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ABSTRACT

NEW MODELS AND INFERENCE TECHNIQUES FOR GAUSSIAN
PROCESS-BASED EXTENDED OBJECT TRACKING

Kumru, Murat
Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Emre Özkan

September 2022, 164 pages

In this thesis, we consider the problem of tracking dynamic objects with unknown

shapes using point cloud measurements generated by, e.g., lidars, radars, and depth

cameras. The point measurements do not only convey information about the object

pose, i.e., position and orientation, but they also naturally reveal the characteristics

of its latent extent. Aiming to harness the full potential of the available informa-

tion, we investigate the Gaussian process-based extended object tracking (GPEOT)

framework.

We hereby develop several three-dimensional (3D) GPEOT models that effectively

use the information provided by 3D point cloud measurements. The resulting meth-

ods can accurately estimate the 3D object shape together with its kinematic properties,

such as position, orientation, and velocity. Furthermore, we introduce an approxi-

mate inference method for the GPEOT models relying on the variational Bayesian

technique, where the approximate posterior distributions of the kinematic and extent

variables are effectively computed by fixed-point iterations. The resulting method is

particularly shown to prove robust against model uncertainties. We also focus on im-

proving the computational characteristics of the existing GPEOT algorithms without
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compromising their effective performance. To this end, we formulate an alternative

approximate description of the underlying GP model for the extent that provides sat-

isfactory performance at a lower computational load. This formulation is used to

derive both two- and three-dimensional tracking algorithms. Additionally, we pro-

pose a novel model that does not require the star-convexity assumption, as opposed

to the standard GPEOT. Therefore, this formulation expands the application of the

existing GPEOT framework as it enables tracking arbitrarily-shaped objects while

learning their latent extent. Comprehensive experiments are performed to demon-

strate the added value of the mentioned contributions with both simulated and real

measurements.

Keywords: Extended Object Tracking, Object Tracking, Gaussian Processes, Varia-

tional Bayes.
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ÖZ

GAUSS SÜREÇ TABANLI GENİŞLETİLMİŞ CİSİM TAKİBİ İÇİN YENİ
MODELLER VE KESTİRİM YÖNTEMLERİ

Kumru, Murat
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Emre Özkan

Eylül 2022 , 164 sayfa

Bu tezde, bilinmeyen şekilli dinamik nesnelerin, -lidar, radar ve derinlik kamerası

gibi algılayıcılar tarafından üretilen- nokta bulutu ölçümleri kullanılarak takip edil-

mesi problemi ele alınmıştır. Nokta ölçümleri, nesnelerin konumları ve yönelimleri-

nin yanında, bilinmeyen şekilleri hakkında da önemli bilgiler taşırlar. Bu bilgilerin

potansiyelinden tam olarak faydalanabilmek amacıyla, Gauss süreç tabanlı genişletil-

miş nesne takibi (GPEOT) çerçevesi incelenmiştir.

Bu bağlamda, üç boyutlu (3B) nokta bulutu ölçümleri tarafından sağlanan bilgileri

etkin bir biçimde kullanabilen çeşitli 3B GPEOT modelleri önerilmiştir. Ortaya çıkan

yöntemler, cismin konum, yönelim ve hız gibi kinematik özellikleri ile birlikte 3B

uzantısını da yüksek doğrulukla kestirebilmektedir. Öte yandan, GPEOT modelleri

için varyasyonel Bayes tekniğine dayanan yaklaşık bir kestirim metodu türetilmiş-

tir. İlgili yöntem, cismin kinematik ve uzantı değişkenlerininin yaklaşık sonsal dağı-

lımlarını sabit nokta yinelemeleri ile başarılı bir şekilde hesaplamaktadır. Geliştirilen

takip algoritmasının özellikle model belirsizliklerine karşı gürbüz olduğu gösterilmiş-

tir. Ayrıca, mevcut GPEOT algoritmalarının etkin performanslarından ödün vermeden
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hesaplama özelliklerini iyileştirmeye odaklanılmıştır. Bu amaçla, cismin uzantısını

açıklamak üzere kullanılan Gauss süreci modeli alternatif bir yöntem ile yaklaştırıla-

rak gereken işlem yükü azaltılmıştır. Bu formülasyon kullanılarak iki ve üç boyutlu

hedef takibi algoritmaları türetilmiştir. Ek olarak, standart GPEOT yaklaşımının ak-

sine, yıldız-dışbükey varsayımına dayanmayan yeni bir uzantı modeli geliştirilmiştir.

Böylece, rastgele uzantılı cisimlerin GPEOT çerçevesinde takibi ve eş zamanlı olarak

uzantılarının öğrenilmesi mümkün kılınmıştır. Bahsedilen çalışmaların katma değeri,

benzeştirilmiş ve gerçek ölçümler üzerinde gerçekleştirilen kapsamlı deneyler ile gös-

terilmiştir.

Anahtar Kelimeler: Genişletilmiş Cisim Takibi, Cisim Takibi, Gauss Süreçleri, Var-

yasyonel Bayes.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the ever-increasing use of technology, machines are expected to perform more

sophisticated means of interaction with their environment. Among the challenges of

developing such systems, one is particularly difficult to overcome: designing per-

ception systems. A perception system generally refers to a collection of sensors and

algorithms processing the provided data to obtain representations of the environment

and itself. Considering any decision-making process depends directly on this rep-

resentation, the performance of the perception system naturally sets limits on the

tasks that a machine can achieve. In this respect, with the proliferation of low-cost,

high-precision sensors, and cheap computational power, there is an urgent need for

improvement in the efficiency and efficacy of the existing algorithms.

Drawing on these observations, in this thesis, we aspire to contribute to a specific

component of the perception systems. In particular, we develop algorithms to extract

refined knowledge about dynamic objects by processing point cloud measurements,

which are generated by, for example, lidars, radars, and depth cameras. More specif-

ically, we propose methods that can track the dynamic behavior of the objects and

learn their latent shape simultaneously.

1.2 Problem Definition

Object tracking is the problem of estimating the unknown motion variables, e.g., po-

sition, orientation, and their time derivatives, of dynamic objects using noisy observa-
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tions acquired by, for example, cameras, lidars, and radars. It is one of the key factors

that sets the limit for the overall system performance in many applications, such as

autonomous driving, mobile robotics, surveillance, and aviation.

Object tracking algorithms can be grouped into two main categories. The algorithms

in the first group are based on the assumption that an object can generate at most

one measurement per sensor scan. Accordingly, they model the objects of interest

as point sources [1, 2]. This approach is referred to as point object tracking in the

literature. With the increasing resolution of sensors and changing characteristics of

practical applications, where the sensors are located closer to their interests, a target

can potentially originate multiple measurements at a single scan. The dedicated so-

lutions addressing this problem constitute the second group, which is called extended

object tracking (EOT) [3]. These methods aim at estimating the target’s extent along

with its kinematics.

A solid body of EOT literature relying on various extent representations has been de-

veloped, [3]. These representations exhibit significant variance in their compactness

and expressive power. For example, a group of EOT algorithms imposes simple shape

models such as a circle, a rectangle, or an ellipse. These essentially achieve extent

modeling with only a few parameters at the cost of limited potential for shape descrip-

tion. A substantial fraction of the studies addressing problems in mobile robotics and

autonomous driving resides in this category as they utilize the bounding box model.

[4] considers pedestrian tracking by processing a partition of three-dimensional (3D)

point cloud data. They model the extent of a pedestrian by a bounding box. In [5],

tracking for autonomous driving in urban settings is considered. They formulate the

problem in two-dimensional (2D) motion space regarding the bounding box model

for objects. [6] offers a framework for object detection and tracking in 3D range data.

While they provide a flexible object detection approach to generalize to a wide range

of shapes, they prefer bounding box representation in the extended tracker. With the

aim of detection and tracking of dynamic objects, [7] makes use of data from mul-

tiple sensors, e.g., radar, camera, and lidar. They preprocess 3D point cloud data to

extract features, such as line segments and L-shapes, which are in turn, provided to

the estimation algorithm. Objects are represented by 3D bounding boxes, while the

motion is confined to 2D in this model.
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Another popular line of research, named random matrix approach, essentially ap-

proximates the object extent by an ellipse, [8], [9], [10], [11]. Random hyper-surface

models (RHM), on the other hand, formulates the EOT problem via a more flexible

extent representation for star-convex objects, [12], [13]. The model is based on the

Fourier series expansion of the spatial extent, and the coefficients of the expansion

are estimated together with the kinematics. A specific adaptation of the RHM idea

to tackle people tracking using depth data is presented in [14], and therein 3D shape

is approximated as a cylinder. From a similar perspective, a more general tracking

framework based on the assumption that a 3D object surface can be constructed by

some transformations, e.g., translation, rotation, of a plane curve is proposed in [15].

However, this approach necessitates a special formulation of the recursive estima-

tor in accordance with the particular transformation considered. This devalues the

virtue of the model for a standard tracking application as there is typically no prior

information about the object’s shape.

An alternative approach for tracking is to make use of a grid representation, which

approximates the continuous space as a collection of small-sized units. For instance,

so-called occupancy grids, which were initially motivated by the mapping problem,

have been adapted to tracking dynamic objects. In [16] and [17], local occupancy

grids, which are fixed to the local coordinate frame of the object, are utilized for

tracking arbitrarily shaped objects. Although this representation can potentially lead

to a rich description of the latent shape, it is limited by the inherent assumption that

the individual cells are mutually independent. In particular, this assumption possi-

bly causes the inference to disregard the consistent spatial patterns which are locally

intrinsic in the underlying object shape. Similarly, in processing environmental rep-

resentations expressed by grids, neural networks are also applied to object tracking

in [18], [19], [20]. All of these methods come with a fundamental trade-off between

spatial resolution and memory consumption/computational load. Consequently, a vast

majority of the existing literature alleviates these issues by formulating the tracking

problem in 2D space. Additionally, another significant inconvenience associated with

the grid-based approach is the selection of grid size and cell resolution without having

a priori information about the object.

All of the approaches discussed so far prescribe object tracking to infer some latent
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variables which are meant to express the object extent, e.g., Fourier coefficients, ran-

dom matrices, and occupancy values. In contrast, it is also possible to refer to an

intuitive extent description which is formed as a collection of measurements acquired

successively. Using this notion, [21] suggests to jointly estimate the self-motion and

the track’s motion using the Iterative Closest Point (ICP) algorithm and a Kalman fil-

ter where the appearance of the object is stored an aggregation of lidar measurements

and corresponding features. [22] basically combines lidar data and color information

and offers an inference method named annealed dynamics histograms based on the

iterative sampling of the state-space. They also do not model the shape explicitly but

instead integrate measurements over time to obtain a point cloud representation of the

shape. Likewise, the object extent is expressed as an accumulated point cloud in [23].

As a principal difference, they formulate tracking as a batch optimization on a sliding

window of measurements rather than applying a standard Bayesian estimator. In [24],

lidar measurements are processed to jointly estimate the motion state and the shape of

the object, which is expressed by means of a set of so-called boundary points. At each

iteration, a laser measurement returned from the object is either interpreted as a newly

observed boundary point and appended to the shape representation or associated with

one of the existing boundary points and used to update it. A simple variant of the ICP

algorithm is employed to find the correspondence between the stored boundary points

and fresh measurements. These methods facilitate joint tracking and shape learning

of arbitrary objects in the presence of continuously available, high-precision, and in-

formative measurements. However, as they do not feature a principled representation

of the underlying shape, there arise robustness issues with the sparsity of the mea-

surements due to increasing distance, change of the vantage point and occlusions. In

addition, dependence on the ICP algorithm to align point clouds renders the tracking

performance sensitive to initialization errors. Lastly, the storage and computational

requirements scale with the size of the object extent.

With its favorable analytical properties and close connections to the Bayesian

paradigm, a Gaussian process (GP) facilitates the modeling of unknown functions.

With this in mind, the authors describe latent extents of star-convex objects by GP

in [25] and [26]. These models estimate the pose of the object while learning its ar-

bitrary shape simultaneously. This approach is applied to the multi-object tracking
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problem in [27]. Several adaptations of the GP model are also investigated for spe-

cific application settings. Multiple sensor fusion problem in automotive scenarios is

addressed in [28]. [29] suggests a tracking filter processing measurements from a

high-resolution automotive radar; it is built upon the GP extent representation. [30]

focuses on object classification, making use of the extent estimates produced by a

GP-based tracking algorithm. In [31], measurement models to leverage both nega-

tive and positive information, i.e., where the object should and should not exist, are

developed with the aim of effectively employing the laser range scanners in tracking.

These models essentially exploit the GP-based description of the object shape.

1.3 Contributions and Publications

In this thesis, we focus our attention on developing effective and efficient Gaussian

process-based extended object tracking (GPEOT) algorithms. The contributions pro-

vided by each chapter of the thesis are listed in the following.

• Chapter 3 investigates the problem of tracking objects with unknown shapes,

particularly using 3D point cloud data. We propose a GPEOT model to jointly

estimate object kinematics, including position, orientation, and velocities, to-

gether with the shape of the object for online and offline applications. We

describe the unknown shape by a radial function in 3D and induce a correlation

structure via a GP. Furthermore, we propose an efficient algorithm to reduce

the computational complexity of working with 3D data. This is accomplished

by casting the tracking problem into projection planes that are attached to the

object’s local frame. The resulting algorithms can process 3D point cloud data

and accomplish tracking of a dynamic object. Moreover, they provide analyti-

cal expressions for the representation of the object shape in 3D, together with

confidence intervals. The confidence intervals, which quantify the uncertainty

in the shape estimate, can later be used for solving the gating and associa-

tion problems inherent in object tracking. The performance of the methods is

demonstrated both on simulated and real data. The results are compared with

an existing random matrix model, which is commonly used for extended object

tracking in the literature.
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• Aspiring to improve the estimation performance of the GPEOT models, we

suggest an alternative inference framework for the GPEOT models in Chap-

ter 4. The method provides an approximate solution to the Bayesian filtering

problem in GPEOT by relying on a new measurement update, which we derive

using variational Bayes techniques. The resulting algorithm effectively com-

putes approximate posterior densities of the kinematic and the extent states.

We conduct various experiments on simulated and real data and examine the

performance compared with a reference method, which employs an extended

Kalman filter for inference. The proposed algorithm is shown to significantly

improve the accuracy of both the kinematic and the extent estimates and proves

robust against model uncertainties.

• In Chapter 5, we propose a new formulation to the GPEOT algorithms that

leads to improved computational characteristics. The GPEOT models describe

the target extent by a radial distance function, which is probabilistically mod-

eled by a GP. To attain practically feasible trackers, which recursively pro-

cess collected measurements, the existing GPEOT methods utilize an inducing

point approximation for the original GP model. In this scheme, the extent is

expressed by a set of radial function values, which are typically evaluated at

a uniformly spaced grid. We hereby employ an alternative spectral-domain

approximation for the underlying GP model. This method offers an approxi-

mate basis function expansion, where the weights are random variables with

Gaussian distribution. The weight vector essentially forms a parametrized de-

scription of the target extent. We construct state-space models that include the

kinematics and the weight vector for both 2D and 3D problems. Then, it is pos-

sible to estimate the state vector recursively by standard Bayesian techniques

that constitutes an EOT algorithm. We illustrate an efficient implementation by

relying on the extended Kalman filtering. The key contribution of our approach

is the reduction in the computational complexity of the existing GPEOT models

without compromising effective performance. We analytically investigate the

computational properties of the proposed algorithms. Additionally, the perfor-

mance of the suggested trackers is examined with comprehensive simulation

experiments.
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• Aiming to generalize the GPEOT framework to a broader class of objects, we

suggest a novel model in Chapter 6. The derivation of the existing GPEOT al-

gorithms is based on the assumption that the object of interest is star-convex.

In this manner, it becomes possible to describe the latent extent by a radial dis-

tance function, which is modeled by a GP. To further improve the flexibility

of the resulting trackers, we propose to employ a potential function to indi-

cate the unknown object extent. This formulation is capable of representing

arbitrarily-shaped objects, which might be non-convex and consist of discon-

nected subparts. Closely following the original idea of GPEOT, the potential

function is then modeled by a GP, which systematically accounts for the intrin-

sic spatial correlation of the extent. Subsequently, we construct a state-space

model regarding both the kinematic variables and an approximate description

of the underlying GP model. One can estimate the state vector via standard

Bayesian techniques, which establishes an EOT algorithm. We demonstrate

that the derived tracker is able to capture detailed estimates of the extent of

arbitrarily-shaped objects through simulation experiments.
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given below.

• M. Kumru and E. Özkan, “3D Extended Object Tracking Using Recursive

Gaussian Processes," Proceedings of the International Conference on Informa-

tion Fusion, 2018, [32].

• M. Kumru and E. Özkan, “Comments on ‘Spatio-Temporal Gaussian Process

Models for Extended and Group Object Tracking with Irregular Shapes’," arXiv

preprint arXiv:2002.08065, Feb. 2020, [33].

• M. Kumru and E. Özkan, “Three-Dimensional Extended Object Tracking and

Shape Learning Using Gaussian Processes," IEEE Transactions on Aerospace

and Electronic Systems, vol. 57, no. 5, pp. 2795-2814, Mar. 2021, [34].

• M. Kumru, H. Köksal and E. Özkan, “Variational Measurement Update for

Extended Object Tracking Using Gaussian Processes," IEEE Signal Processing

Letters, vol. 28, pp. 538-542, Feb. 2021, [35].

7



Moreover, the manuscripts that are in preparation for submission are given in the

following.

• M. Kumru and E. Özkan, “Tracking Arbitrarily-Shaped Extended Targets Us-

ing Gaussian Processes," to be submitted to IEEE Robotics and Automation

Letters.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Bayesian Inference

Bayesian inference is essentially the mathematical mechanism addressing the esti-

mation of unknown parameters/variables within a Bayesian framework. It relies on

modeling the uncertainties by probability distributions and using the calculus of prob-

ability. More specifically, the information provided by the observed variables is in-

corporated into our prior belief by means of the Bayes’ rule

p(x|y) =
p(y|x) p(x)

p(y)
, (2.1)

where x is the unknown parameter, and y is the observation. p(x) is called the prior

distribution, and it describes the preliminary information about the possibility of the

parameter values. p(y|x) is the likelihood function; it describes the probabilistic re-

lation between the parameter and the observation. p(y) is called the normalizing

constant or the evidence, and it is not function of x as also revealed by the following

expression p(y) =
∫
p(y|x)p(x)dx. p(x|y) is named as the posterior distribution; it

represents out refined knowledge about the parameter x in accordance with the ob-

servation y. Some of the reference books that present an in-depth discussion on the

Bayesian inference are [1, 36, 37, 38].

2.1.1 Sequential Bayesian Inference

In this thesis, we primarily focus on the estimation of the unknown states of various

dynamic systems by processing the measurements acquired by a sensor device at

discrete time instants. Such a system can be described by a discrete-time probabilistic
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state-space model in its most general form as in the following,

xk+1 = f (xk,ωk) , ωk ∼ p(ωk), (2.2)

yk = h (xk,νk) , νk ∼ p(νk), (2.3)

where xk ∈ Rnx is the state vector; the state transition function f(·) defines the evolu-

tion of the state in time, andωk is the process noise that accounts for the imperfections

in our process model. yk ∈ Rny indicates the measurements acquired at time k; h(·)
is the measurement model that relates the state vector to the observations, and νk

is the measurement noise denoting the nonideal characteristics of the sensor device.

Moreover, it is typical to assume that the process and the measurement noises are

white, and they are independent from the prior distribution x0 ∼ p(x0). Under this

assumption, the resulting state-space model is Markovian such that the states consti-

tutes a Markov sequence, and the measurement yk conditioned on xk is independent

of the other measurements and the states, i.e., xk, p(yk|y1:k−1,x1:k) = p(yk|xk).

Regarding the given state-space model, the objective is to compute the conditional

distribution of the state vector at time k, p(xk|y1:N) where y1:N , {y1,y2, · · · ,yN}.
Depending on the time range of the available measurements, this problem is referred

to as


N < k : Prediction,

N = k : Filtering,

N > k : Smoothing.

(2.4)

For an online application where measurements are gathered sequentially, the batch

application of the Bayesian inference is practically infeasible as the number of ob-

servations grows over time without a limit, and hence it becomes computationally in-

tractable at some point. In this regard, the underlying idea of the sequential Bayesian

inference is to treat the posterior of the previous time step as the prior of the cur-

rent time step. In this scheme, the posterior is obtained in a recursive manner by

only processing newly acquired observations, and the computational complexity of

the resulting recursion is kept fixed for each step over time.
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2.1.1.1 Bayesian Filtering

The aim in Bayesian filtering is to compute the posterior distribution of the state

vector at time k by using all information provided by the measurements collected up

to time k, p(xk|y1:k). For a Markovian model, the basic probability theory offers a

recursive solution consisting of two successive phases, namely the prediction and the

measurement update.

p(xk−1|y1:k−1)
prediction−−−−−→ p(xk|y1:k−1)

update−−−→ p(xk|y1:k) (2.5)

Prediction/ Time Update:

In this step, the predicted distribution p(xk|y1:k−1) is computed from the previous

posterior distribution p(xk−1|y1:k−1) regarding the process model.

p(xk|y1:k−1) =

∫
p(xk,xk−1|y1:k−1)dxk−1 (2.6)

=

∫
p(xk|xk−1,����y1:k−1)p(xk−1|y1:k−1)dxk−1 (2.7)

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (2.8)

In the literature, this is referred to as the Chapman-Kolmogorov equation.

Measurement Update:

After attaining the predicted distribution, the next step is to update our knowledge

about xk by incorporating the new measurement yk, which amounts to computing the

estimated distribution p(xk|y1:k) as

p(xk|y1:k) =
p(yk|xk,����y1:k−1)p(xk|y1:k−1)

p(yk|y1:k−1)

∝ p(yk|xk)p(xk|y1:k−1), (2.9)

where p(yk|xk) and p(yk|y1:k−1) are called the measurement likelihood and predicted

measurement distribution, respectively.

Consequently, the algorithm to realize Bayesian filtering is summarized below.

• Start with p(x0)

• For each k
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– Perform the prediction/ time update by

p (xk|y1:k−1) =

∫
p (xk|xk−1) p (xk−1|y1:k−1) dxk−1

– Perform the measurement update by

p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)

These formulae are valid for all probabilistic state-space models with Markovian

property. In Fig. 2.1, the predicted and posterior distributions1 are illustrated at four

successive time instants for the following system, with nonlinear system dynamics

and additive Gaussian noise in the process and the measurement model,

f(xk) = cos

(
2π

4
xk

)
+ sin

(
2π

6
xk

)
+ sin

(
2π

6
xk

)2

+ ωk, ωk ∼ N (0, 0.2),

h(xk) = xk + νk, νk ∼ N (0, 3), (2.10)

x0 ∼ N (5, 1).

Unfortunately, there are quite a few special cases where the posterior distribution is

analytically tractable. Probably the most popular of these is that the state-space model

is linear and Gaussian, which is detailed in the next section.

2.1.2 Linear Gaussian Model

The linear Gaussian model is specified by the following set of equations,

xk+1 = Axk + ωk, ωk ∼ N (ωk; 0, Q), (2.11)

yk = Cxk + νk, νk ∼ N (νk; 0, R), (2.12)

x0 ∼ N (x0;µ0, P0). (2.13)

In this system, the state transition function and the measurement function are linear

mappings of the state vector; the process and the measurement noises are additive and

Gaussian distributed. Furthermore, the prior distribution is modeled to be Gaussian.

1 In fact, the predicted and the posterior distributions are approximately computed by a point mass filter, [39].
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Figure 2.1: An illustration of the distributions obtained during four successive time

instants of Bayesian filtering for the nonlinear system in (2.10).

In this special case, by the virtue of the favorable analytical properties of the Gaussian
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density, the following distributions compute as

p(xk | y1:k−1) = N (xk; x̂k|k−1, Pk|k−1),

p(yk | y1:k−1) = N (yk; ŷk|k−1, Sk|k−1),

p(xk | y1:k) = N (xk; x̂k|k, Pk|k).

(2.14)

As an example, in Fig. 2.2, we exhibit the predicted and posterior distributions for

four consecutive time steps regarding the following linear Gaussian system,

f(xk) = −0.5xk + ωk, ωk ∼ N (0, 1),

h(xk) = xk + νk, νk ∼ N (0, 2),

x0 ∼ N (5, 4).

(2.15)

Consequently, it is sufficient to keep and manipulate the means and covariances of

the distributions during a Bayesian recursion. In particular, we can achieve this in the

following manner.

x̂k−1|k−1, Pk−1|k−1
prediction−−−−−→ x̂k|k−1, Pk|k−1

update−−−→ x̂k|k, Pk|k (2.16)

The algorithm to realize this mechanism is known as the Kalman filter, [40].

2.2 Kalman Filter

The psuedocode of the Kalman filter is given in Algorithm 1. The variables used in

the equations are explicitly indicated in Table 2.1.

2.3 Variational Bayesian Inference

As previously mentioned, it is analytically infeasible to compute the exact posterior

distribution of the latent variables for many probabilistic models. There is a plethora

of methods in the literature that addresses this problem from different perspectives.

In this section, we briefly introduce the variational Bayesian inference that seeks for

approximate solution by relying on the optimization of an informative functional of

the true posterior. More specifically, the objective is to approximate the true posterior

distribution p(x|y) by a distribution q(x), where x and y represent the latent variables

14



Algorithm 1 Pseudocode of the Kalman Filter

1: Initialize the density of the state p(x0) = N (x0; x̂0|0, P0|0)

2: for time k = 1, . . . , N do

3: Perform prediction update and compute x̂k|k−1, Pk|k−1 by

x̂k|k−1 = Ax̂k−1|k−1

Pk|k−1 = APk−1|k−1A
T +Q

4: Perform measurement update and compute x̂k|k, Pk|k by

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
Pk|k = Pk|k−1 −KkSk|k−1K

T
k

where

ŷk|k−1 = Cx̂k|k−1

Sk|k−1 = CPk|k−1C
T +R

Kk = Pk|k−1C
TS−1

k|k−1

5: end for

Table 2.1: Terms Used in the Kalman Filter Equations

x̂k|k−1: Predicted state

Pk|k−1: Covariance of the predicted state

x̂k|k: Estimated state

Pk|k: Covariance of the estimated state

ŷk|k−1: Predicted measurement

νk , yk − ŷk|k−1: Measurement prediction error/ Innovation

Sk|k−1: Covariance of the innovation

Kk: Kalman gain
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Figure 2.2: An illustration of the distributions obtained during four consecutive time

steps of Bayesian filtering for the linear Gaussian system in (2.15).

and the observations of our model, respectively. The exposition in this section closely

follows the presentation in [41, Ch. 10].
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The marginal log-likelihood of all measurements log p(y) can analytically be decom-

posed as

log p(y) = L(q(x)) + KL(q(x)‖p(x|y)), (2.18a)

where

L(q(x)) =

∫
q(x) log

[
p(y,x)

q(x)

]
dx, (2.18b)

KL(q(x)‖p(x|y)) =

∫
q(x) log

[
q(x)

p(x|y)

]
dx. (2.18c)

KL(·) denotes the Kullback-Leibler divergence between distributions q(x) and p(x|y).

As the KL divergence is guaranteed to be nonnegative, the following relation is valid

for all q(·)

log p(y) ≥ L(q(x)),

and hence L(·) is interpreted to be a lower bound for the marginal log-likelihood.

Our aim is to minimize the KL divergence in (2.18), which is trivially solved by q(x)

being equal to p(x|y). However, this solution is not analytically tractable; therefore,

we need to resort to an approximate solution by confining q∗(x) to a family of func-

tions for analytical convenience, i.e.,

q∗(·) = argmin
q ∈ F

KL(q(·)‖p(·)) . (2.19)

The challenge here is to specify a sufficiently rich and flexible family for the function

of approximate distributions so that the result can approach to the true posterior while

keeping the solution tractable. In this regard, the variational Bayesian inference is

based on imposing a factorized form for q(·) as

q(x) =
M∏
i=1

qi(xi) . (2.20)

This approximation is also referred to as the mean field approximation in the litera-

ture. In accordance with (2.18), to minimize the KL divergence, we can alternatively

maximize the lower bound:

q∗(x) = argmin KL(q(x)‖p(x | y))

= argmax L(q(x)) . (2.21)
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This is a variational optimization problem and iteratively maximized for each factor

[41, Ch. 10] as in

L(q) =

∫ ∏
i

qi (xi)

{
log p(y,x)−

∑
i

log qi (xi)

}
dx

=

∫
qj (xj)

{∫
log p(y,x)

∏
i 6=j

qi (xi) dxi

}
dxj −

∫
qj (xj) log qj (xj) dxj + c

=

∫
qj (xj) log p̂ (y,xj) dxj −

∫
qj (xj) log qj (xj) dxj + c

= −
∫
qj (xj)

log qj (xj)

log p̂ (y,xj)
dxj + c, (2.22a)

where

log p̂ (y,xj) =

∫
log p(y,x)

∏
i 6=j

qi dxi

= Ei 6=j[log p(y,x)] + c . (2.22b)

Notice that the resulting expression in (2.22a) is the negative KL divergence between

qj (xj) and p̂ (y,xj). Accordingly, the optimal distribution that maximizes the lower

bound is obtained by minimizing the mentioned KL divergence by q∗j (xj) = p̂ (y,xj).

Consequently, we end up with the following expression

log q∗j (xj) = Ei 6=j[log p(y,x)] + c. (2.23)

The optimal distribution for the j th factor is computed by

q∗j (xj) =
exp (Ei 6=j[log p(y,x)])∫

exp (Ei 6=j[log p(y,x)]) dxj
. (2.24)

Each factor of the overall factorized distribution is computed by using the given equa-

tion while keeping the other factor fixed at its most recent estimate.

2.4 Gaussian Processes

A Gaussian process (GP) is essentially a collection of random variables, any finite

subset of which have a joint Gaussian distribution, [42]. It can be interpreted as a
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generalization of multivariate Gaussian distribution over function space. A GP model

defined for a scalar-valued function f(·) is denoted as

f(x) ∼ GP(µ(x), k(x, x′)),

where x is the argument of the function. The GP is uniquely defined by its mean

function µ(x) and its covariance function k(x, x′) given as

µ(x) = E[f(x)], (2.25a)

k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]. (2.25b)

By the definition of the GP, the function values evaluated at a finite number of inputs,

x1, ..., xN , are normally distributed, i.e.,
f(x1)

...

f(xN)

 ∼ N (µ, K), (2.26a)

where

µ =


µ(x1)

...

µ(xN)

 and K =


k(x1, x1) . . . k(x1, xN)

...
...

k(xN , x1) . . . k(xN , xN)

 . (2.26b)

An example GP model and some functions sampled from this prior model are illus-

trated in Fig. 2.3. In particular, the model is specified by the zero-mean function and

the squared exponential covariance function, i.e.,

f(x) ∼ GP(µ(x),kSE(x, x′)), x ∈ R,

where µ(x) = 0,

kSE(x, x′) = σ2
f exp

(
−|x− x

′|2

2l2

)
,

(2.27)

where the prior standard deviation is set to σf = 4, and the length scale is used as

l = 3.

2.4.1 Gaussian Process Regression

The primary objective of utilizing a GP in stochastic modeling is typically to predict

an unknown function f(·) at some query inputs regarding the collected observations.
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Figure 2.3: An illustration of the GP prior model in (2.27) with some sample func-

tions. (The solid red line describes the mean function, which is identically zero; the

shaded area indicates 2-σ confidence interval.)

In this pursuit, the GP provides analytical expressions for the unknown function val-

ues with well-calibrated uncertainty estimates.

Suppose we have a noisy observation y of the function f(·), which is described by

the following measurement model,

y = f(x) + e, e ∼ N (0, σ2
n), (2.28)

where e denotes the independent sensor noise, which is Gaussian distributed. The aim

is to estimate the values of the latent function, f , [f(xf1) . . . f(xf
N f )]

> at the query

inputs xf , [xf1 . . . x
f
N f ]
>. To this end, a set of measurements y , [y1 . . . yN ]> are

collected by observing the function at x , [x1 . . . xN ]>. In accordance with the GP

model (2.26) and the measurement model (2.28), the joint distribution of the mea-

surements and the function values can be written asy

f

 ∼ N
µ(x)

µ(xf )

 ,
K(x,x) + σ2

nIN K(x,xf )

K(xf ,x) K(xf ,xf )

 , (2.29a)
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where

µ(x) = [µ(x1) . . . µ(xN)]>,

µ(xf ) = [µ(xf1) . . . µ(xfN f )]
>,

K(x,xf ) =


k(x1, x

f
1) . . . k(x1, x

f
N f )

...
...

k(xN , x
f
1) . . . k(xN , x

f
N f )

 .

(2.29b)

IN indicates an N-by-N identity matrix. Consequently, we can analytically compute

the conditional distribution p(f |y) as

p(f |y) = N
(
µ+,Σ+

)
, (2.30a)

where

µ+ = µ(xf ) +K
(
xf ,x

) [
K(x,x) + σ2

nIN
]−1

(y − µ(x)) ,

Σ+ = K
(
xf ,xf

)
−K

(
xf ,x

) [
K(x,x) + σ2

nIN
]−1

K
(
x,xf

)
. (2.30b)

If we select the underlying GP model to have zero mean, which is the common prac-

tice for many applications, the posterior mean reduces to a linear function of the

observations as

µ+ = K
(
xf ,x

) [
K(x,x) + σ2

nIN
]−1

y. (2.31)

Accordingly, we can rewrite the posterior distribution in the following compact form,

p(f |y) ∼ N (Ay, P ), (2.32a)

where

A = K(xf ,x)K−1
y , (2.32b)

P = K(xf ,xf )−K(xf ,x)K−1
y K(x,xf ), (2.32c)

Ky = K(x,x) + σ2
nIN . (2.32d)

As an illustration, the regression results of the prior model in (2.27) is given in Fig.

2.4.
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Figure 2.4: A GP regression example obtained by conditioning the prior model in

(2.27) to the given observations. (The solid red line describes the posterior predictive

mean; the shaded area indicates 2-σ confidence interval. The standard deviation of

the measurement noise is set to σn = 0.5.)

2.4.2 Gaussian Process Approximations

Along with their favorable characteristics, such as robustness to overfitting and pro-

viding principled uncertainty information, GPs have been widely adopted mainly due

to their flexibility in modeling. They do not rely on a parametric model, which is often

too restrictive, to explain the observed data generation process. Instead, a GP model

enables us to make predictions directly from observations. Accordingly, all available

measurements are processed in a single batch by the standard GP regression formu-

lae, as indicated in the previous section. Unfortunately, this attribute gives rise to the

widely-known limitation of GPs that they scale with O(n3) and O(n2) in computa-

tional and memory requirements, where n is the number of measurements. The speci-

fied complexities are computed for a naive implementation of the regression equations

requiring the inversion and the storage of the Gram matrix, [K(x,x) + σ2
nIN ].

Although it obviously depends on the accessible processing capabilities, the men-
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tioned computational characteristics typically impede the utilization of GPs when the

number of observations is more than a couple of thousands. Specifically, for the

applications that deal with continuous streams of observations, e.g., target tracking,

and system identification, it is not feasible to employ a GP model as the number of

available measurements grows without a limit which imposes an obvious burden on

naturally limited computational sources.

There is a well-established literature of studies that aim at improving the computa-

tional characteristics of GPs. The derivation of these sparse GP models relies on a

broad spectrum of mechanisms. A group of methods simply downsamples the ob-

servations by selecting a subset of the overall dataset [43]. In another branch, the

overall dataset is clustered into partitions, and local GP models are trained with each

partition [44]. Then, the outputs of these multiple models are appropriately combined

for prediction at a query point. Alternatively, a solid body of studies approximates

the original GP by a set of inducing variables that is assumed to carry all necessary

information about the prediction points [45, 46, 47]. A thorough review of the exist-

ing literature is outside the scope of this thesis work. Instead, in the remaining of this

section, we introduce the methods adopted in the formulation of our extended object

trackers in the following chapters.

2.4.2.1 Sparse Gaussian Processes using Pseudo-inputs

In their seminal paper, [45], Snelson and Ghahramani offer to form a pseudo dataset

that can summarize the original dataset adequately with fewer number of data points,

which in turn scales down the computational complexity of GP training and regres-

sion.

The GP model offers the following posterior predictive density for an observation y∗

at a query input x∗

p(y∗|x∗,D,θ) = N
(
y∗; k>x∗

(
KN + σ2I

)−1
y, k∗∗ − k>x∗

(
KN + σ2I

)−1
kx∗ + σ2

)
,

(2.33)

where D indicates the complete set of available observations, which consists of the

measurements y = {yi}Ni=1 obtained at the corresponding inputs x = {xi}Ni=1, i.e.,
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D = {y,x}; θ denotes the parameters of the covariance function, and σ is the mea-

surement noise standard deviation. The indices of the utilized covariance matrices are

specified as follows

[kx∗]i = k (xi, x
∗) ,

[KN ]i,j = k(xi, xj),

k∗∗ = k(x∗, x∗),

(2.34)

where k(·, ·) is the covariance function.

Both the predicted mean and variance in (2.33) expectedly depend on the query input

x∗, as it essentially relates y∗ to the available observations. Furthermore, the predicted

statistics are determined by the datasetD itself. SPGP suggests to substitute a pseudo

dataset D̄ instead of the original one while regarding the predicted distribution in

(2.33). In this pursuit, the idea is to construct a comparatively smaller dataset, which

consists of M observations.

The pseudo dataset is defined to compose of x = {xi}Mi=1 and f =
{
f i
}M
i=1

, which are

the inputs and pseudo observations/targets, respectively. Assuming that we are given

the pseudo dataset, then the corresponding posterior predictive density is computed

as

p(y∗|x∗,x, f) = N
(
y∗; k>x∗K

−1
M f , k∗∗ − k>x∗K

−1
M kx∗ + σ2

)
, (2.35a)

where

[kx∗]i = k (xi, x
∗) ,

[KM ]i,j = k (xi, xj) .
(2.35b)

Additionally, in accordance with the pseudo dataset, the likelihood of the original

dataset can be written as

p(y|x,x, f) ≈
N∏
n=1

p
(
yn|xn,x, f

)
= N

(
y;KNMK

−1
M f ,Λ + σ2I

)
, (2.36a)
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where

Λ = diag(λ) ,

[λ]n = knn − k>xnK
−1
M kxn ,

knn = k(xn, xn) ,

[kxn]i = k(xi, xn) ,

[KNM ]i,j = k (xi, xj) .

(2.36b)

It is important to note that the factorized expression in (2.36a) is based on the as-

sumption that each measurement yn is independent from the remaining measurements

conditioned on the psuedo dataset. In other words, the pseudo dataset is selected in

such a way that it provides the sufficient statistics for the real observations.

Subsequently, it is intuitive to impose a Gaussian prior on the pseudo targets that

complies with the underlying GP model, i.e., p(f |x) = N
(
f ; 0, KM

)
. Then, one can

analytically compute the posterior distribution of the targets,

p(f |D,x) = N
(
f ;KMQ

−1
M KMN

(
Λ + σ2I

)−1
y, KMQ

−1
M KM

)
, (2.37a)

where

QM = KM +KMN

(
Λ + σ2I

)−1
KNM . (2.37b)

Accordingly, the predictive distribution at the query point transforms into

p (y∗|x∗,D,x) =

∫
dfp

(
y∗|x∗,x, f

)
p(f |D,x)

= N
(
y∗;µ∗, σ

2
∗
)
, (2.38a)

where

µ∗ = k>x∗Q
−1
M KMN

(
Λ + σ2I

)−1
y,

σ2
∗ = k∗∗ − k>x∗

(
K−1
M −Q

−1
M

)
kx∗ + σ2.

(2.38b)

Notice that the expression in (2.38a) again follows from the assumption that y∗ is

independent from the original observations conditioned on the pseudo dataset, i.e.,

p
(
y∗|x∗,D,x, f

)
= p

(
y∗|x∗,x, f

)
.
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In this formulation, the inversion of (Λ + σ2I) scales with only O(n) as it is a di-

agonal matrix. By using some precomputations, the computational complexity of

prediction per test case reduces to O(M2), [45].

The study also investigates the training process of the suggested approximate GP

model, where the aim is to optimize the pseudo-input locations, x, together with

the hyperparameters, Θ = {θ, σ2}. This is achieved by maximizing the following

marginal likelihood with respect to the parameters by an iterative gradient-based ap-

proach.

p(y|x,x,Θ) =

∫
dfp(y|x,x, f)p(f |x)

= N
(
y; 0, KNMK

−1
M KMN + Λ + σ2I

) (2.39)

The major shortcomings of presented approach can be listed as follows:

• To determine the locations of the pseudo-inputs, all available measurements are

to be processed to maximize the likelihood given in (2.39). However, it is not

practical for an online problem as the number measurements will sequentially

grow in time without a limit.

• The algorithm relies on a gradient-based optimization scheme, and it does not

present a closed form solution for the locations of the pseudo inputs. This might

be problematic for applications with strict real-time requirements to fulfill.

2.4.2.2 Recursive Gaussian Processes

In the previous section, a GP approximation based on substituting the original dataset

with a smaller pseudo dataset is introduced. This method inherently assumes that

the observations are collected and stored prior to forming the sparse GP model. On

the other hand, this assumption is violated in many practical applications, where the

so-called streaming data becomes sequentially available. In this setting, it is not

practically feasible to store all available information and process them to obtain an

approximate model; instead, there is a need for dedicated solutions that is able to in-

crementally update the sparse GP approximation processing only the new data. These
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issues are addressed by the studies [48] and [49] under the name of recursive Gaussian

processes.

In this approach, the objective is to update the posterior distribution of the latent

function values f =
{
f i
}M
i=1

at the inputs x = {xi}Mi=1, in a recursive manner. f and

x are called the inducing targets and the inducing inputs, respectively. y = {yi}Ni=1

indicates the overall set of observations generated at the inputs x = {xi}Ni=1. The

posterior p(f |y) is first expanded as the collection of the following terms by applying

the Bayes’ rule iteratively,

p(f |y1:N) ∝ p(yN |f , y1:N−1)p(f |y1:N−1), (2.40a)

∝ . . . p(yk|f , y1:k−1) . . . p(f)︸ ︷︷ ︸
p(f |y1:k)

. (2.40b)

Subsequently, f is assumed to provide the sufficient statistics for yk. With this as-

sumption, yk becomes conditionally independent of all the other measurements y1:k−1

given f , i.e.,

p(yk|f , y1:k−1) ≈ p(yk|f). (2.41)

Notice that this is exactly the same approximation which provides the basis of the

approach in [45]. In this regard, the inducing inputs, x, together with the correspond-

ing function values, f , can directly be interpreted as the pseudo dataset. It is also

important to note that this formulation assumes that the inducing inputs are fixed and

not treated in a Bayesian framework, as such an attempt often leads to an analytically

intractable model, [45].

Thereafter, the derivation follows a different path from [45] with the aim of employ-

ing the standard Kalman filtering techniques for inference. In particular, the above

assumption leads to a setting where we essentially treat f to be the latent variable

and the measurements provide noisy observations of it. Accordingly, once the mea-

surement likelihood and the initial prior densities are defined, it is possible to apply

recursive Bayesian inference for f . To this end, the relation between each measure-

ment, yk, and f is provided by the underlying the GP model as follows.yk
f

 ∼ N
0,

K(xk, xk) +R K(xk,x)

K(x, xk) K(x,x)

 (2.42)
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Accordingly, we can compute the likelihood and prior densities as

p(yk|f) = N (yk;Hkf , Rk), (2.43a)

p(f) = N (0, P0), (2.43b)

where

Hk = K(xk,x)K(x,x)−1, (2.43c)

Rk = k(xk, xk) +R−K(xk,x)K(x,x)−1K(x, xk), (2.43d)

P0 = K(x,x). (2.43e)

We can immediately construct a linear Gaussian model that implies the same proba-

bilistic characteristics for yk and f as in (2.43), which in turn will be used to infer the

latent function values recursively by a standard Kalman filter,

fk+1 = fk, (2.44a)

yk = Hk fk + ek, ek ∼ N (0, Rk), (2.44b)

f0 ∼ N (0, P0). (2.44c)

The regression results obtained by the recursive GP approach for the model in (2.27)

are shown in Fig. 2.5.

2.4.2.3 Reduced-Rank Gaussian Processes

In this section, we present another approach to approximate a GP model that brings

in favorable computational properties and an intuitive interpretation. The method

takes a different perspective and relies on the spectral domain representation of GPs.

Moreover, the resulting method facilitates a recursive implementation, which natu-

rally enables dealing with streaming data.

In [50], Solin and Särkkä introduce an approximation to the GP modeling, which

solves the eigendecomposition problem of the Laplace operator,∇2, by using a bound-

ary condition on a confined domain Ω, i.e.,−∇
2φj(x) = λ2

jφj(x), x ∈ Ω

φj(x) = 0, x ∈ ∂Ω.
(2.45)
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The approximation then relies on the Wiener-Khintchin theorem which states the

Fourier duality of the covariance and the power spectral density functions for a sta-

tionary covariance function, i.e., k(r) , k(x, x′) where r , x− x′,

k(r) =
1

(2π)d

∫
S(ω)eiω>rdω,

S(ω) =

∫
k(r)e−iω>rdr.

(2.46)

Examples of stationary covariance functions include the squared exponential and the

Matérn class, which are arguably the most widely used functions in the GP literature.

The definitions of these covariance functions and their spectral densities are given in

(2.47) and (2.48), respectively.

kSE(r) = σ2
f exp

(
− r

2

2l2

)
, (2.47a)

kM(r) = σ2
f

21−v

Γ(v)

(√
2vr

l

)v

Kv

(√
2vr

l

)
(2.47b)

SSE(s) = σ2
f

√
2πl2 exp

(
−π

2l2s2

2

)
(2.48a)

SM(s) = σ2
f

2π
1
2 Γ
(
v + 1

2

)
(2v)v

Γ(v)l2v

(
2v

l2
+ s2

)−(v+ 1
2)

(2.48b)

In [50], an approximate expression for the stationary covariance function kθ is derived

as follows,

kθ (x, x′) ≈
∑
j

Sθ(
√
λj)φ

(j)(x)φ(j) (x′) , (2.49)

where Sθ(·) is the spectral density function, λj and φ(j)(·) are the j th eigenvalue and

eigenfunction of the Laplace operator solved in the specified domain, and θ denotes

the hyperparameters of the covariance function.

One of the appealing properties of the decomposition in (2.49) is that the hyper-

parameters affect the expansion exclusively through the spectral density, while the

eigenfunctions depend solely on the choice of the domain.

Let us consider an example to form an approximate GP model of a latent function

f(x), where x ∈ R2. Without imposing any prior information, we choose the domain
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of interest to be a rectangular-shaped compact subset, i.e., Ω = [−L1, L1]×[−L2, L2],

for which the eigenvalues are eigenfunctions are available with the following analytic

expressions,

φ(j1,j2)(x) =
2∏
d=1

1√
Ld

sin

(
πjd (xd + Ld)

2Ld

)
, (2.50)

λ(j1,j2) =
nx∑
k=1

(
πjk
2Lk

)2

, (2.51)

where xd is the dth component of the input vector x, and (j1, j2) is an index variable.

The first 16 basis functions are illustrated in Fig. 2.6 for the given domain.

The basic idea of the reduced-rank approximation is to truncate the expansion in

(2.49) to a finite number of functions, i.e.,

k (x, x′) =
m∑
j=1

S(
√
λj)φ

(j)(x)φ(j) (x′) . (2.52)

This is expected to be a good approximation as the eigenvalues of the Laplace operator

is monotonically increasing and the spectral density goes to zero fast with increasing

frequencies for bounded covariance functions, [50]. The interested readers can refer

to [50] for detailed analysis and convergence proofs.

The truncated covariance function in (2.52) implies an equivalent linear model [42,

Ch. 2.2],

f(x) ∼ GP (0, k(x, x′)) ⇔ f(x) =
m∑
j=1

f (j)φ(j)(x), (2.53)

where f (j) ∼ N
(

0, S(
√
λj)
)
.

This model suggests that the eigenfunctions of the Laplace operator {φ(j)(·)}mj=1 ac-

tually form a set of basis functions to describe our model, and the unknown weights

{f (j)}mj=1 have a Gaussian prior distribution.

We can reorganize (2.53) as

f(x) = Φ(x)> f , where f ∼ N (0, S) , (2.54a)
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where

Φ(x) , [φ(1)(x) . . . φ(M)(x)]> , (2.54b)

f , [f (1) . . . f (M)]> , (2.54c)

S = diag
(
S(
√
λ1), . . . , S(

√
λM)

)
. (2.54d)

This expression concludes the derivation of the reduced-rank approximation, where

the original GP model is transformed into a linear model with a latent variable f .

According to (2.54), learning the latent function f(·) from a set of noisy observations

{yk}Nk=1 amounts to computing the posterior distribution p(f |y1:N). Let us define a

generic observation model,

y = f(x) + e

= Φ(x)> f + e, (2.55)

where e stands for the independent sensor noise. Notice that this formulation enables

a Bayesian treatment of the problem, and we can easily compute the posterior distri-

bution of f by employing one of the well-studied inference methods in the literature.

In this regard, the resulting formulation fulfills the requirement to provide an online

solution while the measurements become sequentially available in time. In particular,

one can apply the Bayes’ rule iteratively to expand the posterior as

p(f |y1:N) ∝ p(yN |f , y1:N−1) p(f |y1:N−1)

= p(yN |f) p(f |y1:N−1), (2.56)

where second equation follows from the fact that f provides the sufficient statistics for

yk, i.e., p(yk|f , y1:k−1) = p(yk|f) as implied by (2.55). Additionally, for the specific

case where the sensor noise is Gaussian, the exact solution is accessible by a measure-

ment update of the Kalman filter. The regression results obtained by the reduced-rank

GP approach for the model in (2.27) are shown in Fig. 2.7.
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Figure 2.5: Regression results obtained by the recursive GP approach for the model

in (2.27). The number of inducing inputs are selected as 3, 5, 10 in top, middle and

bottom figures, respectively. (The solid red line describes the posterior predictive

mean; the shaded area indicates 2-σ confidence interval. The black dots over the

x-axis represent the locations of the basis points.)
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Figure 2.6: The first 16 eigenfunctions for the rectangular domain. The largest (+1)

and smallest (-1) values of the functions are mapped to solid white and black, respec-

tively; the values in between are plotted according to a linear interpolation.
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Figure 2.7: Regression results obtained by the reduced-rank GP approach for the

model in (2.27). The number of basis functions are selected as 3, 5, 10 in top, middle

and bottom figures, respectively. (The solid red line describes the posterior predictive

mean; the shaded area indicates 2-σ confidence interval. The basis functions used in

each case are illustrated over the x-axis.)
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CHAPTER 3

THREE-DIMENSIONAL EXTENDED OBJECT TRACKING USING

GAUSSIAN PROCESSES

3.1 Introduction

Object tracking can be described as making inference about the unknown kinematic

properties of an object using sequentially available sensor data. The problem is ex-

plicitly referred to as point object tracking when the object of interest is relatively

small that it may occupy a single cell of the sensor device. In this case, the number

of measurements returned from the object is limited to be at most one per scan. On

the other hand, it is dubbed extended object tracking (EOT) when the resolution of

the sensor is sufficiently high relative to the size of the object so that it may be de-

tected by several cells of the sensor. Thus, the object potentially originates multiple

measurements at a single scan in this setting.

There is a solid body of literature considering the EOT problem, specifically in two-

dimensional (2D) space (see [3] for a comprehensive survey). The methods of this

category process 2D measurements by relying on various extent models. These ex-

tent representations exhibit significant variance in their compactness and expressive

power. For example, a group of EOT algorithms imposes simple geometric shape

models such as a circle, a rectangle, or an ellipse, [51, 5, 8, 9, 10, 11, 52]. These

essentially achieve extent modeling with only a few parameters at the cost of limited

potential for shape description. In another line of research, random hyper-surface

models (RHM) suggest a more flexible extent representation for star-convex objects,

[12], [13]. The model is based on the Fourier series expansion of the spatial ex-

tent, and the coefficients of the expansion are estimated together with the kinematics.
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Similarly, the latent extent of a star-convex object is described by a Gaussian process

(GP) in [26] and [25]. With its favorable analytical properties and close connections

to the Bayesian paradigm, this model enables effective estimation of the object pose

and its shape. Several adaptations of this approach have been investigated for various

application settings, [27, 53, 29, 30, 54, 31, 28, 55].

On the other hand, there have been remarkably few attempts to tackle the EOT prob-

lem in three-dimensional (3D) space, despite the increasing accessibility of sensors

such as depth cameras and LIDARs generating 3D data. Furthermore, the majority of

these attempts are direct generalizations of the basic geometric models and represent

the extent via, for example, an ellipsoid or a bounding box. One of the few excep-

tions that aim at a more generic extent description is proposed in [15]. The method

assumes that 3D object surface can be constructed by some transformations, e.g.,

translation, rotation, of a plane curve. Then, it adopts the notion of RHM to derive

a general tracking framework. This approach necessitates a special formulation of

the recursive estimator in accordance with the particular transformation considered.

However, the required prior information about the object shape may not be available

for a standard tracking application.

Another branch of studies avoids imposing a parametric shape description; instead it

is based on a point cloud representation of the shape, which is formed by collecting

measurements over time, [21, 22, 23]. These methods facilitate joint tracking and

shape learning of arbitrary objects in the presence of continuously available, high-

precision and informative measurements. However, as they do not feature a principled

representation of the underlying shape, there arise robustness issues with the sparsity

of the measurements, for example, due to increasing distance, change of the vantage

point and occlusions. In addition, the storage and the computational requirements

scale with the size of the object extent.

In this chapter, we consider the problem of tracking 3D objects while simultaneously

learning their shapes using 3D point cloud data. 3D measurements carry substantial

information such that they not only convey clues about the kinematics but also reveal

characteristics of the object extent naturally. However, estimating unknown shapes

from noisy point cloud data is a challenging task, and the problem gets even more
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severe when the objects are in motion. This is mainly due to the inherent interdepen-

dence between the pose and the shape description. Therefore, the reliable estimation

of one necessitates precise information about the other. With this in mind, we for-

mulate the problem as the joint estimation of both kinematic and shape variables in

a unified framework. For the description of the object extent, we adopt a GP-based

approach that facilitates a flexible representation with favorable analytical properties.

In particular, the contributions can be listed as follows.

• We propose two novel probabilistic representations for 3D extent. The first one

expresses the unknown 3D surface by a radial function in spherical coordinates.

The second exploits the correspondence between a 3D shape and its projections

onto multiple planes, and thus characterizes the original 3D surface by a collec-

tion of 2D contours of these projections. The probabilistic shape representation

is achieved by modeling the above descriptions by GPs without imposing any

parametric form. By doing so, we attain a flexible basis to estimate the shape

of a wide range of objects.

• This approach enables us to treat the unknown extent within the Bayesian

framework such that the posterior distribution offers an analytical expression

for the object shape with well-defined confidence intervals, and any available

prior information can be incorporated easily.

• We develop measurement models to express the relation between the point mea-

surements and the object extent using an efficient approximation of the GP re-

gression.

• The kinematics and the object extent are efficiently inferred by an extended

Kalman filter regarding a unified state-space model.

• The orientation of the object is described by the unit quaternions, and a novel

rotational motion model is derived for effective estimation of the full 3D orien-

tation and the angular rates.

• The performance of the suggested algorithms is comprehensively evaluated us-

ing both simulated and real measurements.
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3.2 Extent Model for 3D Objects

Different types of sensors provide different level of details about objects of interest.

One particular group of sensors, such as depth cameras and LIDARs, generates 3D

point cloud data that capture salient characteristics of their environment. It is an open

research question as to how we can harness the full potential of the available infor-

mation. Other than its potential benefits in tracking such as clutter rejection and data

association; a detailed shape estimate can provide valuable insight for the classifica-

tion of the object, which in turn may prove useful to anticipate future behavior. With

this improved perception capabilities, it might be possible to develop tailored ways of

interaction with the environment.

To accomplish effective shape learning by processing 3D point cloud data, a suitable

description of the object extent needs to be formulated that meets the following speci-

fications. First, it is required to have high representational power to be able to apply to

a wide range of objects with various 3D shapes. In addition, it should be sufficiently

compact so that it will enable an efficient online tracking algorithm.

In this regard, we model the object shape in spherical coordinates by means of a radial

function f(θ, φ). The arguments of this function are the azimuth, θ ∈ [−π, π], and the

elevation angles, φ ∈ [−π
2
, π

2
], and the output, r, is the distance between the center of

the object and the point on the surface at the corresponding spherical angle pair, i.e.,

r = f(θ, φ). Fig. 3.1 illustrates the representation for an example object.

This representation summarizes the 3D shape exclusively by the external boundary

(surface) of the object, considering that the point cloud measurements are merely

originated from the surface. Additionally, it implicitly assumes that the latent shape

is star-convex1. This assumption does not introduce a strict limitation as star-convex

shapes present an adequately broad class for object tracking applications.

The main aim of the upcoming sections is to construct a unified state-space model to

serve as a basis for the joint estimation of the kinematics and the extent of the object.

The corresponding state vector includes both the kinematics and a parametric de-

1 A set S is star-convex with respect to the origin if each line segment from the origin to any point in S is
fully contained in S.
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Figure 3.1: Object extent description in spherical coordinates.

scription of the given extent model. This description will be obtained by developing a

proper GP model for the radial function. More specifically, we precisely construct the

GP model such that it effectively accounts for the inherent spatial correlation within

the object surface. Furthermore, we utilize a recursive approximation of GP modeling

to avoid associated computational difficulties. The resulting algorithm accomplishes

a probabilistic representation of the latent extent in a principled manner. Besides, it is

able to maintain the local uncertainty information of the extent which becomes vital

for robust tracking and shape learning in scenarios including occlusions and sparse

sampling.

The next section first briefly introduces the standard GP regression and then elabo-

rates on its recursive approximation.

3.3 Gaussian Processes

A Gaussian Process (GP) is a stochastic model which specifies a probability distribu-

tion in the function space for a function f(·), [42]. We hereby engage a GP to model

the radial function expressing the unknown extent of the object. A GP is uniquely

defined by the mean µ(u) and the covariance function k(u, u′) defined as2

µ(u) = E[f(u)], (3.1a)

k(u, u′) = E[(f(u)− µ(u))(f(u′)− µ(u′))]. (3.1b)

2 Considering the radial distance function, the definition of the GP model is deliberately given for a scalar-
valued function.
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The corresponding GP model is denoted as

f(u) ∼ GP(µ(u), k(u, u′)),

where u is the input of the function, which is specified as a scalar for notational

simplicity. This model will directly generalize to vector inputs as discussed in Section

3.4.

A GP can also be interpreted as a collection of random variables, any finite number of

which have a joint Gaussian distribution that is consistent with the specified mean and

covariance functions. The joint distribution of the function evaluations at the inputs,

u1, ..., uN , reads as 
f(u1)

...

f(uN)

 ∼ N (µ, K), (3.2a)

where

µ =


µ(u1)

...

µ(uN)

 , K =


k(u1, u1) . . . k(u1, uN)

...
...

k(uN , u1) . . . k(uN , uN)

 . (3.2b)

3.3.1 Gaussian Process Regression

Prior belief about the unknown function encoded by the GP can be conveniently con-

ditioned on the information provided by observations. For this purpose, a noisy ob-

servation m can be described as the true function output perturbed by an independent

Gaussian noise e,

m = f(u) + e, e ∼ N (0, R). (3.3)

Assume that we seek for the refined distribution of the function values

f , [f(uf1) . . . f(uf
N f )]

> at the inputs uf , [uf1 . . . u
f
N f ]
>. Available measurements

are denoted by m , [m1 . . . mN ]> which are originated from the inputs

u , [u1 . . . uN ]>. The GP model together with the measurement model (3.3) leads
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to the following joint distribution,m

f

 ∼ N
µ(u)

µ(uf )

 ,
K(u,u) + INR K(u,uf )

K(uf ,u) K(uf ,uf )

 , (3.4a)

where

µ(u) = [µ(u1) . . . µ(uN)]>,

µ(uf ) = [µ(uf1) . . . µ(ufN f )]
>,

K(u,uf ) =


k(u1, u

f
1) . . . k(u1, u

f
N f )

...
...

k(uN , u
f
1) . . . k(uN , u

f
N f )

 ,
(3.4b)

IN indicates an N-by-N identity matrix.

For the sake of brevity, here we will present the case where the mean function of

the GP model is zero. However, the method can easily be generalized to an arbitrary

mean function and the relevant modifications are presented in Appendix A.1. Under

this assumption, the conditional distribution p(f |m) can be expressed as

p(f |m) ∼ N (Am, P ), (3.5a)

where

A = K(uf ,u)K−1
y , (3.5b)

P = K(uf ,uf )−K(uf ,u)K−1
y K(u,uf ), (3.5c)

Ky = K(u,u) + INR. (3.5d)

3.3.2 Recursive Gaussian Process Regression

The GP regression necessitates to process all available information in a single batch

as the complete measurement vector m and the corresponding covariance matrix Ky

appear in (3.5). While this attribute can be interpreted to be the primary strength of

GP modeling since it enables to draw conclusions directly from the observations, it

also poses some computational problems for certain settings. Specifically, in object

tracking, the aim is to compute the posterior density p(f |m1:k) at time k using mea-

surements which are acquired sequentially in time. For this problem, online inference
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can be achieved by a recursive algorithm which efficiently updates the posterior by

considering the newly available measurements. In this respect, the standard GP re-

gression is not applicable due to its increasing needs for computational sources and

memory storage with the accumulation of measurements over time. Therefore, we

hereby rely on an approximation of the GP, that basically summarizes the original

model at a finite set of basis points. The approximation was initially proposed in

[48, 49], and then applied to the object tracking problem in [26].

In this approach, the objective is to derive a formulation of the posterior distribution

p(f |m1:N) that enables recursive implementation. To this end, the posterior is first ex-

panded as the collection of the following terms by applying the Bayes’ law iteratively.

p(f |m1:N) ∝ p(mN |f ,m1:N−1)p(f |m1:N−1) (3.6a)

∝ p(f)p(m1|f)
N∏
k=2

p(mk|f ,m1:k−1) (3.6b)

Assumption: f provides the sufficient statistics for mk.

Under this assumption, mk conditioned on f becomes independent from all previous

measurements, m1:k−1, i.e.,

p(mk|f ,m1:k−1) ≈ p(mk|f). (3.7)

Notice that the assumption becomes exact if the inputs of mk form a subset of the

inputs of f . Moreover, it can be claimed to be a reasonable approximation when the

distance between the inputs ofmk and the inputs of f is sufficiently small compared to

the characteristic length-scale of the covariance function. In this chapter, we want to

model the unknown radial function whose input is the spherical angle pair. As the set

of the possible input values has a well-defined boundary, it is possible to sufficiently

sample this set by a finite number of basis points which will be located equidistantly.

The above assumption leads to a setting where we essentially treat f to be the latent

variable and the measurements provide noisy observations of it. Accordingly, once

the measurement likelihood and the initial prior densities are defined, it is possible to

apply recursive Bayesian inference for f . With this in mind, we simply refer to the
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underlying GP model to offer these densities in a principled way. At first, the joint

distribution of the measurement mk and f is revealed by the definition of the GP asmk

f

 ∼ N
0,

k(uk, uk) +R K(uk,u
f )

K(uf , uk) K(uf ,uf )

 . (3.8)

Then, the joint distribution immediately offers the following likelihood and prior den-

sities,

p(mk|f) = N (mk;H
f
kf , R

f
k), (3.9a)

p(f) = N (0, P f
0 ), (3.9b)

where

H f
k = H f (uk) = K(uk,u

f )[K(uf ,uf )]−1, (3.9c)

Rf
k = Rf (uk) = k(uk, uk) +R−K(uk,u

f )[K(uf ,uf )]−1K(uf , uk), (3.9d)

P f
0 = K(uf ,uf ). (3.9e)

The structure of (3.9) allows us to construct the following state-space model to which

a standard Kalman filter can be applied for recursive inference, [26].

fk+1 = fk, (3.10a)

mk = H f
k fk + efk, efk ∼ N (0, Rf

k), (3.10b)

f0 ∼ N (0, P f
0 ), (3.10c)

where fk is basically defined as the latent function values evaluated at the predeter-

mined inputs, i.e., fk , f .

The benefits of having such a state-space model for the object extent are twofold:

first, we can easily engage a dynamical model in (3.10a) to express the time evolution

of the extent; second, it can simply be augmented by another state-space model to

obtain a unified representation. We will basically benefit from these advantages while

developing the unified state-space model in Section 3.5.

3.4 GP Modeling of Object Extent

In this section, the radial function which expresses the object extent is to be modeled

via a GP. By doing so, we will be able to facilitate effective shape learning in the
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probabilistic framework by using incomplete and noisy point measurements.

GP lends itself conveniently to extent modeling since it is naturally able to describe

the spatial correlation between different sections the object surface. In addition, it

maintains local uncertainty information associated with the object surface which is

critical for accurate gating and association of the measurements leading to robust

tracking performance.

A GP model is uniquely defined by its mean and covariance functions, hence the

main focus of this discussion is to rigorously construct these functions regarding the

characteristics of the extent representation. Note that we hereby put forward a generic

approach to be able to apply to arbitrarily shaped objects; however, prior knowledge

about the object shape can also be systematically incorporated by adjusting these

functions accordingly, e.g., see [56].

As discussed earlier, the output of the radial function is the distance r, and the input

is the pair of azimuth and elevation angles (θ, φ), i.e., r = f(θ, φ). For notational

simplicity, the pair (θ, φ) is assigned to γ, i.e., γ , (θ, φ) and r = f(γ). Therefore,

we denote the mean and covariance functions as µ(γ) and k(γ,γ ′), respectively, and

f(γ) ∼ GP(µ(γ), k(γ,γ ′)) indicates the GP model.

3.4.1 Mean Function

The mean function of the GP model is assumed to be an unknown constant having a

normal distribution, i.e.,

µ(γ) = r, where r ∼ N (µr, σ
2
r). (3.11)

Additionally, we can obviously express the original GP model as in

f(γ) = f̄(γ) + µ(γ), where f̄(γ) ∼ GP(0, k(γ,γ ′)). (3.12)

Consequently, by using the prior distribution of µ(γ) in (3.11), we can obtain an

equivalent representation of (3.12) as follows, [42, Ch. 2.7], [57].

f(γ) ∼ GP(µr,ktotal(γ,γ
′)), where ktotal(γ,γ

′) = k(γ,γ ′) + σ2
r . (3.13)
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3.4.2 Covariance Function

Selection of the covariance function for a GP is of great importance since it basically

determines the characteristics of the functions to be learned. In this application, it

is required to conform to the fundamentals of 3D object geometry as it encodes the

spatial correlation between points on the extent.

The design of the covariance function is initiated from the exponentiated quadratic

function, which is accepted to be the de facto choice in various fields, [42],

k(γ,γ ′) = σ2
fe
− d

2(γ,γ′)
2l2 , (3.14)

where σ2
f stands for the prior variance, l is the length-scale and d(γ,γ ′) calculates the

relative distance between two inputs. The prior variance specifies the typical amount

of variation observed among the functions sampled from a GP. Accordingly, increas-

ing prior variance in the proposed extent model would imply that there is relatively

less prior information about the size of the objects to be tracked. Additionally, the

length scale determines the ‘smoothness’ of the functions modeled by a GP. In this

context, a shorter length-scale would suggest that the corresponding extent is po-

tentially sharper (exhibiting high-frequency oscillations) while increasing the length-

scale would lead to a smoother extent representation.

The unconventional aspect of the employed covariance function is the formulation of

the distance, d(γ,γ ′). It is specified to imply higher correlation for closer regions

compared to those which are rather separated. An immediate option for the distance

definition could be the Euclidean distance, i.e., d(γ,γ ′) = ‖γ − γ ′‖, as used in [26].

However, being inconsistent with the basics of the spherical geometry, it leads to er-

roneous correlation patterns for the extent defined in the spherical coordinates. As a

simple example, consider γ =
(
0, π

2

)
and γ ′ =

(
π, π

2

)
both pointing to the upper pole

of a sphere. For these inputs, the Euclidean distance is computed as π which is also

equal to the distance for any two spherical angles pointing to opposite directions, e.g.,

the upper and the lower poles, i.e., γ =
(
0, π

2

)
and γ ′ =

(
0,−π

2

)
. Such problems en-

countered in the angular estimation applications are commonly addressed by suitable

angular distance measures in the literature (see, for example, [58] and the references

therein). In this chapter, we suggest an alternative distance definition that naturally
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induces a proper correlation structure. Consider two unit-length vectors expressed by

the spherical angles pairs, γ and γ ′. We set d(γ,γ ′) to be the angle between these

two vectors. From another viewpoint, this definition is the angle corresponding to

the shortest arc on a sphere that connects the two points described by γ and γ ′. The

analytical expression for the definition can be written as

d(γ,γ ′) = arccos
(

cos(φ) cos(φ′) cos(θ) cos(θ′)

+ cos(φ) cos(φ′) sin(θ) sin(θ′) + sin(φ) sin(φ′)
)
, (3.15)

where γ = (θ, φ) and γ ′ = (θ′, φ′). Notice that with this formulation, the distance

takes values within the interval [0, π], and any coincident angle pair is mapped to 0

while opposite directions compute π.

Finally, the total covariance function in (3.13) is attained as

ktotal(γ,γ
′) = k(γ,γ ′) + σ2

r ,

= σ2
fe
− d

2(γ,γ′)
2l2 + σ2

r . (3.16)

The formulation of the covariance function can easily be adapted regarding the char-

acteristics of a specific application. For instance, let us consider a setting where an

autonomous robotic manipulator is assigned to grasp the surrounding objects with un-

known shapes. If there is prior information available regarding the environment, e.g.,

the objects of interest are symmetric around their azimuth axis, then one can account

for this specification by adjusting the utilized distance function accordingly.

3.5 State-Space Model

In this section, we will develop a state-space model to be used in object tracking.

This model is based on the state vector involving both the kinematics and the extent

representation of the object. In this setting, joint estimation of this aggregated state

variables will be accomplished by a single inference algorithm. In other words, the

idea of leveraging the latent shape information for object tracking is basically realized

by this formulation.
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The state vector is defined as xk ,
[
x̄>k f>k

]> where x̄k consists of the translational,

xtk, and the rotational, xrk, kinematic variables, i.e., x̄>k ,
[
xtk
>

xrk
>
]>

, and fk indi-

cates the extent representation.

The definition of the state vector makes use of two distinct coordinate frames as

shown in Fig. 3.2. The first one is the global coordinate frame which is fixed to

the sensor; the second one is the local coordinate frame which is attached to the ob-

ject to be tracked. As the local frame performs exactly the same motion with the

object, it allows to describe the extent in a consistent manner. Accordingly, the extent

information is maintained in the local coordinate frame while the object motion is

estimated in the global coordinate frame.

mL

XL

YL

ZL

Local Frame

Global Frame
X

Y

Z

c
k

m
k,l

mk,l

Figure 3.2: Illustration of the coordinate frames and the vectors regarded in the mea-

surement model.

An overview of the state-space model is given by the following set of equations,

xk+1 = Fkxk + wk, wk ∼ N (0, Qk), (3.17a)

0 = h(xk,mk,l) + ek,l, ek,l ∼ N (0, Rk,l), (3.17b)

x0 ∼ N (µ0, P0), (3.17c)

where k is the time index; wk and ek,l indicate the zero-mean process and the mea-

surement noise, respectively. These are assumed to be Gaussian with covariance ma-

trices defined as cov[wk] = Qk and cov[ek,l] = Rk,l. The following subsections will

introduce the details of these equations starting from the derivation of the process

model.
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3.5.1 Process Model

The overview of the process model, which describes the evolution of the states over

time, is given by the linear Gaussian model in (3.17a). Recall that the state vec-

tor is formed by concatenating the kinematics and the extent representation, i.e.,

xk ,
[
x̄>k f>k

]>. It is assumed that the dynamics of these two state components do

not interact with each other. Therefore, the process model includes two independent

subsystems and can explicitly be written as

Fk =

F̄k 0

0 F f

 , Qk =

Q̄k 0

0 Qf
k

 . (3.18)

Accordingly, the prior distribution of the state given in (3.17c) can be specified by

µ0 =

µ̄0

µf
0

 , P0 =

P̄0 0

0 P f
0

 . (3.19)

Our formulation does not put any restriction on the selection of the process model;

hence one can freely design the model for both the kinematics and the extent account-

ing for the characteristics of a specific application.

We hereby use the following dynamical model for the object extent:

fk+1 = fk + wk, wk ∼ N (0, Qf
k), (3.20a)

where

Qf
k =

(
1

λ
− 1

)
P f
k|k, (3.20b)

which implies that F f is set to be an identity matrix. P f
k|k denotes the covariance of the

estimated extent state. Notice that the prediction density computed using this model

has the same mean with that of the estimated density, while the prediction covariance

is scaled up as P f
k+1|k = 1

λ
P f
k|k for λ < 1. The model provides a maximum entropy

distribution for the extent prediction, as shown in [59]. This approach reflects that the

transition density is unknown, while the Kullback-Leibler divergence to the prediction

density is upper bounded.

With this model, we can basically account for the possible changes in the object ex-

tent. Therefore, it potentially facilitates the tracking of nonrigid objects. In addition,
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it enables recovery from erroneously integrated shape information, which might oc-

cur due to temporal errors in the pose estimates, especially during the initial phases

of the tracking.

In this work, we assume that the rotational and the translational motion can be mod-

eled independently. Therefore, F̄k and Q̄k can be written as

F̄k =

F t 0

0 F r
k

 , Q̄k =

Qt 0

0 Qr
k

 . (3.21)

3.5.1.1 Translational Motion Model

We employ the well-known almost constant velocity model for the translational mo-

tion as given in (3.22). The translational kinematic state is defined as xtk ,
[
c>k v>k

]>
where ck ∈ R3 is position of the object center, and vk ∈ R3 stands for the velocity of

the center.

xtk+1 = F txtk + wt
k, wt

k ∼ N (0, Qt), (3.22a)

xt0 ∼ N (µt0, P
t
0), (3.22b)

where

F t =

1 T

0 1

⊗ I3, Q
t =

T3 3 T
2

2

T
2

2
T

⊗ (σ2
cI3). (3.22c)

σ2
c is the process noise variance for the center, ⊗ is the Kronecker product, and T is

sampling time.

3.5.1.2 Rotational Motion Model

The representation of the orientation of the object is of paramount importance as it

directly affects the performance of tracking and shape estimation. In the literature,

there are many alternative representations for the orientation of 3D objects. The main

challenges associated with these are the included singularities and the inherent con-

straints, [60]. For example, expressing the orientation using three variables, Euler

angles offer a minimal representation. However, this approach is impeded by the sin-

gularities, and it can not provide a global orientation description. On the other hand,
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the four-component unit quaternion presents the lowest dimensional representation

that avoids any possible singularity. Nevertheless, it introduces a nonlinear equality

constraint such that the norm of the quaternion has to be always exactly one. Hence,

it requires special treatment during the estimation process.

Considering the aforementioned difficulties, we rely on an alternative parametriza-

tion of the orientation. This representation stores a reference orientation as a unit

quaternion, and the orientation deviation from this reference is expressed by a three-

component error vector. By this approach, a standard extended Kalman filter (EKF)

can easily be employed to estimate the error vector, and the reference orientation is

periodically updated by the estimated deviation. The resulting algorithm is referred

to as multiplicative EKF (MEKF), [61]. The virtue of the method is twofold: first, it

can represent the orientation globally as it essentially exploits a unit quaternion de-

scription; second, the norm constraint of the unit quaternion is naturally satisfied as

the quaternion gets updated appropriately by the error vector.

In the rest of this subsection, we will rely on this representation to derive a constant

velocity model for the object orientation. The notation and the basics of the quater-

nion algebra is adopted from [62], which closely follows [63].

The unit quaternion q ∈ R4 is defined as

q ,
[
q1 q2 q3 q4

]>
=
[
q̄> q4

]>
, (3.23)

where q̄ , [q1 q2 q3]> and |q|2 = |q̄|2 + q2
4 = 1.

Then, the rotation matrix RL
G(q) that expresses the orientation of the local frame with

respect to the global frame is given by

RG
L (q) = (q2

4 − q̄>q̄)I3 + 2q̄q̄> − 2q4[q̄×] , (3.24)

where [q̄×] is the cross product matrix

[q̄×] =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 . (3.25)
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The quaternion product is defined as

p� q =

p4q̄ + q4p̄− p̄× q̄

p4q4 − p̄>q̄

 , (3.26)

which leads to the following useful property

R(p)R(q) = R(p� q) , (3.27)

where R(p) and R(q) denote the rotation matrices corresponding to the unit quater-

nions p and q, respectively. This equation reveals that successive rotation operations

can be expressed in terms of the quaternion product. Based on this fact, we can de-

scribe the orientation of the object as follows

q = δq(a)� qref , (3.28)

where qref indicates a reference orientation, and δq(·) corresponds to the deviation

from the reference. δq(a) is defined via the Rodrigues parametrization, i.e.,

δq(a) =
1√

4 + |a|2

a

2

 , (3.29)

where a ∈ R3.

The central idea of this approach is to treat the deviation vector, a, as the latent vari-

able and to estimate it by means of nonlinear Bayesian filtering. To this end, a process

model for the orientation deviation is needed. In [63], it has been shown that the con-

tinuous time dynamics of the deviation vector can be written as

ȧ =

(
I3 +

1

4
aa> +

1

2
[a×]

)
ω , (3.30)

where ω , [ωx ωy ωz]
> represents the angular rate of the local frame with respect to

the global frame. We assume that a takes small values and approximate the expression

as

ȧ ≈
(
I3 +

1

2
[a×]

)
ω . (3.31)

Based on (3.31), a constant velocity model can easily be specified in continuous time,

˙a

ω

 =

(I3 + 1
2
[a×]

)
ω

03×1

+

03

I3

α , (3.32)
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where α denotes the rotational acceleration vector, and it is modeled as zero-mean

white Gaussian noise with covariance cov[α(t),α(t′)] = δ(t− t′)Σα,

where Σα = σ2
αI3.

We need to discretize this system to be able to plug it in (3.21). Notice that (3.32)

is a nonlinear dynamic model. Therefore, we will first linearize the equation around

some point of interest and then discretize the resulting linearized model. Let us first

rewrite (3.32) as

ẋr = f(xr) +Bα ,

where xr ,
[
a> ω>

]>, and f(·) and B are determined accordingly. To linearize the

model, we will substitute f(·) by its first order Taylor series approximation.

f(xr) ≈ f(x̂r) + Ark(x
r − x̂r), (3.33a)

where

Ark =
d

dxr
f(xr)|xr=x̂r

k|k
. (3.33b)

The linearization is performed around the best available point estimate which is the

mean of the previous posterior, i.e., x̂rk|k =
[
â>k|k ω̂

>
k|k

]>
. Note that after each mea-

surement update of the filter, the reference orientation is updated by the estimated

orientation deviation using the quaternion product, and then the deviation vector is

reset to zero (see Appendix A.3 for the details). Therefore, âk|k is equal to the zero

vector. Consequently, the Taylor series approximation in (3.33) reduces to

f(xr) = Arkx
r, (3.34a)

where

Ark =

1
2
[−ω̂k|k×] I3

03 03

 . (3.34b)

The resulting linearized system is given by

ẋr = Ark xr +Bα. (3.35)

Thereafter, we discretize this equation and end up with the following linear Gaussian

model which expresses the dynamics of the rotational subsystem.

xrk+1 = F r
kxrk + wr

k, wr
k ∼ N (0, Qr

k), (3.36a)
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where

F r
k = exp(ArkT ) , (3.36b)

Qr
k = GkΣαG

>
k , (3.36c)

Gk =

(∫ T

0

exp(Arkτ)dτ

)
B . (3.36d)

xrk ,
[
a>k ω

>
k

]> is the rotational kinematic state, F r
k is the system matrix, Qr

k is the

process noise covariance matrix, and T is the sampling time. F r
k andQr

k are explicitly

indicated to be time-varying as they are recalculated considering the new linearization

point at each iteration of the filter. For the complete details of the matrices in (3.36),

see Appendix A.4.

The derivation of the given discrete-time state-space model follows a standard ap-

proach, see, for example, [64, Ch. 12.2]. It is well known that the fidelity of the

resulting model depends on the accuracy of the rotational state estimate as F r
k and Qr

k

are approximately computed regarding the local linearization in (3.33).

3.5.2 Measurement Model

In this subsection, the measurement model expressing the relation between the mea-

surements and the state variables is derived to complete the state-space model. In

general, we assume that there are multiple point measurements returned from an ob-

ject at time k, which can be represented by the set {mk,l}nkl=1. A single measurement

can be expressed as

mk,l = ck + pk,l f((θ, φ)k,l) + ēk,l, ēk,l ∼ N (0, R̄). (3.37)

ck is the center of the object at time k; (θ, φ)k,l is the spherical angle pair indicating the

measurement source on the object surface that originates mk,l; pk,l is the unit-length

vector that starts from the object center and points towards the measurement source;

f(·) is the radial function; and ēk,l stands for the zero-mean Gaussian measurement

noise with covariance R̄.

Notice that for the measurement mk,l in (3.37), the underlying measurement source

is unknown, and hence the corresponding pk,l and (θ, φ)k,l are not available. As an
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approximate approach, we hereby express these variables by utilizing the kinematic

variables and the measurement.

Firstly, pk,l(ck,mk,l) is defined to be the unit-length vector starting from the object

center and pointing to the measurement as

pk,l(ck,mk,l) =
mk,l − ck
‖mk,l − ck‖

. (3.38)

Then, for (θ, φ)k,l we need an intermediate representation of mk,l by resolving it in

the local coordinate frame. It is simply obtained by the successive transformations of

translation and rotation as

mL
k,l (ck,qk,mk,l) = RL

G(qk)︸ ︷︷ ︸
Rotation

(mk,l − ck)︸ ︷︷ ︸
Translation

. (3.39)

RL
G(q) is the rotation matrix from the global to the local frame.

The relation between mk,l and mL
k,l is illustrated in Fig. 3.2. mL

k,l can be interpreted

as a phantom measurement in the local frame, and it will only be exploited to find out

the spherical angle pair, (θk,l, φk,l), associated to mk,l. The figure depicts the object

by a spherical shape to provide a straightforward description although the procedure

applies to any arbitrary object. Then, (θk,l, φk,l) is easily computed by converting mL
k,l

into the spherical coordinates by

θk,l = arctan
(
yL/xL

)
, (3.40a)

φk,l = arctan

(
zL/

√
(xL)2 + (yL)2

)
, (3.40b)

where mL
k,l , (xL, yL, zL).

Subsequently, the measurement equation in (3.37) is rewritten by

mk,l = ck + pk,l(ck,mk,l)f
(
γk,l(ck,qk,mk,l)

)
+ ēk,l , (3.41)

where the spherical angle pair is indicated by γk,l , (θk,l, φk,l) for brevity. Note that

γk,l is a function of ck, qk and mk,l as implied by (3.39) and (3.40).

Finally, the GP representation for the radial function given in (3.10) is substituted,
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and we end up with the following measurement model.

mk,l = ck + pk,l
[
H f
(
γk,l(ck,qk,mk,l)

)
fk + efk,l

]
+ ēk,l

= ck + H̃ (ck,qk,mk,l) fk︸ ︷︷ ︸
=h̃(xk,mk,l)

+ pk,l e
f
k,l + ēk,l︸ ︷︷ ︸

=ek,l

= h̃(xk,mk,l) + ek,l, ek,l ∼ N (0, Rk,l), (3.42a)

where

H̃ (ck,qk,mk,l) = pk,l H
f
(
γk,l(ck,qk,mk,l)

)
, (3.42b)

Rk,l = pk,l R
f
k,l p>k,l + R̄ , (3.42c)

pk,l = pk,l(ck,mk,l) , (3.42d)

Rf
k,l = Rf

(
γk,l(ck,qk,mk,l)

)
. (3.42e)

Notice that the additive noise term ek,l in (3.42a) actually depends on the unknown

state vector, and it is not necessarily Gaussian. However, we deliberately ignore this

dependence and assume a Gaussian density to form an approximate model that is

appropriate for the employed inference scheme.

(3.42a) implies an implicit measurement model as mk,l can not be explicitly written

as a function of the state vector and the measurement noise. We collect all the terms

on one side of the equation as

0 = −mk,l + h̃(xk,mk,l)︸ ︷︷ ︸
=h(xk,mk,l)

+ek,l

= h(xk,mk,l) + ek,l, ek,l ∼ N (0, Rk,l). (3.43)

The zero vector in (3.43) can be interpreted as a pseudo-measurement, which is a non-

linear function of the state and the measurement, and it is corrupted by some additive

Gaussian noise. Implicit measurement models have been commonly utilized for dif-

ferent applications, which perform inference by various means of Kalman filtering

(see, for example, [13], [65]).
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3.6 Inference

Having developed the state-space model, the last step is to design an effective infer-

ence method to realize object tracking using point cloud measurements. While there

are various standard techniques to recursively compute the posterior distribution of

the state vector, we employ an extended Kalman filter (EKF) due to the nonlinearities

in the measurement model.

To be able to process multiple measurements {mk,l}nkl=1 in a single recursion at time

k, we first need to slightly modify the state-space model. To this end, the following

measurement vector is created by concatenating the measurements together,

mk =
[
m>k,1, . . . , m>k,nk

]>
. (3.44)

Then, the corresponding measurement equation can be simply written as

0 = h(xk,mk) + ek, ek ∼ N (0, Rk), (3.45a)

h(xk,mk) =
[
h(xk,mk,1)>, . . . , h(xk,mk,nk)

>]> , (3.45b)

Rk = diag [Rk,1, . . . , Rk,nk ] . (3.45c)

Notice that Rk is formed as a block diagonal matrix by considering that the noise

coupled to the individual measurements are mutually independent.

Consequently, the state-space model considering the complete set of measurements

reads as

xk+1 = Fkxk + wk, wk ∼ N (0, Qk), (3.46a)

0 = h(xk,mk) + ek, ek ∼ N (0, Rk), (3.46b)

x0 ∼ N (µ0, P0). (3.46c)

The EKF regards the above representation to recursively compute the estimate of the

state vector, x̂k|k. Note that the gradient of the measurement function ∂hk(xk)
∂xk

can be

derived analytically which is to be utilized in the measurement update phase of each

recursion.

For very large point clouds, one may want to optimize the computational charac-

teristics of the filter, which is mainly determined by the inversion operation of the
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innovation covariance matrix. In this regard, a sequential update of the measurements

can be preferred instead of a batch update. The update can also be performed in the

information form of the EKF, [66, Ch. 3.5].

3.7 3D Extent Tracking Using Projections

In the first part of this chapter, we developed a tracking algorithm which is essen-

tially based on the radial function representation, f(θ, φ), of the underlying 3D object

shape. This function is further approximated via some basis points at which the shape

information is accumulated during inference. Notice that as there are two input argu-

ments of the radial function, the basis points are required to cover a two-dimensional

space at a sufficient density to be able to capture the characteristics of the object

shape. Also note that the computational load and the memory storage scale with the

number of basis points since they are included in the state vector and updated at each

recursion. A naive attempt to utilize fewer basis points for more efficient implemen-

tation will naturally result in a degraded representational power, potentially missing

salient features of the 3D extent which might in turn deteriorate tracking accuracy.

In this section, we will seek for an alternative algorithm with improved computational

properties. This second approach essentially retains the basic structure of the previ-

ous one; however, it fundamentally differs in the description of the object shape. In

particular, multiple projections of the object are exploited to express the original 3D

extent. Accordingly, the problem is reformulated as tracking the object while simul-

taneously learning the contours of its projections. This will eventually enable us to

radically lower the number of basis points without compromising the representational

power. The next section presents the alternative extent model in details.

3.7.1 Projection Model

It is a long-standing idea to exploit projections, silhouettes or images for expressing

the corresponding 3D shape, [67, 68]. Being inspired by these methods, we suggest to

model the object extent using projections onto several planes. Fig. 3.3 illustrates the

idea for an example object with cone shape. In this case, the object is projected onto
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three orthogonal planes and the contours of these projections are essentially utilized

to represent the original 3D shape. In this exposition, we assume that three orthog-

onal projections can sufficiently approximate the 3D shape; however, the number of

projections can be increased to be able to generalize to a broader class of objects. For

a systematic discussion on the objects which are exactly reconstructable from pro-

jections and the minimum number of projections necessary for reconstructing such

objects, interested readers can refer to [69].

The contour of each projection can be described by a radial function in polar coordi-

nates, i.e., r = f(θ), as shown in Fig. 3.3. The radial function maps the polar angle,

θ, to the radial distance, r, between the projection center and the contour. Notice that

having only one input argument, this function can possibly be approximated by a less

number of basis points leading to a tracking algorithm demanding less computational

sources.

The rest of the derivation closely follows the first algorithm. The unknown radial

function on each projection plane is modeled by a GP, i.e., f(θ) ∼ GP(µ(θ), k(θ, θ′)),

whose mean function is taken to be constant µ(θ) = µr, and the covariance function

is defined as

k(θ, θ′) = σ2
fe
−

2sin2
(
θ−θ′

2

)
l2 + σ2

r . (3.47)

Notice that the sin(·) term in (3.47) is used to induce a periodic covariance function,

which in turn assures the periodicity of the radial function f(·) described by the given

GP model, [26].

Further Discussion: Expressing the 3D shape in terms of a collection of projection

contours enables us to introduce separate probabilistic models for each contour to

account for application-specific knowledge about the objects. For example, many

targets in driving environments, such as cars, vans and bicycles, possess a common

characteristic in their projections onto the ground plane. In particular, the radial func-

tion describing the corresponding projection contour appears to be periodic with π.

In this case, to encode this information into the GP model, the covariance function

can be designed as

k (θ, θ′) = σ2
fe
− sin2(θ−θ′)

2l2 + σ2
r . (3.48)

As the covariance function is periodic with π, the learned contours will comply with
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Projection 1

Projection 2

Projection 3

r 
θ

Figure 3.3: Illustration of a cone-shaped object and the corresponding projection con-

tours on three orthogonal planes. Point cloud measurements and their projections are

shown by red and black plus signs, respectively.

the actual characteristics of the projections as intended.

3.7.2 State-Space Model

In this subsection, the state-space model relying on the extent description obtained by

projection contours is to be constructed. The state vector is defined as xk ,
[
x̄>k f>k

]>
where x̄k includes the object kinematics and the extent is indicated by

fk ,
[
f1
k
>

f2
k
>

f3
k
>
]>

as a collection of the projection contours. More specifically,

f jk is the parameterized description of the GP model for the radial function specifying

the contour of the projection on the jth plane. ck is the center of the 3D object and vk

stands for the velocity of the center; qk is the unit quaternion vector.

3.7.2.1 Measurement Model

The measurement model makes use of the local and global coordinate frames as de-

fined earlier. While the object motion is tracked in the global frame, the shape is

described in the local frame. In particular, the projection planes are fixed to the local

frame so that the projections of the object onto the planes are kept unchanged at any
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time. This allows to accumulate extent information over these planes by learning the

latent contours of the projections.

Consider the 3D point cloud measurements acquired at time k, {mk,i}nki=1. Firstly,

each measurement mk,l is transformed into the local frame to obtain mL
k,l by (3.39).

Thereafter, these local measurements are to be projected onto each plane to estab-

lish a relation between the projected measurements and the projection contour on the

corresponding plane. As an example, let mL
k,l be projected onto the jth plane by

mj
k,l = Pj mL

k,l , (3.49)

where mj
k,l ∈ R2 denotes the projection of mL

k,l, and Pj ∈ R2x3 is the projection

matrix.

By assuming that the projections of the measurements are originated from a star con-

vex extent model [26], [70], the projected measurement can be described as

mj
k,l = pk,l(ck,qk,mk,l)f

j(θk,l(ck,qk,mk,l)) + ēk,l, ēk,l ∼ N (0, R̄), (3.50)

where f j(·) is the radial function expressing the contour of the projection on the jth

plane; pk,l(ck,qk,mk,l) is the unit-length vector pointing from the projection center

towards the measurement; and ēk,l is the Gaussian measurement noise with covari-

ance matrix R̄. Notice that unlike (3.41), the center position is not superposed in

(3.50) as the projection is specified to be centered at the origin of the corresponding

plane.

In (3.50), the underlying source of mj
k,l is actually unknown. Therefore, we resort

to an approximate approach and formulate the expressions on the right hand side of

the measurement model as functions of the kinematic variables and the measurement

mk,l itself.

The polar angle θk,l associated with the projected measurement can be computed as

θk,l(ck,qk,mk,l) = ∠mj
k,l . (3.51)

Besides, the unit-length vector pk,l is obtained by

pk,l(ck,qk,mk,l) =
mj

k,l

‖mj
k,l‖

. (3.52)
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The next step is to plug the GP representation for the radial function into (3.50) as

mj
k,l = H̃(ck,qk,mk,l) f jk + ẽk,l, ẽk,l ∼ N (0, R̃k,l), (3.53a)

where

H̃(ck,qk,mk,l) = pk,lH
f (θk,l(ck,qk,mk,l)) , (3.53b)

ẽk,l = pk,le
f
k,l + ēk,l , (3.53c)

R̃k,l = pk,lR
f
k,lp

>
k,l + R̄ , (3.53d)

pk,l = pk,l(ck,qk,mk,l) , (3.53e)

Rf
k,l = Rf (θk,l(ck,qk,mk,l)) . (3.53f)

As before, the additive noise term ẽk,l in (3.53a) is actually a function of the unknown

state vector, and it is not necessarily Gaussian. Again, we ignore this dependence and

assume a Gaussian density so that the resulting approximate model lets us use an EKF

for inference.

The projected measurements are not necessarily located on the contour, instead some

of them may fall within the interior of the projection area as depicted in Fig. 3.3.

Accounting for this observation, the measurement model is modified as

mj
k,l = sk,lH̃(ck,qk,mk,l) f jk + ẽk,l , (3.54)

where sk,l ∈ [0, 1] is a random scaling factor. We approximate s as a Gaussian random

variable, i.e., sk,l ∼ N (µs, σ
2
s), [12], [26], [70], since an EKF will be employed for

inference. In an ideal case, a particular angle dependent one-dimensional probability

distribution for the random scaling factor should be chosen depending on the object-

sensor geometry, object’s shape and the projection planes.

Considering the characteristics of the scaling factor, the measurement model can be

rewritten as

mj
k,l = µsH̃k,l f jk︸ ︷︷ ︸

=h̃j(xk,mk,l)

+ (sk,l − µs)H̃k,l f jk + ẽk,l︸ ︷︷ ︸
=ejk,l

= h̃j(xk,mk,l) + ejk,l, ejk,l ∼ N (0, Rj
k,l) , (3.55a)
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where

Rj
k,l = σ2

sH̃k,l f jk f jk
>
H̃>k,l + R̃k,l , (3.55b)

H̃k,l = H̃(ck,qk,mk,l) . (3.55c)

Then, the expression for the projected measurement is substituted into this equation

as

PjR
L
G(qk)(mk,l − ck) = h̃j(xk,mk,l) + ejk,l . (3.56)

Finally, collecting the terms on one side of the equation, we end up with the following

implicit measurement model with additive Gaussian measurement noise.

0 = −PjRL
G(qk)(mk,l − ck) + h̃j(xk,mk,l)︸ ︷︷ ︸

=hj(xk,mk,l)

+ejk,l

= hj(xk,mk,l) + ejk,l (3.57)

This measurement model together with the process model introduced in Section 3.5.1

establishes the state-space model.

3.7.3 Inference

Similar to the former case, an EKF is employed to realize recursive inference. To pro-

cess all measurements instantaneously at the update phase of the filter, the complete

measurement equation is written as

0 = h(xk,mk) + ek, ek ∼ N (0, Rk), (3.58a)

where

h(xk,mk) =
[
h1
k
>
, h2

k
>
, h3

k
>
]>
, (3.58b)

mk =
[
m>k,1, . . . , m>k,nk

]>
, (3.58c)

hjk = hj(xk,mk) =
[
hj
>
k,1, . . . ,h

j>
k,nk

]>
, (3.58d)

hjk,l = hj(xk,mk,l) , (3.58e)

Rk = diag
[
R1
k, R

2
k, R

3
k

]
, (3.58f)

Rj
k = diag

[
Rj
k,1, . . . , R

j
k,nk

]
for j ∈ {1, 2, 3}. (3.58g)
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(a) GPEOT (b) GPEOT-P (c) RM

Figure 3.4: Typical results for the cube-shaped object during the complex maneu-

vering experiment. (Blue surface and black box visualize the estimated and the true

extent of the object, respectively. In Fig. (a) yellow surface indicates the confidence

interval of one standard deviation. Red plus signs are the point measurements. Solid

yellow and dashed black curves are the estimated and true trajectory, respectively.)

3.8 Results

In this section, the performance of the proposed algorithms is evaluated on both sim-

ulated and real measurements in Section 3.8.1 and 3.8.2, respectively. To be able

to present the results in a comparative manner, we also regard a standard random

matrix-based extended object tracker [9], denoted as RM. Describing the extent by

an ellipsoid, the RM model has proven to be extremely robust for a wide range of

scenarios. Therefore, it serves as a solid basis to assess the tracking performance of

the suggested models. Throughout this section, we will refer to the first proposed

method as ‘GPEOT’ (short for GP-based extended object tracker), while ‘GPEOT-P’

will stand for the second approach considering the projections.

3.8.1 Experiments with Simulated Measurements

To demonstrate the performance of the algorithms, various simulation experiments

are conducted. Section 3.8.1.1 examines the setting where the point cloud measure-

ments are simulated in Matlab for several dynamic objects with basic shapes. In this
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(a) Linear motion experiments
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(b) Complex maneuvering experiments

Figure 3.5: Intersection-Over-Union (IOU) plots. (The results are averaged over 100

MC runs.)

case, the measurements are randomly sampled from the objects’ surfaces. In Section

3.8.1.2, we make use of a specialized sensor simulation environment, namely Blensor,

[71], that generates measurements for realistic sensor and vehicle models.

3.8.1.1 Matlab Simulations

In this subsection, the algorithms process point cloud measurements which are gen-

erated from random sources on the object surface and perturbed by additive Gaussian

noise. Three different-shaped objects, e.g., cube, ellipsoid and cone, are tracked dur-
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ing the experiments. The dimensions of the objects are as follows: the length of the

edge of the cube is 3 m, the semi-axes of the ellipsoid are (2.5, 1, 1) m in length, and

the base radius and height of the cone are 1.5 m and 4 m, respectively.

The overall performance is evaluated based on the Intersection-Over-Union (IOU)

measure given by

IOU(Strue, Ŝ) =
volume(Strue ∩ Ŝ)

volume(Strue ∪ Ŝ)
, (3.59)

where Strue is the true object shape, and Ŝ stands for the estimate. Notice that IOU

simultaneously accounts for the quality of the estimates of the kinematics and the ex-

tent. In other words, an algorithm needs to produce accurate tracking outputs together

with precise shape description to attain high IOU scores. Also note that in our dis-

cussion we deliberately exclude the RMSE measure for the position estimates since

the suggested shape models do not imply a unique center definition; instead, different

center positions with compatible radial functions can accurately represent the same

object.

We also compute the root mean squared error (RMSE) of the object velocity, defined

as

RMSE(v̂k,vk) =

√√√√ 1

N

N∑
k=1

|v̂k − vk|2, (3.60)

where v̂k and vk indicate the estimated and the true velocity vector at time k, respec-

tively; | · | indicates the Euclidean norm.

Two different scenarios are studied in the simulations: a linear motion and a com-

plex maneuver. In the first case, objects move along a linear trajectory at a constant

speed of 10 m/s. In the second experiment, the object follows a curved path while

performing combined rotations around different axes. Throughout the trajectory, the

linear speed is kept constant at 0.5 m/s. At each instant, 20 point measurements are

originated from random sources which are sampled from a uniform distribution de-

fined over the object surface. Each point measurement is perturbed by i.i.d. Gaussian

noise with covariance 0.12I3. The measurements are produced at 10 Hz, hence the

sampling time of all algorithms is set to T = 0.1. We should note that the simu-

lated measurements used in this section do not follow the actual characteristics of
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Figure 3.6: True and estimated unit quaternions for the cube-shaped object during the

complex maneuvering experiment. (The estimates are averaged over 100 MC runs.

Color code is blue: q0, green: q1, yellow: q2, red: q3.)
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Figure 3.7: True and estimated angular rates for the cube-shaped object during the

complex maneuvering experiment. (The estimates are averaged over 100 MC runs.

Color code is blue: ωx, green: ωy, yellow: ωz.)

range scanners, which partially delineate the object’s surface due to self-occlusions

and generate sparse measurements with increased distance between the sensor and

the object. We will investigate experiments regarding data collected by real sensors

in Section 3.8.2.

For GPEOT, the process noise standard deviations are set to σc = 0.1 and σα = 0.1,

and λ = 0.99 is used for the extent dynamics; the hyper-parameters of the GP model

are set to µr = 0, σf = 1, σr = 0.2, l = π/8; R̄ = 0.12I3 is used for the measurement

noise variance; and the extent is represented by 642 basis points which are evenly

spaced with respect to their spherical angles. For GOEOT-P, the process noise stan-
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dard deviations are set to σc = 0.1 and σα = 0.4, and λ = 0.99 is used for the extent

dynamics; the hyper-parameters of the GP model are set to µr = 0, σf = 1, σr = 0.2,

l = π/5; R̄ = 0.12I2 is used for the projected measurement noise variance; each

projection contour is represented by 50 basis points which are equidistantly located

in [0, 2π]; and the parameters of the scaling factor are set to µs = 5
6

and σ2
s = 1

18
. The

projection planes are selected to be the xy, xz and yz planes, hence the correspond-

ing projection matrices are P1 =
[

1 0 0
0 1 0

]
, P2 =

[
1 0 0
0 0 1

]
, P3 =

[
0 1 0
0 0 1

]
. All algorithms

use the same prior distribution for the kinematics. The prior distribution for the extent

state is directly specified by the corresponding GP model.

The RM model assumes that the measurements have a normal spread, which is spec-

ified by the extent state, and hence they are not confined to be originated by the

object’s surface. In this regard, the method can be considered to be relatively less

suitable for sensors like LIDARs, where the measurements are generated exclusively

from the surface. The scaling factor included in the RM model is of practical value

for such cases as it accounts for the discrepancy between the sensor’s actual behavior

and the mentioned assumption, [9]. To obtain a competent performance, we manually

optimized the parameters of the RM model: The scaling factor and the extension time

constant are set to 1/3 and 1, respectively.

Due to page limitations, we hereby present some instances of our findings as represen-

tative examples. Typical results for the cube-shaped object performing the complex

maneuver are illustrated in Fig. 3.4. Remember that GPEOT-P originally estimates

the latent shape by learning the associated projection contours; therefore, to be able

to visualize and interpret the results in 3D, we implemented a simple 3D reconstruc-

tion algorithm. The algorithm basically starts from a conservative estimate of the

underlying 3D volume and refines the estimate by carving out the sections that are

inconsistent with the projections. Fig. 3.4(b) exhibits the reconstructed shapes as

estimates.

We examine three differently shaped objects (cube, ellipsoid and cone) for the two

motion patterns (linear motion and complex maneuver). For each method, all experi-

ments are repeated 100 times with random realizations of the measurement noise and

the measurement origins. Table 3.1 reports the averaged RMSE values of the object
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velocity computed for all simulation experiments. For all experiments, GPEOT and

GPEOT-P show superior performance compared to the RM model in terms of velocity

estimation. Fig. 3.5 exhibits the IOU results obtained by averaging the Monte Carlo

(MC) runs. GPEOT and GPEOT-P produce successful results for all three shapes

while the RM model shows satisfactory performance only for the ellipsoid object. It

is an expected finding since both of the GP-based approaches are flexible methods to

represent any arbitrary star-convex shape, whereas RM essentially models the under-

lying shape by an ellipsoid. Additionally, the proposed algorithms are shown to be

robust enough to handle the model mismatch in kinematics occurring in the complex

maneuvering experiment where the constant velocity model is no longer valid for this

motion pattern. A particular reason for their robustness is that they can competently

track the orientation of the objects (see Figs. 3.6 and 3.7). Finally, GPEOT is ob-

served to outperform the other algorithms with respect to the IOU measure for all

cases.

Computation time: Both of the proposed algorithms are basically realized by an

EKF, hence the estimates are recursively updated using newly available measure-

ments at each time step. Therefore, the computational requirements do not increase

over time and are basically determined by the size of the state vector and the num-

ber of the measurements. The state dimension in GPEOT is dim(xk) = dim(ck) +

dim(vk) + dim(ak) + dim(ωk) + dim(fk) = 654, and in GPEOT-P, it is dim(xk) =

dim(ck) + dim(vk) + dim(ak) + dim(ωk) + dim(f1
k ) + dim(f2

k ) + dim(f3
k ) = 162.

We utilize a naive implementation of EKF for each method without exploiting any

code optimization methods. The partial derivatives used in the measurement update

Table 3.1: Root Mean Squared Error (RMSE) of the Object Velocity [ms−1]. (Results

are averaged over 100 MC runs.)

Linear Motion Complex Maneuver

Cube Ellipsoid Cone Cube Ellipsoid Cone

GPEOT 0.124 0.125 0.150 0.112 0.120 0.124

GPEOT-P 0.162 0.184 0.200 0.203 0.184 0.192

RMM 0.323 0.239 0.316 0.332 0.245 0.322
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phase of the filter are computed numerically. All simulations are conducted in Matlab

2017a on a standard laptop with Intel Core i7-6700HQ 2.60 Hz CPU using 16 GB of

RAM. Average computation time for an update is recorded as 37.3 ms for GPEOT,

8.2 ms for GPEOT-P and 0.2 ms for RM model.

An Alternative Process Model for the Extent: To investigate the impact of the extent

process model on the performance, we consider an alternative model, which was

proposed in [26]:

fk+1 = F f fk + wk, wk ∼ N (0, Qf ) , (3.61a)

where

F f = e−αT I, Qf = (1− e−2αT )K(uf ,uf ) . (3.61b)

α can be considered as a forgetting factor. Based on this model, we implemented

another version of both GPEOT and GPEOT-P for α = 0.0001. The same simulation

experiments are conducted with this implementation repeating 100 MC runs. Tables

3.2 and 3.3 present the findings by the mean of the IOU measure for the linear mo-

tion and the complex manuevering experiment, respectively. The results suggest that

the new implementation also achieves successful performance for all cases, and the

alternative process model of the extent does not lead to a significant difference with

respect the the IOU measure.

Effect of Center Initialization: As mentioned earlier, the proposed extent models do

not rely on a unique definition of the center point. Instead, different points within the

object extent can be specified to be the center position, and together with compatible

Table 3.2: Mean of the Intersection-over-Union (IOU) Values for the Linear Motion

Experiment. (Results are averaged over 100 MC runs.)

Process Model for the Extent
Object Shape

Cube Ellipsoid Cone

GPEOT
Maximum Entropy Model 0.908 0.910 0.824

Forgetting Factor Model 0.906 0.914 0.832

GPEOT-P
Maximum Entropy Model 0.818 0.829 0.741

Forgetting Factor Model 0.816 0.826 0.737
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radial functions, these can describe precisely the same object. Therefore, a possible

area for future research would be to develop mechanisms to initialize the center point

that maximize the performance of the suggested trackers.

In this regard, we examine the sensitivity of the proposed algorithms to the initializa-

tion of the center point. We consider the linear motion experiment for the cube-shaped

object. The simulation is repeated for 100 times, and at each run, the initial center

point is sampled from a uniform distribution defined within the entire volume of the

object. The results are illustrated by the histograms that visualize the complete distri-

bution of the IOU values at each time instant of the scenario in Fig. 3.8. Both of the

algorithms are shown to be robust against center initialization, as they consistently

converge to high IOU values with decreasing variance throughout the experiment.

Effect of Number of Measurements per Frame: In this subsection, we investigate

how the performance of the proposed methods depends on the number of available

measurements per frame. To this end, we consider the linear motion experiment for

the cube-shaped object. We repeat the experiment for the following number of mea-

surements per frame: {3, 5, 10, 20, 30}. The simulations are run 100 times for each

case, where the measurement sources are randomly sampled from the surface and cor-

rupted by independent measurement noise. Fig. 3.9 reports the averaged IOU mea-

sure for all experiments. Both methods perform satisfactorily even when the number

of measurements is relatively low. Additionally, the performance of the methods reg-

ularly improves with the increasing number of measurements, which indicates that

they can effectively assimilate information provided by the measurements.

Table 3.3: Mean of the Intersection-over-Union (IOU) Values for the Complex Ma-

neuvering Experiment. (Results are averaged over 100 MC runs.)

Process Model for the Extent
Object Shape

Cube Ellipsoid Cone

GPEOT
Maximum Entropy Model 0.897 0.907 0.866

Forgetting Factor Model 0.896 0.909 0.865

GPEOT-P
Maximum Entropy Model 0.782 0.788 0.718

Forgetting Factor Model 0.786 0.786 0.715
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(a) GPEOT (b) GPEOT-P

Figure 3.8: Histogram plots of the Intersection-over-Union (IOU) measure calculated

for 100 MC runs of the linear motion experiment with randomly initialized center

points.
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Figure 3.9: Intersection-over-Union (IOU) plots obtained for different number of

available measurements per frame. (The results are averaged over 100 MC runs.)
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Figure 3.10: Realistic vehicle models utilized in the Blensor experiments.
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3.8.1.2 Blensor Simulations

To qualify the representational power of the suggested algorithms, additional exper-

iments are conducted in Blensor, which is a high fidelity sensor simulation environ-

ment. In these experiments, we consider realistic models of two different types of

vehicles, namely a bus and a jeep, which are depicted in Fig. 3.10. In the scenario,

each vehicle makes a u-turn while being observed by two Velodyne HDL-64E2 LI-

DAR sensors. The parameters of the algorithms are kept the same as in the previous

subsection with two exceptions: the covariance matrix of rotational process noise

is set to Σα = diag(0, 0, σ2
α) to reflect that the considered vehicles can only rotate

around their yaw-axis, and the length-scale of GPEOT is set to l = π/12.

The overview of the tracking outputs is shown in Fig. 3.11. Both of the proposed

methods can successfully track the two different vehicles. Furthermore, the shape

estimates obtained at the last instant of the experiments are demonstrated by some

close-up views in Fig. 3.12. While GPEOT is able to capture a highly detailed repre-

sentation of the underlying object extent, GPEOT-P achieves a satisfactory but rather

rough shape estimate. Besides, GPEOT-P slightly underestimates the size of the ob-

ject due to the mismatch between the specified and true values of the scaling factor

used in the measurement model.

Finally, to further investigate the effect of the number of measurements on the esti-

mation performance, we consider the same Blensor experiment with the jeep vehicle.

The employed LIDAR sensors are originally able collect an abundant number of mea-

surements returned from the object of interest, which is well over a thousand for the

most sensor scans. For our purposes, we randomly select 10 measurements from the

acquired point cloud at each frame and provide them to the algorithms. The result-

ing extent estimates obtained at the end of the scenario are illustrated in Fig. 3.13.

Both of the algorithms estimate the kinematics and the extent satisfactorily during the

experiment. In particular, GPEOT can successfully form such a detailed description

of the underlying shape with only 10 measurements per frame. In this regard, the

proposed method does not require the substantial amount of information generated

by the LIDAR sensors; instead, it can effectively perform with significantly fewer

measurements.
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(a) GPEOT (b) GPEOT-P

(c) GPEOT (d) GPEOT-P

Figure 3.11: Results obtained during Blensor simulations. (In Figs. (a) and (b), the

bus is observed by two sensors at (0, 60, -5) and (0, 15, 5). In Figs. (c) and (d), the

jeep is observed by two sensors at (0, 30, -5) and (0, -10, 5).)
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Figure 3.12: Close-up views of the extent estimates obtained at the last instant of the

Blensor simulations.
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Figure 3.13: Close-up views of extent estimates obtained at the last instant of the

Blensor experiment, in which only 10 measurements per frame are provided to the

algorithms.
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(a) Scenario 1

(b) Scenario 2

Figure 3.14: Example views captured by a camera mounted next to the laser scanner

on the ego vehicle. Left and right images depict the initial and the intermediate frames

of the scenarios, respectively. Note that the highlighted vehicles are tracked by the

proposed algorithms using only point cloud measurements.

3.8.2 Experiments with Real Data

In this section, the performance of the algorithms is assessed on real data. To this

end, we hereby use the Kitti tracking benchmark, [72]. The benchmark consists of

various records of real-world traffic scenarios captured by several sensor modalities

mounted on an ego vehicle. We form two scenarios of different vehicles by extracting

the corresponding sequences of point measurements acquired by a Velodyne HDL-

64E laser scanner. Note that we do not consider the preprocessing of the raw point

cloud data, e.g., ground removal, segmentation, association, as it is beyond the scope

of this work; instead, the sequences are extracted using the labels provided in the

benchmark. The same sets of parameters as in the previous subsections are utilized

except the length-scale of GPEOT is set to l = π/14.

The scenarios are visualized in Fig. 3.14. The first scenario takes place on a high-

way where the ego and the target vehicle move in the same direction, and the target

pulls consistently ahead in time. The dataset provides the ground truth in terms of

bounding boxes; hence, to assess the algorithms’ performance quantitatively, we fit

bounding boxes to the estimated extents and compute the RMSE of the center and
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Table 3.4: Root Mean Squared Error (RMSE) of the Center [m] and the Yaw Angle

[degree] in the Real Data Experiments.

Scenario 1 Scenario 2

Center Yaw Angle Center Yaw Angle

GPEOT 0.21 1.37 0.23 1.40

GPEOT-P 0.27 3.81 0.25 1.90

the yaw angle accordingly. Table 3.4 presents the corresponding results. Fig. 3.15

demonstrates that both of the algorithms accomplish successful tracking. Throughout

the experiment, the sensor can only observe the back and right side of the target, thus

the uncertainty of the extent on the observed portion decreases in time while a high

uncertainty is properly associated with the unobserved section as explicitly shown in

Fig. 3.15. The GPEOT-P implementation uses the periodic covariance function in

(3.48) for the projection onto the ground plane. Considering solid amount of empiri-

cal evidence, this is a reasonable assumption for many targets in driving settings. The

implementation inherently assumes that the corresponding projection contour is peri-

odic with π so that the radial function takes exactly same values for f(θ) and f(θ+π).

Accordingly, the reconstructed shape estimates accurately captures the appearance on

the unobserved section of the object as seen in Fig. 3.15.

In the second scenario, the ego vehicle waits stationary at a road junction while the

target vehicle crosses the street. The experiment imposes two main challenges: First,

the target is temporarily occluded by pedestrians and a column of a building; second,

there are respectable number of 3D point measurements returned from the driver and

the interior structure of the target vehicle. The tracking outputs of the algorithms and

the corresponding RMSE values are presented in Fig. 3.16 and Table 3.4, respectively.

GPEOT-P makes use of the periodic covariance function for the ground projection as

in the previous case. Both of the methods achieve accurate tracking and prove their

robustness against occlusions and interior measurements.
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(a) GPEOT

(b) GPEOT-P

Figure 3.15: Scenario 1 with real data. (Blue and yellow surfaces indicate the es-

timated extent and the predicted uncertainty of one standard deviation, respectively.

Bounding box denotes the ground truth annotation of the target. Red plus signs plot-

ted for the first frame visualize the measurements. Solid yellow and dashed black

curves are the estimated and true trajectory, respectively. Dashed black arrow is the

direction of the target.)
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(a) GPEOT

(b) GPEOT-P

Figure 3.16: Scenario 2 with real data. (Blue and yellow surfaces indicate the es-

timated extent and the predicted uncertainty of one standard deviation, respectively.

Bounding box denotes the ground truth annotation of the target. Red plus signs plot-

ted for the first frame visualize the measurements. Solid yellow and dashed black

curves are the estimated and true trajectory, respectively. Dashed black arrow is the

direction of the target.)
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3.9 Conclusion and Future Work

A new approach is proposed to contribute to the perception of autonomous systems.

The proposed algorithm is capable of processing 3D point cloud data for tracking

dynamic objects with unknown shapes. The method can exploit the full potential of

the information hidden in, possibly sparse, point cloud measurements by estimating

the object’s shape simultaneously with its kinematic state including the position, ve-

locity and orientation. The proposed model is flexible to express and learn a large

variety of shapes which may co-exist in a surveillance region. An alternative effi-

cient implementation of the method is also derived, which reduces the computational

requirements by utilizing plane projections. The algorithms are efficient in the im-

plementation such that an extension to the multi-target tracking framework and real-

time applications are possible. The methods provide an analytical expression of the

object’s shape, and this information can later be used for online identification and

classification purposes in the future. The performance of the suggested approach can

further be improved by using negative information embedded in the point measure-

ments, considering alternative covariance functions and inference methods, and incor-

porating dedicated models for the scaling factor in the projections. The methods are

applicable to various fields which require accuracy in perception such as the robotics

applications where a moving agent is required to navigate in a 3D environment with

3D motion constraints or offline applications such as 3D map extraction.
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CHAPTER 4

VARIATIONAL INFERENCE FOR EXTENDED OBJECT TRACKING

USING GAUSSIAN PROCESSES

4.1 Introduction

Traditional object tracking is based on the point-source model that assumes an object

can generate at most one measurement per scan, [1]. However, recent advances in

sensor technology have led to the proliferation of applications where a single object

might give rise to multiple measurements per frame. This type of problem is sys-

tematically addressed by a well-established line of research, which is referred to as

extended object tracking (EOT). The objective of these methods is to estimate the ob-

ject’s extent, together with the kinematic variables. There have been developed many

successful solutions, which rely on various formulations, e.g., [8, 9, 70, 73, 11, 74,

10, 75, 76, 77, 78, 79]. A comprehensive survey of the existing literature can be found

in [3] and [80].

In this chapter, we focus on the Gaussian Process (GP) based EOT methods where the

unknown extent is modelled by a GP prior and an approximate inference is performed

to obtain its posterior. The resulting trackers estimate the kinematic state of the object

while simultaneously learning its unknown extent.

The seminal model [26], here denoted as GPEOT, has been widely adopted by the

research community; see, for example, [27, 25, 54, 53, 28, 31, 29, 32, 30]. How-

ever, a critical shortcoming of the current GPEOT literature is that the variety of the

developed inference techniques is limited, and the resulting trackers typically rely

on variants of the Kalman filter in the presence of non-linear, implicit measurement

model [31, 29, 32, 30]. Although this approach has been proved to lead to a success-
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ful tracking framework, it suffers from the well-known problems of nonlinear Kalman

filtering. For instance, poorly predicted state density and high levels of uncertainty

in the model might radically degrade the estimation performance. These limitations

potentially impede the widespread use of the method in various tracking applications.

In this section of the thesis work, we propose an inference method for the GPEOT

model. The suggested method is based on an analytical measurement update, which

is derived using the variational Bayes techniques. The resulting algorithm constitutes

a recursive tracking filter, which is shown to significantly improve tracking perfor-

mance and be robust against model uncertainties via comprehensive experiments.

4.2 Proposed Method

GPEOT aims at estimating unknown contours of dynamic objects. The key idea be-

hind the GPEOT approach is to describe the extent of a star-convex1 object by a ra-

dial function f(θ) which is assumed to have a GP prior, i.e., f(θ) ∼ GP(0, k(θ, θ′)),

where k(θ, θ′) is the covariance function, which basically computes the covariance

between the function evaluations at angles θ and θ′, [26],[42]. To facilitate an effi-

cient, recursive inference mechanism, the GP model is approximated for the func-

tion values f ,
[
f(θf

1) . . . f(θf
M)
]> at some basis inputs. The resulting measurement

model, which relates the latent variables to a point measurement yk,l, is given in the

following [26].

yk,l = ck + H̃ f
l (ck, ψk)fk︸ ︷︷ ︸

=hk,l(xk)

+ek,l

= hk,l(xk) + ek,l, ek,l ∼ N (0, Rk,l), (4.1)

where ck is a reference point (referred to as object center) within the body of the

object; ψk denotes the object orientation, xk is a unified state vector including both

the kinematic and the extent variables, and ek,l ∼ N (0, Rk,l) denotes the zero-mean

Gaussian measurement noise with covariance Rk,l. Full details of the variables used

in (4.1) is revealed in Appendix A.6.

The representation for the complete measurement set {yk,l}nkl=1 collected at time k is
1 A set S is called star-convex if each line segment from the origin to any point in S is fully contained in S.
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formed as

yk =
[
y>k,1, . . . ,y

>
k,nk

]>
, Rk = diag [Rk,1, . . . , Rk,nk ] ,

hk(xk) =
[
hk,1(xk)

>, . . . ,hk,nk(xk)
>]> , (4.2)

where diag[·] returns a block diagonal matrix Rk by placing the matrices {Rk,l}nkl=1

along the diagonal.

It is possible to construct a state-space model by combining the given measurement

equation with a dynamic model of the state vector, and treat the estimation problem

in the Bayesian framework.

4.2.1 Variational Measurement Update

Suppose at time k, we have the following predicted density for the kinematic and the

extent states

p(x̄k, fk|y1:k−1) = N (x̄k;µxk|k−1, P
x
k|k−1)N (fk;µfk|k−1, P

f
k|k−1), (4.3)

where µk|k−1 and Pk|k−1 denote the predicted mean and covariance, respectively. x̄k

indicates the kinematic state, which includes the object center ck, the orientation ψk,

and the linear and angular velocities x∗k, i.e., x̄k =
[
c>k ψk (x∗k)

>]>, and fk is the

extent state. Considering the model in (4.1), the measurement likelihood function can

be written as

p(yk|x̄k, fk) = N (yk; hk(xk), Rk), (4.4)

where xk is the unified state vector including the kinematic and the extent state, i.e.,

xk =
[
x̄>k f>k

]>
. In Bayesian filtering, the aim is to obtain the posterior density

p(x̄k, fk|y1:k). Following the classical variational Bayes approach, we approximate

the posterior as p(x̄k, fk|y1:k) ≈ q(x̄k, fk) = qx(x̄k)qf (fk), where qx(x̄k) and qf (fk)

denote the factorized densities for the kinematic and the extent state, respectively.

The variational formulation seeks for the approximate posterior that minimize the

Kullback-Leibler (KL) divergence between the true and the approximate posterior,
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and the solution satisfies the following equations, [41, Ch. 10],

log qx(x̄k) = Eqf [log p(yk, x̄k, fk|y1:k−1)] + cx, (4.5a)

log qf (fk) = Eqx [log p(yk, x̄k, fk|y1:k−1)] + cf , (4.5b)

where cx and cf stand for the collection of terms that are not functions of the corre-

sponding factor. The estimated densities are obtained by iteratively computing one

of the factors while keeping the other fixed at its most recent estimate, [41, Ch. 10].

These fixed-point iterations are guaranteed to converge to a solution that corresponds

to a local minimum of the KL divergence, [81, Sec. 2.5].

To obtain analytical expressions for (4.5), we first need to express the joint density

p(yk, x̄k, fk|y1:k−1) as

p(yk, x̄k, fk|y1:k−1) = p(yk|x̄k, fk)p(x̄k, fk|y1:k−1). (4.6)

Next, we will compute the estimated densities at the (i + 1)th iteration, which are

denoted by q(i+1)
x (x̄k) and q(i+1)

f (fk).

4.2.1.1 Computation of q(i+1)
x (x̄k)

Substituting (4.6) in (4.5a), we can write

log q(i+1)
x (x̄k) = E

q
(i)
f

[log p(yk|x̄k, fk)] + E
q
(i)
f

[log p(x̄k|y1:k−1)] + cx. (4.7)

Unfortunately, this expression does not yield a Gaussian density for q(i+1)
x due to the

nonlinearity in the mean of p(yk|x̄k, fk). To alleviate this problem, we approximate

the measurement model by its first-order Taylor series expansion.

yk = hk(µ
(i)
x ,µ

(i)
f ) + A(i)

(
x̄k − µ(i)

x

)
+B(i)

(
fk − µ(i)

f

)
+ ek

= g(i) + A(i)x̄k +B(i)fk + ek (4.8a)

g(i) , hk(µ
(i)
x ,µ

(i)
f )− A(i)µ(i)

x −B(i)µ
(i)
f (4.8b)

A(i) ,
∂hk
∂x̄k
|x̄k=µ

(i)
x ,fk=µ

(i)
f
, B(i) ,

∂hk
∂fk
|x̄k=µ

(i)
x ,fk=µ

(i)
f

(4.8c)

Note that the Taylor series approximation is performed within every VB iteration

which can break the convergence results of the VB. However, we did not observe any

divergence tendency of the algorithm in our experiments with simulated and real data.
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Consequently, we can write E
q
(i)
f

[log p(yk|x̄k, fk)] as

E
q
(i)
f

[log p(yk|x̄k, fk)] = −0.5
(
yk − g(i) − A(i)x̄k)>R−1

k (yk − g(i) − A(i)x̄k)

−2(yk − g(i) − A(i)x̄k)>R−1
k Bµ

(i)
f

)
+ cx. (4.9)

It can be shown that the variational iterate in (4.7) becomes a Gaussian distribution,

i.e., q(i+1)
x (x̄k) = N (µ

(i+1)
x , P

(i+1)
x ), and its mean and covariance can be computed by

a Kalman filter measurement update as follows.

µ(i+1)
x = µxk|k−1 +Kk

(
yk − g(i) −B(i)µ

(i)
f − A

(i)µxk|k−1

)
P (i+1)
x = P x

k|k−1 −KkA
(i)P x

k|k−1

Sk = A(i)P x
k|k−1(A(i))> +Rk

Kk = P x
k|k−1(A(i))>(Sk)

−1

(4.10)

4.2.1.2 Computation of q(i+1)
f (fk)

From (4.5b) and (4.6), it follows

log q
(i+1)
f (fk) = E

q
(i+1)
x

[log p(yk|x̄k, fk)] + E
q
(i+1)
x

[log p(fk|y1:k−1)] + cf . (4.11)

By using the measurement model in (4.1), we can write

E
q
(i+1)
x

[log p(yk|x̄k, fk)] =− 0.5

(
f>k E[

, g1(x̄k)︷ ︸︸ ︷
H̃(x̄k)>R−1

k H̃(x̄k)]︸ ︷︷ ︸
, ∆

fk

− 2f>k E[

, g2(x̄k)︷ ︸︸ ︷
H̃(x̄k)>R−1

k (yk − ck)]︸ ︷︷ ︸
, δ

)
+ cf (4.12)

The expectations indicated by ∆ and δ include highly nonlinear functions of x̄k, and

do not end up with compact analytical expressions. We employ the unscented trans-

formation [82] to approximately compute these expectations as

∆ ≈
M∑
j=0

πjg1(x̄jk), δ ≈
M∑
j=0

πjg2(x̄jk), (4.13)

where {x̄jk}Mj=0 and {πj}Mj=0 denote the sigma-points and the associated weights, which

are explicitly defined in Appendix A.5.
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The resulting expression in (4.12) together with the prediction density imply that

the variational iterate for the extent is a Gaussian density, and we can analytically

compute its mean µ(i+1)
f and covariance P (i+1)

f as follows

µ
(i+1)
f =

(
∆ + (P f

k|k−1)−1
)−1 (

δ + (P f
k|k−1)−1µfk|k−1

)
,

P
(i+1)
f =

(
∆ + (P f

k|k−1)−1
)−1

.
(4.14)

This concludes the derivation of the variational approximation-based measurement

update. This mechanism, combined with a process model of the state vector, estab-

lishes an EOT approach; and we will examine the performance of the corresponding

algorithm in the following sections.

4.2.2 A Closer Look to a Single Measurement Update

Before proceeding to a detailed performance analysis, we first want to demonstrate

the capabilities of the proposed method, denoted as ‘VB’, and the reference method

[26], named ‘EKF’. For this purpose, we focus on a single measurement update that

is realized for the setting in Fig. 4.1.

In this example, the underlying object has a rectangular extent. Both methods are

initialized by the same prior and are provided with the same set of measurements.

We compare the resulting posterior distributions. Contrary to EKF, the VB algorithm

performs multiple iterations in a single measurement update. Consequently, the pos-

terior obtained by VB is significantly closer to the true posterior compared to that of

EKF. This desirable behavior is the primary motivation behind the development of

VB, and it will be demonstrated to lead to superior tracking performance in Section

4.3.

4.3 Experimental Results

4.3.1 Experiments with Simulated Data

We conduct various experiments with simulated data considering different motion

behaviors and extent models. Measurements are randomly generated from the under-
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Figure 4.1: Illustration of a single measurement update. We also obtain the median of

the true posterior distribution by using 1 million Monte Carlo (MC) samples, which

is plotted in black. The number of variational iterations is 10 for VB. (The plus signs

and the dashed lines indicate the estimates of the object center and the orientation,

respectively.)
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Figure 4.2: A typical realization of S2-Exp2 for a rectangular object.

lying object contour and corrupted by Gaussian noise with covarianceR = 0.32I2 m2.

The number of the measurements on each scan is sampled from a Poisson distribution

with mean 15.

To assess the performance of the algorithms, we regard the Intersection-Over-Union

(IOU) measure as in [26]. As a complementary performance measure, we also com-

pute the root mean squared error (RMSE) of the object orientation.
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To assess the performance of the proposed method, we regard the Intersection-over-

Union (IOU) and the root mean squared error (RMSE) of the object orientation. The

definitions of these measures are given in the following: IOU(Ŝ, S) = area(Ŝ ∩
S)/area(Ŝ ∪ S), RMSE(ψ̂) =

√
1
N

∑N
k=1(ψ̂k − ψk)2, where the estimated and the

true extent are represented by Ŝ and S, respectively; ψ̂ and ψ indicate the estimated

and the true orientation angle, respectively.

Time evolution of the kinematics x̄k is expressed by the nearly constant velocity

model.

x̄k+1 = F̄ x̄k + w̄k, w̄k ∼ N (0, Q̄),

F̄ =

1 T

0 1

⊗ I3, Q̄ =

T 3

3
T 2

2

T 2

2
T

⊗

σ2
c 0 0

0 σ2
c 0

0 0 σ2
ψ

 ,
where T is the sampling time; σc and σψ indicate the process noise standard deviations

for the center and the orientation, respectively; ⊗ denotes the Kronecker product. We

describe the dynamics of the extent state by the following model, which provides the

maximum entropy prediction density for unknown and slowly varying dynamics, [25,

Theorem 1].

fk+1 = fk + wf
k , wf

k ∼ N (0, Qf ), Qf =
(
λ−1 − 1

)
P f
k|k, (4.16)

where P f
k|k denotes the covariance of the estimated extent, and λ < 1 is a factor that

scales up the estimated covariance to compute the predicted covariance, i.e, P f
k+1|k =

λ−1P f
k|k. Both of the methods employ the same GP model defined by the periodic

covariance function, [26].

k (θ, θ′) = σ2
f exp(−

2 sin2
(

(θ−θ′)
2

)
l2

) + σ2
r (4.17)

where σ2
f is the prior variance, l is the length-scale, and σ2

r is the constant term. The

number of the variational iterations in VB is set to 10 for all experiments. Addi-

tionally, we implement another reference method, denoted as ‘CKF’, based on the

cubature Kalman filter [83].

We investigate two distinct scenarios, which are indicated by S1 and S2. In S1 (model

match scenario), the motion of the object is simulated by the nearly constant velocity
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model, and the trackers are provided with the true parameters of motion. In S2, the

object traverses the path that is depicted in Fig. 4.2 at a constant speed v. In this

setting, we examine a model mismatch between the true and the assumed motion

dynamics.

Table 4.1: Mean Value of the Intersection-Over-Union (IOU)

S1 S2

T1 T2 T3 T1 T2 T3

E
xp

1 VB 0.880 0.866 0.940 0.884 0.866 0.916

EKF 0.875 0.863 0.937 0.882 0.869 0.913

CKF 0.834 0.851 0.936 0.867 0.870 0.921

E
xp

2 VB 0.838 0.777 0.929 0.829 0.784 0.881

EKF 0.569 0.557 0.827 0.691 0.650 0.805

CKF 0.637 0.596 0.778 0.677 0.676 0.803

E
xp

3 VB 0.814 0.783 0.918 0.827 0.766 0.869

EKF 0.655 0.631 0.830 0.696 0.644 0.795

CKF 0.667 0.597 0.710 0.613 0.491 0.633

Table 4.2: RMSE of the Orientation Angle [rad]

S1 S2

T1 T2 T3 T1 T2 T3

E
xp

1 VB 0.084 0.051 0.046 0.076 0.046 0.057

EKF 0.094 0.052 0.046 0.082 0.044 0.060

CKF 0.310 0.087 0.050 0.092 0.045 0.063

E
xp

2 VB 0.314 0.443 0.090 0.183 0.224 0.110

EKF 1.200 1.060 0.399 0.850 0.534 0.389

CKF 1.382 1.197 0.840 0.783 0.433 0.393

E
xp

3 VB 0.409 0.387 0.082 0.209 0.325 0.212

EKF 0.997 0.844 0.438 0.913 0.569 0.401

CKF 1.373 1.349 1.257 1.549 1.542 1.358
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Table 4.3: Motion Variables Used in the Experiments with Simulated Data

S1 S2

T (s) σc (m) σψ (rad) v (m/s) T (s) σc (m) σψ (rad)

Exp1 1 0.1 0.01 0.5 1 0.1 0.01

Exp2 1 1 0.1 2 1 0.5 0.05

Exp3 4 0.1 0.01 0.5 4 0.1 0.01

For both of the scenarios, we construct three separate experiments, denoted Exp1,

Exp2 and Exp3, which present varying degrees of difficulty for a tracking applica-

tion. More specifically, Exp1 corresponds to the least challenging environment by

using a sufficiently small sampling time and involving modest levels of uncertainty

in object’s motion. In Exp2, the object of interest has greater maneuverability (e.g.,

using larger process noise for kinematics in S1, and increased speed in S2). Exp3 has

the same motion characteristics with Exp1; however, the measurements are acquired

less frequently as the sampling time is increased. Finally, for each experiment, we

use three different extent models, i.e., rectangular (T1), triangular (T2) and a random

extent sampled from a GP prior (T3).

Table 4.3 declares the values of the motion variables used in the experiments with

simulated data. In particular, the given numbers specify both the simulation gen-

eration process and the parameters used by the trackers. As the first scenario (S1)

examines a model match setting, the values of the motion variables, which are used

while generating the ground truth, are identically provided to the trackers.

The hyperparameters of the GP model are set to σf = 2 m, σr = 0.6 m and l =

π/6 rad; and the number of basis points is 50, which are evenly spaced in [0, 2π].

λ = 0.99 is used for the extent dynamics.

The mean of the IOU values and the RMSE of the object orientation are given in

Tables 4.1 and 4.2, respectively. All numbers are averaged over 100 Monte Carlo

runs with randomly generated measurements (for all experiments), trajectories (S1),

and object extents (T3).

The results suggest that all methods are equally successful in Exp1. However, in Exp2
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and Exp3, VB is significantly superior in regard to the estimation performance for the

extent and the orientation. This observation is valid for both scenarios, S1 and S2,

concerning the settings with model match and model mismatch. An example realiza-

tion of the u-turn scenario with higher speed (S2-Exp2) using the rectangular extent

model is illustrated in Fig. 4.2. Accordingly, we observe that VB establishes a more

robust tracking algorithm at the cost of more computations. This can be attributed

to the iterative nature of VB, which benefits multiple linearizations and expectation

computations in a single measurement update.

4.3.2 Experiments with Real Data

In this section, the performance of the algorithms is demonstrated using real data.

In particular, we investigate two experiments regarding different sensor modalities.

Table 4.4 presents the corresponding results.

Experiment with Camera Data: In the first experiment, we consider information

collected by a camera, mounted on an airborne vehicle which is steady over a surveil-

lance region. The experiment takes place in a cove located at the western Mediter-

ranean coast of Turkey. The scene involves a dinghy exhibiting agile maneuvers as

shown in Fig. 4.3(a). Throughout the scenario, the camera captures an image in

every 2 seconds. There are various algorithms that can extract features from camera

images, such as Harris corner detector [84] and Lowe’s Scale Invariant Feature Trans-

form (SIFT) [85] (for an overview, see [86, Ch. 4]). To investigate a more general

case, we consider point measurements generated by uniformly sampling the object’s

contour. The results obtained by using the features extracted by the Harris corner

detector closely follow the results presented here, but they are not included in the

manuscript because of the page limitations. The number of measurements on each

frame is sampled from a Poisson distribution with average 10. Both methods share

the identical set of parameters, which are specified as follows: The sampling time is

set to T = 2 s; R = 32I2 m2 is the measurement noise covariance matrix; the process

noise standard deviations are used as σc = 1 m, σψ = 0.2 rad; the same hyperparam-

eters as defined in the simulation experiments are utilized for the GP model except

σf = 20 m.
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(a) (b)

(c) (d)

Figure 4.3: Tracking results for the video experiment. Fig. (a) shows the outline of

the experiment. Starting from the leftmost position, the dinghy moves along the red

dashed line. In Figs. (b)-(d), the estimates of the algorithms are plotted for three

different frames (VB: , EKF: , measurements: ).

Figs. 4.3(b)-(d) visualize the outputs of the algorithms for three instants. At the

beginning of the experiment, while the dinghy moves along a relatively straight line,

both methods perform successfully. However, once the vehicle starts maneuvering,

VB exhibits favorable performance in terms of both the extent and the kinematic

estimates as seen in Figs. (c) and (d).

Experiment with Laser Scanner Data: In the second experiment, we extract a se-

quence of point measurements acquired by a Velodyne HDL-64E laser scanner in-

cluded in Kitti tracking benchmark, [72]. The outline of the scenario is illustrated by

two example video frames in Fig. 4.4(b). The experiment takes place on an urban

street where the ego and the target vehicles exhibit turn maneuvers while moving in

the same direction.

Both methods use the same set of parameters, which are specified in the following:

The sampling time is set to T = 0.5 s; R = 0.82I2 m2 is the measurement noise

covariance matrix; the process noise standard deviations are used as σc = 3 m,

σψ = 0.8 rad; the same hyperparameters as defined in the simulation experiments

are utilized for the GP model except l = π/5 rad.

The results are demonstrated in Fig. 4.4(a). Both VB and EKF satisfactorily estimate
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Figure 4.4: Fig. (a): Tracking results for the Kitti experiment (shaded areas represent

1-std confidence interval of the corresponding estimate). Fig. (b): Example video

frames from the experiment.

the trajectory. Throughout the scenario, the sensor is mainly able to observe the left

and rear parts of the target, thus the algorithms appropriately decrease the uncertainty

on the observed portion of the extent while a larger uncertainty is associated with the

unobserved section. However, during the maneuvering phase, VB outperforms EKF

in orientation estimation.

Table 4.4: Results for the Experiments with Real Data

Video Data Laser Scanner Data

IOU RMSE(ψ̂) [rad] IOU RMSE(ψ̂) [rad]

VB 0.804 0.105 0.762 0.046

EKF 0.672 0.363 0.624 0.276

93



4.4 Conclusion

We derived an alternative inference method for the GPEOT models using the varia-

tional Bayes techniques. The resulting algorithm is shown to significantly improve

the tracking performance through experiments on simulated and real data (e.g., the

percentage improvements in the IOU measure and in the accuracy of the orientation

estimates exceed 40% and 400%, respectively). Additionally, it proves to be more

robust for the scenarios with moderate or high levels of uncertainty included in the

model. In this regard, we believe that the suggested method will enable the utilization

of the GPEOT trackers in a wider range of real-world applications.
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CHAPTER 5

EXTENDED OBJECT TRACKING USING REDUCED-RANK GAUSSIAN

PROCESSES

5.1 Introduction

The literature on extended object tracking (EOT) is extensive (for detailed investiga-

tion of the existing studies, see [3, 80]). A great variety of trackers has been proposed

relying on various mathematical representations of the unknown object extent. Seek-

ing for a compact description of the extent, a large group of studies adopt simple

parametric models, such as a stick [87, 88], a rectangle [5, 74], Multiple ellipses

[89, 52] and B-splines [77, 90, 91] are also used to indicate the extent to attain more

detailed representations.

For a flexible extent representation, another vein of studies assumes that the objects

of interest are star-convex, and hence a radial distance function can be used to char-

acterize the object shape. An important example of this class is the random hyper-

surface models, which parametrize the radial function by its Fourier series coeffi-

cients, [12, 92, 15, 93]. In a closely related line of literature, the unknown radial

function is probabilistically modelled by a Gaussian process (GP) [26, 32].

The focus of this chapter is to improve the existing GP-based EOT (GPEOT) methods.

GPEOT framework enables effective tracking of targets with unknown shapes using

noisy point measurements, which can be collected by, for example, lidars, radars, and

depth cameras. In particular, the resulting trackers jointly estimate the extent with the

kinematic variables and are shown to perform successfully for various applications

[29, 28, 53, 54, 27, 30, 34].
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The key factor in the formulation of the GPEOT approach is the utilization of a GP

model to describe the latent object extent. With their favorable analytical properties,

GPs provide a convenient basis for the derivation of the mentioned methods. Addi-

tionally, they naturally account for the spatial correlation and the local uncertainty

information in the extent estimates, which in turn facilitate effective shape learning

using noisy and sparse observations. However, the computational complexity of ob-

taining the GP posterior imposes a great challenge for many practical settings [42].

Furthermore, the standard GP regression requires batch processing of all observa-

tions, which is not applicable for the typical tracking application as the number of

available measurements sequentially grow over time. To alleviate these problems, the

existing GPEOT framework employs an approximation for the GP model. The ap-

proximate approach maintains the radial function at finite number of inducing points,

which are essentially the function values evaluated at uniformly distributed angles.

Consequently, the resulting methods can recursively update the posterior of the in-

ducing points together with the kinematics via standard inference techniques.

The mentioned approach requires to locate the inducing points at a sufficiently dense

grid to precisely capture the characteristics of the underlying extent. The correspond-

ing values of the radial function are included in the state vector, and their posterior is

updated at each recursion of the tracker. Therefore, the memory storage and the com-

putational load of the resulting method scale with the number of the inducing points.

Using fewer points for an efficient implementation will reduce the representational

power, which in turn degrades the tracking performance.

In this chapter, we derive GPEOT algorithms with improved computational charac-

teristics without compromising the effective performance of the existing methods. To

this end, we develop models based on a recent spectral-domain GP approximation,

which complies well with the requirements of describing the unknown extent. In

particular, we adopt the reduced-rank approximation [50] for the original GP model,

which regards a basis function expansion of the Laplace operator for the stationary co-

variance function. The approximate GP model is essentially described by the weights

of the basis functions. Consequently, the weights and the kinematic variables are re-

cursively estimated using standard Bayesian techniques, which establishes an EOT

approach. The contributions of this chapter can be summarized as follows.
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• We propose a new formulation for the GPEOT models that facilitates high

tracking performance at lower computational complexity.

• The improvement is enabled by the utilization of a recent reduced-rank GP

approximation that offers an efficient description of the object extent. We per-

form necessary adaptations to apply the mentioned approximation in both two-

dimensional (2D) and three-dimensional (3D) tracking problems. More specifi-

cally, we derive an approximate GP model for 2D targets that precisely implies

periodic radial functions so that the estimated target extent is a closed shape

without any discontinuities. Additionally, for the 3D trackers, we appropriately

formulate the description of the 3D target extent that facilitates to specify an

isotropic covariance function for the GP model as required by the reduced-rank

approximation.

• The resulting extent representation is efficiently estimated together with the

kinematic variables using standard inference techniques, such as an extended

Kalman filter, which constitutes 2D and 3D GPEOT algorithms. Furthermore,

we also investigate an implementation of the proposed trackers by relying on an

iterated extended Kalman filter. The resulting method is comparatively evalu-

ated with a recent study that uses variational iterations in a single measurement

update under challenging tracking scenarios.

• The computational complexity of the suggested approach is analytically inves-

tigated in comparison with the existing methods.

• The performance of the resulting trackers is comprehensively demonstrated on

simulated data, and a detailed analysis with regard to the key factors, e.g., num-

ber of basis functions, is presented.

5.2 Gaussian Processes

A Gaussian process (GP) is essentially a stochastic model that defines a probability

distribution over a function space. Due to their flexibility in modeling, robustness to

overfitting and principled uncertainty estimates, GPs have been widely adopted for
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various applications, [42]. In this chapter, we will utilize GPs to describe the latent

extent of dynamic objects.

A GP model for the function f(·) is uniquely defined by

f(u) ∼ GP (µ(u), k (u,u′)) , (5.1)

where µ(·) is the mean function and k(·, ·) is the covariance function, which are spec-

ified as

µ(u) = E[f(u)], (5.2a)

k(u,u′) = E [(f(u)− µ(u))(f(u′)− µ(u′))] . (5.2b)

The GP indicates that any finite number of function values at arbitrary input points

have a joint Gaussian distribution as in
f(u1)

...

f(uM)

 ∼ N (µ, K), (5.3)

where ith entry of the mean vector µ is defined as µi = µ(ui), and i-j th entry of the

covariance matrix K is defined as Kij = k(ui,uj).

5.2.1 Gaussian Process Regression

A GP provides a convenient basis to update the prior knowledge about the unknown

function values in accordance with incomplete and noisy observations. In this context,

let us consider the following model for the measurement y,

y = f(u) + e, e ∼ N
(
0, σ2

r

)
, (5.4)

where e is the independent sensor noise, which has a Gaussian distribution with zero

mean and variance σ2
r .

The objective is to obtain a refined description of the function values

f∗ , [f(u∗1) . . . f(u∗L)]> at some arbitrary inputs u∗ ,
[
u∗1
> . . . u∗L

>]>, by regard-

ing the collected measurements y , [y1 . . . yN ]>, which are noisy observations of

the function evaluations at u ,
[
u>1 . . . u>N

]>.
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The proposed GP model together with the measurement model in (5.4) offers the

following joint distributiony

f∗

 ∼ N
µ(u)

µ(u∗)

 ,
K(u,u) + INσ

2
r K(u,u∗)

K(u∗,u) K(u∗,u∗)

 , (5.5)

where IN is the identity matrix of size N .

Consequently, by using the standard Gaussian conditioning formulae, we can analyti-

cally attain the posterior distribution of the function values as p(f∗|y) ∼ N (µ+,Σ+),

where the posterior mean and covariance are computed as

µ+ = µ(u∗) +K (u∗,u)
[
K(u,u) + INσ

2
r

]−1
(y − µ(u))

Σ+ = K (u∗,u∗)−K (u∗,u)
[
K(u,u) + INσ

2
r

]−1
K (u,u∗) . (5.6)

5.2.2 Reduced-Rank Gaussian Processes

In a typical object tracking setting, the problem is to estimate the latent variables by

processing measurements which become available in a sequential fashion. As the

number of measurements monotonically increases over time, utilization of a naive

GP model is infeasible due the ever-growing storage and computational requirements.

Consequently, we hereby employ a spectral approximation of the GP model, which

brings in favorable computational properties and an intuitive interpretation.

In [50], Solin and Särkkä present an approximation to GP modeling, which relies

on the eigendecomposition of the negative Laplace operator on a confined domain.

This approach leads to the following approximate expansion for isotropic covariance

functions, i.e., k(d) , k(u,u′), where d , ||u− u′||, and || · || denotes the Euclidean

norm,

kΘ (u,u′) ≈
∑
j

SΘ(
√
λj)φj(u)φj (u′) , (5.7)

where SΘ(·) is the spectral density function, λj and φj(·) are the j th eigenvalue and

eigenfunction of the negative Laplace operator solved in the specified domain, and Θ

denotes the hyperparameters of the covariance function.

99



In this chapter, our interest relies in modeling the radial functions in compact do-

mains. The resulting eigendecompositions will be computed analytically in closed-

form as revealed in the subsequent sections. Note that if there is further prior informa-

tion, one can choose the domain of interest accordingly and compute the correspond-

ing decomposition. For example, in [94] the authors consider a two-dimensional

hexagonal domain for the mapping application. Although a closed-form solution is

not available, they effectively solve the eigendecomposition problem by numerical

methods. Similarly, [95] investigates the reduced-rank approximation for GP mod-

els on domains with arbitrary boundaries, which include non-convex or disconnected

spaces.

The central idea of the considered reduced-rank approximation is to truncate the ex-

pansion in (5.7) to a finite number of components,

kΘ (u,u′) =
m∑
j=1

SΘ(
√
λj)φj(u)φj (u′) . (5.8)

This is a reasonable approximation as the eigenvalues of the Laplace operator is

monotonically increasing and the spectral density function goes to zero fast with in-

creasing frequencies for bounded covariance functions, [50]. Interested readers can

refer to [50] for detailed analysis and convergence proofs.

The truncated covariance function in (5.8) implies that the GP model can be repre-

sented by an equivalent linear model [42, Ch. 2.2] as in

f(u) =
m∑
j=1

fjφj(u), where fj ∼ N
(

0, SΘ(
√
λj)
)
. (5.9)

This formulation suggests that the eigenfunctions of the Laplace operator {φj(·)}mj=1

form a set of basis functions to describe the underlying GP model, and the unknown

weights {fj}mj=1 have Gaussian prior distribution, whose variance is determined by

the spectral density function. Note that one of the appealing properties of this decom-

position is that the hyperparameters affect the expansion through the spectral density

only, while the eigenfunctions depend exclusively on the choice of the domain.

We can reorganize (5.9) as

f(u) = ϕ(u)> f , where f ∼ N (0, S) , (5.10)
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such that ϕ(u) , [φ1(u) . . . φm(u)]>, f , [f1 . . . fm]>, and

S = diag
(
SΘ(
√
λ1), . . . , SΘ(

√
λm)

)
. This concludes the derivation of the reduced-

rank approximation, where the original GP model is basically transformed into a

linear-in-parameter model with the latent variable f .

In accordance with (5.10), inferring the unknown radial function f(·) from a set of

noisy observations {yk}Nk=1 amounts to computing the posterior distribution p(f |y1:N).

As an example, let us define a generic observation model,

yk = f(u) + ek

= ϕ(u)> f + ek, (5.11)

where ek stands for the independent sensor noise. Subsequently, we can apply Bayes’

rule iteratively to expand the posterior as

p(f |y1:N) ∝ p(yN |f , y1:N−1) p(f |y1:N−1)

= p(yN |f) p(f |y1:N−1), (5.12)

where the second equation follows from the fact that f provides the sufficient statistics

for yk, i.e., p(yk|f , y1:k−1) = p(yk|f) as implied by (5.11). Notice that this formulation

will allow us to employ a standard Bayesian filter to recursively compute the posterior

distribution. At each recursion of the filter, only the newly available measurements

are processed to update the current estimate of the latent variable f . This approach

circumvents the computation and memory problems associated with the standard GP

regression, which requires processing of all collected measurements in a single batch.

In the following sections, we will utilize this approximate GP model to construct

state-space models regarding both the target extent and the kinematics, which in turn

will be used to compute the joint posterior distribution in an efficient manner.

5.3 2D EOT Using Reduced-Rank Gaussian Processes

5.3.1 GP Modeling of 2D Object Extent

To be able to develop a probabilistic model of the object extent, we first need to

establish a mathematical characterization of the extent. As mentioned earlier, there
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have been investigated many alternative representations in the literature. We hereby

rely on one of the broadly adopted descriptions that expresses the target extent in polar

coordinates by a radial function f(θ), [3, Section III-B]. In particular, the input of the

radial function is the polar angle θ, and the output is the radial distance r between a

reference point within the body and the object boundary, i.e., r = f(θ).

Notice that this representation implicitly assumes that the underlying object is star-

convex1. This does not introduce a severe limitation in extent modeling and can be

used to indicate a wide range of targets, see, for example, [92], [25].

Our objective is to track targets while simultaneously learning their unknown extent.

To infer the target extent using noisy observations in a Bayesian framework, we need

to provide a probabilistic model for the extent. Introduced in [26], the key idea behind

the GPEOT approach is to model the latent extent by a GP. More specifically, a GP

prior is imposed on the latent radial function as

f (θ) ∼ GP (0, k(θ, θ′)) , (5.13)

where the mean function is assumed to be identically zero for brevity, and the covari-

ance function, k(θ, θ′), basically defines the correlation between the function eval-

uations at the polar angles, θ and θ′. This formulation naturally accounts for the

inherent spatial correlation within the object body and provides a systematic update

mechanism to accumulate the shape information.

The aforementioned practical problems of the standard GP regression requires us to

approximate the original model for utilizing the sequentially available measurements

in a object tracking application. In this chapter, we employ the reduced-rank ap-

proximation presented in Section 5.2.2 for the GP model. The method is based on

the series expansion of the covariance function in terms of the eigendecomposition of

the negative Laplace operator. Consequently, for the univariate case, the problem is to

identify the eigenvalue and eigenfunction pairs in a compact subset Ω = [−L,L] ⊂ R

using some boundary condition, such as the Dirichlet boundary condition, i.e.,

−∇2φj(θ) = λ2
jφj(θ), θ ∈ Ω,

φj(θ) = 0, θ ∈ ∂Ω,
(5.14)

1 A set S is called star-convex if there exist a point ζ0 such that any line segment from ζ0 to any other point
in S is fully contained in S.
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where∇2 denotes the Laplace operator.

Notice that the fidelity of the approximated model might degrade near the boundary

of Ω as the Dirichlet condition drives the process through zero, [50]. This is con-

sidered to be a minor problem for many applications, as one can simply avoid these

undesired boundary effects by extending the specified domain by a factor and per-

forming inference within an inner section of the domain which leaves some margin

from the boundaries, [50, 94].

In our formulation, the estimated radial function is strictly required to be periodic

with 2π, i.e., f(θ) = f(θ + 2π), to imply a closed target shape. The periodicity

of the radial function is encoded by appropriately specifying a periodic covariance

function for the GP model [26, Section IV-B]. In this regard, the above-mentioned

workaround for the boundary effects potentially eliminates the periodicity of the ap-

proximated covariance function in the domain of interest, which in turn might lead to

a discontinuity in the estimated object extent. As a solution, we adapt the eigenvalue

problem for modelling the radial function as

−∇2φj(θ) = λ2
jφj(θ), θ ∈ Ω,

φj(θ) = cj, θ ∈ ∂Ω,
(5.15)

where the domain is set to Ω = [0, 2π]. This formulation assures that the resulting

eigenfunctions evaluate the same value cj at the domain boundary, i.e., 0 and 2π, thus

a possible discontinuity in the estimated extent is avoided.

The corresponding eigenvalues and eigenfunctions are analytically obtained as

φ
(a)
j (θ) = cos

(
2jπθ

L

)
, φ

(b)
j (θ) = sin

(
2jπθ

L

)
,

λ
(a)
j = λ

(b)
j =

2πj

L
,

(5.16)

where L = 2π. With this decomposition, the corresponding approximate covariance

function is now guaranteed to be periodic with 2π as desired. The analytic expression

for the approximate covariance function is given as

k (θ, θ′) =
m∑
j=1

S

(√
2πj

L

)
cos

(
2jπ(θ − θ′)

L

)
. (5.17)
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Consequently, we finalize the reduced-rank GP model of the object extent as

f(θ) = ϕ(θ)> f , where f ∼ N (0, S) , (5.18a)

ϕ(θ) =
[
φ

(a)
1 (θ), φ

(b)
1 (θ), . . . , φ(a)

m (θ), φ(b)
m (θ)

]>
, (5.18b)

f =
[
f

(a)
1 , f

(b)
1 , . . . , f (a)

m , f (b)
m

]>
, (5.18c)

S = diag
(
S(

√
λ

(a)
1 ), S(

√
λ

(b)
1 ), . . . , S(

√
λ

(a)
m ), S(

√
λ

(b)
m )

)
, (5.18d)

where f denotes the parametrized description of the extent.

5.3.2 State-Space Model

In this section, we will develop a unified state-space model regarding both the kine-

matics and the extent of the target, which in turn will enable the joint estimation of

the variables.

Consider the augmented state vector at time k

xk ,
[
x̄>k f>k

]>
, (5.19)

where fk indicates the parametrized description of the target extent, and x̄k includes

the kinematic state variables, defined as

x̄k ,
[
c>k ψk v>k ωk

]>
. (5.20)

where ck is the 2D position of a reference point within the object body, which can be

interpreted to be the object center, ψk is the target orientation, vk is the linear velocity

of the center, and ωk is the angular rate.

5.3.2.1 Measurement Model

We will first develop a measurement model that expresses the relation between the

sensor observations and the variables included in the state vector. To this end, we de-

fine two different coordinate frames. First, the global coordinate frame, {G}, is fixed

to the sensor, in which the measurements are resolved. Second, the local coordinate

frame, {L}, is anchored to the tracked object. These coordinate frames are illustrated

in Fig. 5.1 using an example extended target.
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Let us consider a single point measurement yk,l ∈ R2 collected at time k. By the

superposition of the vectors, we can write

yk,l = ck + pk,l f(θk,l) + ek,l, ek,l ∼ N (0, R), (5.21)

where ck is the object center, pk,l is a unit-length vector along the direction from the

object center to the measurement source, f(·) is the radial function, θk,l is the polar

angle corresponding to the measurement source, and ek,l is the independent Gaussian

measurement noise, with zero mean and covariance R.

Note that the source point that originates the measurement yk,l is not available to the

sensor in practice. Therefore, we need to substitute some approximate expressions for

the variables pk,l and θk,l, which will be regarded in the derivation of the measurement

model. In this respect, we define pk,l as

pk,l = pl (ck) =
yk,l − ck
‖yk,l − ck‖

. (5.22)

Next, we can compute the polar angle associated with the vector from the object

center to the measurement in the global coordinate as

θGk,l (ck) = ∠ (yk,l − ck) , (5.23)

which is then transformed into the local coordinate frame by

θLk,l (ck, ψk) = θGk,l (ck)− ψk. (5.24)

By substituting these approximations into the measurement equation, we obtain

yk,l = ck + pl (ck) f
(
θLk,l (ck, ψk)

)
+ ek,l. (5.25)

Finally, by plugging the reduced-rank GP description for the radial function, we end

up with the following measurement model.

yk,l = ck + pl (ck) ϕ
(
θLk,l (ck, ψk)

)>
fk︸ ︷︷ ︸

=hl(xk)

+ ek,l

= hl (xk) + ek,l (5.26)

An important distinction of the final measurement model from the one derived in [26]

is that the statistics of the sensor noise in (5.26) do not depend on the unknown state

variables, instead they are exclusively determined by the sensor characteristics. In this

respect, the standard techniques of nonlinear Kalman filtering are directly applicable

for inference without further assumptions.
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5.3.2.2 Process Model

To complete the construction of the state-space model, we will define a mathematical

model that characterizes the time evolution of the state vector.

The formulation of our approach does not impose any restriction on the selection of

the process model. We utilize the following linear Gaussian model,

xk+1 = Fxk + wk, wk ∼ N (0, Qk), (5.27)

where F is the system matrix, and wk denotes the process noise, which is Gaussian

with zero mean and covariance Qk.

Assuming that the kinematic and the extent variables do not interact with each other in

time, we can specify the overall process model as a composition of two independent

subblocks

F =

F̄ 0

0 F f

 , Qk =

Q̄ 0

0 Qf
k

 . (5.28)

For the kinematics state, we utilize a nearly constant velocity model,

F̄ =

1 T

0 1

⊗ I3, Q̄ =

T 3

3
T 2

2

T 2

2
T

⊗

σ2
c 0 0

0 σ2
c 0

0 0 σ2
ψ

 , (5.29)

where T denotes the sampling time, σc and σψ denote the process noise standard

deviations for the center and the orientation, respectively;⊗ is the Kronecker product.

We define the dynamics of the extent state by

F f = I, Qf
k =

(
λ−1 − 1

)
P f
k|k . (5.30)

P f
k|k is the covariance of the estimated extent state at time k. This model is shown

to provide the maximum entropy prediction density for unknown and slowly varying

dynamics [59, Theorem 1] which is assumed to comply with the characteristics of

the object extent. Notice that the model leads to a prediction density, whose mean is

the same with that of the estimated density and covariance is effectively scaled up as

P f
k+1|k = λ−1P f

k|k for λ < 1.
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Figure 5.1: Illustration of the state variables regarded in the derivation of the 2D EOT

algorithm.

Furthermore, the prior distribution of the state vector is specified as

x0 ∼ N (µ0, P0) (5.31a)

where µ0 =

µ̄0

µf
0

 , P0 =

P̄0 0

0 P f
0

 , (5.31b)

which suggests that the kinematic and the extent variables have independent Gaussian

prior distributions, i.e., x̄0 ∼ N
(
µ̄0, P̄0

)
and f0 ∼ N

(
µf

0, P
f
0

)
. Note that the prior

distribution for the extent variables is directly offered by the reduced-rank GP model

as detailed in (5.18).

This concludes the derivation of our state-space model for 2D extended targets. We

will regard this model to infer the latent kinematic and the extent variables in a stan-

dard Bayesian framework using point measurements. The details of the utilized in-

ference scheme will be presented in Section 5.5.

5.4 3D EOT Using Reduced-Rank Gaussian Processes

In this section, we will introduce a 3D object tracking approach that can jointly esti-

mate the kinematics and the shape of a 3D object by processing 3D point measure-

ments. To this end, we develop an efficient GP model for the latent 3D extent based

on the reduced-rank approximation and construct a state-space model regarding both
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the kinematics and the extent description.

5.4.1 GP Modeling of 3D Target Extent

We first need to formulate a mathematical description for the 3D shape, which in

turn will be considered to develop a probabilistic model. To this end, we exclusively

regard the external boundary (surface) of the object. Additionally, assuming that the

underlying object is star-convex, we can express this 3D surface by a radial function.

In the literature, the radial function representation is shown to lead to effective solu-

tions for the 3D tracking problem, e.g., [93, 32, 34, 96]. In particular, the mentioned

methods describe the target shape by a radial function r = f(θ, φ) in spherical coor-

dinates, where the output r is the radial distance between the target center and the cor-

responding point on the surface implied by the spherical angle pair, i.e., the azimuth,

θ ∈ [−π, π], and the elevation angles, φ ∈ [−π
2
, π

2
]. Subsequently, it is possible to

model the unknown radial function by a GP. In this pursuit, the main challenge is to

construct a proper covariance function for the GP, which conforms to the principles

of the spherical geometry. More specifically, there is a need for specifying an ap-

propriate distance measure to be used in the covariance function, which calculates the

relative distance between two spherical coordinates. For example, the standard choice

of the Euclidean distance will lead to an erroneous correlation structure for the extent

described in the spherical coordinates [34]. In this regard, in [32, 34] the distance is

considered to be the angle of the shortest arc on a sphere, or the geodesic distance,

which enables to induce the correct correlation patterns in the spherical coordinates.

As indicated previously, the reduced-rank approximation requires the original GP to

use an isotropic covariance function. Unfortunately, the mentioned geodesic distance

does not comply with this requirement, hence it is not possible to directly apply the

reduced-rank approximation to the given GP model. As a solution to this problem, we

will hereby formulate a different description for the target shape, where the argument

of the radial function is chosen to be a point on the unit sphere, i.e.,

f(p) = r (5.32)

where p ∈ S2, and S2 := {p ∈ R3 | ‖p‖ = 1}. Consequently, the corresponding GP

108



Figure 5.2: Representative eigenfunctions visualized over a spherical surface. The

largest and the smallest values of the functions are mapped to solid magenta and cyan,

respectively; the values in between are plotted according to a linear interpolation.

(Light reflections are added to the illustrations to facilitate 3D interpretation.)

model can be indicated as

f(p) ∼ GP (0, k (p,p′)) . (5.33)

This representation will enable us to define an isotropic covariance function for the

GP model, for example, by using the Euclidean distance, i.e., k(d) = k(p,p′) where

d = ||p− p′||. In this respect, we can easily adopt the widely utilized covariance

functions, such as the squared exponential or a member of the Matérn class [42].

Thereafter, to obtain the reduced-rank approximation of the given GP model, we solve

the eigendecomposition of the negative Laplace operator, −∇2, subject to the Dirich-

let boundary condition on a confined domain Ω, as in the following.

−∇2φj(p) = λ2
jφj(p), p ∈ Ω

φj(p) = 0, p ∈ ∂Ω
(5.34)

Without imposing any prior assumption, we choose the domain of interest to be a rect-

angular prism, i.e., Ω = [−L1, L1]× [−L2, L2]× [−L3, L3], for which the eigenvalues
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and the eigenfunctions are analytically computed as

φj1,j2,j3(p) =
3∏
d=1

1√
Ld

sin

(
πjd (pd + Ld)

2Ld

)
, (5.35a)

λj1,j2,j3 =
3∑
d=1

πjd
2Ld

, (5.35b)

where pd is the dth component of the input vector p, and (j1, j2, j3) is an index tuple.

Some of the eigenfunctions illustrated over a spherical surface is depicted in Fig. 5.2.

Finally, the resulting approximate model of the radial function can be stated as

f(p) = ϕ(p)> f , where f ∼ N (0, S) , (5.36)

where ϕ(·) is formed by concatenating the eigenfunctions, and f consists of the cor-

responding coefficients.

5.4.2 State-Space Model

In this section, we develop a state-space model that determines the dynamical charac-

teristics of the latent variables and how they relate to the observations. To enable joint

estimation of the unknown quantities, the state vector consists of both the kinematics

x̄k and the extent variables fk, i.e., xk ,
[
x̄>k f>k

]>.

5.4.2.1 Measurement Model

We first derive the measurement model which reveals the relation between the 3D

point measurements and the state variables. Similarly to the 2D setting, we make use

of two distinct coordinate frames, namely the global and the local coordinate frame,

which are fixed to the sensor and the target, respectively.

A single 3D point measurement collected at time k yk,l ∈ R3 can be expressed as

yk,l = ck + pk,l f(pLk,l) + ek,l, ek,l ∼ N (0, R). (5.37)

ck is the target center, f(·) is the radial function, pLk,l indicates the point on the unit

sphere corresponding to the measurement source on the target surface originating
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yk,l, and it is expressed in the local coordinate frame, pk,l is the unit-length vector

pointing from the target center to the the measurement source, and ek,l stands for the

independent zero-mean Gaussian measurement noise with covariance R.

As the true source point that gives rise to the measurement yk,l is unknown, we ap-

proximate the corresponding pk,l and pLk,l in (5.37) by directly referring to measure-

ment instead of the source point as in the following.

pk,l = pl (ck) =
yk,l − ck
‖yk,l − ck‖

(5.38)

pLk,l = pLl (ck,qk) =
yLk,l (ck,qk)∥∥yLk,l (ck,qk)∥∥

where yLk,l (ck,qk) = RL
G(qk) (yk,l − ck)

(5.39)

RL
G(·) is the rotation matrix from the global to the local frame, and qk is the unit

quaternion that declares the target orientation. Note that pLk,l, which will be fed to the

radial function as the argument, is located on the unit sphere as the definition of the

function requires.

Then, we can rewrite the measurement equation in (5.37) as

yk,l = ck + pl(ck)f
(
pLl (ck,qk)

)
+ ek,l . (5.40)

Finally, we substitute the reduced-rank GP description for the radial function given in

(5.36) and obtain the measurement model as

yk,l = ck + pl (ck) ϕ
(
pLl (ck,qk)

)>
fk︸ ︷︷ ︸

=hl(xk)

+ ek,l

= hl (xk) + ek,l . (5.41)

5.4.2.2 Process Model

We reveal the process model of the state vector to be regarded within the state-space

model in this section. Note that the formulation of the proposed tracker does not put

any limitation on the specification of the process model. We hereby essentially adopt

the model introduced in [34], which can be summarized as a linear Gaussian model

xk+1 = Fkxk + wk, wk ∼ N (0, Qk) , (5.42)
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where Fk is the system matrix, and wk indicates the process noise, which is Gaussian

with zero mean and covariance Qk.

Remember that the state comprises of the kinematics and the extent, xk =
[
x̄>k f>k

]>.

We assume that the dynamics of these two state components do not interact with

each other in time. Accordingly, the process model can be written to include two

independent subsystems as

Fk =

F̄k 0

0 F f

 , Qk =

Q̄k 0

0 Qf
k

 . (5.43)

For the extent state, we use the same dynamical model with the one used in the 2D

tracker,

F f = I, Qf
k =

(
λ−1 − 1

)
P f
k|k . (5.44)

P f
k|k is the covariance of the estimated extent state at time k.

The kinematics state includes two parts describing the translational and the rotational

state, denoted by xtk and xrk, respectively, i.e., x̄k ,
[
xtk
>

xrk
>
]>

. By assuming the

independence of these elements, we write

F̄k =

F t 0

0 F r
k

 , Q̄k =

Qt 0

0 Qr
k

 . (5.45)

We consider the target center ck ∈ R3 and the velocity vk ∈ R3 to describe the trans-

lational kinematics, i.e., xtk ,
[
c>k v>k

]>. Furthermore, the translational motion is

modelled by the nearly constant velocity model,

F t =

1 T

0 1

⊗ I3, Q
t =

T3 3 T
2

2

T
2

2
T

⊗ (σ2
cI3) , (5.46)

where σc is the process noise standard deviation for the center.

For the rotational motion, we employ the constant velocity model derived in [34]. The

model is based on an effective description of the 3D target orientation, which is free

of singularities and lends itself conveniently to Bayesian estimation. In particular,

the utilized representation makes use of a reference orientation as a unit quaternion,
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q ∈ R4, ‖q‖ = 1, and the orientation deviation from this reference, which is ex-

pressed by the vector, a ∈ R3. The objective is to estimate the deviation vector a in

a Bayesian framework, which in turn periodically updates the reference orientation

accordingly. The resulting approach is known as the multiplicative extended Kalman

filter (MEKF) in the literature, [61]. The rotational kinematics vector is defined to

include the mentioned deviation vector a and the angular velocity of the local frame

with respect to the global frame ω , [ωx ωy ωz]
>, i.e., xr ,

[
a> ω>

]>. Full details

of the rotational motion model are revealed in Chapter 3.5.1.2 and Appendix A.4 and

will not be repeated in this section.

5.5 Inference

In the previous sections, relying on an efficient approximation for the extent descrip-

tion, we derived state-space models for both 2D and 3D objects. The final step for

constructing the corresponding EOT algorithms is to adopt a mechanism to infer the

latent state vectors using collected observations. Treating the problem in a Bayesian

framework, the objective is to compute the posterior distribution of the state vector.

{yk,l}nkl=1 denotes the multiple measurements acquired at time k. To instantaneously

process all of the measurements, it is possible to concatenate them and express the

corresponding measurement model as

yk =
[
y>k,1, . . . , y>k,nk

]>
, (5.47a)

h (xk) =
[
h1 (xk)

> , . . . , hnk (xk)
>
]>
, (5.47b)

Rk = Ink ⊗R. (5.47c)

Subsequently, we can immediately rewrite the resulting state-space model

xk+1 = Fxk + wk, wk ∼ N (0, Q)

yk = h (xk) + ek, ek,l ∼ N (0, Rk)

x0 ∼ N (µ0, P0) .

(5.48)

There is a wide spectrum of standard Bayesian methods that might be utilized to

compute the posterior distribution of the state vector regarding the model in (5.48).
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In this study, we will essentially employ an extended Kalman filter (EKF) due to

the nonlinearity in the measurement model. The details of the inference mechanism

are given in Appendix A.2.1. This concludes the derivation of the proposed EOT

approach, which efficiently updates the posterior of the joint state vector at each time

instant by processing the newly available measurements.

5.6 Simulations and Results

In this section, we will demonstrate the performance of the proposed formulation for

the GPEOT algorithms introduced in this chapter. Throughout this section, we denote

the suggested approach for the GPEOT framework as ‘FGP’ (short for fast GPEOT)

while the standard approach is referred to as ‘IGP’ (considering the model maintains

the extent at the inducing inputs.)

5.6.1 Analytical Analysis of the Computational Complexity

In this section, we will analytically analyze the computational advantages of the pro-

posed formulation for the GPEOT algorithms over its existing counterpart [26]. We

will specifically focus on the disparity in the number of operations required to per-

form in a single recursion of the resulting tracking filters.

As mentioned earlier, both of the FGP and IGP approaches develop state-space mod-

els that regard kinematic variables and a GP representation of the latent target ex-

tent. In this pursuit, they apply distinct approximations to attain a parametric descrip-

tion of the underlying GP model. Consequently, to establish the corresponding EOT

algorithms, a standard Bayesian inference technique, which utilizes the mentioned

state-space model, is adopted. The resulting filters recursively compute the posterior

distribution of the state vector, which comprises of both the kinematic and the ex-

tent variables. In this analysis, we assume that both of the methods employ the same

inference technique to ensure a fair comparison.

The standard Bayesian recursion consists of the following consecutive procedures:

time prediction and measurement update. We assume that the methods utilize the
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same process model to express the time evolution of the state vector. Therefore, the

computational complexity of obtaining the predicted distribution through the time

prediction is identical for the methods. However, the computational characteristics of

the methods differentiate during the measurement update. In this phase, the predicted

distribution is corrected by the employed inference mechanism in accordance with

the observations, regarding the measurement predictions and the associated covari-

ances. The computational discrepancy arises due to the different formulation of the

measurement models, which rely on alternative derivations of the approximate GP

model for the unknown radial function.

Let us assume that at time k, the algorithms process the measurements {yk,l}nl=1 to

compute the posterior distribution, where n is the number of available measurements.

The measurement models of FGP and IGP are revealed in Section 5.3.2.1 and Ap-

pendix A.6, respectively. Note that we explicitly refer to the formulation of the 2D

trackers, as the computational analysis is identical for the 3D setting.

The discrepancy is caused by the formulation of the approximate GP models of the

latent radial function. In particular, for each measurement yk,l, IGP requires to calcu-

late the matrix H f
k,l in (A.14) given by

H f
k,l = k(θLk,l,θ

f) K(θf,θf)
−1
,

where θLk,l is the input angle associated with the measurement, θf ,
[
θf

1 . . . θ
f
m

]> de-

notes the vector including the inducing input angles, and K(θf,θf) ∈ Rm×m is the

covariance matrix of the function values evaluated at the input angles. For a standard

setting, the inducing inputs are fixed during the operation of the filter, hence the in-

verse of K(θf,θf) can be computed prior to the operation and stored in the memory.

Therefore, we neglect the computational complexity due to the mentioned precalcu-

lations. Consequently, the total number of operations performed by IGP to compute

H f
k,l for all measurements at time k scale with O(nm2) using a naive matrix multi-

plication. Additionally, the formulation of IGP requires to compute the measurement

covariance matrix Rk,l for each measurement individually as indicated in (A.13) and

(A.14). This procedure is dominated by the computation of Rf
k,l

Rf
k,l = k(θLk,l, θ

L
k,l)−H f

k,l k(θf, θLk,l) ,
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Table 5.1: Disparity in the Computational Complexities of the Approaches at a Single

Filter Recursion.

Measurement Model Measurement Noise

Execution Covariance Computation

FGP O(nm) −
IGP O(nm2) O(nm)

where k(θf, θLk,l) ∈ Rm. The total computational complexity of this routine regarding

all measurements is O(nm).

On the other hand, the measurement model of FPG entails to compute ϕk,l matrix in

(5.26),

ϕk,l , ϕ(θLk,l) = [φ1(θLk,l) . . . φm(θLk,l)]
>,

where the basis functions {φj(·)}mi=1 are analytically available, hence we can con-

struct ϕk,l by simply evaluating the basis functions at the corresponding input point.

The computational complexity of this procedure is O(nm) for all measurements.

Moreover, in FGP, the measurement covariance matrix R is identical for all mea-

surements, thus it does not require any additional operations. The considered compu-

tational complexities of the methods is summarized in Table 5.1.

As a numeric example, we consider the 2D tracking setting where the methods make

use of 50 variables to describe the target extent, and the number of measurement per

frame is 10. The number of computations required for the abovementioned operations

per frame is obtained to be 25 × 103 and 500 for IGP and FGP, respectively. For the

3D case, where the methods use 1000 extent variables, and the number of measure-

ments per frame is 10, the number of computations for IGP and FGP is 107 and 104,

respectively.

Notice that the above analysis is built upon the assumption that both of the meth-

ods utilize the same number of variables to describe the latent extent. However, in

the subsequent sections, it will be shown that FGP can achieve the same tracking

performance with IGP by using considerably fewer extent variables. Therefore, the
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computational advantage of FGP will be further highlighted in this regard. Further-

more, we hereby assume that during the measurement update phase of the employed

inference schemes, each measurement will be processed for only one time. However,

alternative techniques, such as the iterated EKF, or the variational Bayesian methods,

requires the filter to process the measurements for multiple iterations. In such as a

scheme, the computational complexity of the regarded operations will scale propor-

tionally, hence the proposed approach will offer further advantages.

5.6.2 Experiments with Simulated Data

5.6.2.1 2D Tracking Problem

In this section, we investigate the performance of the proposed approach for the 2D

EOT problem using simulated data. The conducted experiments consider a target

traversing a path, which involves straight lines merged by a u-turn, at a constant

speed v as illustrated in Fig. 5.3. We examine three different settings that present

varying degrees of difficulty for a tracking application. Experiment 1 represents a

typical tracking scenario, where the uncertainty in the target’s motion is tolerable,

and the sensor acquires measurements at a sufficiently high frame rate. In Experi-

ment 2, the target moves along the same path at a higher speed thus exhibits a more

agile maneuver during the u-turn. In Experiment 3, the frame rate of the sensor is

decreased, hence the measurements are acquired less frequently. For all experiments,

we examine three different extent models: a rectangle (T1), a triangle (T2), and a ran-

dom extent (T3) that is sampled from the GP prior. The values of the sampling time

T and the velocity v used in each experiment are reported in Table 5.2. In the simula-

tions, the point measurements are generated by randomly sampling the target contour

and perturbing by an independent sensor noise, which is Gaussian with zero mean

and covariance R = 0.32I2 m2. At each sensor scan, the number of measurements is

randomly drawn from a Poisson distribution with a mean 15.

We examine the performance of the EOT algorithm introduced in Section 5.3.1, which

is denoted as ‘FGP-2D’, in comparison to the reference method ‘IGP-2D’ [26]. Both

of the mentioned trackers employ an EKF for inference. We also consider another
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Figure 5.3: A typical realization of the u-turn experiment for a triangular object.

Table 5.2: Parameters Used for the 2D EOT Experiments with Simulated Data

Simulation Parameters Filter Parameters

v [m/s] T [s] σc [m] σψ [rad]

Exp1 0.5 1 0.1 0.01

Exp2 2 1 0.5 0.05

Exp3 0.5 4 0.1 0.01

reference method dubbed as ‘VB’ [35]. VB regards the same state-space model with

[26] relying on the inducing point approximation of the GP model. However, it com-

putes the posterior of the state vector by an alternative mechanism based on the vari-

ational Bayesian technique. In particular, VB performs multiple variational iterations

through the available measurements in a single measurement update of the filter. To

be able assess comparatively with VB, we realize a variant of the suggested method,

indicated as ‘FGP-2D∗’ that adopts an iterated EKF for inference. Similarly to VB,

FGP-2D∗ benefits from multiple iteration for the measurement update.

For a fair comparison, all trackers are provided with the same process model, which

includes the nearly constant velocity model for the kinematics in (5.29), and the dy-

namics of the extent is described by the model given in (5.30). The utilized process
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noise standard deviations for the center σc and orientation σψ in three experiments

are revealed in Table 5.2. Additionally, all methods employ the same GP model with

zero mean function and the periodic covariance function [26], defined by

k (θ, θ′) = σ2
fe
−

2 sin2
(

(θ−θ′)
2

)
l2 + σ2

r , (5.49)

where σ2
f is the prior variance, l is the length-scale, and σ2

r is the constant term. The

hyperparameters of the GP model are set to σf = 2 m, σr = 0.6 m and l = π/6 rad;

and the number of inducing points is 50, which are evenly spaced in [0, 2π]. λ = 0.99

is used for the extent dynamics. The number of the iterations for VB and FGP-2D∗ is

set to 10 for all experiments.

To evaluate the performance of the trackers, we regard the Intersection-Over-Union

(IOU) measure, which jointly account for both the accuracy of kinematic and the

extent estimates. The IOU is defined by

IOU(Ŝ, S) =
area(Ŝ ∩ S)

area(Ŝ ∪ S)
, (5.50)

where the extent of estimated object is represented by Ŝ, and the true extent is repre-

sented by S. IOU(Ŝ, S) ∈ [0, 1] where 1 corresponds to perfect overlap between the

estimated and the true extent while 0 implies these are disjoint. Furthermore, we con-

sider the root-mean-square error (RMSE) of the orientation angle as a complementary

performance measure,

RMSE(ψ̂) =

√√√√ 1

N

N∑
k=1

(ψ̂k − ψk)2 , (5.51)

where ψ̂ and ψ indicate the estimated and the true orientation angle, respectively.

The mean of the IOU values and the RMSE of the target orientation for all cases

are given in Table 5.3. All numbers are averaged over 100 Monte Carlo (MC) runs

with randomly generated measurements (for all experiments) and target extents (T3).

The results suggest that all methods are equally successful in Experiment 1. How-

ever, under the challenging conditions of Experiment 2 and 3, we can categorize the

trackers into two: Benefiting from multiple iterations in a single measurement update,

VB and FGP-2D∗ outperform the other methods, and they perform comparably in the
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Table 5.3: Average IOU and Orientation RMSE Values of the 2D EOT Algorithms in

the Experiments with Simulated Data

IOU RMSE(ψ̂) [rad]

T1 T2 T3 T1 T2 T3

E
xp

1

IGP-2D 0.878 0.871 0.906 0.086 0.048 0.067

FGP-2D 0.869 0.860 0.904 0.092 0.042 0.061

FGP-2D∗ 0.881 0.868 0.909 0.082 0.039 0.068

VB 0.882 0.863 0.906 0.075 0.045 0.059

E
xp

2

IGP-2D 0.588 0.566 0.689 1.107 0.739 0.736

FGP-2D 0.666 0.617 0.744 0.798 0.612 0.403

FGP-2D∗ 0.824 0.752 0.879 0.150 0.330 0.084

VB 0.834 0.780 0.827 0.129 0.225 0.263

E
xp

3

IGP-2D 0.585 0.561 0.675 1.232 0.767 0.669

FGP-2D 0.661 0.620 0.740 0.845 0.750 0.560

FGP-2D∗ 0.814 0.761 0.877 0.194 0.405 0.095

VB 0.829 0.770 0.853 0.179 0.281 0.114

IOU and the orientation RMSE. On the other hand, in these experiments, FGP-2D is

observed to be more robust than IGP for all extent models.

Additionally, we attempt to directly observe the added value of the proposed formula-

tion based on the reduced-rank GP approximation in the context of extent estimation.

For this purpose, we conduct an experiment where the target is fixed throughout the

scenario. Accordingly, we exclude the kinematic variables from the state vector, and

exclusively focus on the extent estimation performances of FGP and IGP. In each

simulation run, the target extent is randomly sampled from the prior GP with the pe-

riodic kernel function. The duration of the experiment 10 s, where the sampling time

is set to 1 s. In each time instant, we acquire 10 newly available observation from the

target. This experiment is repeated for different number of extent variables for FGP

and IGP, and the averaged IOU values over 100 MC runs are reported in Fig. 5.4. It is

shown that both algorithms perform successfully for large number of extent variables

as they attain high IOU scores. On the other hand, FGP is observed to exhibit more
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robust performance for fewer extent variables as it leads to higher IOU values in this

setting.

Figure 5.4: Average IOU plots of FGP and IGP obtained for different number extent

variables.

(a) (b)

Figure 5.5: Average computation time for an iteration of the 2D EOT algorithms. (In

Fig. (a), the number of available measurements is set to 10. In. Fig. (b), the number

of extent variables is set to 20.)

To empirically investigate the computational characteristics of FGP and IGP, we com-
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pute the average computation time of a single filter recursion for both methods with

respect to the number of extent variables and the number of available measurements.

The findings averaged over 100 MC runs are shown in Fig. 5.5. The average compu-

tational time of FGP scales in a more preferable fashion in regard to both the number

of extent variables and the number of measurements per frame.

As a final remark, Fig. 5.4 suggests that FGP and IGP achieve 90% of their best

IOU performance with 15 and 30 extent variables, respectively. Considering the case

where 10 measurements are provided to the methods per sensor scan, a single recur-

sion of the trackers takes nearly 0.7 ms and 1.3 ms for FGP and IGP, respectively.

5.6.2.2 3D Tracking Problem

In this section, the performance of the proposed approach is evaluated for the 3D

EOT problem over simulated data. To present the results in a comparative manner, we

regard the algorithm introduced in [34], which uses the inducing point approximation

of the underlying GP model. Throughout this section, we will refer to our method as

‘FGP-3D’, while ‘IGP-3D’ will stand for the reference approach.

We investigate two distinct scenarios, which are indicated by S1 and S2. In S1, the

target moves along a straight line at a constant speed of 0.5 m/s. In S2, the target

follows a curved path while performing combined rotations around different axes. For

all experiments, we examine four different extent models: a sphere (T1), an ellipsoid

(T2), a box (T3), and a cone (T4). The dimensions of the objects are as follows:

the radius of the sphere is 3 m, the semi-axes of the ellipsoid are (2.5, 1, 1) m in

length, the length of the edge of the cube is 3 m, and the base radius and height of the

cone are 1.5 m and 4 m, respectively. The point measurements are generated from

random sources on the target surface and perturbed by independent Gaussian noise

with zero mean and covariance 0.12I3. At each sensor scan, 20 point measurements

are originated from random sources which are sampled from a uniform distribution

defined over the object surface. The measurements are produced at 10 Hz, hence the

sampling time of all algorithms is set to T = 0.1 s. We assess the performance of the

trackers through the IOU measure.
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Both of the methods utilize the same process model detailed in Section 5.4.2.2, and

they regard the standard squared exponential covariance function for the GP model,

k(p,p′) = σ2
fe
− ‖p−p′‖2

2l2 + σ2
r . (5.52)

The process noise standard deviations for the kinematics are set to σc = 0.1 m and

σα = 0.1, and λ = 0.99 is used for the extent dynamics; the hyperparameters of the

GP model are set to σf = 1, σr = 0.2, l = π/8; the inducing points used by IGP-3D to

represent the extent are evenly spaced in the spherical coordinates. All experiments

are repeated 100 times with random realizations of the measurement noise and the

measurement origins. The averaged IOU values are given in Table 5.4. For all of the

settings, both of the methods successfully estimate the extent, and their performance

is comparable in each case.

Moreover, we conduct an experiment to analyze the two alternative approaches specif-

ically in the context of extent estimation. Throughout the scenario, a cube-shaped

object is kept stationary at a known position. Accordingly, similar to the 2D setting,

the kinematic variables are excluded from the state vector, hence both FGP-3D and

IGP-3D exclusively estimate the unknown object extent. The duration of the experi-

ment is 10 s, and the sampling time is set to 0.1 s. The number of point measurements

per instant is 20. The experiment is repeated for different number of extent variables

for FGP-3D and IGP-3D, and Fig.5.6 reveals the averaged IOU values over 1000 MC

runs. Both methods are able to produce satisfactory extent estimates when there is a

large number of extent variables. By contrast, FGP-3D is significantly superior to its

counterpart for relatively fewer extent variables.

Table 5.4: Average IOU Values of the 3D EOT Algorithms in the Experiments with

Simulated Data

S1 S2

T1 T2 T3 T4 T1 T2 T3 T4

IGP-3D 0.971 0.908 0.906 0.846 0.972 0.893 0.902 0.854

FGP-3D 0.975 0.920 0.912 0.846 0.975 0.893 0.916 0.855

To examine the computational characteristics of the methods, we compute the aver-

age computation time of a single filter recursion with respect to the number of extent
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variables and the number of processed measurements per frame. We repeat the ex-

periments for 1000 times and the averaged numbers are depicted in Fig. 5.7. FGP-3D

scales in a more favorable manner with respect to both the number of extent variables

and the number of measurements per frame.

5.7 Conclusion and Discussions

In recent years, there have been many attempts to construct flexible models to tackle

the EOT problem. In this context, the GPEOT framework has attracted a lot of at-

tention in the research community. This approach provides a convenient basis to re-

cursively estimate the unknown target extent together with the kinematic state, which

includes position, velocity and orientation, by processing 2D and 3D point cloud data.

In this chapter, we suggest an alternative formulation for the GPEOT algorithms.

More specifically, we adopt a spectral-domain approximation for the underlying GP

model that describes the target extent. The utilized approximation forms a basis func-

tion expansion, the weights of which provide a parametrized representation of the

latent extent. We derive state-space models regarding the extent and the kinematic

variables for 2D and 3D tracking applications. Subsequently, we efficiently estimate

the state vector employing standard Bayesian inference techniques, which in turn con-

stitutes an EOT approach. It is shown that the resulting trackers significantly reduce

the computational load with respect to their existing counterparts and lead to more

robust performance with small number of extent variables.

The enhanced computational characteristics of the introduced approach will bring

added value for many practical applications. In particular, autonomous mobile plat-

forms are required to achieve a reliable perception of their surrounding and make

decisions accordingly in real-time. In this pursuit, they need to carry out computation-

ally intensive processes, for example, to extract information from raw data collected

via multiple sensor devices, while the computational resources are severely limited.

The presented methods will enable attaining precise knowledge of the dynamic ele-

ments in the environment at a lower computational load. In this respect, we believe

that the proposed algorithms will contribute to the adoption of the GPEOT models for

the mentioned applications.
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Figure 5.6: Average IOU plots of FGP-3D and IGP-3D obtained for different number

extent variables.

(a) (b)

Figure 5.7: Average computation time for an iteration of the 3D EOT algorithms. (In

Fig. (a), the number of available measurements is set to 20. In. Fig. (b), the number

of extent variables is set to 162.)
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CHAPTER 6

TRACKING ARBITRARILY-SHAPED EXTENDED TARGETS USING

GAUSSIAN PROCESSES

6.1 Introduction

Detailed shape estimates offer a great value for many applications, for instance, au-

tomated mobile platforms, which are typically expected to operate in dynamic and

unstructured environments, need to have refined knowledge of the occupied and free

regions in their surrounding for effective and efficient navigation. Additionally, shape

estimates deliver valuable cues on the objects’ characteristics, which might prove use-

ful to identify the object type and to anticipate its future behavior.

In the context of object tracking, a high precision extent model enables to accurately

express the relation between observations and the object shape, which in turn poten-

tially increases the tracking performance. Moreover, it is also beneficial to realize

successful measurement association. In the literature of extended object tracking,

there have been many attempts that strive for more flexible extent representations that

may apply to a wider class of objects. In this line of research, the arguably most pop-

ular approach relies on a radial function description of the underlying object extent

[26], [13]. This formulation assumes that the object of interest is star-convex, and it

clearly introduces some limitations from a practical point of view. With this in mind,

in this chapter we propose an algorithm that simultaneously estimates the kinemat-

ics and learns an arbitrarily-shaped object’s extent without imposing any convexity

assumption.

Seeking for a general extent description, we hereby suggest to model the unknown

object extent by a scalar-valued potential function. The potential value of a point in
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space is simply used to indicate whether the point is included by the object extent

or not. With this formulation, it is possible to represent arbitrarily-shaped objects,

which might be non-convex and consisting of disconnected subparts. The rest of the

derivation closely follows the existing GPEOT models. In particular, we model the

latent potential function by a GP, which is approximated at some inducing points.

Subsequently, a unified state-space model, which consists of both the kinematic vari-

ables and the approximate description of the GP model, is constructed. Regarding this

state-space model, we implement an EKF that efficiently estimates the state vector by

recursively processing point cloud measurements. The performance of the proposed

algorithm is demonstrated through simulation experiments.

6.2 Proposed Method

6.2.1 Extent Representation

In this section, we will reveal the representation of the object extent used in the deriva-

tion. While formulating the description, our objective is to attain high representational

power, which will allow the resulting method to generalize to a broad class of object

shapes, and be sufficiently compact for an online tracking application.

In this regard, we model the object extent by a scalar potential function, i.e.,

f(u) : Rd → R, where u ∈ Rd indicates a point in the coordinate frame. More specif-

ically, we follow the conventional denotation and define the potential function as

f(u) =

+1, u ∈ S

−1, u /∈ S
, (6.1)

where S denotes the set of all points contained within the object extent. f(u) can be

simply interpreted as a descriptor function whose level-sets imply the latent object

extent. The same potential function has been widely utilized to characterize the oc-

cupancy information in the applications of environmental exploration and mapping,

see, for example, [97], [98], [99], [100], [101].

This extent model is of critical importance for the derivation of a tracking algorithm

that can learn the extent of the arbitrarily-shaped objects. The model does not impose
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any assumption upon the shape of the object, such as star-convexity. It can even

express an object extent consisting of multiple disconnected subparts.

In the upcoming sections, we will first introduce a probabilistic model for the un-

known potential function, which later will be translated into a unified state-space

model for joint estimation of the kinematics and the extent of the object.

6.2.2 Gaussian Process Modeling of Object Extent

Being a non-parametric model, GP establishes a convenient basis for probabilistic

modeling of arbitrary potential functions and hence the corresponding object extents.

In this regard, f(u) is assumed to have a GP prior, i.e., f(u) ∼ GP(0, k(u,u′)),

where k(u,u′) is the covariance function, which basically computes the covariance

between the function evaluations at locations u and u′.

In a typical object tracking setting, the problem is to estimate the latent variables

by processing s which become available in a sequential fashion. As the number of

measurements monotonically increases over time, a naive implementation of a GP

model is infeasible due the ever-growing storage and computational requirements.

Consequently, we hereby employ a recursive approximation of the GP model, which

brings in favorable computational properties.

6.2.3 Recursive Gaussian Process Regression

We rely on an approximation of a GP that summarizes the original model at a finite set

of basis points, i.e., f , [f(uf1) . . . f(uf
N f )]

> evaluated at the inputs

uf , [uf1 . . . u
f
N f ]
>. More specifically, assuming f provides the sufficient statistics

for the observations, we will be able to compute the posterior distribution p(f |y1:N)

recursively. To this end, we refer to the underlying GP model to offer the measure-

ment likelihood function and the prior density. The joint distribution of an arbitrary

function value fk = f(uk) and the basis points f is revealed by the GP asfk
f

 ∼ N
0,

 k(uk, uk) K(uk,u
f )

K(uf , uk) K(uf ,uf )

 . (6.2)
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Then, by the standard GP regression equations we can immediately offer the follow-

ing,

p(fk|f) = N (fk;H
f
kf , R

f
k), (6.3a)

p(f) = N (0, P f
0 ), (6.3b)

where

H f
k = H f (uk) = K(uk,u

f )[K(uf ,uf )]−1, (6.3c)

Rf
k = Rf (uk) = k(uk, uk)−K(uk,u

f )[K(uf ,uf )]−1K(uf , uk), (6.3d)

P f
0 = K(uf ,uf ). (6.3e)

Regarding (6.3), we can write the equivalent state-space model, which then can be

used within a Kalman filter for recursive inference, [26].

fk+1 = fk, (6.4a)

fk = H f
k fk + efk, efk ∼ N (0, Rf

k), (6.4b)

f0 ∼ N (0, P f
0 ), (6.4c)

where fk is defined as the latent function values evaluated at the predetermined inputs,

i.e., fk , f .

6.2.4 State-Space Model

We construct a state-space model considering both the kinematics and the extent of

the object. The state vector is defined as xk ,
[
x̄>k f>k

]>, where x̄k denotes the

kinematic variables consisting of the object position ck, orientation ψk, and the cor-

responding time derivatives, x∗k, i.e., x̄k ,
[
c>k ψk x∗k

>]>; fk indicates the parameter-

ized description of the potential function.

6.2.4.1 Measurement Model

In this section, we derive a measurement model that reveals the connection between

the state variables and the observations.
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Yk = {yk,l}nkl=1 denotes the set of point measurements collected at time k. In this

study, we assume that a point measurement yk,l encapsulates two types of information:

(i) the detection point in space pk,l ∈ R2, (ii) the associated occupancy/free-space in-

formation ok,l. We designate ok,l as a binary-valued variable, i.e., ok,l ∈ {−1,+1},
in accordance with the definition of the potential function in (6.1). In particular, ok,l

takes the value of +1 for occupancy measurements, or it is−1 for free-space measure-

ments. Consequently, a single measurement is specified by the tuple yk,l = (pk,l, ok,l).

In practice, the considered measurements can be generated by various sensors modal-

ities, such as laser range scanners, depth cameras, or by processing the images cap-

tured by monocular cameras. In all these cases, the measurements provide some

noisy observations of the true source points that give rise to the measurements. In this

respect, we relate ok,l to the underlying potential function evaluated at pLk,l as in

ok,l = f(pLk,l(ck, ψk)) + ēk,l, ēk,l ∼ N (0, R) (6.5)

ēk,l is assumed to be zero-mean Gaussian measurement noise with covariance R, and

the expression for pLk,l is given as

pLk,l(ck, ψk) = R(ψk)(pk,l − ck). (6.6)

where pk,l is the corresponding point resolved in the global coordinate frame, and

R(ψk) is the rotation matrix between the global and the local frames defined as

R(ψk) =

 cos(ψk) sin(ψk)

− sin(ψk) cos(ψk)

 . (6.7)

Then, by plugging in the GP representation of the potential function, we can rewrite

the measurement equation as

0 = −ok,l +H f
(
pLk,l(ck, ψk)

)
fk︸ ︷︷ ︸

=hk,l(xk,yk,l)

+ efk,l + ēk,l︸ ︷︷ ︸
=ek,l

= hk,l(xk, yk,l) + ek,l, ek,l ∼ N (0, Rk,l). (6.8a)

where

Rk,l = Rf
k,l +R. (6.8b)
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We illustrate the variables used in the measurement model in Fig. 6.1. Notice that

this is a nonlinear implicit model, where the measurement can not be explicitly writ-

ten as function of the state variables and the noise term. This type of models have

been commonly used in the literature to derive recursive Bayesian filters for various

applications, such as localization and tracking [12, 65, 31, 29].

L

c
k

p
k,l

yG

xG

xL

yL

pk,l

ψ
k

Figure 6.1: An illustration of the variables included in the measurement model. The

red circle indicates the point measurement. The dashed curve denotes the object of

interest.

6.2.4.2 Process Model

To complete the definition of the state-space model, we formulate the time evolution

of the state vector by the following process model.

xk+1 = Fxk + wk, wk ∼ N (0, Qk), (6.9)

where F is the system matrix, and wk is the process noise, which is assumed to be

Gaussian with zero mean and covariance Qk. Suppose that the dynamics of the kine-

matic and the extent variables do not interact with each other, then we can partition

the process model as

F =

F̄ 0

0 F f

 , Qk =

Q̄ 0

0 Qf
k

 . (6.10)
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The formulation does not put any restriction on the selection of the process model.

We hereby employ the nearly constant velocity model for the object kinematics, i.e.,

F̄ =

1 T

0 1

⊗ I3, Q̄ =

T3 3 T
2

2

T
2

2
T

⊗

σ2
c 0 0

0 σ2
c 0

0 0 σ2
ψ

 , (6.11)

where σ2
c and σ2

ψ are the process noise variances for the position and the orientation,

respectively; T is the sampling time; and ⊗ denotes the Kronecker product.

For the object extent, we utilize the following dynamic model, which is known to at-

tain the predicted distribution with maximum entropy for unknown and slowly vary-

ing processes [59, Therorem 1],

F f = I, Qf
k =

(
λ−1 − 1

)
P f
k|k, (6.12)

where I indicates the identity matrix, P f
k|k is the covariance of the estimated extent.

Notice that this model basically scales up the prediction covariance as P f
k+1|k =

λ−1P f
k|k for λ < 1, while the mean of the prediction is the same with that of the

estimated density.

6.2.4.3 Inference

In this section, we will present an effective inference method by relying on the state-

space model developed earlier. Particularly, the objective is to propose a method

that recursively computes the posterior distribution of the state vector. To this end,

we will utilize an extended Kalman filter (EKF) considering the nonlinearities in the

measurement model.

To incorporate multiple measurements {yk,l}nkl=1 available at time k, we first form a

measurement vector by concatenating the individual measurements,

yk = [yk,1, . . . , yk,nk ]
> . (6.13)

Then, the corresponding measurement model can directly be written as

0 = h(xk,yk) + ek, ek ∼ N (0, Rk), (6.14)
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where

h(xk,yk) = [h(xk, yk,1), . . . , h(xk, yk,nk)]
> , (6.15a)

yk =
[
y>k,1, . . . , y

>
k,nk

]>
, (6.15b)

ek =
[
e>k,1, . . . , e

>
k,nk

]>
, (6.15c)

Rk = blkdiag(Rk,1, . . . , Rk,nk), (6.15d)

The given covariance matrix R is in block diagonal form, which follows from the

assumption that the measurement noise terms are mutually independent.

In consequence, we obtain the following the state-space model by defining a Gaussian

prior density for the state vector,

xk+1 = Fxk + wk, wk ∼ N (0, Qk),

0 = h(xk,yk) + ek, ek ∼ N (0, Rk), (6.16)

x0 ∼ N (µ0, P0).

The EKF regards this model to compute the posterior distribution by processing the

measurements collected at time k. The complete details of the filtering equations are

given below.

• Measurement update equations:

x̂k|k = x̂k|k−1 +Kk(0− ŷk|k−1) (6.17a)

Pk|k = Pk|k−1 +KkHkPk|k−1 (6.17b)

where

ŷk|k−1 = hk,l(x̂k|k−1) (6.17c)

Kk = Pk|k−1H
>
k S
−1
k (6.17d)

Sk = HkPk|k−1H
>
k +Rk (6.17e)

Hk =
d

dxk
hk,l(xk)|xk=x̂k|k−1

(6.17f)

• Time update equations:

x̂k+1|k = F x̂k|k, (6.18a)

Pk+1|k = FPk|kF
> +Q. (6.18b)
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6.2.5 Disclosing the Object Extent

Our model relies on the potential function representation that inherently character-

izes the underlying object extent, where the proposed inference scheme provides a

complete probabilistic description with the estimated mean and the associated covari-

ance. That being said, converting this description to an explicit definition of the object

extent might be of particular interest for various purposes. For example, a detailed

extent estimate might prove invaluable in path planning for an autonomous vehicle

aiming to avoid obstacles, or for efficient grasp planning of a robot arm.

Let us define a binary class indicator c∗ for the query point u∗ ∈ R2 such that c∗ = 1

denotes that u∗ is contained within the object extent, i.e., u∗ ∈ S; while c∗ = 0 indi-

cates that u∗ is a free-space point. To compute the corresponding class probabilities

conditioned on the measurements collected up to time k, we will basically regard

the probability density of the potential function at u∗ conditioned on the acquired

measurements, i.e., p(f∗|Y1:k) where f∗ , f(u∗). To this end, we can immediately

write

f∗ = H f
∗fk + ef , ef ∼ N (0, Rf ) (6.19)

where H f
∗ , H f (u∗), and using the posterior of the potential function representation

computed by the EKF, p(fk|Y1:k) = N (µf
k|k, P

f
k|k), we obtain

p(f∗|Y1:k) = N (µ∗, σ
2
∗),

where µ∗ = H f
∗µ

f
k|k, σ

2
∗ = H f

∗P
f
k|kH

f
∗
>

+Rf .
(6.20)

Subsequently, we follow the standard approach to obtain the class probabilities by

squashing the estimate through a response function, [42, Ch. 3]. For the response

function, we utilize the following cumulative density function (cdf) of the standart

normal distribution, which in turn leads to a so-called probabilistic least-squares clas-

sifier [42, Ch. 6.5.1].

p (c∗ = 1 | Y1:k) = Φ

(
αµ∗ + β√
1 + α2σ2

∗

)
(6.21)

Φ is the cdf of the standard normal distribution; and it is used as a sigmoid func-

tion with parameters α and β. Accordingly, we can calculate the other class’ prob-
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ability as p (c∗ = 0 | Y1:k) = 1− p (c∗ = 1 | Y1:k). Finally, after the class probabil-

ities are computed, it is possible to recognize the query point as one of the classes

{extent, free-space, unknown} by simply specifying some threshold values.

6.3 Simulation Results

In this section, we demonstrate the performance of the proposed method via sim-

ulation experiments. We investigate three different scenarios with different motion

patters and sensor characteristics.

In the first experiment, the object of interest is static throughout the scenario. At each

time instant, we uniformly sample the test environment and collect 20 measurements

from the surface of the object and 50 measurements from the surrounding free-space

region. The detection points of the measurements are corrupted by i.i.d. Gaussian

noise with covariance 0.032I2 m
2. The sampling time is used as T = 0.1 second, the

total duration of the experiment is 10 seconds. We examine three different type of

extents, i.e., a C-shape, a T-shape, and another one containing disconnected subparts.

The tracker maintains the extent representation over 1024 basis points, which are

equidistantly located on a grid over [−3, 3] m× [−3, 3] m. The representative results

obtained at four time instants are shown in Fig. 6.2.

In the second experiment, we investigate an object moving along a linear path at a

constant speed of 1 m/s. In this case, the observations are simulated to be acquired

by a two-dimensional laser range scanner. The sampling time is used as T = 0.1 s,

the total duration of the experiment is 10 s. At each instant, the sensor emits 200 laser

beams and reports the detection points of the ones reflected from the contour of the

object. Additionally, for each each laser beam we produce 3 free-space measurements

by randomly sampling the free section of the beam. All measurements are perturbed

by i.i.d. Gaussian noise with covariance 0.012I2 m
2. The results are exhibited for six

distinct time instants in Fig. 6.2.

In the third experiment, we consider an object performing rotational motion. The

measurements are simulated to be generated by a two-dimensional laser range scan-

ner, whose characteristics are identical with the one utilized in the second experiment.
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The results are reported in Fig. 6.4.

In all cases, the proposed method satisfactorily estimates the kinematic variables of

the objects and learns the unknown potential function. In the first experiment, the in-

formation provided by the uniform measurements is successfully incorporated, hence

at the end of the scenario, the uncertainty over the complete region is appropriately

reduced, and the latent extent can easily be distinguished from the estimated potential

function values. In the second experiment, due to the characteristics of the sensor,

some sections of the object are always self-occluded in accordance with the object-

sensor geometry. As the object moves along the trajectory, some of the previously

unseen parts are explored by the laser beams, and the algorithm properly decreases

the uncertainty on the observed portion while a larger uncertainty is associated with

the unobserved regions. Notice that as the measurements are exclusively generated

by the object contour in this case, the interior points of the extent remain mostly un-

certain at the end of the experiment. Furthermore, the third experiment shows that

the developed algorithm can successfully estimate the varying orientation of the ob-

ject. As the object rotates, the method learns the underlying non-convex shape and

appropriately decreases the uncertainty of the observed regions.
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k = 1 k = 3 k = 10 k = 100

Figure 6.2: Results obtained at some representative time instants k = {1, 3, 10, 100}
during the first simulation experiment. The true extent of the object is visualized

by the solid curve. The estimated center and the orientation are indicated by the

yellow plus sign and the straight line, respectively. For the first instant, measurements

originated from the extent and the free-space are shown by red and blue cross signs,

respectively.
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k = 1 k = 10 k = 50k = 25 k = 75 k = 100

Figure 6.3: Results obtained at some representative time instants

k = {1, 10, 25, 50, 75, 100} during the second simulation experiment. The true

extent of the object is visualized by the solid curve. The estimated center and the

orientation are indicated by the yellow plus sign and the straight line, respectively.

For the first instant, measurements originated from the extent and the free-space are

shown by red and blue cross signs, respectively.
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k = 1 k = 75 k = 150 k = 300

(a)

True orientation
Estimated orientation

(b)

Figure 6.4: Results obtained during the third simulation experiment. In Fig.

(a) the outputs of the tracker are illustrated at some representative time instants

k = {1, 75, 150, 300}. The true extent of the object is visualized by the solid curve.

The estimated center and the orientation are indicated by the yellow plus sign and

the straight line, respectively. For the first instant, measurements originated from the

extent and the free-space are shown by red and blue cross signs, respectively. In Fig.

(b) the true and the estimated orientation are depicted.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we consider the challenging task of tracking dynamic objects using

point cloud measurements. In recent years, there have been many attempts to con-

struct flexible models to tackle the extended object tracking (EOT) problem. In this

context, the Gaussian process-based extended object tracking (GPEOT) framework

has attracted a lot of attention in the research community. This approach provides a

convenient basis to recursively estimate the unknown target extent together with the

kinematic state by processing point cloud data. In this work, we have contributed

to the GPEOT framework by presenting several improvements for increased efficacy

and efficiency. Our main contributions can be listed as follows.

• We propose an algorithm that can simultaneously track and learn latent shapes

of 3D objects by processing 3D point cloud data. To this end, we describe the

latent 3D extent by a radial function, which is then modeled by a GP. This for-

mulation naturally accounts for the correlation structure within the extent, and

it is highly flexible to express and learn a wide range of shapes. We establish

an EOT algorithm that jointly estimates an approximate description of the GP

model together with the object kinematics, including position, orientation, and

velocities. Additionally, to further reduce the computational complexity, an al-

ternative formulation is offered by utilizing plane projections. The resulting

methods are demonstrated to perform successfully on simulated and real data.

• We study the Bayesian filtering problem for the GPEOT models and formu-

late an approximate solution based on variational Bayes techniques. The re-

sulting algorithm effectively computes approximate posterior densities of the

kinematic and the extent states. We demonstrate that the suggested algorithm

141



leads to improved tracking performance on simulated and real data. It is shown

to be particularly robust against moderate or high levels of uncertainty included

in the model.

• We suggest to utilize an alternative probabilistic model for the object extent

that leads GPEOT algorithms with improved computational characteristics. In

particular, a spectral-domain approximation for the underlying GP model is

adopted to represent the extent. The approximation offers a basis function ex-

pansion for the GP model, where the unknown weights of the functions essen-

tially form a parametrized description of the extent. Based on this formulation,

we develop EOT algorithms for 2D and 3D problems. Through simulation

experiments, we show that the resulting trackers significantly reduce the com-

putational load and provide more satisfactory performance with a small number

of extent variables.

• Existing algorithms in the GPEOT framework assume that the object of inter-

est is star-convex. While this assumption does not introduce a severe restric-

tion and leads to sufficiently flexible methods for many tracking applications,

we focused on further extending the representation capabilities of the exist-

ing approaches. In this pursuit, we suggest to describe the unknown extent

by a potential function, which is modeled by a GP. Then, a state-space model

consisting of both the kinematic variables and an approximate description of

the underlying GP model is developed. The resulting tracker enables tracking

arbitrarily-shaped objects while learning their latent extent. We illustrate the

performance of the proposed algorithm through simulation experiments.

7.0.1 Future Work

The utilization of GPs in the context of EOT leads to promising results as demon-

strated in this thesis work. The proposed GPEOT algorithms are built on approxi-

mations of the original GP model, realizing inference for a finite number of inducing

variables. For example, the methods making use of inducing points maintain the ex-

tent estimates at some inducing inputs, which are equidistantly located and remain

fixed at their positions during the entire operation of the algorithm. In their compre-
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hensive EOT literature review [3], Granström et al. brings up this issue and criticizes

the method by “..., the basis points [utilized in the GP representation] are uniformly

distributed over the angle interval, i.e., a separation of the basis points into points

for coarse and fine shape features is not possible." In this regard, we believe that fur-

ther work can be conducted to establish a more flexible GP approximation, which can

properly adjust the locations (and potentially the number) of the inducing points in

an online manner. In this line of research, there will be two primary objectives: (i) to

obtain a (possibly) closed form solution that adapts the locations of inducing points

in an online fashion and recursively updates the posterior distribution at these points;

(ii) to make use of this method in the proposed EOT algorithms to further enhance

their flexibility.

Furthermore, along with precise tracking ability, the identification of the elements

in the workspace is also a vital component of a perception system. Accurate label

annotations substantially contribute to the robustness of an intelligent system since

this information enables anticipation of future behavior and making well-informed

plans accordingly. Notice that although raw LIDAR measurements are generally able

to capture significant details about the underlying object surface, these impose severe

problems for classification in online scenarios that are accompanied by sparsity issues

due to increasing distance, change of the vantage point, and occlusions. With these

in mind, the outputs of the GPEOT algorithms have been utilized for classification in

2D settings, e.g., [30, 54]. Similarly, we plan to make use of 3D extent estimates of

the proposed algorithms for object classification purposes.
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APPENDIX A

A.1 Recursive Gaussian Process Regression for Arbitrary Mean Functions

In this appendix, we will give the equations of recursive GP regression for models

with arbitrary mean functions, i.e., f(u) ∼ GP(µ(u), k(u, u′)) where there is no re-

striction on µ(·). Based on this model, the joint distribution of a measurement, mk,

and the latent function values, f , is described bymk

f

 ∼ N
µ(uk)

µ(uf )

 ,
k(uk, uk) +R K(uk,u

f )

K(uf , uk) K(uf ,uf )

 .

Then, the conditional density of mk becomes, [42, Ch. 2.7]

p(mk|f) = N (mk;H
f
kf + c(uk), R

f
k), (A.1a)

where

c(uk) = µ(uk)−H f
kµ(uf ), (A.1b)

and the definitions of H f
k and Rf

k remain the same as given in (3.9)

H f
k = H f (uk) = K(uk,u

f )[K(uf ,uf )]−1,

Rf
k = Rf (uk) = k(uk, uk) +R−K(uk,u

f )[K(uf ,uf )]−1K(uf , uk).

Similarly to the zero-mean case, (A.1) allows us to construct a state-space model,

which may be regarded by a Kalman filter for recursive inference. The sole difference

of the resulting model from the one given in (2.43) is that the measurement model now

includes an additional term c(uk) defined in (A.1b) as

mk = H f
k fk + c(uk) + efk, efk ∼ N (0, Rf

k), (A.2)
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where fk = f .

A.2 Extended Kalman Filter and Its Extensions

Some of the algorithms proposed in this thesis and some methods regarded for com-

parison realize inference of the state vector, x, by an extended Kalman filter (EKF)

and its extensions. In this appendix, we reveal the details of these inference mecha-

nisms.

A.2.1 Standard Extended Kalman Filtering Equations

By processing the sequentially available measurements y1:k, the filter recursively up-

dates the estimated mean and associated covariance, which are initialized as x̂0|−1 =

µ0, P0|−1 = P0.

A.2.1.1 Time Update

The filter computes the predicted distribution p(xk+1|y1:k) = N (xk+1; x̂k+1|k, Pk+1|k)

in the time update step as in

x̂k+1|k = Fkx̂k|k, (A.3a)

Pk+1|k = FkPk|kF
>
k +Qk. (A.3b)

A.2.1.2 Measurement Update

The equations for the measurement update, which essentially compute the posterior

distribution at time k, i.e., p(xk|y1:k) = N (xk; x̂k|k, Pk|k), are given below.

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (A.4a)

Pk|k = Pk|k−1 −KkHkPk|k−1 (A.4b)
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where

ŷk|k−1 = h(x̂k|k−1) (A.4c)

Kk = Pk|k−1H
>
k S
−1
k (A.4d)

Sk = HkPk|k−1H
>
k +Rk (A.4e)

Hk =
d

dxk
h(xk)|xk=x̂k|k−1

(A.4f)

A.2.2 Extended Kalman Filtering Using Pseudo Measurements

The algorithms introduced in Ch. 3, perform inference by an EKF. However, as the

pseudo-measurements, indicated by the zero vector in (A.5a), are used in the formu-

lation of the mentioned measurement models, the implementation a dedicated EKF

slightly differs from a standard EKF.

The estimate and the associated covariance are initialized as x̂0|−1 = µ0, P0|−1 = P0.

A.2.2.1 Measurement Update

The equations for the measurement update are as follows.

x̂k|k = x̂k|k−1 +Kk(0− ŷk|k−1) (A.5a)

Pk|k = Pk|k−1 −KkHkPk|k−1 (A.5b)

where

ŷk|k−1 = hk(yk, x̂k|k−1) (A.5c)

Kk = Pk|k−1H
>
k S
−1
k (A.5d)

Sk = HkPk|k−1H
>
k +Rk (A.5e)

Hk =
d

dxk
hk(yk,xk)|xk=x̂k|k−1

(A.5f)
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A.2.2.2 Time Update

The time update is performed in a standard manner as in

x̂k+1|k = Fkx̂k|k,

Pk+1|k = FkPk|kF
>
k +Qk.

A.2.3 Iterated Extended Kalman Filter Equations

In Ch. 5.6.2.1, a variant of the proposed 2D tracker is implemented by employing

an iterated extended Kalman filter (IEKF). While the time update step of IEKF is

identical with that of EKF, the measurement update step slightly differs. At each time

instant k, IEKF performs multiple iterations for i = 0, ..., I − 1 as in the following,

x̂k,i+1 = x̂k|k−1 +Kk,i(yk − ŷk,i) , (A.7a)

where

ŷk,i = h(x̂k,i) +Hk,i(x̂k|k−1 − x̂k,i) , (A.7b)

Kk,i = Pk|k−1H
>
k,iS

−1
k,i , (A.7c)

Sk,i = Hk,iPk|k−1H
>
k,i +Rk , (A.7d)

Hk,i =
d

dxk
h(xk)|xk=x̂k,i , (A.7e)

and the initial iterate is determined as

x̂k,0 = x̂k|k−1 . (A.7f)

At the end of the iterations, the posterior mean and covariance are obtained as follows.

x̂k|k = x̂k,I (A.8a)

Pk|k = Pk|k−1 −Kk,IHk,IPk|k−1 (A.8b)

A.3 Update of the Reference Quaternion

As presented in Ch. 3.5.1.2, the orientation of the 3D object is described by a refer-

ence quaternion, qref, and a deviation vector, a. For maintaining this description,
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we follow the standard approach provided within the framework of MEKF, e.g.,

[60, 61, 62].

In particular, suppose that at time k, we have the reference quaternion qref,k, and âk|k

represents the estimated deviation vector, which is computed by the measurement

update of the filter. We first update the reference quaternion in accordance with (3.28),

qref,k+1 = δq(âk|k)� qref,k, (A.9)

where � denotes the quaternion product defined in (3.26). Subsequently, the devia-

tion vector is reset to zero as

âk|k = 0. (A.10)

Please note that the covariance of the deviation vector is kept unchanged, as suggested

in [61]. This approach is referred to as the zero-order approximation, [102], and it

enables effective estimation of the orientation, as demonstrated by the comprehensive

performance analysis. For a detailed investigation of the reference orientation update

mechanisms, interested readers can refer to [102] and the references therein.

A.4 Details of the Matrices Used in the Rotational Motion Model

In Ch. 3.5.1.2, the state-space model for describing the dynamics of the rotational

motion is given by (3.36). In this appendix, we reveal the appendix of the matrices

used in the model.

F r
k = exp(ArkT )

=

exp(T
2
[−ω̂k|k×]) T exp(T

2
[−ω̂k|k×])

03 I3

 (A.11a)

where

exp(
T

2
[−ω̂k|k×]) = I3 +

sin(T
2
|ω̂k|k|)
|ω̂k|k|

[−ω̂k|k×]

+
1− cos(T

2
|ω̂k|k|)

|ω̂k|k|2
[−ω̂k|k×]2 (A.11b)
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| · | indicates the Euclidean norm.

Gk =

(∫ T

0

exp(Arkτ)dτ

)
B

=

∫ T0 exp( τ
2
[−ω̂k|k×])dτ

∫ T
0
τ exp( τ

2
[−ω̂k|k×])dτ

03

∫ T
0
I3dτ

B (A.12a)

where∫ T

0

exp(
τ

2
[−ω̂k|k×])dτ = TI3 +

2(1− cos(T
2
|ω̂k|k|))

|ω̂k|k|2
[−ω̂k|k×]

+
T − 2

|ω̂k|k|
sin(T

2
|ω̂k|k|)

|ω̂k|k|2
[−ω̂k|k×]2 (A.12b)

∫ T

0

τ exp(
τ

2
[−ω̂k|k×])dτ =

T 2

2
I3

+
1

|ω̂k|k|2

(
4

|ω̂k|k|
sin(

T

2
|ω̂k|k|)− 2T cos(

T

2
|ω̂k|k|)

)
[−ω̂k|k×]

+
1

|ω̂k|k|2

(
T 2

2
+

2T

|ω̂k|k|
sin(

T

2
|ω̂k|k|)

+
4

|ω̂k|k|2
(cos(

T

2
|ω̂k|k|)− 1)

)
[−ω̂k|k×]2 (A.12c)

∫ T

0

I3dτ = TI3 (A.12d)

A.5 The Unscented Transformation

In Chapter 4.2.1 of this thesis, the following intractable expectations are approxi-

mately computed by the unscented transformation as

E
q
(i+1)
x

[H̃(x̄k)>R−1
k H̃(x̄k)︸ ︷︷ ︸

g1(x̄k)

] ≈
M∑
j=0

πjg1(x̄jk)

E
q
(i+1)
x

[H̃(x̄k)>R−1
k (yk − ck)︸ ︷︷ ︸

g2(x̄k)

] ≈
M∑
j=0

πjg2(x̄jk),
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where {x̄jk}Mj=0 and {πj}Mj=0 denote the sigma-points and the associated weights, and

q
(i+1)
x (x̄k) is the variational iterate for the kinematic state defined as

q
(i+1)
x (x̄k) = N (µ

(i+1)
x , P

(i+1)
x ).

In the literature, there are various methods to select the sigma-points and their weights.

In this study, we follow the standard approach in [30] and specify

x̄jk ,


µ

(i+1)
x , j = 1

µ
(i+1)
x +

[√
m

1−π̄P
(i+1)
x

]
:,j−1

, 2 ≤ j ≤ m+ 1

µ
(i+1)
x −

[√
m

1−π̄P
(i+1)
x

]
:,j−m−1

, m+ 2 ≤ j ≤ 2m+ 1

,

πj ,

 π̄, j = 1

1−π̄
2m
, 2 ≤ j ≤ 2m+ 1

,

where m is dimension of the kinematic state vector, [·]:,j denotes the j th column of

the matrix argument,
√
· indicates the matrix square root operation, and we choose

π̄ = 1
2m+1

.

A.6 Measurement Model of the Inducing Point-based GPEOT

In the existing GPEOT approaches, which rely on an inducing point approximation

for the underlying GP model, a single point measurement yk,l is formulated as [26]

yk,l = hl (xk) + ek,l, ek,l ∼ N (0, Rk,l), (A.13)

where

hl (xk) = ck + pl (ck)H
f
k,l fk , (A.14a)

H f
k,l = H f

(
θLk,l
)

= k(θLk,l,θ
f) K(θf,θf)−1, (A.14b)

Rk,l = pl (ck)R
f
k,l pl (ck)

> +R , (A.14c)

Rf
k,l = Rf

(
θLk,l
)

= k(θLk,l, θ
L
k,l)−H f

k,l k(θf, θLk,l) , (A.14d)

pl (ck) =
[
cos(θG

k,l) sin(θG
k,l)
]>
, (A.14e)

θLk,l = θG
k,l − ψk , (A.14f)

θGk,l = ∠(yk,l − ck) , (A.14g)

(A.14h)
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where θf ,
[
θf

1 . . . θ
f
m

]> denotes the inducing vector consisting of the input angles.

The formulation is based on a GP model for the radial function, i.e.,

f(θ) ∼ GP(0, k(θ, θ′)). The GP model is approximately expressed for the function

values f ,
[
f(θf

1) . . . f(θf
m)
]> at the inducing inputs. The unified state vector xk in-

cludes both the kinematic and the extent state, i.e., xk =
[
x̄>k f>k

]>
. The i-j th en-

try of the covariance matrix is K(θf,θf)ij = k(θf
i, θ

f
j). The definitions of H f (·) and

Rf (·) follow directly from the standard GP regression formulae.
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