
META-ANALYSIS OF GENE EXPRESSION HETEROGENEITY IN BRAIN
DEVELOPMENT AND AGING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

META-ANALYSIS OF GENE EXPRESSION HETEROGENEITY IN BRAIN
DEVELOPMENT AND AGING

Işıldak, Ulaş

M.S., Department of Biology

Supervisor: Prof. Dr. Mehmet Somel

September 2022, 93 pages

Aging is a complex process associated with the accumulation of stochastic genetic

and epigenetic alterations, leading to functional decline and increased risk for dis-

ease and death. Although some previous studies demonstrated a tendency towards

increased inter-individual heterogeneity during aging, whether it is a function of time

that starts at the beginning of life is unknown. Its functional consequences and reg-

ulations have also not been systematically studied. In this study, I addressed these

questions by the meta-analysis of 19 microarray age-series datasets, comprising 17

brain regions of 298 individuals. Investigating the age-related gene expression het-

erogeneity changes, I found that there is a significant shift towards increased hetero-

geneity consistency during aging (20 to 98 years of age) compared to the post-natal

development period (0 to 20 years of age). Moreover, the genes that become more

heterogeneous consistently across all aging datasets were found to be associated with

biological processes and pathways that are related to neuronal function (i.e., axon

guidance, postsynaptic specialization) and longevity (i.e., autophagy, mTOR signal-

ing). Gene set enrichment analysis for transcriptional regulators (i.e., miRNAs and

transcription factors) further revealed a positive correlation between the number of
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regulators and consistent changes in heterogeneity, indicating the possible role of

transcriptional regulators in the underlying mechanism.

Overall, the results presented here demonstrate that increased inter-individual expres-

sion heterogeneity is a general characteristic of the aging human brain, which is asso-

ciated with multiple lifespans and disease-related pathways and processes, suggest-

ing that increased heterogeneity may contribute to the emergence of aging-associated

phenotypes.

Keywords: aging, development, gene expression, heterogeneity, brain
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ÖZ

BEYİN GELİŞİMİ VE YAŞLANMASINDA GEN ANLATIMI
HETEROJENLİĞİNİN META-ANALİZİ

Işıldak, Ulaş

Yüksek Lisans, Biyoloji Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Somel

Eylül 2022 , 93 sayfa

Yaşlanma, stokastik genetik ve epigenetik değişikliklerin birikimi ile ilişkili karmaşık

bir süreçtir. Yaşa bağlı gen anlatımı değişikliklerini inceleyen önceki bazı çalışmalar,

bireyler arası heterojenliğin artmasına yönelik bir eğilimin olduğunu gösterse de, bu

artışın tam olarak ne zaman başladığı ve fonksiyonel sonuçlarının ne olduğu siste-

matik olarak çalışılmamıştır. Bu çalışmada, 298 bireyin 17 beyin bölgesini içeren 19

mikrodizi yaş serisi veri setinin meta-analizi ile bu soruları ele aldım. Yaşa bağlı gen

anlatımı heterojenlik değişikliklerine inceleyerek, yaşlanma sırasında (20 ila 98 yaş

aralığı) doğum sonrası gelişim dönemine (0-20 yaş aralığı) kıyasla heterojenlik tutar-

lılığının artışı yönünde istatistiksel olarak anlamlı bir kayma olduğu bulunmuştur. Bu

sonuç artan heterojenliğin sadece zamanın genel etkisinden kaynaklanmadığını, daha

ziyade yaşlanma döneminin spesifik bir etkisi olduğuna işaret ediyor. Ayrıca, bu tu-

tarlı artış gösteren genlerin nöronal fonksiyon (akson rehberliği, postsinaptik uzman-

laşma) ve yaşlanmayla (otofaji, mTOR sinyali) ilgili biyolojik süreçler ve yolaklar ile

ilişkili olduğu bulunmuştur. Transkripsiyonel regülatörler (miRNA’lar ve transkrip-

siyon faktörleri) için gen seti zenginleştirme analizi ayrıca şunu ortaya koydu: artan
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heterojenlik sadece belirli regülatörlerle ilişkili değil, aynı zamanda regülatörlerin sa-

yısı ile heterojenlik artışı arasında da pozitif bir ilişki var.

Genel olarak, burada sunulan sonuçlar, artan bireyler arası gen anlatımı heterojen-

liğinin yaşlanan insan beyninin genel bir özelliği olduğunu göstermektedir. Ayrıca,

bu artışın yaşlanma ve hastalıklarla ilgili yolaklar ve biyolojik işlevlerle ilişkili ol-

ması, artan heterojenliğin yaşlanma ile ilişkili fenotiplerin ortaya çıkmasına katkıda

bulunabileceğini düşündürmektedir.

Anahtar Kelimeler: yaşlanma, gelişim, gen anlatımı, heterojenlik, beyin
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CHAPTER 1

INTRODUCTION

1.1 Aging

Aging can be defined as a time-dependent deterioration of multiple biological func-

tions and processes. Decreasing the capacity of an organism to maintain homeostasis,

aging is associated with an increased vulnerability to many diseases including cancer,

cardiovascular and neurodegenerative disorders (Niccoli & Partridge, 2012).

Aging is accompanied by the accumulation of damage at different levels of an organ-

ism, from simple molecules to organs. It is well known that replication, transcrip-

tion and translation are error-prone processes. Furthermore, the protective responses

against these damages are also known to be vulnerable and tend to produce other

forms of damages (Gladyshev, 2016). These damages are exacerbated during the ag-

ing period and further contribute to aging and age-associated diseases. While both

stochastic and deterministic factors contribute to this damage, the deterministic (i.e.,

genetic) component is considered to be more important for distantly related species.

The effect of the genetic component, for example, can be observed in the comparison

of the lifespans of a human and a mouse living in the same environment. The stochas-

tic component, on the other hand, is suggested to be an important factor in explaining

aging-related differences within homogenous populations (Gladyshev, 2016). The

stochastic factors account for the damage to nucleic acids (i.e., DNA), proteins, lipids

and metabolites, as well as other age-related deleterious changes.
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1.1.1 Start of aging period

Although in everyday life, 65 years-of-age is often used to denote the beginning of old

age, the reason for choosing this age is actually historical, rather than being biologi-

cal (Covey, 1992). In the biological context, however, the age-related changes were

considered to manifest themselves after the organism reaches its maximum reproduc-

tive capacity (Vijg, 2009). In human populations, the age of 20 years approximately

corresponds to the age of reproductive maturity (Walker et al., 2006).

Moreover, earlier studies also showed that the aging-associated structural changes in

the human brain begin to exhibit themselves when individuals are in their 20s. These

changes include declines in regional brain volumes (Sowell et al., 2003), myelin in-

tegrity (Sullivan & Pfefferbaum, 2006), cortical thickness (Magnotta, 1999; Salat,

2004), serotonin receptor binding (Sheline et al., 2002), and concentration of several

brain metabolitees (Kadota et al., 2001; Salthouse, 2009). Recent studies analyzing

transcriptional patterns in the human brain further revealed that the age of 20 years is

a turning point in age-related gene expression trajectories, suggesting that it roughly

corresponds to the point at which the aging-associated changes started (Colantuoni

et al., 2011; Dönertaş et al., 2017; Somel et al., 2010).

1.1.2 Hallmarks of aging

In a 2013 paper, the authors reviewed 9 hallmarks of aging that were suggested to be

the contributors to the emergence of aging-associated phenotypes (López-Otín et al.,

2013). The authors used three criteria while considering candidate hallmarks. First,

a hallmark must exhibit itself during normal aging. Second, experimental worsening

of a hallmark must accelerate aging. Third, experimental amelioration of a hallmark

must slow down the aging process.

Moreover, the hallmarks were further divided into 3 categories:

1. Primary hallmarks, including genomic instability, telomere attrition, epige-

netic alterations and loss of proteostasis, were considered to be primary causes

of damage.
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2. Antagonistic hallmarks, including deregulated nutrient sensing, mitochon-

drial dysfunction and cellular senescence, were promoted (or accelerated) by

the primary hallmarks, and they contribute to further accumulation of damages.

3. Integrative hallmarks, including stem cell exhaustion and altered intercellular

communication, were suggested to arise due to the accumulation of damages

caused by the primary and antagonistic hallmarks, and they further affect tissue

homeostasis and function.

Figure 1.1: The hallmarks of aging (López-Otín et al., 2013).

Each hallmark of aging is explained in detail in the following subsections.

1.1.2.1 Genomic instability

Genomic instability was suggested to be one of the major stochastic mechanisms of

aging. Many studies previously demonstrated the accumulation of somatic mutations

during aging in humans and other model organisms (Lodato et al., 2018; Lombard

et al., 2005; Lu et al., 2004; Moskalev et al., 2013; Vijg, 2004). The cumulative ef-

fect of somatic mutations hinders the normal functioning of essential genes and tran-

scriptional pathways, contributing to aging and aging-associated diseases. Moreover,

deficiencies in the DNA repair mechanism were found to be associated with acceler-
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ated aging, whereas increased expression of DNA repair genes resulted in extended

lifespan (Stead & Bjedov, 2021; Symphorien & Woodruff, 2003).

1.1.2.2 Telomere attrition

Telomeres are repetitive and protective DNA sequences found at the end of the chro-

mosomes. Since most mammalian cells do not express telomerase, an enzyme re-

sponsible for maintaining telomere length, telomeres tend to shorten as the cell divide

(i.e., as the organism age). Therefore, telomere length limits the proliferation capac-

ity of somatic cells that do not express telomerase enzyme (Blasco, 2007). Moreover,

telomere dysfunction was shown to be associated with accelerated aging (Armanios

et al., 2009), whereas experimental induction of telomerase was suggested to lead to

delayed aging (Tomás-Loba et al., 2008).

1.1.2.3 Epigenetic alterations

A number of epigenetic alterations including alterations in DNA methylation pat-

terns, chromatin remodeling and post-transcriptional modifications of histones, were

suggested to constitute aging-associated epigenetic marks, significantly affecting the

normal functioning of cells. The most notable effect of age-related epigenetic al-

terations is on transcriptional outcomes, given the key role of epigenetic factors in

transcriptional regulation. It was suggested that epigenetic alterations may cause ab-

normal production and maturation of some mRNAs, and even further lead to increased

transcriptional variation (Ashapkin et al., 2017).

1.1.2.4 Loss of proteostasis

Proteostasis, mechanisms that involve preserving the stability and functionality of

the proteome, is suggested to be altered during aging (Koga et al., 2011). Age-

associated impairment of proteostasis leads to continuous expression of misfolded

and aggregated proteins, whose accumulation during aging further contributes to the

development of age-associated diseases, including Alzheimer’s disease and Parkin-
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son’s disease (Powers et al., 2009).

1.1.2.5 Deregulated nutrient sensing

Nutrient-sensing pathways play important role in sensing the presence or absence

of extra- and intra-cellular nutrients, and they further regulate their intake. The

Insulin/Insulin-like Growth Factor Signaling (IIS) pathway is one of the nutrient-

sensing pathways that was found to be regulating aging. The downstream intracellular

effectors of the IIS pathway include AKT, mTOR and FoxO, all of which were sug-

gested to be associated with aging (Barzilai et al., 2012; Fontana et al., 2010; Kenyon,

2010). Decreased activity of the IIS and mTOR signaling pathways, for example, was

found to extend the lifespan in many model organisms (Fontana et al., 2010).

1.1.2.6 Mitochondrial dysfunction

During normal aging, the mitochondrial machinery becomes rusty, leading to in-

creased electron leakage and reduced ATP generation (Green et al., 2011). In addition

to accumulation of damages in the nuclear DNA (see Section 1.1.2.1), mitochon-

drial DNA (mtDNA) is also considered to be vulnerable to somatic mutations due

to limited repair mechanisms and oxidative microenvironment, leading to impaired

functionality of mitochondria. Moreover, an age-related increase in reactive oxygen

species (ROS) was suggested to cause global cellular damage after a certain thresh-

old, further contributing to the emergence of aging-associated phenotypes (Hekimi

et al., 2011).

1.1.2.7 Cellular senescence

Cellular senescence can be defined as permanent arrest of the cell cycle. It can be

triggered by a number of factors including, telomere shortening, DNA damage and

a number of mitogenic alterations. The number of senescent cells was shown to

increase with age. Although cellular senescence is originally a protective mechanism

preventing the proliferation of damaged cells, their accumulation during aging results
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in deleterious effects on tissue homeostasis, further contributing to aging (Biran et al.,

2017; Yousefzadeh et al., 2020).

1.1.2.8 Stem cell exhaustion

It is long known that aging is accompanied by a decline in stem cell numbers and re-

newal capacity, contributing to the declined homeostatic and regenerative capacity of

aged tissues (Oh et al., 2014). The factors contributing to stem cell exhaustion include

DNA damage (Section 1.1.2.1), epigenetic alterations (Section 1.1.2.3), aggregation

of damaged proteins (Section 1.1.2.4), accumulation of toxic metabolites (i.e., ROS)

and mithochondrial dysfunction (Section 1.1.2.6). Moreover, experimental rejuvena-

tion of stem cells was found to reset the aging clock, meaning that it has potential to

reverse aging-associated phenotypes (Rando & Chang, 2012).

1.1.2.9 Altered intercellular communication

In addition to cell-autonomous hallmarks, the last hallmark of aging according to

López-Otín et al. (2013) is related to altered communication of cells in terms of

endocrine, neuroendocrine and neuronal signaling (Russell & Kahn, 2007). A har-

monious intercellular communication was suggested to be a key factor for stress re-

sponse, cell survival and maintaining homeostasis (Tan et al., 2021). The aging period

is associated with increased inflammatory reactions, decreased immunosurveillance

and a changed extracellular environment, all of which contribute to the deregulation

of neurohormonal signaling. Specifically, senescent cells were shown to produce an

altered secretome, which is rich in proinflammatory cytokines, which in turn con-

tributes to the emergence of aging-associated phenotypes (Childs et al., 2016; Kuil-

man et al., 2010).

1.2 Age-related gene expression changes

As high-throughput technologies become more affordable and widely accessible, the

past two decades have seen a dramatic increase in studies that focus on gene expres-
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sion changes in the brain during the aging period. One of the earlier studies conducted

by Lu and colleagues found that the expression levels of the genes that play impor-

tant role in synaptic plasticity and mitochondrial tended to decrease in aging human

brain (Lu et al., 2004). They further demonstrated that this decrease is also accom-

panied by increased promotor damage, suggesting that DNA damage may reduce the

expression of genes involved in neuronal functioning, possibly contributing to the

emergence of aging-associated pathologies.

A 2008 study, employing a microarray-based approach, found that the majority of

genes in the aging human brain tend to decrease in expression (Berchtold et al., 2008).

However, they also identified a set of up-regulated genes during aging, which was

found to be related to immune activation and inflammation. These results were also

confirmed by an independent study, where they found that, although the majority of

genes were down-regulated during aging, the genes involved in immune and inflam-

matory responses were found to increase in expression (Lu et al., 2004). Combined,

dysregulation of immune system genes might be a characteristic of the aging human

brain (Frenk & Houseley, 2018), and it may be associated with aging-related pheno-

types in the human brain.

Another common gene expression signature of aging is the downregulation of genes

encoding mitochondrial ribosomal proteins and components of the electron transport

chain. In their 2013 study, Kumar et al. analyzed microarray data generated from

the frontal lobe of the cerebral cortex and cerebellum, and found that genes encod-

ing mitochondrial components tend to be downregulated during aging (Kumar et al.,

2013). Similar trends were also observed in other model organisms including rodents,

flies and worms, and across different tissues from skin to muscle (Frenk & Houseley,

2018), suggesting that the downregulation of genes encoding mitochondrial proteins

may be a characteristic of aging, and may contribute to the age-related mitochondrial

dysfunction (Section 1.1.2.6).

Other studies investigated the relationship between the age-related gene expression

change patterns during development and aging. Somel et al. analyzed gene and

miRNA expression trajectories and found that the majority of expression changes

observed in the aging period represent reversals or extensions of developmental pat-
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terns (Somel et al., 2010). Colantuoni et al. also found a similar effect in human

brain during development (Colantuoni et al., 2011). In a more recent study, the au-

thors performed a meta-analysis on gene expression reversals and identified a set of

genes showing the up-down pattern (i.e., increase during development, decrease dur-

ing aging). They further demonstrated that these genes are involved in neuronal and

synaptic functions, suggesting that decreased expression levels during aging may be

associated with the stochastic nature of aging (Dönertaş et al., 2017).

There are also more recent studies that investigated age-related gene expression change

patterns using RNA-Sequencing based approaches. Yang et al., for example, ana-

lyzed RNA-Sequencing data across different human tissues and identified a set of age-

associated genes (Yang et al., 2015). They further showed that aging-associated genes

showing down-regulation were associated with mitochondrial function, whereas up-

regulated age-associated genes were found to be associated with cell death and in-

flammation reponse (Yang et al., 2015). Another RNA-Seq based study also found

that the genes that are down-regulated during aging were associated with neuronal

development and the transmission of nerve impulses (Naumova et al., 2012). Thus,

these studies demonstrate that independent RNA-Seq based approaches also confirm

the previous results obtained from microarray-based studies.

1.2.1 Age-related heterogeneity changes

It was previously suggested that the aging period is also associated with dysregulation

of gene expression and mRNA processing (Frenk & Houseley, 2018), suggesting

a possible increase in age-related gene expression heterogeneity (also called noise

or variation) between individuals. A number of studies were published reporting

increased variation between individuals and cells during aging.

In one of the earlier studies investigating age-related heterogeneity change, Somel et

al. demonstrated an increase in age-related gene expression variation during aging,

which was suggested to be a result of the accumulation of stochastic errors during

aging (Somel et al., 2006). However, they failed to show the functional consequences

of increased heterogeneity as they could not identify a set of genes that become more

heterogeneous with age. Consistently, another 2006 study also reported an increase
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in cell-to-cell variation in mouse heart during the aging period (Bahar et al., 2006). In

a more recent study conducted by Kedlian & Donertas et al., the authors investigated

microarray data from the human prefrontal cortex and revealed that increased hetero-

geneity is a weak but consistent pattern, which is also associated with a wide range

of pathways (Kedlian et al., 2019).

Some more recent studies leveraged the availability of more advanced technology,

single-cell RNA sequencing, which provides a resolution that is unattainable by pre-

vious sequencing methodologies. In a 2017 study, Martinez-Jimenez et al. analyzed

single-cell sequencing data of T cells of mice and found that the cell-to-cell hetero-

geneity increases during aging among immune cells (Martinez-Jimenez et al., 2017).

Another study analyzed gene expression data from human pancreas generated by

single-cell sequencing technologies, which also allows the detection of age-related

stochastic errors. They found that aging is associated with a gradual accumulation

of stochastic errors, which leads to increased cell-to-cell heterogeneity during ag-

ing (Enge et al., 2017). Similar results were also observed in mice lung by Angelidis

et al. where they found increased transcriptional heterogeneity during aging (Ange-

lidis et al., 2019).

Increased heterogeneity during aging was not only observed at the transcriptome

level. A 2002 study that analyzed cellular changes during aging in C. elegans using

the electron-microscopic data also found increased variance in age-related cellular

decline (Herndon et al., 2002). The authors further discussed that the observed effect

might be a result of weakened gene regulation in post-reproductive life, suggesting

the significant role of stochastic factors. In a more recent study, the authors analyzed

chromatin modifications in human immune cells at the single cell level, and found

an increased heterogeneity between both cells and individuals (Cheung et al., 2018).

They further demonstrated that age-related chromatin alterations are largely driven

by non-heritable factors. Another study analyzed age-related heterogeneity changes

in monozygotic twins using both transcriptomic and epigenetic datasets. They found

that the heterogeneity in the epigenetic modification patterns between monozygotic

twins increases with age. Moreover, by analyzing gene expression patterns, they

demonstrated that 50 years old twins display significantly different gene expression

profiles, whereas 3 years old twins have almost identical expression profiles (Fraga
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et al., 2005).

Given all the above, it should also be of note that the generalizability of this effect still

remains unclear. For example, analysis of single-cell profiles of aging mouse brain

suggested that aging may not be broadly associated with increased transcriptional

heterogeneity (Ximerakis et al., 2019). Moreover, Vinuela et al. et al. analyzed age-

dependent heterogeneity changes in a twin cohort and observed a decrease in gene

expression heterogeneity for the majority of genes (Viñuela et al., 2018).

1.3 Research Objectives

Traditionally, molecular aging studies have studied senescence as a monomorphic

process. In recent years, however, a number of studies have gone beyond this ap-

proach, and have been reporting changes in gene expression heterogeneity with age.

Still, the generality of increase in heterogeneity with age remains contentious. More-

over, whether age-related heterogeneity change is a function of time that starts early

in development or is limited to the aging period has not been systematically explored.

Also, the functional role of increased heterogeneity and its potential contribution to

the emergence of aging-associated phenotypes in the human brain still remains un-

clear.

In this study, I aimed to address these standing questions by analyzing 19 microar-

ray datasets from 3 independent studies covering diverse human brain regions. The

previous research mainly focused on significant changes in individual datasets, which

is sensitive to sample size and highly affected by confounding factors. Thus, in this

study, I adapted a meta-analysis approach to analyze consistent changes in gene ex-

pression heterogeneity across multiple datasets. Using this approach, I managed to

reduce the effects of confounding factors and technical noise, and identify weak but

consistent patterns across datasets.
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CHAPTER 2

MATERIALS AND METHODS

2.1 Datasets

In this study, I analyzed 19 microarray age-series datasets to investigate age-related

gene expression heterogeneity change in the human brain during development and

aging. The datasets were retrieved from 3 independent sources, containing microarray

data for the human brain (Colantuoni et al., 2011; Kang et al., 2011; Somel et al.,

2010; Somel et al., 2011). Overall, the datasets include 1,010 samples from 298

individuals spanning 17 different brain regions, which are not mutually exclusive.

All datasets have samples covering whole lifespan with ages ranging from 0 to 98

years (Figure 2.1). A summary of datasets used in this study is shown in Table 2.1.

It should also be noted that the Kang2011 datasets contain samples from the left and

right hemispheres of the same individual. These samples were analyzed as biological

replicates, meaning that samples were not separated into two different datasets, for

three reasons. First, it was previously suggested that the left and right hemispheres

of the brain may show asymmetric age-related changes (Dolcos et al., 2002; Sun et

al., 2005). Second, the other datasets do not contain hemisphere information. Last,

previous studies analyzing this dataset, including the original study, also treated them

as biological replicates (Dönertaş et al., 2017; Kang et al., 2011).

Additionally, the Somel2011_PFC dataset includes two pairs of technical replicates,

between which the correlation was high. Therefore, the mean of expression values
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Figure 2.1: The distribution of ages (in years) of the samples. (a) Number of samples

included in age intervals. (b) Distribution of ages. The color coding reflect different

data sources.

was used in the downstream analysis.

The datasets were downloaded from the NCBI Gene Expression Omnibus (GEO)

database using the accession codes given in the Table 2.1. All analyses was per-

formed in R programming environment (R Core Team, 2020).

2.1.1 Dataset selection

The age-series datasets analyzed in this study are all microarray-based. Although

there was one other RNA Sequencing-based dataset that covers the whole lifespan (Mazin

et al., 2013), I chose not to include it in this analysis for two reasons. First, the sam-

ples were already included in the Somel2011 dataset. Second, it is an underpowered

dataset with data from only 35 individuals that cannot reliably lead to a conclusion.

There were also RNA-Sequencing datasets containing samples from only develop-

ment or aging periods. Since combining independent development and aging datasets

may confound the biological effects that I aimed to examine, this study was limited

to the meta-analysis of 19 microarray-based datasets.
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Table 2.1: The list of microarray human brain gene expression datasets. The sample

sizes were calculated after the removal of outliers.

GEO Acc. Source Brain Region Sample Size

GSE30272 Colantuoni2011 PFC 231

GSE25219 Kang2011 A1C 47

GSE25219 Kang2011 AMY 43

GSE25219 Kang2011 CBC 47

GSE25219 Kang2011 DFC 48

GSE25219 Kang2011 HIP 39

GSE25219 Kang2011 IPC 49

GSE25219 Kang2011 ITC 49

GSE25219 Kang2011 M1C 45

GSE25219 Kang2011 MD 43

GSE25219 Kang2011 MFC 50

GSE25219 Kang2011 OFC 48

GSE25219 Kang2011 S1C 46

GSE25219 Kang2011 STC 48

GSE25219 Kang2011 STR 41

GSE25219 Kang2011 V1C 48

GSE25219 Kang2011 VFC 47

GSE22569 Somel2011 PFC 23

GSE18069 Somel2011 CBC 22
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2.1.2 Seperating development and aging datasets

The aim of this study is to investigate age-related gene expression changes during

development and aging. Thus, all the datasets were separated into two datasets: de-

velopment (0 to 20 years of age) and aging (20 to 98 years of age). The age of 20

years was used to separate development and aging for the following reasons:

1. The age of 20 was shown to correspond approximately to the age of reproduc-

tion in human societies (Walker et al., 2006).

2. Previous studies investigating age-related gene expression trajectories demon-

strated that 20 years of age corresponds to a turning point of gene expression

patterns (Colantuoni et al., 2011; Dönertaş et al., 2017; Somel et al., 2010).

3. Earlier research connected the structural changes occurring in the human brain

after the age of 20 to age-related phenotypes (Sowell et al., 2004).

As a result, I obtained: (i) one development and one aging dataset for Colantuoni2011;

(ii) 16 development and 16 aging datasets for Kang2011; and (iii) two development

and two aging datasets for Somel2011. Overall, both development and aging datasets

resulted in a comparable number of samples (ndevelopment = 441; naging = 569).

Moreover, it is important to note that I excluded samples from the prenatal devel-

opment period, since gene expression trajectories were shown to be discontinuous

between prenatal and postnatal development period (Colantuoni et al., 2011; Kang

et al., 2011), and since the scope of this study is limited to investigating changes in

gene expression heterogeneity during aging compared to pre-adulthood.

2.2 Dataset Preprocessing

Microarray technology is a widely used tool to quantify the expression level of gene

transcripts from a given sample. A microarray chip contains known sequences of

oligonucleotides -known as probes- that are located on a solid surface. Typically,

each transcript is represented by a set of 11-20 pairs of probes, called the probe-set

of that transcript, in Affymetrix microarray platforms. The cDNAs derived from the
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mRNA transcripts of the sample are hybridized to target probes labeled by detectable

fluorochrome molecules, where the amount of hybridization is reflected by the light

intensity levels. The quantification of expression is then performed by measuring the

light intensity levels of each probe, which are stored in CEL files.

The Kang2011 and Somel2011 datasets were generated by Affymetrix HuEx-1_0-

st and HuGene-1_0-st microarray platforms, respectively. Colantuoni2011 dataset,

on the other hand, was generated using the HEEBO-7 set (Human 49K oligo ar-

ray), which is an Illumina-based array. Since there is no public R library available

to process Illumina-based data from Colantuoni2011, I used the expression data pre-

processed by the authors of the original study (Colantuoni et al., 2011). For the

datasets from Kang2011 and Somel2011 sources, I downloaded CEL files from GEO

database (Barrett et al., 2013). The preprocessing of Kang2011 and Somel2011

datasets can be summarized in four steps: (1) RMA convolution, (2) probe-set sum-

marization, (3) log2 transformation, and (4) quantile normalization. Distribution of

expression values after each preprocessing step is shown in Figure 2.1. For the Colan-

tuoni2011 dataset, quantile normalization was performed on the preprocessed data.

2.2.1 RMA correction

The very first step of microarray analysis is the removal of noise and biases from the

raw data obtained from light intensities. There can be a number of factors contributing

to background errors, such as optical noise, unspecific hybridization and incomplete

washing (Bengtsson & Hössjer, 2006). Nevertheless, low-level preprocessing and

normalization, having a significant effect on the downstream analysis, were suggested

to be one of the most important steps in any microarray data analysis (Bengtsson &

Hössjer, 2006).

In this study, background normalization was performed by the Robust Multiarray Av-

erage (RMA) convolution method, which is one of the most commonly used methods

to perform background normalization on microarray data. The RMA method involves

the removal of technical artifacts so that the measurements from neighboring probes

do not interfere with each other (Irizarry et al., 2003).
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Apart from background normalization, the RMA algorithm also performs probe-to-

probe-set summarization. Since each transcript is represented by a set of 11-20

probes, it is necessary to summarize probe-level data into probe-sets, by grouping

probes corresponding to the same transcript. I used the R “oligo” library to perform

RMA correction (Carvalho & Irizarry, 2010). As previously stated, RMA correction

was performed only on Kang2011 and Somel2011 datasets.

2.2.2 Probe-set summarization

I next summarized the probe-set expression values into gene expression values. This

step is required to combine and analyze data from different platforms since we need

to have expression values that are defined universally (i.e., by gene IDs). Thus, con-

verting probe-sets into gene IDs allows us to compare expression levels of the genes

among different platforms.

However, probe-set to gene ID conversion is not one-to-one in many platforms. There

can be multiple probe-sets that correspond to the same gene, while it is also possible

to have a probe-set that maps to multiple genes. In this study, probe-sets that corre-

spond to more than one gene were removed, since keeping these samples may lead

to a pseudo-replication problem, where the expression level of multiple genes would

not be independent. For the genes having multiple probe-set data, the expression val-

ues were calculated by taking the average of the expression values of the probe-sets

corresponding to the gene.

For the dataset generated by HuGene-1_0-st (Somel2011 datasets), Ensembl v.84 an-

notations (Yates et al., 2016) were retrieved through “biomaRt” library in R (Durinck

et al., 2009). For the Kang2011 dataset generated by the HuEx-1_0-st platform, the

GPL file deposited in the GEO database was used since the IDs of probe-sets were

not complete in Ensembl. Lastly, for the Colantuoni2011 dataset, the gene IDs were

retrieved from the GPL file deposited in the GEO database.
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2.2.3 Log2 transformation

The Log2 transformation is the most widely used transformation in microarray data

analysis to remove the correlation between mean and variance, and to make the vari-

ance more comparable. Moreover, in the data produced by microarray platforms,

there are typically many genes having lower expression values, whereas there are

fewer genes having high expression levels, leading to a right-skewed distribution

(Figure 2.2). Making distributions more similar, Log2 transformation allows us to

perform parametric statistical tests, as most of them assume equal variance. Addi-

tionally, the Log2 transformation also allows us to visualize the data more easily.

Therefore, the Log2 transformation was applied to the expression data from Kang2011

and Somel2011 sources.

2.2.4 Quantile normalization

The microarray platforms are susceptible to technical variation from different sources,

hampering the meta-analysis of multiple datasets from different sources. Quantile

normalization is one of the commonly used methods used to minimize technical vari-

ation (Zhao et al., 2020).

Quantile normalization assumes the same distribution for all samples. Therefore,

any significant variation in the distribution shape is regarded as unwanted and non-

biological noise and is eliminated. However, it is also important to note that quantile

normalization should be used with caution as it may remove signals that can be of

biological interest and introduce false signals as well (Hicks & Irizarry, 2014). De-

spite this danger, the quantile normalization was performed on all datasets for three

reasons. First, all the datasets analyzed in this study contain samples only from the

human brain. Second, sample collection was performed under similar conditions (i.e.,

from healthy individuals), combined with the first reason, they indicate that overall

expression distributions should be similar. Third, this study mainly focuses on con-

sistent patterns among different datasets, rather than focusing on significant changes

in individual genes from a single dataset. We expect quantile normalization to elim-

inate only random confounding factors that are not shared among datasets. Then,
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the shared patterns among different datasets were considered as a potential biological

signal.

The “preprocessCore” R package was used to perform quantile normalization (Bol-

stad, 2021).

Figure 2.2: Summary of preprocessing steps for Somel2011_CBC dataset at differ-

ent preprocessing steps. The top left histogram shows the distribution of raw probe

expression levels. The top right histogram shows probe-set expression values after

RMA correction. The bottom left plot shows the gene expression values after RMA

correction and Log2 transformation. The bottom right plot shows the gene expression

values after RMA correction, Log2 transformation and quantile normalization.

2.2.5 Scaling

Next, the expression levels for each gene for each dataset were scaled to mean = 0

and standard deviation = 1. Since linear regression analysis was performed in the

downstream analysis, it is important to scale the genes before model fitting in order to

obtain comparable residuals. Scaling was performed by using the following formula.
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Scaled Expri =
Expri −mean(Expr)

Standard Deviation(Expr)
(2.1)

where Expri and Scaled Expri represent expression and scaled expression value of

the sample i, respectively, whereas Expr is the expression values of the gene for all

samples in a dataset.

2.2.6 Batch-effect correction

There was one additional normalization step applied to the Somel2011_PFC dataset

to correct the batch effect, which refers to non-biological differences in the distribu-

tion of expression values of different groups of samples that are processed separately.

The correction was performed in three steps as follows:

1. For each probe-set, mean expression values were calculated.

2. Each batch was scaled separately to mean = 0 and standard deviation = 1

using the equation 2.1.

3. The mean values calculated at step 1 were added to each value.

2.3 Outlier removal

In addition to technical variance introduced by microarray analysis, there can be

some samples showing greater divergence from the rest of the samples due to a num-

ber of factors, such as different disease backgrounds or different diets. Including such

samples (i.e., outliers) in the analysis would introduce extra noise and would obstruct

the identification of the true relationship between age and expression levels.

To identify outliers, Principal Component Analysis (PCA) was used. PCA is a dimen-

sion reduction method that allows us to visualize high-dimensional data and detect

outliers (see Section 2.7 for a more detailed explanation of PCA). The first two prin-

cipal components, which are the most important components explaining the largest

variance, were used to visualize data and identify outliers.
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Consistent with the previous studies (Dönertaş et al., 2017; Dönertaş et al., 2018), the

following 7 samples were removed from the analysis:

1. 3 years old GSM705108 from Kang2011 dataset (A1C brain region);

2. 37 years old GSM704438 from Kang2011 dataset (CBC brain region);

3. 42 years old GSM705202 from Kang2011 dataset (CBC brain region);

4. 0 year old GSM704567 from Kang2011 dataset (HIP brain region);

5. 40 year old GSM704627 from Kang2011 dataset (HIP brain region);

6. 70 year old GSM704226 from Kang2011 dataset (HIP brain region);

7. 70 year old GSM704227 from Kang2011 dataset (HIP brain region).

After removing outliers, we obtained 1,010 samples from 298 individuals (Table 2.1).

Lastly, the common genes among all datasets were selected for the downstream anal-

ysis (n = 11, 137), and the genes for which we do not have a measurement in at least

one dataset were removed.

2.4 Investigating age-related expression change

Having preprocessed datasets for both development and aging periods, I next sought

to characterize age-related gene expression changes. Linear regression was used to

quantify the relationship between expression levels and age. The following linear

model was fitted to each gene for each time period separately.

Expri = βi0 + βi1 ∗ Age1/4 + ϵi (2.2)

where, Expri is the scaled expression value of the ith gene, βi0 is the intercept, βi1

is the slope, Age is the age in days, and ϵi is the residual. The βi1 values were

considered as the measure of age-related expression change. Throughout this study,

βi1 values will be referred to as simply ‘beta’ values. Since it is the slope of the linear

model, a negative beta value indicates a decrease in gene expression with age, while
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positive values indicate an age-related increase in the expression of the corresponding

gene. The left panels of Figure 2.3 show an example of quantification of age-related

expression changes for two genes.

It is also worth noting that we transformed the individual ages into the fourth root

scale to obtain an approximately uniform distribution of ages across the lifespan. To

test the effect of the age scale, I performed the same analysis using different age scales

and confirmed that they also resulted in quantitatively similar results.

The linear regression was performed by using the “lm” function in base R for each

gene in each dataset (development and aging datasets, separately).

2.4.1 Multiple testing correction

I obtained p-values for each gene from the linear regression model, showing the

significance of observed age-related expression change. In this study, we used a sig-

nificance level of α = 0.05, meaning that there is a 5% chance that there will be

a false-positive result for a single statistical test. Since the regression analysis was

performed on each gene independently, the false positive rate increased dramatically

as a result of multiple comparison problem. Therefore, the p-values obtained from

linear regression were adjusted for multiple testing to eliminate the accumulation of

false-positive results.

While there are several other methods available, I used Benjamini & Hochberg method

throughout this study to adjust p-values (Benjamini & Hochberg, 1995). It is the stan-

dard method that is commonly used to control the false discovery rate. Compared to

other methods, B&H is one of the less conservative (and thus more powerful) meth-

ods.

The correction was performed by using the “p.adjust” function in base R.
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2.5 Age-related heterogeneity change

Given that the age-related expression change display a linear trend, the residual ob-

tained from the Equation 2.2 (i.e., the ϵ values) reflects the deviation of that sample

(see dashed vertical lines on the left panels of Figure 2.3). Thus, the absolute value

of residuals was used as a measure of the heterogeneity of the corresponding sample.

To characterize the age-related change in gene expression heterogeneity, Spearman’s

correlation test was performed between absolute values of residuals and the fourth

root of age for each gene and each dataset separately (see the right panels in Fig-

ure 2.3).

Then, the Spearman’s correlation coefficients (ρ) were considered as a measure of het-

erogeneity change, where positive values indicate an increase in heterogeneity with

age and negative values reflect a decrease in age-related heterogeneity.

The correlation test was performed by using the “cor.test” function in base R and the

p-values were adjusted for multiple testing using the B&H method, as explained in

Section 2.4.1.

2.6 Correlation among datasets

To evaluate the correlation among datasets in age-related gene expression (and hetero-

geneity) change, I performed pairwise Spearman’s correlation test among beta values

(rho values) for each pair of datasets, using the ‘cor.test‘ function in R. The heatmap

visualizations (see Figure 3.1a and Figure 3.2a) were created by using “pheatmap”

library in R (Kolde, 2019).

A random permutation test was used to test the significance of correlations among

datasets (see Section 2.8.1 for details).
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Figure 2.3: Summary of the method used to calculate age-related expression change

(left panels) and age-related expression heterogeneity change (right panels) during

development (a) and aging (b). Each point represents a sample. The Beta values were

obtained from linear regression analysis, while the Rho values were obtained from

Spearman’s correlation test. The p-value shows the FDR corrected p-values. The

figure is adapted from (Isildak et al., 2020).

2.7 Principal component analysis

Since biological data, including gene expression data, is typically high-dimensional,

it is difficult to visualize and discover patterns in the data. Principal component anal-

ysis (PCA) is a dimension reduction method that is widely used in biological data

analysis for summarization and visualization of the data. Basically, the PCA algo-

rithm creates linear combinations of variables, known as principal components (PCs).

The principal components were sorted based on their capacity to explain the variance,

where the first principal component explains the most variance. Usually, the first two

principal component axes are used for visualization purposes. Therefore, PCA allows

us to visualize and summarize high-dimensional data in 2-dimensional space.

Apart from the outlier removal step (see Section 2.3), the PCA algorithm is also
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used to visualize age-related expression (Figure 3.1b) and heterogeneity changes

(Figure 3.2b). I performed PCA using the “prcomp” function in base R.

2.8 Permutation test

The random permutation test is a statistical method used for hypothesis testing. The

main advantage of the permutation test over other parametric statistical tests is that the

permutation test does not have distributional assumptions. Additionally, conventional

parametric tests require each sample to be independent, while the permutation test is

more flexible, allowing us to design a permutation procedure that accounts for non-

independence. Since there are multiple samples from the same individuals in some

sub-datasets, meaning that not all observations are independent, the permutation test

was used to assess significance throughout this study.

I used the permutation schema that was developed by earlier studies, taking into ac-

count that Kang2011 and Somel2011 datasets contain samples from different brain

regions of the same individual (Dönertaş et al., 2017; Dönertaş et al., 2018). Specifi-

cally:

1. The ages were randomly permuted among individuals for each data source,

by using the “sample” function in R. It is important to note that ages were not

randomized among samples, but among individuals to maintain the dependency

between samples.

2. The randomized ages of individuals were mapped to corresponding samples.

All the samples obtained from the same individual were assigned to the same

age.

3. The age-related gene expression and heterogeneity changes were calculated by

using permuted ages of the samples as follows:

(a) To calculate age-related expression change, linear regression was per-

formed between randomized ages and expression levels, using the Equa-

tion 2.2 as explained in Section 2.4
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(b) To calculate age-related heterogeneity change, Spearman’s correlation test

was performed between randomized ages and absolute value of residuals

obtained from Equation 2.2 computed with non-randomized ages.

4. Steps 1-3 were repeated 1,000 times to obtain the null distribution for the test

statistic.

The basic idea of this procedure is to simulate the null hypothesis, where there is no

relationship between age and expression (heterogeneity). After having 1,000 expres-

sion (heterogeneity) change values for each gene in each dataset, we can compare

observed values with this null distribution to assess the significance of observed ten-

dency.

Using the expression and heterogeneity change estimates, I tested the significance

of (i) dataset correlations, (ii) overall increase in heterogeneity, and (iii) expected

consistency in the heterogeneity change. All permutation tests were performed one-

tailed.

2.8.1 Dataset correlations

Using the permuted ages, I first examined the coordination in expression and hetero-

geneity changes among datasets by computing correlation coefficients for expression

and heterogeneity change within the development and aging datasets. One approach

to test correlations would be to calculate pairwise correlations for each pair of datasets

for each permutation, and calculate the expected median correlation among develop-

ment and aging datasets. However, since 16 of 19 datasets analyzed in both time pe-

riods were retrieved from the same data source (i.e., Kang2011) and contain samples

from different brain regions of the same individual, this approach would lead to ex-

cess false positives due to a high number of dependent pairwise comparisons. There-

fore, we adopted an alternative approach, where I first calculated a median correlation

coefficient value by performing Spearman’s correlation test among all pairwise com-

binations of three subsets of datasets: one dataset from Kang2011, one dataset from

Somel2011, and the Colantuoni2011 dataset. I performed this 1,000 using the per-

muted ages and generated a null distribution of medians for development and aging
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datasets, separately. Then, the observed median values were compared against the

null distribution of medians to assess the significance of the observed median corre-

lation among development and aging datasets.

Next, the difference in correlations between development and aging datasets was

tested. For each permutation, I calculated a median difference between the corre-

lations of development and aging datasets. Similarly, observed median differences

were compared against the distribution of median differences obtained from permu-

tations.

2.8.2 Significant expression and heterogeneity changes

To test if there is a significant difference in the number of genes showing the signif-

icant age-related change in expression (heterogeneity) between development and ag-

ing datasets, I calculated the difference in the number of significantly changing genes

between development and aging datasets for each permutation to construct the null

distribution. The p-values were obtained by comparing observed differences against

the null distribution.

2.8.3 Overall increase in heterogeneity

To test if the overall increase in heterogeneity during aging is significantly higher

than development, I calculated the median difference between median heterogeneity

change of development and aging for each dataset. The median value was computed

1,000 times for each permutation to construct the null distribution. Then, I compared

the observed median difference against the null distribution to obtain an empirical

p-value.

2.8.4 Testing consistency in heterogeneity changes

Lastly, I used heterogeneity change values computed using the permuted ages to

estimate the randomly expected consistency in heterogeneity increase, and to test the

significance of observed consistency. For each permutation, I calculated the number
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of genes showing a consistent increase in the X number of datasets, where X is an

integer having values from 0 to 19. Then, the observed number of genes showing

a consistent increase in heterogeneity in the X number of datasets were compared

against the expected number of genes for each X value ranging from 0 to 19.

2.9 Clustering

Clustering of genes based on shared heterogeneity patterns was performed using the

k-means clustering algorithm on 147 genes showing a consistent increase in hetero-

geneity in all 19 aging datasets. The heterogeneity levels (i.e., absolute residuals

obtained from Equation 2.2) were first scaled to have the same mean and standard

deviation. Then, using the scaled heterogeneity levels, spline curves were fitted for

each gene with a degree of freedom of 3, by using the “smooth.spline” R function.

Within each dataset, the smallest sample size was used to interpolate the data so that

the age points are evenly spaced. Lastly, I used interpolated values to perform k-

means clustering (k = 8), using the “kmeans” function in R. An alternative approach

would be to directly use scaled heterogeneity values to perform clustering. However,

this approach would fail to represent all data points equally due to the varying sample

sizes of different datasets.

2.10 Functional enrichment analysis

Gene set enrichment analysis (GSEA) was performed using Gene Ontology (GO) Bi-

ological Process categories and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways to determine the functional role of increased heterogeneity. Specifically,

the common genes were first ordered based on the number of datasets they show a

consistent increase. Then, by using the “gseGO” and “gseKEGG” functions from the

“clusterProfiler” R package (Wu et al., 2021), I investigated whether the genes show-

ing increased consistency in heterogeneity change are associated with specific GO

categories or KEGG pathways. The gene sets with a size between 5 and 500 were

employed to run GSEA analysis and the resulting Normalized Enrichment Scores

(NES) were used to assess the strength of the association. The p-values were adjusted
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for multiple testing using the B&H method, consistent with the previous sections

(Section 2.4.1).

Since I want to test if genes with consistent heterogeneity increase are associated with

certain functionalities, the genes were ranked according to the number of datasets in

which they show consistent heterogeneity increase, meaning that a number between

0 and 19 was assigned to each gene. One problem with this approach is that not

all genes can be ranked unambiguously due to many ties observed in the dataset.

To address this issue, I ran GSEA 1,000 times and calculated the number of times

that each pathway was detected as "significant" (see ‘significanceIn1000’ column in

Table C.1).

GO Biological Process enrichment results were visualized by using the “treemap”

function from “treemap” package (Tennekes, 2021), whereas significant KEGG path-

ways were visualized by using the “KEGGgraph” package in R (Zhang & Wiemann,

2009).

2.11 Transcriptional regulation enrichment analysis

Next, the gene enrichment analysis was also performed for transcriptional regulators,

namely miRNAs and transcription factors. The Harmonizome database was used

to retrieve transcription-regulator association information (Rouillard et al., 2016).

Specifically, the miRNA-target interaction information was obtained from miRTar-

Base (Chou et al., 2016), containing information for 12,086 genes and 596 miRNAs.

The information about transcription factors and their binding sites were curated by

the TRANSFAC database for 13,216 genes and 201 transcription factors (Matys et

al., 2006). To run gene set enrichment analysis on these custom gene sets, the “fgsea”

package in R was used (Korotkevich et al., 2019). Similar to functional enrichment

analysis, the genes were ranked based on the number of datasets in which they show

a consistent increase. The regulators with 10 to 500 targets were used to perform

enrichment analysis.

Additionally, I performed a correlation test between the heterogeneity change and

the number of transcriptional regulators. Specifically, Spearman’s correlation test
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was performed between the number of datasets with a consistent increase in het-

erogeneity and the number of regulators (i.e., miRNAs and transcription factors),

for development and aging periods separately. To test the significance of the differ-

ence in correlations between development and aging, the permutation test was used.

In detail, I randomly permuted the number of regulators 1,000 times and calculated

Spearman’s correlation coefficients between the number of datasets with a consistent

increase and permuted number of regulators. Then, for each permutation, I computed

the proportion of datasets where the correlation in the aging dataset is higher than

the development. The empirical p-value was obtained by comparing the observed

proportion against the distribution of expected proportions.
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CHAPTER 3

RESULTS

In this study, I investigated the age-related gene expression heterogeneity change by

analyzing 19 microarray datasets containing 1,010 samples from diverse brain re-

gions of 298 individuals, and covering the whole lifespan. To compare heterogeneity

change occurring before and after adulthood, each dataset was first separated into two

datasets: one development dataset (including samples with ages ranging from 0 to 20

years old) and one aging dataset (including samples with ages ranging from 20 to

98 years old). Only the common genes (n = 11,137) were used in the downstream

analysis.

3.1 Age-related gene expression change

While this study aims to investigate age-related changes in gene expression hetero-

geneity, I first sought to characterize the age-related change in gene expression. Lin-

ear regression was performed to characterize the relationship between gene expres-

sion and age for each gene and dataset separately (Section 2.4). The beta values (i.e.,

βi1 from Equation 2.2) obtained from linear regression were considered as a measure

of age-related expression change.

To investigate the coordination in age-related expression change between datasets, I

calculated pairwise Spearman’s correlation test for each pair of datasets among the

beta value. The heatmap in the Figure 3.1a shows the Spearman’s correlation coef-

ficients (ρ) for each pair of datasets. The significance of correlation among datasets
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Figure 3.1: Age-related gene expression change. (a) The heatmap shows Spearman’s

correlation coefficient values for each pair of datasets. The row and column anno-

tations reflect the brain region, data source and time period of the corresponding

dataset. The datasets of each period were clustered separately. (b) Principal com-

ponent analysis of age-related expression changes. Each point shows a dataset, where

color-coding reflects time period and point-shape shows the data source. The values

in parenthesis (on the axis labels) reflect the explained variance by the corresponding

dataset. The values shown on the plot show the median euclidian distance among

development and aging datasets, calculated using PC1 and PC2. (c) Barplots show

the number of genes showing significant age-related expression change (FDR p-value

< 0.05) during development (left side) and aging (right side). Color-coding reflects

the direction of expression change, which is determined by the sign of the beta value.

Adapted from (Isildak et al., 2020).
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was tested by performing a permutation test (see Section 2.8). Overall, I found that

both development (permutation test p-value < 0.001, median ρ = 0.56) and aging

(permutation test p-value = 0.003, median ρ = 0.43) datasets display a modest corre-

lation with the datasets from the same time period, whereas the difference between

the correlation of development and aging datasets was not significant (permutation

test p-value = 0.1). Still, the weaker correlation among aging datasets compared to

development may indicate the stochasticity of the aging period.

I next performed principal component analysis (PCA), which is a dimension reduction

algorithm that is widely used in transcriptome data analysis. The beta values obtained

for each gene for each dataset (development and aging datasets, separately) were

used to calculate principal components. The first two principal components (PC1

and PC2), which also explain the most variance, were used to visualize the data.

Figure 3.1b shows the development and aging datasets projected on the PC1 and PC2

axis, where the first principal component separates development and aging datasets,

suggesting that expression changes may display different patterns in development and

aging. By calculating the median euclidian distance, I found that the median distance

among development datasets is 21, whereas the median distance among aging datasets

is 77. The fact that development datasets are clustered more closely compared to

aging datasets may reflect an increase in heterogeneity during the aging period.

Then, the number of genes showing significant age-related gene expression change

was calculated for development and aging datasets (Figure 3.1c). The p-values ob-

tained from linear regression analysis for each gene in each dataset were adjusted

for multiple testing using the B&H method (see Section 2.4.1). Analyzing signifi-

cant changes, I first found that there are significantly more genes in the development

datasets showing significant change compared to aging datasets (permutation test p-

value = 0.003), which may again reflect the higher heterogeneity during aging com-

pared to development. Second, the direction of change in development datasets was

mainly in the positive direction (14 of 19 datasets showed more increase), whereas

genes showing significant change during aging tended to decrease in expression (13

of 19 datasets showed more decrease).

Combined, my analysis of age-related expression changes demonstrated that the age-
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related gene expression changes may be less coordinated during aging, leading to

a higher inter-individual variability during aging, which may be the first clue to in-

creased age-related heterogeneity during aging.

3.2 Age-related expression heterogeneity change

I next characterized age-related change in gene expression heterogeneity by perform-

ing Spearman’s correlation test between absolute value of residuals and fourth root

of age (see Section 2.5). Similar to the previous section, I first examined the correla-

tions in gene expression heterogeneity change among development and aging datasets

(Figure 3.2a). By conducting Spearman’s correlation test between all possible pairs

of datasets among rho values, I found that aging datasets show higher correlation

(median ρ = 0.21, permutation test p-value = 0.24) in heterogeneity change compared

to development datasets (median ρ = 0.11, permutation test p-value = 0.25), although

both were not significant. Whilst the difference in correlation of heterogeneity change

between development and aging datasets was also not significant (permutation test p-

value = 0.2), this observation may still suggest that aging datasets show more similar

changes in heterogeneity compared to development datasets.

Principal component analysis of heterogeneity changes (i.e., rho values) was per-

formed using a similar procedure as the previous section, except rho values were

used instead of beta values. Similar to the PCA of expression changes, PCA of het-

erogeneity changes showed that development and aging datasets can be differentiated

from each other by heterogeneity change (Figure 3.2b). However, unlike expres-

sion change, development datasets tended to cluster more sparsely (median euclidian

distance = 44), compared to aging datasets (median euclidian distance = 41).

I then investigated the genes showing significant changes in expression heterogene-

ity. The p-values obtained from Spearman’s correlation test for each gene for each

dataset were corrected for multiple testing using the B&H method (see Section 2.5).

Figure 3.2c shows the number of genes showing significant heterogeneity change

during development and aging. First, I found that there is a less number of genes

showing significant change during development compared to aging (permutation test

34



Figure 3.2: Age-related heterogeneity change. (a) The heatmap shows Spearman’s

correlation coefficient values for each pair of datasets. The row and column anno-

tations reflect the brain region, data source and time period of the corresponding

dataset. The datasets of each period were clustered separately. (b) Principal com-

ponent analysis of age-related heterogeneity changes. Each point shows a dataset,

where color-coding reflects time period and point-shape shows the data source. The

values in parenthesis (on the axis labels) reflect the explained variance by the corre-

sponding dataset. The values shown on the plot show the median euclidian distance

among development and aging datasets, calculated using PC1 and PC2. (c) Barplots

show the number of genes showing significant age-related heterogeneity change (FDR

p-value < 0.05) during development (left side) and aging (right side). Color-coding

reflects the direction of heterogeneity change, which is determined by the sign of the

rho value. Adapted from (Isildak et al., 2020).
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p-value < 0.05). Moreover, genes showing significant heterogeneity change during

development tended to decrease in heterogeneity, whereas they showed a tendency

to increase in aging datasets. It is also important to note the high number of genes

showing a significant change in Colantuoni2011, which is a result of the large sample

size leading to increased statistical power.

Overall, this analysis demonstrated that there may be a higher consistency in het-

erogeneity change during aging compared to development, suggesting that increased

heterogeneity may be a characteristic of the aging period.

3.3 Consistent increase in heterogeneity during aging

Having observed both that heterogeneity changes can differentiate between time pe-

riods, and that there is a tendency towards more similar changes in heterogeneity dur-

ing aging, I next focused on identifying those genes showing the consistent change in

heterogeneity. As previously stated, in this study, I chose to focus on genes showing

consistent trends among different datasets, rather than focusing on significant changes

within individual datasets. The most important advantage of this approach is that, us-

ing the advantage of having multiple datasets, it enables me to detect genes that would

otherwise not pass the significance threshold due to low sample size.

I first analyzed the distribution of heterogeneity changes (i.e., ρ values) for each

dataset and time period (Figure 3.3a). The 18 of 19 aging datasets showed more

increase in age-related heterogeneity (median ρ > 0), while the remaining one dataset

showed no change in heterogeneity (median ρ = 0). During development, on the other

hand, I found that 14 of 19 datasets displayed a decrease in heterogeneity (median ρ

< 0). Moreover, a comparison of median heterogeneity changes between develop-

ment and aging datasets revealed that 18 of 19 datasets showed more increase during

aging compared to development. The permutation test further demonstrated that the

overall increase in heterogeneity during aging compared to development is significant

(permutation test p-value < 0.001).

Although I observed increased heterogeneity during aging compared to development,

one possible explanation may be related to the positive correlation between mean and
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Figure 3.3: (a) Boxplots on the left side shows the distribution of rho values, whereas

the barplots on the right shows the difference in medians between development and

aging datasets. (b) Distribution of Spearman’s correlation coefficients between ex-

pression and heterogeneity change of each dataset. The color-coding reflects the data

source, whereas (c) Barplots showing expected and observed numbers of genes show-

ing a consistent increase in heterogeneity among datasets during development (upper

panel) and aging (lower panel). Adapted from (Isildak et al., 2020).
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variation, where increased heterogeneity may be a result of increased expression lev-

els during aging, rather than being a biological effect. To test this, I analyzed the

correlations between expression and heterogeneity changes for each dataset and time

period (Figure 3.3b). Spearman’s correlation test revealed that there is no signifi-

cant dependence between expression and heterogeneity change. In fact, development

datasets showed higher positive correlations compared to aging datasets. Neverthe-

less, this analysis showed that the observed overall increase in heterogeneity during

aging is not a result of mean-variance dependence.

Given that we observed an overall increase in heterogeneity during aging compared to

development (Figure 3.3a), and this increase is not a technical artifact (Figure 3.3b),

I next focus on detecting those genes showing a consistent change in heterogeneity.

For each gene, I calculated the number of datasets in which they show a consistent

increase in heterogeneity (in development and aging periods separately), irrespective

of whether the increase is significant (Figure 3.3c). The expected consistency in het-

erogeneity change was calculated using the random permutations (see Section 2.8.4

for details). By comparing observed consistency in heterogeneity increase to ex-

pected consistency, I first observed a shift towards increased heterogeneity consis-

tency during the aging period, whereas no such shift was observed in development

datasets. Moreover, 147 genes were identified that consistently increase in hetero-

geneity among all 19 aging datasets (permutation test p-value < 0.001), whereas there

was only 1 gene showing a consistent decrease in all datasets during the aging period.

The full list of the consistent 147 is given in the Appendix A. However, it is also im-

portant to note that, according to permutations, the number of genes that would show

a consistent increase in heterogeneity under the null hypothesis (i.e., by chance) is 84,

indicating a 40% true positive rate. Although I couldn’t confidently identify a gene

set showing increased heterogeneity consistently among all datasets, this analysis still

demonstrated a clear shift toward increased heterogeneity during aging compared to

development.
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3.4 Clustering

I next examined if 147 consistent genes (i.e., showing consistent heterogeneity in-

crease in all 19 datasets) display certain trajectories of heterogeneity change. To test

this, I grouped these consistent genes according to their heterogeneity change pattern

using the k-means clustering algorithm into 8 clusters (Figure 3.4). Overall, the clus-

tering analysis revealed three diverse patterns of heterogeneity change during aging:

1. A steady increase in heterogeneity throughout the aging period (genes in clus-

ters 3 and 7).

2. A steady increase until the age of 60 years, followed by a slight fall in hetero-

geneity (genes in clusters 4, 5 and 8).

3. A sharp increase in heterogeneity around the age of 60 years (genes in clusters

1, 2 and 6).

Figure 3.4: Trajectories of different clusters of 147 genes showing consistent increase

in all 19 datasets during aging. The x-axis shows age in years, while the y-axis

shows scaled heterogeneity changes (i.e., rho values). The spline lines show the mean

heterogeneity change level for genes. Adapted from (Isildak et al., 2020).
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3.5 Functional enrichmenet analysis

To investigate the functional role of increased heterogeneity during aging, I next

performed gene set enrichment analysis using Gene Ontology (GO) Biological Pro-

cess categories (Consortium, 2019) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways (Kanehisa et al., 2019). The gene set enrichment analysis was

performed on the genes that were ranked by the number of datasets they show a con-

sistent increase in heterogeneity.

3.5.1 GO Biological Process enrichment analysis

Gene Ontology Biological Process enrichment analysis was performed on develop-

ment and aging datasets, separately. While there was no GO term significantly en-

riched for the consistent heterogeneity changes during development, I identified 111

significantly enriched GO Biological Process terms for the consistent changes in ag-

ing. The full list of enriched GO terms and normalized enrichment scores can be

found in Table B.1, while Figure 3.5 shows the REVIGO summarization.

One of the most important enriched biological process GO term was autophagy (GO

term ID: GO:0006914), which was previously suggested to play important role in

aging and aging-related diseases (Rubinsztein et al., 2011). Moreover, another im-

portant enriched group of genes belonged to the axon regeneration (GO term ID:

GO:0048679), which also demonstrated to decrease during aging (Belin et al., 2014).

Additionally, the regulation of T-helper cell differentiation and cellular response to

virus terms were found to be significantly enriched. Given the weakened immune

system in aging, this result also suggests that increased heterogeneity may have im-

portant consequences in aging. Other significantly enriched groups included terms

related to metabolic processes, mRNA processing and localization. Overall, GO Bi-

ological Process enrichment analysis of genes showing a consistent increase in het-

erogeneity indicates that increased heterogeneity may be associated with the aging-

related phenotypes.
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3.5.2 KEGG pathway enrichment analysis

Next, I performed a KEGG pathway enrichment analysis. Similarly, there was no

KEGG pathway found to be significantly enriched in the development period. In ag-

ing, on the other hand, there were 21 KEGG pathways significantly enriched for the

genes that become consistently heterogeneous. The full list of significantly enriched

KEGG pathways can be found in Table C.1, while Figure 3.6a shows the distribution

of consistency of those genes that belong to significantly enriched pathways. Among

the significantly enriched KEGG pathways, the most notable ones were longevity reg-

ulating pathway, autophagy, mTOR signaling and FoxO signaling, all of which were

shown to be related to aging and aging-related diseases (Johnson et al., 2013; Martins

et al., 2016; Rubinsztein et al., 2011). Additionally, the difference in the distribution

of the number of datasets with an increase in heterogeneity between development and

aging can be clearly identified, where the aging period has a higher number of datasets

with heterogeneity increase compared to development (Figure 3.6). Importantly, 4/21

pathways were found to have negative enrichment scores: protein digestion and ab-

sorption pathway, primary immunodeficiency pathway, linoleic acid metabolism, and

fat digestion and absorption pathway. However, due to the skewed distribution of

observed consistency (see the lower panel of Figure 3.3c), negative scores do not

automatically indicate a decrease in heterogeneity consistency. Figure 3.6b further

demonstrates the heterogeneity consistency of genes in the longevity regulating path-

way (KEGG Pathway ID: hsa04211) for development (upper panel) and aging (lower

panel).

Overall, the functional enrichment analysis of genes that become consistently het-

erogeneous suggested that increased heterogeneity may have important functional

consequences during the aging period, possibly contributing to the aging-related phe-

notypes.

3.6 Transcriptional regulation enrichment analysis

I next asked if there are specific transcriptional regulators associated with the genes

that become consistently heterogeneous with age. I performed gene set enrichment
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Figure 3.6: KEGG pathways enrichment analysis results for the genes showing con-

sistent increase in heterogeneity. (a) Significantly enriched KEGG pathways (on the

y-axis) and the distribution of the number of datasets in which genes show a consis-

tent increase in heterogeneity (x-axis). (b) Demonstration of Longevity Regulating

Pathway as an example during development (upper panel) and aging (lower panel).

Nodes and edges represent the genes and their relationship, respectively, while color-

coding reflects the consistency in heterogeneity increase. Adapted from (Isildak et al.,

2020).

analysis for both miRNAs and transcription factors.

Performing gene set enrichment analysis for transcription factors, I found 30 signif-

icantly enriched transcription factors in aging (see Table D.1 for the full list), while

no transcription factor was found to be significantly enriched in development. The

significantly enriched transcription factors included transcription factors belonging to

the Early Growth Response factor (EGR) and Forkhead box class O (FoxO) families,

both of which are known to be associated with longevity and tissue homeostasis.

Then, the same gene set enrichment analysis was performed for miRNAs. Over-

all, I found only 2 miRNAs significantly enriched for the heterogeneity changes in

development (see Table E.1), while there were 99 miRNAs that are significantly as-

sociated with heterogeneity changes during aging. While Table E.2 shows the full

list of miRNAs, the most notable ones are those belong to miR-34 family, which is

a highly conserved family that was shown to be important modulator of brain ag-
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ing (Kennerdell et al., 2018). Thus, the GSEA analysis for transcriptional regulators

also indicated the potential relevance of increased heterogeneity in brain aging.

3.6.1 Association between the number of regulators and increased heterogene-

ity

As earlier studies suggested the association between the number of regulators and

gene expression noise (Barroso et al., 2018; Sharon et al., 2014), I next sought to

characterize the relationship between the number of regulators and gene expression

heterogeneity for development and aging, separately (Figure 3.7). Spearman’s corre-

lation coefficient was calculated for miRNAs and transcription factors, separately. In

the aging dataset, the correlation was mainly in the positive direction, where the 18/19

and 15/19 datasets showed a positive correlation for miRNAs and transcription fac-

tors, respectively. Moreover, the permutation test revealed that the difference between

development and aging datasets is also significant for both miRNAs (permutation test

p-value = 0.007) and transcription factors (permutation test p-value = 0.045).

Figure 3.7: The distribution of correlation coefficients between number of transcrip-

tional regulators and heterogeneity changes. The p-values were computed by permu-

tation test. Adapted from (Isildak et al., 2020).
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CHAPTER 4

DISCUSSION

In this study, I aimed to investigate the changes in gene expression heterogeneity

during development and aging periods. The dataset that I analyzed included 19 time-

series microarray datasets containing gene expression measurements for the human

brain from 3 independent sources. Overall, 1,010 samples from 17 different brain

regions of 298 individuals (Table 2.1, Figure 2.1) were included in this study.

The datasets, containing samples covering the whole lifespan (ages from 0 to 98 years

old), were first divided into development and aging datasets, using the age of 20 years

as a separation point (see Section 2.1.2), which was previously shown to be the global

turning point of gene expression trajectories (Colantuoni et al., 2011; Dönertaş et al.,

2017; Somel et al., 2010). Overall, I obtained 19 development datasets including

samples whose ages range from 0 to 20 years old (n = 441). It is also important to

note that pre-natal samples were excluded from the downstream analysis since the

gene expression trajectories were suggested to be discontinous between pre and post-

natal development, and the scope of this study was to compare heterogeneity changes

during postnatal development and aging. The aging datasets (n = 19 datasets), on the

other hand, included samples whose ages range from 20 to 98 (n = 569). Only the

common genes (i.e., the genes for which I have measurement across all datasets) were

included in the downstream analysis (n = 11,137).

Using the advantage of having multiple datasets, this study focused on consistent

changes that are shared across the datasets, rather than focusing on significant changes

in a single dataset, which is highly dependent on the sample sizes. Thus, this approach

was able to capture weak but shared signals that would otherwise fail to pass the

significance treshold in individual datasets.
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4.1 Correlations among datasets in expression and heterogeneity changes

After performing preprocessing on microarray datasets (see Section 2.2), I first sought

to characterize the age-related changes in gene expression, by performing a linear re-

gression analysis between scaled expression values and fourth root of ages in days as

shown in the left panels of Figure 2.3. The βi1 values obtained from Equation 2.2

were considered as the measure of age-related expression change. The regression

analysis was performed for each gene and for each time period, separately (see Sec-

tion 2.4 for details).

Then I investigated the coordination in expression change between all possible pairs

of datasets by calculating the Spearman correlation coefficient and found that the

correlation among development datasets is significantly higher than the correlation

among aging datasets. Furthermore, more genes showed significant changes during

development compared to the aging period, and genes showing significant changes

during aging mostly tended to decrease in expression (Figure 3.1). One possible

explanation of these results might be related to the stochastic nature of aging. As pre-

viously suggested, the accumulation of random detrimental effects (i.e., mutations)

during aging may cause reduced gene expressions, and in turn, causing an increased

level of heterogeneity in aging (Lu et al., 2004). Consistent with earlier findings,

my initial analysis of gene expression changes also suggests that the changes in de-

velopment are well-regulated, and further supports the view of aging as a stochastic

process.

Next, the change in gene expression heterogeneity was characterized by performing

Spearman’s correlation test between absolute value of residuals obtained from Equa-

tion 2.2 and the fourth root of age for each gene and time period separately (see

Section 2.5). Analyzing the correlations among development and aging datasets in

heterogeneity change, I found that aging datasets display a higher correlation com-

pared to development datasets, reflecting a more consistent heterogeneity change in

aging. Further analysis of genes showing significant heterogeneity changes revealed

that there are more genes showing significant changes in heterogeneity during aging,

compared to development (Figure 3.2b). Moreover, the significant changes in het-

erogeneity are mostly in the positive direction during aging, suggesting an increase in
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heterogeneity.

4.2 Increased heterogeneity consistency in aging

Having observed more consistent heterogeneity change and more significant hetero-

geneity increase in aging, I next investigated heterogeneity changes in individual

datasets and found an overall increase in heterogeneity during aging (i.e., 18 of 19 ag-

ing datasets display higher median heterogeneity change compared to development,

see Figure 3.3a). An analysis of consistent heterogeneity change further revealed that

there is a significant shift towards increased heterogeneity consistency during aging

compared to random expectation, while no such shift was observed for development

datasets (Figure 3.3c).

There are a number of factors that can explain increased heterogeneity during ag-

ing compared to development. First, many studies previously demonstrated that the

stochastic accumulation of somatic mutations may cause genomic instability, which

may, in turn, lead to increased heterogeneity in the aging period (Lodato et al., 2018;

Lombard et al., 2005; Lu et al., 2004; Vijg, 2004). Second, Cheung et al., analyzing a

twin cohort, demonstrated the stochastic nature of age-related changes in chromatin,

leading to increase variation between both individuals and cells in aging (Cheung et

al., 2018). The third factor might be related to the transcriptional regulation, which

was suggested to be an inherently stochastic process due to the randomness of bio-

chemical reactions (Barroso et al., 2018; Maheshri & O’Shea, 2007). Previous studies

found that the variability in gene expression is positively correlated with the number

of transcription factors that control is regulation (Barroso et al., 2018; Sharon et al.,

2014). While the first two factors could not be tested in this study since the datasets

did not contain a somatic mutation or epigenetic regulation information, the investi-

gation of the third factor revealed a mainly positive correlation between the number of

regulators and heterogeneity change during aging (Figure 3.7). Therefore, the results

obtained in this study also supported the view that transcriptional regulation may be

a factor in the underlying mechanism of increased heterogeneity in aging.
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4.3 Increased heterogeneity may have important functional consequences

Then, I investigated the functional consequences of increased heterogeneity in aging

by conducting gene set enrichment analysis for GO Biological Processes and KEGG

pathways. The significantly enriched KEGG pathways included many pathways that

were known to be important in aging, including longevity regulating pathway, au-

thophagy, and mTOR signaling pathways (Figure 3.3). Moreover, the significantly

enriched GO terms also included terms that are related to aging and aging-related

diseases, suggesting the functional significance of increased heterogeneity in aging

and aging-related diseases. Additionally, GO terms related to neuronal and synaptic

functions were also enriched for genes showing increased heterogeneity consistency

during aging, indicating the potential role of increased heterogeneity in age-related

cognitive decline, which was suggested to be mainly a result of synaptic dysfunc-

tion (Morrison & Baxter, 2012).

I also performed gene set enrichment analysis for transcriptional regulators. Tran-

scription factors found to be significantly associated with increased heterogeneity

during aging included FoxO and EGR family of transcription factors, which were

shown to be regulating genes important for synaptic homeostasis, stress resistance,

cell cycle arrest and apoptosis. Moreover, I identified 99 miRNAs that were signif-

icantly enriched for the genes showing consistent increase in heterogeneity, which

may again have functional consequences, given the previous evidences suggesting

the important role of miRNAs in regulating longevity (Liu et al., 2012; Shen et al.,

2012; Smith-Vikos & Slack, 2012). Combined, gene set enrichment analysis revealed

a potentially important role of increased heterogeneity in human brain aging.

4.4 Increased heterogeneity is a biological signal

I next confirmed that the observed increase in heterogeneity consistency is a biologi-

cal signal, rather than being technical artifact or a result of low statistical power, given

the similar sample sizes of development and aging periods (Figure 2.1).

One technical factor that can explain increased heterogeneity during aging might be
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related to the dependence between mean and variance, where the accompanying in-

crease in expression levels may cause an increased variance, which in turn was de-

tected as increased heterogeneity. To address this issue, I performed a correlation

test between heterogeneity changes and expression changes for each dataset and each

period, and found that the correlation coefficients calculated for aging datasets are

mostly negative (Figure 3.3b), suggesting that the observed increase in heterogeneity

was not caused by mean-variance dependence.

Another technical factor that can cause increased inter-individual variance may be

related to post-mortem interval (PMI), which measures the time between death and

sample collection. It was previously suggested that PMI-related mRNA degradation

is gene-specific, leading to a bias in downstream analysis (Zhu et al., 2017). To con-

firm that increased heterogeneity was not a result of PMI-related mRNA degradation,

I used previously identified 107 PMI-associated genes (Zhu et al., 2017), 75 of which

were included in this analysis. Specifically, I tested if the 75 PMI-associated genes

show more increase in heterogeneity during aging, and found that only 2 of 147 con-

sistent genes were PMI-associated, suggesting that PMI by itself was not enough to

explain the observed increase in heterogeneity (Figure F.1).

One other factor that can affect the main results presented here might be related to

age scales. As previously stated, the fourth root of age scale was used in this study to

obtain a relatively uniform distribution of ages across the lifespan. However, whether

the observed increase in heterogeneity depends on the use of specific age scales re-

mained unanswered. To assess the effect of using different age scales on the down-

stream analysis, I repeated the analysis using 3 additional age scales: (1) age in days,

(2) age in log2 scale, and (3) age in years (Figure F.2). Overall, I found that using

different age scales also yields quantitatively similar results. In fact, the use of the

log2 age scale resulted in a higher number of genes showing a consistent increase in

heterogeneity across all 19 datasets (Figure F.2b, lower left panel). Nevertheless, this

analysis indicated that the observed increase in heterogeneity is not a result of the use

of a specific age scale.

It was previously suggested a sex-specific difference in human brain aging, where

males showed more changes in gene expression (Berchtold et al., 2008). In this anal-
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ysis, however, both males and females were combined to calculate expression and

heterogeneity changes, raising a question about the possible confound of sex with

age. To address this question, I retrieved the real values of residuals obtained from

Equation 2.2 (not absolute values) for 147 genes showing a consistent increase in het-

erogeneity. Then, for each gene and each aging dataset, two-sample Mann–Whitney

U test was performed on residuals to test if there is a significant difference between

males and females. The obtained p-values were corrected for multiple testing by

B&H method (Section 2.4.1). Overall, I found that there are only 15 out of 147 con-

sistent genes that show a significant difference between sexes in at least one dataset

(Figure F.3), suggesting that the increased heterogeneity cannot be explained solely

by sex-specific differences in brain aging.

In this study, a permutation scheme that takes into account the dependency of Kang2011

and Somel2011 datasets was employed to calculate expectation of heterogeneity con-

sistency (Section 2.8). To test the effect of chosen permutation scheme, I also per-

formed random permutations to calculate expected consistency in heterogeneity in-

crease, and found that the scheme used in this study was more strict than the random

permutations (Figure F.4).

One important assumption of this study is that the relationship between scaled ex-

pression levels and the fourth root of age is linear, as linear regression was used to

characterize the age-related expression change. To ensure that this assumption did

not have a significant effect on the downstream results, I re-calculated heterogeneity

changes using the residuals obtained from loess regression and found a high cor-

relation between heterogeneity changes calculated using linear regression and loess

regression (Figure F.5). Yet, the heterogeneity changes calculated from loess regres-

sion did not include in the downstream analysis since both the model parameters and

sample sizes have a significant effect on the estimates of loess regression.

The last factor that can cause the observed increase in heterogeneity might be related

to the outliers in the datasets. For example, one older individual having too low or

high expression value (i.e., having a higher absolute value of residual) can drive the

heterogeneity estimates up. To investigate the effect of outliers, I plotted the absolute

value of residuals for 147 consistent genes (Figure F.5). A visual inspection revealed
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that there was no significant outlier sample that can explain the observed increase in

heterogeneity.

Overall, these extra analyses demonstrated that the increased heterogeneity reported

in this study cannot be explained by low statistical power and technical factors, but

rather it is indeed a biological signal.

4.5 Limitations & future perspectives

1. Microarray platforms, unlike RNA-Sequencing, are unable to measure the ab-

solute abundance of mRNAs. Rather, the light intensities obtained from the

microarray platform reflect the relative expression levels. In their 2018 paper,

Davie et al. found that the total abundance of mRNAs tends to decrease with

age (Davie et al., 2018). Moreover, it was previously shown that the genes with

lower gene expression values are susceptible to having higher variance (Aris

et al., 2004). In this respect, the datasets analyzed in this study were unable

to detect the contribution of mRNA decay to the observed increase in hetero-

geneity, and further research is needed to understand the contribution of total

mRNA decay to the observed increase in gene expression heterogeneity.

2. Another limitation is also related to microarray datasets containing bulk mRNA

expression data. Since the expression datasets analyzed in this study contain

the average measurements for many cells, the results presented here only re-

flect increased heterogeneity among individuals, not cells. Future research us-

ing single-cell RNA-Sequencing data is required to investigate heterogeneity

changes between cells (Ximerakis et al., 2019).

3. Although 19 different datasets were analyzed in this study, it is important to

note that they originated from only 3 independent sources, where Somel2011

and Kang2011 datasets contain measurements from different brain regions of

the same individual.

4. Although a significant overall shift was observed towards increased heterogene-

ity consistency during aging (Figure 3.3c, lower panel), a gene set that be-

comes significantly more heterogeneous across all datasets was not confidently
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identified due to 40% true positive rate.

5. One other limitation is related to unequal sample sizes across datasets. Specifi-

cally, the Colantuoni2011 dataset had a markedly higher sample size compared

to all other datasets, leading to higher statistical power, and subsequent identi-

fication of more significant genes in both expression (Figure 3.1c) and hetero-

geneity changes (Figure 3.2c).

6. While two possible explanations of increased heterogeneity are related to the

accumulation of somatic mutations and epigenetic regulations, I could not test

their effect due to a lack of data. More comprehensive studies incorporating

different types of data are needed to reveal the source of increased heterogene-

ity.
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CHAPTER 5

CONCLUSION

Aging is a complex process characterized by a gradual functional decline. Moreover,

aging is considered to pose a major risk factor for many diseases, including cancer,

and cardiovascular and neurodegenerative disorders. Transcriptome studies focusing

on age-related changes in the human brain have been offering novel insights into the

understanding of underlying mechanisms of aging-associated changes.

In this study, I conducted a meta-analysis of 19 microarray datasets containing 1,010

samples from 17 brain regions and covering the whole lifespan. Specifically, I inves-

tigated the changes in inter-individual gene expression heterogeneity during aging in

comparison to the development period. The main findings of this study were summa-

rized in the following bullet points below.

• There are more genes showing significant changes in gene expression during

development compared to aging.

• In development, the majority of genes showing significant expression change

decrease in expression.

• Development datasets show higher coordination in gene expression changes,

compared to aging datasets.

• Gene expression heterogeneity consistently increases with age during aging (20

to 98 years of age) but not in postnatal development (0 to 20 years of age).

• The heterogeneity increase observed in aging comes with physiological conse-

quences, such that the genes showing consistent effects are associated with bio-

logical processes important for life- and health-span regulation (e.g. autophagy,
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mTOR signaling), as well as for cognitive functions (e.g. axon guidance, post-

synaptic specialization).

• Not only specific regulators (miRNAs and transcription factors) but also the

number of regulators is positively associated with consistent changes in hetero-

geneity.

Overall, the results presented in this thesis showed that gene expression heterogene-

ity between individuals increases with age in human brain. Further, this increase is

limited to aging period, suggesting that increased heterogeneity is not only a function

of time that starts at developmental stages. Moreover, genes showing consistent in-

crease in heterogeneity are associated with pathways important for neuronal function

and aging, highlighting the possible significance of increased heterogeneity in aging.

Future work incorporating larger datasets can provide a deeper understanding of the

underlying mechanisms of increased heterogeneity.
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Appendix A

LIST OF 147 GENES SHOWING CONSISTENT AGE-RELATED

HETEROGENEITY INCREASE AMONG ALL 19 AGING DATASETS

Table A.1: List of 147 genes showing consistent age-related heterogeneity increase

in all 19 datasets during aging period and their cluster numbers.

Ensembl Gene ID HGNC Symbol Cluster
ENSG00000005339 CREBBP 3

ENSG00000003056 M6PR 6

ENSG00000005339 CREBBP 3

ENSG00000009844 VTA1 7

ENSG00000011243 AKAP8L 1

ENSG00000015153 YAF2 3

ENSG00000021574 SPAST 5

ENSG00000026652 AGPAT4 8

ENSG00000031003 FAM13B 6

ENSG00000039523 RIPOR1 1

ENSG00000048740 CELF2 8

ENSG00000065150 IPO5 7

ENSG00000065989 PDE4A 7

ENSG00000067182 TNFRSF1A 4

ENSG00000073910 FRY 5

ENSG00000074657 ZNF532 8

ENSG00000075303 SLC25A40 1

ENSG00000076201 PTPN23 6

ENSG00000078804 TP53INP2 6
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Table A.1 (continued)
ENSG00000082701 GSK3B 4

ENSG00000083544 TDRD3 3

ENSG00000086102 NFX1 5

ENSG00000086598 TMED2 3

ENSG00000086758 HUWE1 3

ENSG00000088538 DOCK3 5

ENSG00000088812 ATRN 4

ENSG00000088888 MAVS 5

ENSG00000092010 PSME1 2

ENSG00000092847 AGO1 3

ENSG00000095397 WHRN 7

ENSG00000100345 MYH9 1

ENSG00000101160 CTSZ 3

ENSG00000101384 JAG1 8

ENSG00000102317 RBM3 4

ENSG00000102858 MGRN1 1

ENSG00000104442 ARMC1 3

ENSG00000104904 OAZ1 8

ENSG00000105397 TYK2 6

ENSG00000105497 ZNF175 4

ENSG00000105784 RUNDC3B 7

ENSG00000107263 RAPGEF1 3

ENSG00000107669 ATE1 3

ENSG00000107736 CDH23 2

ENSG00000107862 GBF1 5

ENSG00000110092 CCND1 1

ENSG00000110274 CEP164 5

ENSG00000111348 ARHGDIB 4

ENSG00000111676 ATN1 6

ENSG00000111707 SUDS3 4

ENSG00000111880 RNGTT 3

ENSG00000112996 MRPS30 4

ENSG00000113273 ARSB 4

ENSG00000113638 TTC33 3

ENSG00000114054 PCCB 8
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Table A.1 (continued)
ENSG00000114796 KLHL24 4

ENSG00000115306 SPTBN1 2

ENSG00000117713 ARID1A 1

ENSG00000119878 CRIPT 1

ENSG00000120306 CYSTM1 8

ENSG00000123178 SPRYD7 6

ENSG00000123243 ITIH5 2

ENSG00000125107 CNOT1 5

ENSG00000125675 GRIA3 4

ENSG00000127337 YEATS4 3

ENSG00000128191 DGCR8 5

ENSG00000128268 MGAT3 2

ENSG00000129219 PLD2 4

ENSG00000129250 KIF1C 6

ENSG00000130158 DOCK6 6

ENSG00000132692 BCAN 6

ENSG00000134283 PPHLN1 7

ENSG00000135424 ITGA7 2

ENSG00000137558 PI15 4

ENSG00000138078 PREPL 4

ENSG00000138162 TACC2 3

ENSG00000138629 UBL7 3

ENSG00000138663 COPS4 3

ENSG00000139180 NDUFA9 2

ENSG00000140391 TSPAN3 8

ENSG00000140464 PML 4

ENSG00000140829 DHX38 1

ENSG00000141644 MBD1 2

ENSG00000142892 PIGK 3

ENSG00000143314 MRPL24 8

ENSG00000144834 TAGLN3 2

ENSG00000144867 SRPRB 3

ENSG00000146830 GIGYF1 3

ENSG00000147649 MTDH 4

ENSG00000147669 POLR2K 3
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Table A.1 (continued)
ENSG00000149294 NCAM1 5

ENSG00000149636 DSN1 7

ENSG00000151067 CACNA1C 8

ENSG00000151240 DIP2C 8

ENSG00000154620 TMSB4Y 4

ENSG00000155034 FBXL18 7

ENSG00000156113 KCNMA1 4

ENSG00000157103 SLC6A1 2

ENSG00000158805 ZNF276 6

ENSG00000158869 FCER1G 4

ENSG00000160007 ARHGAP35 3

ENSG00000160191 PDE9A 2

ENSG00000160460 SPTBN4 1

ENSG00000161202 DVL3 3

ENSG00000162601 MYSM1 5

ENSG00000164070 HSPA4L 6

ENSG00000164332 UBLCP1 6

ENSG00000165102 HGSNAT 5

ENSG00000165516 KLHDC2 3

ENSG00000166582 CENPV 8

ENSG00000166825 ANPEP 7

ENSG00000168056 LTBP3 1

ENSG00000169180 XPO6 5

ENSG00000170500 LONRF2 4

ENSG00000171055 FEZ2 6

ENSG00000171105 INSR 8

ENSG00000171509 RXFP1 7

ENSG00000172037 LAMB2 3

ENSG00000172260 NEGR1 8

ENSG00000172262 ZNF131 7

ENSG00000172534 HCFC1 1

ENSG00000174669 SLC29A2 5

ENSG00000174780 SRP72 7

ENSG00000174842 GLMN 7

ENSG00000177728 TMEM94 6
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Table A.1 (continued)
ENSG00000178913 TAF7 5

ENSG00000179021 C3orf38 3

ENSG00000179152 TCAIM 3

ENSG00000181929 PRKAG1 2

ENSG00000182197 EXT1 4

ENSG00000182400 TRAPPC6B 6

ENSG00000182492 BGN 3

ENSG00000182541 LIMK2 4

ENSG00000182872 RBM10 2

ENSG00000184677 ZBTB40 4

ENSG00000185236 RAB11B 7

ENSG00000185608 MRPL40 2

ENSG00000185650 ZFP36L1 6

ENSG00000185721 DRG1 7

ENSG00000185950 IRS2 1

ENSG00000186350 RXRA 1

ENSG00000196352 CD55 ) 8

ENSG00000196498 NCOR2 1

ENSG00000198356 ASNA1 ) 5

ENSG00000198898 CAPZA2 3

ENSG00000205423 CNEP1R1 7

ENSG00000213246 SUPT4H1 2

ENSG00000221869 CEBPD 6

ENSG00000229236 TTTY10 4
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Appendix B

LIST OF SIGNIFICANTLY ENRICHED GO BIOLOGICAL PROCESS

CATEGORIES

Table B.1: The list of GO Biological Process categories significantly enriched (ad-

justed p-value < 0.1)

ID Description setSize NES
GO:0098789 pre-mRNA cleavage required for

polyadenylation

8 2.471

GO:0051028 mRNA transport 99 2.388

GO:0050657 nucleic acid transport 129 2.330

GO:0050658 RNA transport 129 2.330

GO:0006611 protein export from nucleus 123 2.311

GO:1990090 cellular response to nerve growth factor

stimulus

38 2.287

GO:0035601 protein deacylation 83 2.276

GO:0098732 macromolecule deacylation 83 2.276

GO:0006476 protein deacetylation 79 2.275

GO:0098787 mRNA cleavage involved in mRNA pro-

cessing

10 2.264

GO:1990089 response to nerve growth factor 40 2.264

GO:0000381 regulation of alternative mRNA splicing,

via spliceosome

28 2.257

GO:0051236 establishment of RNA localization 132 2.253

GO:0006406 mRNA export from nucleus 74 2.243

GO:0071427 mRNA-containing ribonucleoprotein.. 74 2.243
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Table B.1 (continued)
GO:0006405 RNA export from nucleus 94 2.237

GO:0043467 regulation of generation of precursor

metabolites and energy

75 2.234

GO:0000380 alternative mRNA splicing, via spliceo-

some

39 2.232

GO:0050684 regulation of mRNA processing 77 2.230

GO:0006403 RNA localization 156 2.222

GO:0016575 histone deacetylation 69 2.222

GO:0071166 ribonucleoprotein complex localization 85 2.219

GO:0071426 ribonucleoprotein complex export from

nucleus

85 2.219

GO:0051168 nuclear export 134 2.206

GO:0032239 regulation of nucleobase-containing com-

pound transport

14 2.193

GO:0000288 nuclear-transcribed mRNA catabolic pro-

cess..

51 2.192

GO:0040029 regulation of gene expression, epigenetic 191 2.144

GO:0070936 protein K48-linked ubiquitination 34 2.136

GO:1903312 negative regulation of mRNA metabolic

process

55 2.124

GO:0051131 chaperone-mediated protein complex as-

sembly

12 2.122

GO:0000289 nuclear-transcribed mRNA poly(A) tail

shortening

25 2.118

GO:0048024 regulation of mRNA splicing, via spliceo-

some

49 2.116

GO:0048702 embryonic neurocranium morphogenesis 6 2.112

GO:0090311 regulation of protein deacetylation 31 2.106

GO:0046831 regulation of RNA export from nucleus 12 2.105

GO:0050651 dermatan sulfate proteoglycan biosyn-

thetic process

13 2.105

GO:0050655 dermatan sulfate proteoglycan metabolic

process

13 2.105

GO:0048679 regulation of axon regeneration 16 2.098
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Table B.1 (continued)
GO:1903313 positive regulation of mRNA metabolic

process

44 2.093

GO:0035020 regulation of Rac protein signal transduc-

tion

14 2.092

GO:0009303 rRNA transcription 21 2.092

GO:0046051 UTP metabolic process 7 2.090

GO:0006342 chromatin silencing 55 2.090

GO:0032922 circadian regulation of gene expression 38 2.077

GO:0017148 negative regulation of translation 145 2.064

GO:0033119 negative regulation of RNA splicing 19 2.061

GO:0006379 mRNA cleavage 20 2.058

GO:0060968 regulation of gene silencing 76 2.052

GO:0010257 NADH dehydrogenase complex assembly 39 2.051

GO:0032981 mitochondrial respiratory chain complex

I assembly

39 2.051

GO:0042177 negative regulation of protein catabolic

process

76 2.051

GO:0034249 negative regulation of cellular amide

metabolic process

158 2.051

GO:0000956 nuclear-transcribed mRNA catabolic pro-

cess

107 2.047

GO:1900151 regulation of nuclear-transcribed mRNA.. 12 2.038

GO:1900153 positive regulation of nuclear-transcribed

mRNA..

12 2.038

GO:0016573 histone acetylation 111 2.038

GO:1903311 regulation of mRNA metabolic process 186 2.027

GO:0016458 gene silencing 156 2.026

GO:0070932 histone H3 deacetylation 14 2.024

GO:0009208 pyrimidine ribonucleoside triphosphate

metabolic process

12 2.022

GO:0006228 UTP biosynthetic process 6 2.021

GO:0006475 internal protein amino acid acetylation 115 2.014

GO:0060147 regulation of posttranscriptional gene si-

lencing

58 2.011
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Table B.1 (continued)
GO:0060966 regulation of gene silencing by RNA 58 2.011

GO:0051904 pigment granule transport 18 2.011

GO:0035278 miRNA mediated inhibition of translation 9 2.011

GO:0040033 negative regulation of translation,

ncRNA-mediated

9 2.011

GO:0045974 regulation of translation, ncRNA-

mediated

9 2.011

GO:0018393 internal peptidyl-lysine acetylation 112 2.009

GO:0051084 ’de novo’ posttranslational protein fold-

ing

21 2.002

GO:0018394 peptidyl-lysine acetylation 118 1.994

GO:0045815 positive regulation of gene expression,

epigenetic

35 1.992

GO:0050686 negative regulation of mRNA processing 23 1.990

GO:1903363 negative regulation of cellular protein

catabolic process

44 1.989

GO:0035195 gene silencing by miRNA 80 1.985

GO:0043967 histone H4 acetylation 49 1.978

GO:0006220 pyrimidine nucleotide metabolic process 35 1.970

GO:0016570 histone modification 325 1.970

GO:0006913 nucleocytoplasmic transport 234 1.964

GO:0043966 histone H3 acetylation 47 1.964

GO:0048675 axon extension 94 1.961

GO:0015931 nucleobase-containing compound trans-

port

157 1.959

GO:0009895 negative regulation of catabolic process 180 1.948

GO:0006417 regulation of translation 280 1.943

GO:0016441 posttranscriptional gene silencing 86 1.941

GO:0051169 nuclear transport 236 1.936

GO:0046513 ceramide biosynthetic process 38 1.934

GO:0031124 mRNA 3’-end processing 64 1.934

GO:0016569 covalent chromatin modification 334 1.933

GO:0098586 cellular response to virus 29 1.930

GO:0032456 endocytic recycling 28 1.930
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Table B.1 (continued)
GO:0051196 regulation of coenzyme metabolic pro-

cess

59 1.926

GO:0030520 intracellular estrogen receptor signaling

pathway

39 1.925

GO:0060964 regulation of gene silencing by miRNA 55 1.923

GO:0045814 negative regulation of gene expression,

epigenetic

66 1.917

GO:0031330 negative regulation of cellular catabolic

process

147 1.912

GO:0046822 regulation of nucleocytoplasmic transport 79 1.909

GO:0010608 posttranscriptional regulation of gene ex-

pression

360 1.908

GO:0031047 gene silencing by RNA 102 1.906

GO:0060304 regulation of phosphatidylinositol de-

phosphorylation

6 1.905

GO:0016241 regulation of macroautophagy 122 1.901

GO:0034248 regulation of cellular amide metabolic

process

317 1.899

GO:0035194 posttranscriptional gene silencing by

RNA

85 1.896

GO:0006283 transcription-coupled nucleotide-excision

repair

42 1.892

GO:0043484 regulation of RNA splicing 78 1.877

GO:0033108 mitochondrial respiratory chain complex

assembly

52 1.873

GO:0006473 protein acetylation 135 1.860

GO:0002431 Fc receptor mediated stimulatory signal-

ing pathway

57 1.857

GO:0045185 maintenance of protein location 80 1.854

GO:0006412 translation 426 1.848

GO:0000209 protein polyubiquitination 205 1.848

GO:0043624 cellular protein complex disassembly 148 1.845

GO:0006353 DNA-templated transcription, termina-

tion

72 1.841
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Table B.1 (continued)
GO:0051056 regulation of small GTPase mediated sig-

nal transduction

225 1.832

GO:0032386 regulation of intracellular transport 288 1.828

GO:0050808 synapse organization 215 1.828

GO:0010506 regulation of autophagy 235 1.823

GO:0000375 RNA splicing, via transesterification reac-

tions

234 1.821

GO:0038093 Fc receptor signaling pathway 118 1.819

GO:0043087 regulation of GTPase activity 309 1.811

GO:0000377 RNA splicing.. 231 1.799

GO:0000398 mRNA splicing, via spliceosome 231 1.799

GO:0006888 ER to Golgi vesicle-mediated transport 133 1.793

GO:0043604 amide biosynthetic process 497 1.791

GO:0018205 peptidyl-lysine modification 267 1.786

GO:0006397 mRNA processing 334 1.779

GO:0007033 vacuole organization 103 1.778

GO:0046578 regulation of Ras protein signal transduc-

tion

165 1.776

GO:0034504 protein localization to nucleus 173 1.775

GO:0016236 macroautophagy 203 1.775

GO:0043043 peptide biosynthetic process 442 1.770

GO:0090501 RNA phosphodiester bond hydrolysis 94 1.769

GO:0006606 protein import into nucleus 95 1.767

GO:0009267 cellular response to starvation 104 1.764

GO:0033157 regulation of intracellular protein trans-

port

184 1.763

GO:0016311 dephosphorylation 306 1.757

GO:0006109 regulation of carbohydrate metabolic pro-

cess

116 1.750

GO:0009142 nucleoside triphosphate biosynthetic pro-

cess

115 1.745

GO:0070646 protein modification by small protein re-

moval

198 1.742

GO:0007264 small GTPase mediated signal transd.. 378 1.732
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Table B.1 (continued)
GO:0035303 regulation of dephosphorylation 137 1.728

GO:0048193 Golgi vesicle transport 239 1.727

GO:0006470 protein dephosphorylation 201 1.727

GO:0042594 response to starvation 135 1.723

GO:0006325 chromatin organization 499 1.722

GO:0032388 positive regulation of intracellular trans-

port

174 1.721

GO:0034330 cell junction organization 201 1.705

GO:0043547 positive regulation of GTPase activity 249 1.698

GO:0006402 mRNA catabolic process 194 1.698

GO:0007005 mitochondrion organization 371 1.697

GO:0032984 protein-containing complex disassembly 210 1.694

GO:0032956 regulation of actin cytoskeleton organiza-

tion

222 1.691

GO:0043543 protein acylation 164 1.689

GO:0006914 autophagy 346 1.684

GO:0061919 process utilizing autophagic mechanism 346 1.684

GO:0008380 RNA splicing 296 1.680

GO:0031331 positive regulation of cellular catabolic

process

239 1.678

GO:0010256 endomembrane system organization 289 1.668

GO:0045216 cell-cell junction organization 175 1.663

GO:1903827 regulation of cellular protein localization 359 1.645

GO:0030036 actin cytoskeleton organization 423 1.639

GO:0007265 Ras protein signal transduction 305 1.633

GO:1990778 protein localization to cell periphery 186 1.629

GO:0006401 RNA catabolic process 218 1.616

GO:0016579 protein deubiquitination 186 1.614

GO:0042176 regulation of protein catabolic process 240 1.613

GO:0032970 regulation of actin filament-based process 258 1.608

GO:0022411 cellular component disassembly 400 1.604

GO:0072657 protein localization to membrane 336 1.582

GO:0010498 proteasomal protein catabolic process 310 1.551

GO:0009896 positive regulation of catabolic process 278 1.550

GO:0043687 post-translational protein modification 283 1.545
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Table B.1 (continued)
GO:0051493 regulation of cytoskeleton organization 344 1.545

GO:0030029 actin filament-based process 487 1.533

GO:0043632 modification-dependent macromolecule

catabolic process

385 1.522

GO:0006511 ubiquitin-dependent protein catabolic

process

371 1.522

GO:0019941 modification-dependent protein catabolic

process

378 1.504

GO:0048667 cell morphogenesis involved in neuron

differentiation

428 1.500

GO:0061564 axon development 381 1.477

GO:0051603 proteolysis involved in cellular protein

catabolic process

441 1.473

GO:0015695 organic cation transport 29 -2.061

GO:0045622 regulation of T-helper cell differentiation 23 -2.107

GO:0046638 positive regulation of alpha-beta T cell

differentiation

32 -2.170

GO:0071638 negative regulation of monocyte chemo-

tactic protein-1 production

5 -2.461

GO:0055078 sodium ion homeostasis 38 2.939
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Appendix C

LIST OF SIGNIFICANTLY ENRICHED KEGG PATHWAYS

Table C.1: The list of KEGG pathways significantly enriched (adjusted p-value < 0.1)

ID Description setSize NES significanceIn1000
hsa03020 RNA polymerase 17 2.260 1000

hsa04136 Autophagy - other 19 2.255 1000

hsa04140 Autophagy - animal 87 2.095 1000

hsa03015 mRNA surveillance pathway 64 2.014 1000

hsa04152 AMPK signaling pathway 92 2.009 1000

hsa04120 Ubiquitin mediated proteolysis 99 1.973 1000

hsa04520 Adherens junction 54 1.896 1000

hsa04330 Notch signaling pathway 36 1.889 1000

hsa04213 Longevity regulating pathway - multiple species 42 1.875 1000

hsa04211 Longevity regulating pathway 65 1.833 1000

hsa04150 mTOR signaling pathway 103 1.804 1000

hsa05211 Renal cell carcinoma 48 1.792 972

hsa04068 FoxO signaling pathway 93 1.778 1000

hsa04371 Apelin signaling pathway 100 1.748 1000

hsa04360 Axon guidance 144 1.744 1000

hsa05168 Herpes simplex infection 105 1.710 1000

hsa04072 Phospholipase D signaling pathway 102 1.665 962

hsa04974 Protein digestion and absorption 55 -1.891 624

hsa04975 Fat digestion and absorption 25 -1.972 875

hsa00591 Linoleic acid metabolism 16 -1.974 837

hsa05340 Primary immunodeficiency 23 -2.060 981

81



82



Appendix D

LIST OF TRANSCRIPTION FACTORS SIGNIFICANTLY ASSOCIATED

WITH GENES SHOWING A CONSISTENT CHANGE IN

HETEROGENEITY

Table D.1: The list of transcription factors that are significantly associated with con-

sistent heterogeneity changes during aging (adjusted p-value < 0.1)

TF NES medianConsistentIncraese
EGR1 1.3843181445017199 15

EGR4 1.452929028663498 15

MTF1 1.453022442390886 15

AHR 1.274268306161655 14

ATF2 1.2014669947238317 14

E2F1 1.3065910229773126 14

EGR3 1.2537402078100792 14

ESR1 1.210294254579839 14

ETS1 1.2380923577641698 14

ETV7 1.2810222653234309 14

FOXI1 1.386944270455295 14

GABPB1 1.272353825093829 14

GCM1 1.274710009968939 14

GTF3A 1.240026791735294 14

HIF1A 1.27926757984335 14

MIF 1.270685102125093 14

NFIL3 1.272677244827733 14

PAX3 1.2829216919553512 14
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Table D.1 (continued)
PDX1 1.3193194856375423 14

RFX1 1.243956817058612 14

SP3 1.3372318882184395 14

SPZ1 1.2855761272705426 14

TFDP1 1.2070059004606133 14

ZBTB14 1.27749693066955 14

ZIC2 1.2668847069583584 14

FOXJ1 1.2289997622477544 13

FOXO1 1.2165775192487729 13

FOXO3 1.2673790810612913 13

RB1 1.2985174722108035 13

TEF 1.2621044253697316 13

84



Appendix E

LIST OF MIRNAS SIGNIFICANTLY ASSOCIATED WITH GENES

SHOWING CONSISTENT CHANGE IN HETEROGENEITY

Table E.1: The list of miRNAs that are significantly associated with consistent het-

erogeneity changes during development (adjusted p-value < 0.1)

miRNA NES medianConsistentIncrease
hsa-miR-34b-3p 1.863 12

hsa-miR-200c-3p 1.712 6

Table E.2: The list of miRNAs that are significantly associated with consistent het-

erogeneity changes during aging (adjusted p-value < 0.1)

miRNA NES medianConsistentIncrease
hsa-miR-1227-3p 1.457 16

hsa-miR-140-5p 1.735 16

hsa-miR-199a-3p 1.594 16

hsa-miR-425-3p 1.531 16

hsa-miR-532-3p 1.480 16

hsa-miR-301a-3p 1.567 15.5

hsa-let-7c-5p 1.546 15

hsa-let-7d-5p 1.556 15

hsa-let-7f-5p 1.552 15
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Table E.2 (continued)
hsa-miR-106b-3p 1.367 15

hsa-miR-1296-5p 1.706 15

hsa-miR-150-5p 1.474 15

hsa-miR-17-5p 1.583 15

hsa-miR-183-5p 1.380 15

hsa-miR-18a-3p 1.479 15

hsa-miR-28-5p 1.420 15

hsa-miR-324-3p 1.547 15

hsa-miR-346 1.398 15

hsa-miR-361-5p 1.684 15

hsa-miR-374b-5p 1.716 15

hsa-miR-378a-5p 1.598 15

hsa-miR-505-3p 1.393 15

hsa-miR-671-5p 1.363 15

hsa-miR-744-5p 1.422 15

hsa-miR-766-3p 1.500 15

hsa-miR-92b-3p 1.537 15

hsa-miR-96-5p 1.565 15

hsa-miR-99a-5p 1.559 15

hsa-miR-181b-5p 1.404 14.5

hsa-miR-195-5p 1.404 14.5

hsa-miR-25-3p 1.500 14.5

hsa-miR-378a-3p 1.442 14.5

hsa-miR-504-5p 1.435 14.5

hsa-miR-877-5p 1.545 14.5

hsa-let-7a-5p 1.390 14

hsa-let-7e-5p 1.431 14

hsa-miR-100-5p 1.245 14

hsa-miR-101-3p 1.296 14

hsa-miR-106b-5p 1.311 14

hsa-miR-10a-5p 1.297 14

hsa-miR-10b-5p 1.292 14

hsa-miR-1226-3p 1.268 14

hsa-miR-1229-3p 1.256 14

hsa-miR-125b-5p 1.407 14
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Table E.2 (continued)
hsa-miR-1260b 1.401 14

hsa-miR-128-3p 1.249 14

hsa-miR-130b-3p 1.339 14

hsa-miR-148a-3p 1.382 14

hsa-miR-149-5p 1.473 14

hsa-miR-15a-5p 1.329 14

hsa-miR-15b-5p 1.366 14

hsa-miR-181a-5p 1.327 14

hsa-miR-185-5p 1.552 14

hsa-miR-186-5p 1.310 14

hsa-miR-197-3p 1.400 14

hsa-miR-20a-5p 1.386 14

hsa-miR-218-5p 1.483 14

hsa-miR-221-3p 1.201 14

hsa-miR-222-3p 1.391 14

hsa-miR-23a-3p 1.315 14

hsa-miR-23b-3p 1.288 14

hsa-miR-24-3p 1.259 14

hsa-miR-26a-5p 1.363 14

hsa-miR-296-3p 1.233 14

hsa-miR-30a-5p 1.326 14

hsa-miR-30b-5p 1.380 14

hsa-miR-30c-5p 1.390 14

hsa-miR-31-5p 1.398 14

hsa-miR-32-5p 1.338 14

hsa-miR-320a 1.295 14

hsa-miR-324-5p 1.377 14

hsa-miR-331-3p 1.371 14

hsa-miR-33a-5p 1.281 14

hsa-miR-342-3p 1.318 14

hsa-miR-34a-5p 1.303 14

hsa-miR-375 1.205 14

hsa-miR-421 1.300 14

hsa-miR-423-3p 1.267 14

hsa-miR-423-5p 1.268 14

87



Table E.2 (continued)
hsa-miR-455-3p 1.383 14

hsa-miR-503-5p 1.344 14

hsa-miR-590-3p 1.403 14

hsa-miR-652-3p 1.320 14

hsa-miR-760 1.285 14

hsa-miR-769-3p 1.293 14

hsa-miR-769-5p 1.363 14

hsa-miR-877-3p 1.351 14

hsa-miR-93-5p 1.402 14

hsa-miR-98-5p 1.195 14

hsa-miR-122-5p 1.248 13.5

hsa-miR-9-5p 1.207 13.5

hsa-miR-19b-3p 1.170 13

hsa-miR-21-5p 1.242 13

hsa-miR-215-5p 1.242 13

hsa-miR-7-5p 1.228 13

hsa-miR-34b-3p 1.432 12

hsa-miR-548b-3p 1.503 12

hsa-miR-625-5p 1.503 10.5

hsa-miR-194-5p 1.552 10
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Appendix F

SUPPLEMENTARY FIGURES

Figure F.1: The association between PMI and increased heterogeneity. The barplot

shows the number of datasets 75 PMI-associated genes showing consistent hetero-

geneity increase. Adapted from (Isildak et al., 2020).
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Figure F.2: Confirmation of the results using different age scales. (a) The distribu-

tion of Spearman’s correlation coefficients in heterogeneity changes among develop-

ment and aging datasets. (b) The number of genes showing a consistent decrease

(left panels) or increase (right panels) among all 19 development (upper panel) and

aging (lower panel) datasets. (c) The scatter plots showing heterogeneity changes

calculated with different age scales for Somel2011_PFC dataset during development

(upper panel) and aging (lower panel). Adapted from (Isildak et al., 2020).

.
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Figure F.3: The effect of sex-specific difference. The bar plot shows the number

of datasets (x-axis) in which consistent genes (y-axis) show a significant difference

between sexes. Adapted from (Isildak et al., 2020).

.

Figure F.4: The distribution of expected consistencies under the random permuta-

tions (gray) and the permutation scheme I used (blue), and of observed consistency

(orange). Adapted from (Isildak et al., 2020).
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Figure F.5: Density maps showing the heterogeneity changes calculated with absolute

residuals from linear regression (x-axis) and loess regression (y-axis). The rho values

shown on the figures were calculated by Spearman’s correlation test. Adapted from

(Isildak et al., 2020).
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