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ABSTRACT 

 

CONCEPT OF SINGLE PIXEL FIBER OPTICAL IMAGING VIA 
COMPRESSED SENSING 

 
 

Azgın, Ahmet 
Master of Science, Micro and Nanotechnology 

Supervisor: Assoc. Prof. Emre Yüce 
 
 

September 2022, 65 pages 

 

 

The field of Compressed Sensing is nearly two decades old, hence a relatively new 

signal reconstruction routine, pioneered by Donoho, Candes, Baraniuk, Romberg, 

and Tao (E. Candes et al., 2004, 2005; E. J. Candes & Wakin, 2008; E. Candès & 

Romberg, 2005b, 2005a; E. Candes & Tao, 2004; D. L. Donoho, 2004; Romberg, 

2007) . It exploits the sparsity property of the real-world signals to allow 

reconstruction at even sub-Nyquist measurements. However, there are still several 

key properties for a signal to be fully reconstructed, namely Restricted Isometry 

Property and Incoherence. The aim of this study is to investigate the modality of 

fiber optical imaging via a compressed sensing paradigm to check the multiple  

Lorentzian (Cauchy) distributed nature of the fiber optical speckles are able to give 

rise to the reconstruction of a 2D scene illuminated and doing it so with multimode 

optical fibers (MMFs) and single-pixel-imaging (SPI) approach. 

 

Keywords: Fiber Imaging, Compressed Sensing, Compressive Imaging, Single Pixel 

Imaging 
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ÖZ 

 

SIKIŞTIRMALI ALGILAMA İLE TEK PİKSEL FİBER OPTİK 
GÖRÜNTÜLEME 

 
 

Azgın, Ahmet 
Yüksek Lisans, Mikro ve Nanoteknoloji 

Tez Yöneticisi: Doç. Dr. Emre Yüce 
 

Eylül 2022, 65 sayfa 

 

Yaklaşık yirmi yaşına giren sıkıştırmalı algılama; Donoho, Candes, Romberg ve 

Tao'nun öncülüğündeki, görece yeni bir sinyal yeniden oluşturma rutinidir (E. 

Candes et al., 2004, 2005; E. J. Candes & Wakin, 2008; E. Candès & Romberg, 

2005b, 2005a; E. Candes & Tao, 2004; D. L. Donoho, 2004; Romberg, 2007). 

Gerçek sinyallerin seyreklik özelliğinden yararlanılarak, Nyquist-Shannon 

örnekleme sınırının altında ölçüm ile tekrar oluşturulabilmeleri mümkün 

kılınmaktadır. Fakat, bu yeniden oluşturma için sinyalin sahip olması gereken 

özellikler tanımlanmıştır, ve bunlar sınırlı izometri özelliği ve uyumsuzluk 

özellikleridir. Bu çalışmanın amacı, çoklu Lorentzian (Cauchy) dağılıma sahip olan 

çok modlu fiber optik beneklerin ışıklandırdığı iki boyutlu alanın sıkıştırmalı 

algılama kullanarak objenin görüntüsünün oluşturulmasının sağlanabileceğinin 

araştırılmasıdır. 

Anahtar Kelimeler: Fiber Görüntüleme, Sıkıştırmalı Algılama, Sıkıştırmalı 

Örnekleme, Tek Piksel Görüntüleme 
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CHAPTER 1  

1 INTRODUCTION  

Fiber optical imaging has been a relatively recent area that attracts more interest for 

the couple of decades. Whereas the bundles of single mode fibers were able to be 

shown to be used for imaging, multimode fibers imaging possibilities have been 

investigated by the works of Yariv and Gover as early as 1978 (Gover et al., 1976; 

Yariv, 1976) . Lately, as the technology matures with the industry driven demand, 

mainly information sector,  fiber-optic costs are hitting an all-time-low.  Multimode 

optical fibers are appealing more than ever since they are able to transport much 

information in a relatively very small cross section area considerably fast, and 

moreover, they are scalable. As a result, there is an increasing grow of interest for 

fiber optical imaging, particularly for biomedical purposes like in vivo imaging, or 

imaging of such areas that conventional cameras would not reach.  

The conventional method for imaging involves an optical system to map the light 

intensity at designated parts of the imaged scene onto a detector array 

correspondingly. As opposed to standard Focal Plane Arrays (FPAs), Charge 

Coupled Devices (CCD) and Complementary Metal Oxide Semiconductor (CMOS) 

cameras. which are comprised of thousands to millions of pixels, and every pixel is 

deticated to detect the light intensity of the specific region in the  scene, Single Pixel 

Imaging (SPI) systems, as its name suggests, promote just a single detector and take 

measurements of the scene in a sequential manner. Although the CCDs, CMOSs and 

FPAs are practically unmatched by their cost, speed and resolution, due to their mass 

production availibilities and the fortunate coincidence that the visible range in the 

electromagnetic spectrum and the second most abundant element in Earth’s crust 

happen to spectrally match, unfortunately this advantage is mostly lost outside of 

this range or for non-standard purposes. The promises of SPI becomes prominent, as 
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it is evidently easier to have just one sensor of high quality and manage it, rather than 

getting each of millions of sensors from CCDs and FPAs.  

There are two main methods of practice for SPI systems, namely Raster Scan (RS) 

and Basis Scan (BS). Compressed Sensing (CS) may be considered an extension of 

the BS. BS utilizes a single pixel detector to take full measurement of the scene 

successively by using vectors from a known basis whereas CS does the same, just 

with lesser measurements. It would not be exaggaration if one is to say Compressed 

Sensing is a fairly new signal processing paradigm that considerably revoulitionized 

the field. It proposes that given a signal satisfies several properties, namely Sparsity 

and Incoherence Property (E. J. Candes & Wakin, 2008), one can reconstruct the 

initial signal through finding an unique solution to an underdetermined system.  

1.1 Applications 

Since its publication, CS has revolutionized and attracted variety of fields. The CS 

paradigm already found applications in areas such as signal processing, statistics, 

medical imaging, remote sensing, computer science and electrical engineering, to 

name a few. Real world problems often can be stated approximately as sparse 

recovery problems in an appropriate domain. This combines well with the CS which 

have a great potential of applications upon considering its premise of recovery from 

incomplete information. In short, if a problem involves signals, CS most probably 

has a potential application in that area. CS is almost two decades old. Although CS 

has been trialed in many application areas, the bridging between hardware and 

software is still in its early stages.   

1.1.1 RADAR 

Conventional detection systems generally compose of two stages. Transmission 

phase where a pulse is emitted, then the receiving phase that makes use of a filter to 

correlate the scattered signal with that pulse. Two stages can appear interchangeably 
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at the receiving phase, pulse compression and digitization. The analog signal is 

processed by using high-rate analog-to-digital (A/D) converters to digitize the analog 

signal (Richards et al., 2010).  

After the debut of CS, several papers have recognized its potential in RADARs. 

Baraniuk suggested that the CS framework could benefit the conventional RADAR 

scheme, by eliminating the need for match filter (Baraniuk & Steeghs, 2007). 

Moreover, Herman proposed several articles on the topic, and suggested discretizing 

the time-frequency plane into a grid and showing it as a matrix where small number 

of targets make it sparse in order to reconstruct with higher resolution (M. A. Herman 

& Strohmer, 2009; M. Herman & Strohmer, 2008). Furthermore, the CS RADAR 

scheme will be unaffected by the same uncertainty principle that classical RADAR 

schemes have, which caps their performances (Yoon & Amin, 2008). Several more 

interesting papers came out on this topic to this day (Potter et al., 2010) (Harding & 

Milla, 2013) and the author advises interested readers to the review by Yang (Yang 

et al., 2019). 

1.1.2 LIDAR 

Light Detection and Ranging systems (LIDAR) is relatively a hot topic for the last 

couple of decades, as one of the byproducts of the emerging autonomous 

technologies. The working scheme is fairly simple, and maybe somewhat similar to 

the RADAR. A laser source emits pulsed light, where the reflected light is collected 

at the receiver and time-of-flight (ToF) is calculated to measure distance. Most 

popular LIDAR systems operate by scanning the region with a defined scan rate to 

acquire data about the surroundings, up to high distances.  

Since 2010s, LIDAR application with CS is investigated on several occasions. 

Howland provided one of the first prominent results, where not only he shows the 

applicability of CS to the LIDAR systems, but also 32x32 pixel video at 14 fps, at 

with 30% of the original size (Howland, Dixon, et al., 2011; Howland, Zerom, et al., 
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2011). In 2014, Lau proposed a new resampling method to reconstruct an 3D image 

from as low as 20% of a point cloud data (Lau & Woodward, 2014). In 2016, Gong 

et al. published their results for a 3D LIDAR with ghost imaging and CS, showing 

the reconstruction of a 3D scene about 1 km at 49.6% of the Nyquist limit. Edgar 

published a real-time LIDAR with CS principles, where it performed 3 fps for 64x64 

reconstruction (Edgar et al., 2017).  

In signal processing, direction-of-arrival remains as one of the most important issues. 

As of the 21st century, the technology has enabled the wide reach and use of wireless 

communications. 

1.1.3 MRI 

One of the most prominent studies for CS application take place in medical imaging, 

specifically, magnetic resonance imaging (MRI). MRI utilizes MR images which are 

taken as points in the 2D or 3D Fourier space. The process for an MRI can took 

between 15 to 90 minutes, due to its innate slow data taking operation. Ensuring the 

people hold still for these long durations, especially young people can be 

challenging. CS based MRI, can reduce this acquisition time immensely by taking a 

lot fewer samples to reconstruct the same image. Less samples result with less image 

acquisition time, by also keeping the resulting image diagnostically recognizable.  

First works came by Lustig et al., where he showed that medical images are highly 

compressible, hence compliant with CS scheme (Lustig et al., 2007, 2008). The 

company Siemens Healthineers is pioneering the medical imaging field with the first 

CS products (Siemens-Healthineers, n.d.) [26] and got CS MRI approved from FDA 

in February 2017 (Imaging Technoogy News, 2017). Subsequentially, Philips also 

introduced their MRI imaging machine that uses CS, called Phillips Compressed 

SENSE (Philips, n.d.). This thesis will not delve into the individual papers for the 

MRI with CS, since it is huge and still a hot topic. However, readers are advised to 
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refer to the informative papers (Jaspan et al., 2015) and (Feng et al., 2017), in pursuit 

to caught up with the improvements and developments in the topic. 

1.1.4 Single Pixel Camera 

A traditional imaging scheme involves acquiring all the pixels of the scene, up to 

tens of megapixels, then compresses it according to the need of transmission and 

storage. This procedure is highly expensive and seemingly redundant. Compressive 

imaging challenges this idea, by fusing the acquisition and compression phases. It 

promotes acquiring random linear measurements directly from an image, without the 

information need of every pixel in the scene. The benefits outweigh the cost, 

especially in the range outside of visible spectrum, where every pixel is extremely 

valuable.  

The notorious single-pixel camera that was developed at the Rice University was the 

first implementation of CS to an imaging system (Takhar, Laska, Baron, et al., 2006; 

Takhar, Laska, Wakin, et al., 2006). The system was a fairly simple setup that 

utilized a digital micromirror device (DMD) as a spatial light modulator (SLM), that 

resulted in a simple, compact, brilliant and low-cost solution for broader ranges. 

Shortly after, the CS concept was again successfully trialed for a terahertz imager at 

the Rice University where the modulating patterns are provided with printed circuit 

boards (Chan et al., 2008). 
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CHAPTER 2  

2 BACKGROUND 

This section will include a brief introduction to compressed sensing history and 

theory. This will include the explaining of the aforementioned properties a signal 

needs to have in order to be full reconstructed. The current state of the applications 

for compressed sensing will also be discussed. Proceedingly, different algorithms 

will be explained, and their use will be compared.  

2.1 Brief History of Compressed Sensing  

In the so-called information age, data generation has surpassed the available storage 

as of 2007, according to John Gantz, IDC (Gantz et al., 2008). In today’s technology, 

individuals are able to create data, then it was ever possible before. This is combined 

with the quality of the sensors, that are capable of sampling ever faster and in higher 

resolution than before, it is reasonable to point out, the gap between the data created 

and the data stored is in a diverging trend. The diverging gap can be observed for the 

years between 2005 and 2012 in Fig. 1.  

Coincidentally, in 2004, the first publication and the appearance of Compressed 

Sensing, which is a signal processing routine that leverages data acquision scheme 

by exploiting sparsity (i.e. having most of the elements zero or approximately zero) 

of signals is introduced by Donoho (D. L. Donoho, 2006a). 
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Figure 1. Graph showing the data creation and available storage between 2005 – 
2012 (Readapted from [34]) 

The mathematical foundations behind the compressed sensing was as old as 1980s. 

Moreover, Least Absolute Deviations (ℓ1 norm) was introduced centuries earlier by 

Boscovich in 1757, and discussed by prominent scientists, like Laplace, Gauss and 

Edgeworth (Farebrother Richard William, 2013). ℓ1 norm since then reappears in 

sparse signal reconstruction around 1987 (Santosa et al., 1987). The leveraging idea 

of exploiting sparsity was already a common practice with some of the 2000s 

compression formats. As an example, JPEG standard was similary relying on 

exploiting sparsity of images by rerepresenting them in a favorable, advantageous 

transformation (i.e. Discrete Cosine Transform [DCT], wavelet) , then keeping only 

the largest coefficients (Wallace, 1992) (Taubman & Marcellin, 2002). Fig. 2 

illustrates the compressibility by exploiting the image sparsity by DCT. Even when, 

as high as 75% of the DCT coefficients are missing, the reconstructed image can be 

still regarded as recognizable and indifferent. Keeping only 10% and lower, although 

the image is recognizable, the defects overwhelm and the quality is noticable upon 

sight. 
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Figure 2. A compression by DCT example showing a) Original image b) 
Reconstruction with 25% and c) 10% of the data. 

Since the data transmission and storage is a priority in a lot of applications, the 

compression is a common practice to apply. The absurdity is, these practices include 

compression and uncompression of the signal after acquiring the full signal (See Fig. 

3a). Compressed sensing, precisely deals with this absurdity, and basically tackles 

the questions: “Why do bother to take the whole data, just to discard most of it?” and 

“Is there a way to just directly acquire the compressed form?” (See Fig. 3b). 

 

Figure 3. Comparison of acquisition schemes; a) Conventional acquisition scheme 
b) Compressed sensing acquisition scheme 
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Upon its commencement in 2004, compressed sensing has been met with a lot of 

suspicions due to its challenging nature against the Nyquist-Shannon Theorem by 

claiming it is possible to fully or mostly reconstruct a signal from far less samples 

that the Nyquist-Shannon Theorem dictates, given that the signal satisfies the 

conditions, sparsity and incoherence (E. J. Candes & Wakin, 2008). The Nyquist-

Shannon Theorem states that, in order to reconstruct a signal perfectly, it has to be 

sampled at least twice the maximum frequency that the signal comprises (Shannon, 

1949). Otherwise, the reconstructed signal risks aliasing as shown in Fig. 4. 

 

Figure 4. a) Sufficiently sampled signal (black) and reconstruction (red) b) Aliased 
signal (red) due to undersampling 

2.2 The problem of interest 

Let us consider the following equation where a real-world continuous signal 

acquisition scheme is shown as discretized signal vector 𝒙 ∈ ℝ , y is the 
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measurement vector, and 𝐴 is the relating system that often also referred as the 

measurement matrix, 

𝐴𝒙 = 𝒚  (Eq. 1) 

If we know how the imaging system behaves, and the input signal, it is 

straightforward to foresee what the output must be, which is called the forward 

problem. One is given the inputs of the system and expects to find or predict the 

outcome. However, in physics, a good deal of interesting problems including 

imaging require mostly the opposite called the inverse problem, in which, by having 

the system knowledge and the set of rules governing it, one is asked to find the 

underlying question or cause by looking at the output and effect (Razavy, 2020) 

(Vauhkonen Marko and Tarvainen, 2016). 

CS theory requires a signal to have sparsity and incoherence properties, in order to 

reconstruct it with using a relatively few measurements (E. J. Candes & Wakin, 

2008). It turns out, most of the real-world signals are almost sparse in an appropriate 

domain (E. J. Candes & Wakin, 2008) (Lee et al., 2016). For example, images are 

sparse in DCT, wavelet domain, while audio is sparse in Short Time Fourier 

Transform (STFT), which is a generalization of the Gabor transform. So, 

mathematically, every signal 𝒙 ∈ ℝ  can be represented in a given orthonormal basis 

{𝜓 }  in ℝ with N coefficients {𝑠 }  where most of the coefficients are zero or 

approximately zero. 

𝒙 =  ∑ 𝜓 𝑠    (Eq. 2) 

One can also state it in the matrix notation by arranging the basis vectors into the 

columns of the sparsifying basis Ψ ∈ ℝ × , and stacking the N coefficients into a 

coefficient vector 𝒔 ∈ ℝ × . The sparsifying matrix is also often called as dictionary 

or sparsifying basis. Some exemplary common orthonormal sparsifying bases Ψ are 

shown in Fig. 5.  One can utilize these bases to transform a signal into another 

domain to benefit the sparsity. As an example, a sinusoid wave that can be described 

by a few coefficients in Fourier domain, needs much more coefficients to describe it 
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in the Kronecker domain. For 𝒔 to be a sparse signal, one must have most of the 

constituents of the vector 𝒔 as zeros. So, by saying a signal is K-sparse in some 

domain Ψ, it is understood that there are K coefficients (𝐾 ≪ 𝑁) in the coefficient 

vector 𝒔 that are non-zero entries. It can also be put that, cardinality or ℓ0 of the signal 

𝒙 is K. The norm notation will be explained in detail later in Section 2.5, for now, it 

can be defined as the total number of non-zero entries in a vector. 

𝒙 =  Ψ𝒔   (Eq. 3) 

 

Figure 5. Exemplary bases Ψ of a) Spike b) DCT c) Fourier 

In the compressed sensing framework, the problem then can be reformulated by 

inserting the signal (Eq.3) into the sensing scheme (Eq. 1), 

𝒚 =  𝐴𝒙 =   ΦΨ𝒔  (Eq. 4) 

where 𝒚 ∈ ℝ  is the measurement vector, 𝒙 is the signal vector of interest, Ψ is the 

transform/sparsifying matrix commonly of size 𝑁 × 𝑁, 𝒔 is the coefficient vector of 

size 𝑁 × 1. The relating system, in other words, the measurement matrix, in some 

texts referred as sensing matrix, A of size 𝑀 × 𝑁 is rewritten as Φ, in order to follow 

the conventionally preferred notation in the compressed sensing texts, rather than its 

form of use in the inverse problem texts as formulation of the general systems. 

Restricted Isometry Property 

In order to be able to quantitavely compare different sensing matrices, and their 

usability within the scope of CS, a crucial approach proposed by Candés and Tao, 

called the Restricted Isometry Property (successor of the so-called Uniform 
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Uncertainty Principle) has proven to be useful (E. Candes & Tao, 2004) (E. J. Candes 

& Wakin, 2008). It simply provides a numerical measurement scheme to understand 

whether a measurement/sensing matrix retains the distance of vector x under 

transformation by the system. A matrix 𝐴 of size 𝑀 × 𝑁, said to have Restricted 

Isometry Property (RIP) of order K, with Restricted Isometry Constant (RIC) 𝛿, if 

the equation below holds true for all K-sparse vectors x, and 0 < 𝛿 < 1, 

(1 − 𝛿 )||𝒙|| ≤ ||𝐴𝒙|| ≤ (1 + 𝛿 )||𝒙||  (Eq. 5) 

where  δ2K is preferably as close to zero as possible to favor a stable K-sparse signal 

recovery. As close as it is to zero, the better reconstruction arises even in the presence 

of noise. For sufficiently small values of 𝛿 , the solution is expected to be exact 

and unique. The reason of picking the RIC for 2𝐾-sparsity value, is due to the 

superpositional nature of vectors. One can have two k-sparse vectors, namely 𝑥  and 

𝑥 , adding these vectors can result in a sum vector of 𝐾-sparse to 2𝐾-sparse, 

depending on the overlapping support locations. Furthermore, even if the support 

locations do not coincide, one cannot deduce the resulting vector is still sparse. The 

RIP condition ensures that these two K-sparse vectors do not map onto the same 

measurement vector y, so that, 

𝒙 ≠  𝒙  (Eq. 6) 

𝐴𝒙 = 𝑦  (Eq. 7) 

𝐴𝒙 = 𝑦 (Eq. 8) 

 

do not hold. Hence, (Eq. 5) can be rewritten accordingly as, 

(1 − 𝛿 )||𝒙 − 𝒙 || ≤ ||𝐴(𝒙 − 𝒙 )|| ≤ (1 + 𝛿 )||𝒙 − 𝒙  ||      (Eq. 9) 

(1 − 𝛿 )||𝒙𝟏 − 𝒙 || ≤ ||𝐴𝒙 − 𝐴𝒙 || ≤ (1 + 𝛿 )||𝒙 − 𝒙  ||      (Eq. 10) 

results in squeezing the sensing matrix 𝐴, to ensure that transformation under matrix 

𝐴, does preserve the Euclidian distance. Consider an orthogonal matrix 𝐴 where the 
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columns will have its inner products as zeros. Hence, it is an isometry that preserves 

the distance and rotation perfectly, 

||𝐴𝒙|| = ||𝒙||   (Eq. 11) 

and results in an ideal RIC 𝛿 = 0. However, the sensing matrices A in CS are 

commonly of 𝑀 × 𝑁 size where 𝑀 < 𝑁 and 2𝐾 < 𝑀, resulting in a RIC of 𝛿 >

0. So, the RIP is a great tool to ensure any subset of K-columns of A, acts on K-

sparse signal 𝒙, without change of any considerable information. If the sensing 

matrix 𝐴  has its RIC 𝛿 < 1, than it is almost behaving as an isometry. Moreover, 

it has been shown by Candes (E. J. Candes & Wakin, 2008), that if 𝒙 is a K-sparse 

signal where the RIC 𝛿 < √2 − 1, then the solution is exact.  

Unfortunately, showing a matrix A satisfies the RIP is a NP-Hard problem (Bandeira 

et al., 2013), if not NP-complete (E. Candès, 2006). Since the non-zero entries in the 

coefficient vector 𝒔 in (Eq. 4), is not known beforehand, a sensing matrix A is to be 

constructed such that, it has a good RIP without the prior knowledge of the signal 

entries. Fortunately, randomness has been proven to be an useful aproach for such 

construction of measurement matrices (E. Candes & Tao, 2004). Namely; standard 

probability distributions, such as Gaussian, Bernoulli, Fourier ensemble random 

matrices with independent and identically distributed entries (D. L. Donoho, 

2004)(E. Candès, 2006)(E. J. Candes & Tao, 2006). Furthermore, these matrices tend 

to share universality property, which means they perform regardless of the 

orthonormal basis choice Ψ, and there is a high chance that the reconstruction 

matrices ΦΨ would still have the RIP (Marco Duarte, 2009). 

2.3 Incoherence 

The coherence of a matrix 𝐴 ∈ ℝ × , can be calculated to construct a low coherence 

measurement matrix Φ (e.g. sensing matrix) that has linearly independent vectors, 

which allows a quantitative metric for sensing matrix quality. It can be formulated 

as, 
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𝜇(𝐴) = max < 𝑎 , 𝑎 >   (Eq. 12) 

where 𝑎  and 𝑎  are the normalized columns of A, and 𝜇 ∈ [1, √𝑁] is the coherence. 

Furthermore, this formulation can be reduced to a somewhat simpler form to 

calculate a bound (Foucart & Rauhut, 2013) for the coherence value 𝜇 as, 

𝜇 ≥
( )

    (Eq. 13) 

It can be shown that, in case where 𝑀 << 𝑁, the equation above form reduces to, 

𝜇 ≥
√

     (Eq. 14) 

Incoherence property can be understood as, two opposite domains give the maximum 

information if they are uncorrelated. It feeds from the duality that if a signal is sparse 

in domain Ψ, then the domain Φ must be incoherent, so that the signal information 

is dispersed in the Φ domain (E. J. Candes & Wakin, 2008). Hence, each 

measurement contains some information about the whole signal, and each are equally 

important. The easiest option for a domain pair that is incoherent would be 

Kronecker (i.e. Dirac, spike domain) and frequency (i.e. Fourier domain) where the 

coherence value 𝜇 = 1 [1999 Donoho]. On the other hand, the complete coherence 

case would result in a 𝜇 = √𝑁, where the measurement matrix and the sparsifying 

basis would be equal Φ = Ψ. 

The incoherence property is one of the two pillar conditions that CS relies on along 

with sparsity. Although the RIP condition quantitatively ensures a robust, unique 

signal reconstruction occurance, the incoherence property is named as a fundamental 

premise (E. J. Candes & Wakin, 2008). The reason for this apparent conflict is, 

because incoherency is already implied inside the RIP, and it is somewhat looser 

condition to verify as opposed to the RIP condition. If the measurement matrix Φ 

and sparsifying matrix Ψ have large mutual coherence, then it can be mostly deduced 

that ΦΨ would be coherent too (E. J. Candès et al., 2011). Also, very large coherence 

would imply, how much of a just one basis vector is present in the signal, therefore 

it would take the whole N number of basis vectors to accurately represent the signal, 
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and defeats the purpose of CS, which is undersampling. In other words, smaller the 

coherence value 𝜇, means fewer measurement required. Fortunately again, i.i.d. 

random matrices (e.g. Gaussian, Bernoulli) are incoherent with almost any fixed 

sparsifying basis  in any dimension (E. J. Candes & Tao, 2006) (Duarte et al., 2006). 

2.4 Normed Vector Spaces 

Normed vector spaces are defined where every vector in a vector space is associated 

with a norm, which helps to introduce the concept of length beyond just 2D or 3D. 

It is useful when working with vectors to measure a signals strength, or an error 

size(Eldar & Kutyniok, 2012). It is formulated as below where p denotes the norm, 

|𝒙| =
(∑ |𝑥 | ) / , 𝑝𝜖(0,∞)

max
, ,…,

|𝑥 | , 𝑝 =∞   (Eq. 15) 

2.4.1 ℓ0 Norm 

The ℓ0-norm is often called as ℓ0-pseudonorm, formally because it does not satisfy 

all the properties of the norm definition, namely homogeneity. It can be formulized 

as, 

|𝑥| ≔ 𝑗 ∶ 𝑥 ≠ 0    (Eq. 16) 

It simply counts the non-zero elements in a vector. It can also be put as sparsity of 

𝒙, |𝑠𝑢𝑝𝑝(𝒙)|, or 𝑐𝑎𝑟𝑑(𝑠𝑢𝑝𝑝(𝒙)) where card stands for the cardinality function and 

corresponds to the number of elements in a set. 

2.4.2 ℓ2 Norm 

In the order of importance, ℓ2-norm (Euclidian norm, square norm, second order 

norm) is given priority before understanding ℓ1-norm. Since the problem at hand is 

an imaging problem, that is represented by vectors and matrices, it is intuitive to use 
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ℓ2-norm. It has been the common practice for solving and fitting for datasets to 

approximate signals and minimize the error for decades, which inherently are 

vectors. Its use has been regarded widely because it serves as an energy norm and 

often its physical interpretation is obvious (Kutz, 2013). The ℓ2-norm can be 

formulated as, 

|𝒙| =  ∑ |𝑥 | =  √< 𝒙, 𝒙 >  (Eq. 17) 

where angle bracket notation < , > indicates the inner product. 

2.4.3 ℓ1 Norm 

In the case of ℓ1-norm (Manhattan norm, Taxi-cab norm, first order norm), it sums 

the vectors magnitudes. Contrary to ℓ2-norm where the vector length is measured, 

ℓ1-makes use of the total of absolute length of the vector’s constituents. 

|𝒙| = ∑ |𝑥 |    (Eq. 18) 

2.4.4 Quasinorms 

The use of norms where 0 < 𝑝 < 1 is not recognized fully, but instead referred as 

quasinorms, because they do not satisfy all the properties of a norm, namely triangle 

inequality. They do not classify as convex relaxation, since in the range 0 < 𝑝 < 1, 

the problem is NP-hard in general. Although not as much as ℓ1 and ℓ2 norms, they 

do have their use in non-convex optimization algorithms against ℓ0-minimization 

problem (Yin et al., 2015). 
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Figure 6. Unit p-balls in R2 for a) ℓ1/2-norm b)ℓ1-norm c) ℓ2-norm d) ℓ∞-norm 

In Fig. 6, common p-ball drawings are drawn for ℝ . 𝑥 ∈ ℝ  is evaluated for various 

norms. One can easily deduce from the figures, as 𝑝 → 0 for ℓp, the p-ball drawing 

becomes just a spike ball for ℓ0 whose minimization is the actual solution since it 

counts non-zero entries. The solution space is represented by the red line. It is evident 

that ℓ1/2 and ℓ1-norm minimizations tend to promote sparsity in a solution, as they 

coincide along on axis with the corresponding unitary p-balls. So the solution found 

after the related minimization procedure is, indeed the sparsest solution. Unlike, ℓ1/2-

norm which is nonconvex, ℓ1-norm can be solved by convex optimization. ℓ2-norm 

coincides with the p-ball at a tangential point. In other words, the solution that is 

found by minimizing the ℓ2-norm gives a solution that has significant value of all the 

constituents, hence the solution it finds is not sparse. As 𝑝 → ∞ for ℓp, it gives equal 

weight to the all components, and has no viable solution for the inverse problem 𝑦 =

𝐴𝑥.   
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2.5 Sparse Signal Recovery 

In the compressed sensing framework, the problem then can be expressed by 

inserting the signal (Eq. 3) into the sensing scheme (Eq. 1), 

𝑦 =  𝐴𝒙 =  𝐴Ψ𝑆 =  ΦΨ𝒔   (Eq. 4) 

where 𝒚 is the 𝑁 × 1 measurement vector, 𝒙 is the signal vector of interest, Ψ is the 

transform/sparsifying matrix commonly of size 𝑁 × 𝑁, 𝒔 is the 𝑁 × 1 coefficient 

vector. The relating system, in other words, the measurement matrix (in some texts 

referred as sensing matrix) 𝐴 of size 𝑀 × 𝑁 is rewritten as Φ, in order to follow the 

conventionally preferred notation in the compressed sensing texts, rather than its 

form of use in the linear algebra texts as formulation of the general systems. 

Reforming the equation by using the product of the measurement matrix and the 

sparsifying matrix, and representing them under one variable, the equation then 

becomes,  

𝑦 =  ΦΨ𝑆 =  Θ𝒔    (Eq. 19) 

where Θ is the reconstruction matrix of size 𝑀 × 𝑁 in the compressed sensing 

context.  

Consider the case where the matrix 𝐴 ∈ ℝ ×  in (Eq. 4), has 𝑀 = 𝑁 where all of its 

columns are linearly independent (i.e., full-rank matrix). Assuming it has a solution, 

then the linear system would have a unique solution. In the case where 𝑀 > 𝑁, the 

system is called overdetermined. There are more equations than unknowns and the 

matrix 𝐴 is often called as a tall matrix. This results in a system where there are no 

solutions. Oppositely when 𝑀 < 𝑁, the matrix 𝐴 is referred as fat, then the system 

is called underdetermined and ill-posed since there are infinitely many solutions. 

This paves the way for an optimization problem. There are infinitely many solutions, 

and an optimization procedure is needed to constrain and solve for the most valid 

answer among these infinitely many solutions. An optimization problem can be 

formulated as (Foucart & Rauhut, 2013),  
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min
𝒙∈

𝑓 (𝒙) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓 (𝒙) ≤ 𝑐 , 1 ≤ 𝑖 ≤ 𝑛 (Eq. 20) 

where 𝑓 : ℝ → (−∞, ∞] is the objective function and 𝑓 : ℝ → (−∞, ∞] is referred 

as the constraint functions for which 𝑐 and 𝑖 are real and integer values respectively. 

If the locations of the non-zero entries were known beforehand, the equation           

(Eq. 4) would be fairly straightforward to solve, considering the signal is K-sparse. 

However, without this information, one possible approach to take advantage of the 

already present knowledge (that the signal is K-sparse), would be looking for all the 

K-sparse vectors. This can be posed as,  

min
𝒙∈

|𝒙|    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 = 𝐴𝒙   (Eq. 21) 

 The above result is for the ideal case when there is no error present. In order to 

account for the noise, presumably a Gaussian noise, the constraint function is 

changed as,  

min
𝒙∈

|𝒙|    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝑦 − 𝐴𝒙| ≤ 𝜖  (Eq. 22) 

where the ideal measurement 𝒚∗ = 𝐴𝒙 is subtracted from the actual measurement 𝒚 

to make sure its Euclidian distance is less than the specified error ϵ. 

As mentioned before in Section 2.5, ℓ0-pseudonorm of a vector only counts the 

number of non-zero entries. This is a non-convex problem and solving for the above 

equation, requires 𝐶(𝑁, 𝑘) possibilities of trial, considering each K-sparse vector in 

solution space where 𝑁 >> 𝐾, hence it is referred as a combinatorial problem, or 

NP-Hard.  

Although there are several classes of algorithms developed to address this problem 

in different ways, these classes can be grouped under two approaches. One approach 

is to iteratively seek the solution space and build up the signal from bottom-up 

heuristically by selecting the components that result in the best performance. This 

class of approach is often called greedy search. This approach is simpler to 

implement, and often under certain conditions, they perform adequately and even 

guarantee a recovery. Unfortunately, brute search is often oblivious and not expected 
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to find a global extremum. The other approach is to weaken the constraints of the 

equation, such that it is easier to deal with. Hence, this class of approach is named 

convex-relaxation. Rish and Grabarnik (Rish & Grabarnik, 2014) encapsulates this 

statement best possible way as; one can either solve the exact problem 

approximately, or an approximate problem exactly. 

2.6 Convex Relaxation 

2.6.1 ℓ1 Minimization 

Chen, Donoho and Saunders introduced the ℓ1-norm usage in 1998 for atomic 

decomposition of dictionaries and called it Basis Pursuit (Chen et al., 1998). Since 

ℓ0-norm is a pseudonorm that is NP-hard and non-convex, the objective function of 

(Eq. 21) is dialed down to a weaker form which is easier to solve, namely ℓ1-norm, 

thus, it is called convex-relaxation. For the noiseless case of (Eq. 21), it can be 

restated as, 

min
𝒙∈

|𝒙|    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒚 = 𝐴𝒙   (Eq. 23) 

and same reasoning applies for the noisy case of (Eq. 22), called as Basis Pursuit 
Denoising (BPDN), and restated as, 

min
𝒙∈

|𝒙|    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝒚 − 𝐴𝒙| ≤ 𝜖    (Eq. 24) 

Notice where ϵ = 0, the above formulation (Eq. 24) becomes the same with (Eq. 23). 

An equivalent approach is called LASSO (Least Absolute Shrinkage and Selection 

Operator) as, 

min
𝒙∈

|𝒚 − 𝐴𝒙|    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝒙| ≤ 𝛿 (Eq. 25) 

where the objective function and the constraint functions are replaced. Whereas 

BPDN looks for the sparsest vector that fits in the inverse problem within certain 

error tolerance, LASSO looks for the minimum error vector that have its sparsity 

limited, in other words puts a constrain on its sparsity. Although these are called 
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equivalent, they are not the same. BPDN is an ℓ1-norm minimization problem 

whereas LASSO is an ℓ1-regularized problem. They are developed by different 

communities, end referred as equivalent since for a certain positive value for ϵ and 

δ, they lead to the same solution. BPDN was developed in signal processing 

community by Chen, Donoho and Saunders in 1998 (Chen et al., 1998), whereas 

LASSO introduced in statistics community by Tibshirani in 1996 (Tibshirani, 1996) 

(Ament, 2017). These two equations can also be shown in Lagrangian form as, 

ℒ(𝒙, 𝜆) =   min
𝒙∈

|𝒙| + 𝜆 |𝒚 − 𝐴𝒙|  (Eq. 26) 

ℒ(𝒙, 𝜆) =   min
𝒙∈

|𝒚 − 𝐴𝒙| + 𝜆 |𝒙|  (Eq. 27) 

where, the objective function is often called as loss function, and instead of a 

constraint function, an added penalty function term (i.e. regularizer) can be tuned for 

changing the Lagrange multiplier (i.e. regularization parameter) 𝜆, where 𝜆 → ∞, the 

vector 𝒙 → 0. It enables the control over sparsity and approximation, in order to 

favor a balance to emphasize one over another. Sometimes, the LASSO equation can 

be also seen where square of the objective function itself gets executed with the 

constraint as in (Eq. 27), so the constrained minimization problem is, 

  min
𝒙∈

||𝒚 − 𝐴𝒙 ||  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  |𝒙| < 𝑡   (Eq. 28) 

for some parameter 𝑡. Furthermore, in case A is an orthogonal matrix, then the 

Euclidian norm of the vector gets preserved, as 

||𝐴𝒙|| = (𝐴𝒙) (𝐴𝒙) =  𝒙 (𝐴 𝐴)𝒙 = 𝒙 𝒙 = ||𝒙||        (Eq. 29) 

||𝒚 − 𝐴𝒙|| = ||𝐴 (𝒚 − 𝐴𝒙)|| = ||𝒙 − 𝒙|| = ∑ (𝒙 − 𝒙𝒊)     (Eq. 30) 

where 𝒙 is the measured vector (Rish & Grabarnik, 2014). 
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2.6.2 ℓ2 Minimization 

ℓ2-norm minimization is also a convex relaxation method that is commonly used in 

engineering fields.  The convex problem is often referred as least-squares problem 

and given as,  

min
𝒙∈

||𝒚 − 𝐴𝒙||  (Eq. 31) 

where the minimization has a unique solution 𝒙 = (𝐴 𝐴) 𝐴 𝒚  for 

underdetermined systems, which can be easily checked by the objective function’s 

derivative in (Eq. 28). However, since ℓ2-norm is an energy preserving norm, and 

does not promote sparsity as ℓ1-norm does, in sparse signal recovery, the value 

resulted from ℓ2-minimization disperses the energy onto the whole signal. Hence, 

the solution it gives is almost never sparse. The square terms in the norm definition 

itself, makes ℓ2-norm usage in sparse signal recovery more susceptible to the outliers, 

the absolute distance gets squared in ℓ2-norm, whereas ℓ1-norm minimization is more 

democratic by taking only the absolute distance itself.  

Nevertheless, ℓ2-norm is still used in some CS algorithms with a slight modification. 

Although, by itself it does not promote a sparse solution like ℓ1-does, ℓ2-norm lays 

in the foundation of a lot of models and recovery algorithms. Besides LASSO, it is 

used mainly in greedy algorithms, non-convex minimization and nuclear norm 

minimization algorithms, often with some penalty function. This method in general, 

is studied under the name regularization theory.  

2.7 Greedy Approach 

Besides the convex relaxation approach, greedy approach motivates and performs 

quite differently. Whereas the convex relaxation approach weakens the constraint on 

a problem to resemble a different, easily solvable problem, greedy approaches 

perform iteratively to build a solution from ground up to approximate as much as to 

the original signal until a stopping criterion is met. They iteratively seek and update 



 
 

24 

the signal according to the best resemblances. Although convex relaxation presents 

a complete framework to find a global minimum to the problem, its complexity 

makes it difficult to implement to any hardware. Greedy approaches are more 

machine friendly, considered by their computational cost and implementability. 

These attributes result in greedy approaches to perform better in both time wise and 

complexity wise (i.e. for higher dimensional signals).  

The greedy approach algorithms that will be explained in this chapter will be the 

classes of Greedy Iterative Algorithms and Iterative Thresholding Algorithms. The 

main difference between them is due to their residual update treatment. 

2.7.1 Greedy Iterative Algorithms 

This class of algorithms are tackling with the original problems in (Eq. 21) and (Eq. 

22) iteratively, and solve the below formulation of the problem,  

min
∈

||𝑦 − 𝐴𝑥||    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝑥| ≤ 𝑘 (Eq. 32) 

First an empty version of the vector 𝒙 and an empty support vector 𝒔 are initialized. 

Then a residual vector r that is equal to the measurement vector y, is introduced. 

Iteratively, the vector 𝒙 and 𝒓 are updated, according to some selection criteria, until 

a stopping condition is met. The vector 𝒙 keeps getting reconstructed from zero, 

whilst the residual vector 𝒓 gets smaller. Greedy iterative algorithms mostly follow 

a similar scheme.  The difference inherently arises from their selection criteria, the 

residual estimation and the satisfaction conditions amongst these algorithms.   

2.7.1.1 Matching Pursuit (MP) 

Mallat and Zhang first published the Matching Pursuit (MP) scheme in 1993 (Mallat 

& Zhang, 1994). It is the most basic algorithm among the greedy approach family. 

The algorithm iterates through by looking for the correlation between the columns 
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of 𝐴 and the residual vector 𝒓, and selects the most correlated column vector from 

𝐴, and reflects it as a coefficient for newly building 𝒙.  

 

It solves the aforementioned (Eq. 28) formulation of the original problem, where the 

objective function ||𝒚 − 𝐴𝒙||  tried to be minimized by the iteratingly built 

estimation. It calculates the signal estimation by adding the newly found correlated 

elements to form the vector 𝒙, one element per iteration. However, MP may select 

the same column vectors if the column vectors of matrix 𝐴 are coherent. 

2.7.1.2 Orthogonal Matching Pursuit (OMP) 

Shortly after the obvious convergence issues of MP got noticed, Pati has improved 

upon the idea of MP by introducing the Orthogonal Matching Pursuit (OMP) (Pati 

et al., 1993).  The algorithm has been slightly changed to project 𝒚 onto the matrix 

𝑨 with the selected indices at each iteration, and therefore does not only just count 

the inner product of a column of 𝑨. This leads to the optimization where the already 

selected indices gets to be accounted for. The residual vector 𝒓 (where 𝒓 = 𝒚 at 

initialization) is projected orthogonally onto the already selected column set Ω of 𝐴, 

then the signal 𝒙 and the residual 𝒓 gets updated, resulting in with a more robust 

algorithm.  
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Although its computational complexity is somewhat higher than the MP algorithm, 

it still remains performative against convex relaxation. Nevertheless, OMP having 

greater computational complexity, and iterative nature, makes it impractical against 

large-scale operation. In order to combat this issue, several algorithms have been 

proposed that follow and develop upon the OMP algorithm. Namely Stagewise 

Orthogonal Matching Pursuit (StOMP) by Donoho in 2006 (D. L. Donoho, 2006b), 

Regularized Orthogonal Matching Pursuit (ROMP) by Needell in 2007 (Needell & 

Vershynin, 2010), and Orthogonal Multimatching Pursuit (OMMP) by Liu in 2010 

(Liu & Temlyakov, 2010). One common property shared by among all these 

algorithms, is their multiple-element operation, whereas OMP was able to update 

one element at a time. This thesis will not go further into details of these algorithms, 

but the reader is advised to read the brilliant PhD Thesis of Needell (Needell, 2009), 

and the articles (Needell & Vershynin, 2009)(D. L. Donoho, 2006b)(Liu & 

Temlyakov, 2010) for further information on these methods.   

2.7.1.3 Compressive Sampling Matching Pursuit (CoSaMP) 

CoSaMP is first introduced by Needell and Tropp in 2008 (Tropp & Needell, 2010). 

Although OMP fixed a great deal of drawback of the MPs flaws, the area was still 
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relatively newborn and there was a lot of room for progress in the algorithmic sense. 

ROMP, improved upon the convex relaxation and greedy approaches. It has the 

advantages of a recovery guarantee (as BP does in the convex relaxation), and the 

fast nature of greedy approaches (Needell, 2009). Moreover, CoSaMP takes this 

improvement further, by reducing the error tolerances that is caused by stronger RIP 

property of ROMP.  

CoSaMP is similar in a way with the aforementioned StOMP, ROMP, OMMP due 

to its multiple element operation. However, it is mildly different, in a way that it 

refines the selection of support elements at each iteration. This allows for index 

correction at later iterations. It starts by calculating the correlation product between 

the measurement vector 𝒚 and the measurement matrix 𝐴, and calls it the signal 

proxy, unlike others that call the same step residual. Then, selects 2𝐾 elements that 

are of the highest value. selecting the mostly correlated 2𝐾 elements from this signal 

proxy. The support locations of the signal proxy, and the estimated signal vector 𝒙 

from the previous round are merged at every iteration. Through midway, a signal 

estimation is calculated again by least squares with this newly updated support set. 

Lastly, only the 𝐾 number of elements get selected, and rest discarded. This signal 

is feeded back to the algorithm to form a new signal proxy to iterate further, unless 

a stopping criterion is reached.  
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Another algorithm by Dai (Dai & Milenkovic, 2009) that came out around the same 

time in 2008 as CoSaMP, where the strategies are very similar, is called Subspace 

Pursuit (SP). However, they calculate the signal estimation differently at the last 

stage, whereas CoSaMP uses a transition variable midway and keeps only the 

elements according to the support set, SP solves for a least squares second time. In 

the following studies, it has been shown that RICs 𝛿 < 0.4859 for SP and 𝛿 <

0.5 for CoSaMP suffice to guarantee a s-sparse recovery (Song et al., 2013).  

2.7.2 Iterative Thresholding Algorithms   

Convex optimization and greedy approaches are the two main pathways to solve for 

the main problem (Eq. 21). Whereas convex optimization is more convenient for 

recovery guarantees and error bounds but heavier by means of computation, greedy 

approaches are more computationally feasible, so they are faster in general, but 

somewhat lacks the recovery guarantee and require a lot more measurements than 

convex relaxation algorithms. There is another family of algorithms in greedy 

approaches called iterative thresholding algorithms or iterative shrinkage algorithms 

besides the pursuit type algorithms. This class of algorithms, although still being 

greedy, somewhat possess similar guarantees like the convex relaxation approaches. 

These algorithms follow a very similar scheme to try to solve the (Eq. 32) 

formulation of the problem, and can be shown as, 

𝒙[ ] = , 𝑇 𝒙[ ] + 𝑓 𝒙[ ]  (Eq. 33) 

where  , 𝑇  is a thresholding operator that operates on a vector x with K-nonzero 

elements, the subscript indicates hard thresholding for  𝑇  or soft thresholding for 

 𝑇 , and 𝑓(. ) is some function that operates on the vector x at 𝑖  iteration.  
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2.7.2.1 Iterative Hard Thresholding (IHT) 

IHT algorithm, as stated by Eldar (Eldar & Kutyniok, 2012), is introduced for CS by 

Blumensath (Blumensath & Davies, 2008a) and Portilla (Portilla, 2009) seperately. 

The thresholding operator, essentially keeps K-largest entries of the vector that it is 

operationg on, and zeroes out the rest. Hence, the general formulation in (Eq. 34) 

takes the form,  

𝒙[ ] = 𝑇 𝒙[ ] + A (𝒚 − 𝐴𝒙[ ])    (Eq. 34) 

and if 𝑀  is the set of K-largest entries of 𝒙 by its absolute value at 𝑖  iteration, 

where, 

𝑇 (𝑥) =  
𝒙      𝑖𝑓 |𝒙 |𝜖|ℳ | 
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (Eq. 35) 

The algorithm is based for solving the (Eq. 35). In order to solve it, the algorithm 

calculates the gradient of the objective function at each iteration and adjusts 

oppositely. The objective function from (Eq. 32), 

𝐽(𝑥) = ||𝒚 − 𝐴𝒙||     (Eq. 36) 

and its gradient, 

−∇𝐽(𝒙) = 𝐴 (𝒚 − 𝐴𝒙)   (Eq. 37) 

can be recognized in the pseudocode and the (Eq. 34) for estimating the signal.  
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Inherently, a thresholding operator acting upon the resulting vector at each iteration 

also makes sure the constraint is fulfilled. It has been later proven by Blumensath 

that RIC of 𝛿 <
√

  guarantees an exact recovery of k-sparse signal, which is 

similiar to that of BP (Blumensath & Davies, 2008b). Moreover, the algorithm is 

guaranteed to converge where the measurement matrix A has its Euclidian norm 

||𝑨|| < 1. 

2.7.2.2 Iterative Soft Thresholding (IST/ISTA) 

Fornasier state that several authors independently suggested IST algorithm 

(Fornasier, 2010). Iterative soft thresholding is motivated to solve the unconstrained 

form of the system, described in its Lagrangian form as (Eq. 28), 

ℒ(𝒙, 𝜆) =   min
𝒙∈

||𝒚 − 𝐴𝒙 ||  + 𝜆 |𝒙|    (Eq. 38) 

The problem is then restated as (Fornasier, 2010), 

  min
𝒙∈

||𝒚 − 𝐴𝒙 ||  + 2τ |𝒙|     (Eq. 39) 

where 𝜆 = 2𝜏. In order to solve the unconstrained system above, Landweber 

iteration step (Eq. 34) is utilized which regularizes the ill-posed problem  

𝒙[ ] = 𝑇 𝒙[ ] + A 𝒚 − 𝐴 𝐴𝒙[ ]     (Eq. 40) 

    𝑇 (𝒙) =
𝒙 − τ       𝒙 > 𝜏

0             |𝒙| ≤ 𝜏 
𝒙 + 𝜏       𝒙 < 𝜏

     (Eq. 41) 

where 𝑇  is defined as solft-thresholding operator which acts elementwise. It is 

proven to converge to the objective function, required that |𝐴| < 1 (Daubechies et 

al., 2003), as it does also in IHT.  
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It is also possible to add an adaptive descent parameter to  ensure convergency. Thus, 

the Landweber iterative step in (Eq. 40) can be modified as,  

 𝒙[ ] = 𝑇 𝒙[ ] + β[ ]A (𝒚 − 𝐴𝒙[ ])   (Eq. 42) 

where 𝛽 can used as a tuning parameter.  
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CHAPTER 3  

3 METHOD 

This section will include the methodology of the proposed study. First, the 

acquisition setup for the fiber speckles will be explained. Second, the sensing matrix 

classes will be introduced and the utilization of the aforementioned speckles for 

imaging will be illustrated. At last, the performance metrics to be used will be 

described.  

3.1 Introduction  

Until 1980s, communications had to rely mostly on line wires which were susceptible 

to considerable loss. In order to deal with this issue, coaxial cables were to be used, 

however, this would still render them trapped in short distance. Upon the emergence 

of fiber optics, communications field saw tremendous development, by the fiber 

optics remarkable performance concerning the bandwidth and loss. Moreover, fibers 

could support multiple channels, called modes, which allow them to transfer 

numerous spatial information, in which case it is referred as multimode fiber (MMF). 

This surge in 1980s, also benefited a lot of other fields that saw the advantages and 

applicability, hence enjoyed the vast research and declining cost of fiber optics. One 

such research area is imaging.  

Since then, various attempts have been made to exploit the fiber optics for imaging 

(Yariv, 1976) (Fischer & Sternklar, 1985) and still are being made (Papadopoulos et 

al., 2012) (Čižmár & Dholakia, 2012) (Plöschner et al., 2015) (Amitonova & de Boer, 

2020).  
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This chapter describes the methodology, from speckle acquisition to, in the end, 

using these speckles to image a 2D scene. The scheme, as hinted before, uses SPC 

structure. 

3.2 Fiber Speckle Acquisition Scheme 

When an image is given as input at the one end of MMF, the light is coupled to the 

multiple spatial modes of the fiber. This in turn, results in a seemingly unrelated 

random pattern as an output at the other end. The main reason for this, stems from 

the fact that different modes, allow for different velocities (Fedor Mitschke, 2016), 

and referred as modal dispersion. This results with the input image getting its 

amplitude and phase mixed (Caramazza et al., 2019). Furthermore, any 

environmental changes have considerable perturbation on the output as well. 

Therefore, the resulting output at then other end shows up as scrambled, and called 

as speckles. This phenomenon is not exclusively observed for fibers. Speckle 

formation can be found in any coherent imaging modality, from ultrasound to 

tomography, especially the most obvious are in systems that involve lasers (Duncan 

& Kirkpatrick, 2008). At the entrance of the MMF, the image is transmitted along 

fiber as E-field, 

𝐸 = 𝐴𝑒     (Eq. 43) 

where 𝐴 is the amplitude, 𝛷 is the phase and 𝐸   is the E-field at the input. It reaches 

out to the exit of the MFF, and captured on CCD as an intensity distribution as, 

𝐼  = |𝐸 | = |𝑇 ∗ 𝐸 |   (Eq. 44) 

where 𝐼  is the output intensity, 𝐸   is the E-field at the output and 𝑇 is the 

transmission matrix of the MMF.  

The experimental setup to generate speckles at the output by providing everyday 

imagery at the input, is depicted in Fig. 7 as below.  
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Figure 7. Schematics of the speckle acquisition setup 

Fig. 7 shows a diode laser of 671 nm is used as a coherent light source. The laser 

beam then illuminates a spatial light modulator (SLM) of 1280x768 pixels. A 

directory of everyday images consisting of 1000 images from Cifar-10 (Krizhevsky, 

2009) are fed and written on the SLM sequentially as 32x32 greyscale images.  The 

image-set is consisting of mostly by animal and vehicle pictures. A set of sample 

between the input images and the corresponding output speckles are given below.   

 

Figure 8. a-d) Example random animal themed images from the image dataset e-h) 
corresponding fiber speckle outputs 
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Figure 9. a-d) Example random vehicle themed images from the image dataset e-h) 
corresponding fiber speckle outputs 

The images are written by modulating the amplitude and phase of the incident laser 

light. The images are then conveyed by MMF of 2 meters, which was set safe and 

secure from outside perturbations. The MMF has diameter of 105 μm, and numerical 

aperture (NA) of 0.22 . The resulting speckle patterns formed at the output end, are 

then acquired by a CCD camera of resolution 1024x768 pixels, performing in visible 

range. The corresponding speckle patterns are all collected, and archived 

accordingly. 

 

Figure 10. The general scheme of the experiment illustrated 
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Fig. 10 illustrates the framework of the general progression of the study. The Image 

set feeds the SLM where 𝐼  denotes the images. After passing through MMF, CCD 

collects the speckles as 𝜙 . Then, the measurement 𝒚  is calculated that corresponds 

to the inner product between the scene 𝒙 and the speckle pattern 𝜙 . This is 

equivalent to projection  of speckle patterns onto the scene, then acquisition by a 

single-pixel detector (SPD). Proceedingly, the measurement vector 𝒚 is built 

according to these projection calculations. Constructing the sensing matrix Φ from 

the projection speckle patterns 𝜓 , and choosing a proper sparsifying basis for the 

task Ψ, enables the calculation of the reconstruction matrix Θ.  At last, an algorithm 

is chosen to solve the approximation or relaxation for the original ℓ0-problem, in the 

pursuit of solving for the sparse coefficient vector 𝑺.   

3.3 Sensing Matrix Construction 

There are two important aspects to consider in CS scheme. First, choosing or 

building a measurement matrix that complies with the conditions of the CS theory. 

Second, choosing a reconstruction algorithm that best fits the problem at hand. One 

can classify sensing matrices into two groups, deterministic and random matrices. In 

general, random matrices often have small RIC values and more robust. However, 

deterministic matrices are difficult to design as they are NP-Hard to check for the 

RIP condition. Aside from random matrices, most commonly the employed 

structured illumination bases are Hadamard, speckle (i.e., Laser speckles (Devaux et 

al., 2016), (Ferri et al., 2005), Fourier, Haar, LeGall and Daubechies (Angelo et al., 

2018).  

3.3.1 Random Matrices 

The realization of randomness into signal processing for sparse modelling context, 

came just before the formal introduction of the CS. The great contribution came from 

Candes, Romberg and Tao in June 2004 (E. Candes et al., 2005)  as acknowledged 
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by Donoho in his CS paper of September 2004 (D. Donoho, 2006).  The striking 

results include the random matrices with independent and identically distributed 

entries are proven to be hold the RIP property with very high probability, and with a 

measurement amount relation as 𝑁 > 𝑀 ≥ 𝑂(𝐾𝑙𝑜𝑔 ). 

The sensing matrix Φ is drawn from a Gaussian such that its entries are independent 

normal variables, with zero mean and 1/𝑀 variance. 

𝜙 , ~𝒩(0, )     (Eq. 45) 

where the entries 𝜙 ,  are independent realizations of Gaussian random variables 

(Baraniuk et al., 2006).  

Bernoulli drawn sensing matrix Φ can also be created with a similar strategy as, 

𝜙 , ∶=  
+

√
     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

−
√

     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
 (Eq. 46) 

One can often find these random matrices turned to binary in order to be usable in 

the CS context. If a matrix is drawn from a Bernoulli distribution, where it has its 

entries {−1, +1}, it can be found to be referred as Rademacher matrix or signed 

Bernoulli matrix. One can also encounter the value set converted to {0, +1} as it is 

more convenient to use for some devices. Application wise, a lot of devices are 

binary friendly such as DMD and Bernoulli distribution is favored over Gaussian 

due to its binary base which can be represented in 1 bit. Considering hardware/optics 

implementation friendliness, sensing matrix consisting of set of values {−1, 0, +1} 

is essential (Do et al., 2012).  Unfortunately, this reduces the RIP condition of a 

matrix (Chandar, 2008). Nevertheless, it does not necessarily mean that using these 

random matrices are fruitless. The recovery is still achievable, however with weaker 

conditions.  
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3.3.2 Deterministic Matrices  

Although random matrices are robust, and well defined in terms of recovery, 

randomness puts a heavy weight on the computational side. As the dimensions 

increase, the required storage becomes several gigabytes as Gaussian and Bernoulli 

matrices computational storage cost is 𝑂(𝑀𝑁) (Calderbank et al., 2010). 

Furthermore, the needed processing power reaches the order of giga-flops, even at a 

few hundreds of dimensions. Due to this issue, deterministic matrices become more 

appealing as they are more machine friendly. Tao has posted about the need for 

structured matrices in CS around 2007, making it explicitly known (Tao, 2007) to 

the following community.  

Deterministic matrices are easily implemented, and highly reproducible compared to 

the random matrices.  Hadamard basis has already been in use since 1960s, especially 

in space communication protocols for image transfer (Beser, 1994) and regarded as 

being the option with one of the best reconstruction accuracies compared to the other 

matrices (Zhuoran et al., 2013).  In the context of single pixel imaging with CS, 

Hadamard transform is often used to create deterministic measurement matrix as it 

is a simpler version of the Fourier transform that does not involve multiplication or 

division. A self-adjoint orthogonal Hadamard matrix can be put as,  

𝐻 = 1     (Eq. 47) 

𝐻 =
√

𝐻 𝐻

𝐻 −𝐻
  (Eq. 48) 

where 𝑁 = 2  and 𝑞 is a positive integer. Moreover, by replacing the negative values 

in the Hadamard matrix results with a matrix called semi-Hadamard matrix (Zhang 

et al., 2010). Furthermore, the Hadamard matrices are often not used directly, but 

they are rather reordered in a specific strategy to get better performances. Although 

the matrices have the same number of ones and zeros, their rearrangement allows for 

a better computation time. The often-encountered strategy called Walsh-Hadamard 

matrix encourages the frequency ordering, which also have a fast transformation and 
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gives the best results in most of the cases (Zhuoran et al., 2013). Author encourages 

further interested readers to the recent article about comparison of Hadamard 

orderings by Vaz et al. (Vaz et al., 2020).  

 

Figure 11. Hadamard orderings (Vaz et al., 2020) 

Partial Fourier Ensembles are another popular deterministic approach to 

constructing a sensing matrix. This class of matrices enjoy the same fast 

transformation availability as Walsh-Hadamard matrices. Fast Fourier Transform 

algorithm and its inverse can be utilized to benefit computational complexity. The 

partial Fourier Ensembles also enjoy a similar guarantee for unique recovery. For 

exact reconstruction, the required measurement amount first given by Candes et al. 

(E. Candes et al., 2005) as 𝑀 = O(k log 𝑁), then improved by Rudelson and 

Vershynin as 𝑀 = 𝑂(𝑘 log 𝑁) (Rudelson & Vershynin, 2008). Also, the memory 

cost for a Fourier matrix is given as 𝑂(𝑀 log 𝑁) (Calderbank et al., 2010). More 

detailed recovery conditions on Fourier Enbsembles are given in the articles by 

Candes et al. (E. Candes et al., 2004) and Rudelson  et al. (Rudelson & Vershynin, 

2006). The discrete Fourier matrix ℱ is constructed with the below formulation as, 

ℱ , =
√

𝑒
( )( )

   (Eq. 49) 

where 𝑗, 𝑘 ∈ [𝑁]. In CS context, the sensing matrix of size 𝑀 ×  𝑁 (𝑀 < 𝑁) is 

constructed by choosing 𝑀 rows from the previously mentioned full-rank matrices 

at random.  Hence, the new matrix is often referred as partial.  

The last broad class of matrix is, as one of the key questions of this thesis, incoherent 

ensemble. Choosing any orthonormal matrix of size 𝑁 × 𝑁 matrix that is incoherent 
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enough to use as sampling projections, in other words, qualifies as a good sensing 

matrix. Here, the question is whether the fiber speckle patterns that are produced by 

every-day still imagery from Cifar-10 image set, can qualify as a sensing matrix that 

is capable of reconstruction of a 2D scene with CS. Two sets of sensing matrices Φ 

are created to examine the discrete edge effects. First, the raw speckle size of 

96 × 128 that is recorded through CCD camera is reduced to 96 × 96. Downsizing 

medially, clears the image from obvious linearly dependent column vectors which 

contain no valuable information. Second, the resulting 96 × 96 image involves a 

circular speckle and outside of the circle is blank (See Figure 11a). In order to 

increase incoherence, another set of sensing matrix from speckles of size 56 × 56 is 

constructed (Figure 11b).  

 

Figure 12. a) Full-size speckle with rectangular area showing b) second set of 
speckles that shows the cropped section of the full image in (a) 

By using the speckle patterns, the created sensing matrices Φ are shown in color 

scaled form in Fig. 12. Each row 𝜙  of the sensing matrix Φ corresponds to a unique 

speckle pattern. The scaled color enables to observe the intensity distributions in the 

speckle patterns more conveniently, compared to grayscale. One can observe the 

redundant columns of the sensing matrix Φ that is created with the full sized speckles 

of size 96 × 96 in Fig. 12a. These redundant columns at the beginning and the end 

are caused by the rectangular speckle image having circular speckle distribution. 
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Moreover, a vertical line trend can be seen through the whole image. Even around 

the center, a similar intensity level can be observed for most of the images. Meaning, 

regardless of the image, the speckles tend to share similar speckle intensity at the 

same points.   

 

Figure 13. Sensing matrices utilizing a) full-size speckles b) partial speckles 

3.4 Speckle Projections 

In the context of SPI, the structured projections are collected by (SPD). A single 

projection that falls onto the 2D scene, gives rise to a single measurement reading on 

a SPD. This single measurement is the inner product of the projection and the image. 

A 2D image of size 𝑁 × 𝑁 is converted into a single vector by stacking the columns 

and denoted as 𝒙 ∈ ℝ × . Further, the speckle pattern is denoted by 𝜙 ∈ ℝ ×  

for the 𝑗  row. This can be shown as, 
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𝑦 = < 𝒙, 𝜙 > = 𝜙 𝒙    (Eq. 50) 

where a single intensity measurement 𝑦  is collected. Provided with sequential 

illumination, the above expression becomes,  

𝒚 = Φ𝐱 +  𝝐     (Eq. 51) 

where 𝝐 is the noise vector. The signal 𝒙 is assumed to be sparse in some specified 

basis Ψ ∈ ℝ ×  . The projected patterns need to be inchorent with the basis Ψ.  

𝒚 = ΦΨ𝐬     (Eq. 52) 

where 𝒔 ∈ ℝ ×  is the underlying sparse coefficient vector. One of the advantages 

of SPC with CS is, after the measurement vector 𝒚 ∈ ℝ ×    acquired, reconstruction 

is made computationally afterwards. One does not have to choose basis, or the 

reconstruction algorithm right away at the acquisition phase. This allows for the 

reconstruction of x from previously taken data 𝒚, with the new state of the art 

reconstruction algorithms, or newly realized a better choice of basis.  

The measurement vector 𝒚  is  constructed with the equations above, by calculating 

the inner products between the speckle patterns and the image. The common test 

pictures from image processing community are used. Afterwards, the reconstruction 

matrix Θ = ΦΨ is built with DCT chosen as the basis Ψ. Among most common 

choices of bases DCT, Fourier and Wavelets; DCT is fairly straightforwad and 

provides a relatively good performances for the imaging purposes. The 

reconstruction algorithms that are mentioned in the previous sections are applied. 

Namely, ℓ1 and ℓ2 minimization as convex relaxations, and OMP, CoSaMP, IST as 

the greedy alternatives. ℓ1-magic package has been used to solve the ℓ1-norm 

minimization problem. The reconstruced images have their resolution limited 

according to the fiber speckle resolutions. 56 × 56 and 96 × 96 images are 

reconstructed with the two sensing matrices are given in Fig. 13. Measurement 

amount of 600, 800, 1000 are trialed and their performances compared.  
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3.5 Image Quality Metrics 

Starting from the 1950s, growing technological advancements such as 

microprocessors and Silicon technology, has led digital imaging to its peak. 

Moreover, last couple of decades has a great deal of developments in artificial 

intelligence (AI). Subfields of AI, such as machine vision and computer vision 

further ignited the progress of digital imaging.  

In order to assess the quality of the reconstruction, there are several metrics that is 

used in the field. One of the most basic metrics in use is the mean squared error 

(MSE) as,  

𝑀𝑆𝐸(𝒙, 𝒙) = 𝐸((𝒙 − 𝒙) )   (Eq. 53) 

where 𝐸(∙) is the expected value operator. However, this metric utilizes a squared 

term, which amplifies larger errors compared to the small ones. In order to make it 

the same units with the original signal, the MSE value is square rooted, and the new 

metric is called root mean squared error (RMSE). It describes how much spread the 

reconstructed values are compared to the their true positions or original signal. 

RMSE is formulated as,   

𝑅𝑀𝑆𝐸(𝑥, 𝑥) =  𝐸((𝒙 − 𝒙) )  (Eq. 54) 

Another one of the most common metrics is called peak signal-to-noise ratio. It is 

often encountered in compression of media and describes the ratio of maximum 

possible power of the signal and the noise present. PSNR is given as,  

𝑃𝑆𝑁𝑅(𝒙, 𝒙) = 10 log   (Eq. 55) 

where 𝑀𝐴𝑋 is the maximum possible pixel value. In this thesis, the images are 

calculated as grayscale 8 bits, which have the corresponding 𝑀𝐴𝑋 value of 255. 

Another metric that has been proposed (Wang et al., 2004) relatively recent called 

structural similarity index measure (SSIM), which takes luminance (𝑙), contrast (𝑐) 

and structure (𝑠) into account for comparison, 
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𝑆𝑆𝐼𝑀(𝑥, 𝑥) = [𝑙(𝑥, 𝑥)] ∙ [𝑐(𝑥, 𝑥)] ∙ [𝑠(𝑥, 𝑥)]   (Eq. 56) 

where 𝛼, 𝛽, 𝛾 > 0 are tunable parameters. This metric differs from the 

aforementioned methods, it has a normalized range. Whereas the RMSE and PSNR 

have different range values for comparison, the SSIM has a fixed range of [0,1], so 

the perfect score (i.e. 𝑆𝑆𝐼𝑀 = 1) is only attained when the two signals are perfectly 

equal (i.e. 𝒙 = 𝒙).  
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CHAPTER 4  

4 RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter gives the simulation results for CS reconstruction, using fiber speckles 

as projections onto the conventional 2D test images.  

4.2 Reconstruction 

The measurement vector 𝒚 ∈ ℝ ×  is acquired by the sensing matrix projections 

𝜙 ∈ ℝ × . Reconstructions are performed with the algortihms in Section 2.6. 

Convex relaxation algortihms ℓ1 minimization and ℓ2 minimization are trialed for 

performance. For applying ℓ1 minimization, the MATLAB package called ℓ1-

magic(E. J. Candès, 2005) , created by Candes and Romberg is utilized to solve     

(Eq. 23) with the parameters 𝑖𝑡𝑒𝑟 = 50  and 𝑝𝑑𝑡𝑜𝑙 = 10 . Least squares solution 

is employed for the ℓ2-minimization. The standard described OMP and CoSaMP 

algorithms are used for pursuits. Lastly, ISTA is trialed for greedy iterative class as 

described in (Bayram, 2016).  

4.2.1 Different Speckle Size Reconstruction Comparison 

Initially, the inherent sparsity value for the signal is chosen as 𝐾 = 𝑀/4 = 250 . 

The resolution of the reconstructed image is dependent on the spatial resolution of 

the speckle projection. Pursuits are iterated 𝐾 times, whereas the thresholding is 

iterated at specified times.  All three (OMP, CoSaMP and ISTA) are iterated 250 

times for the below reconstructions in Fig. 14 and Fig. 15, and regularizer parameter 
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chosen as 𝜆 = 1 for ISTA. Fig. 14 shows the reconstruction results for 96 × 96 

speckle projections.  

 

Figure 14. Reconstruction results for cameraman image created with 96x96 speckle 
patterns (N = 9216, M = 1000, K = 250) 

Table 1. Performance metrics for Fig. 14 

 ℓ1 Min ℓ2 Min OMP CoSaMP ISTA 

RMSE 39.86 91.89 71.82 64.72 101.17 

PSNR 16.12 8.87 11.01 11.91 8.02 

SSIM 0.222 0.081 0.157 0.164 0.005 

 

The reconstruction results in Fig. 14 show that  ℓ1-minimization gives the best result 

compared to the other strategies followed. Since ℓ2 is a power keeping norm, the 

reconstruction dispersed the energy at the center around, and nearly zeroed out all 

the information outside of the circular ring. The pursuit algorithms expectedly 

proceeded by the correlation, which explains their partial success. Adding the 



 
 

49 

column vectors to reconstruct the image, resulted in a more distributed, noncircular 

formation. CoSaMP gave better performance by pruning the solution vector along 

the algoritm at each step. Hence, OMP seems to have more texture of high frequency, 

which is non-existent in the CoSaMP reconstruction. ISTA seemingly 

underperformed. The sensing matrix choice is important for thresholding algorithms 

and |Φ| < 1 is required for convergence to a solution. Even though the RMSE 

and PSNR values are close to the ℓ2-min algorithm, SSIM shows ℓ2-min performs 

much better by mean of structural similarity with the original. This can also be 

verified by visual inspection of the two.  

 

Figure 15. Reconstruction results for cameraman image created with 56x56 speckle 
patterns (N = 3136, M = 1000, K = 250) 

  



 
 

50 

Table 2. Performance metrics for Fig. 15 

 ℓ1 Min ℓ2 Min OMP CoSaMP ISTA 

RMSE 20.07 35.49 24.28 30.05 54.51 

PSNR 22.08 17.13 20.43 18.57 13.40 

SSIM 0.408 0.232 0.353 0.294 0.001 

 

One can deduce from the Table 2, the reconstruction by 56 × 56 speckle projections, 

overall benefited all the figures except the one by ISTA. The sparsity value 𝐾 and 

the measurement amount 𝑀 are kept the same but 𝑁 has decreased. At the heart of 

the CS theory, 𝑀~𝑂(𝐾 log 𝑁) is sustained, hence the required measurement amount 

𝑀 also decreased. Yet, the recoveries took place with the same 𝑀 value. In other 

words, the requirements for a succesfull recovery got lowered, and obtaining more 

than minimum measurement amounts improved overall almost all the images. 

Furthermore, by only taking the centeral region for projection, helped to remove 

monotonous parts. These monotonous parts were causing the sensing matrix Φ to be 

more coherent. Removing these, has led to an increased incoherency among the 

projection vectors of the sensing matrix Φ and the image. Almost all the 

reconstructions are doubled in quality, except ISTA. Thresholding and shrinkage 

algorithms already require high amounts of iterations. Morever, they try to keep the 

highest values. The downside of the iterative algorithms as mentioned in Section 2.6, 

they are mostly oblivious to the reconstruction. The PSNR has improved and the 

RMSE has reduced, which in general indicate improvement. However, their blind 

structure do not take the relatability in the process of reconstruction.  

4.2.2 Reconstruction Performance with Different Measurement Amounts 

The reconstruction performance is directly affected by the measurement amount, as 

it tries to reconstruct the full size image with lesser information. Surprisingly, losing 
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almost 7% of the total information, does not seem to affect the visible image quality 

besides CoSaMP.  

 

Figure 16. Reconstruction results for cameraman image created with 56x56 speckle 
patterns (N = 3136, M = 800, K = 250) 

Table 3. Performance metrics for Fig. 16 

 ℓ1 Min ℓ2 Min OMP CoSaMP ISTA 

RMSE 22.76 38.23 26.53 40.20 55.46 

PSNR 20.99 16.48 19.65 16.05 13.25 

SSIM 0.361 0.200 0.303 0.221 0.004 

 

The most affected algorithm by the measurement amount 𝑀 seems to be CoSaMP. 

By going from 𝑀 = 800 to 𝑀 = 600, the reconstruction got obsolete. This may be 

caused by how close the approximity of the values 𝑀 and 𝐾 become. Since the 

algorithm works by selecting 2𝐾 number of most correlated values, and then pruning 
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the rest, it got stuck with the same pool of values. Since 2𝐾 and 𝑀 are close values, 

there is not much new information pool to better the reconstruction.  

The convex relaxation method of ℓ1-minimization, still outperforms the other 

algorithms and gives a very recognizable reconstruction even at the levels of 20% 

of the available information.   

 

Figure 17. Reconstruction results for cameraman image created with 56x56 speckle 
patterns (N = 3136, M = 600, K = 250) 

Table 4. Performance metrics for Fig. 17 

 ℓ1 Min ℓ2 Min OMP CoSaMP ISTA 

RMSE 25.55 41.55 30.49 353.65 56.001 

PSNR 19.98 15.76 18.45 -2.84 13.17 

SSIM 0.306 0.165 0.277 0.008 0.006 
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CHAPTER 5  

5 CONCLUSION 

One of the main aims of this study was to investigation and validation of the proof-

of-concept for the imaging 2D with optical fiber optics using CS. Among various 

sensing matrix strategies including random and deterministic, the applicability of the 

fiber speckles has been explored. Various reconstruction algortihms are studied, and 

applied to reconstruct within the SPI scheme. These reconstructions later compared 

with different image quality metrics.  

The setup has been built and improved to acquire the fiber optic speckles of everyday 

still imagery after passing through 2 m MMF. These still imagery are produced by 

illuminating the related SLM pattern by a laser of 671 nm. These speckles are then 

acquired via a CCD camera.  

The accumulated speckles are then utilized to form a sensing matrix. The 

measurement is determined by the product between the projected speckles and the 

2D image. Several methods are trialed to investigate the better reconstruction 

algorith. Among these algorithms, convex relaxation prevailed to be the 

reconstruction with the most fidelity and quality.Several metrics including RMSE, 

PSNR and SSIM are employed to compare, and ℓ1 minimization is especially 

highlighted as the algorithm with the best results. The computational complexity of 

the convex methods are repeatedly emphasised.  

This work has enabled to show a succesfull demonstration of the fiber optic SPI. It 

has been recently experimentally shown by utilizing the modal structure of the MMF 

fiber, and raster scanning the input facet CS can be used to reconstruct a scene 

(Amitonova & de Boer, 2020). However, without raster scanning the input face and 

directly exposing with different patterns still allow for a decent recovery of the 

output facet. The findings in this study shows, although the sensing matrix structure 
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shows the excitation of the same vertical vectors the recovery is attainable even 

without prioritizing the excitation or illumination of the whole modal structure at the 

end of the fiber.  

The utilization and the applicability of the fiber optic speckles in SPC and CS context 

has been shown. It can be further supported with the 2D experimental data. Different 

bases can be trialed to explore the existance of a better reconstruction matrix. Precise 

calculations that use advanced SPDs can further improve the image quality and 

timing. Moreover, the same SPI scheme with fibers can be utilized to achieve depth 

reconstruction, similar to the CS LiDAR applications with structured illumination. 

Moreover, using two or more SPDs at different positions can provide reflection and 

3D imaging. Filters or prisms can be utilized for color imaging at endoscopic scale.  

Ghost imaging can be realized to further explore the imaging possibilities of  

speckles.  
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