent overfitting. It is defined as: 

𝛺(𝑓) =  𝛾𝑇 +
1

2
𝜆‖𝑤‖2  (2.23) 

𝑇 is the number of leaves in the tree, 𝛾 and 𝜆 are shrinkage parameters and 𝑤 is the 

weight of the leaves. The objective function in Equation (2.22), without the 𝛺(𝑓𝑘) 

term same is as the GBM’s objective function.  

Since XGBoost is a boosting-type ensemble technique, it trains decision trees in an 

additive manner. So, in 𝑡-th iteration objective function is: 

𝐿(𝑡) =  ∑ 𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1) + 𝑓𝑡(𝑥𝑖))

𝑛

𝑖=1

+ 𝛺(𝑓𝑡) 
(2.24) 

Figure 2.3  Tree Ensemble Model. The final prediction for a 

given example is the sum of predictions from each tree. 

(Source: (Chen & Guestrin, 2016)) 
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�̂�𝑖
(𝑡−1)

 is the predicted value of 𝑖-th observation at the previous iteration. The goal 

is adding 𝑓𝑡 so that the minimizes the objective function. This also means that the 

function that will most improve the model is added in a greedy way. To solve this 

formula, Second-order Approximation is used because it will take a long time to 

calculate this function directly. In this case, the objective function becomes this, 

𝐿(𝑡) ≅  ∑[𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1)) + 𝑔𝑖𝑓𝑡(𝑥𝑖)

𝑛

𝑖=1

+
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝛺(𝑓𝑡) 
(2.25) 

In this function, 𝑔𝑖 and ℎ𝑖 are the first and second-order gradient statistics of the loss 

function respectively, and they are calculated as follows: 

𝑔𝑖 = 𝜕�̂�(𝑡−1)𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1)

) (2.26) 

ℎ𝑖 = 𝜕2
�̂�(𝑡−1)𝑙(𝑦𝑖, �̂�𝑖

(𝑡−1)
) (2.27) 

In equation 2.25 𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1)) term becomes constant. Also, if 𝛺(𝑓𝑡) is written as in 

Equation (2.23), 𝐿(𝑡) becomes: 

𝐿(𝑡) =  ∑[𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 
(2.28) 

Or simply, 

𝐿(𝑡) = ∑[(∑ 𝑔𝑖

𝑖∈𝐼𝑗

)𝑤𝑗 +
1

2
(∑ ℎ𝑖 + 𝜆)𝑤𝑗

2

𝑖∈𝐼𝑗

]

𝑇

𝑗=1

+ 𝛾𝑇 
(2.29) 

Where 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} is the instances on the leaf 𝑗 and 𝑞(𝑥𝑖) is a mapping 

function that assigns every instance, 𝑥𝑖, to the leaves. After solving this function, the 

optimal weight of a leaf (also known as output value of a leaf) is calculated as: 

𝑤𝑗
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖𝑖∈𝐼𝑗
+ 𝜆

 
(2.30) 
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If 𝑤𝑗
∗ is put in the places corresponding to 𝑤𝑗 in the Equation (2.30) the loss function 

becomes, 

𝐿(𝑡)(𝑞) = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)2

∑ ℎ𝑖𝑖∈𝐼𝑗
+𝜆

𝑇
𝑗=1 + 𝛾𝑇       

(2.31) 

Equation (2.31), the quality score or the similarity score is used to evaluate the 

quality of nodes (Chen & Guestrin, 2016). 𝜆 is a shrinkage parameter so, the higher 

value of 𝜆, smaller output values for the leaves.  

When constructing decision trees, a split is chosen according to gain. The gain 

formula is given in Equation (2.32).  

𝐺𝑎𝑖𝑛 = [
(∑ 𝑔𝑖𝑖∈𝐼𝐿

)2

∑ ℎ𝑖𝑖∈𝐼𝐿
+ 𝜆

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)2

∑ ℎ𝑖𝑖∈𝐼𝑅
+ 𝜆

−
(∑ 𝑔𝑖𝑖∈I )2

∑ ℎ𝑖𝑖∈I + 𝜆
] 

(2.32) 

  

𝐿𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑ 𝑔𝑖𝑖∈𝐼𝐿
)2

∑ ℎ𝑖𝑖∈𝐼𝐿
+ 𝜆

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)2

∑ ℎ𝑖𝑖∈𝐼𝑅
+ 𝜆

−
(∑ 𝑔𝑖𝑖∈I )2

∑ ℎ𝑖𝑖∈I + 𝜆
] − 𝛾 

(2.33) 

Where 𝐼𝐿 and 𝐼𝑅 are the instance sets of the left and right nodes, and  𝐼𝐿 ∪ 𝐼𝑅 = 𝐼. 

Candidate splits are evaluated with the gain formula. The quality score of the 

previous node is subtracted from the quality scores of the right and left nodes. The 

one with the highest gain is selected for the split. Equation (2.33) is used in the 

pruning stage. Pruning decision is made by subtracting 𝛾 from the gain so that nodes 

with the negative result are discarded from the tree. Here, the 𝛾 parameter is used to 

provide regularization and prevent overfitting. So, the larger values of 𝛾 and 𝜆 result 

in shallow trees (Bentéjac et al., 2021). 

2.3.6.1 Approximate Algorithm and Weighted Quantile Sketch 

In GBM, every possible candidate split is evaluated and the candidate which 

provides the highest gain is selected for splitting. In this case, GBM uses the Basic 
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Exact Greedy Algorithm. According to Chen and Guestrin (2016) the problem with 

the Exact Greedy Algorithm is it calculates and sorts all possible candidate splits for 

all features. Therefore, it takes time to calculate the gain for all the candidates, short 

and select the one that provides maximum gain. Time complexity is quite high 

especially for large and high dimensional datasets or when the data does not fit 

entirely into memory. Thus, Chen and Guestrin (2016) proposes Approximate 

Algorithm to reduce the time complexity and make the calculations in a more 

efficient way. Instead of checking every possible candidate for splitting, the 

algorithm divides data into quantiles, then checks for the gain of these quantiles and 

selects the best one. So, the Approximate Algorithm does not guarantee the best split 

in the long term, however, it reduces the computation time. 

To find candidate splitting points with the Approximate Algorithm, Chen and 

Guestrin (2016) introduces Weighted Quantile Sketch which is used with Parallel 

Learning. First, the dataset is divided into smaller subsets and distributed to several 

computers. In each computer, values are aggregated to make an approximate 

histogram which will be used for calculating the quantiles. In the Quantile Sketch 

algorithm, each quantile has an equal number of observations, however, in the 

Weighted Quantile Sketch, weights are assigned to the observations, and the sum of 

weights in each quantile equals or is close to each other. The weight of each 

observation equals to ℎ𝑖. As the weight of an observation increases, the number of 

observations of the same quantile decreases, and the observation becomes much 

more important for splitting. Also, as the number of quantiles is increased, there will 

be fewer instances in a quantile and the algorithm becomes more accurate. The 

authors also mentioned that this approach has provable theoretical guarantees, and it 

maintains a certain accuracy level. 
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2.3.6.2 Tree Pruning Strategy 

One of the differences between XGBoost and GBM is their pruning strategy. Both 

algorithms use Equation (2.33) to make a pruning decision. GBM uses this equation 

without 𝛾 parameter. Nodes with a negative score are not allowed in either algorithm. 

If a negative score is encountered in a node while building a tree in GBM, that node 

is pruned, so GBM is a greedy algorithm. On the other hand, in XGBoost the tree is 

grown to the predetermined maximum depth and no pruning is done at this stage. 

After that, scores are calculated retrospectively and if a negative score is 

encountered, the related node is pruned. XGBoost constructs trees using the depth-

first strategy. This strategy increases the model complexity and helps to increase the 

model performance. Each tree in the ensemble will have a different depth level after 

the pruning and this leads to increased diversity. 

2.3.6.3 Sparsity-aware Split Finding 

Most of the real-world datasets suffer from sparsity or missing values. There are 

some external techniques to deal with missing data such as simple imputation, 

complete case analysis, using a constant to fill missing values, and multiple 

imputation. However, XGBoost provides a useful method to deal with missing data, 

Sparsity-aware Split Finding. In this way, the need for an external technique is 

eliminated. This method provides guidance on how to grow a decision tree with 

missing data, and how to fill those values.  

In the Sparsity-Aware Split Finding, a tree is built, and residuals are calculated for 

the entire dataset. Then, missing observations are removed from the original dataset 

and a separate dataset is created with them. For each candidate split, the residuals of 

the missing data are put in the left node and right node, respectively, and gain is 

calculated for both. This way, the algorithm learns the best direction to impute the 
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missing data (Chen & Guestrin, 2016). This process is repeated until all quantiles are 

tried and the one that provides maximum gain is selected for splitting.  

2.3.6.4 Column Block for Parallel Learning 

XGBoost provides not only performance improvements, but also it provides system 

optimization and parallelization. Generally, real-world datasets are huge, and it 

cannot be possible to fit all into computer memory at one time. To make calculations 

quickly, XGBoost uses Parallel Learning which is splitting dataset into smaller 

subsets and putting each subset on different computers on a network. Chen and 

Guestrin (2016) proposes to store data in blocks, also known as in-memory units. 

They explained that using blocks helps with the Approximate Algorithm because in 

the Exact Greedy Algorithm all data is stored in one block while in the Approximate 

Algorithm data can be stored in multiple blocks. Compressed column format (CSC) 

is being used to reduce the data sorting process and data is divided into blocks using 

this method. When Approximate Algorithms run, data can be split into multiple 

blocks to distribute among different machines to be worked on. According to Chen 

and Guestrin (2016) using blocks also helps column subsampling while adding 

randomization to the algorithm. 

2.3.6.5 Casche-aware Access 

A computer has a cache inside the Central Processing Unit (CPU), and the CPU uses 

this cache faster than any other memory in the computer. Due to XGBoost's 

execution speed concerns, calculations about the loss function, gains, and first and 

second-order gradients are done in the cache. 

This method is proposed for the cache-miss occasion as a solution when data is too 

large for CPU cache to fit. Cache awareness is done by loading a set of data into each 

thread when using a greedy algorithm. For parallelized situations in approximate 
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algorithms, the block size of the fetched data into the thread buffer plays a larger 

role. When it is set too low, parallelization lacks performance; on the other hand, 

when loaded block size is set too large, cache misses occur since the block does not 

fit the CPU cache. A balanced size from the test runs demonstrates the best 

performance among all (Chen & Guestrin, 2016). 

2.3.6.6 Blocks for Out-of-core Computation 

One of the main reasons for XGBoost's good performance is that it is designed to 

use the computer’s resources optimally. After splitting data into blocks, it stores each 

block on disk. For out-of-core computation, block data that is not fitted to the 

memory space is stored into the hard-disk. To overcome the read/write IO 

(input/output) operation overhead in computation time, one thread is dedicated to 

fetch and store data concurrently with the computational threads. Block Compression 

is used to reduce the size to speed up the reading/writing times via calculating an 

offset on rows and storing the indices in a 16-bit integer. Block Sharing is another 

technique that works on multiple disks storing divided data. In this method, a thread 

is assigned to each disk to fetch data to the shared memory space. 

Besides all the algorithmic and system optimizations, XGBoost can also use the 

column subsampling which is taken from Random Forest. In this way, samples from 

the original dataset are randomly drawn without replacement, and diversity in the 

ensemble is increased. 

2.3.6.7 Hyperparameters of XGBoost 

One of the advantages of XGBoost is flexibility. It has many hyperparameters to tune 

and it allows users to train the model as desired. There are parameters to control the 

complexity of the model or to add randomness to the algorithm (XGBoost 
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Developers, 2020). The hyperparameters of XGBoost and the reasons for their use 

are explained below. 

● Objective: This parameter is for what purpose the user is using the algorithm. 

Typically, for regression it can be set as reg:squarederror, for binary 

classification binary:logistic, for the multiclass classification it is multi:softmax 

can be used. multi:softprob can be used if the user wants to output as the 

probability of each data point belonging to each class, it gives 𝑛𝑑𝑎𝑡𝑎 ∗  𝑛𝑐𝑙𝑎𝑠𝑠 

vector as result. 

● Number of estimators: It is used for deciding the number of trees in an ensemble 

or it can be seen as a number of boosting iterations.  

● Learning Rate: (also known as eta): In XGBoost decision trees tend to learn 

quickly and it leads to overfitting. The learning rate parameter scales the trees. It 

is used to slow down the learning process and prevent overfitting.  

● Gamma: It is a shrinkage parameter that is used in tree pruning. In the gain 

calculation and tree pruning stages, gamma is used, and nodes with the negative 

gains are pruned. Gamma makes algorithms robust to overfitting.  

● Maximum depth of a tree: It is the depth of a decision tree and affects the model 

complexity. The more the maximum depth, the deeper trees are built, and models 

become more complex. Maximum depth parameter allows the model to better 

examine the relationship of features with each other. 

● Minimum child weight: Basically, it is the minimum sum of weights of instances 

needed in a child node. It used to control overfitting.  

● Subsample: Determines the subsampling ratio of the training instances. In each 

iteration, it is used to sample the original dataset randomly, without replacement. 

This way, each tree is trained with different instances, and it increases the 

variation in the ensemble. 

● Column subsampling: It increases the diversity by adding more randomness to 

the models. This parameter represents column subsampling according to: 

• By tree: column subsampling ratio used to build each tree. 
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• By level: column subsampling ratio used in each depth of a tree.  

• By node: column subsampling ratio used in each node. Random forest 

subsamples the features this way. 

● Evaluation metric: It is used for the evaluation of test data. For regression, it uses 

Root Mean Square Error (RMSE), for classification negative log-likelihood, 

Area Under Curve (AUC), or classification error can be used.  

Besides all these parameters, XGBoost allows users to prevent overfitting with early 

stopping during the training stage. Early stopping is a way to automatically find the 

number of estimators. It stops iterating if the validation score is not improved for a 

predetermined number of iterations. It prevents both overfitting and reduces training 

time (XGBoost Developers, 2020). 

2.3.6.8 Advantages and Disadvantages of XGBoost 

XGBoost has many advantages both increasing the performance of the algorithm and 

providing fast training. The advantages of the algorithm are listed below. 

● XGBoost is a non-parametric method like other tree-based ensemble learning 

methods; the underlying function is not based on an assumption. Therefore, it is 

not necessary to scale, transform or normalize the dataset. 

● XGBoost provides several parameters to control overfitting. Maximum depth of 

tree, learning rate, and controlling weights of child nodes are used to make the 

algorithm more conservative.  

● XGBoost can deal with sparsity with its built-in Sparsity-aware Split Finding 

algorithm. It not only handles missing data or sparseness but also guides to build 

trees when there is missing data. 

● XGBoost uses Parallel Learning so that it distributes subsets of data into several 

machines; multiple CPU cores are used in the training. It increases the 

computation speed. 
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● Using the Approximate Algorithm with Weighted Quantile Sketch and Parallel 

Learning, XGBoost finds splits more efficiently. 

● XGBoost allows trees to grow to a predetermined maximum depth level. Then, 

it starts pruning the tree backward, calculates the gain, and removes the nodes 

with negative gain. Thus, the relationship of the features with each other is better 

examined. In addition to this, each tree has a different complexity, and it leads to 

increased diversity in the ensemble. 

● XGBoost allows both feature and data subsampling. Each tree is trained with 

different observations and features which helps increase diversity and accuracy. 

● XGBoost performs well not only with the large datasets but also with the small 

and medium datasets. Bentéjac et al. (2021), make experiments with datasets 

which have different sizes including relatively small ones. The small datasets 

contain nearly 74 −  583 instance and 4 − 60 features. According to the 

experiment’s results, XGBoost performs well with the small datasets. 

● XGBoost can provide good results with imbalanced data. It has a parameter to 

increase the weight of the minority class scale_pos_weight for classification.  

● XGBoost uses computer resources efficiently with the Casche-aware Access, 

Blocks for Out-of-core Computation, and Parallel Learning.  

● XGBoost has a built-in function to obtain feature importance. It can be used as a 

metric to evaluate a feature. The feature importance can guide other algorithms 

in the feature selection stage. 

Besides all these advantages, XGBoost also has some disadvantages as well. 

● Since it is based on a boosting procedure, XGBoost is sensitive to outliers 

(Rokach, 2010). In each iteration, a model is built based on the previous model’s 

residuals. An outlier has a much larger residual than the other observations.  

XGBoost focuses more on outliers than the other observations.  This can also 

cause overfitting if the XGBoost is not well-tuned (Bentéjac et al., 2021). 

● XGBoost cannot handle categorical features. These types of features need to be 

manually converted to numeric values by the user (Haithm et al., 2021). 
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2.3.7 Comparison of XGBoost and Random Forest 

As both XGBoost and Random Forest provide good predictive performance, one 

might wonder which algorithm is better in which subjects. For this reason, the 

comparison of the two algorithms is presented in Table 2.7. 

Table 2.7 Comparison of XGBoost and Random Forest 

Properties Random Forest XGBoost References 

Hyperparameter 

Tuning 

Less 

hyperparameter to 

tune. 

More 

hyperparameters 

should be 

optimized. 

(Bentéjac et al., 2021; 

Rokach, 2019) 

Overfitting Harder to overfit. May overfit. (Rokach, 2019) 

Model 

Complexity 

A small number 

of deep trees to 

reach the best 

performance. 

Many shallow 

decision trees to 

reach the best 

performance. 

(Bentéjac et al., 2021; 

Rokach, 2019) 

 

Categorical 

features 

Require manual 

encoding. 

Require manual 

encoding. 
(Haithm et al., 2021) 
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Table 2.7 (cont’d) Comparison of XGBoost and Random Forest 

 

Handling 

missing values 

Capable to deal 

with. 

Capable to deal 

with. 

(Chen & Guestrin, 

2016),(Tang & 

Ishwaran, 2017) 

 

Computation 

Speed 
Fast. Faster. 

(Bentéjac et al., 2021; 

Sagi & Rokach, 

2018) 

Predictive 

Performance 
Perform well. 

Perform better 

than Random 

Forest. 

(Bentéjac et al., 2021; 

Rokach, 2019) 

Distributional 

Assumptions 
Nonparametric. Nonparametric. (Tattar, 2018) 

Handling 

imbalance Data 
Can deal with it. Can deal with it. 

(Bentéjac et al., 2021; 

Meng et al., 2018) 

Working with 

small data 

Achieve good 

results. 

Achieve good 

results. 

(Bentéjac et al., 2021) 

 

Pruning 

Strategy 
No prune. 

Depth-first 

strategy. 

(Breiman, 2001; 

Chen & Guestrin, 

2016) 

Robustness to 

outliers 
Robust. Sensitive. 

(Bentéjac et al., 2021; 

Meng et al., 2018; 

Rokach, 2010) 
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According to Rokach (2019) one of the most important hyperparameters of Random 

Forest is the number of features to split at each node and the number of trees. 

However, XGBoost requires much more hyperparameters which should be carefully 

tuned. Bentéjac et al. (2021) compares XGBoost, Random Forest, Gradient 

Boosting, CatBoost, and LightBoost using 28 datasets of different sizes. Bentéjac et 

al. (2021) emphasizes that Random Forest with default hyperparameters can achieve 

comparable results with the well-tuned versions of other ensemble techniques. 

However, they also explain that this can be seen as a drawback because it is hard to 

improve the performance of Random Forest with hyperparameter optimization. 

Bentéjac et al. (2021) shows that well-optimized XGBoost performs better than 

others, while XGBoost's default hyperparameter settings perform worse than other 

ensemble techniques. There is a statistically significant difference between these two 

versions. However, when comparing the default and optimized Random Forest, it is 

observed that the performance decreased by 0.5% with optimized hyperparameters 

in more than half of the datasets used. 

Moreover, Rokach (2019) explains that Random Forest is more robust to overfitting 

whereas boosting-type algorithms can overfit because of the dependent nature of 

boosting. In Random Forest, deep trees are required to reduce bias, while few trees 

are required to reduce variance. Conversely, XGBoost requires shallow trees to 

reduce variance and uses the large number of trees to reduce bias (Rokach, 2019). 

Haithm et al. (2021) mentions that both XGBoost and Random Forest are not capable 

of working with categorical features, so categorical values should be converted to 

numerical values by the user. XGBoost has a Sparsity-aware Split Finding algorithm 

to deal with missing data. Random Forest offers algorithms for imputing missing 

values such as Strawman imputation, Proximity imputation, On-the-fly-imputation 

(Tang & Ishwaran, 2017). 

XGBoost is specifically optimized for higher speed. It uses all resources of the 

computer efficiently and this makes XGBoost faster. Sagi and Rokach (2018) 



 

 

40 

 

mentions that since it supports distributed systems, XGBoost is faster than the other 

methods. Bentéjac et al. (2021) shows that well-optimized XGBoost prediction 

performance is best among all ensemble techniques including Random Forest.  

Since they are tree-based methods, they are both nonparametric methods (Tattar, 

2018). Bentéjac et al. (2021) also compares the ability of these algorithms to deal 

with imbalanced data. They uses Area Under Curve (AUC) as the evaluation metric. 

When comparing XGBoost and Random Forest, they observed that XGBoost 

performed better. Bentéjac et al. (2021) compares the execution speed of these 

ensembles and according to their experiments, XGBoost can be trained 3.5 times 

faster than Random Forest. Interestingly, for multi-class classification problems, 

XGBoost's speed may be worse than Random Forest. The authors explain this as, in 

gradient-boosting type algorithms, one base learner is trained per class. Meng et al. 

(2018) conducts a study to predict whether a traffic accident will occur on the 

highway within a one-hour period. They treat this study as a binary classification 

problem. Since the number of samples of the negative class in the dataset is more 

than the number of samples of the positive class, the problem of imbalanced data 

arises. To solve this, Meng et al. (2018) uses Random Forest, Gradient Boosting, and 

XGBoost algorithms. They give weight to the samples of positive and negative class, 

(higher weight assigned to the positive class) using 𝑠𝑐𝑎𝑙𝑒_𝑝𝑜𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 parameter. 

According to Meng et al. (2018) weighting samples yield significantly better results 

than random undersampling and oversampling. As a result of their study, while GBM 

gives the best performance among all, XGBoost outperforms Random Forest. 

 Bentéjac et al. (2021) makes experiments with many datasets, including small 

datasets. According to the results of their study, both Random Forest and XGBoost 

performed well on small datasets. Although in most of the datasets, XGBoost 

outperforms Random Forest, the prediction results are close to each other.  

In Random Forest, trees are grown to the maximum possible size, and pruning is not 

performed (Breiman, 2001). On the other hand, trees start to be pruned after reaching 
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the fixed maximum depth in XGBoost (Chen & Guestrin, 2016). Random Forest is 

robust to outliers due to its randomness (Breiman, 2001; Meng et al., 2018), whereas 

XGBoost is sensitive to outliers because of its dependent tree structure (Rokach 

2010). 

2.3.8 Comparison of Logistic Regression and Random Forest  

Logistic Regression is a parametric method which is used when the dependent 

variable is categorical (either binary, ordinal or categorical). The dependent variable 

in an Ordinal Logistic Regression model is the probability that the observed category 

for the response, 𝑌, is less than or equal to a certain value, and the model associates 

this probability with a linear function of the controllable factors through a link 

function, 𝑓(. ), as shown in Equation (2.34) (Hosmer and Lemeshow 2000). 

𝑓 (�̂�(𝑌(𝒙) ≤ 𝑖)) = 𝛾𝑖 + �̂�𝒙,   𝑖 = 1,2, … , 𝑚                             (2.34) 

where 𝛾𝑖 denotes the intercept for the model for category 𝑖, and 𝜷 represents the 

vector of model coefficients. The coefficients, 𝜷, are estimated with the Maximum 

Likelihood Estimation (MLE). Finally, the parameter significance test is carried out 

to determine whether the independent variables have a significant effect on the 

response (Dwidarma et al., 2021). There are different link functions available such 

as: logit, normit (probit), gompit (complementary log log) and so on.  The selection 

of link functions is summarized by McCormick et al. (2017) and Orme and Combs-

Orme (2009) as given in Table 2.8. Since the data for the categorical RPD problems 

mostly involve the cases where the higher categories are seen more frequently in the 

data than the others, using complementary log-log would be more appropriate.  
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Table 2.8 Link Functions for Ordinal Logistic Regression (Source: (McCormick et 

al., 2017)) 

Function Form Typical 

Application 

Logit 𝑓(𝑦) = ln (
𝑦

1 − 𝑦
) Evenly distributed 

categories 

Complementary log-

log 
𝑓(𝑦) = ln(− 𝑙𝑛(1 − 𝑦)) Higher categories 

more 

probable 

Negative log-log 𝑓(𝑦) = −ln (− ln(𝑦)) Lower categories 

more 

probable 

Probit 𝑓(𝑦) = 𝜙−1(𝑦), 𝑤ℎ𝑒𝑟𝑒 𝜙−1 is 

the inverse standard normal 

cumulative distribution 

function. 

Latent variable is 

normally 

distributed. 

Cauchit (inverse 

Cauchy) 
𝑓(𝑦) = tan (𝜋(𝑦 − 0.5)) Latent variable has 

many 

extreme values. 

 

If the complementary log-log link is used, the probability that the observed category 

is less than or equal to a certain value at 𝒙 is obtained by Equation (2.35). 

�̂�(𝑌(𝒙) ≤ 𝑖) = 1 −𝑒𝑥𝑝  (− 𝑒𝑥𝑝  (𝛾𝑖  + ∑ �̂�𝑖𝑥𝑖

𝑝

𝑖=1

) ) 

(2.35) 

Logistic Regression holds assumptions that there is a linear relationship between 

independent variables and the link function of the response, there are no extreme 

outliers, there is no multicollinearity between independent variables and the sample 

size is sufficiently large. These are the limitations of Logistic Regression. On the 

other hand, Random Forest and XGBoost are the nonparametric methods which do 

not depend on any assumptions.  

In the literature, Logistic Regression and Random Forest are compared by many 

researchers. If the number of observations is less than the number of independent 

variables, Logistic Regression should not be used (Yoo et al., 2012). Sometimes this 
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can be the case for RPD studies because experimental data may be limited, and the 

controllable factors (independent variables) can be larger than the number of 

experimental points. Gülbudak Dil (2018) compares performance of Random Forest 

and Logistic Regression. She mentioned that Random Forest generally produced 

better results than Logistic Regression, for three different experimental datasets. 

Logistic regression groups missing values in a separate class and labels them as 

“unknown”. Random Forest handles missing values automatically. Variable 

selection with Random Forest is easier than Logistic Regression (Geng, 2006). 

Logistic Regression uses a stepwise option for this purpose, but this option considers 

only a significance level for entering attribute, as a result it may select a noise 

variable which decreases the predictive power.  Also, as mentioned in the above, 

Random Forest does not face an overfitting problem, whereas Logistic Regression 

may overfit if the dataset contains a large number of variables (Geng, 2006).  

The Scikit-learn library proposes a “class weight” option for Logistic Regression to 

handle the imbalance data problem by giving weight to classes. As it is in the 

Random Forest, class weights are inversely proportional to the frequency of the 

classes (Pedregosa et al., 2011). As a result, both algorithms have many advantages 

and may have better features over the other.  

2.3.9 Classification Performance Metrics 

For all the datasets, there are more than two classes in this study. Therefore, all the 

case studies involve multiclass classification.  In addition to that, there are 

imbalanced data problems, as well. Choosing the right evaluation metrics plays an 

important role in this case. For this purpose, imbalanced data metrics are searched. 

He and Ma (2013) divides metrics into two categories: threshold metrics and ranking 

metrics. Threshold metrics are accuracy, error rate, Cohen’s kappa, sensitivity, 

specificity, precision, recall, geometric mean (G-mean) and F-measure. The most 

popular ranking metrics are Receiver Operator Characteristic Curve (ROC) and Area 
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Under ROC Curve (AUC).  He and Ma, (2013) mentioned that most of the metrics 

are highly correlated where the data is balanced. However, these correlations are 

weakened under an imbalanced data situation. The threshold metrics are derived 

from the confusion matrix which is the table that includes actual and predicted class 

values. It includes True Positive (TP), True Negative (TN), False Positive (FP) and 

False Negative (FN). True Positives and True Negatives are correct classifications. 

False Positives are the number of negative instances which are incorrectly classified 

as positive. False Negatives are the number of positive instances which are 

incorrectly classified as negative. For n-class classification problem, confusion 

matrix is obtained as an 𝑛 × 𝑛 matrix which is explained in Table 2.9 (He & Ma, 

2013).  

Table 2.9 Confusion matrix of 𝑛 −class Classification 

 

 

  

  Class−𝑨 Class−𝑩 ⋯ Class−𝒏 Total 

Class−𝑨 𝑁11 𝑁12 ⋯ 𝑁1𝑛 𝐶𝐴 

Class−𝑩 𝑁21 𝑁22 ⋯ 𝑁21 𝐶𝐵 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

Class−𝒏 𝑁𝑛1 𝑁𝑛2 ⋯ 𝑁𝑛𝑛 𝐶𝑛 

 Total 𝐶𝐴 𝐶𝐵 ⋯ 𝐶𝑛  

 

Actual 

Predicted 
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Positive class and negative class are the terms used for binary classification. In the 

multiclass case, the class of interest can be seen as positive class while others 

negative class. The diagonal of the matrix shows the number of correctly predicted 

observations, also called as True Positive (TP), for each class, such as 𝑁11 and 𝑁22. 

Other elements of the matrix represent the number of incorrectly classified 

observations. True Negative (TN) is the correctly classified negative class 

observations by the classifier. False Positive (FP) is an outcome where the model 

incorrectly predicts the positive class. In Table 2.4, 𝑁12, 𝑁1𝑛,  are the FP outcomes 

for Class−𝐴. Another term derived from the confusion matrix is False Negative 

(FN). FN is an outcome where the model incorrectly predicts the negative class.  

𝑁21 and 𝑁𝑛1 are incorrectly classified as class−𝐴, in this case they can be labeled as 

FN. Summation of the rows or columns for each class is equal to each other and 

shows the number of total observations for that class, such as 𝐶𝐴, 𝐶𝐵. 

Selection of the evaluation metric is an important issue for the imbalanced data. For 

the classification algorithms, one of the most preferred evaluation metrics is the 

accuracy score. However, it may provide unrealistic results when working with 

imbalanced data. Since most of the instances belong to the majority class, the 

accuracy score will be high, but this is not reflecting the real case (Brodersen et al., 

2010; He & Ma, 2013; Hossin & Sulaiman, 2015). Accuracy score is formulated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2.36) 

Precision is the rate of TP among all the positive labeled instances. It shows what 

percentage of samples that the classifier labels as positive is actually positive. Recall, 

also called sensitivity or True Positive Rate (TPR), shows the ratio of how many of 

the positive instances are labeled as actually positive. Specificity is the negative class 

version of recall. It is the ratio of correctly classified negative class observations. 

They are formulated as follows (He & Ma, 2013). 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.37) 

 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.38) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 /𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2.39) 

 

G-Mean is another evaluation metric based on TPR and True Negative Rate (TNR) 

and it considers the performance of both minority and majority classes. It is a 

geometric mean of sensitivity and specificity. Since it gives equal importance to all 

classes, g-mean is more sensitive metric than accuracy (He & Ma, 2013).   

𝐺 − 𝑀𝑒𝑎𝑛 =  √𝑇𝑃𝑅 × 𝑇𝑁𝑅 (2.40) 

 

F-measure is basically the harmonic mean of precision and recall. There is a trade-

off between these two metrics. If the precision is high, then the recall tends to be low 

(Meng et al., 2018). In the F-measure calculation 𝛽  is the weighting parameter and 

can take values such as 0.5, 1, 2.  He and Ma (2013), defines f-measure as more 

advanced version of g-mean because of the weighting parameter.  F-measure is 

calculated as: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1 + 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.41) 

 

The Cohen’s Kappa, expresses the level of agreement between two raters. Cohen’s 

kappa measures how much better the classifier performance than the random guess, 

according to the frequency of each class. This is why it is preferred in imbalanced 

data situations. It takes values between −1 to 1. Cohen’s Kappa is calculated as 

(Fernández et al., 2018; Rabby et al., 2020): 
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𝐾 =  
𝑃0 −  𝑃𝑒

1 − 𝑃𝑒
 

 

(2.42) 

𝑃0 is the observed agreement and 𝑃𝑒 is the expected agreement. 

𝑃0 =  
𝑇𝑃 + 𝑇𝑁

𝑁
 

 
(2.43) 

 

𝑃𝑒 =  
(𝑇𝑃 + 𝐹𝑁)

𝑁
×

(𝑇𝑃 + 𝐹𝑃)

𝑁
+

(𝐹𝑃 + 𝑇𝑁)

𝑁
×

(𝐹𝑁 + 𝑇𝑁)

𝑁
 

 

(2.44) 

where 𝑁 is the total number of observations. According to Landis and Koch (1977), 

it can be categorized as: 

Table 2.10 Categorization of Kappa Score 

Kappa Score Agreement Level 

0.8-1.0 Almost perfect 

0.6-0.8 Substantial 

0.4-0.6 Moderate 

0.2-0.4 Fair 

0.0-0.2 Slight 

<0.0 Poor 

 

Since accuracy can be misleading in case of imbalanced data classification 

evaluation, another alternative is balanced accuracy. It reduces the bias of the 

accuracy score, basically it is the average of TP and TN’s (Kidando et al., 2021). For 

𝑛 −class classification is formulated as follows (Brodersen et al., 2010; He & Ma, 

2013): 
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1

𝑛
(
𝑁11

𝐶𝐴
+

𝑁22

𝐶𝐵
+ ⋯ +

𝑁𝑛𝑛

𝐶𝑛
) 

 

(2.45) 

He and Ma (2013) criticizes threshold metric because they assume that class 

imbalance ratio in the training data matches with the test data, however this may not 

always be the case. 

ROC is used for visual comparison of classification models. It shows the 

performance of the models in a coordinate system and a classifier which is close to 

the upper left corner has better performance. It uses False Positive Rate (FPR) and 

TPR in the 𝑥 and 𝑦 axis in the coordinate system, respectively. The most satisfying 

results are obtained when classifier’s performance is near to (0,1).  ROC basically 

shows the trade-off between TPR and FPR. According to He and Ma (2013), ROC 

is well suited to imbalance data because it evaluates performance of each class with 

two different measures which is where it differs from other metrics discussed above. 

The calculation of FPR is as follows: 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (2.46) 

 

 

 

 

 

 

 

 

Area under ROC curve (AUC) is also a commonly preferred metric which is derived 

from ROC curve. It is helpful especially when dealing with an imbalanced dataset. 

Figure 2.4 Illustration of ROC Curve (Source: (H. He & 

Ma, 2013)) 
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AUC is the ability of a classifier to distinguish between classes. For binary 

classification AUC is formulated as follows (Hossin & Sulaiman, 2015): 

𝐴𝑈𝐶 =  
𝑆𝑝 − 𝑛𝑝(𝑛𝑛 + 1)/2

𝑛𝑝 × 𝑛𝑛
 

 

(2.47) 

where 𝑆𝑝 is the sum of all positive observations ranked, 𝑛𝑝 and 𝑛𝑛 denote the number 

of positive and negative observations. Higher AUC means better differentiation 

between classes. One drawback of AUC is computation time for multiclass 

classification (Hossin & Sulaiman, 2015).  

Anaklı (2009) compares the prediction and classification methods and selects the one 

for the quality problem in her M. Sc. thesis study. For this aim, she first applies 

Analytical Network Process (ANP) to find weights for sub-criteria then applied the 

Preference Ranking Organization Method for Enrichment Evaluation 

(PROMETHEE) to rank methods. Anaklı (2009) uses a comprehensive list of criteria 

to find the best method among all machine learning methods. The list involves 

quantitative and qualitative criteria. For quantitative criteria, Anaklı (2009) uses 

common prediction and classification evaluation metrics such as, accuracy, f1-score, 

precision, recall etc. In order to reduce this list and select the best metrics among 

them, Anaklı (2009) conducts a correlation and factor analysis of these metrics. At 

the end, highly correlated measures are eliminated and for each group one measure 

is selected to represent. In the final sub-criteria list, misclassification rate (MCR), 

precision, recall, kappa, stability and AUC are selected for the PROMOTHEE 

application.  

In the literature, for different types of studies the performance of XGBoost and 

Random Forest is compared by researchers. However, selection of the performance 

metric is not only dependent on the algorithms, in fact it actually depends on the 

nature of the data, reason of applying the classification problem and what is trying 

to be obtained at the end of the algorithm. In Table 2.11. classification metrics and 
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the papers which compare Random Forest and XGBoost prefer to use them are 

summarized.  

Table 2.11 Classification metrics used to compare Random Forest and XGBoost 

Metric References 

Accuracy 

Kabiraj et al. (2020), Bentéjac et al., (2020), Jhaveri et al., 

(2019), Quevedo. et al., (2021), Rabby et al., (2020), Bentéjac et 

al., (2020), Senthan et al., (2021), Jhaveri et al., (2019), Rabby et 

al., (2020), Quevedo. et al., (2021) 

Recall 

Kabiraj et al. (2020), Xie et al., (2021), Meng et al. (2018), 

Senthan et al., (2021),Jhaveri et al., (2019), Rabby et al., (2020), 

Quevedo. et al., (2021), Anaklı, (2009) 

Precision 
Kabiraj et al. (2020), Xie et al., (2021), Meng et al. (2018), 

Senthan et al., (2021), Jhaveri et al., (2019), Anaklı, (2009) 

F-1 Score Kabiraj et al. (2020), Xie et al., (2021), Senthan et al., (2021) 

AUC 

Xie et al., (2021), Kidando et al., (2021), Bentéjac et al., (2020), 

Çelik and Osmanoğlu, (2019), Quevedo. et al., (2021), Anaklı, 

(2009) 

Kappa Rabby et al., (2020), Anaklı, (2009) 

Balanced 

Accuracy 
Kidando et al., (2021) 

Specificity 
Kabiraj et al. (2020), Rabby et al., (2020), Quevedo. et al., 

(2021) 
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Many researchers preferred accuracy to compare XGBoost and Random Forest, 

followed by precision, recall and AUC. However, in the case studies data is 

imbalanced. Using accuracy can be misleading. To obtain robust results, appropriate 

metrics for imbalance should be selected. Therefore, it is preferred to use precision, 

recall and AUC to compare performance of data mining algorithms with MCDM 

methods.   

2.3.10 Cross-Validation 

Cross-validation is a resampling method to test if models’ performance is valid for 

an independent dataset. In k-fold cross validation, the dataset divided into 𝑘 equal 

distinct subset. In each step, one of the 𝑘 − 1 subsets are used for training and the 

remaining subset is used for testing purposes. Totally, performance of estimator 

measured  𝑘 times (Hand, 2007). The structure of 𝑘-fold cross-validation is shown 

in Figure 2.5. 

Figure 2.5 𝑘-fold Cross Validation (Source: Hand, (2007)) 
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However, it is better to use stratified 𝑘-fold cross validation when the dataset is 

imbalanced (He & Ma, 2013). Stratified 𝑘-fold cross validation preserves the same 

distribution of the original dataset in each fold; therefore, the possibility of not 

showing a rare class in any fold is eliminated. 

2.3.11 Grid Search Cross-Validation  

Grid Search cross-validation (GSCV) is a method that finds the best parameter 

setting for an estimator using all combinations of specified parameter space with the 

cross-validation method with a given performance metric (Buitinck, et al., 2013). 

2.4 Multi-Criteria Decision-Making Methods 

Multi-criteria decision making (MCDM) is a collection of methods which help 

Decision Maker (DM) to make decisions under a conflicting set of criteria and 

objectives. MCDM has a wide range of application areas such as supplier selection, 

customer relationship management, flood risk analysis, financial analysis, and 

disaster management (Ishizaka & Nemery, 2013).  

Discrete-alternative MCDM methods can be chosen in cases where a set of 

alternatives is known and integer valued (Haddad & Sanders, 2018). The most 

common approaches are as follows. 

● Analytic Hierarchy Process (AHP) 

● Analytic Network Process (ANP) 

● Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) 

● VIKOR 

● Preference ranking organization method for enrichment of evaluations 

(PROMETHEE) 

● ÉLimination et Choix Traduisant la REalité (ELECTRE) 
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● Multi-attribute utility theory (MAUT) 

● Multi-Objective Optimization by Ratio Analysis (MOORA) 

AHP is one of the simplest discrete MCDM methods. It divides problem into 

hierarchy levels and constructs a decision tree in this base (Balali et al., 2014). There 

are basically three levels of the hierarchy; goal of the problem, criteria to define 

alternatives and alternatives at the lowest level. Pairwise comparisons are conducted 

at each level with respect to the higher level.  

PROMETHEE (Preference Ranking Organization Method for Enrichment of 

Evaluations) is in the family of outranking methods proposed by Brans and Vincke 

(1984). There are various versions of PROMETHEE proposed in the literature, but 

two common versions are PROMETHEE I and PROMETHEE II. PROMETHEE II 

provides a full ranking of alternatives using aggregated net preference flow (Balali 

et al., 2014; Opricovic & Tzeng, 2007). In PROMETHEE I, pairwise comparisons 

are conducted to compare each alternative. There are some additional parameters to 

be defined at first by the DMs. Each criterion weight is determined appropriately. 

The preference functions are used to define the preference degree between each pair 

of alternatives for each criterion between range [0,1]. There are six types of 

preference function. (1) usual, (2) U-shape, (3) V-shape, (4) level, (5) V-shape with 

indifference and (6) Gaussian. Also, preference threshold, 𝑝, and indifference 

threshold, 𝑞, need to be defined for each criterion. (Balali et al., 2014; Opricovic & 

Tzeng, 2007). Balali et al. (2014) indicates that selecting an appropriate preference 

function can be very difficult for DMs who do not have enough experience. In 

PROMETHEE, first using the preference function, pairwise comparisons are 

conducted to find deviations of each criterion for each pair of alternatives. In the next 

step, the global preference index is calculated for each pair and entering and leaving 

flows are calculated and partial ranking is obtained. Entering flow is the metric which 

shows how an alternative dominates the others. Similarly, leaving flow shows how 

an alternative is dominated by the other alternatives. At the end, aggregating leaving 

and entering flows, net flow is obtained. (Balali et al., 2014; Pohekar & 
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Ramachandran, 2004). Anaklı (2009) uses the PROMETHEE in her thesis study.  

The weights of the sub-criteria are obtained with the Analytic Hierarchy Process 

(AHP). For quantitative criteria, thresholds are determined with DMs, literature, and 

Repeated-ANOVA. However, selection of 𝑝, 𝑣, and the preference function needs a 

DM who has sufficient experience and knowledge, therefore this method is not 

selected for this study. 

The ELECTRE method is proposed by Roy (1996). It involves various alternative 

versions (I, II, III, IV). One of the most widely used one is ELECTRE II for 

outranking. It is based on the idea of concordance and discordance (Opricovic & 

Tzeng, 2007). Like in PROMETHEE, it also uses pairwise comparisons. Strong and 

weak relationships are identified, and global concordance is used to prove that an 

alternative outranks its pair over all criteria. The concordance, discordance indices 

and thresholds are the parameters of the method which are decided by DM. The 

relationship between each pair of alternatives is explained with the concordance and 

discordance values. Pohekar and Ramachandran (2004) mentions that sometimes 

ELECTRE is not able to find preferred alternatives. It is appropriate for the case 

when there are fewer criteria and a relatively large number of alternatives.  

Multi-attribute utility theory (MAUT) uses utility functions to express DM’s 

preference. Utility function is the combination of a set of attributes that can be 

defined additively or multiplicatively (Pohekar & Ramachandran, 2004). 

TOPSIS and VIKOR are the MCDM methods based on distances. In TOPSIS, the 

best solution is the one that is closest to the ideal solution and furthest to the anti-

ideal solution. All information about criteria is gathered in the decision matrix |𝑿|= 

(𝑥𝑖𝑗 ) where 𝑖 = 1, … , 𝑚 and 𝑗 = 1, … , 𝑛. m and n denote the number of alternatives 

and the number of criteria, respectively. The criteria can be in different units (years, 

dollar, kg etc.) (Ceballos et al., 2016; Ishizaka & Nemery, 2013). The method 

consists of five steps as explained below. 

Step 1: Decision matrix is normalized in order to compare different units. 
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𝑛𝑖𝑗 =  
𝑥𝑖𝑗

√∑ 𝑥𝑎𝑗
2𝑚

𝑎=1

  where 𝑖 = 1, … , 𝑚 𝑎𝑛𝑑 𝑗 = 1, . . . , 𝑛. (2.48) 

Step 2: Weighted normalized decision matrix obtained. 

𝒗𝒊𝒋 =  𝑤𝑖 × 𝑛𝑖𝑗 (2.49) 

 

Step 3: Calculate ideal and anti-ideal solutions 

Ideal Solution = 𝑨+ = { 𝑣1
+, 𝑣2

+, … , 𝑣𝑗
+, … , 𝑣𝑛

+} (2.50) 

 

Anti-ideal Solution = 𝑨− = { 𝑣1
−, 𝑣2

−, … , 𝑣𝑗
−, … , 𝑣𝑛

−} 

 
(2.51) 

where 𝑣𝑗
+ =  𝑚𝑎𝑥𝑖(𝑣𝑖𝑗) and 𝑣𝑗

− =  min
𝑖

(𝑣𝑖𝑗) if the 𝑗𝑡ℎ criterion is benefit, otherwise 

𝑣𝑗
+ =  min

𝑖
(𝑣𝑖𝑗) and 𝑣𝑗

− =   𝑚𝑎𝑥𝑖(𝑣𝑖𝑗), 𝑖 = 1,2, … , 𝑚 and 𝑗 = 1, 2, … , 𝑛. 

Step 4: Calculate the distances from ideal and anti-ideal solutions for each 

alternative. 

𝑑𝑖
+ =  √∑ (𝑣𝑖

+ − 𝑣𝑖𝑗)2𝑛
𝑗=1  , 𝑖 = 1, … , 𝑚 

 

(2.52) 

 

𝑑𝑖
− =  √∑ (𝑣𝑖

− − 𝑣𝑖𝑗)2𝑛
𝑗=1  , 𝑖 = 1, … , 𝑚 

 

(2.53) 

Step 5: Calculate the relative closeness coefficient for each alternative. 

𝐶𝑖 =  
𝑑𝑖

−

(𝑑𝑖
− + 𝑑𝑖

+)
 (2.54) 

 

where 𝐶𝑖 is in range [0, 1]. Preferred solution is the alternative with the highest 

relative closeness coefficient (Ishizaka & Nemery, 2013). 

 

There are some differences between TOPSIS and VIKOR pointed out by Opricovic 

and Tzeng (2004). The TOPSIS method use 𝐿2 metric to calculate 𝐶𝑖, while the 

VIKOR method uses 𝐿1 and 𝐿∞ to calculate the final ranking. Moreover, the TOPSIS 



 

 

56 

 

method uses vector normalization, and the VIKOR method uses linear 

normalization. One advantage of VIKOR is being appropriate for DM who has not 

experiences. Both methods provide ranks as result. In VIKOR, alternative which has 

the highest rank, is the one closest to the ideal solution, but this may not be case in 

TOPSIS (Opricovic & Tzeng, 2004). 

 

MOORA is a combination of multiple MODM methods: Ratio System and 

Reference Point. Multi-MOORA also uses Full Multiplicative Form. The general 

steps of the method are given in Figure 2.6.  

Brauers & Zavadskas (2012) mentions conditions that a robust multi-objective 

method should satisfy as follows. 

1. A multi-objective method is more robust if all decision makers interested in 

that problem involve the process.  

2. A multi-objective method which considers all non-correlated objectives is 

more robust than others. 

3. A multi-objective is more robust than others if all interrelations between 

objectives and alternatives are taken into account as a whole rather than the one with 

compare alternatives as pairs. 

4. The method uses non-subjective methods for choice of objectives, parameter 

selection, normalization and giving importance to objectives is more robust than the 

others. 

Figure 2.6 Diagram of Multi-MOORA (Source: (Brauers & Zavadskas, 2012)) 
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5. The method based on cardinal numbers is more robust than the one using 

ordinal numbers. 

6. The multi-objective method which uses recent data is more robust than the 

one that uses old data. 

7. The method which satisfies these six conditions and uses more than one 

multi-objective method is more robust than the one uses only one multi-objective 

method. Robustness increases with the increased number of multi-objective methods 

added to the process. They said that MOORA satisfies these conditions. TOPSIS and 

VIKOR violate the first condition and Euclidean distance in TOPSIS and rectangular 

distance in VIKOR deviates from real ranking. 

 

They compare MODM methods based on computational time, simplicity, 

mathematical calculations, stability, and information type as shown in Figure 2.7. 

Based on this comparison MOORA seems a better approach than the others.  

Multi-MOORA applies vector normalization to generate comparable ratings. 

Hafezalkotob et al. (2019) mentions that TOPSIS and VIKOR are goal or reference 

level models. Both use 𝑙𝑝 -metrics. TOPSIS has two reference points: positive ideal 

solution and negative ideal solution. However, Reference Point Approach sometimes 

cannot differentiate alternatives and give them the same rankings. For Multi-

Figure 2.7 Comparison of Multi-Objective Decision Making Method (Source: 

(Brauers & Zavadskas, 2012)) 
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MOORA the Reference Point Approach uses 𝑀𝑖𝑛 − 𝑀𝑎𝑥 𝑀𝑒𝑡𝑟𝑖𝑐 of Tchebycheff, 

which is calculated as follows.  

𝑟𝑗 =  {max
𝑖

𝑥𝑖𝑗
∗ , 𝑗 ≤ 𝑔; min

𝑖
𝑥𝑖𝑗

∗ , 𝑗 > 𝑔   } 

 
(2.55) 

𝑑𝑖𝑗 =  |𝑤𝑗𝑟𝑗 − 𝑤𝑗𝑥𝑖𝑗
∗ | 

 
(2.56) 

𝑧𝑖 = max
𝑗

𝑑𝑖𝑗 

 
(2.57) 

where 𝑔 is the number of beneficial criteria. The best alternative with this method 

has the minimum utility 𝑧𝑖, the ranking is obtained in ascending order (Hafezalkotob 

et al., 2019). 

Ratio System uses arithmetic weighted aggregation operator and an alternative with 

poor performance on some criteria and good performance in some other criteria may 

be preferred to an alternative that has moderate performance on all criteria. The 

calculations of Ratio System are given below. 

𝑥𝑖𝑗
∗ =  

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 

 

(2.58) 

where 𝑥𝑖𝑗 is the response of alternative 𝑖 on objective 𝑗; 𝑖 = 1, … , 𝑚; 𝑚 is the number 

of alternatives; 𝑗 = 1, … , 𝑛; 𝑛 is the number of objectives.  

𝑦𝑖
∗ =  ∑ 𝑠𝑖𝑥𝑖𝑗

∗

𝑔

𝑗=1

− ∑ 𝑠𝑖𝑥𝑖𝑗
∗

𝑛

𝑗=𝑔+1

 

 

(2.59) 

With 𝑖 = 1, … , 𝑔 as the objectives to be maximized; 𝑖 = 𝑔 + 1, … , 𝑛 as the objectives 

to be minimized. 𝑠𝑖 is the significance coefficient of objective 𝑖 and 𝑦𝑖𝑗
∗  is the total 

assessment with significance coefficients of alternative 𝑗 with respect to all 

objectives. The alternative with the highest value ranked as 1st.  

Full multiplicative form is an incompletely compensatory model and uses the 

geometric weighted aggregation. The utility obtained with the product of weighted 
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normalized alternatives on beneficial criteria is divided by the product of weighted 

alternatives on cost criteria. Results are sorted in decreasing order, the alternative 

with the highest utility ranked as best. 

𝑢𝑖 =  
∏ (𝑥𝑖𝑗

∗ )
𝑤𝑗

 
𝑔
𝑗=1

∏ (𝑥𝑖𝑗
∗ )

𝑤𝑗𝑛
𝑗=𝑔+1  

 (2.60) 

 

With Reference Point Approach, Ratio System and Full Multiplicative Form, 

subordinate rankings are obtained and combined to obtain a more robust ranking list 

than individual ranking. In that part, dominance theory is used in the original Multi-

MOORA and preferred by researchers mostly. 

Ceballos et al. (2016), compare VIKOR, TOPSIS and Multi-MOORA. Their 

experimental setup consists of randomly generated MCDM problems, totally 1600. 

They found that VIKOR is sensitive to parameter setting, and Multi-MOORA and 

TOPSIS produce very similar results. Also, advantages of Multi-MOORA are listed 

as, less computational time, easy to implement and produce stabilized quantitative 

results (Chakraborty, 2011; Hafezalkotob et al., 2019). Multi-MOORA and TOPSIS 

are used to compare performances of different data mining algorithms in this study.  
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CHAPTER 3  

3 PROPOSED METHOD 

For RPD studies with ordinal response, many data mining algorithms are used to 

analyze data. One of them is Logistic Regression (Erdural, 2006; Erişkin et al., 2021; 

Karabulut, 2013). Gülbudak (2018) proposes a method for RPD with ordinal 

response and uses Random Forest. In this study, XGBoost is also taken into 

consideration because of its good features as mentioned in the literature review. After 

tuning the hyperparameters of the methods for four data sets, the performance of 

these algorithms is compared with TOPSIS and Multi-MOORA. A sensitivity 

analysis is also performed for TOPSIS. As a result, XGBoost and Random Forest 

have better performance than Logistic Regression. Since Random Forest is easier to 

implement, it is chosen for the rest of the analysis.  

Then, the proposed method for RPD with a categorical response, flowchart of which 

is given in Figure 3.25, is explained. The method predicts category probabilities at 

each experimental trial using RF and calculates median and COV at each 

experimental trial using these probabilities. Empirical models of the median and 

COV are built as functions of design parameters. Using these empirical models, a 

nonlinear optimization model is solved to find the levels of design parameters that 

produce desired median value and minimize the COV. The method is applied to three 

different case studies. One of them is a smaller-the-better type of problem and others 

are larger-the-better type of problems, all have multiple classes.   

3.1 Comparison of Data Mining Algorithms 

Four different datasets are used to compare the performance of Random Forest, 

Logistic Regression and XGBoost. Before starting the comparison, the 
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hyperparameters of each algorithm are tuned. Afterwards, repeated stratified 3-fold 

cross validation is applied to algorithms. Then, TOPSIS and Multi-MOORA are 

applied to the average of test results for precision, recall and AUC.  

XGBoost (XGB), Random Forest (RF), and Logistic Regression (LR) are applied to 

four experimental datasets. In this section, how to tune hyperparameters of each data 

mining algorithm, and comparison of performance of each model are explained. 

Moreover, the best model is selected for each of these datasets applying cross 

validation and MCDM methods. 

3.1.1 Surface Defect Data  

The detailed explanation of the dataset for surface defect case study is provided 

below. 

When there is a skewed distribution between classes in the dataset, an imbalanced 

data problem occurs.  Brownlee (2020) categorizes imbalance data as slightly 

imbalance where number of observations between majority and minority classes are 

different in a small amount (e.g. 5:8), and severe imbalance where there is a high 

degree of difference between majority and minority classes (1:100 or more).  

Imbalance ratio is defined as the number of instances in the largest class divided into 

the number of instances in the smallest class (Mullick et al., 2020).  
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The distribution of the classes is shown in Figure 3.1, 30% of the observations 

belong to Class I. The distribution of observations in other classes are 

17%, 17%, 14%, 22%, respectively. It can be said that the data is slightly 

imbalanced. Therefore, it is preferred to use a repeated stratified 3-fold cross 

validation in the GSCV method to reduce the imbalance effect. 

To obtain the best parameters, the GSCV and model specific methods are used. 

Performance criteria are selected as AUC for RF because all the datasets are 

imbalanced, and log loss for XGB since XGBoost uses log loss function to optimize 

trees. To select parameter space for Random Forest and XGBoost, a similar setting 

is applied as Ceballos et al. (2016) uses. These values are given in Table 3.1. 

 

30% 

17% 17% 

14% 

22% 

Figure 3.1 The Distribution of Classes in Surface Defect Data 
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3.1.1.1 XGBoost Tuning 

Using the best parameters in Table 3.1, the number of estimators is found with the 

built-in cross validation in XGBoost (XGBoost Developers, 2020). The cross-

validation results are represented for both Log Loss and AUC metrics in Figures 3.2 

and 3.4. Different numbers of trees are tried between 100 to 1,000.  

 

 

 

 

 

 

Figure 3.2 XGB, The Number of Trees versus Log Loss for Surface Defect 

Data 
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In Figure 3.3, the gap between train and test data increases after 100 iterations (trees). 

Selecting the number of trees as a high number may cause an overfitting problem. 

Also, AUC results do not change after 100 iterations. Therefore, the number of trees 

for XGB model is selected 100. 

3.1.1.2 Random Forest Tuning  

Both GSCV as mentioned above and OOB error are used to tune the Random 

Forest model to double check results. GSCV results are provided in Table 3.1. The 

Figure 3.3 XGB, The Number of Trees versus AUC for Surface Defect 

Data 
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two important hyperparameters of Random Forest are tuned using OBB error. The 

obtained results are given in Figures 3.4 and 3.5. 

 

The lowest OOB error is 0.518 for RF where number of estimators is 1400. This 

result is also validating what is obtained with the GSCV results. So, the number of 

estimators (trees) for RF is selected as 1400. OOB error rate is constant, so GSCV 

results are used as 𝑚𝑎𝑥 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 in this model.  

 

Figure 3.4 RF 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 versus OOB error for Surface Defect Data 

Figure 3.5 RF 𝑚𝑎𝑥 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 versus OOB error for Surface Defect Data 
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OOB error rate is constant, so GSCV results are used as 𝑚𝑎𝑥 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 in this 

model. 

3.1.1.3 Performance Results of Models 

After using these hyperparameters, models are fitted to surface defect data and 

obtained performance results are given in Table 3.2, Table 3.3, and in Figure 3.6.  

Table 3.2 Performance Results for XGB, RF, RF_B, LR for Surface Defect Data  

Model Accuracy F1-score Balanced 

Accuracy 

Kappa G-mean AUC 

XGB 60% 60% 56% 48% 54% 88% 

RF 59% 59% 57% 48% 57% 88% 

LR 58% 58% 55% 47% 55% 83% 
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In overall, no method is clearly having better results. For accuracy and F-1 score, 

XGB has the best performance while for balanced accuracy and g-mean, RF shows 

better performance than the others. AUC is the same for XGB and RF methods. LR 

results are slightly worse than XGB and RF. Selecting the best method considering 

these results can be misleading in this stage.  

3.1.2 Inkjet Printer Data 

The detailed explanation about the dataset is given in the subsequent paragraphs.  

 

Figure 3.6 Confusion Matrices (a) XGB, (b) RF, (c) LR for Surface Defect 

Data 
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As it can be seen in Figure 3.7, Class I has most of the data. 48% of the data belongs 

to Class I and 18%, 13%, 21% of the data belongs to other classes, respectively. 

Based on these, it can be said that inkjet printer data is slightly imbalanced. Similar 

to Surface Defect data, imbalanced data problem is handled using stratified 3-fold 

cross validation in Grid Search method. The selected hyperparameters are provided 

in Table 3.4.

48% 

18% 
13% 

21% 

Figure 3.7 Class Distribution of Inkjet Printer Data 
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3.1.2.1 XGBoost Tuning 

 The best parameters in Table 3.4 are used to find the number of estimators 

(𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) for XGB. The cross-validation results are represented for both Log 

Loss and AUC metrics in Figures 3.8 and 3.9. Different numbers of trees are tried 

between 100 to 1,000. 

 

 

 

 

 

 

Figure 3.8 XGB, The Number of Trees versus Log Loss for Inkjet Printer 

Data 
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 AUC is at satisfactory level and stable after 100 iterations. Also, as the number of 

iterations increase, the gap between training and test results grows for Log Loss. 

Considering all these, 100 is selected as the number of trees.  

Figure 3.9 XGB, The Number of Trees versus AUC for Inkjet Printer Data 
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3.1.2.2 Random Forest Tuning  

GSCV results are provided in Table 3.4. The two important hyperparameters of 

Random Forest are tuned using OBB error. The obtained results are presented in 

Figures 3.10 and 3.11. 

OOB error is 0.387 where the number of trees is 100. However, it is 0.43 for the 

GSCV result where number of trees is 300. This result conflicts with GSCV due to 

the fact that the GSCV and OOB estimates consider different performance criteria. 

While the GSCV tries to maximize AUC, in OOB estimates, error rate is tried to be 

minimized. Since OOB error provides the unbiased estimate of the true prediction 

error, 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟s is chosen as 100 for RF. 

 

 

 

Figure 3.10 RF 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 versus OOB error for Inkjet Printer Data 
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OOB error rate is constant, so GSCV results are used as 𝑚𝑎𝑥 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 for the 

model. 

3.1.2.3 Performance Results of Models 

In Table 3.5, Table 3.6, and Figure 3.12, overall performance results for XGB, RF, 

and LR are provided. For accuracy and f1-score, XGB has the best performances 

while for balanced accuracy kappa, and g-mean, RF shows better performance than 

the others. LR results are worse than XGB and RF.  

Table 3.5 Performance Results for XGB, RF, LR for Inkjet Printer Data 

Model Accuracy F1-score Balanced 

Accuracy 

Kappa G-mean AUC 

XGB 64% 64% 53% 46% 0 83% 

RF 62% 62% 58% 47% 54% 83% 

LR 54% 54% 54% 38% 50% 77% 

 

 

Figure 3.11 RF 𝑚𝑎𝑥 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 versus OOB error for Inkjet Printer Data 
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3.1.3 Duplicator Data 

The detailed explanation about the dataset is explained in the rest of this section.  

 

 

 

 

 

Figure 3.12 Confusion Matrices (a) XGB, (b) RF, (c) LR 
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55% of the observations belongs to Class II in Figure 3.13. For the other classes, it 

is 17%, 6%, 22%, respectively. Class III has the least number of observations. 

Therefore, there is an imbalanced data problem in this dataset, as well. This problem 

is handled using repeated stratified 3-fold cross validation in Grid Search method. 

The selected hyperparameters are provided in Table 3.7. 

 

17% 

55% 

6% 

22% 

Figure 3.13 Class Distribution of Duplicator Data 
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3.1.3.1 XGBoost Tuning 

 The number of estimators is selected using the results obtained with the GSCV. 

Different numbers of trees are tried between 100 to 1,000 in the cross-validation to 

see the performance of XGB in train and test data. The results are evaluated using 

AUC and Log Loss metrics which are given in Figures 3.14 and 3.15. 

 

 

 

 

 

 

 

Figure 3.14 XGB, The Number of Trees versus Log Loss for Duplicator 

Data 
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Log Loss decreases first and remains stable for train and test after 200 iterations. For 

AUC, training scores increase, and test scores decrease between 26-172 iterations. 

But they are stable after 200 iterations. Thus, the number of trees for XGB model is 

selected as 200.  
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Figure 3.15 XGB, The Number of Trees versus AUC for Duplicator Data 
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3.1.3.2 Random Forest Tuning  

The hyperparameters of Random Forest are tuned using OBB error. The obtained 

results are presented in Figures 3.16 and 3.17. 

 

 

 

 

Figure 3.16 RF 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 versus OOB error for Duplicator Data 

Figure 3.17 RF max _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 versus OOB error for Duplicator Data 
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OOB error is 0.50 where the number of trees is 500. It is decreasing at first and then 

it is stabilized around 0.5. So, 500 is selected as the number of trees, as it is 

validating the GSCV result. It can be seen in Figure 3.18 that OOB error is the lowest 

where 𝑚𝑎𝑥 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is 5. 9, 𝑎𝑛𝑑 12. 12 is selected, since it is parallel to the 

GSCV result.  

3.1.3.3 Performance Results of Models 

In Table 3.8, and Table 3.9, Figure 3.18, overall performance results for XGB, RF, 

and LR are provided. 

Table 3.8 Performance Results for XGB, RF, LR for Duplicator Data 

Model Accuracy F1-score Balanced 

Accuracy 

Kappa G-mean AUC 

XGB 66% 66% 41% 36% 0% 83% 

RF 62% 62% 63% 43% 54% 85% 

LR 53% 53% 64% 36% 60% 85% 
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XGB shows better performance on accuracy and f-1score. AUC is the same for RF 

and LR. Also, the LR model has the highest g-mean and kappa.  

3.1.4 Foam Molding Data 

Due to time limitations, the proposed method could not be applied on this dataset, so 

the details of foam molding dataset presented in this section, as well. This dataset is 

analyzed from Jinks (1987), aim is the reducing voids in a urethane-foam product. 

Then, it is analyzed with different methods (Erdural, 2006; Erişkin et al., 2021; 

Karabulut, 2013). 

There are seven controllable factors and two uncontrollable (noise) factors. They are 

tabulated in Table 3.10. The response variable has three levels: very good (I), 

Figure 3.18 Confusion Matrices (a) XGB, (b) RF, (c) LR for Duplicator Data 
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acceptable (II), and needs repair (III). Therefore, it is a smaller-the-better type of 

problem.  

Table 3.10 Controllable and Uncontrollable Factors and Their Levels for Foam 

Molding Data 

Controllable Factors Levels 

0 1 

A. Shot Weight 185 250 

B. Mold Temperature 70℉ 120℉ 

C. Foam Block use do not use 

D. RTV Insert use do not use 

E. Vent Shell vented unvented 

F. Spray Wax Viscosity 2:1 4:1 

G. Tool Elevation level elevated 

Uncontrollable Factors 0 1 

H. Shift second third 

I. Shell Quality good bad 

 

8 different experiments are conducted, so 𝐿8 orthogonal array is used for this 

experiment. For each experimental setting, different levels of noise factors are 

included into the study and 10 repetition is applied. As a result, the number of 

observations in this dataset is 8 × 4 × 10 = 320. The dataset is given in Table 3.11.  
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Table 3.11 Experimental Dataset for Foam Molding Case 

Exp. 

No 

Factors H(1)/ I(1) H(0)/ I(1) H(1) / I(0) H(0) / I(0) 

A B C D E F G I 

 

II 

 

III I 

 

II 

 

III I 

 

II 

 

III I 

 

II 

 

III 

1 0 0 0 0 0 0 0 3 6 1 6 4 0 1 4 5 0 10 0 

2 0 0 0 1 1 1 1 0 3 7 3 4 3 0 6 4 0 7 3 

3 0 1 1 0 0 1 1 0 0 10 0 1 9 0 0 10 0 0 10 

4 0 1 1 1 1 0 0 0 0 10 0 10 0 0 3 7 0 9 1 

5 1 0 1 0 1 0 1 3 5 2 3 7 0 3 5 2 1 6 3 

6 1 0 1 1 0 1 0 2 8 0 4 5 1 0 5 5 1 5 4 

7 1 1 0 0 1 1 0 2 7 1 2 5 3 2 7 1 1 6 3 

8 1 1 0 1 0 0 1 0 4 6 1 7 2 0 4 6 0 3 7 

 

The noise factors cannot be used for the calculations, so the resulting dataset is in 

Table 3.12. 
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Table 3.12 The Final Dataset for Foam Molding Case 

Exp. No Factors Classes 

A B C D E F G I 

 

II 

 

III 

1 0 0 0 0 0 0 0 10 24 6 

2 0 0 0 1 1 1 1 3 20 17 

3 0 1 1 0 0 1 1 0 1 39 

4 0 1 1 1 1 0 0 0 22 18 

5 1 0 1 0 1 0 1 10 23 7 

6 1 0 1 1 0 1 0 7 23 10 

7 1 1 0 0 1 1 0 7 25 8 

8 1 1 0 1 0 0 1 1 18 21 
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49% of the observations belongs to Class II. 12% of the observations belong to Class 

I and 39% of them belong to Class III. Class I has less observations than the other 

two classes, this dataset is slightly imbalanced like the other datasets, as well. This 

problem is handled using repeated stratified 3-fold cross validation in Grid Search 

method. The selected hyperparameters are provided in Table 3.13.

12% 

49% 

39% 

Figure 3.19 Class Distribution of Foam Molding Data 
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3.1.4.1 XGBoost Tuning 

 Using the parameters in Table 3.13, the best value the number of estimators 

(𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) is selected using Log Loss and AUC. These results are represented 

for both log loss and AUC metrics in Figures 3.20 and 3.21. Different numbers of 

trees are tried between 100 to 1,000. 

 

 

 

 

 

 

 

Figure 3.20 XGB, The Number of Trees versus Log Loss for Foam 

Molding Data 
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Log Loss is decreased and stable for train and test after 100 iterations. For AUC, 

train and test results are close to each other and stable around 0.75. Thus, the number 

of trees for XGB model is selected as 100.  
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Figure 3.21 XGB, The Number of Trees versus AUC for Foam Molding 

Data 
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3.1.4.2 Random Forest Tuning  

The hyperparameters of Random Forest are tuned using OBB error. The obtained 

results are presented in Figures 3.22 and 3.23. 

OOB error is increasing as the number of trees increases. The number of trees 

parameter is selected as 300 where OOB error is 0.65.  

OOB error is constant for each maximum feature, so the GSCV result is selected 

for this parameter. 

Figure 3.22 RF 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 versus OOB error for Foam Molding Data 

 

Figure 3.23 RF 𝑚𝑎𝑥 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 versus OOB error for Foam Molding Data 
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3.1.4.3 Performance Results of Models 

In Table 3.14 and 3.15, Figure 3.24, overall performance results for XGB, RF, and 

LR are given. 

Table 3.14 Performance Results for XGB, RF, LR for Foam Molding Data 

Model Accuracy F1-score Balanced 

Accuracy 

Kappa G-mean AUC 

XGB 62% 62% 45% 28% 0% 73% 

RF 42% 42% 55% 20% 43% 72% 

LR 40% 40% 55% 20% 0% 72% 

 

Table 3.15 Recall, Precision, and Specificity Results for XGB, RF, LR for Foam 

Molding Data 

Model Recall Precision Specificity 

Class 

I 

Class 

II 

Class 

III 

Class 

I 

Class 

II 

Class 

III 

Class 

I 

Class 

II 

Clas

s III 

XGB 0% 88% 48% 0% 57% 75% 100% 37% 90% 

RF 89% 14% 61% 21% 55% 64% 55% 89% 78% 

LR 89% 0% 75% 21% 0% 59% 55% 100% 66% 
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XGB shows better performance on accuracy, f-1 score, kappa, and AUC. The RF 

model has the best performance on g-mean.  

3.2 Selecting The Best Method 

Stratified 3-fold cross-validation with 3 repetitions is used to validate the models. 

Recall, precision, and AUC test results are selected as performance measures (see 

Section 2). The performance results are given in Appendix B. 

To check if there is an underfitting or overfitting in our models, the performance is 

compared with both train and test sets. For all the datasets, it is observed that train 

and test result are close to each other. Only big differences are in duplicator data. 

Figure 3.24 Confusion Matrices (a) XGB, (b) RF, (c) LR for Foam Molding 

Data 
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There is a relatively large differences compared to other results up to 16% on 

average between train and test data for RF and LR models. However, this difference 

is not big enough to consider as overfitting. Also, these results are quite close to the 

XGB results in the same dataset.  

This stage is also useful to see the overall performance of our models. In general, 

cross-validation results are similar to the results that are shown in previous stages. 

Precision and recall at this stage are calculated as class level and the average of those 

used to obtain a single metric.  

After this step TOPSIS and Multi-MOORA are applied to the average of the test 

results to rank the models with respect to their performances on recall, precision and 

AUC criteria. Also, a sensitivity analysis is conducted to TOPSIS to see the effect of 

each criterion. Two different weighting strategies are adopted: equal weights and 

entropy weights. For entropy weights, Shannon entropy is calculated to determine 

disorder degree of criteria (Li et al., 2011). The formula of entropy is given below. 

Let 𝑥𝑖𝑗 is the value of alternative 𝑖 on criteria 𝑗. 

The benefit criteria are standardized as follows. For cost criteria, it is the same 

calculation with the 𝑚𝑖𝑛 function instead of 𝑚𝑎𝑥. 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

max
𝑗

𝑥𝑖𝑗  
 , 𝑖 = 1, … , 𝑚; 𝑗 = 1, … 𝑛 

 

(3.1) 

Entropy of the jth criterion is determined by Equation (3.2). 

𝐻𝑗 = − 
∑ 𝑓𝑖𝑗 × 𝑙𝑛 𝑓𝑖𝑗

𝑚
𝑖=1

𝑙𝑛 𝑚 
, 𝑖 = 1, … , 𝑚; 𝑗 = 1, … 𝑛 

 

(3.2) 

wherein: 

𝑓𝑖𝑗 =
𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑚
𝑖=1

, , 𝑖 = 1, … , 𝑚; 𝑗 = 1, … 𝑛 

 
(3.3) 

Entropy weight of the jth criterion is determined by Equation (3.4) 
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𝑤𝑗 =
1 − 𝐻𝑗

𝑛 − ∑ 𝐻𝑗
𝑛
𝑗=1

, 𝑗 = 1, … 𝑛 

 

(3.4) 

 

The detailed calculations are given in Appendices C to F and the summary of the 

results are given in Table 3.16. 

Table 3.16 Results of TOPSIS and Multi-MOORA 

  Method 

  

TOPSIS 

Equal 

Weight 

TOPSIS 

Entropy 

Weights 

Multi-

MOORA 

Equal Weights 

Multi-

MOORA 

Entropy 

Weight 

DataSet Alt. Rank Rank Rank Rank 

Surface 

Defect  

RF 2 2 2 2 

LR 3 3 3 3 

XG

B 1 1 1 1 

Duplicator 

RF 2 2 2 2 

LR 3 3 3 3 

XG

B 1 1 1 1 

Inkjet 

Printer 

RF 1 1 1 1 

LR 3 3 3 3 

XG

B 2 2 2 2 

Foam 

Molding  

RF 1 1 1 1 

LR 2 2 2 2 

XG

B 3 3 3 3 

 

For surface defect and duplicator cases, XGBoost ranked as 1st and Random Forest 

is the 2nd. It is noticed that, for inkjet printer data, Random Forest is ranked as 1st, 

followed by XGBoost. For these three datasets, Logistic Regression is the least 

preferable one. However, for the foam molding dataset, Logistic Regression ranked 

as 2nd and XGBoost model is ranked as last. For all methods, TOPSIS and Multi-
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MOORA results are the same with each other. Moreover, for two of the datasets 

XGBoost ranked as 1st and for the other two datasets Random Forest is the best. It 

can be said that XGBoost and Random Forest provide better results than Logistic 

Regression. To see the effect of different weightings, a sensitivity analysis is applied 

to TOPSIS for both equal and entropy weights. Results are obtained for different 

weight settings. Similar weighting strategy is adopted from Jiří (2018). Let 𝑤𝑝 is the 

weight of criteria 𝑝 an 𝑤𝑝
′  is the new weight of it. Since sum of the weights of all 

criteria should be 1, this method calculates the other weights as follows. 

𝑤𝑝
′ = 𝑤𝑝 + ∆𝑝,   𝑝 ∈ 1,2, … , 𝑛 

 
(3.5) 

 

𝛾 =
1 − 𝑤𝑝

′

1 − 𝑤𝑝
 

 

(3.6) 

 

𝑤𝑗
′ = 𝛾 ×  𝑤𝑗 , 𝑗 ∈ 1,2, … , 𝑛, 𝑗 ≠ 𝑝  

 
(3.7) 

For example, let 𝑤1 = 𝑤2 = 𝑤3 = 0.333, and ∆1= 0.1. Then,  

𝑤1
′ = 0.33 + 0.1 = 0.43 

𝛾 =
1 − 0.433

1 − 0.333
= 0.85 

𝑤2
′ = 𝑤3

′ = 0.283 

The weights are changed according to this equation and obtained results are given in 

Appendix G.  

For surface defect data, changing the weights does not change the ranking, XGB ≻ 

RF ≻ LR. For the duplicator data, for lower weight of AUC ranking is XGB ≻ RF 

≻ LR. However, as weight of AUC is increased, the order changes and RF becomes 

the best alternative, RF ≻ XGB ≻ LR. For duplicator data, it can be said that AUC 
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is an important criterion that affects the ranking. Similar situation is observed in 

inkjet data. For lower AUC ranking is RF ≻ XGB ≻ LR, but order change for higher 

AUC as XGB ≻ RF ≻ LR. XGB is the best alternative. Finally, for foam molding 

data for higher weights of recall, ranking is RF ≻ LR ≻ XGB. However, for lower 

level of recall, ranking changes and XGB outperform the LR, RF ≻ XGB ≻ LR.  

As a conclusion, for these datasets, precision is robust to weight changes, ranking is 

not affected by it. For the higher values of AUC, the best method changes. Also, for 

only one dataset it is seen that as recall becomes less important, XGB ranks before 

LR. Among all these results, XGB and RF are selected as the best and LR performs 

worse than those methods and is ranked as last. The performance of Random Forest 

and XGBoost seems close to each other; both perform well for these experimental 

datasets. Any user can use either Random Forest or XGBoost. At this point, Random 

Forest is selected as the data mining algorithm to be used for the rest of the study 

because it is easier to implement compared to XGBoost. 

3.3 Steps of The Proposed Method 

Based on the literature review and analyses performed, it is decided to use RF to 

predict class probabilities and median and COV as measures of location and 

dispersion respectively. Based on these decisions, steps of the proposed method are 

illustrated in Figure 3.25.  
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Step 1: Collect the experimental data  

Montgomery (2020) provides a procedure for designing experiments. The steps of 

the procedure are: 

1. Statement of problem 

2. Selection of factors and the levels 

3. Selection of response variable 

4. Choice of experimental design 

5. Performing the experiment and analyzing the data 

 

The problem should be clearly defined in pre-experiment stage. This step is 

important for understanding the problem and developing the objectives. Afterwards, 

the factors and the ranges of each factor should be decided. Then, the experimenter 

should select the response variable. Here, one important thing is, the response 

variable should provide useful information about the experiment. The steps up to this 

point is, part of pre-experimental planning.  

 

Figure 3.25 Flowchart of The Proposed Method 
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The choice of experimental design step involves selection of run order for the 

experiment, the number of replications, and decision of whether any randomization 

restrictions are used. An experimenter can choose designs such as: Factorial design, 

Fractional Design, Central Composite Design etc. Afterward, experiments are 

performed and monitored to check if everything is working according to the plan, 

and finally results are analyzed using appropriate statistical methods. Taguchi used 

orthogonal designs where an orthogonal array involving 𝑥 (controllable factor 

settings, inner array) is crossed with an orthogonal array involving 𝑧 (noise factor 

settings, outer array). In this type of design every level of a factor occurs with every 

level of other factors the same number of times (Logothetis, 1992; Robinson et al., 

2004).  

An example of the experimental dataset that will be used when the response is 

categorical is given in Table 3.17. Let there are 𝑁 experiments with 𝑟 replications, 

therefore resulting dataset will contain 𝑁 × 𝑟 observations. 𝑥1, … , 𝑥𝑝 be the 

controllable factors (design factors) of product or process and 𝑌 is the ordinal 

response with 𝐾 categories. 𝑦1, … , 𝑦(𝑁×𝑟) is the output of the Random Forest model, 

that is, 𝑦1 is 𝐾 if the 1st observation is classified as Class 𝐾. 
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Table 3.17 An Example Dataset for The Proposed Method 

Obs. 

No. 

Exp. 

No. 

Rep. 

No. 

Design Parameters 

Response of 

The 

Experiment 

𝑥1 𝑥2 ⋯ 𝑥𝑝 𝑌𝑘 

1 1 1 𝑥11 𝑥12 ⋯ 𝑥1𝑝 𝑦1 

2 1 2 𝑥21 𝑥22 ⋯ 𝑥2𝑝 𝑦2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋯  ⋮ 

𝑟 1 𝑟 𝑥𝑟1 𝑥𝑟2 ⋯ 𝑥𝑟𝑝 𝑦𝑟 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱  ⋮ 

(𝑁

− 1)𝑟

+ 1 

𝑁 1 𝑥(𝑁−1)𝑟+11 𝑥(𝑁−1)𝑟+12 ⋯ 𝑥(𝑁−1)𝑟+1𝑝 𝑦((𝑁−1)𝑟+1) 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝑁 × 𝑟 𝑁 𝑟 𝑥(𝑁×𝑟)1 𝑥(𝑁×𝑟)2 ⋯ 𝑥(𝑁×𝑟)𝑝 𝑦(𝑁×𝑟) 
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Step 2: Build Random Forest model  

Random Forest is used to obtain the probability of each class. Therefore, fitting a 

Random Forest model is an important step for the proposed method. The two 

important hyperparameters of Random Forest are number of trees and number of 

attributes used in each node (Breiman, 2001; Sagi & Rokach, 2018). In the proposed 

method, the performance is compared for 100 𝑡𝑜 10,000 trees and 2 𝑡𝑜 𝑝 features. 

To tune these parameters, two different methods are applied.  

● Searching best hyperparameters with Grid Search Cross Validation (GSCV) 

● Tuning these parameters based on OBB Error 

Random Forest is available for various software packages. The Scikit-learn library 

(Pedregosa et al., 2011) in Python 3.10.0 (Python, 2021) is used in this study. Grid 

Search Cross Validation tries to find the best parameter setting based on a predefined 

performance metric. The choice of this performance metric can be done according 

to the type of data. If there is an imbalanced data problem in the dataset, AUC can 

provide a better result (Hossin & Sulaiman, 2015).  

For the OOB error tuning, the Random Forest model is fitted using different values 

for the number of trees and maximum attributes used to split a node and then OBB 

error rates are monitored. The point providing the least OBB error can be used as 

hyperparameter. However, sometimes the result for GSCV and OOB error can be in 

conflict since GSCV tries to maximize a certain performance metric and OBB error 

rates method tries to minimize the error. In such cases, using parameters obtained 

according to the OBB error can be meaningful because OOB error provides unbiased 

estimation compared to cross-validation (Breiman, 2001).  

After obtaining the best parameter setting, the model is fitted, and class probabilities 

are obtained. The Random Forest model is obtained with majority voting. Therefore, 

class probabilities are calculated as the proportion of number of trees which classify 

experiment 𝑖 as 𝑗, to the number of trees in the forest.  

𝑝𝑖�̂� =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑚𝑒𝑛𝑡 𝑖 𝑎𝑠 𝑗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑒𝑠𝑡
 (3.8) 
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where 0 ≤  𝑝𝑖�̂� ≤ 1, 𝑗 = 1, . . , 𝐾, 𝑖 = 1, … , 𝑁  

Step 3: Calculate COV and median  

The estimated probability obtained from Random Forest is used to calculate COV 

and median at this step. The reason of using COV and median to analyze categorical 

data is explained detailly in Section 2. These metrics are calculated for each 

experiment point as follows.  

𝐶𝑂𝑉�̂� = 1 − (
∑ |2𝐹𝑗 − 1|

2𝐾−1
𝑗=1

𝐾 − 1
)

1
2

𝑖 = 1, … , 𝑁 

 

(3.9) 

where 𝐾 is the number of classes (categories).  

𝑀𝑒𝑑𝑖𝑎𝑛𝑖
̂ = (𝑞| ∑ �̂�(𝑌 = 𝑗 | 𝑥𝑖)

𝑞−1

𝑗=1

< 0.5, ∑ �̂�(𝑌 = 𝑗 | 𝑥𝑖)

𝐾

𝑗=𝑞

≥ 0.5),   𝑖

= 1, … . , 𝑁 

(3.10) 

 

𝑁:  Number of experimental data points  

�̂�(𝑌 = 𝑗 | 𝑥𝑖) = Estimated probability of experiment 𝑖 belongs to class 𝑗 

𝐶𝑂𝑉�̂� = Estimated COV for experimental trial 𝑖, 𝑖 = 1, … , 𝑁 

𝑀𝑒𝑑𝑖𝑎𝑛𝑖
̂ = Estimated median of experimental trial 𝑖, 𝑖 = 1, … , 𝑁 

Step 4: Find optimal design parameters with minimum COV and target quality 

level 

In the previous step, COV and median are calculated for each experimental data 

point. In order to obtain the optimal parameter design, empirical models that relate 

COV and median with design parameters are built.  

In order to build the model that estimate COV for any design parameter setting, the 

least square regression is used. Since, median is a categorical measure, it is preferred 
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to build the empirical model of median with Ordinal Logistic Regression. As 

mentioned in Section 2.3.8 different link functions can be used in Ordinal Logistic 

Regression. When the gompit link function is used, the estimated probability that the 

response category (median class) is less than or equal to 𝑗, at control factor level 

combination 𝒙 is obtained using Equation (3.12). Using the fitted model, estimated 

probability that the median class is 𝑗 is obtained by Equations (3.13) and (3.14). 

Then, median class is selected as the one that has the highest probability as shown in 

Equation (3.15). 

𝐶𝑂�̂� =  �̂�0 +  ∑ �̂�𝑖𝑥𝑖

𝑝

𝑖=1
 (3.11) 

�̂�(�̃�(𝒙) ≤ 𝑗) = 1 −𝑒𝑥𝑝  (− 𝑒𝑥𝑝  (𝛾�̂�  + ∑ 𝜃𝑖𝑥𝑖

𝑝

𝑖=1

) ) 

 

 

(3.12) 

�̂�(�̃�(𝒙) = 𝑗) = �̂�(�̃�(𝒙) ≤ 𝑗) − �̂�(�̃�(𝒙) ≤ 𝑗 − 1), 𝑗 = 2,3, … , 𝐾 

 
 (3.13) 

�̂�(�̃�(𝒙) = 1) = �̂�(�̃�(𝒙) ≤ 1) 

 
 (3.14) 

𝑀𝑒𝑑𝑖𝑎𝑛̂ = 𝑎𝑟𝑔𝑚𝑎𝑥(�̂�(�̃�(𝒙) = 1), �̂�(�̃�(𝒙) = 2), … , �̂�(�̃�(𝒙) = 𝐾)) 

 
(3.15) 

where 𝛾�̂�  is the intercept of class 𝑗, 𝑗 = 1, … 𝐾, 𝒙 is the set of controllable factors, 

�̂�(�̃�(𝒙) ≤ 𝑗) denotes the estimated probability that the median class is less than or 

equal to 𝑗 and �̂� and �̂� are the set of regression coefficients.   

Once the COV and median are modeled as functions of the design parameters, a non-

linear optimization model is used to find optimal levels of the design parameters with 

minimum COV and desired median value. The mathematical model for different 

problem types is given in Table 3.18.  
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Table 3.18 Mathematical models for the different types of problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To combine the two objectives into a single objective, rather than minimizing or 

maximizing the median, the bias between optimal median and target level is 

minimized (Ding et al., 2007; D. Lee et al., 2016; D. H. Lee & Kim, 2012). Weighted 

mean square error is used to aggregate these two different objective functions (Ding 

et al., 2007). Equal importances are given to these objectives. The short form of our 

mathematical model is as follows.  

Type of Problem Mathematical Model 

 

Smaller-the-Better 

𝑀𝑖𝑛 𝑀𝑒𝑑𝑖𝑎𝑛̂  = 𝒇(𝑥1, 𝑥2, … , 𝑥𝑝) 

𝑀𝑖𝑛 𝐶𝑂�̂� = 𝒈(𝑥1, 𝑥2, … , 𝑥𝑝) 

𝑠. 𝑡. 

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖  , 𝑖 = 1, 2, … , 𝑝 

𝑀𝑒𝑑𝑖𝑎𝑛̂  ≥ 0 

0 ≤ 𝐶𝑂�̂� ≤ 1 

 

Larger-the-Better 

𝑀𝑎𝑥 𝑀𝑒𝑑𝑖𝑎𝑛̂ = 𝒇(𝑥1, 𝑥2, … , 𝑥𝑝) 

𝑀𝑖𝑛  𝐶𝑂�̂� = 𝒈(𝑥1, 𝑥2, … , 𝑥𝑝) 

𝑠. 𝑡. 

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖  , 𝑖 = 1, 2, … , 𝑝 

𝑀𝑒𝑑𝑖𝑎𝑛̂  ≥ 0 

0 ≤  𝐶𝑂�̂� ≤ 1 
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𝑀𝑖𝑛 𝑤𝑀𝑒𝑑𝑖𝑎𝑛 × (𝑀𝑒𝑑𝑖𝑎ñ − 𝑇)
2

+ 𝑤𝐶𝑂𝑉 × (𝐶𝑂Ṽ)
2
  

𝑠. 𝑡.  

 𝐶𝑂�̂� = 𝛽
0

̂ + ∑ 𝛽
𝑖

̂ 𝑥𝑖

𝑝

𝑖=1

 

 

(3.16) 

 

 

�̂�(�̃�(𝒙) ≤ 𝑗) = 1 −𝑒𝑥𝑝  (− 𝑒𝑥𝑝  (𝛾�̂�  + ∑ 𝜃𝑖𝑥𝑖
𝑝
𝑖=1 ) )   

 (3.17) 

�̂�(�̃�(𝒙) = 𝑗) = �̂�(�̃�(𝒙) ≤ 𝑗) − �̂�(�̃�(𝒙) ≤ 𝑗 − 1), 𝑗 = 2,3, … , 𝐾  

 (3.18)  

�̂�(�̃�(𝒙) = 1) = �̂�(�̃�(𝒙) ≤ 1)  (3.19) 

𝑀𝑒𝑑𝑖𝑎𝑛̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 (�̂�(�̃� = 1), �̂�(�̃� = 2), … , �̂�(�̃� = 𝐾))  

 
 (3.20) 

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, 2, … , 𝑝  

 
 (3.21) 

0 ≤  𝐶𝑂�̂� ≤ 1  

 
 (3.22) 

𝑀𝑒𝑑𝑖𝑎𝑛̂ ≥ 0  (3.23) 

 

where 𝑇 is the target quality level and 𝛽�̂� is the estimated coefficients of design 

parameters. In order to convert argmax function to constraints, binary decision 

variables are included to the model. Therefore, the final model would be like: 

Decision variables:  

�̂�(�̃�(𝒙) = 𝑗) = 𝑇ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑚𝑒𝑑𝑖𝑎𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑖𝑠 𝑗 𝑎𝑡 𝒙, ∀𝑗 =

1,2, . . , 𝐾    

�̂�(�̃� = 𝑚𝑎𝑥)  = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑙𝑙 �̂�(�̃� = 𝑗)′𝑠 .  

 𝑏𝑗 =  {1, 𝑖𝑓 �̂�(�̃� = 𝑗) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 �̂�(�̃� = 𝑗)
′
𝑠  ∀𝑗 = 1,2, . . , 𝐾

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑍𝑗 = {𝑗, 𝑖𝑓  �̂�(�̃� = 𝑗) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 �̂�(�̃� = 𝑗)
′
𝑠 , ∀𝑗 = 1,2, . . , 𝐾

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Mathematical Model: 

𝑀𝑖𝑛 𝑤𝑀𝑒𝑑𝑖𝑎𝑛 × (𝑀𝑒𝑑𝑖𝑎𝑛̂ − 𝑇)
2

+ 𝑤𝐶𝑂𝑉 × ( 𝐶𝑂�̂�)
2
  

𝑠. 𝑡.  

 𝐶𝑂�̂� = 𝛽0̂ + ∑ 𝛽�̂�𝑥𝑖, 𝑖 = 1,2, … , 𝑝𝑝
𝑖=1   (3.21) 

�̂�(�̃�(𝒙) = 1) = 1 −𝑒𝑥𝑝  (− 𝑒𝑥𝑝  (𝛼1̂ + ∑ �̂�𝑖�̂�𝑖
𝑝
𝑖=1 ) )  (3.22) 

�̂�(�̃�(𝒙) = 𝑗) = 1 −𝑒𝑥𝑝  (− 𝑒𝑥𝑝  (𝛼�̂� + ∑ �̂�𝑖𝛽�̂�
𝑝
𝑖=1 ) ) − ∑ �̂�(�̃�(𝒙) =

𝑗−1
𝑘=1

𝑘) ∀𝑗, = 2, … 𝐾    
(3.23) 

�̂�( �̃� = 𝑚𝑎𝑥)  ≤  �̂�(�̃� = 𝑗) + (1 − 𝑏𝑗)  ∀𝑗 = 1,2, . . , 𝐾  (3.24) 

�̂�( �̃� = 𝑚𝑎𝑥) ≥  �̂�(�̃� = 𝑗)  ∀𝑗 = 1,2, . . , 𝐾  (3.25) 

∑ 𝑏𝑗
𝐾
𝑗=1 = 1  ∀𝑗 = 1,2, . . , 𝐾  (3.26) 

𝑍𝑗 = 𝑗 × 𝑏𝑗  ∀𝑗 = 1,2, . . , 𝐾   (3.27) 

𝑀𝑒𝑑𝑖𝑎𝑛̂ =   ∑ 𝑍𝑗
𝐾
𝑗=1   (3.28) 

0 ≤ �̂�( �̃� = 𝑚𝑎𝑥) ≤ 1   (3.29) 

𝑀𝑒𝑑𝑖𝑎𝑛̂  ∈ {1,2, … 𝐾}  (3.30) 

0 ≤  𝐶𝑂�̂� ≤ 1 (3.31) 

𝑏𝑗 ∈ {0, 1} ∀𝑗 = 1,2, . . , 𝐾   (3.32) 

The maximum probability among all probabilities is selected using constraints 3.26 

and 3.27, and the index of it specified with the help of binary decision variable 𝑏𝑗. 

Then, optimal median is selected using constraints 3.29 and 3.30. Note that, decision 

variable 𝑍𝑗 can be 0 or the 𝑗. Therefore, sum of all 𝑍𝑗 would be equal to the optimal 
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median value. This non-linear optimization model is solved to obtain an optimal 

solution with appropriate software. In this study MATLAB / BARON solver is used 

(MathWorks, 2018). 

 

Step 5: Verification of results with Random Forest model  

After obtaining the optimal design parameters, COV, and median, these results are 

tested with the Random Forest model built in step 3. The optimal parameters are used 

to predict class probabilities. For the new estimated probabilities, COV and median 

are calculated again using Equations (3.9) and (3.10) respectively to double check 

optimization results.  

If the results of non-linear model and Random Forest do not parallel each other, the 

following steps should be revisited. 

1. Check whether Random Forest fits data well. Using cross validation, the user 

can compare performance on both train and test data. If there is a large gap 

between these values, there might be an overfitting problem. In that case, 

Random Forest should be built again with a more appropriate hyperparameter 

setting.  

2. Check linear regression and Ordinal Logistic Regression models used for 

estimating COV and median.  

3. Use different starting points for the non-linear optimization model.  

3.4 Case Study I: Surface Defect 

In this section, the proposed method is applied to the surface defect dataset. This case 

study examines defects of deposition of a polysilicon process which is used in 

producing very large scale integrated (VLSI) circuits. Phadke (1989) mentions the 

importance of this process as a large number of wafers are not used due to the 

excessive defects.  
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Step 1: Collect the experimental data 

To minimize defects, Phadke (1989) introduces six controllable factors at three levels 

listed in Table 3.19. These are: Deposition temperature (℃) (A), Deposition pressure 

( 𝑚𝑡𝑜𝑟𝑟) (B), Nitrogen flow (𝑠𝑐𝑐𝑚) (C), Silane flow (𝑠𝑐𝑐𝑚) (D), Settling time (𝑚𝑖𝑛) 

(E), and Cleaning method (F). Data is collected using Taguchi Robust Parameter 

Design. 

Table 3.19 Controllable Factors and Their Levels (Source: (Phadke, 1989)) 

Factors 

Levels 

1 2 3 

A. Deposition temperature (℃) 𝑇0 − 25 𝑇0 𝑇0 + 25 

B. Deposition pressure ( 𝑚𝑡𝑜𝑟𝑟) 𝑃0 − 200 𝑃0 𝑃0 + 200 

C. Nitrogen flow (𝑠𝑐𝑐𝑚) 𝑁0 𝑁0 − 150 𝑁0 − 75 

D. Silane flow (𝑠𝑐𝑐𝑚) 𝑆0 − 100 𝑆0 − 50 𝑆0 

E. Settling time (𝑚𝑖𝑛) 𝑡0 𝑡0 + 8 𝑡0 + 16 

F. Cleaning method None 𝐶𝑀2 𝐶𝑀3 

 

Factor C does not specify an order, so the order of it is changed by Karabulut (2013). 

The rearranged levels of factor C (C') are in Table 3.20. 

Table 3.20 Rearranged Levels of Factor C 

Levels C C' 

𝑁0 1 3 

𝑁0 − 75 3 2 
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Table 3.20 (cont’d) Rearranged Levels of Factor C 

𝑁0 − 150 2 1 

 

Since the objective is minimizing the number of defects, this is a smaller-the-better 

type of problem. Phadke (1989) uses 𝐿18 orthogonal array for this experiment, with 

9 repetitions. Total number of observations in the dataset is 18 × 9 = 162. The 

number of defects is counted on the different areas on the wafer and recorded as an 

ordered categorical variable. These five categories are: no surface defect, very few 

defects, some defects, many defects, and too many defects as provided in Table 3.21. 

In this case, a desirable quality level is obtained with the first class.  

 Table 3.21 Number of Defects for Each Class 

 

 

 

 

 

 

 

The resulting dataset is tabulated as given in Table 3.22: 

Table 3.22 Experimental Dataset for Surface Defects Case 

Exp. 

No. 

Factors Number of Observations by 

Classes 

A B C' C D E F I II III IV V 

Classes Number of Surface Defects 

I 0-3 defects 

II 4-30 defects 

III 31-300 defects 

IV 300-1000 defects 

V 1001 or more defects 
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1 1 1 3 1 1 1 1 9 0 0 0 0 

2 1 2 1 2 2 2 2 5 2 2 0 0 

3 1 3 2 3 3 3 3 1 0 6 2 0 

4 2 1 3 1 2 2 3 0 8 1 0 0 

5 2 2 1 2 3 3 1 0 1 0 4 4 

6 2 3 2 3 1 1 2 1 0 4 1 3 

7 3 1 1 2 1 3 3 0 1 1 4 3 

8 3 2 2 3 2 1 1 3 0 2 1 3 

9 3 3 3 1 3 2 2 0 0 0 4 5 

10 1 1 2 3 3 2 1 9 0 0 0 0 

11 1 2 3 1 1 3 2 8 1 0 0 0 

12 1 3 1 2 2 1 3 2 3 3 0 1 

13 2 1 1 2 3 1 2 4 2 2 1 0 

14 2 2 2 3 1 2 3 2 3 4 0 0 

15 2 3 3 1 2 3 1 0 1 1 1 6 

16 3 1 2 3 2 3 2 3 4 2 0 0 

17 3 2 3 1 3 1 3 2 1 0 2 4 

18 3 3 1 2 1 2 1 0 0 0 2 7 

Table 3.22 (cont'd) Experimental Dataset for Surface Defects Case 
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Step 2 and 3: Build Random Forest model, Calculate COV and median 

After the hyperparameter tuning stage explained in Section 3.1.1.2, the best 

parameter setting is used to fit the model. Class probabilities at each experimental 

trial are estimated using the resulting RF model. Then, these probabilities are used 

to calculate COV and median values by Equations (3.9) and (3.10) respectively. 

Estimated probabilities, cumulative probabilities, and calculated COV and median 

values are given Table 3.23.   
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Among the calculated COV and median values, experiment 1st, 𝐴1𝐵1𝐶′1𝐷1𝐸1𝐹1 

seems as a good alternative. The COV value is 0 and the median is at the most 

desirable level, 1.  On the other hand, experiment 10th (𝐴1𝐵1𝐶′3𝐷3𝐸2𝐹1) can be a 

good alternative to 1st. Its COV value is very close to 0 and median is 1. These are 

the best parameter designs among the ones tested before, but the best parameter 

design can be also in the non-tested designs, as well. To find those designs, a non-

linear optimization problem is solved.  

Step 4: Find optimal design parameters with minimum COV and target quality 

level 

In Table 3.19, factors A, B, C', D and E are given as continuous attributes, and factor 

F is given as nominal. Their original data type is preserved while building the 

regression models.  

For COV, a linear regression is fitted using values in Table 3.23. First, both main 

factors and their two-way interactions are considered as the potential independent 

variables of the regression model. Using the stepwise regression option in Minitab 

20 (2020) and taking significance level to enter or remove a variable as 0.2, an initial 

model is obtained. Then, to find the most significant terms in the model, factors are 

added and removed from the model according to their significance by considering a 

significance level of 0.05. Factor F does not take place in the final model since it is 

not found as significant. In the final model, 𝑅2 and adjusted-𝑅2 are 94.66% and 

90.93%, respectively, which are at satisfactory level. Also, all p-values are less than 

0.05, which means all terms are significant. Then an Ordinal Logistic Regression 

model that relate median with the controllable factors is fitted. Logit, gompit, and 

probit link functions are tried. However, only gompit link function provide 

reasonable results. For fitting the Ordinal Logistic Regression, first all the main 

factors are added to the model and least significant ones are removed. Then, two-

way interactions of the significant factors are added. All p-values obtained with the 

final model are less than 0.05, therefore, all terms are significant. The performances 
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of linear regression and logistic regression models are given in Appendix H. The 

obtained mathematical functions are as follows: 

 𝐶𝑂�̂� =  0.2040 +  0.0956 ×  𝐴 −  0.0770 × 𝐸 −  0.1648 × 𝐵2

+  0.2103 × 𝐸2  +  0.0954 × 𝐴 × 𝐶 −  0.0980 × 𝐴 × 𝐷

+  0.0504 ×  𝐶 × 𝐸 

�̂�(�̃� ≤ 1) = 1 − 𝑒𝑥𝑝 (− 𝑒𝑥𝑝  (7.90192 − 2.61839 × 𝐴 − 2.08751 × 𝐵 −

1.16754 × 𝐸) )   

�̂�(�̃� ≤ 2) = 1 − 𝑒𝑥𝑝 (− 𝑒𝑥𝑝  (11.5900 − 2.61839 × 𝐴 − 2.08751 × 𝐵 −

1.16754 × 𝐸) )   

�̂�(�̃� ≤ 3) = 1 − 𝑒𝑥𝑝 (− 𝑒𝑥𝑝  (12.9148 − 2.61839 × 𝐴 − 2.08751 × 𝐵 −

1.16754 × 𝐸) )   

�̂�(�̃� ≤ 4) = 1 − 𝑒𝑥𝑝 (− 𝑒𝑥𝑝  (14.9553 − 2.61839 × 𝐴 − 2.08751 × 𝐵 −

1.16754 × 𝐸) )   

Factor F is not found as significant in terms of both linear regression and ordinal 

logistic regression models. To find the best parameter design, a non-linear 

optimization problem is solved by using Baron Solver (2018). There are two 

objectives:  

1. Reducing variability, therefore COV is minimized. 

2. Reducing the difference between the response and the target value.  

Weighted Mean Square Error (WMSE) combines these two objectives in a single 

equation. Target quality level is 1, so bias is obtained by subtracting 1 from the 

estimated median. Equal importances are given to COV and median, 𝑤𝑐𝑜𝑣 =

𝑤𝑚𝑒𝑑𝑖𝑎𝑛 = 0.5.  

𝑀𝑖𝑛  0.5 × ( 𝐶𝑂�̂�)
2

+ 0.5 ×  (𝑀𝑒𝑑𝑖𝑎𝑛̂ − 1)
2

  

s.t. 
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 𝐶𝑂�̂� = 0.2040 +  0.0956 ×  𝐴 −  0.0770 × 𝐸 −  0.1648 × 𝐵2 +  0.2103 ×  𝐸2  +

 0.0954 × 𝐴 × 𝐶 −  0.0980 × 𝐴 × 𝐷 +  0.0504 ×  𝐶 × 𝐸  

 �̂�(�̃� = 1) = 1 − 𝑒𝑥𝑝 (− 𝑒𝑥𝑝  (7.90192 − 2.61839 × 𝐴 − 2.08751 × 𝐵 −
1.16754 × 𝐸) )  

�̂�(�̃� = 2) = 1 − 𝑒𝑥𝑝 (− 𝑒𝑥𝑝  (11.5900 − 2.61839 × 𝐴 − 2.08751 × 𝐵 −

1.16754 × 𝐸) ) −�̂�(�̃� ≤ 1) 

�̂�(�̃� = 3) =  1 − 𝑒𝑥𝑝 (− 𝑒𝑥𝑝  (12.9148 − 2.61839 × 𝐴 − 2.08751 × 𝐵 −

1.16754 × 𝐸) ) − �̂�(�̃� ≤ 2) 

�̂�(�̃� = 4) = 1 − 𝑒𝑥𝑝 (− 𝑒𝑥𝑝  (14.9553 − 2.61839 × 𝐴 − 2.08751 × 𝐵 −

1.16754 × 𝐸) )  − �̂�(�̃� ≤ 3)  

∑ �̂�(𝑌 = 𝑖)5
𝑖=1 = 1   

�̂�( �̃� = 𝑚𝑎𝑥) ≤  �̂�(�̃� = 𝑖) + (1 − 𝑥𝑖), ∀𝑖 = 1,2, . . , 5  

�̂�( �̃� = 𝑚𝑎𝑥) ≥  �̂�(�̃� = 𝑖), ∀𝑖 = 1,2, . . , 5  

∑ 𝑥𝑖
5
𝑖=1 = 1, ∀𝑖 = 1,2, . . , 5  

𝑍𝑖 = 𝑖 × 𝑥𝑖 ∀𝑖 = 1,2, . . , 5  

𝑀𝑒𝑑𝑖𝑎𝑛̂ =   ∑ 𝑍𝑖
5
𝑖=1 , ∀𝑖 = 1,2, . . , 5      

�̂�(�̃� = 𝑚𝑎𝑥) ≥ 0  

�̂�( �̃� = 𝑚𝑎𝑥) ≤ 1  

 𝐶𝑂�̂� ≤  1  

 𝐶𝑂�̂� ≥ 0  

𝐴, 𝐵, 𝐶′, 𝐷, 𝐸 ≥ 0  

𝑀𝑒𝑑𝑖𝑎𝑛̂  ∈ {1,2, … 5}  
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By solving this model, the optimal levels of the controllable factors and COV and 

median values at this combination of factor levels are obtained as presented in Table 

3.24. 

Table 3.24 Solutions of Non-Linear Model for Surface Defect Case 

A B C' D E F  𝑪𝑶�̂� 𝑴𝒆𝒅𝒊𝒂𝒏̂  

1 1.8 2.8 1 1 - 0.2092 1 

  

The non-linear mathematical model gives median as 1 and COV as 0.21. Median is 

at the target quality level. Since COV is 0.21, the minimum dispersion level, 0, is 

not achieved with this result. However, it is at a reasonable level and not so high. 

That means, with these factor levels, a manufacturer can produce high-quality 

polysilicon wafers with a low variance. Also, this parameter setting quite similar to 

experiment 11th except factor E. So, optimal parameter design for surface defect case 

is 𝐴1𝐵1.8𝐶′2.8𝐷1𝐸1.  

Step 5: Verification of results with Random Forest model  

These optimal factor levels are used in RF model to test the accuracy of the results 

for each class (category). Estimated class probabilities from the RF, COV and 

median calculated using these estimates in Equations (3.9) and (3.10) respectively 

are given in Table 3.25.  
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As expected, the RF model also estimates the probability of Class I as highest and 

the calculated COV for this probability is similar to what is obtained with the 

optimization. Therefore, these COV and median values are same with the 

mathematical model results.  

The optimal factor levels and the class (category) probabilities in Table 3.25 are 

compared with the optimal solution of Gülbudak Dil (2018). Optimal design for 

Surface Defect data in Gülbudak Dil (2018) is 𝐴1𝐵1.983𝐶2.996𝐷1𝐸2.989𝐹2. In this 

current study, these design parameters are used to estimate the class probabilities 

with RF.  Obtained class probabilities are given in Table 3.26. The comparison of 

class probabilities for the proposed method and Gülbudak Dil (2018) is given in 

Figure 3.26. 

Table 3.26 The Class Probability Estimation of Gülbudak Dil (2018) with RF for 

Surface Defect Data 

�̂�(𝒀 =  𝑰) �̂�(𝒀 =  𝑰𝑰) �̂�(𝒀 =  𝑰𝑰𝑰) �̂�(𝒀 =  𝑰𝑽) �̂�(𝒀 =  𝑽) 

0.8085 0.091 0.0114 0.0277 0.0615 
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Figure 3.26 The Class Probabilities Comparison of Gülbudak Dil (2018) and The 

Proposed Method for Surface Defect Data 

Gülbudak Dil (2018) estimates the first class with higher probability. On the other 

hand, probabilities mostly belong to 1st and 2nd class for the proposed method. 

Especially for Class V, the solution of Gülbudak Dil (2018) has higher probability 

than the proposed method. Since Class V is the worst category, this causes the 

variation. In terms of dispersion, the proposed method gives more robust solution 

the Gülbudak Dil (2018).  

3.5 Case Study II: Inkjet Printer 

This dataset is first published by Logothetis (1992). The dataset is from an 

experimental design to select best ink mixture for inkjet printers. The resulting ink 

mixture should achieve high adhesion on metal and plastic substrace. There are five 
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substances (controllable factors): dye, carbitol, PM, resin, and water. The 

controllable factors and their levels are given in Table 3.27. 

Step 1: Collect the experimental data 

Table 3.27 Controllable Factors and Their Levels for Inkjet Printer Case (Source: 

(Logothetis, 1992)) 

Factors Levels 

0 1 

1. Dye 1% 3% 

2. Carbitol 1.5% 2.5% 

3. PM 6.5% 9.5% 

4. Resin 8% 12% 

5. Water 10% 20% 

 

The quality levels for this case are defined by rubbing. If the ink of the printed code 

removes and code becomes unreadable after 10 rubs, the mixture of ink is classified 

as low quality. On the other hand, if it becomes unreadable after 26 or more rubs it 

has the highest quality ink mixture, Class IV. So, this problem is larger-the-better 

type of problem, quality increases as categories increase. The categories (classes) 

and their ranges are given in Table 3.28.  

Table 3.28 Classes and Their Ranges for the Inkjet Printer Case 

Classes  Range 

Minimum Maximum 

I 1 10 
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II 11 28 

III 19 25 

IV 26 ∞ 

 

Logothetis (1992) uses 𝐿8 orthogonal array, conduct eight different experiments, 

with ten replications. There are 8 × 10 = 80 observations in the dataset. For each 

replication, the resulting ink mixture is classified according to its range of quality. 

The resulting dataset is given in Table 3.29. 

Table 3.29 Experimental Dataset for Inkjet Printer Case (Source: Logothetis 

(1992)) 

Exp. 

No 

Factors Number of Observations 

by Classes 

A B C D E I II III IV 

1 0 0 0 0 0 4 3 3 0 

2 0 0 1 1 1 2 5 1 2 

3 0 1 0 1 1 2 5 1 2 

4 0 1 1 0 0 3 4 2 1 

5 1 0 0 0 1 8 0 1 1 

6 1 0 1 1 0 10 0 0 0 

7 1 1 0 1 0 1 0 3 6 

8 1 1 1 0 1 2 1 1 6 

 

Table 3.28 (cont’d) Classes and Their Ranges for the Inkjet Printer Case  
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Step 2 and 3: Build Random Forest model, Calculate COV and median 

Hyperparameter tuning stage is done using both OOB error and GSCV. Finding the 

best parameter setting is explained and resulting performance of the RF model is 

given in Section 3.1.2.2. The estimated class probabilities obtained with these 

parameters are tabulated in Table 3.30 with the resulting COV and median values.  
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According to Table 3.30, experiments 7th (𝐴1𝐵1𝐶1𝐷0𝐸1) and 8th (𝐴1𝐵1𝐶0𝐷1𝐸0) give 

the most preferred value for median which is Class 𝐼𝑉 but the COV values at these 

settings are 0.2628 and 0.4023, respectively.   

Step 4: Find optimal design parameters with minimum COV and target quality 

level 

First, the regression models for COV and median should be estimated. Similar to 

surface defect case, Linear regression for COV and ordinal logistic regression for 

median is used. According to Table 3.27, all the factors are originally continuous 

variables, and this is preserved while fitting regression models. For linear regression, 

main factors and their two-way interactions are added to the model and using the 

stepwise function in Minitab 20 (2020) with significance level of 0.2 to enter or 

remove a variable an adequate model is obtained. After that, adding significant terms 

and removing unsignificant ones by considering a significance level of 0.05, the final 

model is obtained. In the final model, 𝑅2 and adjusted-𝑅2 are 99.89% and 99.62%, 

respectively, which are at satisfactory level. Also, all p-values are less than 0.05, 

which means all terms are significant.  For median, both main effects and two-way 

interactions are added to the model but none of them are significant, and model’s 

performance does not improve. Therefore, only Factor B is used to fit the model. P-

value of the final model is 0.11 which is higher than 0.05. So, Ordinal Logistic 

Regression has moderate performance on this dataset. The regression performances 

are given and discussed in Appendix I. Resulting mathematical formulations are: 

 𝐶𝑂�̂� =  0.32337 –  0.06023 × 𝐴 +  0.03203 × 𝐶 +  0.31663 ×  𝐸 –  0.2034 ×

 𝐵 × 𝐸 –  0.2983 ×  𝐶 × 𝐷  

�̂�(�̃� ≤ 1) =  1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(−0.180644 − 1.56124 × 𝐵))   

�̂�(�̃� ≤ 2) = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(1.26228 − 1.56124 × 𝐵))  

As it can be seen in Table 3.29, Class 3 is not observed in the prediction results. So, 

these cumulative probabilities only calculated for Class 1, 2, and 4.  
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To find the best design among the tested and non-tested ones a non-linear 

optimization problem is solved using Baron Solver (2018). There are two objectives:  

1. Reducing the categorical variance, minimizing the COV 

2. Obtaining the highest quality level, maximizing the median 

The target quality level is 4, then bias is calculated by subtracting 4 from the 

estimated median. The mathematical model is as follows: 

𝑀𝑖𝑛  0.5 × ( 𝐶𝑂�̂�)
2

+ 0.5 ×  (𝑀𝑒𝑑𝑖𝑎𝑛̂ − 4)
2

  

s.t. 

 𝐶𝑂�̂� =  0.32337 –  0.06023 × 𝐴 +  0.03203 × 𝐶 +  0.31663 ×  𝐸 –  0.2034 ×

 𝐵 × 𝐸 –  0.2983 ×  𝐶 × 𝐷  

�̂�(�̃� = 1) = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(−0.180644 − 1.56124 × 𝐵))     

�̂�(�̃� = 2) = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(1.26228 − 1.56124 × 𝐵)) – �̂�(�̃� ≤ 1) 

�̂�(�̃� = 3) = 0  

∑ �̂�(�̃� = 𝑖)4
𝑖=1 = 1  

�̂�( �̃� = 𝑚𝑎𝑥) ≤  �̂�(�̃� = 𝑖) + (1 − 𝑥𝑖)  ∀𝑖 = 1,2, 3, 4  

�̂�( �̃� = 𝑚𝑎𝑥) ≥  �̂�(�̃� = 𝑖)  ∀𝑖 = 1, 2, 3, 4  

∑ 𝑥𝑖
4
𝑖=1 = 1  ∀𝑖 = 1, 2, 3, 4  

𝑍𝑖 = 𝑖 × 𝑥𝑖 ∀𝑖 = 1, 2, 3, 4  

𝑀𝑒𝑑𝑖𝑎𝑛̂ =   ∑ 𝑍𝑖
4
𝑖=1      

0 ≤ �̂�(�̃� = 𝑚𝑎𝑥) ≤ 1   

0 ≤  𝐶𝑂�̂� ≤  1  

𝐴, 𝐵, 𝐶, 𝐷, 𝐸 ≥ 0  



 

 

130 

 

𝑀𝑒𝑑𝑖𝑎𝑛̂ ∈ {1, 2, 3, 4}  

By solving this model, the optimal levels of the controllable factors and COV and 

median values at this combination of factor levels are obtained as provided in Table 

3.31.  

Table 3.31 Solution of Non-Linear Model for Inkjet Printer Case 

A B C D E  𝑪𝑶�̂� 𝑴𝒆𝒅𝒊𝒂𝒏̂  

1 1 0.3 0.8 0.5 0.2577 4 

 

Median is estimated as 4 and COV is 0.2577. The optimal factor levels are quite 

similar to experiment 7th and 8th.  

Step 5: Verification of results with Random Forest model 

To check consistency between what is obtained by non-linear mathematical model 

and RF, these factor levels are put into the RF.  Class probabilities estimated by RF, 

resulting COV and median values calculated by Equations (3.9) and (3.10) 

respectively are given in Table 3.32.  
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Using these estimated probabilities from the RF model, median and COV are 

calculated as 4 and 0.2628, respectively. These results are parallel to the solution of 

the mathematical model. For some manufacturers, it can be more important to 

produce high quality product and therefore they have tolerance to some degree of 

dispersion. This result can be desirable for such inkjet producers.  

The optimal factor levels and the class (category) probabilities in Table 3.32 are 

compared with the optimal solution of Gülbudak Dil (2018).  Optimal design for 

Inkjet Printer data in Gülbudak Dil (2018) is 𝐴0.905𝐵0.9842𝐶0.4504𝐷0. In this study, 

these design parameters are used to estimate the class probabilities with RF.  

Obtained class probabilities are given in Table 3.33. The comparison of class 

probabilities for the proposed method and Gülbudak Dil (2018) is given in Figure 

3.27. 

Table 3.33 The Class Probability Estimation of Gülbudak Dil (2018) with RF for 

Inkjet Printer Data 

�̂�(𝒀 =  𝑰) �̂�(𝒀 =  𝑰𝑰) �̂�(𝒀 =  𝑰𝑰𝑰) �̂�(𝒀 =  𝑰𝑽) 

0.313 0.0671 0.1866 0.4333 
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Figure 3.27 The Class Probabilities Comparison of Gülbudak Dil (2018) and The 

Proposed Method for Inkjet Printer Data 

The proposed method estimates the target quality level (Class IV) with a higher 

probability than the Gülbudak Dil (2018) and the probabilities are mainly in the Class 

III and Class IV. However, Gülbudak Dil (2018) has higher probability for the worst 

class (Class I), this situation increases the variability and decreases the robustness. 

For this case study, the proposed method performs better in terms of probability 

distributions. 

3.6 Case Study III: Duplicator  

This dataset is collected by Logothetis and Wynn (1994) to select the best parameters 

that affect the paper feeding stage of the duplicator machine. It is also used by 

Karabulut (2013) and Gülbudak (2018) to apply different RPD methods.  

Step 1: Collect the experimental data 

In this experiment, paper sheets are fed to the duplicator and the aim is to select the 

best parameters that provide successful feeding through the duplicator. There are 
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12 controllable factors and one interaction of these factors is used in the data 

collecting step. These factors and their levels are provided in Table 3.34. 

Table 3.34 Controllable Factors and Their Levels for Duplicator Case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The quality level is determined by count of paper feeding and expressed as an 

ordered categorical variable: Class I shows low quality, that is paper feeding is failed. 

Class IV shows the highest quality level, it means 337 or more paper sheets are fed 

Factors Levels 

0 1 

A. Vacuum Header Type Normal Lightweight 

B. Feed cam type  Normal Smoothed 

C. Master cylinder cam Smoothed Normal 

D. Air rifle setting Normal High 

E. Chain gripper release cam Normal Advanced 

F. Paper Weight Bar Spring Without With 

G. Release Blowdown Spray OFF ON 

H. Buckle Setting Normal High 

I. Paperweight Bar Light Heavy 

J. Paperweight Bar Position Normal Back 

K. Impression Roller Setting Normal High 

L. Vacuum Setting Normal High 
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through a duplicator machine. So, this is a larger-the-better type of problem. The 

categories (classes) and their ranges are given in Table 3.35.  

Table 3.35 Classes and Their Ranges for Duplicator Case 

Classes  Range 

I Paper Feeding 

Failed 

II [1, 168] 

III [169, 336] 

IV [337, ∞] 

 

Logothetis and Wynn (1994) uses 𝐿16 orthogonal design therefore 16 different 

parameter settings are included in the experiment. Each experiment is replicated 4 

times, and the obtained quality level is recorded for these runs. There are 16 × 4 =

64 observations in this dataset. The resulting dataset is tabulated in Table 3.36. 

Table 3.36 Experimental Dataset for Duplicator Case (Source: Logothetis and Wynn 

(1994)) 

Exp. 

No. 

Factors Number of 

Observations 

by Classes 

A B C D E F G H FxI I J K L I II III IV 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 

2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 3 0 0 
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Table 3.36 (cont’d) Experimental Dataset for Duplicator Case (Source: Logothetis 

and Wynn (1994)) 

 

 

Step 2 and 3: Build Random Forest model, Calculate COV and median 

Hyperparameter tuning stage is done using both OOB error and GSCV. Finding best 

parameter setting and resulting performance of the RF model is given in the 

beginning of this section. The estimated class probabilities obtained by RF with these 

parameters are given in Table 3.37 with resulting COV and median values.  

3 0 0 0 1 1 1 0 0 0 1 1 1 1 1 3 0 0 

4 0 0 0 1 1 1 1 1 1 0 0 0 0 1 3 0 0 

5 0 1 1 0 0 1 0 0 1 0 0 1 1 0 3 0 1 

6 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 3 

7 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 

8 0 1 1 1 1 0 1 1 0 0 0 1 1 0 2 1 1 

9 1 0 1 0 1 0 0 1 0 0 1 0 1 1 3 0 0 

10 1 0 1 0 1 0 1 0 1 1 0 1 0 2 2 0 0 

11 1 0 1 1 0 1 0 1 0 1 0 1 0 1 3 0 0 

12 1 0 1 1 0 1 1 0 1 0 1 0 1 0 4 0 0 

13 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 2 

14 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 4 

15 1 1 0 1 0 0 0 1 1 1 0 0 1 0 2 0 2 

16 1 1 0 1 0 0 1 0 0 0 1 1 0 1 2 1 0 



 

 

137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E
x
p

. 

N
o
 

𝑷
(𝒀

=
 𝑰

) 

𝑷
(𝒀

=
 𝑰

𝑰)
 

𝑷
(𝒀

=
𝑰𝑰

𝑰)
 

𝑷
(𝒀

=
𝑰𝑽

) 

𝑭
�̂�

(𝑰
) 

𝑭
�̂�

(𝑰
𝑰)

 
𝑭

�̂�
(𝑰

𝑰𝑰
) 

𝑭
�̂�

(𝑰
𝑽

) 
𝑪

𝑶
�̂�

 
𝑴

𝒆
𝒅

𝒊𝒂
𝒏

̂
 

1
 

0
.4

0
1
5
 

0
.5

9
8
5
 

0
 

0
 

0
.4

0
1
5
 

1
 

1
 

1
 

0
.1

7
5
6
 

2
 

2
 

0
.3

9
8
4
 

0
.5

9
9
6
 

0
 

0
.0

0
2
0
 

0
.3

9
8
4
 

0
.9

9
8
0
 

0
.9

9
8
0
 

1
 

0
.1

7
8
4
 

2
 

3
 

0
.3

9
2
2
 

0
.6

0
5
8
 

0
 

0
.0

0
2
0
 

0
.3

9
2
2
 

0
.9

9
8
0
 

0
.9

9
8
0
 

1
 

0
.1

7
7
3
 

2
 

4
 

0
.4

1
1
4
 

0
.5

8
6
8
 

0
.0

0
1
8
 

0
 

0
.4

1
1
4
 

0
.9

9
8
2
 

1
 

1
 

0
.1

7
8
6
 

2
 

5
 

0
.0

0
3
6
 

0
.6

2
1
1
 

0
.0

0
2
0
 

0
.3

7
3
2
 

0
.0

0
3
6
 

0
.6

2
4
7
 

0
.6

2
6
8
 

1
 

0
.3

9
1
1
 

2
 

6
 

0
.2

5
8
7
 

0
.0

0
4
2
 

0
.0

0
6
3
 

0
.7

3
0
8
 

0
.2

5
8
7
 

0
.2

6
2
9
 

0
.2

6
9
2
 

1
 

0
.5

2
7
1
 

4
 

7
 

0
.2

3
6
5
 

0
.1

1
1
0
 

0
.4

1
4
9
 

0
.2

3
7
6
 

0
.2

3
6
5
 

0
.3

4
7
5
 

0
.7

6
2
4
 

1
 

0
.5

3
5
9
 

3
 

8
 

0
.0

0
1
7
 

0
.2

7
2
9
 

0
.4

6
2
5
 

0
.2

6
2
9
 

0
.0

0
1
7
 

0
.2

7
4
6
 

0
.7

3
7
1
 

1
 

0
.3

1
1
7
 

3
 

9
 

0
.3

9
2
3
 

0
.6

0
7
7
 

0
 

0
 

0
.3

9
2
3
 

1
 

1
 

1
 

0
.1

7
4
1
 

2
 

1
0
 

0
.7

0
2
0
 

0
.2

9
6
1
 

0
.0

0
1
8
 

0
.0

0
0
1
 

0
.7

0
2
0
 

0
.9

9
8
0
 

0
.9

9
9
9
 

1
 

0
.1

5
2
5
 

1
 

 T
a
b

le
 3

.3
7
 E

st
im

at
ed

 C
la

ss
 P

ro
b
ab

il
it

ie
s,

 C
O

V
 a

n
d
 M

ed
ia

n
 f

o
r 

D
u
p
li

ca
to

r 
C

as
e
 



 

 

138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
1
 

0
.4

1
8

7
 

0
.5

8
1
3
 

0
 

0
 

0
.4

1
8
7
 

1
 

1
 

1
 

0
.1

7
8
1
 

2
 

1
2
 

0
.0

1
5

3
 

0
.9

8
4
7
 

0
 

0
 

0
.0

1
5
3
 

1
 

1
 

1
 

0
.0

1
0
1
 

2
 

1
3
 

0
.0

0
2

2
 

0
.1

1
8
2
 

0
.4

6
8
3
 

0
.4

1
1
3
 

0
.0

0
2
2
 

0
.1

2
0
4
 

0
.5

8
8
7
 

1
 

0
.2

6
9
9
 

3
 

1
4
 

0
.0

0
5

1
 

0
.0

0
8
7
 

0
.0

0
2
0
 

0
.9

8
4
3
 

0
.0

0
5
1
 

0
.0

1
3
7
 

0
.0

1
5
7
 

1
 

0
.0

2
3
0
 

4
 

1
5
 

0
.0

0
2

6
 

0
.3

5
0
2
 

0
.0

0
6
5
 

0
.6

4
0
8
 

0
.0

0
2
6
 

0
.3

5
2
7
 

0
.3

5
9
2
 

1
 

0
.3

7
9
3
 

4
 

1
6
 

0
.2

7
2

9
 

0
.2

7
0
5
 

0
.4

4
8
7
 

0
.0

0
7
9
 

0
.2

7
2
9
 

0
.5

4
3
4
 

0
.9

9
2
1
 

1
 

0
.3

7
2
2
 

2
 

 T
a
b

le
 3

.3
7
 (

co
n

t’
d

) 
E

st
im

at
ed

 C
la

ss
 P

ro
b
ab

il
it

ie
s,

 C
O

V
 a

n
d
 M

ed
ia

n
 f

o
r 

D
u
p
li

ca
to

r 
C

as
e 

 



 

 

139 

 

According to Table 3.37 experiment 14th (𝐴1𝐵1𝐶0𝐷0𝐸1𝐹1𝐺1𝐻0𝐹𝑥𝐼0𝐼1𝐽0𝐾0𝐿1) gives 

the most preferred value for median which is Class 𝐼𝑉 with a very low COV, 0.0230. 

After this step, empirical models for COV and median are built and a non-linear 

optimization problem is solved to see if there is any better design.   

Step 4: Find optimal design parameters with minimum COV and target quality 

level 

First, the empirical models of COV and median should be built as functions of 

control factors. According to Table 3.34 all the factors are originally categorical 

(nominal) variables, and this is preserved while fitting regression models. For linear 

regression, factors C, D, E, H, FxI, I and K are not found significant for linear 

regression. In the resulting model, 𝑅2 and adjusted-𝑅2 are 88.68% and 83.01%, 

respectively. Also, all p-values less than 0.1, only the p-value of factor F is 0.069, 

therefore, all terms are significant, and performance of the model is at satisfactory 

level. For the median, the main factors are added to the model, but interactions are 

not found as significant. Therefore, only factor H and K is used to fit the model. All 

terms are significant since all p-values are less than 0.01. The regression 

performances are given and discussed in Appendix J. The estimated regression 

models are as follows. 

 𝐶𝑂�̂� =  0.2287 +  0.1982 ×  𝐵1 −  0.0655 ×  𝐹1  −  0.1397 × 𝐴1 × 𝐺1  +

 0.1253 × 𝐺1 × 𝐽1 −  0.1397 × 𝐴1 × 𝐺1 +  0.1253 × 𝐺1 × 𝐽1  −  0.1571 × 𝐺1 ×

𝐿1  

�̂�(�̃� ≤ 1) = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(−3.35636 − 1.158215 × 𝐻1 + 1.59750 × 𝐾1))  

�̂�(�̃� ≤ 2) = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(−0.219923 − 1.158215 × 𝐻1 + 1.59750 × 𝐾1))  

�̂�(�̃� ≤ 3) = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(0.546434 − 1.158215 × 𝐻1 + 1.59750 × 𝐾1))  

To find the best design among the tested and non-tested ones we solve a non-linear 

optimization problem by using Baron Solver (2018). There are two objectives:  
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1. Reducing the categorical variance, minimizing the COV 

2. Obtaining the highest quality level, maximizing the median 

Similar to inkjet printer case, WMSE is used to combine bias and COV in the 

objective function. Target quality level is 4, then bias is calculated by subtracting 4 

from the estimated median. The mathematical model is as follows. 

𝑀𝑖𝑛  0.5 × ( 𝐶𝑂�̂�)
2

+ 0.5 ×  (𝑀𝑒𝑑𝑖𝑎𝑛̂ − 4)
2

  

s.t. 

 𝐶𝑂�̂� =  0.2287 +  0.1982 ×  𝐵1 −  0.0655 ×  𝐹1  −  0.1397 × 𝐴1 × 𝐺1  +

 0.1253 × 𝐺1 × 𝐽1 −  0.1397 × 𝐴1 × 𝐺1 +  0.1253 × 𝐺1 × 𝐽1  −  0.1571 × 𝐺1 ×

𝐿1  

�̂�(�̃� = 1) = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(−3.35636 − 1.158215 × 𝐻1 + 1.59750 × 𝐾1))   
�̂�(�̃� = 2) = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(−0.219923 − 1.158215 × 𝐻1 + 1.59750 × 𝐾1))  −

 �̂�(�̃� ≤ 1) 

�̂�(�̃� = 3) =  1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(0.546434 − 1.158215 × 𝐻1 + 1.59750 × 𝐾1)) −

�̂�(�̃� ≤ 2)   

∑ �̂�(�̃� = 𝑖)4
𝑖=1 = 1  

�̂�( �̃� = 𝑚𝑎𝑥) ≤  �̂�(�̃� = 𝑖) + (1 − 𝑥𝑖)  ∀𝑖 = 1,2, 3, 4  

�̂�( �̃� = 𝑚𝑎𝑥) ≥  �̂�(�̃� = 𝑖)  ∀𝑖 = 1, 2, 3, 4  

∑ 𝑥𝑖
4
𝑖=1 = 1  ∀𝑖 = 1, 2, 3, 4  

𝑍𝑖 = 𝑖 × 𝑥𝑖 ∀𝑖 = 1, 2, 3, 4  

𝑀𝑒𝑑𝑖𝑎𝑛̂ =   ∑ 𝑍𝑖    
4
𝑖=1   

0 ≤ �̂�( �̃� = 𝑚𝑎𝑥) ≤ 1  

0 ≤  𝐶𝑂�̂� ≤  1  

𝐴0, 𝐴1, 𝐵0, 𝐵1, 𝐹0, 𝐹1, 𝐺0, 𝐺1, 𝐻0, 𝐻1, 𝐽0, 𝐽1, 𝐾0, 𝐾1, 𝐿0, 𝐿1 ∈ {0, 1}  



 

 

141 

 

𝑀𝑒𝑑𝑖𝑎𝑛̂  ∈ {1, 2, 3, 4}  

Solution of the model is provided in Table 3.38.  

Table 3.38 Solutions of Non-Linear Model for Duplicator Case 

A B C D E F G H FxI I J K L  𝑪𝑶�̂� 𝑴𝒆𝒅𝒊𝒂𝒏̂  

1 1 - - - 1 1 1 - - 0 0 1 0.0646 4 

 

Median is at the target level, 4, and COV is very small, 0.0646. This parameter 

setting is nearly same with experiment 14th except factor H. The target quality level, 

4, is achieved with this result. However, COV is higher than the ideal value, 0. 

Step 5: Verification of results with Random Forest model 

To check consistency between what is obtained by the non-linear mathematical 

model and RF, class probabilities at the factor levels given in Table 3.37 are 

estimated again with RF.  Estimated class probabilities, COV and median with these 

probabilities computed by Equations (3.9) and (3.10) respectively are given in Table 

3.39.  
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Results of non-linear optimization and the RF model are parallel to each other. Both 

achieve the highest quality level, and estimated COV values are really close to each 

other. Using these parameter designs, 𝐴1𝐵1𝐹1𝐺1𝐻1𝐽0𝐾0𝐿1 337 or more sheets can 

be fed through a duplicator, almost every time.  

The optimal factor levels and the class (category) probabilities in Table 3.39 are 

compared with the optimal solution of Gülbudak Dil (2018). Optimal design for 

Duplicator data in Gülbudak Dil (2018) is 

𝐴0𝐵1𝐶0𝐷1𝐸1𝐹1𝐺1𝐻1𝐹𝑥𝐼0𝐽1𝐾1𝐿1𝐹1𝐺1𝐻1𝐽0𝐾0𝐿1. In this study, these design 

parameters are used to estimate the class probabilities with RF.  Obtained class 

probabilities are given in Table 3.40. The comparison of class probabilities for the 

proposed method and Gülbudak Dil (2018) is given in Figure 3.28. 

Table 3.40 The Class Probability Estimation of Gülbudak Dil (2018) with RF for 

Duplicator Data 

�̂�(𝒀 =  𝑰) �̂�(𝒀 =  𝑰𝑰) �̂�(𝒀 =  𝑰𝑰𝑰) �̂�(𝒀 =  𝑰𝑽) 

0.1048 0.1421 0.2942 0.4229 
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Figure 3.28 The Class Probabilities Comparison of Gülbudak Dil (2018) and The 

Proposed Method for Duplicator Data 

The proposed method estimates target quality level (Class IV) with a higher 

probability and the other class probabilities are much lower than the Gülbudak Dil 

(2018). The estimated probability for the worst class is much higher than the 

proposed method. In this case, the optimal design parameters obtained with the 

proposed method causes less variation than the Gülbudak Dil (2018).  
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CHAPTER 4  

4 DISCUSSION 

In Chapter 3, the best data mining algorithm is tried to be selected. To do this, 

hyperparameter tuning for each model is done and then repeated stratified 3- fold 

cross-validation is used, and test and train results are compared. Moreover, TOPSIS 

and Multi-MOORA methods are applied to the average of test results to rank 

XGBoost, Random Forest, and Logistic Regression. Four datasets are included to 

this study. However, applying these methods to more experimental datasets which 

have different features such as: number of factors, number of experiments, number 

of repetitions, class imbalance ratio, and number of classes will provide more 

accurate understanding about the algorithms.   

In this study, the proposed method is applied to three different case studies which 

have an ordinal categorical response. Median and COV are used as location and 

dispersion measures, respectively. First, a Random Forest model is fitted with 

appropriate hyperparameter setting and then estimated class probabilities are 

obtained. COV and median are calculated using them. Then, regression models to 

estimate median and COV at any settings of controllable factors are built and a non-

linear optimization problem is solved to find the controllable factor levels 

considering both the location (measured by median) and dispersion (measured by 

COV) of the response.  

The proposed method is useful when the response has a categorical order. For some 

of the RDP studies, response can be nominal and the type of problem is nominal-the-

best. Using median for such problems is not meaningful, instead using mode as a 

location measure will provide better results. Furthermore, for this type of problem 

using coefficient of nominal variation (CNV) as a dispersion measure will be more 

appropriate than the COV (Kvälseth, 1995a).  CNV is calculated as follows. 
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𝐶𝑁𝑉 = 1 − (
1

𝑛 − 1
∑ ∑ |𝑝𝑖 − 𝑝𝑗|

2

<𝑗≤𝑛1≤𝑖

)

1
2

 

 

(4.1) 

In RPD studies, there are two common objectives: minimizing the variance and 

minimizing the bias between response and target value. In the proposed method, 

WMSE is used to combine these two objectives into a single objective function.  

𝑤𝑀𝑒𝑑𝑖𝑎𝑛 × (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 − 𝑇𝑎𝑟𝑔𝑒𝑡)2 + 𝑤𝐶𝑂𝑉 × (𝐶𝑂𝑉)2 

 
(4.2) 

𝑤𝑀𝑒𝑑𝑖𝑎𝑛 + 𝑤𝐶𝑂𝑉 = 1 (4.3) 

Since achieving the target value and minimizing the COV is equally important in 

this study, equal weights are given to both objectives. However, for some users it 

can be more important to achieve the lowest variability and they may prefer to 

produce the lowest quality level or vice versa. For such cases, users can define the 

importance levels of COV and median, and the weights in the objective function can 

be arranged according to their preference. Also, Ding et al. (2007) proposed a data-

driven approach for finding weights in WMSE objective function for dual response 

surface optimization. First, marginal optimizations are conducted for each objective 

and ideal points are found. Then, weight of bias is increased slowly from 0 to 1 and 

each obtained solution is recorded. An efficiency curve is plotted with these solutions 

and the weight of the solution close to the ideal solution is selected as the weight.  

To solve non-linear optimization problem, the empirical models of COV and median 

are needed. The least squares regression and Ordinal Logistic Regression are used to 

find them. However, only point estimate is considered in this study. Typically, in 

many RPD studies, uncertainty in noise factors and response models are not 

considered. There might be estimation error since experimental datasets can be 

insufficient for some cases. So, problem about using the point estimate in RPD study 

is that optimal solution obtained from the estimated model may not reflect the true 

model (Ouyang et al., 2016). There are some studies considering interval instead of 
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point estimates (He et al., 2021; He et al., 2012; Ouyang et al., 2016; Xu & Albin, 

2003). He et al., (2012), define a robust desirability function and they try to obtain 

robustness by using the confidence region. They mentioned that one strength of this 

approach is, instead of a point estimate, they considered all values in the confidence 

intervals. These confidence regions are constructed based on standard error of the 

estimated response. After the confidence regions are defined, robust desirability 

function is constructed.  He et al., (2021), conduct a similar study. They keep the 

robust desirability approach as in the He et al., (2012), solve the optimization 

problem interactively. It is an iterative method, in each iteration current solution is 

evaluated by DM. 

Using Ordinal Logistic Regression to estimate the regression model of median has 

some limitations. The drawbacks of Logistic Regression are discussed in Section 2. 

For the future studies, instead of Ordinal Logistic Regression, Multivariate Adaptive 

Regression Splines (MARS) can be useful in this stage. MARS is a nonparametric 

method. So, it is not based on specific assumptions. It is a combination of linear 

regression, the mathematical construction of splines, binary recursive partitioning, 

and intelligent algorithms. The main advantages of MARS are listed as; generating 

simple and easily interpreted models, performing analysis on parameter relative 

importance, and capturing the patterns in high-dimensional data (Zhang & Goh, 

2016). In a RPD study, using a non-parametric and easy-to-interpret method may 

provide better results than Logistic Regression.   
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CHAPTER 5  

5 CONCLUSION AND FURTHER STUDIES 

In this study, a new method is proposed for the RPD problem with an ordinal 

categorical response. According to related literature mentioned in Section 2 and the 

analysis in Appendix A, median and COV are selected as location and dispersion 

measures, respectively.  

The performance of Random Forest, XGBoost, and Logistic Regression are 

compared in the Section 3. For all methods, related hyperparameters are tuned and 

resulting performance of the methods are evaluated with several classification 

metrics using repeated stratified 3-fold cross validation. According to these results 

Random Forest performs better than the others. Then, TOPSIS and Multi-MOORA 

methods are applied to rank these algorithms and select the best one among them. 

Since these datasets are imbalanced, precision, recall and AUC, which are the 

metrics that are highly recommended for imbalance data situations, are used. As a 

weighting method for both MCDM methods, two different strategies are employed: 

equal weighting and entropy weighting. Results for both TOPSIS and Multi-

MOORA are parallel to each other. A sensitivity analysis is conducted with the 

TOPSIS results. According to these, Random Forest and XGBoost are better than 

Logistic Regression. Both can be used in RPD study. However, Random Forest is 

selected because it has fewer hyperparameters to optimize and it is easy to interpret.  

In the proposed method, with Random Forest, estimated class probabilities are 

obtained. Using these probabilities, estimated COV and median are calculated for 

each experimental trial.  
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The empirical models for COV and median in terms of factors are constructed using 

linear regression and Ordinal Logistic Regression, respectively. Then, a non-linear 

optimization problem, which is also tailored to the categorical data, is solved to find 

optimal factor levels which are close to target response with minimum COV. As a 

verification method of the optimal solution, optimal factor levels are put into the RF 

model and class probabilities are estimated this way. Then, COV and median are 

calculated again with these probabilities and compared with the optimization results. 

The performance of the proposed method is shown in three different case studies. 

One of them is a smaller-the-better type problem and other two are larger-the-better 

type problems. For all cases, the method found the target response value. For surface 

defect case, optimal response is found as 4 with a COV value of 0.2092, which 

means target quality level achieved with small level dispersion. In duplicator case, 

resulting COV is close to 0, that means the target is achieved with minimum 

dispersion. On the other hand, for the inkjet case, the obtained COV with optimal 

factor level is greater than the other two studies. In overall, the proposed method 

shows good performance on these three case studies. 

Using confidence intervals instead of point estimate for the sake of uncertainty of 

the estimated models and using MARS algorithm instead of Ordinal Logistic 

Regression can be further research directions (see Section 4). Also, in dual response 

optimization studies, there are posterior (D. Lee, Jeong, et al., 2016) methods that 

apply algorithms first and the optimal results are found using DM’s preference at the 

end of the algorithm. Similarly, there are interactive approaches (D. Lee, Kim, et al., 

2016; D. H. Lee & Kim, 2012), which use DM’s preference to iterate algorithms and 

find optimal factor levels. These approaches can be used in non-linear optimization 

steps for the future studies.  

Interest in robust parameter design is increasing day by day. However, there are few 

studies considering categorical responses. The expected value and variance which 

are appropriate for the interval or ratio scaled data are used to analyze ordinal 
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categorical for the RPD studies in the past. The contribution of this M.Sc. thesis is 

using measures which are appropriate to ordinal data and applying the proposed 

method to different case studies. Also, performance of different data mining 

algorithms is evaluated with four experimental datasets, and Random Forest is found 

to be easy to apply and generating meaningful results for RPD studies. The proposed 

method can be applied to any dataset with an ordinal categorical response. 
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APPENDICES 

A. THE ANALYSIS OF LOCATION AND DISPERSION MEASURES 

A study is carried out to observe the behavior of dispersion measures (namely 𝐿𝑂𝑉,

∆∗, 𝐶𝑂𝑉, 𝐿𝑆𝑄, 𝑂𝑉1, 𝑂𝑉2, 𝑂𝑉2.5, 𝑂𝑉3, 𝑉(𝐼), 𝑑𝑖𝑠𝑝𝑂,2) and location measures (rounded-

𝐸[𝐼], median and expected value) in different probability distributions. The aim is to 

observe whether dispersion and location measures can separate smaller-the-better or 

larger-the-better type of data. As mentioned in the literature review, 𝐿𝑂𝑉 and 𝐶𝑂𝑉 

are measures which belong to the 𝑂�̂�𝛼 family, where 𝛼 = 1 and 𝛼 = 2, respectively. 

Weiß (2019a) examined different values of  𝛼 for 𝑂�̂�𝛼 and suggested taking 𝛼 

between [2, 3]. Therefore, 𝑂𝑉2.5 and 𝑂𝑉3 are added to the study. The variance is also 

included in this study for comparison. In order to see the effects of different category 

numbers on location and dispersion, the study is repeated where the number of 

categories, 𝑚, is from 2 to 10. Dispersion and location measures are examined under 

three different cases. One of the cases is the one that probabilities are in two extreme 

categories 𝑝1 = 𝑝, 𝑝𝑚 = 1 − 𝑝. Other is the one that probabilities are seen equally 

in all categories except one category as 𝑝𝑖 = 0 𝑖 𝜖 {1, … , 𝑚}, 𝑝𝑗 =
1

𝑚−1
∀𝑗 ∈

 {1, … 𝑚} ∖ 𝑖 . Final case is the one that probabilities are seen equally in the two 

categories, as 𝑝𝑖 = 𝑝𝑗 = 0.5 ∀𝑗 ∈  {1, … 𝑚} ∖ 𝑖 . To illustrate the results clearly, all 

these cases are explained where the number of categories is 𝑚 = 4. 

The general results obtained regarding the measures are as follows. The minimum 

dispersion value is obtained in the one-point distribution case, where probability 

mass function (PMF) is 𝑝𝑖 = 1,  and 𝑝𝑗 = 0, ∀𝑗 ∈  {1, … 𝑚} ∖ 𝑖 . Minimum 

dispersion is 0 for  𝐿𝑂𝑉, ∆∗, 𝐶𝑂𝑉, 𝐿𝑆𝑄, 𝑂𝑉1, 𝑂𝑉2, 𝑂𝑉2.5, 𝑂𝑉3, 𝑉(𝐼), 𝑑𝑖𝑠𝑝𝑂,2 and 

variance, 1 for 𝐿𝑆𝑄. In the case of extreme two-point distribution, where probability 

mass function is 𝑝1 = 𝑝𝑚 = 0.5, the maximum dispersion is obtained. Maximum 

dispersion is 1 for 𝐿𝑂𝑉, ∆∗, 𝐶𝑂𝑉, 𝐿𝑆𝑄, 𝑂𝑉1, 𝑂𝑉2, 𝑂𝑉2.5, 𝑂𝑉3 and 0 for 𝐿𝑆𝑄. As the 
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number of categories increases, dispersion values decrease for the probability mass 

function 𝑝𝑖 = 0.5 and 𝑝𝑗 = 0.5 ∀𝑗 ∈  {1, … 𝑚} ∖ 𝑖  except for the extreme two-point 

distribution. It is observed that 𝑉(𝐼) produces the same results as variance and they 

are equal to 𝑑𝑖𝑠𝑝𝑂,2 = 2𝑉(𝐼). Also, if 𝐸[𝐼] is not rounded, it provides the same 

results as expected value.  

The cases in which the probability is observed in two extreme categories are 

examined. Probability distribution by categories for the case where the number of 

categories is 𝑚 = 4 is shown in Table A.1. 

Table A. 1 PMF of Two-point Distribution Cases, where  𝑚 = 4 

 Category-1 Category-2 Category-3 Category-4 

Case-1 1 0 0 0 

Case-2 0.9 0 0 0.1 

Case-3 0.8 0 0 0.2 

Case-4 0.7 0 0 0.3 

Case-5 0.6 0 0 0.4 

Case-6 0.5 0 0 0.5 

Case-7 0.4 0 0 0.6 

Case-8 0.3 0 0 0.7 

Case-9 0.2 0 0 0.8 

Case-10 0.1 0 0 0.9 

Case-11 0 0 0 1 
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Figure A. 1 Dispersion Values Obtained with the Probability Distributions in 

Table A.1 

Table A.2 Dispersion Values Obtained with the Probability Distributions in Table 

A.1 

Cases LOV ∆∗ COV LSQ 𝑶𝑽𝟐.𝟓 𝑶𝑽𝟑 V[I] 𝒅𝒊𝒔𝒑𝟎,𝟐 

Case-1 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

Case-2 0.20 0.36 0.20 0.64 0.20 0.20 0.36 1.62 

Case-3 0.40 0.64 0.40 0.36 0.40 0.40 0.64 2.88 

Case-4 0.60 0.84 0.60 0.16 0.60 0.60 0.84 3.78 

Case-5 0.80 0.96 0.80 0.04 0.80 0.80 0.96 4.32 

Case-6 1.00 1.00 1.00 0.00 1.00 1.00 1.00 4.50 

Case-7 0.80 0.96 0.80 0.04 0.80 0.80 0.96 4.32 

Case-8 0.60 0.84 0.60 0.16 0.60 0.60 0.84 3.78 

Case-9 0.40 0.64 0.40 0.36 0.40 0.40 0.64 2.88 

Case-10 0.20 0.36 0.20 0.64 0.20 0.20 0.36 1.62 

Case-11 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
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The probabilities in Table A.1 are symmetrical with each other. It can be seen in the 

Figure A.1 and Table A.2 that dispersion measures give the same result for cases 

where probabilities are symmetrical, e.g., dispersion of Case-2 is equal to Case-10. 

The measures of the 𝑂�̂�𝛼  family, 𝐿𝑂𝑉, 𝐶𝑂𝑉, 𝑂𝑉2.5, 𝑂𝑉3 provides equal dispersion 

for all cases. The location values calculated for the cases given in Table A.1 are given 

in Figure A.2. 

 

Figure A.2 Location Values Obtained with The Probability Distributions in Table 

A.1 

The expected value shows a linear increase as seen in Figure A.1. The rounded-𝐸[𝐼] 

increases more frequently, while the median increases with longer intervals. The 

probabilities that are seen equally in all categories except one category are discussed, 

as well. When the number of categories is 𝑚 = 4, probabilities of the categories are 

given in Table A.3. 

Table A.3 PMF of Equal Probability Cases, where  𝑚 = 4 

Cases Category-1 Category-2 Category-3 Category-4 

Case-1 0.33 0.33 0.33 0 

Case-2 0.33 0.33 0 0.33 

Case-3 0.33 0 0.33 0.33 

Case-4 0 0.33 0.33 0.33 
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Location Values, m=4
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Figure A.3 Dispersion Values Obtained with the Probability Distributions in Table 

A.2 

Table A.4 Dispersion Values Obtained with the Probability Distributions in Table 

A.2 

Cases LOV ∆∗ COV LSQ 𝑶𝑽𝟐.𝟓 𝑶𝑽𝟑 V[I] 𝒅𝒊𝒔𝒑𝟎,𝟐 

Case-1 0.44 0.59 0.36 0.41 0.32 0.29 0.67 1.33 

Case-2 0.67 0.89 0.67 0.11 0.67 0.67 0.53 3.11 

Case-3 0.67 0.89 0.67 0.11 0.67 0.67 0.50 3.11 

Case-4 0.44 0.59 0.36 0.41 0.32 0.29 0.25 1.33 

 

As seen in Figure A.3, Case-1 and Case-4 have equal dispersion and similarly, Case-

2 and Case-3 have equal dispersion. Variance and 𝑉(𝐼) produced the same 

dispersion. Location values of the probability distributions given in Table A.2 are 

provided in Figure A.4. 
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Figure A.4 Location Values Obtained with the Probability Distributions in Table 

A.2 

While rounded-𝐸[𝐼] and median give the same location values for the probability 

distributions, the expected value increases linearly. 

In the final case, equal probabilities for two categories, where  𝑝𝑖 = 𝑝𝑗 = 0.5, 𝑖 =

1,2, … , 𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑚  is examined. Probability distributions are presented in 

Table A.5. 

Table A.5 PMF of Equal Probabilities for 𝑝𝑖 = 𝑝𝑗 = 0.5, where  𝑚 = 4 

Cases Category-1 Category-2 Category-3 Category-4 

Case-1 0.5 0 0 0.5 

Case-2 0.5 0 0.5 0 
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Table A.5 (cont’d) PMF of Equal Probabilities for 𝑝𝑖 = 𝑝𝑗 = 0.5, where  𝑚 = 4 

 

 

Figure A.5 Dispersion Values Obtained with the Probability Distributions in Table 

A.3 

Table A.6 Dispersion Values Obtained with the Probability Distributions in Table 

A.3 

Cases LOV ∆∗ COV LSQ 𝑂𝑉2.5 𝑂𝑉3 V[I] 𝑑𝑖𝑠𝑝0,2 

Case-1 1.00 1.00 1.00 0.00 1.00 1.00 0.56 4.50 

Case-2 0.67 0.67 0.42 0.33 0.36 0.31 0.75 2.00 

Case-3 0.33 0.33 0.18 0.67 0.15 0.13 0.69 0.50 

Case-4 0.33 0.33 0.18 0.67 0.15 0.13 0.44 0.50 

0.00

1.00

2.00

3.00

4.00

5.00

1 2 3 4 5 6

Dispersion Values, m=4

LOV ∆* COV

LSQ OV-alpha=2.5 OV-alpha=3

V[I] disp_0,2 Variance

Case-3 0.5 0.5 0 0 

Case-4 0 0.5 0.5 0 

Case-5 0 0 0.5 0.5 

Case-6 0 0.5 0 0.5 
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Table A.6 (cont’d) Dispersion Values Obtained with the Probability Distributions 

in Table A.3 

 

 

 

The dispersion values for the probability distributions given in Table A.5 are 

provided in Figure A.5. Case-1 shows the extreme two-point distribution. In this 

case, the maximum dispersion is obtained for all measures. As the categories with 

probability 0.5 move away from each other, dispersion value increases. Dispersion 

of Case-2 and Case-6 are equal. Similarly, the dispersion obtained from Case-3, 

Case-4, and Case-5 are equal with all of the considered dispersion measures.  

 

Figure A.6 Location Values Obtained with the Probability Distributions Given in 

Table A.3 

Location values are provided in Figure A.6. While the rounded-𝐸[𝐼] shows a similar 

distribution to the expected value, the median tends to produce smaller results than 

these measures.  
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Case-5 0.33 0.33 0.18 0.67 0.15 0.13 0.06 0.50 

Case-6 0.67 0.67 0.42 0.33 0.36 0.31 0.25 2.00 
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In the literature, the relationship between measures has been mentioned. These 

relationships are examined with the Pearson correlation coefficient, 𝜌, in this study.  

For variables 𝑋 and 𝑌 Pearson correlation coefficient as a measure of linear 

relationship is calculated as given in Equation (A.1). 

𝜌 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 × ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

 

 

(A.1) 

where, �̅� and �̅� are the mean of 𝑥 and 𝑦, respectively. When, 𝜌 = ± 1, then there is 

a strong linear relationship between two variables. There is strong correlation 

between two variables, if  𝜌 ≥  ± 0.5. It can be said that moderate correlation exists 

between 𝑋 and 𝑌, if ±0.3 ≤ 𝜌 ≤ ± 0.49. There is low correlation, if 𝜌 ≤ ± 0.29, 

and when 𝜌 = 0, variables are not linearly dependent (Laerd Statistics, 2020). 

In order to examine the correlation of location and dispersion measures, the dataset 

consisting of 200 observations are created according to rank counts I,  𝐼~𝐵𝑖𝑛(3, 𝑝), 

where 𝑝 is randomly generated in range [0, 1]. Resulting correlations are provided 

in Figures A.7 and A.8, for dispersion measures and location measures, respectively. 
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Figure A.7 Correlation Heatmap of Dispersion Measures 

All 𝜌 values are greater than 0.90 according to Figure A.7. Therefore, all dispersion 

measures have a strong correlation with each other. Since 𝐿𝑆𝑄 = 1 − ∆∗, these two 

measures have a perfect negative relationship. Also, since 𝑂𝑉1 = 𝐿𝑂𝑉 

corresponding 𝜌 equals to 1 for these two measures. Similarly, there is a perfect 

positive relationship between 𝑂𝑉2 and 𝐶𝑂𝑉, as well. 𝑂𝑉2.5 has perfect linear 

relationship between 𝑂𝑉2 and 𝑂𝑉3. Moreover, 𝑉(𝐼), variance and 𝑑𝑖𝑠𝑝𝑂,2 are highly 

correlated with each other. 
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The correlation between rounded-𝐸[𝐼] expected value and median are presented in 

Figure A.8. It is observed in this study that the 𝐸[𝐼] gives the same results as the 

expected value. Therefore, there is a high correlation between them. The median 

does not have a linear relationship with these measures. 

  

Figure A.8 Correlation Heatmap of Location Measures 
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B. CROSS-VALIDATION RESULTS  
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C. SURFACE DEFECT CASE TOPSIS AND MULTI-MOORA RESULTS  

Multi-MOORA with Equal Weights: 

 

 

 

 

 

 

 

Figure C.1 Decision Matrix 

Figure C.2 Ratio System 

 

Figure C.3 Reference Point Approach 
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Multi-MOORA with Entropy Weights: 

 

Figure C.4 Full Multiplicative Form 

Figure C.5 Overall Results of Multi-MOORA 

 

 

Figure C.5 Overall Results of Multi-MOORA 

 

Figure C.6 Calculation of Entropy Weights 

 Overall Results of Multi-MOORA 

 

 

Figure C.6 Calculation of Entropy Weights 

 Overall Results of Multi-MOORA 
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Figure C.7 Decision Matrix 

 

Figure C.6 Decision Matrix 

Figure C.8 Ratio System 

 

 

Figure C.7 Ratio System 

 

Figure C.9 Reference Point Approach 

 

 

Figure C.8 Reference Point Approach 
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TOPSIS with Equal Weights: 

 

TOPSIS with Entropy Weights: 

  

Figure C.10 Full Multiplicative Form 

 

 

Figure C.9 Reference Point Approach 

 

Figure C.11 Overall Results of Multi-MOORA 

 

 

Figure C.9 Overall Results of Multi-MOORA 

 

Figure C.12 TOPSIS with Equal Weights 

 

 

Figure C.10 TOPSIS with Equal Weights 

 

Figure C.13 TOPSIS with Entropy Weights 

 

 

Figure C.11 TOPSIS with Entropy Weights 

 



 

 

189 

 

D. DUPLICATOR CASE TOPSIS AND MULTI-MOORA RESULT  

Multi-MOORA with Equal Weights: 

 

 

 

 

 

 

 

  

 

Figure D.1 Decision Matrix 

 

 

Figure D.1 Decision Matrix 

 

Figure D.2 Ratio System 

 

 

 

Figure D.2 Ratio System 

 

 

Figure D.3 Reference Point Approach 

 

Figure D.3 Reference Point Approach 
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Multi-MOORA with Entropy Weights: 

 

Figure D.4 Full Multiplicative Form 

 

 

Figure D.4 Full Multiplicative Form 

 
Figure D.5 Overall Results of Multi-MOORA 

 

Figure D.5 Overall Results of Multi-MOORA 

Figure D.6 Calculation of Entropy Weights 

 

 

 

Figure D.6 Calculation of Entropy Weights 
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Figure D.7 Decision Matrix 

 

 

Figure D.6 Decision Matrix 

 

Figure D.8 Ratio System 

 

 

Figure D.7 Ratio System 

 

Figure D.9 Reference Point Approach 

 

Figure D.8 Reference Point Approach 
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TOPSIS with Equal Weights: 

 

TOPSIS with Entropy Weights: 

  

Figure D.10 Full Multiplicative Form 

 

 

Figure D.9 Full Multiplicative Form 

 
Figure D.11 Overall Results of Multi-MOORA 

 

 

Figure D.10 Overall Results of Multi-MOORA 

 

Figure D.12 TOPSIS with Equal Weights 

 

 

Figure D.11 TOPSIS with Equal Weights 

 

Figure D.13 TOPSIS with Entropy Weights 

 

Figure D.12 TOPSIS with Entropy Weights 
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E. INKJET PRINTER CASE TOPSIS AND MULTI-MOORA RESULT  

Multi-MOORA with Equal Weights: 

 

 

 

 

 

 

  

 

 

Figure E.1 Decision Matrix 

 

 

Figure E.1 Decision Matrix 

 

Figure E.2 Ratio System 

 

 

Figure E.2 Ratio System 
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Figure E.3 Reference Point Approach 

 

Figure D.3 Reference Point Approach 

Figure E.4 Full Multiplicative Form 

 

Figure D.4 Full Multiplicative Form 

Figure E.5 Overall Results of Multi-MOORA 

 

 

Figure D.5 Overall Results of Multi-MOORA 
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Multi-MOORA with Entropy Weights: 

 

 

 

 

 

 

 

 

 

Figure E.6 Calculation of Entropy Weights 

 

 

Figure D.6 Calculation of Entropy Weights 

 

Figure E.7 Decision Matrix 

 

 

Figure D.7 Decision Matrix 
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Figure E.8 Ratio System 

 

Figure D.8 Ratio System 

Figure E.9 Reference Point Approach 

 

Figure D.9 Reference Point Approach 

Figure E.10 Full Multiplicative Form 

 

 

Figure D.10 Full Multiplicative Form 

 Figure E.11 Overall Results of Multi-MOORA 

 

 

Figure D.11 Overall Results of Multi-MOORA 
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TOPSIS with Equal Weights: 

 

 

TOPSIS with Entropy Weights: 

  

Figure E.12 TOPSIS with Equal Weights 

 

Figure D.12 TOPSIS with Equal Weights 

Figure E.13 TOPSIS with Entropy Weights 

 

Figure D.13 TOPSIS with Entropy Weights 
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F. FOAM MOLDING CASE TOPSIS AND MULTI-MOORA RESULT  

Multi-MOORA with Equal Weights: 

 

 

 

 

 

 

 

 

 

 

Figure F.1 Decision Matrix 

 

 

Figure F.1 Decision Matrix 

 

Figure F.2 Ratio System 

 

Figure F.2 Ratio System 

Figure F.3 Reference Point Approach 

 

Figure F.3 Reference Point Approach 
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Multi-MOORA with Entropy Weights: 

 

 

 

Figure F.4 Full Multiplicative Form 

 

Figure F.4 Full Multiplicative Form 

Figure F.5 Overall Results of Multi-MOORA 

 

 

Figure F.5 Overall Results of Multi-MOORA 

 

Figure F.6 Calculation of Entropy Weights 

 

 

Figure F.6 Calculation of Entropy Weights 
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Figure F.7 Decision Matrix 

 

Figure F.7 Decision Matrix 

Figure F.8 Ratio System 

 

 

Figure F.8 Ratio System 

 

Figure F.9 Reference Point Approach 

 

 

Figure F.9 Reference Point Approach 
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TOPSIS with Equal Weights: 

 

TOPSIS with Entropy Weights: 

 

Figure F.10 Full Multiplicative Form 

 

 

 

Figure F.10 Full Multiplicative Form 

 

 

Figure F.11 Overall Results of Multi-MOORA 

 

 

Figure F.11 Overall Results of Multi-MOORA 

 

Figure F.12 TOPSIS with Equal Weights 

 

 

Figure F.12 TOPSIS with Equal Weights 

 

Figure F.13 TOPSIS with Entropy Weights 

 

Figure F.13 TOPSIS with Entropy Weights 
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G. SENSITIVITY ANALYSIS RESULTS FOR TOPSIS 

Table G.1 Sensitivity Analysis Results for Surface Defect Data 

Weight 

Rank 

Precision Recall AUC 

0.033 0.483 0.483 XGB > RF > LR 

0.133 0.433 0.433 XGB > RF > LR 

0.233 0.383 0.383 XGB > RF > LR 

0.333 0.333 0.333 XGB > RF > LR 

0.433 0.283 0.283 XGB > RF > LR 

0.533 0.233 0.233 XGB > RF > LR 

0.633 0.183 0.183 XGB > RF > LR 

0.733 0.133 0.133 XGB > RF > LR 

0.833 0.083 0.083 XGB > RF > LR 

0.933 0.033 0.033 XGB > RF > LR 

0.483 0.033 0.483 XGB > RF > LR 

0.433 0.133 0.433 XGB > RF > LR 

0.383 0.233 0.383 XGB > RF > LR 

0.283 0.433 0.283 XGB > RF > LR 

0.233 0.533 0.233 XGB > RF > LR 

0.183 0.633 0.183 XGB > RF > LR 



 

 

204 

 

Table G.1 (cont’d) Sensitivity Analysis Results for Surface Defect Data 

0.133 0.733 0.133 XGB > RF > LR 

0.083 0.833 0.083 XGB > RF > LR 

0.033 0.933 0.033 XGB > RF > LR 

0.483 0.483 0.033 XGB > RF > LR 

0.433 0.433 0.133 XGB > RF > LR 

0.383 0.383 0.233 XGB > RF > LR 

0.283 0.283 0.433 XGB > RF > LR 

0.233 0.233 0.533 XGB > RF > LR 

0.183 0.183 0.633 XGB > RF > LR 

0.133 0.133 0.733 XGB > RF > LR 

0.083 0.083 0.833 XGB > RF > LR 

0.033 0.033 0.933 XGB > RF > LR 

0.940 0.000 0.060 XGB > RF > LR 

0.840 0.000 0.160 XGB > RF > LR 

0.740 0.000 0.260 XGB > RF > LR 

0.640 0.000 0.360 XGB > RF > LR 

0.540 0.000 0.460 XGB > RF > LR 

0.440 0.000 0.560 XGB > RF > LR 

0.340 0.000 0.660 XGB > RF > LR 

0.240 0.000 0.760 XGB > RF > LR 
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Table G.1 (cont’d) Sensitivity Analysis Results for Surface Defect Data 

0.140 0.000 0.860 XGB > RF > LR 

0.040 0.000 0.960 XGB > RF > LR 

0.666 0.100 0.234 XGB > RF > LR 

0.592 0.200 0.208 XGB > RF > LR 

0.518 0.300 0.182 XGB > RF > LR 

0.444 0.400 0.156 XGB > RF > LR 

0.370 0.500 0.130 XGB > RF > LR 

0.296 0.600 0.104 XGB > RF > LR 

0.222 0.700 0.078 XGB > RF > LR 

0.148 0.800 0.052 XGB > RF > LR 

0.074 0.900 0.026 XGB > RF > LR 

0.940 0.000 0.060 XGB > RF > LR 

0.840 0.000 0.160 XGB > RF > LR 

0.740 0.000 0.260 XGB > RF > LR 

0.640 0.000 0.360 XGB > RF > LR 

0.540 0.000 0.460 XGB > RF > LR 

0.440 0.000 0.560 XGB > RF > LR 

0.340 0.000 0.660 XGB > RF > LR 

0.240 0.000 0.760 XGB > RF > LR 

0.040 0.000 0.960 XGB > RF > LR 
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Table G.2 Sensitivity Analysis Results for Duplicator Data 

Weight Rank 

Precision Recall AUC 

0.033 0.483 0.483 XGB > RF > LR 

0.133 0.433 0.433 XGB > RF > LR 

0.233 0.383 0.383 XGB > RF > LR 

0.333 0.333 0.333 XGB > RF > LR 

0.433 0.283 0.283 XGB > RF > LR 

0.533 0.233 0.233 XGB > RF > LR 

0.633 0.183 0.183 XGB > RF > LR 

0.733 0.133 0.133 XGB > RF > LR 

0.833 0.083 0.083 XGB > RF > LR 

0.933 0.033 0.033 XGB > RF > LR 

0.483 0.033 0.483 XGB > RF > LR 

0.433 0.133 0.433 XGB > RF > LR 

0.383 0.233 0.383 XGB > RF > LR 

0.283 0.433 0.283 XGB > RF > LR 

0.233 0.533 0.233 XGB > RF > LR 

0.183 0.633 0.183 XGB > RF > LR 

0.133 0.733 0.133 XGB > RF > LR 
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Table G.2 (cont’d) Sensitivity Analysis Results for Duplicator Data 

0.083 0.833 0.083 XGB > RF > LR 

0.033 0.933 0.033 XGB > RF > LR 

0.483 0.483 0.033 XGB > RF > LR 

0.433 0.433 0.133 XGB > RF > LR 

0.383 0.383 0.233 XGB > RF > LR 

0.283 0.283 0.433 XGB > RF > LR 

0.233 0.233 0.533 XGB > RF > LR 

0.183 0.183 0.633 RF > XGB > LR 

0.133 0.133 0.733 RF > XGB > LR 

0.083 0.083 0.833 RF > XGB > LR 

0.033 0.033 0.933 RF > XGB > LR 

0.071 0.898 0.031 XGB > RF > LR 

0.171 0.802 0.028 XGB > RF > LR 

0.271 0.705 0.024 XGB > RF > LR 

0.371 0.608 0.021 XGB > RF > LR 

0.471 0.512 0.018 XGB > RF > LR 

0.571 0.415 0.014 XGB > RF > LR 

0.671 0.318 0.011 XGB > RF > LR 

0.771 0.222 0.008 XGB > RF > LR 
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Table G.2 (cont’d) Sensitivity Analysis Results for Duplicator Data 

0.871 0.125 0.004 XGB > RF > LR 

0.971 0.028 0.001 XGB > RF > LR 

0.001 0.998 0.001 XGB > RF > LR 

0.140 0.798 0.062 XGB > RF > LR 

0.210 0.698 0.092 XGB > RF > LR 

0.279 0.598 0.123 XGB > RF > LR 

0.348 0.498 0.153 XGB > RF > LR 

0.418 0.398 0.184 XGB > RF > LR 

0.487 0.298 0.214 XGB > RF > LR 

0.557 0.198 0.245 XGB > RF > LR 

0.626 0.098 0.276 XGB > RF > LR 

0.063 0.806 0.131 XGB > RF > LR 

0.056 0.713 0.231 XGB > RF > LR 

0.049 0.620 0.331 XGB > RF > LR 

0.041 0.527 0.431 XGB > RF > LR 

0.034 0.435 0.531 RF > XGB > LR 

0.027 0.342 0.631 RF > XGB > LR 

0.020 0.249 0.731 RF > XGB > LR 

0.012 0.157 0.831 RF > XGB > LR 

0.005 0.064 0.931 RF > XGB > LR 
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Table G.3 Sensitivity Analysis Results for Inkjet Printer Data 

Weight Rank 

Precision Recall AUC 

0.033 0.483 0.483 RF > XGB > LR 

0.133 0.433 0.433 RF > XGB > LR 

0.233 0.383 0.383 RF > XGB > LR 

0.333 0.333 0.333 RF > XGB > LR 

0.433 0.283 0.283 RF > XGB > LR 

0.533 0.233 0.233 RF > XGB > LR 

0.633 0.183 0.183 RF > XGB > LR 

0.733 0.133 0.133 RF > XGB > LR 

0.833 0.083 0.083 RF > XGB > LR 

0.933 0.033 0.033 RF > XGB > LR 

0.483 0.033 0.483 RF > XGB > LR 

0.433 0.133 0.433 RF > XGB > LR 

0.383 0.233 0.383 RF > XGB > LR 

0.283 0.433 0.283 RF > XGB > LR 

0.233 0.533 0.233 RF > XGB > LR 

0.183 0.633 0.183 RF > XGB > LR 

0.133 0.733 0.133 RF > XGB > LR 

0.083 0.833 0.083 RF > XGB > LR 
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Table G.3 (cont’d) Sensitivity Analysis Results for Inkjet Printer Data 

0.033 0.933 0.033 RF > XGB > LR 

0.483 0.483 0.033 RF > XGB > LR 

0.433 0.433 0.133 RF > XGB > LR 

0.383 0.383 0.233 RF > XGB > LR 

0.283 0.283 0.433 RF > XGB > LR 

0.233 0.233 0.533 RF > XGB > LR 

0.183 0.183 0.633 RF > XGB > LR 

0.133 0.133 0.733 RF > XGB > LR 

0.083 0.083 0.833 RF > XGB > LR 

0.033 0.033 0.933 XGB > RF > LR 

0.038 0.935 0.027 RF > XGB > LR 

0.138 0.838 0.024 RF > XGB > LR 

0.238 0.741 0.022 RF > XGB > LR 

0.338 0.643 0.019 RF > XGB > LR 

0.438 0.546 0.016 RF > XGB > LR 

0.538 0.449 0.013 RF > XGB > LR 

0.638 0.352 0.010 RF > XGB > LR 

0.738 0.255 0.007 RF > XGB > LR 

0.838 0.157 0.005 RF > XGB > LR 

0.938 0.060 0.002 RF > XGB > LR 
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Table G.3 (cont’d) Sensitivity Analysis Results for Inkjet Printer Data 

0.929 0.049 0.023 RF > XGB > LR 

0.831 0.149 0.020 RF > XGB > LR 

0.733 0.249 0.018 RF > XGB > LR 

0.636 0.349 0.015 RF > XGB > LR 

0.538 0.449 0.013 RF > XGB > LR 

0.440 0.549 0.011 RF > XGB > LR 

0.343 0.649 0.008 RF > XGB > LR 

0.245 0.749 0.006 RF > XGB > LR 

0.147 0.849 0.004 RF > XGB > LR 

0.050 0.949 0.001 RF > XGB > LR 

0.483 0.403 0.113 RF > XGB > LR 

0.429 0.358 0.213 RF > XGB > LR 

0.374 0.313 0.313 RF > XGB > LR 

0.320 0.267 0.413 RF > XGB > LR 

0.265 0.222 0.513 RF > XGB > LR 

0.211 0.176 0.613 RF > XGB > LR 

0.156 0.131 0.713 RF > XGB > LR 

0.102 0.085 0.813 RF > XGB > LR 

0.047 0.040 0.913 XGB > RF > LR 
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Table G.4 Sensitivity Analysis Results for Foam Molding Data 

Weight Rank 

Precision Recall AUC 

0.033 0.483 0.483 RF > LR > XGB 

0.133 0.433 0.433 RF > LR > XGB 

0.233 0.383 0.383 RF > LR > XGB 

0.333 0.333 0.333 RF > LR > XGB 

0.433 0.283 0.283 RF > LR > XGB 

0.533 0.233 0.233 RF > XGB > LR 

0.633 0.183 0.183 RF > XGB > LR 

0.733 0.133 0.133 RF > XGB > LR 

0.833 0.083 0.083 RF > XGB > LR 

0.933 0.033 0.033 RF > XGB > LR 

0.483 0.033 0.483 RF > XGB > LR 

0.433 0.133 0.433 RF > XGB > LR 

0.383 0.233 0.383 RF > LR > XGB 

0.283 0.433 0.283 RF > LR > XGB 

0.233 0.533 0.233 RF > LR > XGB 

0.183 0.633 0.183 RF > LR > XGB 

0.133 0.733 0.133 RF > LR > XGB 

0.083 0.833 0.083 RF > LR > XGB 



 

 

213 

 

Table G.4 (cont’d) Sensitivity Analysis Results for Foam Molding Data 

0.033 0.933 0.033 RF > LR > XGB 

0.483 0.483 0.033 RF > LR > XGB 

0.433 0.433 0.133 RF > LR > XGB 

0.383 0.383 0.233 RF > LR > XGB 

0.283 0.283 0.433 RF > LR > XGB 

0.233 0.233 0.533 RF > LR > XGB 

0.183 0.183 0.633 RF > LR > XGB 

0.133 0.133 0.733 RF > LR > XGB 

0.083 0.083 0.833 RF > LR > XGB 

0.033 0.033 0.933 RF > LR > XGB 

0.048 0.932 0.021 RF > LR > XGB 

0.148 0.834 0.019 RF > LR > XGB 

0.248 0.736 0.016 RF > LR > XGB 

0.348 0.638 0.014 RF > LR > XGB 

0.448 0.540 0.012 RF > LR > XGB 

0.548 0.442 0.010 RF > LR > XGB 

0.648 0.345 0.008 RF > LR > XGB 

0.748 0.247 0.005 RF > LR > XGB 

0.848 0.149 0.003 RF > XGB > LR 

0.948 0.051 0.001 RF > XGB > LR 
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Table G.4 (cont’d) Sensitivity Analysis Results for Foam Molding Data 

0.858 0.034 0.108 RF > XGB > LR 

0.770 0.134 0.097 RF > XGB > LR 

0.681 0.234 0.086 RF > LR > XGB 

0.592 0.334 0.074 RF > LR > XGB 

0.503 0.434 0.063 RF > LR > XGB 

0.414 0.534 0.052 RF > LR > XGB 

0.325 0.634 0.041 RF > LR > XGB 

0.237 0.734 0.030 RF > LR > XGB 

0.148 0.834 0.019 RF > LR > XGB 

0.059 0.934 0.007 RF > LR > XGB 

0.133 0.749 0.119 RF > LR > XGB 

0.118 0.664 0.219 RF > LR > XGB 

0.103 0.579 0.319 RF > LR > XGB 

0.088 0.494 0.419 RF > LR > XGB 

0.072 0.409 0.519 RF > LR > XGB 

0.057 0.324 0.619 RF > LR > XGB 

0.042 0.239 0.719 RF > LR > XGB 

0.027 0.154 0.819 RF > LR > XGB 

0.012 0.069 0.919 RF > LR > XGB 
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H. SURFACE DEFECT CASE REGRESSION MODELS RESULTS 

Linear Regression Results for COV 

 

 

 

 

 

 

 

 

 

Figure H.1 Model Summary for COV 

Model 

 

 

Figure H.1 Model Summary for COV Model 
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Since all p-values are less than 0.05, all of the factors are significant according to 

Figure H.1 Variation inflation factor (VIF) values are changing from 1 to 1.34. This 

shows that there is no multicollinearity (correlation between factors) problem. 

Minitab 2020, define VIF as if it is 1 there is no correlation, and if it is less than 5, 

there is moderate correlation between predictors. All VIF values are close to 1. The 

SE Coef column shows the standard error of the coefficient, the smaller the error, the 

more accurate the prediction. All of the standard errors are very close 0.  

S value in Figure H.1 is used to understand how far the predicted values fall from 

the real values. The lower the S, the better the model explains COV (Minitab 2020). 

Our S value is 0.0502089 which very close to 0, so this model adequately explains 

the COV.  

94.66% of variation in the COV is explained by this model according to 𝑅2. Adding 

more independent variables to the model increases 𝑅2, for this reason adjusted- 𝑅2 

Figure H.2 Residual Plots for COV Model 

 

 

Figure H.2 Residual Plots for COV Model 
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is also considered which equals to 90.93%. The model is evaluated based on the 

prediction ability with the predicted- 𝑅2 which is also at satisfying level. In Figure 

H.2, residuals generally follow a straight line, it can be said that residuals are 

normally distributed. Also, no pattern is recognized in residuals versus fit plot, and 

data points are randomly distributed both sides of 0, so residuals have constant 

variance. In residuals versus order plots no pattern is observed, so residuals are 

independent from each other.  

Ordinal Logistic Regression Results for Median 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.3 Logistic Regression Table for 

Median Model 

 

Figure H.3 Logistic Regression Table for Median 

Model 

Figure H.4 Test of All Slopes for Median Model  

 

 

Figure H.4 Test of All Slopes and Goodness of Fit Test for Median 

Model 
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In Figure H.3 all 𝑝-values are less than 0.05 that means all predictors are significant. 

Test of all slopes shows that there is at least one predictor that has a statistically 

significant relationship with response (median), 𝑝-value is 0. That is, the null 

hypothesis that all coefficients are nearly equal to zero can be rejected. Figure H.4 

shows the measure of association. Also, Somers’ D, Goodman-Kruskal Gamma, and 

Kendall’s Tau-a are useful when comparing predictive performance of models. 

Higher values mean better performance. It can be said that the Ordinal Logistic 

Regression model has good predictive performance.  

 

  

Figure H.5 Measures of Association for Median Model 

 

 

Figure H.5 Measures of Association for Median Model 
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I. INKJET PRINTER CASE REGRESSION MODELS RESULTS  

Linear Regression Results for COV 

 

 

 

 

 

 

 

 

 

 

 

Figure I.1 Model Summary for COV Model 

 

 

 

Figure I.1 Model Summary for Cov Model 

 

 

Figure I.2 Residual Plots for COV Model 

 

 

Figure I.2 Residual Plots for Cov Model 
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Since all p-values are less than 0.05, all of the factors are significant according to 

Figure I.1. VIF in the model changes between 1 and 2. All of the standard errors are 

very close 0. Also, S value is 0.0103867 which very close to 0, this model 

adequately explains the COV.  

99.89% of variation in the COV is explained by this model according to 𝑅2. 

Moreover adjusted- 𝑅2 and predicted- 𝑅2 are also at satisfying levels. In Figure I.2, 

residuals generally follow a straight line indicating approximately that normality 

assumption is satisfied. Also, no pattern is recognized in residuals versus fit plot, so 

residuals are randomly distributed and have constant variance. There is an increasing 

and then decreasing pattern in residual versus order plot but only 8 observations are 

used. Moreover, Minitab (2020), mentioned using histogram plot of residuals is 

better when there are 20 or more data points in the dataset.  

 

 

Ordinal Logistic Regression Results for Median 

 

 

 

 

 

 

 

 

 

 

Figure I.3 Logistic Regression Table 

 

 

Figure I.3 Logistic Regression Table 

 
Figure I.4 Test of All Slopes for Median Model 

 

Figure I.4 Test of All Slopes and Goodness of Fit Test for Median Model 
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In Figure I.3, 𝑝-value for factor B is close to 0.1, adding more terms and interactions 

does not improve the performance. Therefore, the Ordinal Logistic Regression 

model is fitted using only this term. Test of all slopes shows that there is at least one 

predictor that has a statistically significant relationship with response (median), 𝑝-

value is less than 0.1. Result of Pearson and Deviance Goodness-of-Fit test results 

not included because Minitab (2020) mentioned that these tests are not useful when 

the number of unique values is nearly equal to the number of observations. In this 

thesis, for three of the case study, all the data points for the median model are unique 

and equal to the number of observations. Figure I.4 shows the measure of association. 

Concordant pairs are 10 out of 21 pairs that prediction performance of the model is 

good. Also, Somers’ D shows the percentage difference between concordant and 

discordant, and ties are included, while Goodman-Kruskal Gamma measure same 

but do not include ties. There are 9 ties, therefore the result of Goodman-Kruskal 

Gamma is higher than Somers’ D. Kendall’s Tau-a is the measure difference between 

concordant and discordant pairs out of all possible pairs (Minitab, 2020). It can be 

said that this Ordinal Logistic Regression model has moderate performance when it 

compared with the Ordinal Logistic Regression model in the surface defect case. 

  

Figure I.5 Measures of Association for Median Model 

 

 

Figure I.5 Measures of Association for Median Model 
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J. DUPLICATOR CASE REGRESSION MODELS RESULTS 

Linear Regression Results for COV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure J.1 Model Summary for COV Model 

 

 

 

Figure J.1 Model Summary for COV Model 
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All 𝑝-values are less than 0.05, it means all of the factors are significant according 

to Figure J.1. VIF values in the model changes between 1 and 1.2, therefore 

multicollinearity problem is avoided. All of the standard errors are very close 0. 

Also, S value is 0.0642710 which very close to 0, this model adequately explains 

the COV.  

88.68% of variation in the COV is explained by this model according to 𝑅2. 

Moreover adjusted- 𝑅2 is parallel with 𝑅2 and predicted- 𝑅2 are moderate levels, but 

any other terms does not improve predicted-𝑅2. Figure J.2 shows that residuals 

generally follow a straight line, indicating that normality assumption is satisfied. 

Also, no pattern is recognized in residuals versus fit plot, so residuals are randomly 

distributed and have constant variance, also residuals are independent from each 

other according to residuals versus order plot. Evaluating histogram of residual is 

not effective because there are 16 observations in the dataset. 

 

Figure J.2 Residual Plots for COV Model
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Ordinal Logistic Regression Results for Median 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure J.3, 𝑝-values for factor H and K are less than 0.1, so they are statistically 

significant.  Test of all slopes shows that there is at least one predictor that has a 

statistically significant relationship with response (median), 𝑝-value is less than 0.1. 

𝑝-values for Figure J.5. shows the measure of association. Concordant pairs are 50 

out of 78 pairs that predict the performance of the model is good. There are 16 ties, 

Figure J.3 Logistic Regression Table 
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Figure J.4 Test of All Slopes for Median Model 

 

 

Figure J.4 Test of All Slopes and Goodness of Fit Test for Median Model 

 

Figure J.5 Measures of Association for Median Model 
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so the result of Goodman-Kruskal Gamma is higher than Somers’ D. It can be said 

that this Ordinal Logistic Regression model has good performance.  


