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ABSTRACT

STUDIES ON ALMOST PERFECT NONLINEAR FUNCTIONS

KESKİN, GÜNEŞ BATMAZ

M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

September 2022, 29 pages

This thesis presents some parts of our continuing work on Almost Perfect Nonlin-

ear(APN) Functions. Through this thesis, first of all the significance of APN functions

and couple of generation methods for APN Functions are presented. Some methods

are considered in a deeper context. Finally various algorithms to obtain functions

related APN functions using Python programming language have implemented and

some results are analyzed.

Keywords: APN Functions, DFS, BFS
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ÖZ

NEREDEYSE MÜKEMMEL DOĞRUSAL OLMAYAN FONKSİYONLAR
ÜZERİNE ÇALIŞMALAR

KESKİN, GÜNEŞ BATMAZ

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Eylül 2022, 29 sayfa

Bu tez, Neredeyse Mükemmel Doğrusal Olmayan (APN) Fonksiyonlar üzerine de-

vam eden çalışmalarımızın bazı bölümlerini sunmaktadır. Bu tez ile öncelikle APN

Fonksiyonlarının önemi ve APN Fonksiyonları için birkaç üretim yöntemi sunulmuş-

tur. Bazı yöntemler daha derin bir bağlamda ele alınmıştır. Son olarak, Python prog-

ramlama dilini kullanarak APN fonksiyonları elde etmek için çeşitli algoritmalar uy-

gulanmış ve bazı sonuçlar analiz edilmiştir.

Anahtar Kelimeler: APN Fonksiyonları, DFS, BFS
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CHAPTER 1

INTRODUCTION

In modern life, need for enhancement of data encryption is rising rapidly. This creates

a higher demand over search for a new encryption method. Currently, various cryp-

tographic algorithms, including Symmetric Key Cryptography are based of of S-Box

systems. Key to generating new S-Boxes is to finding the right and new combinations

of Linear and Nonlinear Functions. This need for new functions introduces heated

search for new APN functions.

Organisation of this thesis is as follows:

• In Chapter 2, literature review of APN generation functions are given.

• In Chapter 3, a new method introduced by Sălăgean and Özbudak explained.

• In Chapter 4, different implementation of a new generation method for Quadratic

APN Functions is explored and some results are shared.

• In Chapter 5, conclusion of the thesis given.
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CHAPTER 2

A NOTION OF APN FUNCTION GENERATION

In this chapter, basic definition of APN functions is given, then continued with a

useful resource gathered and updated regularly in the Boolean functions is introduced

and briefly introduced various work done on APN generation.

2.1 Almost Perfect Nonlinear (APN) Functions

In this part, basic definition of APN function is given.

Definition 1. Almost Perfect Nonlinear(APN) Functions is defined as a mapping from

GF (pn) to GF (pn) if each equation

F (t+ a)− F (t) = b, a ∈ GF (pn)∗, b ∈ GF (pn)

has at most two solutions for t ∈ GF (pn) [9].

This property of APN functions provides an optimal differential attacks which makes

these functions more resistant towards different attacks.
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2.2 Boole Web Page

In this section, I will go through the contents of Boole web page. In this web page,

experts on the field aims to provide an overview over topics for the researchers in

Boolean Functions and Cryptography [2].

2.2.1 Contents

This section will include an overview of its content.

• People in Boolean Functions: Includes the list of all notable people working

on the field

• Books on Boolean Functions: Includes the list of recommended books on the

field.

• Papers on Boolean Functions: Includes a selection of foundational papers on

the field

• Conferences related to Boolean Functions: Includes noteworthy conferences

on the field

• Tables: Includes tables of known instances of APN functions over F2n and

some other differential uniformities.

• Magma Code: Includes files containing the implementations of different func-

tions related field implemented with Magma Programming Language. These

codes include fundamental calculations such as Algebraic Normal Form(ANF),

4



APN property, CCZ-Equivalences, Gamma-rank, Delta Rank and Multiplier

Group for vectorial Boolean Functions.

• Notation: Includes the notations used in the web page.

• Algorithms for testing equivalence: Includes couple of algorithms to test

equivalence.

In addition to previously mentioned content, this site contains a summary of the field.

This summary includes the following headlines.

• Boolean Functions

– Bent Functions

• Vectorial Boolean Functions

– Bent Functions

– Almost Bent Functions

– Almost Perfect Nonlinear (APN) Functions

∗ APN Permutations

– Plateaued Functions

– Equivalence Relations

– Nonlinearity

• Commutative Presemifields and Semifields

5



2.2.2 Significance of Boole Web Page on APN Research

This web page contains the summary of general information about Boolean Func-

tions. Information gathered is properly cited, properly structured with a user friendly

manner, and gathered by people working on the field. Also, it is presented in a simple

manner to enhance the understanding of the reader. In addition to that, this web page

presents information that is hard to gather in one place, such as known APN functions

over different fields, and includes the generation methods and even Magma Codes, if

accessible. To summarize, this web page enables researchers work on further level,

rather than the very beginning.

2.3 Generating APN Functions

In this section, I will go through couple of different APN generation methods. First

generation method is to use the known infinite APN power functions over GF (2n),

some others tried generating new APN functions from the known ones, and many

others tried to find new APN functions using other informed search methods.

2.3.1 Known infinite families for APN functions in GF (2n)

There are known infinite families of APN functions of the term F (x) = xd. These

families implies that, when the conditions are satisfied, for any n, there exists an APN

function with in this family. In Table 2.1 you may find the known infinite families for

APN functions in GF (2n).
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Table 2.1: Known infinite families for APN functions in GF (2n) [2]

Family Exponent Conditions deg(xd) Reference

Gold 2i+ 1 gcd(i, n) = 1 2 [13], [16]
Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1 [14], [15]
Welch 2t + 3 n = 2t+ 1 3 [11]

2t + 2t/2 − 1, teven (t+ 2)/2
Niho

2t + 2(3t+1)/2 − 1, todd
n = 2t+ 1

t+ 1
[10]

Inverse 22t − 1 n = 2t+ 1 n− 1 [16], [5]
Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [12]

2.3.2 Other Work Done on APN Generation

To grasp the concept of generating new APN functions, we made a literature review

through the papers that have been focused on generating new APN functions. Initially,

we started with Beierle and Leander’s "New Instances of Quadratic APN Functions"

[4]. In this paper, they presented a recursive tree search to find new APN permuta-

tions. Their search generated more than 10,000 permutations and 35 new quadratic

APN functions in eight dimension.

In this research, basically, build up to their previous work of [3] where they have

done exhaustive search to obtain new APN permutations in dimensions of 6,7 and

8 that admits linear self-equivalence. In [3], they could not generate any new APN

permutations. After this search they enhanced their search by initialized a look-up

table in the beginning and each time a new entry is fix the program checks whether it

is a candidate for an APN.

Another approach to generate new APN Function is explained in "Constructing new

APN functions from known ones" by Budaghyan et. al. [6]. As it is self-explanatory

from the name, Budaghyan et. al., they applied their algorithm given in [6], Chapter 3

on Gold power functions, given in Table 2.1, and could contract a function x3+tr(x9)

7



over F2n .
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CHAPTER 3

A DIFFERENT ANGLE FOR QUADRATIC APN

GENERATION

In the previous chapters, different workes done on generating new APN Functions

are covered. On this chapter, Sălăgean and Özbudak’s [17] presentation of a new

definition to generate Quadratic APN Functions will be covered. In Sălăgean and

Özbudak’s work, a new function type is introduced as Pre-APN functions. In their

work, definition Pre-APN functions is given as follows.

Theorem 3.1 2 ⩽ m < n. Assume that g : F2m → F2n is a quadratic pre-

APN. For A1, . . . , Am ∈ F2n consider the linear map F : Fm
2 → F2n defined as

L (x1, . . . , xm) = A1x1+ · · ·Amxm. Let f : Fm+1
2 = Fm

2 × F2 :→ F2n defined using

g and L as

f(x1, . . . , xm︸ ︷︷ ︸
x

, y) = g (x1, . . . , xm) + yL (x1, . . . , xm) .

Then f is pre- APN (actually APN if m = n− 1 ) iff

Dug|x + L(u) ̸= 0 for any u, x ∈ Fm
2 with u ̸= 0

[17]
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As it can be gather from this theorem, for a given g : F2m → F2n (quadratic pre-

APN), when conditions are met, where g : F2m+1 → F2n is a quadratic pre-APN and

can obtain a APN when m = n− 1.

The main objective of our work using this theorem is to find a way to show that this

method can be converted into an efficient algorithm that will help us to generate f

functions such that f is an APN f : F2n → F2n .

10



CHAPTER 4

QUADRATIC APN FUNCTION GENERATION

IMPLEMENTATION

In this chapter, we will present the implementation methods that are used to generated

our results as well as the issues that we faced through this process will be explained.

4.1 Different Implementation Approaches

As it is mentioned in the previous chapter, this work is based on the work of Sălăgean

and Özbudak’s [17] work of Pre-APN Functions. To obtain some results, I tried

couple of different approaches through the process. Firstly, I started with a Naive, also

known as brute force, approach to obtain results. At this point, I was planning to use

already in use technologies such as Sage(9.2) and SBoxU library for Python. While

using these, I encounter issues that are not easy to overcome. After that, I decided

to change my approach and implemented all the required functionalities myself with

Python 3.8. After implementing required functions, I could gather my first results.

But, as m get greater, the time consumption of the process increment drastically.

Because of the time consumption aspect, we needed to re-design our approach and

11



implement different algorithms to try and obtain results.

Due to the nature of our data, it was easy to project the generation process to a Search

Tree to run Breadth First Search through the Search Tree generated with all possible A

values, and pruning the ends that will not produce any viable outcomes to enhance the

run-time. Even though this approach was viable for generating results up to n = m =

5, after that point was time expectancy was not plausible for regular computers. After

that point, we changed our approach to Depth First Search (DFS) to be able to reach

some results without trcing all through the domain. At this point, we could be able to

retrieve some results on n = m = 6, we could not retrieve any results for n = m = 7.

We consider the lack of results might be caused by consecutive execution, and decided

to try for a Randomized Depth First Search(R-DFS) Algorithm to generate results.

Even though using randomized algorithm drastically speed our process to generate

results up to n = m = 6, we could not retrieve any results for n = m = 7 yet.

4.1.1 Naive Implementation with Existing Libraries

As it is mentioned before, we started with a Naive implementation with existing li-

braries. Algorithm of naive implementation was straight forward. It was calculating

all possible outcomes without considering any data flow. It was using SageMath 9.2

for Boolean Functions and derivations.

Unfortunately, this method was not viable due to a memory leak in the implementa-

tion of SageMath, which is a known bug [1], I encountered with memory overload,

which causes the computer to crash after around 6000-7000 tries. This number was

only applicable to calculations to extent F22− > F23 to F23− > F23 since it only

12



Figure 4.1: Visualization of Breadth First Search Algorithm.

requires 448 tries. But, from F22− > F24 to F23− > F24 which takes 3840 tries

to obtain all Pre-APN functions in F23− > F24 , and for each selected Pre-APN, we

should 3840 tries to extent functions from F23− > F24 to F24− > F24 to obtain APN

functions it becomes impossible to continue with SageMath. Because of that, we de-

cided to change our approach and implement Boolean Functions and derivations in

Python 3.8 and use those implementations instead from this point on.

4.1.2 Breadth First Search(BFS) Implementation

As explained above, after trying to generate Pre-APN functions through naive imple-

mentation, we had a better understanding of the structure. This understanding lead us

to implement a more compatible data structure as a base for our study.

We decided to use General Tree Data Structure introduced in [7] since this data struc-

ture is more compatible to data that we are working on. Also, we added tree pruning

to our implementation from this point on. Even thought pruning is a common prac-

tice in tree algorithms, we were inspired to add this to our implementation is Beierle

et. al. [4] work on to similar generation methods. In addition to that, we decided to

13



Figure 4.2: Visualization of Depth First Search Algorithm.

make calculations over vectors rather than fields since vector calculations are easier

to implement and also are cheaper calculations for computers. Then, we implemented

a BFS for our data set. We implemented the BFS algorithm as it is given in [8] with

slight changes for it to fit our structure better. Our objective to implement BFS was

to generate all possible instances in each level, which would hopefully generate all

possible Quadratic APN functions. As us can observed from Figure 4.1, BFS Algo-

rithm traces each level until the level is complete, and move to the next level once the

current level is completed.

This implementation did worked as expected and generated all the results in each

level. Even thought this seemed like it would provide more than other approach, time

constraint of this search becomes infeasible after starting point of m = 2 and n = 5.

This lead us to change our perspective from generating all possible outcomes to gen-

erating some outcomes and working through the results as they are calculated.

14



Figure 4.3: Visualization of Randomized Breadth First Search Algorithm.

4.1.3 Depth First Search(DFS) Implementation

As it s explained in the previous section, after n = 5, we needed to change my

approach to find all of the result and change the objective to find some results in

starting from m = 2 and ending up with m = n, so we can find at least some APN

functions. This approach would be more applicable with Depth First Search (DFS)

algorithm, so implemented this algorithm as it is given in [8], similer to BFS, we did

slight changes in the structures to fit our data better.

Using this approach we could produce couple of results up to m = n = 6, which we

could not produced in any other method. Unfortunately, even the algorithm run for

over 15 days, it could not generate any extensions from F26− > F27 to F27− > F27

even though it produced extensions up to F26− > F27 .

4.1.4 Randomized Depth First Search (R-DFS) Implementation

Due to the difficulties we encountered with time constraint, we decided to change the

existing DFS algorithms iterative flow with a randomized algorithm. This algorithms

15



main difference from the existing DFS algorithm is, as it can be observed from its

title, rather than a consecutive execution, it would randomly select one of the many

available paths to try and find a result.

Using this algorithm, we could be able to generate many solutions extended to F26− >

F26 in just a couple of minutes, and any extension less than n < 6 can produce results

in less than a minute. Unfortunately, even though we run this program for over 10

days, we could not find any solutions that extends from F26− > F27 to F27− > F27 ,

even though we could generated extensions up to F26− > F27 very easily.

4.2 Results

In this section, I will share multiple, randomly selected results which can be seen in

the Appendix A. Then, columns in the results will be briefly explained, and a brief

summary of the calculations that are made to generate these results.

As you can observe from the results in Appendix A, the result are displayed in

columns and these columns contains g(X), f(X) and Ais.t.i ∈ {0, 1, ..,m− 1}.

The resulting function f(X) is found using f(X, y) = g(X) + y ∗ L(X) where

X = [x0, x1, ..., xm], L(x) = x0 ∗A0+x1 ∗A1+ ..+xm ∗Am from Theorem 3.1. As

you can see from the results in Appendix A, vectorial implementations are used. This

implementation have been chosen to ease both human readability and and computer

implementation.

In Table A.1 you may see randomly selected 50 different extensions from g(x) :

F22 → F23 to f(x) : F23 → F23 . As you can see, since the extension started with
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m = 2, there are only 2 Ai are used to generate L(X). In this table, you may find

different g(X) functions to start with. Since, m = n−1, only one extension is enough

to reach a potential Quadratic APN functions.

In Table A.2 again, you may see randomly selected 50 different extensions, but this

time from g(x) : F22 → F24 to f(x) : F23 → F24 . Similar to Table A.1, there are only

2 Ai are used, but unlike that, this time the found f(x) functions are m ̸= n. Then,

we need to take another step, do another extension, to reach m = n. In Tables A.3,

A.4, A.5, A.6, you may find the extensions of 4 different f(x) : F23 → F24 calculated

in the previous step. In those steps, A.2 ’s f(x) values becomes g(x)’s of Tables A.3,

A.4, A.5, A.6. In these tables, since m = 3, there are 3 Ai values to calculate L(X).

The results of Tables A.3, A.4, A.5, A.6 are potential Quadratic APN functions.

Theoretically, as it is given in Theorem 3.1, they are supposed to be Quadratic APN

functions. But, no validation process is executed, we prefer to refer them as potential

Quadratic APN functions.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

To conclude, in this thesis, we covered through the different APN generations meth-

ods including an ongoing work of Sălăgean and Özbudak’s recently developed ap-

proach of APN generations, and different implementations done to create an applica-

tion of their ongoing work.

The implementations that are done, although they could not go beyond F26− > F26

for now, we could generate millions of different results, currently stored in a SQL

database with size about 8 GB.

From this point on, we are aiming to understand and analyze the results we gathered

whilst working towards optimizing our current algorithms.
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APPENDIX A

SOME RESULTS

Here is presented various results of the calculations done in this thesis. These results

are as follows:

• Randomly selected 50 results of extension from g(X) : F22 → F23 to f(X) :

F23 → F23 in Table A.1

• Randomly selected 50 results of extension from g(x) : F22 → F24 to f(x) :

F23 → F24 in Table A.2

• From a single g(X) = [0, x1 ∗x2, x0 ∗x2, x0 ∗x1], randomly selected 50 results

of extension from g(X) : F23 → F24 to f(C) : F24 → F24 in Table A.3

• From a single g(X) = [x1 ∗ x2, x1 ∗ x2, x0 ∗ x2, x0 ∗ x1], randomly selected 50

results of extension from g(X) : F23 → F24 to f(C) : F24 → F24 in Table A.4

• From a single g(X) = [x0 ∗x2+x1 ∗x2, x1 ∗x2, 0, x0 ∗x1+x0 ∗x2], randomly

selected 50 results of extension from g(X) : F23 → F24 to f(x) : F24 → F24 in

Table A.5

• From a single g(X) = [x0 ∗ x2, x1 ∗ x2, x0 ∗ x2, x0 ∗ x1], randomly selected 50

results of extension from g(X) : F23 → F24 to f(X) : F24 → F24 in Table A.6
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Table A.1: Randomly selected 50 results of extension from g(X) : F22 → F23 to
f(X) : F23 → F23

A1 A2 g(X) f(X)

[1, 0, 1] [0, 1, 1] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2]

[1, 0, 1] [1, 0, 0] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2]

[1, 0, 0] [0, 1, 0] [0, 0, x0 ∗ x1] [x0 ∗ x2, x1 ∗ x2, x0 ∗ x1]

[0, 0, 1] [0, 1, 1] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2]

[1, 1, 0] [1, 0, 1] [0, 0, x0 ∗ x1] [x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2]

[1, 0, 1] [1, 1, 1] [0, 0, x0 ∗ x1] [x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2]

[0, 1, 0] [1, 1, 0] [x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1]

[1, 1, 1] [1, 0, 1] [x0 ∗ x1, 0, 0] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2]

[0, 1, 0] [0, 0, 1] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2]

[1, 0, 0] [0, 1, 0] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1]

[0, 1, 1] [1, 0, 1] [0, x0 ∗ x1, 0] [x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2]

[0, 0, 1] [0, 1, 0] [x0 ∗ x1, x0 ∗ x1, 0] [x0 ∗ x1, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2]

[0, 0, 1] [1, 0, 1] [x0 ∗ x1, x0 ∗ x1, 0] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1, x0 ∗ x2 + x1 ∗ x2]

[0, 0, 1] [1, 0, 0] [0, x0 ∗ x1, 0] [x1 ∗ x2, x0 ∗ x1, x0 ∗ x2]

[1, 0, 1] [0, 0, 1] [0, x0 ∗ x1, 0] [x0 ∗ x2, x0 ∗ x1, x0 ∗ x2 + x1 ∗ x2]

[0, 1, 0] [1, 0, 0] [x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2, x0 ∗ x1]

[1, 0, 0] [1, 1, 0] [0, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1]

[0, 1, 0] [1, 1, 0] [0, x0 ∗ x1, x0 ∗ x1] [x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1]

[1, 0, 1] [0, 1, 0] [0, 0, x0 ∗ x1] [x0 ∗ x2, x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2]

[0, 0, 1] [1, 1, 1] [x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1 + x1 ∗ x2, x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2]

[0, 0, 1] [1, 1, 1] [0, x0 ∗ x1, 0] [x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2]

[0, 0, 1] [1, 0, 0] [0, x0 ∗ x1, x0 ∗ x1] [x1 ∗ x2, x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2]

[1, 0, 0] [0, 1, 1] [0, 0, x0 ∗ x1] [x0 ∗ x2, x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2]

[0, 0, 1] [1, 0, 0] [x0 ∗ x1, x0 ∗ x1, 0] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1, x0 ∗ x2]

[0, 0, 1] [1, 1, 1] [0, x0 ∗ x1, x0 ∗ x1] [x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2]

[1, 0, 0] [1, 1, 0] [0, 0, x0 ∗ x1] [x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2, x0 ∗ x1]

[0, 1, 1] [1, 1, 1] [0, x0 ∗ x1, 0] [x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2]

[1, 1, 1] [1, 0, 0] [0, 0, x0 ∗ x1] [x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2]

[0, 1, 1] [0, 0, 1] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2]

[1, 0, 0] [0, 1, 1] [0, x0 ∗ x1, 0] [x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x1 ∗ x2]

[1, 0, 1] [1, 0, 0] [0, x0 ∗ x1, 0] [x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1, x0 ∗ x2]

[1, 1, 0] [1, 1, 1] [x0 ∗ x1, 0, 0] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2]

[0, 0, 1] [0, 1, 1] [x0 ∗ x1, x0 ∗ x1, 0] [x0 ∗ x1, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2]

[0, 1, 1] [0, 0, 1] [x0 ∗ x1, 0, 0] [x0 ∗ x1, x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2]

[1, 1, 0] [0, 1, 0] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1]

[0, 0, 1] [0, 1, 0] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2]

[0, 1, 0] [1, 1, 0] [0, 0, x0 ∗ x1] [x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1]

[1, 1, 1] [0, 1, 0] [0, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2]

[1, 0, 0] [1, 1, 1] [x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2]

[1, 1, 1] [0, 1, 1] [x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2]

[1, 1, 0] [0, 1, 1] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2]

[1, 0, 0] [1, 1, 0] [x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2, x0 ∗ x1]

[0, 1, 1] [0, 0, 1] [x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2]

[1, 1, 0] [0, 0, 1] [0, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2]

[0, 0, 1] [1, 0, 1] [x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2]

[1, 0, 1] [1, 0, 0] [0, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2]

[1, 1, 0] [0, 1, 1] [0, x0 ∗ x1, 0] [x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2]

[1, 1, 0] [0, 1, 0] [x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1]

[1, 1, 1] [1, 0, 0] [0, x0 ∗ x1, 0] [x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2]

[1, 0, 1] [0, 1, 0] [x0 ∗ x1, x0 ∗ x1, 0] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2]
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Table A.2: Randomly selected 50 results of extension from g(x) : F22 → F24 to
f(x) : F23 → F24

g(X) f(X) A1 A2

[x0 ∗ x1, x0 ∗ x1, 0, 0] [x0 ∗ x1, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2, 0] [0, 1, 0] [1, 1, 0]

[x0 ∗ x1, 0, x0 ∗ x1, 0] [x0 ∗ x1, x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2] [0, 0, 1] [1, 1, 1]

[x0 ∗ x1, x0 ∗ x1, 0, 0] [x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2] [1, 1, 0] [1, 1, 1]

[x0 ∗ x1, 0, 0, x0 ∗ x1] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2, x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2] [1, 0, 1] [1, 1, 1]

[0, x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2] [1, 1, 1] [1, 1, 1]

[x0 ∗ x1, 0, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2] [1, 1, 1] [0, 1, 1]

[x0 ∗ x1, 0, x0 ∗ x1, 0] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2, 0] [1, 1, 1] [1, 1, 1]

[0, x0 ∗ x1, 0, 0] [x0 ∗ x2, x0 ∗ x1, 0, x1 ∗ x2] [1, 1, 1] [0, 0, 1]

[x0 ∗ x1, x0 ∗ x1, 0, 0] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, 0, x0 ∗ x2 + x1 ∗ x2] [1, 0, 1] [1, 1, 1]

[x0 ∗ x1, 0, 0, 0] [x0 ∗ x1 + x1 ∗ x2, 0, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2] [0, 0, 1] [1, 1, 1]

[0, 0, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2] [1, 1, 1] [1, 1, 1]

[x0 ∗ x1, 0, x0 ∗ x1, 0] [x0 ∗ x1, x1 ∗ x2, x0 ∗ x1, x0 ∗ x2 + x1 ∗ x2] [0, 0, 1] [1, 0, 1]

[x0 ∗ x1, x0 ∗ x1, 0, 0] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2, x1 ∗ x2] [1, 0, 0] [1, 1, 1]

[x0 ∗ x1, 0, x0 ∗ x1, 0] [x0 ∗ x1 + x0 ∗ x2, x1 ∗ x2, x0 ∗ x1, x0 ∗ x2 + x1 ∗ x2] [1, 1, 1] [1, 0, 1]

[x0 ∗ x1, 0, 0, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, 0, x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2] [1, 1, 1] [0, 0, 1]

[0, x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, 0, x0 ∗ x1 + x0 ∗ x2] [1, 1, 1] [1, 0, 0]

[0, x0 ∗ x1, 0, x0 ∗ x1] [x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2, x0 ∗ x1] [1, 1, 0] [1, 1, 1]

[x0 ∗ x1, 0, 0, 0] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, 0, x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2] [1, 1, 1] [1, 1, 1]

[x0 ∗ x1, x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2] [1, 1, 1] [0, 0, 1]

[x0 ∗ x1, x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2] [0, 1, 0] [1, 1, 1]

[0, 0, x0 ∗ x1, 0] [x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1, x1 ∗ x2] [1, 0, 0] [1, 1, 1]

[x0 ∗ x1, x0 ∗ x1, x0 ∗ x1, 0] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2] [1, 1, 1] [1, 1, 1]

[x0 ∗ x1, 0, 0, 0] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2] [1, 1, 0] [1, 1, 1]

[x0 ∗ x1, x0 ∗ x1, 0, 0] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1, x1 ∗ x2, x1 ∗ x2] [1, 1, 1] [0, 1, 1]

[0, x0 ∗ x1, x0 ∗ x1, 0] [x0 ∗ x2, x0 ∗ x1, x0 ∗ x1 + x1 ∗ x2, x1 ∗ x2] [1, 1, 1] [0, 1, 1]

[0, x0 ∗ x1, 0, 0] [x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2, x1 ∗ x2] [1, 1, 1] [1, 0, 1]

[x0 ∗ x1, 0, 0, 0] [x0 ∗ x1, x0 ∗ x2, x1 ∗ x2, x0 ∗ x2] [1, 0, 1] [0, 1, 0]

[x0 ∗ x1, x0 ∗ x1, x0 ∗ x1, 0] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1, x0 ∗ x2 + x1 ∗ x2] [1, 0, 1] [1, 1, 1]

[0, x0 ∗ x1, 0, x0 ∗ x1] [x0 ∗ x2, x0 ∗ x1, x1 ∗ x2, x0 ∗ x1] [1, 1, 1] [0, 1, 0]

[0, x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2] [1, 1, 1] [1, 1, 1]

[0, x0 ∗ x1, 0, x0 ∗ x1] [0, x0 ∗ x1 + x1 ∗ x2, x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2] [0, 0, 1] [1, 1, 1]

[x0 ∗ x1, x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2] [1, 1, 0] [0, 0, 1]

[x0 ∗ x1, 0, 0, 0] [x0 ∗ x1 + x0 ∗ x2, 0, x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2] [1, 1, 1] [0, 0, 1]

[x0 ∗ x1, 0, 0, 0] [x0 ∗ x1 + x0 ∗ x2, x1 ∗ x2, 0, x0 ∗ x2 + x1 ∗ x2] [1, 1, 1] [1, 0, 1]

[0, x0 ∗ x1, 0, x0 ∗ x1] [x1 ∗ x2, x0 ∗ x1, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2] [0, 1, 0] [1, 1, 1]

[x0 ∗ x1, x0 ∗ x1, 0, 0] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2, x1 ∗ x2] [1, 1, 1] [0, 0, 1]

[0, x0 ∗ x1, 0, 0] [x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2, 0, x0 ∗ x2 + x1 ∗ x2] [1, 0, 1] [1, 1, 1]

[0, x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x1 ∗ x2, x0 ∗ x1, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2] [0, 1, 1] [1, 1, 1]

[x0 ∗ x1, 0, 0, 0] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2, x0 ∗ x2] [1, 0, 1] [1, 1, 1]

[x0 ∗ x1, 0, x0 ∗ x1, 0] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2] [1, 1, 1] [1, 1, 1]

[x0 ∗ x1, 0, 0, 0] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x2, x1 ∗ x2, x0 ∗ x2] [1, 1, 1] [1, 1, 1]

[x0 ∗ x1, 0, 0, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2, x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2] [1, 1, 1] [0, 1, 1]

[x0 ∗ x1, 0, x0 ∗ x1, 0] [x0 ∗ x1, x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x1 ∗ x2] [0, 1, 0] [1, 0, 1]

[x0 ∗ x1, 0, 0, x0 ∗ x1] [x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2, x1 ∗ x2, x0 ∗ x1] [1, 1, 1] [1, 1, 1]

[x0 ∗ x1, 0, 0, 0] [x0 ∗ x1, x0 ∗ x2, x1 ∗ x2, x1 ∗ x2] [1, 0, 0] [0, 1, 1]

[0, 0, x0 ∗ x1, 0] [0, x0 ∗ x2, x0 ∗ x1 + x1 ∗ x2, x1 ∗ x2] [1, 0, 0] [0, 1, 1]

[0, 0, 0, x0 ∗ x1] [0, x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x1 ∗ x2] [1, 1, 0] [0, 1, 1]

[x0 ∗ x1, 0, x0 ∗ x1, 0] [x0 ∗ x1, x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x2 + x1 ∗ x2] [1, 1, 1] [1, 0, 1]

[x0 ∗ x1, 0, 0, x0 ∗ x1] [x0 ∗ x1, x1 ∗ x2, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2] [0, 1, 1] [1, 0, 0]

[x0 ∗ x1, x0 ∗ x1, x0 ∗ x1, x0 ∗ x1] [x0 ∗ x1 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x2] [1, 1, 1] [1, 1, 1]
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Table A.3: From a single g(X) = [0, x1 ∗ x2, x0 ∗ x2, x0 ∗ x1], randomly selected 50
results of extension from g(X) : F23 → F24 to f(C) : F24 → F24

f(X) A0 A1 A2

[x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [0, 0, 1, 0] [1, 1, 1, 1]

[x0 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 0] [0, 0, 1, 1] [0, 1, 0, 1]

[x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [0, 1, 1, 1] [0, 0, 1, 0] [1, 1, 0, 0]

[x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 1, 1] [1, 1, 0, 1] [1, 0, 0, 0]

[x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [0, 1, 1, 0] [1, 1, 0, 0] [0, 1, 0, 1]

[x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 0, 0, 1] [1, 1, 1, 1]

[x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [0, 1, 0, 0] [1, 0, 1, 0] [0, 1, 0, 1]

[x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [1, 1, 0, 0] [1, 1, 0, 1]

[x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 1, 1] [1, 0, 0, 1] [0, 0, 1, 1]

[x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [1, 0, 1, 1] [1, 0, 0, 1]

[x0 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 0] [0, 1, 1, 1] [0, 0, 0, 1]

[x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [0, 0, 1, 1] [1, 0, 0, 1]

[x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 0] [1, 0, 1, 1] [1, 0, 0, 1]

[x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [1, 1, 1, 1] [0, 0, 1, 1]

[x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [0, 1, 1, 0] [0, 0, 1, 0] [1, 0, 1, 1]

[x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 1, 0, 0] [1, 1, 1, 0] [1, 1, 1, 1]

[x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 0] [1, 1, 0, 1] [0, 1, 1, 1]

[x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 1, 1] [0, 0, 1, 1] [1, 1, 1, 0]

[x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 0, 1, 0] [1, 0, 0, 0] [0, 0, 1, 1]

[x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 0] [0, 1, 1, 1] [0, 1, 0, 1]

[x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 1, 1] [1, 1, 1, 1] [0, 0, 1, 1]

[x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [1, 0, 1, 0] [0, 0, 1, 1]

[x0 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 1] [0, 0, 1, 1] [0, 1, 0, 1]

[x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 1, 1, 1] [0, 0, 1, 1] [1, 1, 1, 0]

[x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 0] [1, 1, 1, 1] [0, 1, 0, 1]

[x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [1, 1, 1, 0] [0, 0, 0, 1]

[x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1] [0, 1, 0, 0] [0, 1, 1, 0] [1, 1, 0, 0]

[x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [0, 1, 1, 0] [0, 0, 1, 1]

[x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x0 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 0, 1, 1] [1, 0, 0, 1] [1, 0, 0, 0]

[x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [1, 0, 1, 0] [0, 1, 1, 1] [1, 1, 0, 0]

[x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 0, 0, 0] [1, 0, 1, 0] [0, 0, 1, 1]

[x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 1, 0] [1, 0, 0, 1] [0, 1, 1, 1]

[x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 1, 1, 1] [1, 0, 1, 1] [1, 1, 1, 0]

[x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 0] [0, 0, 1, 1] [1, 0, 0, 1]

[x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [1, 1, 0, 1] [1, 0, 0, 0] [1, 1, 1, 0]

[x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 1, 0, 1] [0, 0, 0, 1]

[x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 0, 0, 1] [0, 0, 1, 0] [1, 1, 1, 1]

[x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [0, 1, 1, 0] [0, 0, 1, 1] [1, 0, 1, 0]

[x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [0, 1, 1, 1] [0, 0, 1, 0] [1, 0, 1, 0]

[x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2, x0 ∗ x1 + x2 ∗ x3] [0, 1, 0, 0] [1, 0, 0, 0] [0, 1, 0, 1]

[x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 0, 0, 1] [0, 0, 1, 1] [1, 0, 0, 0]

[x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 1, 1, 1] [0, 1, 1, 1] [1, 1, 0, 0]

[x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 0] [1, 0, 1, 1] [0, 1, 1, 1]

[x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 0] [1, 1, 0, 1] [0, 1, 1, 1]

[x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1] [0, 1, 1, 0] [0, 0, 1, 0] [1, 1, 1, 0]

[x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [1, 1, 1, 0] [1, 0, 1, 1] [1, 0, 1, 0]

[x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 1, 1] [0, 1, 1, 1] [1, 1, 0, 1]

[x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 0, 0, 0] [0, 0, 1, 0] [1, 0, 1, 1]

[x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 0] [1, 0, 0, 1] [1, 1, 1, 1]

[x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [0, 1, 1, 0] [1, 1, 1, 1] [1, 1, 1, 0]
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Table A.4: From a single g(X) = [x1 ∗x2, x1 ∗x2, x0 ∗x2, x0 ∗x1], randomly selected
50 results of extension from g(X) : F23 → F24 to f(C) : F24 → F24

f(X) A0 A1 A2

[x1 ∗ x2, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [0, 1, 0, 0] [0, 0, 1, 0] [0, 0, 1, 1]

[x1 ∗ x2 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [0, 1, 1, 1] [1, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 1, 0, 0] [0, 1, 1, 0] [1, 1, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 0] [1, 0, 1, 1] [0, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 0] [1, 1, 1, 1] [1, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1] [1, 1, 0, 0] [1, 0, 1, 0] [0, 1, 0, 0]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [1, 0, 0, 0] [1, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 0] [0, 1, 1, 1] [1, 1, 0, 1]

[x1 ∗ x2, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [0, 1, 1, 1] [0, 0, 1, 1]

[x1 ∗ x2 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [0, 1, 1, 0] [0, 0, 1, 1] [1, 0, 1, 0]

[x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [0, 1, 1, 0] [1, 1, 1, 0] [0, 1, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 0, 1, 0] [0, 0, 1, 0] [1, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1] [1, 1, 1, 0] [0, 0, 1, 0] [1, 0, 0, 0]

[x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 0, 0, 1] [0, 0, 1, 0] [0, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [0, 1, 0, 0] [0, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [0, 0, 1, 0] [1, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 0, 1, 1] [0, 1, 1, 0] [0, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [1, 0, 1, 1] [1, 0, 0, 0] [1, 0, 1, 0]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 0] [0, 1, 0, 1] [1, 1, 1, 1]

[x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 0] [1, 0, 1, 1] [0, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 1, 0, 0] [1, 1, 1, 0] [0, 1, 1, 1]

[x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 0] [0, 0, 1, 1] [0, 1, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 0] [1, 0, 1, 1] [1, 1, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [1, 0, 1, 1] [1, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 0, 0, 1] [0, 1, 0, 0] [0, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 1, 1, 0] [0, 1, 1, 0] [1, 1, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [1, 1, 0, 1] [1, 1, 1, 0] [0, 1, 0, 0]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [1, 0, 0, 1] [0, 0, 0, 1]

[x1 ∗ x2, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [0, 1, 1, 0] [0, 0, 1, 0] [0, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 0, 0, 0] [1, 1, 1, 0] [0, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 1, 1, 1] [1, 0, 1, 1] [0, 1, 1, 0]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 0, 0, 1] [0, 1, 0, 1] [1, 0, 0, 0]

[x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 1, 0]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 0, 0, 1] [1, 1, 1, 0] [0, 1, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [1, 1, 1, 0] [1, 0, 1, 1]

[x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 1, 1, 0] [0, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [0, 1, 1, 1] [0, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 0, 0, 0] [1, 0, 1, 0] [1, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 1, 1] [0, 0, 1, 1] [1, 1, 0, 1]

[x1 ∗ x2 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [0, 1, 1, 0] [0, 1, 0, 1] [1, 0, 0, 0]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [1, 0, 1, 1] [1, 1, 1, 0] [1, 0, 1, 0]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [1, 1, 1, 1] [0, 1, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 1, 1] [1, 0, 0, 1] [0, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 0] [1, 1, 1, 1] [1, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 1, 0, 0] [1, 0, 1, 0] [0, 1, 1, 1]

[x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 0] [1, 0, 0, 1] [0, 0, 0, 1]

[x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 1, 0] [0, 0, 1, 1] [1, 0, 1, 1]

[x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 0, 0, 0] [1, 1, 1, 0] [1, 0, 0, 1]

[x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 0, 1, 1] [1, 0, 0, 1]

[x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 0] [1, 0, 0, 1] [0, 1, 1, 1]
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Table A.5: From a single g(X) = [x0∗x2+x1∗x2, x1∗x2, 0, x0∗x1+x0∗x2], randomly
selected 50 results of extension from g(X) : F23 → F24 to f(x) : F24 → F24

f(X) A0 A1 A2

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3] [0, 1, 1, 1] [1, 0, 1, 0] [0, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [1, 1, 1, 1] [0, 1, 1, 1] [1, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [1, 1, 0, 1] [0, 0, 1, 1] [0, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3] [0, 1, 0, 1] [1, 0, 0, 0] [0, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x2 ∗ x3] [1, 1, 0, 0] [1, 1, 1, 0] [1, 0, 1, 1]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x3] [1, 0, 1, 0] [1, 0, 0, 1] [1, 0, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x2 ∗ x3] [1, 0, 1, 0] [0, 0, 1, 0] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 0, 1, 0] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3] [1, 1, 1, 1] [0, 1, 1, 0] [1, 0, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2] [1, 1, 0, 0] [0, 1, 1, 0] [0, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 0, 1] [0, 1, 1, 1] [0, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x2 ∗ x3] [0, 1, 0, 0] [1, 0, 0, 0] [0, 1, 1, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x3] [0, 1, 0, 0] [1, 1, 1, 1] [1, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [0, 1, 1, 0] [1, 1, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2] [0, 0, 1, 0] [1, 0, 1, 0] [0, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 1, 1] [1, 1, 1, 1] [0, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3] [1, 1, 0, 1] [0, 1, 0, 0] [0, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x3] [0, 0, 1, 0] [1, 0, 0, 1] [1, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [1, 1, 0, 1] [0, 1, 0, 1] [0, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 1, 1] [0, 1, 0, 1] [0, 1, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 0, 0, 1] [1, 1, 1, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [1, 0, 1, 0] [1, 1, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3] [1, 1, 1, 1] [0, 1, 0, 0] [1, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x3] [1, 0, 1, 0] [0, 1, 1, 1] [0, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 0, 1] [1, 0, 0, 1] [1, 1, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2] [1, 1, 0, 0] [1, 1, 1, 0] [0, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [0, 0, 1, 1] [1, 1, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x2 ∗ x3] [0, 0, 1, 0] [1, 0, 1, 0] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x3] [1, 1, 1, 0] [0, 1, 0, 1] [1, 0, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [0, 0, 1, 1] [1, 1, 1, 1] [1, 0, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [0, 0, 1, 0] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x2 ∗ x3] [1, 1, 0, 0] [1, 0, 1, 0] [1, 1, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [1, 1, 1, 1] [0, 1, 0, 1] [1, 0, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [0, 1, 0, 0] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3] [1, 0, 1, 1] [0, 0, 1, 0] [1, 1, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 0, 1, 1] [1, 0, 0, 1] [1, 0, 1, 1]

[x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 0, 1] [0, 1, 1, 1] [0, 1, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [1, 1, 1, 0] [1, 1, 1, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x2 ∗ x3] [0, 0, 1, 0] [1, 0, 0, 0] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2] [0, 1, 0, 0] [1, 0, 0, 0] [0, 1, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x2 ∗ x3] [1, 0, 1, 0] [0, 1, 1, 0] [1, 1, 1, 1]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [0, 1, 1, 0] [0, 1, 1, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [0, 0, 1, 1] [1, 0, 0, 1] [0, 1, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x3] [0, 1, 0, 0] [1, 0, 1, 1] [1, 1, 1, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3] [1, 0, 1, 1] [0, 0, 1, 1] [0, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [1, 1, 1, 0] [1, 1, 1, 1]

[x0 ∗ x2 + x1 ∗ x2, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x3] [0, 1, 1, 0] [0, 1, 0, 1] [0, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x2 ∗ x3] [1, 1, 1, 0] [0, 1, 1, 0] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x1 ∗ x3] [0, 0, 1, 0] [1, 0, 0, 1] [0, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x1 ∗ x3, x0 ∗ x1 + x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [1, 0, 1, 1] [0, 0, 0, 1]
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Table A.6: From a single g(X) = [x0 ∗x2, x1 ∗x2, x0 ∗x2, x0 ∗x1], randomly selected
50 results of extension from g(X) : F23 → F24 to f(X) : F24 → F24

f(X) A0 A1 A2

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [1, 1, 1, 1] [0, 0, 1, 1]

[x0 ∗ x2, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [0, 0, 1, 1] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 1, 1, 1] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 1, 1, 0] [1, 1, 1, 1]

[x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [0, 0, 1, 0] [1, 0, 0, 0] [1, 0, 1, 1]

[x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [0, 1, 0, 0] [1, 1, 1, 0] [1, 0, 0, 1]

[x0 ∗ x2, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 1, 1] [0, 0, 1, 1] [0, 1, 1, 0]

[x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [0, 0, 1, 0] [1, 1, 1, 1] [1, 1, 0, 0]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 0, 0, 1] [1, 0, 1, 1] [1, 0, 0, 0]

[x0 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [0, 0, 1, 1] [1, 1, 1, 0] [0, 0, 1, 0]

[x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 1] [0, 0, 1, 1] [1, 1, 0, 1]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 0, 0, 0] [1, 0, 1, 0] [0, 0, 1, 1]

[x0 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 0, 1, 1] [0, 1, 0, 1]

[x0 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 1, 0, 0] [0, 1, 1, 0] [0, 1, 1, 1]

[x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1] [1, 0, 0, 0] [0, 0, 1, 0] [1, 1, 0, 0]

[x0 ∗ x2, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [0, 0, 1, 1] [0, 1, 1, 1] [0, 0, 1, 0]

[x0 ∗ x2, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 0] [0, 0, 1, 1] [0, 0, 0, 1]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 0] [1, 0, 0, 1] [0, 0, 1, 1]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [1, 1, 1, 0] [1, 0, 1, 1] [1, 1, 0, 0]

[x0 ∗ x2, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [0, 1, 0, 0] [0, 0, 1, 1] [0, 1, 1, 0]

[x0 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [0, 1, 1, 0] [1, 0, 1, 1] [0, 0, 1, 0]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 0, 0, 1] [1, 1, 0, 1] [1, 0, 0, 0]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [1, 1, 0, 0] [1, 0, 1, 1]

[x0 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [1, 1, 0, 1] [0, 1, 1, 1] [0, 1, 1, 0]

[x0 ∗ x2 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [0, 1, 0, 0] [0, 1, 1, 0] [1, 1, 1, 1]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 0] [1, 0, 1, 1] [1, 1, 0, 1]

[x0 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 1, 1] [1, 0, 1, 1] [0, 1, 1, 0]

[x0 ∗ x2 + x0 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 0, 0, 1] [0, 0, 1, 0] [0, 1, 1, 1]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 0, 1] [1, 1, 1, 0] [1, 0, 1, 1]

[x0 ∗ x2, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [0, 1, 1, 0] [0, 1, 1, 1]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [1, 0, 1, 1] [0, 0, 1, 1]

[x0 ∗ x2, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 0, 1, 0] [0, 1, 1, 1] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 0, 1, 1] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [0, 1, 1, 0] [1, 1, 0, 1] [1, 0, 0, 0]

[x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 0, 1] [1, 1, 1, 1] [1, 1, 0, 0]

[x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 1] [1, 1, 0, 1] [1, 0, 1, 1]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x1 ∗ x3, x0 ∗ x2, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 0] [1, 1, 0, 1] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3] [0, 1, 1, 1] [1, 1, 1, 1] [1, 1, 0, 0]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 0, 0, 1] [1, 0, 1, 1] [0, 0, 0, 1]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 0] [1, 1, 0, 1] [0, 1, 0, 1]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x2 ∗ x3, x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1] [1, 0, 0, 0] [1, 0, 1, 0] [0, 1, 1, 0]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2, x0 ∗ x1 + x1 ∗ x3] [1, 1, 0, 0] [1, 0, 0, 1] [1, 0, 0, 0]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x1 ∗ x3] [1, 1, 1, 0] [1, 0, 1, 1] [0, 0, 1, 0]

[x0 ∗ x2 + x1 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [0, 1, 0, 1] [1, 1, 1, 0] [1, 0, 0, 0]

[x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x2 ∗ x3] [1, 1, 1, 0] [1, 0, 1, 0] [0, 1, 1, 1]

[x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [0, 1, 1, 0] [1, 0, 1, 1]

[x0 ∗ x2 + x1 ∗ x3, x1 ∗ x2, x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x1 + x0 ∗ x3] [0, 0, 1, 1] [1, 0, 0, 0] [0, 0, 1, 0]

[x0 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x1 ∗ x3 + x2 ∗ x3] [1, 1, 1, 1] [0, 0, 1, 1] [1, 1, 0, 1]

[x0 ∗ x2, x1 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x2 + x1 ∗ x3, x0 ∗ x1 + x0 ∗ x3 + x2 ∗ x3] [0, 1, 0, 1] [0, 1, 1, 0] [0, 0, 0, 1]

[x0 ∗ x2 + x1 ∗ x3, x1 ∗ x2 + x0 ∗ x3 + x2 ∗ x3, x0 ∗ x2 + x0 ∗ x3 + x1 ∗ x3, x0 ∗ x1 + x1 ∗ x3 + x2 ∗ x3] [0, 1, 1, 0] [1, 0, 1, 1] [0, 1, 0, 1]
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