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ABSTRACT

PRIORBOX: LONG-TAIL CALIBRATION WITH PRIORS

DURSUN, ABDULLAH
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Ramazan Gökberk Cinbiş

AUGUST 2022, 48 pages

Deep learning brought considerable improvements to computer vision, especially in

recognition problems such as image classification, object detection, semantic segmen-

tation, instance segmentation, and keypoint detection. These problems have critical

applications in the real world, especially in the search, social media, and surveillance

domains. Unfortunately, there is still a remarkable accuracy gap between research

datasets and real-world deployments caused by data distribution disparity. In par-

ticular, most detection methods have a noticeable accuracy drop on datasets with

long-tailed distributions due to the bias towards frequent classes.

This thesis describes PriorBox, which learns calibration factors for long-tail datasets

utilizing class distributions and a simple convolutional neural network. Since Prior-

Box uses easy-to-collect distributional and spatial priors, it does not introduce any

data collection steps. Furthermore, the proposed method does not include typical

class-rebalancing and loss manipulation strategies and works well with the existing

object detection and instance segmentation models. Simple distributional class pri-

ors, such as the number of instances, size and aspect ratio are shown to be helpful for

improving detection results on rare classes without a significant impact on the infer-
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ence speed. We thoroughly evaluate the approach on the LVIS dataset using the Mask

R-CNN baseline on long-tail object detection and instance segmentation tasks.

Keywords: long-tail detection, long-tail segmentation, long-tail calibration, class im-

balanced dataset
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ÖZ

PRIORBOX: ÖN BİLGİ İLE DENGESİZ VERİ KALİBRASYONU

DURSUN, ABDULLAH
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ramazan Gökberk Cinbiş

Ağustos 2022 , 48 sayfa

Derin öğrenme görsel sınıflandırma, nesne tespiti, anlamsal bölütleme, nesne bölüt-

leme ve kilit nokta tespiti gibi zorlu problemlere katkılarıyla bilgisayarlı görü alanına

büyük yenilikler getirmiştir. Bu problemler arama motorları, sosyal medya ve askeri

uygulamalarda önemli bir yer almaktadır. Maalesef günümüzde araştırma ve gündelik

hayat uygulamalarındaki başarımlar arasında veri dağılım ayrımından kaynaklı ciddi

farklar bulunmaktadır. Dengesiz veri setlerindeki çok örnekli sınıflara olan eğilimden

dolayı çoğu nesne tespit yöntemi dikkate değer başarı düşüşüne uğramaktadır.

Bu tez dengesiz veri setleri için sınıf dağılımı ön bilgisi ile basit bir evrişimli sinir ağı

kullanarak kalibrasyon çarpanı bulan PriorBox yöntemini önermektedir. PriorBox ha-

zırlaması kolay dağılımsal ve uzamsal ön bilgileri kullandığı için ekstra veri toplama

aşaması gerektirmemektedir. Önerilen yöntem yaygın sınıf dengeleme ve hata mani-

pülasyon yöntemlerini kullanmayıp var olan nesne tespit ve bölütleme çalışmalarıyla

uyumludur. Örnek sayısı, boyut ve en boy oranı gibi basit ön bilgiler az örnekli sı-

nıfların tespitini çıkarım hızını değiştirmeden iyileştirebilmektedir. LVIS veri seti ve

Mask R-CNN modeliyle dengesiz veri setlerinde nesne tespiti ve bölütleme problem-
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leri üzerinde detaylı incelemeler yapılmıştır.

Anahtar Kelimeler: dengesiz veri setlerinde nesne tespiti, dengesiz veri setlerinde

nesne bölütleme, dengesiz veri kalibrasyonu, dengesiz veri setleri
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Object detection locates instances in an image or video that belong to the predefined

categories. Detecting objects accurately and quickly allows building applications in

domains like self-driving cars, surveillance, and search. Recent advancements in

deep learning methods bring detectors with higher accuracies with faster predictions.

However, these methods still have limitations, especially in learning categories with

fewer samples.

Imbalanced datasets lead to learning disparity between frequent and rare classes.

Since some categories are more common in the real world, deep learning models per-

form suboptimally detecting instances with limited samples. Following the taxonomy

by Oksuz et al. [1], foreground-foreground class imbalance limits the generalization

potential of the computer vision methods.

There are two prominent approaches to training detectors with long-tailed datasets.

Re-sampling methods attempt to reduce the class imbalance effect by oversampling

and under-sampling techniques [2, 3, 4]. However, there is a trade-off between differ-

ent sampling procedures; oversampling causes overfitting for rare classes and under-

sampling results in under-represented frequent classes. Re-weighting methods assign

class and sample-level weights (generally higher weights to rare ones) in loss func-

tions during training to overcome the class imbalance [5, 6, 7, 8]. Increasing weights

for classes with fewer samples accelerates their learning in the networks. Unfortu-

nately, these methods typically introduce data distribution-dependent hyperparame-

ters to tune [6, 8].
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1.2 Proposed Method

Since data distribution introduces a strong bias towards classes with a large number

of samples, utilizing the prior information to calibrate the prediction scores improves

the detection and segmentation tasks on both frequent and rare categories.

Figure 1.1: Proposed method.

The proposed method, PriorBox, works on the classification head of the detection

networks and calibrates their outputs using easy-to-collect distributional and spatial

priors and a simple 3-layer convolutional network without modifying the data sam-

pling and loss calculation procedures (Figure 1.1).

This thesis work integrates image count, instance count, size count, and aspect ra-

tio priors into the well-known Mask R-CNN [9] architecture without additional data

collection and grouping efforts. Since the method doesn’t depend on the specific

architectures and loss functions, it could be seen as a general calibration framework.

1.3 The Outline of the Thesis

Chapter 1 introduces the problem, its importance, existing approaches, and the pro-

posed method. Chapter 2 demonstrates the background information about object de-

tection and alternative methods to the long-tail recognition problem. Chapter 3 ex-

plains how the prior box is constructed and how calibration factors are calculated and

applied. Chapter 4 presents the ablation studies, their results, and comparisons with

the existing methods. Finally, Chapter 5 summarizes PriorBox and potential future

work.
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CHAPTER 2

LITERATURE REVIEW

Convolutional neural networks (CNNs) are the building blocks of computer vision re-

search. Their composable nature allows neural networks to learn hierarchical knowl-

edge from low-level features to high-level concepts. They are commonly used in

image classification, object detection, semantic segmentation, instance segmentation,

and key-point detection tasks.

This chapter will briefly introduce the existing object detection and instance segmen-

tation models to put the proposed model into historical context. Section 2.1 summa-

rizes two-stage object detection models. Section 2.2 discusses recent work on long-

tail recognition problems. Section 2.3 presents context-based rescoring methods.

2.1 Object Detection

Object detection models localize object instances of predefined classes in an im-

age. After Krizhevsky et al. [10] achieved remarkable classification results in the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [11], CNNs with

deep neural architecture received noticeable attention among the object detection re-

searchers.

In this thesis, we focus on rescoring the outputs from the classification branch of two-

stage detection methods, especially R-CNN variants, as they are commonly adopted

as baselines in long-tail recognition works.
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2.1.1 R-CNN: Regions with CNN features

R-CNN [4] introduced by Girshick et al. is a multi-stage object detection model

that provides a strong baseline for several state-of-the-art follow-up works. For each

image, the R-CNN model creates approximately 2000 class-independent object pro-

posals, computes fixed-length features from them, and classifies the features with

class-specific linear support vector machines (SVMs).

Figure 2.1: R-CNN model. Taken from R-CNN: Regions with CNN features [4].

R-CNN utilizes Selective Search [12] to generate object proposals and extracts 4096-

dimensional features through pre-trained classification model1. After the class-specific

SVMs compute the class scores, non-maximum suppression is applied for each class

separately to eliminate the overlapping regions. Only regions with more than 0.3 in-

tersection over union (IoU) overlap with ground truths considered positive examples.

Girshick et al. [4] discover that fine-tuning pre-trained classification models with

detection datasets boost the mean average precision score. Also, utilizing larger clas-

sification CNN architectures, switching the 7-layer AlexNet [10] with 16-layer VGG

[13] improved the mAP even more.

Furthermore, the authors attempted to apply bounding-box regression to object pro-

posals from Selective Search. Integrating class-specific bounding-box regressors that

exploit features extracted from the CNN provided another improvement.

1 Ablation study contains different architectures pre-trained on ILSVRC2012 classification dataset [11].
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2.1.2 Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recog-

nition

SPP-net [14] published by He et al. brings significant speed improvements over R-

CNN by computing the input image’s feature map only once.

Even though CNNs can work on arbitrary-sized inputs (images or feature maps) and

preserve their aspect ratio, the input sizes are manipulated to ensure fixed-sized out-

puts are passed to the fully-connected layers. In other words, the inputs are adjusted

just to be consistent with the fully-connected layers.

He et al. [14] propose a spatial pyramid pooling (SPP) method to overcome the fixed-

size input requirement imposed by the fully-connected layers. Since SPP converts the

arbitrary-sized inputs into fixed-length vectors, deformations introduced by the oper-

ations like cropping and warping would be avoided. Placing the SPP layer between

the convolutional and fully-connected layers eliminates the need for pre-processing

the inputs.

Figure 2.2: Spatial Pyramid Pooling layer. Taken from SPP-net [14].

In theory, SPP would apply max-pooling to the channels of the feature map with the

arbitrary number of bins (16, 4, and 1 in Figure 2.2) and concatenate the outputs

to get a fixed-sized tensor without applying any transformations to the input. Since

GPUs are optimized to work on fixed-sized inputs, for each epoch, the authors resized

all training images to a fixed shape and performed the training. By using the same

weights among the epochs, SPP-net simulates input shape invariant training. Dur-

ing inference, spatial pyramid pooling is applied to arbitrary image shapes without

5



resizing.

Even though SPP-net [14] achieves comparable results to R-CNN [4], speed improve-

ments and bringing scale-invariant training/testing to deep neural networks are re-

markable contributions.

2.1.3 Fast R-CNN

Fast R-CNN [15], the second version of R-CNN [4], reduces training and inference

durations and improves detection accuracies remarkably. It also utilizes object pro-

posals from Selective Search [12].

Like SPP-net [14], Fast R-CNN computes the feature map of the input image once

and extracts the region of interests (RoIs) on the feature map for each object proposal.

Each region of interest is passed to the pooling layer to compute fixed-size features

for each object proposal. The pooling layer divides the region of interest into H x W

equal windows and applies max-pooling to the channels independently to extract a

fixed-sized tensor, which is passed to the fully-connected layers to compute the RoI

feature vector (Figure 2.3).

Figure 2.3: Fast R-CNN model. Taken from Fast R-CNN [15].

After one feature vector per object proposal is obtained, the network produces two

outputs for the multi-task loss:

1. Class probabilities2

2. Per-class bounding-box offsets

2 One extra class represents the catch-all background class.
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Fast R-CNN calculates log loss from class probabilities and L1 loss bounding box off-

sets and jointly optimizes their summation. During the optimization, the pre-trained

VGG [13] layers are also trained in an end-to-end fashion.

2.1.4 Faster R-CNN: Towards Real-Time Object Detection with Region Pro-

posal Networks

After the speed improvements from re-using image features among the object pro-

posals, region proposal methods (like Selective Search [12]) become the bottleneck.

Earlier work, [4], [14] and [15], utilized region proposals from fixed object pro-

posal methods and tried fine-tuning them through regression offsets. Even though

the bounding-box regression boosted the detection precision, it wasn’t using deep

CNNs’ potential entirely. Depending on external proposal generation methods limits

the learning capacity of the deep neural networks.

Figure 2.4: Shared convolution layers between Region Proposal Network and Fast

R-CNN. Taken from Faster R-CNN [16].

Faster R-CNN [16] introduces a Region Proposal Network (RPN) that utilizes the

same features as the detection network. RPN extracts region proposals with object-

ness scores and passes them to Fast R-CNN [15] detector without introducing a no-

ticeable speed penalty (Figure 2.4).
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Figure 2.5: Sliding-window in RPN. Taken from Faster R-CNN [16].

RPN slides n x n spatial window3 over the feature map extracted by the shared convo-

lutional network. As shown in Figure 2.5, 9 proposals called anchors are generated

with 3 scales and 3 aspect ratios for each sliding-window location. These multi-scale

anchors allow Faster R-CNN to learn efficiently with single-scale inputs.

2.1.5 Mask R-CNN

Mask R-CNN [9] brings instance segmentation capabilities by adding a third branch

to the Faster R-CNN [16] architecture. The mask branch predicts a pixel-to-pixel

mask for each RoI extracted from RPN [16] proposals.

Since pixel-to-pixel instance segmentation requires higher precision than bounding-

box-based object detection, He et al. introduced RoiAlign [9] to replace RoiPool

[15]. RoiAlign eliminates the quantization of the RoI boundaries and bins by utilizing

floating-number boundary coordinates and point locations as seen in Figure 2.6.

The mask branch predicts a separate mask for each class for each proposal by apply-

ing a per-pixel sigmoid. During training, the average cross-entropy loss is used. On

the other hand, only the class predicted by the classification branch is used during the

testing.

He et al. [9] show that Mask R-CNN outperforms state-of-the-art object detection and

instance segmentation methods on the COCO 2016 challenge. Moreover, replacing

3 n = 3 is used in the implementation.
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Figure 2.6: RoiAlign. Taken from Mask R-CNN [9]. Point values are calculated

through bilinear interpolation from the closest grid points.

RoiPool with RoiAlign alone in Faster-RCNN improves detection precision.

2.1.6 Summary

To sum up, R-CNN [4] proposed fine-tuning pre-defined classification models, SPP-

net [14] utilized region of interests on feature maps instead of object proposals, Fast

R-CNN [15] defined region of interest pooling, Faster R-CNN [16] introduced Re-

gion Proposal Network and Mask R-CNN [9] suggested per-pixel masks. These

models provided state-of-the-art results for object detection and built the backbone

for more complex problems like long-tail recognition and keypoint detection.

2.2 Long-tail Recognition

Naturally, some object classes exist more in the real world. We have more cars than

balloons, more cats than tigers, etc. Research datasets are influenced by this phe-

nomenon. Considering deep neural networks are sensitive to training data distribu-
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tions, they under-perform on samples from the rare classes.

An intuitive solution to the class imbalance problem is sampling rare classes more

than the frequent classes (or sampling frequent classes less than the rare ones). Unfor-

tunately, these solutions have the drawback of overfitting the rare classes and under-

fitting the frequent classes.

Another straightforward balancing idea is manipulating the network loss by assigning

weights to classes and boosting learning from the rare classes. Unfortunately, this

method brings new hyperparameters to tune.

2.2.1 LVIS: A Dataset for Large Vocabulary Instance Segmentation

Large Vocabulary Instance Segmentation (LVIS) [17] extracts a highly class imbal-

anced dataset from the COCO 2017 images. Having a large number of classes (1203

in LVIS v1) with imbalanced data distribution brings new challenges to object detec-

tion research.

Gupta et al. [17] propose a data resampling method named repeat factor sampling

(RFS) that resamples images with respect to the largest repeat factor of the classes

they contain. For each class c, repeat factor rc is defined as:

rc = max(1,
√

t/fc), (2.1)

where t is a hyperparameter that controls when the oversampling starts and fc is the

fraction of images that contains at least one instance of class c. Therefore, if a class

exists in a quarter of the threshold images (t = 0.001 and fc = 0.00025), those images

would be sampled at least twice. RFS successfully improves detection performance

on all class groups [17].

2.2.2 Class-Balanced Loss Based on Effective Number of Samples

Cui et al. [8] studied the data overlap problem in long-tailed distributions and pro-

posed a loss re-weighting method based on the effective number of samples, defined
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as:

En = (1− βn)/(1− β) (2.2)

β = (N − 1)/N, (2.3)

where n is the number of samples and N is the number of unique prototypes for

a class. Since En is proportional to n, the authors scaled classification losses with

1/En to reduce losses from the head classes.

Applying the effective number of samples based class-balancing to common loss

functions: Softmax CE loss, Sigmoid CE loss and Focal loss [18] on long-tailed ver-

sions of popular datasets: CIFAR-10 [19], CIFAR-100 [19], iNaturalist 2017-2018

[20] and ILSVRC 2012 [11] reduces the classification error rate [8].

2.2.3 Equalization Loss for Long-Tailed Object Recognition

Since frequent classes have more positive samples than others, negative gradients

diminish learning rare classes. Equalization Loss (EQL) [6] ignores the discouraging

gradients on the overwhelmed tail classes by introducing a loss weight term (w) for

each region proposal. For foreground object proposals, losses from the non-ground-

truth rare class are omitted. As a result, gradient norms of negative samples are

shortened and predicted probabilities for the rare classes are boosted (Figure 2.7). Tan

et al. [6] achieved first place in the LVIS Challenge 2019 by applying EQL. However,

EQL requires tuning a dataset-dependent hyperparameter: frequency threshold (λ).

PriorBox doesn’t utilize manually-set model parameters; instead, it uses a trainable

model conditioned on distributional and spatial priors.

2.2.4 Balanced Meta-Softmax for Long-Tailed Visual Recognition

Object recognition metrics like accuracy and mean average precision don’t consider

imbalanced data distributions. Ren et al. [3] defines ϕ and ϕ̂ as conditional distri-

bution on the balanced test set and imbalanced training set respectively and try to

minimize the disparity between their posteriors by modifying the loss function as
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Figure 2.7: Gradient norms and average detection probabilities. Taken from EQL [6].

follows:

− log(ϕ̂y) = − log

(
nye

ηy∑k
i=1 nieηi

)
, (2.4)

where nc is the number of samples for class c, ηc is the model output for class c and

k is the number of classes. Balanced Softmax (Eq. 2.4) improves both classification

and detection results by integrating the number of instances into the loss function.

2.2.5 Overcoming Classifier Imbalance for Long-tail Object Detection with Bal-

anced Group Softmax

Li et al. [21] investigated the classification head’s effect on long-tail object detection.

They analyzed the relation between the number of instances per class and classifica-

tion head weight norms of the pre-trained Faster R-CNN model on LVIS and COCO

(Figure 2.8).

While the difference between class weight norms is significant for LVIS, COCO’s

weight norms are more balanced. Since the LVIS dataset has a higher class imbalance

and the head classes have more samples than the rare ones, their weights are activated

more and rare class weights are suppressed.

The authors proposed Balanced Group Softmax (BAGS) [21] that computes softmax

and cross-entropy loss in disjoint groups created with respect to the number of in-

stances. As weights of the classes with similar distribution are trained in isolation,

weights from the rare classes find more chance for updates.
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Figure 2.8: Classifier weight norms of Faster R-CNN on LVIS and COCO. Retrieved

from [21].

In practice, the authors created four groups for the foreground classes and 1 for the

background and improved RFS [17] baseline. Yet, their method is susceptible to

group boundaries. Wang et al. investigated different boundaries and APr results

reduced drastically [22].

2.2.6 Adaptive Class Suppression Loss for Long-Tail Object Detection

Wang et al. analyzed the shortcomings of the group-based long-tail recognition meth-

ods (for example, Equalization Loss [6] and Balanced Group Softmax [21]). Since the

group boundaries play a critical role in the detection performance, the generalization

power of these models on datasets with various data distributions is low. Moreover,

grouping classes with respect to the frequencies leads to training semantically irrele-

vant examples similarly.

As rare classes are suppressed severely by the negative gradients from the head classes,

Adaptive Class Suppression Loss (ACSL) [22] skips loss terms from unrelated cat-

egories determined by the probability scores. As a result, rare class weights receive

fewer updates while learning frequent classes. ACSL improves both baseline [17]

and group-based [6, 21] models on LVIS v0.5 [17] without utilizing any priors like

frequency and size.
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2.2.7 The Devil is in Classification: A Simple Framework for Long-tail Object

Detection and Instance Segmentation

SimCal [23], which won the 2019 LVIS challenge, reveals that the performance drop

in long-tail object detection and instance segmentation models is mostly caused by

the proposal classification phase.

To demonstrate the classification bias toward frequent classes, the authors set the

classification results of the proposals from RPN [16] as the ground-truth values. As a

result, the detection and segmentation AP scores improved drastically on LVIS v0.5.

The authors propose a decoupled learning architecture to minimize the classification

bias toward frequent classes. They freeze all layers except the classification head of a

pre-trained Mask R-CNN model and fine-tune the classifier with balanced proposals

sampled from the original dataset. Even though SimCal achieved better results on

rare classes, the performance on head classes dropped.

2.2.8 Equalization Loss v2: A New Gradient Balance Approach for Long-tailed

Object Detection

After analyzing the gradient norms in EQL [6], Tan et al. studied the gradient ratio

of positives to negatives and published Equalization Loss v2 [7]. They noticed that

frequent and rare classes exhibit different behaviors. Even though the magnitudes

for positive and negative gradients for head classes were similar, negative gradients

dominated the positives in tail classes (Figure 2.9).

EQL v2 [7] is a re-weighing mechanism that utilizes the gradient ratio to minimize

the effects of overwhelming negative gradients. The method balances negative and

positive gradients especially on rare classes (Figure 2.9) and achieves remarkable

results on long-tail detection tasks.
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Figure 2.9: Gradient ratios of classification loss. Retrieved from [7].

2.2.9 Rank & Sort Loss for Object Detection and Instance Segmentation

Oksuz et al. [24] propose a ranking-based loss function that sorts both positives

above negatives and positives between themselves. Furthermore, the proposed loss

function, Rank & Sort (RS) loss, optimizes the average precision metric directly.

Even though RS loss achieved remarkable results in long-tail visual detection tasks,

we adopt cross-entropy loss to be compatible with more models.

2.2.10 From Generalized Zero-shot Learning to Long-tail with Class Descrip-

tors

Samuel et al. [25] integrate class descriptions to balance the bias toward frequent

classes. Information from class descriptions allows DRAGON [25] to de-bias predic-

tions on a sample-by-sample basis and boost tail class classification accuracy.

Figure 2.10: The DRAGON architecture. Retrieved from [25].
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As semantic class descriptions are effective in few-shot and zero-shot recognition

tasks [26, 27, 28], the authors designed a semantic expert network to tune CNN out-

puts with a residual block (Figure 2.10). Visual expert, which is a conventional CNN,

predicts head classes successfully and semantic expert improves the accuracy of the

tail classes. Furthermore, fusion module reweighs prediction scores with a polyno-

mial regression that utilizes the number of samples for each class. The authors also

generated long-tail variants of the existing datasets [29, 30, 26] and shared extensive

experiments with them.

2.2.11 Evaluating Large-Vocabulary Object Detectors: The Devil is in the De-

tails

Dave et al. [31] assessed average precision metric on long-tailed LVIS [17] dataset

and published how it can be improved easily. Even though AP is calculated in a class-

independent approach, limiting the number of detections in an image causes ranking

across classes.

The authors shared that increasing the number of detections per image alone boosts

the AP remarkably on the LVIS dataset. On the other hand, it doesn’t have the same

effect on the COCO dataset with 80 classes. This behavior suggests that the predic-

tions for the rare classes might be ignored due to the detection limit. Since LVIS has

1203 classes, most classes won’t affect the evaluation with the 300 detection limit.

Dave et al. [31] defined AP Fixed as leaving the number of detections unlimited per

image, but limited per class. For example, the LVIS validation and test sets have

20000 images, they suggested using 10000 detections per class. Moreover, the recent

methods on long-tail recognition (EQL [6], BAGS [21], and Federated loss [32]) don’t

improve AP Fixed as they advance AP.
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2.2.12 On Model Calibration for Long-Tailed Object Detection and Instance

Segmentation

Normalized Calibration (NorCal) [33] reweighs class scores to reduce the bias to-

ward frequent classes by utilizing the number of samples per class. NorCal does

not require re-training or fine-tuning of models; it just calibrates and normalizes pre-

trained model outputs during testing phase to improve detection success.

NorCal [33] scales the class outputs with respect to the number of images that contain

at least one instance of class c (denoted by Nc). One exception is the background

class. Since the background class exists in large amounts in all examples, it requires

a special approach.

The authors decompose softmax function by multiplying both nominator and denom-

inator by
∑C

c′=1 exp (ϕc′(x)):

p(c|x) =
∑C

c′=1 exp (ϕc′(x))∑C
c′=1 exp (ϕc′(x)) + exp (ϕC+1(x))

× exp (ϕc(x))∑C
c′=1 exp (ϕc′(x))

(2.5)

For each proposal, the first term on the right-hand side stands for the possibility of a

foreground class and the second term represents the possibility of class c.

Since the background class only exists in the first term, calibrating its score wouldn’t

affect other class scores. Therefore, background class scores are normalized without

calibration.

Intuitively the scores should be penalized more with the increasing sample count per

class. NorCal scales down the exponential of the outputs ϕc(x) by the power of Nc as

follows:

p(c|x) = exp (ϕc(x))/ac∑C
c′=1 exp (ϕc′(x))/ac + exp (ϕC+1(x))

, (2.6)

where

ac = Nγ
c , γ ≥ 0. (2.7)

To sum up, NorCal calibrates the proposal class scores by a monotonically increasing
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term with a single hyperparameter γ = 0.6. It improved LVIS v1 [17] baseline model

RFS4 in both object detection and instance segmentation, especially on rare classes.

2.3 Context-based Rescoring

The rescoring mechanisms have also been proposed to improve detections through

contextual priors, e.g., Cinbis et al. [35] and Pato et al [36]. These methods typically

take initial detections and revise the detection scores to find a contextually consistent

set of detections. Our proposed approach is also similar in the spirit of learning to

correct initial detections. However, instead of contextual priors, we focus on easy-to-

collect distributional priors to handle class imbalances.

4 Mask R-CNN [9] model with ResNet-50 [34] backbone and repeat factor sampling (RFS) [17].
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CHAPTER 3

METHOD

This chapter explains how PriorBox calibrates the classification scores by modifying

the classification head of object detection and instance segmentation architectures. It

first describes why data imbalance is a problem and defines how the output of the loss

function is combined with the priors for calibration.

3.1 Problem

Modern two-stage object detection and instance segmentation models optimize mul-

tiple targets, classification, box regression, and mask prediction. As investigated in

[23, 8, 21, 22], the main reason behind the inferior results in long-tail detection is the

classification head. Since rare classes have only a few samples, they are suppressed

by the other classes with much more positive gradients. Therefore, the networks tend

to expand the scores of the frequent categories. Considering the softmax layer used

to calculate the class probabilities, the foreground-foreground imbalance problem be-

comes more critical with the increased number of classes, like 1203 categories in

LVIS v1.

3.2 Proposed Method

Object detection models predict class probability distributions for each region pro-

posal, p(c|xi), where xi is the feature representation for bounding box i and c is one

of the classes from the dataset.

19



PriorBox improves object detection and instance segmentation results by injecting

per-class distributional and spatial priors from the training data. In other words, the

proposed method replaces the prediction target with p(c|xi, t1, t2, ...), where tk rep-

resents prior k. Adding prior evidence to the probability distribution enhances both

recognition tasks, especially on rare classes.

Figure 3.1: Sorting and calibration process, priors are omitted for brevity.

PriorBox is designed as a post-calibration method with a fine-tuning phase. After the

base network is trained without the priors, PriorBox injects priors to the classification

branch and calibrates the outputs. The modified network trains with the pre-trained

weights, additional priors, and a lower learning rate.

Since PriorBox doesn’t modify the output of the classification branch (Figure 3.1), it

could be integrated into various detection architectures.
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3.3 Priors

Priors are the building blocks of the prior box. They provide class and proposal-wise

external information to the classification branch. We focus on common, easy-to-

collect priors to develop a low-effort and highly generalizable calibration method.

All priors are extracted from the LVIS v1.0 [17] training split using 20 lines of code

scripts. Task-specific priors might improve the results even more on more specialized

problems.

This section will explain the priors placed in the prior box and how they could be

suitable for calibration.

3.3.1 Instance and Image Counts

Instance count prior denotes the number of ground truth bounding boxes in the train-

ing split for each class. Likewise, image count is the number of images a class has at

least one instance. Fortunately, the LVIS class metadata contains instance_count and

image_count fields.

Instance and image counts are commonly utilized in existing long-tail and few-shot

learning methods [8, 6, 3, 21, 25, 33]. Intuitively, we expect to increase scores and

probabilities of rare classes more than the frequent ones. The convolutional network

compares the original class scores considering the count priors and calibrates them

accordingly.

Both priors are normalized separately by dividing their maximum, so the prior box

values are between 0 and 1. As proposal properties don’t change instance and image

counts, we utilize them as fixed, class-wise priors.

3.3.2 Size Counts

The COCO [37] evaluation metric splits object instances into three groups: small,

medium and large, considering their bounding-box areas. Images smaller than 32x32

are small, between 32x32 and 96x96 are medium and others are large.
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Similarly, for each ground truth box in the LVIS training split, we count each class

and size and build a 1203 × 3 vector. Furthermore, the counts are normalized by

dividing the group-wise maximum count.

Since each proposal has a different size, the prior box contains dynamic values for the

size count prior. For example, for a medium-sized proposal, the corresponding row

in the prior box contains the normalized counts for the medium group. Thus, while

calibrating the scores, the convolutional network boosts the class scores of proposals

with respect to the size count relevance.

3.3.3 Aspect Ratio

Aspect ratio is another easy-to-collect prior PriorBox utilizes. For each proposal,

the absolute difference between the average class aspect ratio and proposal aspect

ratio is placed inside the prior box. The motivation is to inject aspect ratio similarity

information into the calibration network.

3.4 Prior Box

The DRAGON architecture [25] reorders both expert outputs with respect to the de-

creasing prediction scores to make the convolution meaningful along the class scores

axis. Ordering and applying convolutions between the class outputs allow evaluating

and calibrating scores regarding the priors. Considering the number of instances and

average aspect ratio priors, if the probabilities of two classes are the same, the class

with the lower number of samples and less aspect ratio difference would have more

potential to be the ground truth.

Assuming we have 1000 proposals per image in a 1200 class detection task with three

priors, the prior box would have the shape of (1000, 1200, 4) 1 as in Figure 3.2. For

class-wise priors, the prior row is expanded by the number of proposals.

Similar to DRAGON [25], the priors in the prior box are ranked with respect to the

classification scores from the original network (Figure 3.1). After the original prob-
1 Additional dimension contains the original scores.
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Figure 3.2: Prior box with three priors. The first two-dimensional vector represents

the original scores, others are priors expanded by the number of proposals.

abilities are extracted from the network, each proposal’s probabilities and priors are

sorted separately. Then, the sorted tensor is passed to the calibration network, a sim-

ple 3-layer convolutional network, to update the probabilities. Finally, the calibrated

probabilities return to the original indices to be compatible with the network’s loss

function.

3.5 Calibration Network

After building the prior box, a convolutional network is applied to compute the cali-

bration factor. This calibration factor mutates the network logits and probabilities to

debias the data imbalance effects.

As the instance proposals are independent in an image, applying a convolution along

the proposals axis would not be effective. Instead, the calibration factors are learned

from the score differences and priors by traveling on the classes axis.

The first convolutional layer has one input channel for each prior and the last one has a

single output channel (Figure 3.3). The convolutional network preserves the original

network’s output shape by having a stride of 1 and adding padding as needed. As the
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Figure 3.3: Channels for the first convolutional layer on the prior box.

prior box elements are sorted by the class scores, an unsort operation is applied before

the loss calculation. PriorBox does not require any changes to the loss functions.

As rare classes have a few samples, the calibration network is a simple 3-layer con-

volutional network. Complex networks require more examples to learn.

To sum up, we use the following process to learn calibration factors for long-tail

object detection:

1. Pass the input image to the original network (for example, Mask R-CNN) and

extract the classification head scores (or classification probabilities)

2. Build the prior box, which is sorted by the classification head scores (or classi-

fication probabilities)

3. Apply the convolutional network to get the calibration factors

4. Apply the calibration factors (directly output calibration network results or add

them to the original scores/probabilities)

5. Unsort the results to the original indices

6. Calculate the loss with the original loss function
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In other words, PriorBox recalculates the network outputs with the original scores,

class, and instance-wise priors.

3.6 Handling the Background

Since the background class has an entirely different meaning and representation than

the foreground classes, the calibration network doesn’t update its scores and proba-

bilities. After the calibration process, the background class probability is updated due

to the normalization.

The ablation study results and implementation details are demonstrated in Chapter 4.

3.7 Calibration on Logits

Logits are the raw network outputs that are the inputs of the softmax layer. Calibrating

the logits successfully would improve the probability distribution from the softmax

layer.

Figure 3.4: Calibration on logits.

There are two main strategies to employ the calibration factors extracted from the

convolutional network:

1. Use calibration factors directly as the class scores,

2. Add calibration factors to the network’s original class scores in a residual way.
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3.8 Calibration on Probabilities

Since PriorBox is independent of the output type, class probabilities can be employed

in the calibration network. Similar to the logit calibration, the prior box can be con-

structed by the sorted class probabilities.

Figure 3.5: Calibration on probabilities.
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CHAPTER 4

EXPERIMENTS

This chapter starts with the dataset and PriorBox implementation details. After that,

we describe the issues on reproducibility and how we choose a strong baseline. Fi-

nally, we outline detailed experiments to evaluate the effectiveness of PriorBox with

various priors and backbone networks.

4.1 Dataset

LVIS [17] is a recent, long-tail dataset built with COCO 2017 images [37] and brand-

new instance segmentation and bounding box annotations. As it has a significantly

larger number of classes (1203 classes in LVIS v1) than the COCO dataset (80 classes),

annotating all instances with disjoint categories is impractical, so multiple ground

truth values are acceptable. For hierarchical relations, instances are labeled for the

most specific class and more general categories. Category names are selected from

WordNet [38] synonyms and definitions.

Figure 4.1: Class imbalance in LVIS, sampled from 5000 images. Retrieved from

[17].
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LVIS has a high foreground-foreground class imbalance, so learning representations

for tail classes is critical to achieving valuable results. Figure 4.1 shows that head

classes have thousands of samples while tail classes have just a few (for example,

tennis racket appears in 1977 images, wardrobe appears in only 1).

Furthermore, LVIS categories are split into three groups considering the number of

images they appear in: rare (1-10 images), common (11-100 images) and frequent

(more than 100 images).

The following experiments utilize LVIS v1.0 training set (100170 images) for training

and validation set (19809 images) for evaluation.

4.2 Evaluation Metrics

Average precision (AP), defined as the area under the precision-recall curve, is com-

monly used to compare different object detection methods. Microsoft COCO: Com-

mon Objects in Context [37] detection evaluation methods1 are widely used in object

detection research. AP50 and AP75 are calculated through predictions with more

than 0.5 and 0.75 intersection over union ratios between proposal boxes and ground

truths. Moreover, the primary challenge metric AP is defined as the average of aver-

age precisions between 0.5 and 0.95 with 0.05 steps.

LVIS [17] adopts COCO metrics with additional ones: APr for rare, APc for common

and APf for frequent classes, as defined in Section 4.1.

4.3 Implementation Details

PriorBox utilizes the standard layers and models from PyTorch [39] and Detectron2

[40]. Mask R-CNN [9] model 2 with FPN [41] is adopted as the baseline model with

pre-trained weights from [42].

During training, input images are resized to have at most 1333 pixels in the long edge
1 https://cocodataset.org/#detection-eval
2 https://github.com/facebookresearch/detectron2/blob/main/configs/

LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
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while keeping the aspect ratio unchanged. In addition, a horizontal flip is applied with

0.5 probability. During testing, input images are not resized.

All experiments, unless otherwise stated, are based on stochastic gradient descent

(SGD) with an initial learning rate of 0.001, with a momentum of 0.9, batch size of

16 and 300 detections per image in a single GPU training for 14 epochs. Repeat Factor

Sampling (RFS) [17] with a 0.001 repeat threshold is utilized in the data loaders.

To analyze the efficiency of PriorBox, we re-trained the baseline models with the

same schedule for all calibration methods and compared the scores accordingly (R50-

FPN re-train in Table 4.2, 4.3 and R101-FPN re-train in 4.4). Therefore, we do not

attribute the improved results due to the longer training schedule to PriorBox.

4.4 Baseline

Reproducibility in deep learning research is a significant problem due to non-shared

code, fast-changing software tools, sensitivity to implementation details, and some-

times secrecy. Finding a reproducible baseline is a challenging task.

Even though modern deep learning tools of interest (in particular PyTorch [39], Ten-

sorFlow [43], MMDetection [44] and Detectron2 [40]) have stabilized in recent years,

there are sometimes significant differences among the pre-trained models belonging

to the same works. For example, Detectron2’s Mask R-CNN [9] model3 outperforms

MMDetection implementation4 by 0.5 AP score. Furthermore, pre-trained (baseline)

models might improve with more training, so comparing new methods (generally

with longer training schedules) with them would be erroneous. For instance, MMDe-

tection’s LVIS baseline5 scores improve remarkably with the increased number of

epochs.

We utilize pre-trained weights for Mask R-CNN on LVIS v1 from MosaicOS [42]

(R50-FPN baseline in Table 4.2, 4.3 and R101-FPN baseline in Table 4.4), which is
3 https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md#

coco-instance-segmentation-baselines-with-mask-r-cnn
4 https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_

rcnn#results-and-models
5 https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis#

results-and-models-of-lvis-v1
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Table 4.1: Mask R-CNN on LVIS v1 baseline from MosaicOS [42]

Detection Segmentation

Backbone AP APr APc APf AP APr APc APf

R50-FPN [34] 23.3 12.3 21.3 30.2 22.6 12.3 21.3 28.6

R101-FPN [34] 25.4 14.7 23.6 32.3 24.8 15.2 23.7 30.3

commonly used in the latest studies [33, 45, 46].

4.5 Results

In this section, we share empirical results of various calibration approaches.

4.5.1 Calibration on Logits

Similar to ACSL [22], network outputs might indicate the learning status and they

could be exploited for calibration. Building the prior box with the network logits has

the potential to balance the scores and improve detection accuracy. Unfortunately,

the network performed almost identical to the re-trained baseline model (PriorBox

no-priors in Table 4.2). Without any relation to the external information, network

scores without any priors aren’t effective.

Frequent classes have higher logits due to their intensive positive gradients. Class

scores and image counts could be helpful for calibration, so we built a prior box with

them and applied the convolutional network. We expect PriorBox to boost scores from

rare classes while reducing the frequent ones. PriorBox enhances both segmentation

and detection baselines with the image count prior, especially on rare classes (2.1 APr

points over the baseline and 0.7 APr points over the re-trained baseline on instance

segmentation, PriorBox img in Table 4.2).

Even though the number of instances is parallel to the image count, the more priors,

the better. Thus, a new prior box is created with the scores, image count and instance

count. Adding the number of instances to the prior box enhances APr results by
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Table 4.2: PriorBox calibration on logits with ResNet-50 [34] backbone on LVIS

v1. img denotes image count prior, ins denotes instance count prior, size denotes size

count prior, ar denotes aspect ratio difference prior, (R) denotes residual calibration.

Detection Segmentation

Model AP APr APc APf AP APr APc APf

R50-FPN baseline 23.3 12.3 21.3 30.2 22.6 12.3 21.3 28.6

R50-FPN re-train 23.6 13.4 21.6 30.3 22.9 13.7 21.5 28.6

PriorBox no-priors 23.6 13.2 21.6 30.3 22.9 13.7 21.5 28.6

PriorBox no-priors (R) 23.6 13.6 21.7 30.3 22.9 13.7 21.5 28.5

PriorBox img 23.8 14.1 21.7 30.3 23.1 14.4 21.6 28.6

PriorBox img (R) 23.7 13.6 21.7 30.3 23.1 13.7 21.8 28.6

PriorBox img + ins 23.8 14.0 21.8 30.3 23.1 14.6 21.7 28.6

PriorBox img + ins (R) 23.6 13.1 21.7 30.3 23.0 13.9 21.6 28.6

PriorBox img + ins + size 23.8 14.1 21.7 30.3 23.1 14.4 21.6 28.6

PriorBox img + ins + size (R) 23.6 13.7 21.6 30.2 23.0 14.0 21.6 28.6

PriorBox img + ins + size + ar 23.8 13.9 21.9 30.3 23.1 14.1 21.8 28.6

PriorBox img + ins + size + ar (R) 23.6 14.2 21.4 30.2 23.0 14.1 21.5 28.6

0.9 and 0.6 absolute improvement over the re-trained model on segmentation and

detection tasks, respectively (PriorBox img + ins in Table 4.2).

Unlike the class-wise priors (image and instance counts), the size count and aspect ra-

tio priors are dynamically calculated concerning the spatial properties of the proposal

boxes. If a bounding box is small, the corresponding box in the prior box is adjusted

accordingly. Even though the resulting models perform better than the baseline and

the re-trained baseline, they don’t bring considerable improvements over other Prior-

Box models (PriorBox img + ins + size and PriorBox img + ins + size + ar in Table

4.2).

Moreover, we trained residual logit calibration models (denoted with (R) in Table

4.2) and their results were better than the re-trained baseline but inferior to the non-

residual counterparts.
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Table 4.3: PriorBox calibration on probabilities with ResNet-50 [34] backbone

on LVIS v1. img denotes image count prior, ins denotes instance count prior, size

denotes size count prior, ar denotes aspect ratio difference prior, (R) denotes residual

calibration.

Detection Segmentation

Model AP APr APc APf AP APr APc APf

R50-FPN baseline 23.3 12.3 21.3 30.2 22.6 12.3 21.3 28.6

R50-FPN re-train 23.6 13.4 21.6 30.3 22.9 13.7 21.5 28.6

PriorBox no-priors (R) 23.6 13.9 21.5 30.2 23.0 14.3 21.5 28.5

PriorBox img (R) 23.6 13.6 21.6 30.3 22.9 13.6 21.6 28.6

PriorBox img + ins (R) 23.6 14.0 21.5 30.2 23.0 14.1 21.5 28.5

PriorBox img + ins + size (R) 23.6 13.7 21.6 30.2 23.0 14.0 21.6 28.6

PriorBox img + ins + size + ar (R) 23.6 14.2 21.4 30.2 23.0 14.1 21.5 28.6

4.5.2 Calibration on Probabilities

Empirical results show that adding calibration factors to the original probabilities

exhibits more stable training than predicting the class probabilities directly. After

adding the calibration factors to the original probabilities, the results are L1 normal-

ized before outputting the calibrated probabilities.

Similar to Section 4.5.1, PriorBox improves object detection and instance segmen-

tation results on rare classes over the re-trained baseline models, 0.8 and 0.4 points,

respectively (PriorBox img + ins + size + ar (R) in Table 4.3).

One notable result is that calibration over probabilities without priors works better

than the logits-only method, meaning that probabilities are stronger signals than logits

in representing the learning status.

4.5.3 Generalization to Larger Models

Training logit and probability calibration networks with ResNet-50 [34] backbone

confirms that PriorBox advances the object detection and instance segmentation re-

sults. Still, to ensure the proposed method’s generalization potential, we replace the
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Table 4.4: PriorBox calibration on logits and probabilities with ResNet-101 [34]

backbone on LVIS v1. img denotes image count prior, ins denotes instance count

prior, size denotes size count prior, ar denotes aspect ratio difference prior, L denotes

calibration on logits, (PR) denotes residual calibration on probabilities.

Detection Segmentation

Model AP APr APc APf AP APr APc APf

R101-FPN baseline 25.4 14.7 23.6 32.3 24.8 15.2 23.7 30.3

R101-FPN re-train 25.7 15.4 23.9 32.3 25.0 15.6 24.0 30.3

PriorBox img (L) 25.9 15.6 24.1 32.3 25.0 15.7 24.0 30.3

PriorBox img + ins (L) 26.0 16.2 24.2 32.4 25.1 16.2 24.0 30.3

PriorBox img + ins + size (L) 25.8 15.8 23.9 32.4 24.9 15.6 23.8 30.3

PriorBox img + ins + size + ar (L) 26.0 16.1 24.3 32.3 25.0 15.8 23.9 30.3

PriorBox img (PR) 25.9 16.2 24.0 32.3 25.2 16.2 24.0 30.4

PriorBox img + ins (PR) 25.7 15.8 23.8 32.3 25.0 16.2 23.8 30.3

PriorBox img + ins + size (PR) 25.8 16.0 23.9 32.3 25.1 16.2 23.9 30.3

PriorBox img + ins + size + ar (PR) 25.8 16.1 23.8 32.3 25.0 16.1 23.9 30.3

ResNet-50 backbone with its larger version, ResNet-101 [34]. Similar to the earlier

models, PriorBox models boost the recognition performances (Table 4.4).

4.5.4 Generalization to Other Datasets

Even though COCO [37] has fewer classes with lower imbalance than LVIS [17],

it still is one of the commonly used object detection and segmentation datasets. To

evaluate PriorBox on the COCO dataset, we apply logit calibration with image and

instance count priors to Detectron2’s Mask R-CNN baseline6. PriorBox improves

both object detection and instance segmentation AP results by 0.5 and 0.4 points,

respectively. PriorBox performs better than or equal to the baseline for 77% of the

categories (Table 4.5 and Table 4.6).

6 https://github.com/facebookresearch/detectron2/blob/main/configs/
COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
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Table 4.5: Bounding box AP results for calibration with image and instance counts

on COCO.

Category Baseline PriorBox Category Baseline PriorBox Category Baseline PriorBox

airplane 62.3 62.7 apple 18.8 19.1 backpack 14.0 14.5

banana 21.6 21.0 baseball bat 24.4 25.3 baseball glove 33.7 33.8

bear 64.2 65.5 bed 38.3 38.5 bench 21.3 21.9

bicycle 28.7 29.2 bird 35.3 35.8 boat 25.6 26.2

book 14.1 14.0 bottle 38.1 38.4 bowl 40.8 40.9

broccoli 23.6 23.6 bus 61.6 62.4 cake 33.1 33.6

car 42.8 43.0 carrot 20.7 21.2 cat 62.5 61.9

cell phone 33.6 33.9 chair 25.2 25.3 clock 49.5 49.0

couch 37.7 39.4 cow 51.3 51.5 cup 39.8 40.1

dining table 25.3 25.1 dog 57.5 57.7 donut 42.6 42.2

elephant 59.4 60.9 fire hydrant 65.9 65.0 fork 30.3 30.8

frisbee 62.9 63.4 giraffe 64.1 65.5 hair drier 0.5 1.9

handbag 11.8 12.0 horse 54.8 54.9 hot dog 27.2 30.5

keyboard 47.3 48.4 kite 39.8 40.1 knife 15.1 15.5

laptop 56.6 57.2 microwave 53.4 54.3 motorcycle 40.8 40.2

mouse 62.8 62.7 orange 29.1 28.2 oven 30.7 31.5

parking meter 44.9 45.9 person 53.6 53.7 pizza 49.4 50.4

potted plant 24.6 24.2 refrigerator 52.7 53.5 remote 26.9 27.2

sandwich 31.0 31.8 scissors 20.0 21.3 sheep 47.1 48.0

sink 34.2 34.3 skateboard 46.6 46.7 skis 21.3 20.3

snowboard 33.9 33.4 spoon 13.8 14.0 sports ball 47.4 47.5

stop sign 63.4 64.7 suitcase 33.9 35.2 surfboard 35.0 35.5

teddy bear 43.0 44.7 tennis racket 44.0 44.6 tie 31.8 31.9

toaster 39.0 43.0 toilet 54.7 54.5 toothbrush 20.0 21.2

traffic light 27.2 27.7 train 58.4 57.9 truck 32.0 32.5

tv 52.7 54.4 umbrella 35.8 36.7 vase 35.8 36.1

wine glass 34.0 33.9 zebra 64.0 65.0 mAP 38.6 39.1
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Table 4.6: Instance segmentation AP results for calibration with image and instance

counts on COCO.

Category Baseline PriorBox Category Baseline PriorBox Category Baseline PriorBox

airplane 49.0 49.1 apple 18.0 18.3 backpack 13.8 14.1

banana 17.2 17.1 baseball bat 20.1 20.7 baseball glove 36.9 37.5

bear 64.8 65.9 bed 30.7 30.6 bench 15.6 15.8

bicycle 16.3 16.3 bird 29.2 29.8 boat 22.0 22.2

book 9.0 8.9 bottle 36.2 36.6 bowl 38.2 38.3

broccoli 22.1 22.6 bus 61.7 61.7 cake 34.2 34.1

car 39.1 39.5 carrot 18.1 18.5 cat 65.3 65.8

cell phone 32.6 33.1 chair 16.4 16.4 clock 50.0 49.7

couch 32.8 33.6 cow 44.0 43.9 cup 40.4 40.5

dining table 14.1 14.0 dog 56.3 56.7 donut 43.5 43.1

elephant 55.6 56.0 fire hydrant 63.1 62.9 fork 13.4 13.1

frisbee 61.6 61.8 giraffe 49.1 49.0 hair drier 0 0.3

handbag 12.6 12.7 horse 39.2 39.6 hot dog 20.6 22.7

keyboard 47.3 48.1 kite 29.3 29.7 knife 9.0 9.0

laptop 58.0 57.9 microwave 55.9 55.5 motorcycle 30.8 30.7

mouse 62.6 62.4 orange 29.0 28.4 oven 28.8 30.1

parking meter 46.4 47.2 person 46.0 46.1 pizza 49.3 50.1

potted plant 21.6 21.4 refrigerator 53.8 54.6 remote 25.2 25.3

sandwich 32.4 33.5 scissors 15.1 16.0 sheep 41.1 41.8

sink 32.7 32.9 skateboard 27.3 27.3 skis 2.0 1.9

snowboard 20.3 20.3 spoon 9.1 8.8 sports ball 46.5 46.7

stop sign 64.3 65.0 suitcase 36.1 36.8 surfboard 28.9 29.4

teddy bear 42.5 42.9 tennis racket 52.3 52.3 tie 30.3 30.0

toaster 42.5 46.5 toilet 55.2 55.8 toothbrush 13.6 13.3

traffic light 26.0 26.6 train 57.6 58.3 truck 31.5 32.3

tv 55.1 56.3 umbrella 42.6 42.7 vase 34.7 35.0

wine glass 29.1 29.9 zebra 55.1 55.6 mAP 35.2 35.6
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Table 4.7: Ground up training results. * denotes PriorBox model with image and

instance count priors calibrating the logits.

Detection Segmentation

Model AP APr APc APf AP APr APc APf

R50-FPN baseline 22.5 9.1 21.1 30.1 21.7 9.6 21.0 27.8

PriorBox Ground Up* 23.6 12.0 21.1 30.5 22.8 13.4 21.7 28.1

4.5.5 Training From the Ground Up

After analyzing PriorBox as a post-calibration technique, we train Mask R-CNN [9]

models from the ground up with the original hyperparameters like learning rate, batch

size and training schedule and the integrated priors. Having distributional prior during

the training guides and speed-ups the learning process. PriorBox improves MMDe-

tection [44] LVIS baseline7 on all average precision metrics, mainly APr (Table 4.7).

4.5.6 Comparison with the Existing Methods

We first compare PriorBox with the existing post-calibration methods Table 4.8. Even

though PriorBox is a simple calibration method, we also share a comparison with the

state-of-the-art methods in Table 4.9.

4.6 Ablation Study

We conduct detailed experiments to analyze contributions from different PriorBox

components. PriorBox has three fundamental ideas to investigate:

1. Fusing information from priors

2. Sorting class scores to exploit order statistics

3. Applying convolutional layers to competing classes
7 https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis#

results-and-models-of-lvis-v1
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Table 4.8: Comparison with the post-calibration methods. ResNet-50 backbone [34]

on LVIS v1 with RFS. Results are retrieved from [33]

.

Segmentation

Model AP APr APc APf

RFS baseline [17] 22.6 12.3 21.3 28.6

HistBin [47] 21.8 11.3 20.3 28.1

BBQ (AIC) [48] 22.1 11.4 20.7 28.21

Beta calibration [49] 22.6 12.3 21.3 28.5

Isotonic reg. [50] 22.4 12.2 21.1 28.4

Platt scaling [51] 22.6 12.3 21.3 28.5

PriorBox img + ins 23.1 14.6 21.7 28.6

NorCal [33] 25.2 19.3 24.2 29.0

Table 4.9: Comparison with the state-of-the-art. ResNet-50 backbone [34] on LVIS

v1 with RFS. ζ: implemented with Detectron2 [40]. ξ: implemented with MMDetec-

tion [44].

Segmentation

Model AP APr APc APf

RFS baseline [17] ζ 22.6 12.3 21.3 28.6

PriorBox img + ins ζ 23.1 14.6 21.7 28.6

EQL v2 [7] ξ 23.7 14.9 22.8 28.6

MosaicOS [42] ζ 24.5 18.2 23.0 28.8

RS Loss [24] ξ 25.2 16.8 24.3 29.9

NorCal [33] ζ 25.2 19.3 24.2 29.0

BAGS [21] ξ 26.2 18.0 26.9 28.7
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Figure 4.2: Comparison between RFS baseline [17] (left) and PriorBox (right). Pri-

orBox predicts higher probabilities for true positives (wineglass, knife, plate, bread

and spoon), detects more ground truths (table and cup) and gives less confidence to

false-positives (banana) than the baseline. Image is picked from LVIS v1 validation

split.
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We train separate models with the same commonly used, re-producible baseline to

have a decent comparison. We adopt Mask R-CNN [9] model with ResNet-50 [34]

backbone as in Section 4.4, (1) in Table 4.10.

Since PriorBox calibrates pre-trained models, the number of epochs increases accord-

ingly. Longer training schedules have the potential to improve model performance.

Thus, we retrain the baseline model without modifying any layers and hyperparame-

ters. As rare classes have fewer samples than the others, their results improved more

in the retrained model, (2) in Table 4.10.

PriorBox rescores logits and probabilities with respect to their values and priors. On

the other hand, rescoring without priors can be effective by adopting scores as learn-

ing status signals. We train the logit calibration network with (1x2) kernels and note

that rescoring without priors performs similar to the re-trained baseline, (3) in Ta-

ble 4.10. Surprisingly, replacing (1x2) kernels with (1x1) ones, (4) in Table 4.10,

performs better. We note that class comparison works better with the guiding priors,

especially on frequent classes, experiments (6) and (9) in Table 4.10.

Priors guide the training process to reduce the data imbalance effects. Adding image

and instance count priors (without sorting, with (1x2) kernels) ignores the order

statistics, but still enhances the detection and segmentation results on rare classes,

(5) in Table 4.10. Adding sorting boosts all results, especially segmentation on rare

classes, (9) in Table 4.10.

Having (1x2) kernels considers competing classes during the rescoring. If we use

(1x1) kernels with priors, rescoring will handle each class separately. The (1x1)

kernel model performs well on both tasks, especially on rare and common categories,

(6) in Table 4.10.

As PriorBox calibrates outputs from pre-trained networks, the method is sensitive to

the frozen layers. PriorBox can work with fully frozen networks, but the results differ

drastically, it can’t learn the calibration factors with the 3-layer convolutional net-

work. We compare freezing the base network fully and different ResNet stages8,

(7) and (8) in Table 4.10. Updating ResNet weights during the calibration causes

8 https://detectron2.readthedocs.io/en/latest/modules/modeling.html#
detectron2.modeling.ResNet.freeze
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Table 4.10: Ablation study results.

Detection Segmentation

Model AP APr APc APf AP APr APc APf

(1) Baseline 23.3 12.3 21.3 30.2 22.6 12.3 21.3 28.6

(2) Baseline re-train 23.6 13.4 21.6 30.3 22.9 13.7 21.5 28.6

(3) No-priors with (1x2) kernels 23.6 13.2 21.6 30.3 22.9 13.7 21.5 28.6

(4) No-priors with (1x1) kernels 23.6 13.9 21.6 30.2 23.0 14.2 21.5 28.5

(5) Priors without sorting 23.6 13.9 21.6 30.3 23.0 14.1 21.5 28.6

(6) Priors with (1x1) kernels 23.7 14.0 21.7 30.2 23.1 14.3 21.6 28.5

(7) Freeze all layers 23.3 12.4 21.4 30.2 22.6 12.4 21.4 28.5

(8) Freeze 2 stages in ResNet 23.6 13.3 21.8 30.2 22.8 13.3 21.5 28.5

(9) Best 23.8 14.0 21.8 30.3 23.1 14.6 21.7 28.6

unlearning effect and results in worse predictions from the re-trained baseline.

The best model adopts image and instance count priors, sorted with respect to the

logits, (1x2) kernels in a 3-layer convolutional network and 5 frozen stages in ResNet,

(9) in Table 4.10.
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CHAPTER 5

CONCLUSION

Today, training detectors in a low-sample regime is a central problem in expanding

the use of deep learning applications in the real world. The natural distribution of

images leads to data imbalance between the foreground classes and the overwhelming

negative gradients suppress rare classes during the training. Subsequently, there is a

significant gap between detection accuracies of head and tail categories. Re-sampling,

re-weighting and grouping-based methods attempt to handle this imbalance, but they

introduce additional hyperparameters and complex loss functions.

The proposed method, PriorBox, re-ranks the proposal scores and probabilities by ex-

tracting calibration factors from easy-to-collect priors (image count, instance count,

size count and aspect ratio difference) and a simple 3-layer convolutional network.

Comprehensive experiments confirm the method’s ability to improve object detection

and instance segmentation metrics without changing the data sampler and loss func-

tion (Figure 4.2). As PriorBox is easy to integrate into the existing architectures, it

can be extended with new priors and adopted as a general calibration method. In the

future, PriorBox can be utilized to predict bounding box offsets to improve instance

localization.
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